
Chapter 10

First Approach to
Algencan

Algencan is a Fortran subroutine for solving constrained optimization problems using
the Augmented Lagrangian techniques described in this book. Understanding the Aug-
mented Lagrangian principles will help you to make a good use of Algencan. (Analogous
statements are valid for every numerical software.) Algencan involves many parameters
with crucial influence in the algorithmic behavior. Most of them assume predetermined
default values and you do not need to think about them in a first approach. Eventually,
we will explain how to modify these parameters too.

Trained users should be able to obtain much better results using constrained optimiza-
tion software than will untrained users. The software is your car, but you are the driver. A
good use of Algencan usually overtakes a naive use to several orders of magnitude. Clever
exploitation of the software capabilities may transform failures into remarkable successes.

Correct choices of parameters make a big difference. It is common that users change
initial points after a presumed failure but it is less frequent to change algorithmic param-
eters when, for example, the local minimizer obtained is not satisfactory for practical
purposes. We strongly encourage algorithmic parameter variations with at least the same
intensity that we encourage changing initial approximations. Families of problems (per-
haps a family to which your problem belongs) may be satisfactorily solved employing
some set of algorithmic parameters that could not be adequate for other families.

Throughout this chapter, you will see that, to use Algencan, you need to code sub-
routines that compute functions and derivatives. In fact, you can avoid writing codes for
computing derivatives (in which case Algencan will employ finite differences) but this is
not recommended in terms of efficiency.1

10.1 Problem definition
In this chapter the notation is slightly different from that used in previous chapters. In
the theoretical chapters we employed a notation that favors understanding mathematical
definitions and proofs, whereas here the notation is more compatible with existing codes
and subroutines. For example, instead of using h(x) = 0 and g (x) ≤ 0 for equality and
inequality constraints, respectively, we use c j (x) with j ∈ E for functions that define
equality constraints and c j (x) with j ∈ I for inequality constraints. Equality constraints
are assumed to be of the form c j (x) = 0, while inequality constraints are assumed to be

1Algencan enjoys the benefits of first- and second-order derivatives computed by automatic differentiation
tools through its AMPL and CUTEst interfaces.

113

Gabriel Haeser
E.G. Birgin, J.M. Martínez - Practical Augmented Lagrangian Methods, 2014

114 Chapter 10. First Approach to Algencan

of the form c j (x) ≤ 0. An inequality constraint of the form c!j ≤ c j (x) ≤ c u
j must be

rewritten as (a) c j (x)− c u
j ≤ 0 and c!j − c j (x) ≤ 0, or (b) c j (x)− s = 0 and c!j ≤ s ≤ c u

j ,
where s is a new auxiliary variable. The general form of the problems tackled by Algencan
is then given by

Minimize f (x)
subject to c j (x) = 0, j ∈ E ,

c j (x)≤ 0, j ∈ I ,
!≤ x ≤ u,

(10.1)

where the sets of indices E and I are such that E ∩ I = %, E ∪ I = {1,2, . . . , m}, and f and
c1, . . . , cm are real valued functions in the n-dimensional space. The vectors ! and u (lower
and upper bounds of the variables, respectively) are Algencan parameters, as well as the
number of variables n, the number of constraints m, and the sets E and I . Functions f
and c j , j = 1, . . . , m, and, optionally, their first and second derivatives, must be coded by
the user. Note that the definition (10.1) involves only the case in which the lower-level
set Ω is defined by a box !≤ x ≤ u.

For further reference, we restate the definition of the Lagrangian and Augmented La-
grangian functions given in (4.2) and (4.3), respectively, using the notation that will be
adopted from this chapter on. The Lagrangian function can be restated as

' (x,λ) = f (x)+
∑

j∈E∪I
λ j c j (x), (10.2)

while the Augmented Lagrangian function can be restated as

Lρ(x,λ) = f (x)+
∑

j∈E∪I
(ρ(c j (x),λ j), (10.3)

where

(ρ(c j (x),λ j) =

"
c j (x)

#
λ j +

1
2ρc j (x)

$
if j ∈ E or λ j +ρc j (x)> 0,

− 1
2λ

2
j /ρ otherwise.

Note that, from now on, Lagrange multipliers will be denoted by λ ∈!m , independently
of being associated with equality or inequality constraints.

10.2 Parameters of the subroutine Algencan
We assume that the user is reasonably familiar with Fortran. The subroutine Algencan
may be called from any main code or any other subroutine provided (coded) by the user.
You can use Algencan to solve a single problem or a sequence of problems that may appear
in your application. As a Fortran subroutine, Algencan has a rather large list of param-
eters. As in the case of any other optimization code, the behavior of Algencan depends
on the choice of the parameters and the correct coding of the user-provided subroutines.
You must provide all the input parameters, the names and meaning of which will be given
below.

The prototype of Algencan is as follows:
subroutine algencan(fsub,gsub,hsub,csub,jacsub,hcsub,fcsub,gjacsub, &

gjacpsub,hlsub,hlpsub,jcnnzmax,hnnzmax,epsfeas,epsopt,efstain, &
eostain,efacc,eoacc,outputfnm,specfnm,nvparam,vparam,n,x,l,u, &
m,lambda,equatn,linear,coded,checkder,f,cnorm,snorm,nlpsupn, &
inform)

10.2. Parameters of the subroutine Algencan 115

Therefore, the program that calls Algencan must declare the specific type of each pa-
rameter (double precision, integer, logical, or character) and must include a statement of
the following form:

call algencan(myevalf,myevalg,myevalh,myevalc,myevaljac,myevalhc, &
myevalfc,myevalgjac,myevalgjacp,myevalhl,myevalhlp,jcnnzmax, &
hnnzmax,epsfeas,epsopt,efstain,eostain,efacc,eoacc,outputfnm, &
specfnm,nvparam,vparam,n,x,l,u,m,lambda,equatn,linear,coded, &
checkder,f,cnorm,snorm,nlpsupn,inform)

We usually talk about input and output parameters, independent of the existence of
an ontological difference between them in the programming language at hand. (The dif-
ference exists in Fortran 90, but it does not exist in Fortran 77.) In the calling sequence,
myevalf, myevalg, myevalh, myevalc, myevaljac, myevalhc, myevalfc,
myevalgjac, myevalgjacp, myevalhl, myevalhlp, jcnnzmax, hnnzmax,
epsfeas, epsopt, efstain, eostain, efacc, eoacc, outputfnm, specfnm,
nvparam, vparam, n, l, u, m, equatn, linear, coded, and checkder are input pa-
rameters. Parameters f, cnorm, snorm, nlpsupn, and inform are output parameters.
The remaining ones, x and lambda, are, at the same time, input and output parameters.

10.2.1 Brief description of the input parameters

The subroutines denominated in the calling program as myevalf, myevalg, myevalh,
myevalc, myevaljac, myevalhc, myevalfc, myevalgjac, myevalgjacp,
myevalhl, and myevalhlp might be coded by the user to represent the functions
that define the problem. The parameters jcnnzmax, hnnzmax, epsfeas, epsopt,
efstain, eostain, efacc, eoacc, outputfnm, specfnm, nvparam, vparam, n,
l, u, m, equatn, linear, coded, and checkder are input parameters with different
degrees of relevance.

The parameters related to the description of the problem are the number of variables
n, the number of constraints m, the vector of lower bounds l and the vector of upper
bounds u, a logical vector equatn that defines which constraints are equalities and which
are inequalities, and a logical vector linear that says whether each constraint is linear.
The logical vector coded indicates which functional subroutines were effectively coded
by the user. Finally, checkder is a logical variable by means of which you may ex-
press your desire for checking the correctness of coded derivatives. jcnnzmaxmust store
an upper bound on the number of nonnull elements in (more precisely, the number of
triplets used to store the sparse representation of) the sparse Jacobian of the constraints.
hnnzmax must be an upper bound for the sum of the number of (triplets required to rep-
resent the) nonnull elements in the lower triangles of the Hessian of the objective func-
tion, the Hessians of the constraints, and the matrix

∑m
j=1∇c j (x)∇c j (x)T . The meaning

of parameter hnnzmax may vary depending on the subroutines coded by the user and
the method used to solve the Augmented Lagrangian subproblems.

The parameters epsfeas and epsopt should be small positive numbers used by Al-
gencan to stop the execution declaring feasibility and optimality, respectively. Parameters
efstain and eostain are related to feasibility and optimality tolerances, respectively,
and are used by Algencan to stop the execution declaring that an infeasible stationary
point of the sum of the squared infeasibilities was found. Their values should depend
on whether the user is interested in stopping the execution of Algencan at this type of
point. Parameters efacc and eoacc are feasibility and optimality levels, below which a
Newton-based acceleration process is launched.

116 Chapter 10. First Approach to Algencan

Parameter ouputfnm is a string that may contain the name of an output file. Declar-
ing outputfnm = ’’ in the calling program indicates that no output file is required.
nvparam, vparam, and specfnm are parameters related to the setting of additional (or
implicit) input parameters of Algencan.

10.2.2 Tolerances to declare convergence: epsfeas and espsopt

The input parameters epsfeas and epsopt are double precision values related to the
Algencan main stopping criterion and correspond to the feasibility tolerance εfeas and to the
optimality tolerance εopt, respectively. Roughly speaking, Algencan declares convergence
when feasibility has been obtained with tolerance εfeas and optimality has been obtained
with tolerance εopt. It is highly recommended that after returning from Algencan, you
test your own criteria of feasibility and optimality, since you may not be happy with the
ones adopted by Algencan. Below we give a more detailed description of the meaning of
εfeas and εopt. You may skip this explanation when first reading this chapter.

Scaling and stopping

Algencan considers a scaled version of problem (10.1) given by

Minimize wf f (x)
subject to wcj

c j (x) = 0, j ∈ E ,
wcj

c j (x)≤ 0, j ∈ I ,
!≤ x ≤ u,

(10.4)

where wf and wcj
, j = 1, . . . , m, are scaling factors such that 0< wf ≤ 1 and 0< wcj

≤ 1,
j = 1, . . . , m. By default, the scaling factors are computed as

wf = 1/max(1,‖∇ f (x0)‖∞),
wcj
= 1/max(1,‖∇c j (x0)‖∞), j = 1, . . . , m,

(10.5)

where x0 is the initial estimation to the solution given by the user. Instructions on how
to modify these scaling factors adopted by Algencan will be given in Section 12.5.

Let (xk , λ̄k) be an iterate of primal and dual variables and, following (4.7) and (4.8)
applied to the scaled problem (10.4), define

λk+1
j =

&
λ̄k

j +ρk wcj
c j (xk) if j ∈ E or λ̄k

j +ρk wcj
c j (xk)≥ 0,

0 otherwise

for j = 1, . . . , m. The pair (xk ,λk+1) is considered an approximate solution to (10.1) when
''''''

P[!,u]


xk −


wf∇ f (xk)+

m∑
j=1
λk+1

j wcj
∇c j (x

k)




− xk

''''''
∞

≤ εopt, (10.6)

max
0

max
j∈E
{|wcj

c j (x
k)|},max

j∈I
{|min{−wcj

c j (x
k),λk+1

j }|}
1
≤ εfeas, (10.7)

and
max

0
max
j∈E
{|c j (x

k)|},max
j∈I
{c j (x

k)+}
1
≤ εfeas, (10.8)

10.2. Parameters of the subroutine Algencan 117

where in (10.6), P[!,u] represents the Euclidean projection operator onto the box {x ∈
!n | ! ≤ x ≤ u}. Conditions (10.6), (10.7) say that (xk ,λk+1) is an approximate station-
ary pair of the scaled problem (10.4), while (10.8) says that xk also satisfies the required
feasibility tolerance for the original unscaled problem (10.1).2 Fulfillment of the stopping
criterion (10.6)–(10.8) is reported by Algencan by returning inform = 0.

10.2.3 Tolerances to declare convergence to an infeasible point: efstain
and eostain

In addition to the main stopping criterion described in the previous subsection, there is
another stopping criterion related to the convergence to an infeasible point. This stopping
criterion considers two additional double precision parameters, named efstain and
eostain, that are associated with the tolerances εfstain and εostain, respectively. Algencan
considers that an infeasible stationary point of the infeasibility measure

Φ(x) =
1
2

2∑
j∈E

w2
cj

c j (x)
2+

∑
j∈I

w2
cj

c j (x)
2
+

3
(10.9)

was found if the current point xk is such that !≤ xk ≤ u,

max
0

max
j∈E
{|wcj

c j (x
k)|},max

j∈I
{[wcj

c j (x
k)]+}

1
> εfstain, (10.10)

and''''''
P[!,u]


xk −


∑

j∈E
w2

cj
c j (x

k)∇c j (x
k)+

∑
j∈I

w2
cj

c j (x
k)+∇c j (x

k)




− xk

''''''
∞

≤ εostain.

(10.11)
Whether this stopping criterion should be enabled or inhibited is not a simple ques-

tion. On the one hand, Algencan may be able to “visit” an iterate xk that satisfies (10.10),
(10.11) but could abandon this point and finally converge to a point that satisfies the main
stopping criterion (10.6)–(10.8) associated with success. On the other hand, the previous
described situation may be very time-consuming and painful, and the user may prefer to
rapidly stop the optimization process if (10.10), (10.11) is satisfied, perhaps modifying the
initial guess or some algorithmic parameter, and starting the optimization process all over
again.

Possible values for εfstain and εostain, in order to enable the stopping criterion (10.10),
(10.11), would be-εfeas and ε1.5

opt, respectively. If an iterate xk satisfying (10.10), (10.11) is
found, Algencan stops with the diagnostic parameter inform = 1.

To inhibit the stopping criterion (10.10), (10.11), it would be enough to set εostain
to any negative value and to leave εfstain undefined. In this scenario, conditions (10.10),
(10.11) are never satisfied and convergence to an infeasible point may be perceived by the
occurrence of a very large value of the penalty parameter or by the exhaustion of the
maximum number of iterations of Algencan.

10.2.4 Thresholds to launch the acceleration process: efacc and eoacc

The input double precision parameters efacc and eoacc correspond to feasibility and
optimality tolerances εfacc and εoacc, respectively, embedded in a criterion used to launch

2A similar stopping criterion (similar in that it considers a scaled problem but enforces the feasibility toler-
ance to be satisfied independently of the scaling) is also considered by the interior-points method Ipopt [254].

118 Chapter 10. First Approach to Algencan

the so-called acceleration process. As suggested by its name, the acceleration process aims
to accelerate the convergence of Algencan. It is automatically activated when some crite-
rion determines that the current point is close enough to a solution. Namely, the main cri-
terion to launch the acceleration process (there are other additional criteria too) is fulfilled
when a pair (xk , λ̄k) satisfies (10.6)–(10.7) with εfeas and εopt replaced by max{-εfeas,εfacc}
and max{-εopt,εoacc}, respectively. Starting at the iteration in which this criterion is sat-
isfied, a KKT system of the original unscaled problem (10.1) is built and an attempt to
solve it by Newton’s method is made. On success, the whole optimization method stops.
Otherwise, the attempt is ignored and the Augmented Lagrangian execution continues.

Large positive values of efacc and eoacc should be used to launch the acceleration
process at the early stages of Algencan. Null values may be used to launch the accelera-
tion process when Algencan reaches half the required precision, i.e., when (10.6)–(10.7)
is satisfied with εfeas and εopt replaced by -εfeas and -εopt, respectively. To inhibit the
usage of the acceleration process, parameters efacc and eoacc should both be set to
any negative value.

Note that the acceleration process requires first-order and second-order derivatives to
be provided by the user plus requires the availability of a linear system solver. (Algencan
may use the Fortran 95 subroutines MA57, MA86, or MA97 from the HSL Mathemat-
ical Software Library [261].) A description of the acceleration process will be given in
Section 12.10 and can also be found in [54]. Below, we give a brief description in order to
state the stopping criterion that is satisfied when the last iterate of Algencan is found in
the acceleration process. You may skip this explanation when first reading this chapter.

Acceleration process and stopping

The acceleration process deals with the only-equalities reformulation of the unscaled orig-
inal problem (10.1) given by

Minimize f (x)
subject to c j (x) = 0, j ∈ E ,

c j (x)+ 1/2 s2
j = 0, j ∈ I ,

!i − xi + 1/2 (s!i)
2 = 0, i = 1, . . . , n,

xi − ui + 1/2 (s u
i)

2 = 0, i = 1, . . . , n,

(10.12)

whose KKT system is given by

∇ f (x)+
∑

j∈E∪I
λ j∇c j (x)−λ!+λu = 0, (10.13)

c j (x) = 0, j ∈ E , (10.14)

c j (x)+ 1/2 s2
j = 0, j ∈ I , (10.15)

!i − xi + 1/2 (s!i)
2 = 0, i = 1, . . . , n, (10.16)

xi − ui + 1/2 (s u
i)

2 = 0, i = 1, . . . , n, (10.17)

λ j s j = 0, j ∈ I , (10.18)

λ!i s!i = 0, i = 1, . . . , n, (10.19)

λu
i s u

i = 0, i = 1, . . . , n. (10.20)

10.2. Parameters of the subroutine Algencan 119

The acceleration process consists of solving the nonlinear system (10.13)–(10.20) by
Newton’s method iteratively. Based on simple strategies to identify active bound con-
straints and nonactive inequality constraints, reduced Newtonian linear systems (with a
possible correction of its inertia) are solved at each step.

On success, the acceleration process returns (x̃k , λ̃k) such that !≤ x̃k ≤ u, λ̃k
j ≥ 0 for

all j ∈ I , and

''''''
P[!,u]


x̃k −


∇ f (x̃k)+

m∑
j=1
λ̃k

j∇c j (x̃
k)




− x̃k

''''''
∞

≤ εopt, (10.21)

max
0

max
j∈E

4555c j (x̃
k)
555
6

,max
j∈I

4555min
4
−c j (x̃

k), λ̃k
j

6555
61
≤ εfeas. (10.22)

This means that (x̃k , λ̃k) is an approximate stationary pair of the unscaled original prob-
lem (10.1). In this case, Algencan stops.

10.2.5 Output filename

Algencan displays on the screen information related to the parameters being used, the
problem being solved, the progress of the optimization process, and some final simple
statistics. The level of the detail of the displayed information depends on a couple of
parameters that will be described in Section 12.2. A copy of the information displayed on
the screen may be sent to an output file if desired. The parameter outputfnm is a string
that may contain the name of the output file (restricted to a length of 80 characters), as,
for example, myalgencan.out. If the output file is not desired, outputfnm should
be set to an empty string, i.e., outputfnm = ’’.

10.2.6 Setting of the additional or implicit parameters

A rather large number of additional input parameters have default values set by Algencan.
The default value of any of these additional parameters (also called “implicit”), which are
not part of the Algencan calling sequence, may be modified with two alternatives: (a)
the specification file (whose name is given by parameter specfnm) or (b) the array of
parameters (driven by parameters nvparam and vparam).

The (80-character-long) string parameter specfnm corresponds to the name of the
so-called specification file. In a first run of Algencan, parameter specfnm may be set to
an empty string, i.e., specfnm = ’’. The other option for setting Algencan implicit
parameters is to use the array of (80-character-long) strings named vparam. The integer
parameter nvparam corresponds, as suggested by its name, to the number of entries of
vparam. In a first run of Algencan, it would be enough to set nvparam = 0.

In either case, the modification of a default value of an implicit parameter is done by
passing a string to Algencan. The string must contain a keyword, sometimes (but not
always) followed by an additional value that may be an integer number, a real number,
or a string. For example, Algencan may save the final approximation to the solution
(primal and dual variables) into a file, action that is not done by default. In order to save

120 Chapter 10. First Approach to Algencan

the final approximation to the solution into a file named mysolution.txt, the string
SOLUTION-FILENAME mysolution.txt should be passed to Algencan. This can be
done in two different ways:

1. In the calling subroutine, before calling Algencan, set

nvparam = 1
vparam(1) = ’SOLUTION-FILENAME mysolution.txt’

2. In the calling subroutine, before calling Algencan, set the name of the specification
file to, e.g., myalgencan.dat, with the command

specfnm = ’myalgencan.dat’

Then, create a text file in the current folder named myalgencan.dat and con-
taining a line with the sentence

SOLUTION-FILENAME mysolution.txt

These methods are equivalent and their usage is described in Section 12.1.
As can be seen in the example above, modifying the default value of an implicit pa-

rameter requires the usage of a keyword that may or may not be followed by some value
(integer, real, or string), depending on the parameter whose value is being set. For com-
pleteness, Table 10.1 lists all possible keywords. If a keyword in the table appears followed
by a D, an I, or an S, it requires an extra real, integer, or string value, respectively. If the
letter is lowercase, the additional value is optional.

Table 10.1. Keywords that may be used to set Algencan’s additional or implicit parameters.

Keyword Additional value
SKIP-ACCELERATION-PROCESS
LINEAR-SYSTEMS-SOLVER-IN-ACCELERATION-PROCESS S
TRUST-REGIONS-INNER-SOLVER s
LINEAR-SYSTEMS-SOLVER-IN-TRUST-REGIONS S
NEWTON-LINE-SEARCH-INNER-SOLVER s
LINEAR-SYSTEMS-SOLVER-IN-NEWTON-LINE-SEARCH S
TRUNCATED-NEWTON-LINE-SEARCH-INNER-SOLVER s
MATRIX-VECTOR-PRODUCT-IN-TRUNCATED-NEWTON-LS S
FIXED-VARIABLES-REMOVAL-AVOIDED
ADD-SLACKS
OBJECTIVE-AND-CONSTRAINTS-SCALING-AVOIDED
IGNORE-OBJECTIVE-FUNCTION
ITERATIONS-OUTPUT-DETAIL I
NUMBER-OF-ARRAYS-COMPONENTS-IN-OUTPUT I
SOLUTION-FILENAME S
ACCELERATION-PROCESS-ITERATIONS-LIMIT I
INNER-ITERATIONS-LIMIT I
OUTER-ITERATIONS-LIMIT I
PENALTY-PARAMETER-INITIAL-VALUE D
LARGEST-PENALTY-PARAMETER-ALLOWED D

10.2. Parameters of the subroutine Algencan 121

10.2.7 Variables, bounds, and constraints

The input parameters n, l, u, m, equatn, and linear are part of the problem descrip-
tion: n and m are integer variables, l and u are n-dimensional double precision arrays, and
equatn and linear are m-dimensional logical arrays. Their meanings follow:
n: number of variables n.
l: lower bound ! (!i may be equal to −∞ if xi has no lower bound).
u: upper bound u (ui may be equal to +∞ if xi has no upper bound).
m: number of constraints m.
equatn: equatn(j) must be true if the j th constraint is an equality and false if it is

an inequality.
linear: linear(j) must be true if c j (x) is linear and false otherwise.

In the description of the bounds on the variables, you should set l(i) = -1.0d+20
if !i = −∞ and set u(i) = 1.0d+20 if ui = +∞. Any value smaller than −1020 for
a lower bound or greater than 1020 for an upper bound would also be acceptable. These
values indicate that the corresponding bound does not exist and that it should be ignored.
Any other value within the open interval (−1020,1020) is considered by Algencan as a
bound constraint to be satisfied.

10.2.8 Initial approximation and solution

The parameters x (an n-dimensional double precision array) and lambda (an m-dimen-
sional double precision array) are input/output parameters. On input, they represent
the initial estimation of the primal and dual (Lagrange multipliers) variables. On output,
they are the final estimations computed by Algencan. If you do not have reliable initial
estimates of the Lagrange multipliers, set lambda = 0.0d0.

10.2.9 Checking derivatives

checkder is a logical input parameter that should be used to indicate whether the user
would like to check the coded subroutines that compute derivatives against simple finite
differences approximations. Since computing derivatives by hand is prone to error, it is
recommended to set checkder = .true. in the first attempt to solve a problem using
Algencan. In this case, previously to the optimization process, each coded subroutine that
computes derivatives will be called to compute the derivatives at a random perturbation of
the initial guess x and its output will be compared against the same derivatives computed
by finite differences. Both results (analytic values given by the subroutines coded by the
user and finite differences approximations) will be displayed on the screen, relative and ab-
solute errors will be shown, and it will be left to the user’s discretion whether derivatives’
subroutines coded by the user appear to be delivering the correct result. If derivatives ap-
pear to be wrong, the execution should be interrupted and the code corrected, compiled,
and rerun. If, after a few iterations of this correction-testing phase, derivatives appear to
be correct, checkder should be set to false.

Note that calls to the user-provided subroutines made during this checking phase are
taken into account in the final counting of calls to each user-provided subroutine.

Skipping this derivatives-checking phase may seem to be a time-saving shortcut to
zippy users, but in the authors’ experience it happens to be a big headache in most cases.

10.2.10 Subroutines coded by the user

The input parameters fsub, gsub, hsub, csub, jacsub, hcsub, fcsub, gjacsub,
gjacpsub, hlsub, and hlpsub correspond to the names of the subroutines that can

122 Chapter 10. First Approach to Algencan

be coded by the user to describe the problem functions and, optionally, their derivatives.
They must be declared as external in the calling program or subroutine. The input log-
ical array coded, with at least 11 elements, must indicate whether each subroutine was
coded. Although redundant, this array aids the robust and appropriate usage of Algen-
can. Table 10.2 shows the correspondence between the entries of the array coded and
the subroutines that the user may potentially provide.

Table 10.2. Correspondence between the entries of array coded and the potentially user-
supplied subroutines.

coded Name Subroutine description
coded(1) fsub Objective function
coded(2) gsub Gradient of the objective function
coded(3) hsub Sparse Hessian of the objective function
coded(4) csub Individually computed constraints
coded(5) jacsub Sparse gradient of an individual constraint
coded(6) hcsub Sparse Hessian of an individual constraint
coded(7) fcsub Objective function and all constraints

Gradient of the objective function
coded(8) gjacsub and sparse Jacobian of the constraints

coded(9) gjacpsub
Gradient of the objective function and product of
the Jacobian (or its transpose) by a given vector

coded(10) hlsub Sparse Hessian of the Lagrangian
coded(11) hlpsub Product of the Hessian of the Lagrangian by a given vector

Based on the array coded (i.e., based on the subroutines coded by the user to define
the problem), different algorithmic options within Algencan may be available. For now,
let us say that the only mandatory subroutines are fsub and csub, to compute the objec-
tive function and the constraints, respectively, or alternatively, fcsub, to compute both
together. If the problem has no constraints (other than the bound constraints), then cod-
ing csub is not mandatory and coding fsub is the natural choice. An adequate choice
of the subroutines that should be coded to represent a problem at hand is the subject of
Chapter 11.

We consider now the subroutines related to the problem evaluation listed in Table 10.2.
The prototypes of the subroutines are as follows:

subroutine fsub(n,x,f,flag)
subroutine gsub(n,x,g,flag)
subroutine hsub(n,x,hrow,hcol,hval,hnnz,lim,lmem,flag)
subroutine csub(n,x,ind,cind,flag)
subroutine jacsub(n,x,ind,jcvar,jcval,jcnnz,lim,lmem,flag)
subroutine hcsub(n,x,ind,hcrow,hccol,hcval,hcnnz, &

lim,lmem,flag)
subroutine fcsub(n,x,f,m,c,flag)
subroutine gjacsub(n,x,g,m,jcfun,jcvar,jcval,jcnnz, &

lim,lmem,flag)
subroutine gjacpsub(n,x,g,m,p,q,work,gotj,flag)
subroutine hlsub(n,x,m,lambda,sf,sc,hlrow,hlcol,hlval,hlnnz, &

lim,lmem,flag)
subroutine hlpsub(n,x,m,lambda,sf,sc,p,hp,gothl,flag)

10.2. Parameters of the subroutine Algencan 123

Subroutines fsub, gsub, and hsub should compute the objective function f (x), its
gradient ∇ f (x), and its Hessian ∇2 f (x), respectively. Subroutines csub, jacsub, and
hcsub should compute, given a constraint index ind, cind(x), ∇cind(x), and ∇2cind(x),
respectively. Subroutine fcsub should compute the objective function f (x) and all con-
straints c(x), while subroutine gjacsub should compute the gradient of the objective
function ∇ f (x) and the Jacobian J (x) of the constraints, defined as

J (x) =



∇c1(x)T

...
∇cm(x)T


 . (10.23)

Subroutine gjacpsub should compute the gradient of the objective function∇ f (x) and
the product of the Jacobian of the constraints J (x), or its transpose, by a given vector,
depending on the value of parameter work. Finally, subroutine hlsub should compute
the scaled Hessian of the Lagrangian given by

∇2' (x,λ) = wf∇2 f (x)+
∑

j∈E∪I
λ j wcj

∇2c j (x), (10.24)

and subroutine hlpsub should compute the product of the scaled Hessian of the
Lagrangian by a given vector.

The integer parameter n and the double precision n-dimensional array parameter x
are input parameters for the subroutines, while the integer parameter flag is an output
parameter in all cases. In the subroutines coded by the user, the output parameter flag
must be used to indicate whether an exception occurred during the computation. For
example, if the objective function calculation (or any other) requires a division to be done
and the denominator is null, or if a square root should be taken and the radicand is nega-
tive, parameter flag must be set to any nonnull value. In this way, on return Algencan
will know that the required quantity was not properly computed and a warning message
will be shown to the user. Depending on the situation, the optimization process may be
interrupted. If everything went well in the computations, parameter flag must be set
to zero.

The Jacobian and Hessians must be stored in the well-known coordinate scheme (see,
for example, [94]). In the coordinate scheme, a sparse matrix A is specified as its set of
entries in the form of an unordered set of triplets (ai j , i , j). The set of triplets is held in
one double precision array aval and two integer arrays arow and acol. The number of
entries of these three arrays should be annz. When a Hessian is required, only the lower
triangle is required and any computed value above the diagonal will be ignored. For the
Jacobian and Hessians, if more than one triplet is present for the same element of the
matrix, the sum of the values of the duplicated triplets is considered as the element value.
No order is required.

Subroutines that compute sparse matrices (Jacobian and Hessians) have an input in-
teger parameter named lim and an output logical parameter named lmem. lim corre-
sponds to the dimension of the arrays that play the role of arow, acol, and aval and
should be used to avoid accessing elements out of the arrays’ range. If the arrays’ dimen-
sion is not enough to save the matrix being computed, parameter lmem (meaning “lack
of memory”) must be set to true. Otherwise, it must be set to false.

Summing up, we have the following:

fsub computes f = f (x).

gsub computes the dense n-dimensional vector g = ∇ f (x).

124 Chapter 10. First Approach to Algencan

hsub computes the lower triangle of the sparse Hessian ∇2 f (x). An element hi j with
i ≥ j must be stored as hrow(k)= i , hcol(k)= j , and hval(k)= hi j for some
k between 1 and hnnz.

csub computes cind = cind(x).

jacsub computes the sparse gradient ∇cind(x). An element [∇cind(x)]i must be stored
as jcvar(k)= i and jcval(k)= [∇cind(x)]i for some k between 1 and jcnnz.

hcsub computes the lower triangle of the sparse Hessian∇2cind(x). The storage scheme
is identical to the one used by hsub but using hcrow, hccol, hcval, and hcnnz.

fcsub computes f = f (x) and the m-dimensional array c such that c(j) = c j (x) for
j = 1, . . . , m.

gjacsub computes the gradient of the objective function g = ∇ f (x) and the Jacobian
of the constraints (10.23). An element [∇c j (x)]i must be saved as jcfun(k) = j ,
jcvar(k) = i , and jcval(k) = [∇c j (x)]i for some k between 1 and jcnnz.

gjacpsub computes the gradient of the objective function g=∇ f (x). It also computes
the product q = J (x)T p when work is equal to T or t and computes the product
p = J (x) q otherwise. Note that q refers to q and p refers to p; i.e., p and q play
the role of input or output parameters depending on the value of work. More-
over, note that, by the role they play, it is clear that p is an m-dimensional double
precision array, while q is an n-dimensional double precision array. gotj is a logi-
cal input/output parameter that is set to false by the calling subroutine every time
subroutine gjacpsub is called by the first time with a point x. So, assume that
your subroutine gjacpsub computes the Jacobian matrix (10.23) at x, saves it,
sets gotj = .true., and computes the required matrix-vector product. If, in a
forthcoming call to gjacpsub, gotj is still true, then you can use the stored Jaco-
bian matrix instead of computing it again. Moreover, in this case, if the gradient of
the objective function was also stored, it can be copied into the output parameter g
without recomputing it.

hlsub computes the lower triangle of the sparse scaled Hessian of the Lagrangian (10.24)
with x = x, λ= lambda, wf = sf, and wcj

= sc(j) for j = 1, . . . , m. The storage
scheme is identical to the one used by hsub and hcsub but using hlrow, hlcol,
hlval, and hlnnz.

hlpsub computes hp = ∇2' (x,λ)p, where ∇2' (x,λ) is the scaled Hessian of the
Lagrangian given by (10.24) and p = p. gothl is a logical input/output param-
eter that is set to false by the calling subroutine every time subroutine hlpsub is
called with a new set of parameters (x,lambda,sf,sc). So, assume that your
subroutine hlpsub computes the Hessian matrix (10.24) and saves it, set gothl
= .true., and compute the required matrix-vector product. If, in a forthcoming
call to hlpsub, gothl is still true, then you can use the stored Hessian matrix
instead of computing it again.

Not-coded (empty-body) subroutines

If a subroutine of the Algencan calling sequence (also listed in Table 10.2) is not coded
by the user, the corresponding parameter in the calling sequence may point to a dummy
subroutine, since it will never be called by Algencan. However, for example, even in
the case of setting coded(7) = .false., it would be a conservative choice to code

10.2. Parameters of the subroutine Algencan 125

subroutine fcsub with an empty body as follows:
subroutine fcsub(n,x,f,m,c,flag)
implicit none
integer, intent(in) :: m,n
integer, intent(out) :: flag
real(kind=8), intent(in) :: x(n)
real(kind=8), intent(out) :: c(m),f

end subroutine fcsub

This is because it is not rare for a user to choose some subroutines to code and to set array
coded incorrectly. If this is the case, an uncoded subroutine may be called by Algencan.
To rapidly detect this case and correct the coding problem, it is recommended to include
the statement flag = -1 in all empty-body unused subroutines. Namely,
subroutine fcsub(n,x,f,m,c,flag)
implicit none
integer, intent(in) :: m,n
integer, intent(out) :: flag
real(kind=8), intent(in) :: x(n)
real(kind=8), intent(out) :: c(m),f
flag = - 1

end subroutine fcsub

10.2.11 Maximum sizes jcnnzmax and hnnzmax

Integer input parameters jcnnzmax and hnnzmax are used by Algencan to allocate the
arrays that save the sparse Jacobian and the (lower triangle of the) “Hessians,” respectively.
Therefore, the user must set these parameters in the main code with upper bounds on the
number of nonnull elements in the Jacobian and the Hessian matrices, respectively.

In most cases, a nonnull element ai j of a matrix A (Jacobian or Hessian) is represented
with a single triplet (ai j , i , j), where i is the row index, j is the column index, and ai j is the
value of the element. In these cases, the number of triplets that are necessary to describe
the whole matrix is equal to the number of nonnull elements. However, in some cases, it
is easier to represent an element ai j of a matrix by two triplets (b1, i , j) and (b2, i , j) in such
a way that ai j = b1+ b2. Algencan allows the user to proceed in that way and even more
than two triplets can be used to represent only one element. However, it must be noted
that, in those cases, jcnnzmax and hnnzmax must be upper bounds on the number of
triplets and not on the number of nonnull elements of the corresponding matrices. Strictly
speaking jcnnzmax and hnnzmax should be upper bounds on the number of triplets that
one uses to describe the nonnull elements of the corresponding matrices. However, in order
to avoid the pedantism of this definition, we will refer to these parameters, when this
does not lead to confusion, as upper bounds on the number of nonzero elements of the
corresponding matrices.

Independently of having coded jacsub, gjacsub, or none of them (in which case
the Jacobian of the constraints is approximated by finite differences), jcnnzmax should
be enough to hold the whole sparse Jacobian of the constraints. The number of non-
null elements in the Jacobian matrix may be difficult to compute when the Jacobian is
not being coded. In this case, n ×m is a suitable and conservative upper bound. If this
amount of memory is unaffordable, a smaller quantity may be found by trial and error.
jcnnzmax may be set to zero if the user codes gjacpsub.

If the user has coded subroutines hsub and hcsub, then hnnzmax should be enough
to save, at the same time, the (lower triangle of the) Hessian matrix of the objective func-

126 Chapter 10. First Approach to Algencan

tion and the (lower triangles of the) m Hessians of the constraints. On the other hand,
if the user coded subroutine hlsub, then hnnzmax should be enough to save (the lower
triangle of) the Hessian of the Lagrangian matrix.

Independently of the coded subroutines (hsub and hcsub, or hlsub), and in addi-
tion to the mentioned Hessians, if the method used to solve the Augmented Lagrangian
subproblems is the Euclidean trust-region method (see Section 12.8), hnnzmax must be
such that there exists enough space to save also the lower triangle of the (symmetric) ma-
trix

∑m
j=1∇c j (x)∇c j (x)T . If Newton’s or the truncated Newton’s method is selected to

solve the Augmented Lagrangian subproblems, no additional space needs to be considered
when setting the value of parameter hnnzmax.

An upper bound on the number of (triplets required to represent the) nonnull ele-
ments of the lower triangle of matrix

∑m
j=1∇c j (x)∇c j (x)T can be easily computed as

1
2
∑m

j=1 jcnnzmax j (jcnnzmax j +1), where jcnnzmax j is the number of (triplets used
to represent the) nonnull elements of the j th row of the Jacobian (gradient of the j th
constraint).

If second-order derivatives were not coded by the user, hnnzmax may be set to zero.
If the user did code hlpsub, hnnzmax may be set to zero too.

10.2.12 Output parameters nlpsupn, snorm, and cnorm

On output, if the final iterate is the result of an Augmented Lagrangian iteration, then
Algencan returns x = xk , lambda = λk+1, f = f (xk), nlpsupn equal to the left-hand
side of (10.6), snorm equal to the left-hand side of (10.7), and cnorm equal to the left-hand
side of (10.8), i.e.,

nlpsupn=

''''''
P[!,u]


xk −


wf∇ f (xk)+

m∑
j=1
λk+1

j wcj
∇c j (x

k)




− xk

''''''
∞

,

snorm=max
0

max
j∈E
{|wcj

c j (x
k)|},max

j∈I
{|min{−wcj

c j (x
k),λk+1

j }|}
1

,

cnorm=max
0

max
j∈E
{|c j (x

k)|},max
j∈I
{c j (x

k)+}
1

.

(10.25)

If the final iterate is the result of a successful acceleration process, Algencan returns
x= x̃k , lambda= λ̃k , f= f (x̃k), nlpsupn equal to the left-hand side of (10.21), snorm
equal to the left-hand side of (10.22), and cnorm equal to the left-hand side of (10.8) eval-
uated at x̃k and λ̃k , i.e.,

nlpsupn=

''''''
P[!,u]


x̃k −


∇ f (x̃k)+

m∑
j=1
λ̃k

j∇c j (x̃
k)




− x̃k

''''''
∞

,

snorm=max
0

max
j∈E
{|c j (x̃

k)|},max
j∈I
{|min{−c j (x̃

k), λ̃k
j }|}

1
,

cnorm=max
0

max
j∈E
{|c j (x̃

k)|},max
j∈I
{c j (x̃

k)+}
1

.

(10.26)

The arrays x and lambda must be declared double precision with at least n and m
positions, respectively, in the code that calls the subroutine Algencan. The scalars f,
nlpsupn, cnorm, and snorm must be double precision scalars in the calling code.

10.3. A simple example 127

10.2.13 Diagnostic parameter inform

The value of the output integer parameter inform is equal to 0 when Algencan stops
satisfying the stopping criterion (10.6)–(10.8) or the stricter stopping criterion (10.21),
(10.22), both related to success.

The returned value inform = 1 suggests that xk is infeasible and stationary for the
infeasibility measure (10.9) subject to ! ≤ x ≤ u. Therefore, Algencan returns inform
equal to 1 when a point xk ∈ [!, u] that satisfies (10.10), (10.11) is found.

The constant ρmax is an additional parameter of Algencan whose default value is 1020.
If, at iteration k, xk was computed considering ρk > ρmax, Algencan stops returning
inform = 2. Algencan returns inform = 3 when xk was computed and k ≥ kmax,
where kmax is an implicit parameter of Algencan whose default value is 100. Both stopping
criteria may also suggest that an infeasible point xk that is stationary for the infeasibility
measure (10.9) subject to !≤ x ≤ u was found.

The value of kmax may be modified with the keyword OUTER-ITERATIONS-LIMIT
(see Section 12.3), while the value of ρmax may be modified with the keyword LARGEST-
PENALTY-PARAMETER-ALLOWED (see Section 12.4).

10.3 A simple example
Consider the problem of finding the rectangle (centered at the origin) with smallest area
within which p circles with radii ri = i can be packed without overlapping. The problem
can be modeled as

Minimize w h
subject to (c x

i − c x
i ′)

2+(cy
i − cy

i ′)
2 ≥ (ri + ri ′)2, i ′ > i ,

−w/2+ ri ≤ c x
i ≤ w/2− ri for all i ,

−h/2+ ri ≤ cy
i ≤ h/2− ri for all i ,

w, h ≥ 0.

(10.27)

The variables of the problem are the centers of the circles (c x
i , cy

i), i = 1, . . . , p, the width w,
and the height h of the rectangle. The objective function to be minimized is the area of
the rectangle. The first set of constraints models the nonoverlapping between the circles,
requesting the necessary minimum distance between their centers (distance is squared to
preserve differentiability), and the remaining linear constraints say that the circles must
be placed within the rectangle.

We will illustrate the usage of Algencan to solve this problem coding subroutines
fsub, gsub, hsub, csub, jacsub, and hcsub. Other reasonable choices would have
been to code (i) fcsub, gjacsub, and hlsub or (ii) fcsub, gjacpsub, and hlpsub.
Our choice of subroutines to be coded is the simplest one and hence the most appropri-
ate for our first example. Objective function, constraints, gradients, and Hessians are all
coded in separately. Case (i) would be appropriate if, for some reason, coding all the con-
straints at once or coding the whole Jacobian of the constraints at once brings some cost
savings. The price to be paid is to code the sparse Hessian of the Lagrangian, which re-
quires coding the sum of the sparse Hessians of the constraints plus the Hessian of the ob-
jective function. Naive approaches to this task may lead to time-consuming subroutines.
Case (ii) would be recommended when the problem is such that computing individual
gradients and Hessians, or computing the Jacobian of the constraints or the Hessian of
the Lagrangian, is a very time-consuming task but efficient algorithms exist to compute

128 Chapter 10. First Approach to Algencan

the product of the Jacobian of the constraints or the Hessian of the Lagrangian by a given
vector. An example of this situation will be given in Chapter 11.

We start by coding the definition of the problem and setting the Algencan parameters
in a main program named algencanma, as shown in Listing 10.1. Let p > 0 be the num-
ber of circles to be packed. The problem has n = 2p+2 variables and m = p(p−1)/2+4p
constraints. Variables are given by x = (c x

1 , cy
1 , c x

2 , cy
2 , . . . , c x

p , cy
p , w, h)T ∈ !n . All the

constraints are inequalities. The first p(p − 1)/2 constraints correspond to the nonover-
lapping nonlinear constraints. The remaining constraints are linear. (See Listing 10.1.)
The other subroutines are self-explanatory and are shown in Listings 10.2–10.7. Subrou-
tines that correspond to fsub, gsub, hsub, csub, jacsub, and hcsub were named
myevalf, myevalg, myevalh, myevalc, myevaljac, and myevalhc, respectively,
in the present example.

Subroutines myevalf and myevalg are very simple and require no further expla-
nations. Subroutine myevalh is also very simple and its only highlight is that only the
lower triangle of the Hessian matrix of the objective function is being computed. The
lower triangle of the matrix has a single element hn,n−1 = 1. In subroutine myevalc (as
well as in myevaljac and myevalhc), the first p(p − 1)/2 constraints correspond to
the nonoverlapping nonlinear constraints. The p constraints that follow correspond to
−w/2+ ri − c x

i ≤ 0, i = 1, . . . , p. Then, p constraints correspond to−w/2+ ri + c x
i ≤ 0,

i = 1, . . . , p. The constraints −h/2 + ri − cy
i ≤ 0, i = 1, . . . , p, follow and, finally,

−h/2+ ri + cy
i ≤ 0, i = 1, . . . , p. Subroutines myevaljac and myevalhc compute

the sparse gradient and the lower triangle of the sparse Hessian, respectively, of the indth
constraint. In these three subroutines related to the constraints, a subroutine named pair
is being used. It is assumed that, given 1 ≤ k ≤ p(p − 1)/2, the subroutine implements
a bijection that returns a pair (i , j) satisfying 1 ≤ i < j ≤ p. (See Problem 10.1.) The
external subroutine drand is the random number generator of Schrage [234].

Adding the remaining empty-body subroutines myevalfc, myevalgjac,
myevalgjacp, myevalhl, and myevalhlp, we solved an instance of problem (10.27)
with p = 3. Figure 10.1 shows Algencan’s solution, and Figure 10.2 shows a graphical
representation of the solution found.

10.3.1 Output analysis

We now analyze the output given by Algencan (Figure 10.1). The first lines correspond to
a banner that indicates the version of Algencan being used, which is Algencan 3.0.0 in this
example. Since Algencan is a live code, this version number is essential when reporting
the performance of Algencan. Then, a sentence appears indicating that no additional-
parameters default values are being modified through the array of parameters vparam,
and another sentence indicates that the specification file is not being used either. The fol-
lowing phrase shows the HSL subroutines to deal with linear systems that were compiled
together with Algencan and, therefore, are available for use. In this example, subroutines
MA57, MA86, and MA97 for solving linear systems are present.

Then comes the so-called preamble, which indicates the values of some parameters
being used by Algencan that strongly affect its performance. firstde stands for “first
derivatives” and its possible values are “true” and “false.” In the same way, seconde
stands for “second derivatives,” truehpr stands for “true Hessian-vector product” (where
by Hessian we mean Hessian of the Augmented Lagrangian function), and their possible
values are “true” and “false.” In our example, since we code first and second derivatives,
all those parameters are true. At this point, we skip all other parameters reported in
the preamble, with the exception of epsfeas, epsopt, efstain, eostain, efacc,

10.3. A simple example 129

Listing 10.1. Main program.

1 program algencanma
2 implicit none
3 ! LOCAL SCALARS
4 logical :: checkder
5 integer :: hnnzmax,i,inform,jcnnzmax,m,n,npairs,nvparam
6 real(kind=8) :: cnorm,efacc,efstain,eoacc,eostain,epsfeas,epsopt,f,nlpsupn,seed,snorm
7 ! LOCAL ARRAYS
8 character(len=80) :: specfnm,outputfnm,vparam(10)
9 logical :: coded(11)

10 logical, pointer :: equatn(:),linear(:)
11 real(kind=8), pointer :: l(:),lambda(:),u(:),x(:)
12 ! COMMON SCALARS
13 integer :: p
14 ! COMMON BLOCKS
15 common /pdata/ p
16 ! FUCNTIONS
17 real(kind=8) :: drand
18 ! EXTERNAL SUBROUTINES
19 external :: myevalf,myevalg,myevalh,myevalc,myevaljac,myevalhc,myevalfc, &
20 myevalgjac,myevalgjacp,myevalhl,myevalhlp
21 ! Problem data
22 p = 3
23 npairs = p * (p - 1) / 2
24 ! Number of variables
25 n = 2 * p + 2
26 ! Set lower bounds, upper bounds, and initial guess
27 allocate(x(n),l(n),u(n))
28 l(1:2*p) = - 1.0d+20
29 u(1:2*p) = 1.0d+20
30 l(2*p+1:n) = 0.0d0
31 u(2*p+1:n) = 1.0d+20
32 seed = 654321.0d0
33 do i = 1,2*p
34 x(i) = - 5.0d0 + 10.0d0 * drand(seed)
35 end do
36 x(2*p+1:n) = 10.0d0
37 ! Constraints
38 m = npairs + 4 * p
39 allocate(equatn(m),linear(m),lambda(m))
40 equatn(1:m) = .false.
41 linear(1:npairs) = .false.
42 linear(npairs+1:m) = .true.
43 lambda(1:m) = 0.0d0
44 ! Coded subroutines
45 coded(1:6) = .true. ! fsub,gsub,hsub,csub,jacsub,hcsub
46 coded(7:11) = .false. ! fcsub,gjacsub,gjacpsub,hlsub,hlpsub
47 ! Upper bounds on the number of sparse-matrices non-null elements
48 jcnnzmax = 4 * npairs + 2 * (4 * p)
49 hnnzmax = 1 + 6 * npairs + 10 * npairs + 3 * (4 * p)
50 ! Checking derivatives?
51 checkder = .false.
52 ! Parameters setting
53 epsfeas = 1.0d-08
54 epsopt = 1.0d-08
55 efstain = 1.0d+20
56 eostain = - 1.0d+20
57 efacc = - 1.0d+20
58 eoacc = - 1.0d+20
59 outputfnm = ’’
60 specfnm = ’’
61 nvparam = 0
62 ! Optimize
63 call algencan(myevalf,myevalg,myevalh,myevalc,myevaljac,myevalhc, &
64 myevalfc,myevalgjac,myevalgjacp,myevalhl,myevalhlp,jcnnzmax, &
65 hnnzmax,epsfeas,epsopt,efstain,eostain,efacc,eoacc,outputfnm,&
66 specfnm,nvparam,vparam,n,x,l,u,m,lambda,equatn,linear,coded, &
67 checkder,f,cnorm,snorm,nlpsupn,inform)
68 deallocate(x,l,u,lambda,equatn,linear)
69 stop
70 end program algencanma

eoacc, specfnm (specification filename), and outputfnm (output filename), that dis-
play the values that we set in the main program.

After the preamble, Algencan shows the number of variables, equality constraints, in-
equality constraints, and bound constraints. The displayed figures can be easily checked

130 Chapter 10. First Approach to Algencan

Listing 10.2. Subroutine evalf.

1 subroutine myevalf(n,x,f,flag)
2 implicit none
3 ! SCALAR ARGUMENTS
4 integer, intent(in) :: n
5 integer, intent(out) :: flag
6 real(kind=8), intent(out) :: f
7 ! ARRAY ARGUMENTS
8 real(kind=8), intent(in) :: x(n)
9 ! Compute objective function

10 flag = 0
11 f = x(n-1) * x(n)
12 end subroutine myevalf

Listing 10.3. Subroutine evalg.

1 subroutine myevalg(n,x,g,flag)
2 implicit none
3 ! SCALAR ARGUMENTS
4 integer, intent(in) :: n
5 integer, intent(out) :: flag
6 ! ARRAY ARGUMENTS
7 real(kind=8), intent(in) :: x(n)
8 real(kind=8), intent(out) :: g(n)
9 ! Compute gradient of the objective function

10 flag = 0
11 g(1:n-2) = 0.0d0
12 g(n-1) = x(n)
13 g(n) = x(n-1)
14 end subroutine myevalg

Listing 10.4. Subroutine evalh.

1 subroutine myevalh(n,x,hrow,hcol,hval,hnnz,lim,lmem,flag)
2 implicit none
3 ! SCALAR ARGUMENTS
4 logical, intent(out) :: lmem
5 integer, intent(in) :: lim,n
6 integer, intent(out) :: flag,hnnz
7 ! ARRAY ARGUMENTS
8 integer, intent(out) :: hcol(lim),hrow(lim)
9 real(kind=8), intent(in) :: x(n)

10 real(kind=8), intent(out) :: hval(lim)
11 ! Compute (lower triangle of the) Hessian of the objective function
12 flag = 0
13 lmem = .false.
14 hnnz = 1
15 if (hnnz .gt. lim) then
16 lmem = .true.
17 return
18 end if
19 hrow(1) = n
20 hcol(1) = n - 1
21 hval(1) = 1.0d0
22 end subroutine myevalh

against the model of problem (10.27) for the particular case p = 3. Then, Algencan says
that “There are no fixed variables to be removed.” In fact, Algencan removes from the
problem variables xi such that !i = ui . This kind of variable should not be part of any
problem, but sometimes its existence simplifies the modeling process. To maintain fixed
variables in the problem, without a negative impact in the problem resolution, Algen-
can allows the user to include such artificial variables that are then removed and do not
take part in the optimization process. Besides the number of removed fixed variables,
the output shows the scaling factors for the objective function and the constraints, auto-
matically computed by Algencan. It is easy to see in the main program algencanma

10.3. A simple example 131

Listing 10.5. Subroutine evalc.

1 subroutine myevalc(n,x,ind,c,flag)
2 implicit none
3 ! SCALAR ARGUMENTS
4 integer, intent(in) :: ind,n
5 integer, intent(out) :: flag
6 real(kind=8), intent(out) :: c
7 ! ARRAY ARGUMENTS
8 real(kind=8), intent(in) :: x(n)
9 ! COMMON SCALARS

10 integer :: p
11 ! LOCAL SCALARS
12 integer :: i,j
13 ! COMMON BLOCKS
14 common /pdata/ p
15 ! Compute ind-th constraint
16 flag = 0
17 if (1 .le. ind .and. ind .le. p * (p - 1) / 2) then
18 call pair(p,ind,i,j)
19 c = (dble(i) + dble(j)) ** 2 - &
20 (x(2*i-1) - x(2*j-1)) ** 2 - (x(2*i) - x(2*j)) ** 2
21 else if (ind .le. p * (p - 1) / 2 + p) then
22 i = ind - p * (p - 1) / 2
23 c = - 0.5d0 * x(n-1) + dble(i) - x(2*i-1)
24 else if (ind .le. p * (p - 1) / 2 + 2 * p) then
25 i = ind - p * (p - 1) / 2 - p
26 c = - 0.5d0 * x(n-1) + dble(i) + x(2*i-1)
27 else if (ind .le. p * (p - 1) / 2 + 3 * p) then
28 i = ind - p * (p - 1) / 2 - 2 * p
29 c = - 0.5d0 * x(n) + dble(i) - x(2*i)
30 else
31 i = ind - p * (p - 1) / 2 - 3 * p
32 c = - 0.5d0 * x(n) + dble(i) + x(2*i)
33 end if
34 end subroutine myevalc

(Listing 10.1) that at the initial guess x0, we have w = h = 10. This means that ∇ f (x0) =
(0, . . . , 0,10,10)T , ‖∇ f (x0)‖∞ = 10, and wf = 1/max(1,‖∇ f (x0)‖∞) = 0.1. The dis-
played smallest constraints’ scale factor corresponds to min j=1,...,m{wcj

}. (Its actual value
cannot be computed here without showing the values of the first n−2 components of the
initial guess x0.)

The output described so far corresponds to a preprocessing phase. Then, the optimiza-
tion subroutine is effectively called. It starts by displaying the actual number of variables
(discarding removed variables) and constraints (equalities plus inequalities) of the prob-
lem to be optimized. Considering the default level of detail in Algencan’s output (which
corresponds to 10 and can be modified with the keyword ITERATIONS-OUTPUT-DETAIL
followed by an integer value between 0 and 99, as will be explained in Section 12.2), Al-
gencan prints a single line per iteration, starting with “iteration 0,” that corresponds to
the initial guess x0. For each iteration, the line displays (from left to right) (a) the iteration
number k, (b) the penalty parameter ρk , (c) the (unscaled) objective function value f (xk),
(d) the (unscaled) infeasibility measure cnorm as defined in (10.25), (e) the scaled objective
function wf f (xk), (f) the scaled infeasibility measure given by

max{max
j∈E
{|wcj

c j (x
k)|},max

j∈I
{[wcj

c j (x
k)]+}},

(g) the scaled infeasibility-complementarity measure snorm as defined in (10.25), (h) the
sup-norm of the scaled projected gradient of the Lagrangiannlpsupn as defined in (10.25),
(i) the sup-norm of the projected gradient of the infeasibility measure (10.9) given by the
left-hand side of (10.11), and (j) the accumulated total number of inner iterations needed
to solve the subproblems. The letter glued to the number of inner iterations corresponds
to the termination criterion satisfied by the inner solver. C means convergence, M means

132 Chapter 10. First Approach to Algencan

Listing 10.6. Subroutine evaljac.

1 subroutine myevaljac(n,x,ind,jcvar,jcval,jcnnz,lim,lmem,flag)
2 implicit none
3 ! SCALAR ARGUMENTS
4 logical, intent(out) :: lmem
5 integer, intent(in) :: ind,lim,n
6 integer, intent(out) :: flag,jcnnz
7 ! ARRAY ARGUMENTS
8 integer, intent(out) :: jcvar(lim)
9 real(kind=8), intent(in) :: x(n)

10 real(kind=8), intent(out) :: jcval(lim)
11 ! COMMON SCALARS
12 integer :: p
13 ! LOCAL SCALARS
14 integer :: i,j
15 ! COMMON BLOCKS
16 common /pdata/ p
17 ! Compute gradient of the ind-th constraint
18 flag = 0
19 lmem = .false.
20 if (1 .le. ind .and. ind .le. p * (p - 1) / 2) then
21 call pair(p,ind,i,j)
22 jcnnz = 4
23 if (jcnnz .gt. lim) then
24 lmem = .true.
25 return
26 end if
27 jcvar(1) = 2 * i - 1
28 jcval(1) = - 2.0d0 * (x(2*i-1) - x(2*j-1))
29 jcvar(2) = 2 * j - 1
30 jcval(2) = 2.0d0 * (x(2*i-1) - x(2*j-1))
31 jcvar(3) = 2 * i
32 jcval(3) = - 2.0d0 * (x(2*i) - x(2*j))
33 jcvar(4) = 2 * j
34 jcval(4) = 2.0d0 * (x(2*i) - x(2*j))
35 else if (ind .le. p * (p - 1) / 2 + p) then
36 i = ind - p * (p - 1) / 2
37 jcnnz = 2
38 if (jcnnz .gt. lim) then
39 lmem = .true.
40 return
41 end if
42 jcvar(1) = n - 1
43 jcval(1) = - 0.5d0
44 jcvar(2) = 2 * i - 1
45 jcval(2) = - 1.0d0
46 else if (ind .le. p * (p - 1) / 2 + 2 * p) then
47 i = ind - p * (p - 1) / 2 - p
48 jcnnz = 2
49 if (jcnnz .gt. lim) then
50 lmem = .true.
51 return
52 end if
53 jcvar(1) = n - 1
54 jcval(1) = - 0.5d0
55 jcvar(2) = 2 * i - 1
56 jcval(2) = 1.0d0
57 else if (ind .le. p * (p - 1) / 2 + 3 * p) then
58 i = ind - p * (p - 1) / 2 - 2 * p
59 jcnnz = 2
60 if (jcnnz .gt. lim) then
61 lmem = .true.
62 return
63 end if
64 jcvar(1) = n
65 jcval(1) = - 0.5d0
66 jcvar(2) = 2 * i
67 jcval(2) = - 1.0d0
68 else
69 i = ind - p * (p - 1) / 2 - 3 * p
70 jcnnz = 2
71 if (jcnnz .gt. lim) then
72 lmem = .true.
73 return
74 end if
75 jcvar(1) = n
76 jcval(1) = - 0.5d0
77 jcvar(2) = 2 * i
78 jcval(2) = 1.0d0
79 end if
80 end subroutine myevaljac

10.4. Installing and running Algencan 133

Listing 10.7. Subroutine evalhc.

1 subroutine myevalhc(n,x,ind,hcrow,hccol,hcval,hcnnz,lim,lmem,flag)
2 implicit none
3 ! SCALAR ARGUMENTS
4 logical, intent(out) :: lmem
5 integer, intent(in) :: ind,lim,n
6 integer, intent(out) :: flag,hcnnz
7 ! ARRAY ARGUMENTS
8 integer, intent(out) :: hccol(lim),hcrow(lim)
9 real(kind=8), intent(in) :: x(n)

10 real(kind=8), intent(out) :: hcval(lim)
11 ! COMMON SCALARS
12 integer :: p
13 ! LOCAL SCALARS
14 integer :: i,j
15 ! COMMON BLOCKS
16 common /pdata/ p
17 ! Compute lower-triangle of the ind-th constraint’s Hessian
18 flag = 0
19 lmem = .false.
20 if (1 .le. ind .and. ind .le. p * (p - 1) / 2) then
21 call pair(p,ind,i,j)
22 hcnnz = 6
23 if (hcnnz .gt. lim) then
24 lmem = .true.
25 return
26 end if
27 hcrow(1) = 2 * i - 1
28 hccol(1) = 2 * i - 1
29 hcval(1) = - 2.0d0
30 hcrow(2) = 2 * i
31 hccol(2) = 2 * i
32 hcval(2) = - 2.0d0
33 hcrow(3) = 2 * j - 1
34 hccol(3) = 2 * j - 1
35 hcval(3) = - 2.0d0
36 hcrow(4) = 2 * j
37 hccol(4) = 2 * j
38 hcval(4) = - 2.0d0
39 hcrow(5) = 2 * j - 1
40 hccol(5) = 2 * i - 1
41 hcval(5) = 2.0d0
42 hcrow(6) = 2 * j
43 hccol(6) = 2 * i
44 hcval(6) = 2.0d0
45 else
46 hcnnz = 0
47 end if
48 end subroutine myevalhc

maximum number of iterations reached, P means lack of progress, and U means that the
subproblem seems to be unbounded from below. The last two columns correspond to
the number of times the acceleration process was launched and the accumulated number
of Newtonian iterations that were used in those trials, respectively. Their exact meaning
will be clarified later.

The output shows that, after five outer iterations, the stopping criterion (10.6)–(10.8)
is satisfied and Algencan stops. In fact, the sentence “Flag of ALGENCAN: Solution was
found.” indicates that the stopping criterion (10.6)–(10.8) was satisfied. The total CPU
time in seconds is displayed and the total number of calls to each subroutine coded by the
user is shown.

10.4 Installing and running Algencan
This section contains simple instructions for installing Algencan on your computer and
running the code for the first time. The instructions below may be outdated when you
read this book. Updated instructions may be found in the README file that comes
with the Algencan distribution that can be downloaded from the TANGO Project Web

134 Chapter 10. First Approach to Algencan

==
This is ALGENCAN 3.0.0.
ALGENCAN, an Augmented Lagrangian method for nonlinear programming, is part of
the TANGO Project: Trustable Algorithms for Nonlinear General Optimization.
See http://www.siam.org/books/fa10 for details.
==

There are no strings to be processed in the array of parameters.

The specification file is not being used.

Available HSL subroutines = MA57 MA86 MA97

ALGENCAN PARAMETERS:

firstde = T
seconde = T
truehpr = T
hptype in TN = TRUEHP
lsslvr in TR = MA57/MC64
lsslvr in NW = MA57/MC64
lsslvr in ACCPROC = MA57/MC64
innslvr = TR
accproc = T
rmfixv = T
slacks = F
scale = T
epsfeas = 1.0000D-08
epsopt = 1.0000D-08
efstain = 1.0000D+20
eostain = -1.0000D+20
efacc = -1.0000D+20
eoacc = -1.0000D+20
iprint = 10
ncomp = 6

Specification filename = ’’
Output filename = ’’
Solution filename = ’’

Number of variables : 8
Number of equality constraints : 0
Number of inequality constraints : 15
Number of bound constraints : 2

There are no fixed variables to be removed.

Objective function scale factor : 1.0D-01
Smallest constraints scale factor : 7.5D-02

Entry to ALGENCAN.
Number of variables : 8
Number of constraints: 15

out penalt objective infeas scaled scaled infeas norm |Grad| inner Newton
ite function ibilty obj-funct infeas +compl graLag infeas totit forKKT
0 1.000D+02 9.D+00 1.000D+01 1.D+00 1.D+00 1.D+00 1.D+00 0 0 0
1 8.D+01 8.356D+01 4.D-02 8.356D+00 4.D-02 4.D-02 3.D+00 4.D-02 10C 0 0
2 8.D+01 5.923D+01 1.D-02 5.923D+00 1.D-02 1.D-02 3.D-07 9.D-03 28C 0 0
3 8.D+01 5.939D+01 1.D-04 5.939D+00 3.D-05 3.D-05 1.D-10 2.D-05 33C 0 0
4 8.D+01 5.939D+01 1.D-07 5.939D+00 1.D-07 1.D-07 1.D-11 9.D-08 35C 0 0
5 8.D+01 5.939D+01 2.D-09 5.939D+00 4.D-10 5.D-10 2.D-14 3.D-10 37C 0 0

Flag of ALGENCAN: Solution was found.

User-provided subroutines calls counters:

Subroutine fsub (coded=T): 117
Subroutine gsub (coded=T): 63
Subroutine hsub (coded=T): 37
Subroutine csub (coded=T): 1916 (127 calls per constraint in avg)
Subroutine jacsub (coded=T): 332 (22 calls per constraint in avg)
Subroutine hcsub (coded=T): 184 (12 calls per constraint in avg)
Subroutine fcsub (coded=F): 0
Subroutine gjacsub (coded=F): 0
Subroutine gjacpsub (coded=F): 0
Subroutine hlsub (coded=F): 0
Subroutine hlpsub (coded=F): 0

Total CPU time in seconds: 0.00

Figure 10.1. Algencan’s output when solving an instance of problem (10.27) with p = 3.

site. Moreover, several Web addresses pointing to third-party software and compilers are
provided; these URLs should still be valid at the time you read this book.

In order to run Algencan, calling it from a Fortran code, follow the instructions below.
It is assumed that you use a standard Linux environment, that basic commands such as
tar and make are installed, and that gfortran (the Fortran compiler from GNU) is
also installed. Instructions are divided into two main steps: (i) building the Algencan

10.4. Installing and running Algencan 135

library and (ii) compiling your own code that calls Algencan. The Algencan library needs
to be built only once.

The instructions below are a simple and arbitrary suggestion, since Algencan can also
be used in Windows and Mac OS platforms as well and with a variety of Fortran com-
pilers. Algencan can also be used from a C/C++ calling code or in connection with the
modeling languages AMPL [119] and CUTEst [131].

10.4.1 Installing Algencan: Building the library

Step 1: Download the Algencan “tarball” file from the TANGO Project Web site
http://www.siam.org/books/fa10

and save it into the folder where you would like to install Algencan. For example,
assume that the name of this folder is /home/myusername/.

Step 2: Go to the folder /home/myusername/ and uncompress the tarball file by typ-
ing

tar -zxvf algencan-3.0.0.tgz

We assume the name of the downloaded file is algencan-3.0.0.tgz, which
is the name of the file associated with the current version of Algencan. Note that
as a consequence of this step, a folder called algencan-3.0.0 has been created
within /home/myusername/.

Step 3: Optionally (highly recommended), place the Fortran 95 version of subroutine
MA57 from HSL into the folder
/home/myusername/algencan-3.0.0/sources/hsl/

that was automatically created in Step 2. Subroutine MA57 must be contained
in a file named hsl_ma57d.f90. Additionally, files named hsl_zd11d.f90,
ma57ad.f, mc21ad.f, mc34ad.f, mc47ad.f, mc59ad.f, mc64ad.f,
mc71ad.f, andfakemetis.f from HSL (which correspond to the MA57 depen-
dencies from HSL) and files named dgemm.f, dgemv.f, dtpmv.f, dtpsv.f,
idamax.f, lsame.f, and xerbla.f from BLAS (which correspond to the
MA57 dependencies from BLAS) must be placed within the same folder too. How
to obtain those files and other options, related to the usage of subroutines MA86
and MA97 from HSL and the usage of the BLAS and LAPACK libraries, is detailed
below.

Step 4: Go to folder /home/myusername/algencan-3.0.0/ and type

make

If everything went well, the Algencan’s library file libalgencan.a has been cre-
ated within the folder /home/myusername/algencan-3.0.0/lib/. If the
optional Step 3 has been followed, an HSL-related library file libhsl.a has been
created (within the same folder) too.

10.4.2 Compiling your own code that calls Algencan

Step 5: Set an environment variable with the complete path to the Algencan folder. For
example, if Algencan is installed at /home/myusername/, type

export ALGENCAN=/home/myusername/algencan-3.0.0

136 Chapter 10. First Approach to Algencan

Step 6: Go to the folder where your main program and problem subroutines are. As-
sume that the file myprob.f90 contains the source code of the main program and
subroutines that are needed to run Algencan. Then, you can obtain the executable
file myprob by typing

gfortran -O3 myprob.f90 -L$ALGENCAN/lib -lalgencan -lhsl -o myprob

if you followed Step 3 or by typing

gfortran -O3 myprob.f90 -L$ALGENCAN/lib -lalgencan -o myprob

if you skipped Step 3.

Step 7: Type

./myprob

to run and see the output in the screen.

10.4.3 Installation and compilation remarks

Algencan is an open source software. Therefore, the tarball file downloaded in Step 1 of
the instructions above includes all the source files of Algencan, as well as the source files
of all the examples described in the present and forthcoming chapters. Compiled versions
for different platforms are not distributed.

The statement in Step 2 uncompresses the tarball file and creates the folders struc-
ture of Algencan. This means that in the place where the tarball file is uncompressed,
the Algencan main folder, named algencan-3.0.0 for the current version, is created.
Within this main folder there are four files and three subfolders. The files are (a) the license
file license.txt, (b) the README file with a few instructions to compile Algencan as
well as the different Algencan’s interfaces with AMPL, C/C++, and CUTEst, (c) a file
named WHATSNEW that describes the main features of each release of Algencan, and (d)
the main Makefile file that is used in the compilation process. As the README file
explains, a few variables with paths to third-party codes may need to be edited within
the file Makefile in order to compile the Algencan interfaces. The three subfolders are
(a) sources, where the Algencan source files are, as well as the interfaces’ source files,
and several examples of usage of Algencan, (b) bin, and (c) lib. These two last subfolders
are empty and receive the interfaces’ executable files and the Algencan lib file, respectively,
after the respective compilation processes.

Remarks on the possibilities related to the usage of the HSL Mathematical Software
Library (in Step 3 of the compilation process) will be given below.

In Step 4, the Algencan library file is created and saved within folder lib. In Step 5,
an environment variable with the full path to Algencan should be set. This variable
is used in Step 6 to indicate to the compiler where the Algencan library is located (us-
ing the flag -L). Several examples in Fortran 77 and 90 are provided within folders
sources/examples/f77/ and sources/examples/f90/, respectively. Steps 6–
8 may be repeated several times to test the different provided examples and/or to solve
your own problems.

10.4.4 Usage of HSL subroutines in Algencan

Step 3, which is optional but highly recommended, is the step where the HSL linear alge-
bra subroutines are made available to Algencan. Algencan is ready to solve linear systems
using subroutines MA57, MA86, and/or MA97 from HSL. The more the better, since

10.4. Installing and running Algencan 137

different subroutines may be used in different places of Algencan, depending on the di-
mension of the linear system that may need to be solved at each time. Moreover, Algencan
allows the user to determine which linear system solver should be used each time.

Use of the mentioned HSL subroutines is not mandatory but is highly recommended
and has a strong influence on Algencan’s performance. This does not mean that the HSL
linear algebra subroutines are much more powerful than other linear algebra subroutines
included in Algencan. It means that Algencan does not include any linear algebra sub-
routine and that if the HSL subroutines are not available, only a few basic subalgorithms
will be available within Algencan. These subalgorithms, which do not depend on linear
algebra subroutines and are matrix-free, may be adequate only for huge-scale problems.

When running Algencan, the output’s preamble shows in a dedicated line which linear
algebra subroutines are available for solving linear systems. Checking the content of this
line is crucial for verifying whether the HSL subroutines are being used by Algencan. If
the user places the HSL subroutines in the wrong place, with the wrong filenames, or
with missing dependencies, Algencan might not consider them.

Each HSL [261] subroutine (among MA57, MA86, and/or MA97) has its own de-
pendencies from HSL, BLAS [66], and LAPACK [6]. If the BLAS or LAPACK library
already exists on your computer, the respective dependencies may be omitted, while the
corresponding flags (-lblas and/or -llapack) must be added to the compilation/link-
ing command in Step 6. Depending on the installation of the libraries, the complete
path to them may need to be indicated with the flag -L (as is done with the path to
the Algencan library). HSL subroutines may be downloaded from http://www.hsl.
rl.ac.uk/, and BLAS and LAPACK subroutines may be downloaded from http:
//www.netlib.org/blas/, and http://www.netlib.org/lapack/, respec-
tively. When this book was written, HSL subroutines were available at no cost for aca-
demic research and teaching, while BLAS and LAPACK packages could be freely down-
loaded. In any case, it is the users’ responsibility to check the third-party software licenc-
ing terms and conditions.

Each dependency must be placed in a single file. The relation between the subrou-
tine and the filename is immediate and, for completeness, the dependencies of each linear
system solver HSL subroutine that may be used by Algencan follow.

Subroutine MA57 should be saved with a file named hsl_ma57d.f90. Its dependen-
cies from HSL are hsl_zd11d.f90, ma57ad.f, mc21ad.f, mc34ad.f, mc47ad.f,
mc59ad.f, mc64ad.f, and mc71ad.f. Its dependencies from BLAS are dgemm.f,
dgemv.f, dtpmv.f, dtpsv.f, idamax.f, lsame.f, and xerbla.f. Subroutine
MA57 may be used in connection with Metis [158]. If Metis is not used, filefakemetis.f
(with the empty subroutine metis_nodend) must be included.

Subroutine MA86 should be saved with a file named hsl_ma86d.f90. Its de-
pendencies from HSL are hsl_mc34d.f90, hsl_mc68i.f90, hsl_mc69d.f90,
hsl_mc78i.f90, hsl_zb01i.f90, mc21ad.f, mc64ad.f, and mc77ad.f. Its
dependencies from BLAS are daxpy.f, dcopy.f, dgemm.f, dgemv.f, dswap.f,
dtrsm.f, dtrsv.f, lsame.f, and xerbla.f. Subroutine MA86 has no dependen-
cies from LAPACK. Subroutine MA86 may be used in connection with Metis. If Metis
is not used, file fakemetis.f (with the empty subroutine metis_nodend) must be in-
cluded.

Subroutine MA97 should be saved with a file named hsl_ma97d.f90. Its depen-
dencies from HSL are hsl_mc34d.f90, hsl_mc64d.f90, hsl_mc68i.f90,
hsl_mc69d.f90, hsl_mc78i.f90, hsl_mc80d.f90, hsl_zb01i.f90,
hsl_zd11d.f90, mc21ad.f, mc30ad.f, mc64ad.f, and mc77ad.f. Its dependen-
cies from BLAS are daxpy.f, ddot.f, dgemm.f, dgemv.f, dnrm2.f, dscal.f,

138 Chapter 10. First Approach to Algencan

dswap.f, dsyrk.f, dtrmm.f, dtrmv.f, dtrsm.f, dtrsv.f, lsame.f,
and xerbla.f. Its dependencies from LAPACK are disnan.f, dlaisnan.f,
dpotf2.f, dpotrf.f, ieeeck.f, ilaenv.f, and iparmq.f. As well as subrou-
tine MA57 and MA86, Subroutine MA97 may be used in connection with Metis. If
Metis is not used, file fakemetis.f (with the empty subroutine metis_nodend) must
be included.

Note that subroutines MA86 and MA97 use OpenMP to be able to run in parallel.
Therefore, in order to take advantage of the parallelism provided by them, OpenMP must
be installed on your computer. Note that, today, OpenMP and GFortran are both pro-
vided by GCC (the GNU Compiler Collection). This means that if you have GCC in-
stalled on your computer, then you simply need to add the flag -fopenmp within the file
Makefile in the Algencan main folder /home/myusername/algencan-3.0.0/
in order to use OpenMP. This flag should be added if at least one subroutine between
MA86 and MA97 is present (since MA57 does not use parallelism). Refer to the OpenMP
or HSL documentation to see how to set the desired number of threads. Documentation
related to the GCC implementation of OpenMP can be found here:
http://gcc.gnu.org/onlinedocs/libgomp/

10.5 Common questions
1. I do not want to use the automatic scaling because I feel that I have a better one for

my problem. How should I proceed? Do I need to code subroutines with scale as
well?

It may be the case that the user considers his or her problem well scaled, or that
the user has the ability to redefine the original problem in such a way that it is
well scaled. If this is the case, the automatic scaling provided by default by Algen-
can should be inhibited in order to have wf ≡ 1 and wcj

≡ 1 for all j ∈ E ∪ I
in (10.4). This makes the scaled problem (10.4), which is the one solved by Algen-
can, to coincide with the original problem (10.1). The use of the default scaling fac-
tors (10.5) computed by Algencan can be inhibited with the keyword OBJECTIVE-
AND-CONSTRAINTS-SCALING-AVOIDED. For details, refer to Section 12.5.

2. Does Algencan use proprietary subroutines? If so, which are the legal procedures
that I must follow?

Algencan may optionally use some linear algebra subroutines from the HSL Math-
ematical Software Library, namely, MA57, MA86, or MA97, for solving linear sys-
tems. Of course, dependencies (from HSL, BLAS, and LAPACK) of those subrou-
tines would also be required. It is the user’s responsibility to check the license terms
of third-party software. (When this book was written, HSL subroutines were avail-
able free of charge and on demand for academic research and teaching.)

3. Can I call Algencan from a program written in a language other than Fortran?

Yes. Algencan is coded in Fortran but has interfaces to be called from C/C++
programs or to be used in connection with the modeling languages AMPL and
CUTEst. The README file that comes with the Algencan distribution includes
examples and instruction on how to interface Algencan with the mentioned lan-
guages.

10.8. Problems 139

4. Which are the recommended Fortran compilers and compilation options?

Algencan source code is divided into several source files and folders. The Algen-
can distribution includes a Makefile that should work well in the current common
platforms running Unix/Linux, Mac OS, or Windows with MinGW or Cygwin.
The current version of Algencan (3.0.0) works well with the current version of
GFortran (which is part of GCC version 4.6.3) (see http://gcc.gnu.org/fortran/).
Other Fortran compilers were not tested but are expected to work well.

10.6 Review and summary
We described a Fortran subroutine for minimizing a smooth function with smooth equal-
ity and inequality constraints and bounds on the variables. The subroutine is an imple-
mentation of Algorithm 4.1 with an approximate KKT condition for the solution of sub-
problems. The subproblems are solved using the active set strategies with projected gradi-
ents described in Chapter 9. A first, very simple example was presented, a few algorithmic
parameters were discussed, and the output was described. Presentation of the most ade-
quate way to code a problem and a discussion of the available algorithmic choices were
delayed to forthcoming chapters.

10.7 Further reading
The Fortran 90 implementation of the simple example presented in Section 10.3 can be
found in the file chap10-ex1.f90 within folder sources/examples/f90/ of the
Algencan distribution. In the same folder, file chap10-simplest-example.f90
presents an additional simpler example, as well as file toyprob.f90. The behavior of
Algencan in a trivial infeasible problem (described in Section 10.2.3) can be observed in
the problem given in file infeas.f90, located in the same folder.

10.8 Problems
10.1 Listing 10.8 shows a simple version of subroutine pair, used in the example of

Section 10.3. This solution has time complexity O(p). The same goal can be easily
achieved with time complexity O(1) by saving the pairs in a 2× p(p−1)/2 matrix in
an initialization phase (like within the main program algencanma of Listing 10.1)
and then accessing this matrix in constant time. However, there exists an O(1)
version of subroutine pair that requires no initialization and no auxiliary arrays.
Code it.

Listing 10.8. Subroutine pair.

1 subroutine pair(p,ind,i,j)
2 implicit none
3 ! SCALAR ARGUMENTS
4 integer, intent(in) :: p,ind
5 integer, intent(out) :: i,j
6 ! LOCAL SCALARS
7 integer :: k
8 i = 1
9 k = ind

10 do while (k .gt. p - i)
11 k = k - (p - i)
12 i = i + 1
13 end do
14 j = i + k
15 end subroutine pair

140 Chapter 10. First Approach to Algencan

Figure 10.2. Graphical representation of the solution obtained by Algencan.

10.2 With the single executable statement flag = - 1, code subroutines myevalfc,
myevalgjac, myevalgjacp, myevalhl, and myevalhlp. Save all of them
in a file named myfirstexample.f, together with the main program algencanma
and subroutines myevalf, myevalg, myevalh, myevalc, myevaljac, and
myevalhc, provided in Listings 10.1–10.7, plus subroutine pair from Prob-
lem 10.1. Solve problem (10.27) for different values of p. Analyze the output iden-
tifying the main elements of the model Algorithm 4.1.

10.3 Add a mistake to any of the subroutines that computes derivatives, set checkder
equal to true in the main program algencanma, and analyze the way Algencan
compares coded derivatives with finite differences approximations.

10.4 (a) Code subroutines fcsub, gjacsub, and hlsub for problem (10.27). (b) Code
subroutines fcsub, gjacpsub, and hlpsub for problem (10.27). (c) Solve prob-
lem (10.27) using Algencan with the provided subroutines and with the subroutines
from parts (a) and (b). Compare the results. In particular, check the number of calls
to each user-provided subroutine.

10.5 (a) Solve problem (10.27), discarding the subroutines that compute second deriva-
tives. (b) Do the same, discarding subroutines that compute first derivatives.
(c) Compare the results.

10.6 In order to analyze the obtained solutions, code your own subroutine to generate a
graphical representation of the solution, as depicted in Figure 10.2.

10.7 Consider the infeasible problem of minimizing x1+ x2 subject to x1+ x2 ≤−2 and
x1 + x2 ≥ 2. To check the behavior of Algencan when dealing with an infeasible
problem, solve it twice, inhibiting and enabling the stopping criterion described in
Section 10.2.3. Compare the results.

Chapter 13

Practical Examples

In this chapter, we illustrate the use of Algencan in four practical applications. In all
cases, Algencan 3.0.0 with the (arbitrarily chosen) HSL MA57 subroutine was considered.
Algencan was compiled with GNU Fortran (GFortran) included in GCC version 4.6.3.
All the experiments were executed on a 2.4-GHz Intel Core 2 Quad Q6600 with 4.0 GB
of RAM memory running the GNU/Linux operating system.

13.1 Packing molecules
Molecular dynamics is a powerful technique for comprehension at the molecular level of
a great variety of chemical processes. With the enhancement of computational resources,
very complex systems can be studied. The simulations need starting points that must have
adequate energy requirements. However, if the starting configuration has close atoms, the
temperature scaling is disrupted by excessive potentials that accelerate molecules over the
accepted velocities for almost any reasonable integration time step. In fact, the starting
coordinates must be reliable in that they must not exhibit overlapping or close atoms, so
that temperature scaling can be performed with reasonable time steps for a relatively fast
energy equilibration of the system.

In [186, 192], the problem of finding the initial positions of the molecules is repre-
sented as a “packing problem.” The goal is to place known objects in a finite domain in
such a way that the distance between any pair of points of objects is larger than a threshold
tolerance. In our case, objects are molecules and points are atoms. Following this idea, an
optimization problem is defined. The mathematical (optimization) problem consists of
the minimization of a function of (generally) many variables, subject to constraints that
define the region in which the molecules should be placed.

Let us call nmol the total number of molecules that we want to place in a region1
of the three-dimensional space. For each i = 1, . . . , nmol , let nat om(i) be the number of
atoms of the ith molecule. Each molecule is represented by the orthogonal coordinates
of its atoms. To facilitate the visualization, assume that the origin is the barycenter of all
the molecules. For all i = 1, . . . , nmol , j = 1, . . . , nat om(i), let

A(i , j) = (ai j
1 ,ai j

2 ,ai j
3)

be the coordinates of the j th atom in the ith molecule.
Suppose that one rotates the ith molecule sequentially around the axes x1, x2, and x3,

where γ i = (γ i
1 ,γ i

2 ,γ i
3) are the angles that define such rotations. Moreover, suppose that

165

166 Chapter 13. Practical Examples

after these rotations, the whole molecule is displaced so that its barycenter, instead of the
origin, becomes t i = (t i

1 , t i
2 , t i

3). These movements transform the atom of coordinates
A(i , j) in a displaced atom of coordinates

P (i , j) = (pi j
1 , pi j

2 , pi j
3).

Observe that P (i , j), j = 1, . . . , nat om(i), is a function of (t i ,γ i), the relation being

P (i , j) = t i +R(γ i)A(i , j), j = 1, . . . , nat om(i),

where

R(γ i) =




c i
1 c i

2 c i
3 − s i

1 s i
3 s i

1 c i
2 c i

3 + c i
1 s i

3 −s i
2 c i

3
−c i

1 c i
2 s i

3 − s i
1 c i

3 −s i
1 c i

2 s i
3 + c i

1 c i
3 −s i

2 s i
3

c i
1 s i

2 s i
1 s i

2 c i
2


 , (13.1)

in which s i
k ≡ sinγ i

k and c i
k ≡ cosγ i

k for k = 1,2,3.
In [186, 192], the objective is to find angles γi and displacements ti , i = 1, . . . , nmol ,

in such a way that whenever i 2= i ′,

‖P (i , j)− P (i ′ , j ′)‖2
2 ≥ d 2 (13.2)

for all j = 1, . . . , nat om(i), j ′ = 1, . . . , nat om(i ′), where d > 0 is the required minimum
distance, and

P (i , j) ∈1 (13.3)

for all i = 1, . . . , nmol , j = 1, . . . , nat om(i). In other words, the rotated and displaced
molecules must remain in the specified region and the distance between any pair of atoms
must not be less than d . Note that region1 does not need to be convex and that it could
be replaced by a region1 i j for each atom of each molecule (as required in most real cases).

The objective (13.2) leads us to define the following merit function f :

f (t1, . . . , tnmol ,γ1, . . . ,γnmol)

=
nmol∑
i=1

nat om(i)∑
j=1

nmol∑
i ′=i+1

nat om(i ′)∑
j ′=1

max
4

0, d 2−''P (i , j)− P (i ′ , j ′)
''2

2

62
.

(13.4)

Note that f (t1, . . . , tnmol ,γ1, . . . ,γnmol) is nonnegative for all angles and displacements.
Moreover, f vanishes if and only if the objective (13.2) is fulfilled. This means that if
we find displacements and angles where f = 0, the atoms of the resulting molecules are
sufficiently separated. This leads us to define the following minimization problem:

Minimize f (t1, . . . , tnmol ,γ1, . . . ,γnmol) (13.5)

subject to (13.3) for all i = 1, . . . , nmol , j = 1, . . . , nat om(i).
The objective function f is continuous and differentiable, although their second de-

rivatives are discontinuous. The number of variables is 6 × nmol (three angles and a
displacement per molecule). The analytical expression of f is cumbersome, since it in-
volves consecutive rotations and its first derivatives are not very easy to code. However,
optimization experience leads us to pay the cost of writing a code for computing deriva-
tives with the expectation that algorithms that take advantage of first-order information
are profitable, especially when the number of variables is large. Having a code that com-
putes f and its gradient, we are prepared to solve (13.5) using constrained optimization
techniques.

13.1. Packing molecules 167

13.1.1 Analyzing a simplified version

In order to focus in the application of Algencan to the described molecules packing prob-
lem, we consider a simplified (less realistic) instance in which molecules are all identical
and they are composed of a single atom. Note that the single-atom feature eliminates the
rotation angles as variables and the variables of the problem become the translations only.
If, in addition, we set nmol = N , d = 2r , and 1 = {x ∈ !3 | ‖x‖2 ≤ R}, the problem
can be seen as the problem of placing N identical spheres with radius r within a sphere
with radius R centered at the origin. This is one of the many variants of the well-known
packing problems described in, for example, [65].

Summing up, the problem considered in this section is given by

Minimize f (x) subject to c(x)≤ 0, (13.6)

where x = (t1, . . . , tN) ∈!3N ,

f (t1, . . . , tN) =
N∑

i=1

N∑
j=i+1

max{0, (2r)2−‖ti − t j ‖2
2}2, (13.7)

and
ci (x) = ‖ti‖2

2− (R− r)2, i = 1, . . . ,N . (13.8)

A key point that strongly affects the difficulty of an instance of a packing problem is
its density (occupied fraction), which in the case of problem (13.6)–(13.8) is given by
N (r/R)3. Considering that each atom is a sphere with a radius of 1Å, the volume oc-
cupied by the atoms in liquid water is roughly 30% of the total volume. This density was
used in the illustrative examples of this section.

The treatment of the packing problem that we present below is valid as an illustration
of the techniques applied to solve the much more complex molecules packing problem de-
scribed in the previous subsection. Numerical examples intend to resemble the techniques
implemented in the software Packmol [186, 192]. If the focus were classical packing prob-
lems by themselves, many other techniques, such as those based on lattices [85], might be
considered.

The problem has n = 3N variables and m = N inequality constraints. Its has no
equality constraints and no bounds on the variables. We coded subroutines fsub, gsub,
hsub, csub, jacsub, and hcsub. The last three subroutines compute the constraints
and their first- and second-order derivatives, respectively, and they are very easy to code.
Subroutine fsub computes the objective function. It is also easy to code and its naive
implementation requires O(N 2) operations to evaluate f at a given point. (This feature
will be addressed below.) Subroutine gsub is also easy to code, while coding subrou-
tine hsub is rather boring and prone to error. They both share with fsub the O(N 2)
time complexity to evaluate the gradient and the Hessian of the objective function, re-
spectively, at a given point. The six subroutines are part of the Algencan distribution
(file chap13-packmol-dense.f90 within folder sources/examples/f90/). As
a starting guess, we consider x0 = (t 0

1 , . . . , t 0
N) with uniformly distributed random t 0

i ∈
[−R, R]3.

Before considering a particular instance, we need to analyze (a) the number of nonnull
elements in the Jacobian and (b) the number of memory positions required to compute the
lower triangle of the Hessian of the Augmented Lagrangian function of problem (13.6)–
(13.8). These are the values that must be given to Algencan’s parameters jcnnzmax and
hnnzmax, respectively, when the user opts for choice S1 (see Chapter 11) and codes sub-
routines fsub, gsub, hsub, csub, jacsub, and hcsub. The number of positions in

168 Chapter 13. Practical Examples

(b) is the sum of (b1) the number of nonnull elements in the lower triangle of the Hessian
of the objective function, (b2) the sum of the number of nonnull elements in the lower tri-
angle of the Hessian matrix of each constraint, and (b3) the number of nonnull elements in
the lower triangle of the matrix given by the transpose of the Jacobian times the Jacobian.
An upper bound on this last number is given by 1

2
∑m

j=1 jcnnzmax j (jcnnzmax j + 1),
where jcnnzmax j is the number of nonnull elements of the j th row of the Jacobian
(i.e., the number of nonnull elements in the gradient of the j th constraint). Including the
quantity described in (b3) in the value of hnnzmax is a conservative approach, since it is
required only if the method used to solve the Augmented Lagrangian subproblems is the
Euclidean trust-region method (which is not the usual choice in large-scale problems; see
Sections 10.2.11 and 12.8). Anyway, including this quantity is costless in this case because
the transpose of the Jacobian times the Jacobian is a very sparse matrix for the problem
at hand.

Looking at the nonlinear interaction of the variables in the constraints (13.8), it is
easy to see that the gradient of each constraint has no more than three nonnull elements
and that the (diagonal and constant) Hessian matrix of each constraint has exactly three
nonnull elements. This means that (i) the Jacobian matrix has no more than 3N nonnull
entries and we must set the Algencan’s parameter jcnnzmax = 3N , (ii) the sum of the
number of nonnull elements in the lower triangle of the Hessian matrix of each constraint
is hnnzmaxb2 = 3N , and (iii) the number of nonnull elements in the lower triangle of
the matrix given by the transpose of the Jacobian times the Jacobian is hnnzmaxb3 = 6N .
The objective function (13.7) has a potential nonlinear interaction between every pair of
variables, meaning that its Hessian matrix is potentially dense and its lower triangle may
have up to hnnzmaxb1 = 3N (3N + 1)/2 nonnull elements. Therefore, we must set the
Algencan parameter hnnzmax as hnnzmaxb1 plus hnnzmaxb2 plus hnnzmaxb3, i.e.,
hnnzmax= 3N (3N+1)/2+3N+6N . This O(N 2)memory requirement, which together
with the O(N 2) time complexity for evaluating the objective function may prevent the
application of Algencan to instances with large N , will be tackled soon.

13.1.2 Tuning problem’s subroutines and Algencan parameters

As a starting example, we consider the application of Algencan to an instance of prob-
lem (13.6)–(13.8) with r = 1, N = 1,000, and R= 15 (density ≈ 0.3). We set epsfeas =
epsopt = 10−8, efstain =

-
epsfeas, eostain = epsopt1.5, efacc =-

epsfeas, andeoacc=
-
epsopt. We also setoutputfnm = ’’, specfnm = ’’,

and nvparam = 0. A solution was found as a result of the second acceleration process,
using 3 outer iterations (65 inner iterations, 398 calls to fsub, 118 calls to gsub, 74 calls
to hsub, 429 calls to csub per constraint in average, 25 calls to jacsub per constraint
in average, and 8 calls to hcsub per constraint in average) and 3.53 seconds of CPU time.

Since we are seeking applications with much larger values of N , we decided to tackle
the O(N 2) time and memory requirements mentioned above. The idea is very simple:
at a solution, each sphere “touches” no more than other 12 identical spheres (the kissing
number in !3 [85]). This means that, near a solution, most of the spheres pairs are such
that spheres are far from each other and do not contribute to the sum in (13.7). The
strategy to compute (13.7) efficiently is based on a partitioning of the three-dimensional
space into cubes of side 2r and consists of (a) assigning each ti to a cube and (b) computing
the terms in the summation in (13.7) associated with every pair (i , j) such that ti and t j
belong to the same cube or to neighbor cubes. Remaining pairs do not contribute to
the sum in (13.7) and can be ignored. See [65] for details. This idea is based on efficient

13.1. Packing molecules 169

algorithms developed to reduce the asymptotic computational complexity of the N -body
problem [147].

We implemented this idea (which involves modifications in subroutines fsub, gsub,
and hsub) and solved the same instance again. The modified subroutines are part of
the Algencan distribution (file chap13-packmol-sparse.f90 within folder
sources/examples/f90/). From now on, we will call “dense” and “sparse” imple-
mentation of problem (13.6)–(13.8) the implementation that computes all terms in (13.7)
and the implementation that computes only a few terms, respectively. Since the im-
plementations perform floating point operations in different orders, slightly different
results may be expected. In fact, Algencan found a solution as a result of the first ac-
celeration process, using 2 outer iterations (61 inner iterations, 377 calls to fsub, 106
calls to gsub, 67 calls to hsub, 407 calls to csub per constraint in average, 26 calls to
jacsub per constraint in average, and 10 calls to hcsub per constraint in average). The
highlight is that the number of computed terms in the summation in (13.7) went from
N (N − 1)/2 = 499,500 to 6,775 in average (computed over all points at which the objec-
tive function was evaluated during the problem resolution). The same reduction applies
to the evaluation of the gradient and the Hessian of the objective function. Assuming
that computing the objective function and its derivatives is the dominant task, a similar
reduction (99%) would also be expected in the elapsed CPU time. This was not the case.
The elapsed CPU time was 1.45 seconds.

In fact, in the dense implementation of problem (13.6)–(13.8), the computation of
the objective function and its derivatives represents 70% of the computational effort (2.46
seconds of CPU time, over a total of 3.53 seconds). The actual reduction, estimated in 99%
considering the reduction in the number of computed terms in the summation in (13.7),
was in fact 92%, due to the overheads associated with the sparse implementation of (13.7).
This explains the overall reduction of 59%, going from the 3.53 seconds of CPU time of
the dense implementation to the 1.45 seconds of the sparse implementation.

If we now profile the sparse implementation of problem (13.6)–(13.8), the most expen-
sive task happens to be the factorization of matrices, consuming 74% of the computational
effort. Hence, the natural question is, are the matrices of problem (13.6)–(13.8) (Hessian
of the Augmented Lagrangian and Jacobian of the KKT system) such that they favor the
application of iterative linear systems solvers instead of direct methods (i.e., matrices fac-
torizations)?

Since first- and second-order derivatives were coded, the MA57 subroutine from HSL
is available for solving linear systems, and the instance at hand has more than 500 variables,
the active set strategy used to solve the Augmented Lagrangian subproblems employs a
line-search Newton’s method within the faces (see Sections 8.5.1 and 12.8). This is one
of the places where linear systems are being solved. The other place is within the accel-
eration process (see Section 12.10) to solve the KKT system by Newton’s method. The
alternative that avoids the usage of a direct linear systems solver in the first case is to use
a line-search truncated Newton approach, which solves Newtonian systems by conjugate
gradients (see Sections 8.5.2 and 12.8). This selection of the inner-to-the-faces method can
be achieved with the keyword TRUNCATED-NEWTON-LINE-SEARCH-INNER-SOLVER.
Regarding the second place where linear systems are being solved, since the current im-
plementation of Algencan does not consider the possibility of applying the acceleration
process in connection with an iterative linear systems solver, the only choice is to in-
hibit the application of the acceleration process with the keyword SKIP-ACCELERATION-
PROCESS.

We modified these two parameters and applied Algencan once again to the same in-
stance. Algencan found a solution using 6 outer iterations (47 inner iterations, 95 calls to

170 Chapter 13. Practical Examples

fsub, 67 calls to gsub, 47 calls to hsub, 95 calls to csub per constraint in average, 8
calls to jacsub per constraint in average, and 6 calls to hcsub per constraint in average)
and 0.16 seconds of CPU time. In this run of Algencan, approximately 22 times faster
than our first trial, the most expensive tasks were the computation of the Hessian of the
Augmented Lagrangian, its products by a given vector (main task of the CG method), the
linear algebra of the CG method itself, and the evaluation of the objective function and
its derivatives.

After having modified the evaluation of the objective function and its derivatives, and
having tuned a few parameters of Algencan, it appears that we are now ready to address
larger instances of problem (13.6)–(13.8).

13.1.3 Solving large instances

In the present section, we are illustrating the application of Algencan to a simple pack-
ing problem that mimics a real problem in the field of molecular dynamics. This is why
we mentioned in the previous subsection that we were interested in instances of prob-
lem (13.6)–(13.8) with a “density” of approximately 0.3. For the same reason, we close
the section by showing the performance of Algencan in instances with 105 ≤ N ≤ 106,
which is of the same order of magnitude of the largest real applications reported in the
literature (see [192]).

Before running Algencan (on large-scale instances) with the parameters chosen in the
previous subsection, there is a single parameter to adjust: the number hnnzmax of mem-
ory positions required to store the lower triangle of the Hessian of the Augmented La-
grangian function. In fact, when a method different from the Euclidean trust-region
method is used as part of the Augmented Lagrangian subproblems’ solver, hnnzmaxmust
be an upper bound on the number of triplets needed to store the Hessian matrix of the
Lagrangian function (instead of the Hessian matrix of the Augmented Lagrangian func-
tion). (See Section 10.2.11.) Since this is the case of the present numerical experiments,
in which we chose a truncated Newton line-search strategy, the value of hnnzmax may
be modified. Moreover, the motivation to compute a new value for hnnzmax is that the
value computed in the previous subsections (hnnzmax= 3N (3N+1)/2+3N+6N) is not
suitable for large values of N . Since the transpose of the Jacobian times the Jacobian does
not need to be stored any more, 6N memory positions can be disregarded and the new
value for hnnzmaxmight be 3N (3N+1)/2+3N , which is also not suitable for large values
of N . However, in practice, a much smaller amount of memory is required. Therefore,
based on the sparsity of the Hessian of the objective function near a solution discussed
above, in the next experiment we heuristically set hnnzmax = 100N .

Table 13.1 shows the results and Figure 13.1 illustrates the solutions found. In the
table, outit is the number of outer iterations, innit is the total number of inner iterations,
fcnt, gcnt, and hcnt are, respectively, the number of calls to subroutines fsub, gsub, and
hsub. Finally, ccnt, jcnt, and hccnt are the average number of calls to subroutines csub,
jacsub, and hcsub per constraint, and Time is the CPU time in seconds.

Table 13.1. Computational effort measures of the application of Algencan to large-scale in-
stances of the packing problem (13.6)–(13.8).

N R outit innit fcnt gcnt hcnt ccnt jcnt hccnt Time
105 70 6 138 532 158 138 532 11 8 92.56

5× 105 120 6 262 1,000 282 262 1,000 20 17 1,340.11
106 150 6 375 1,561 395 375 1,561 24 21 4,506.39

13.2. Drawing proportional maps 171

(b)(a)

(c)

Figure 13.1. Graphical representation of the solution found to three instances of the unitary-
radius (i.e., r = 1) packing problem (13.6)–(13.8) with (a) N = 100,000 and R = 70, (b) N = 500,000
and R= 120, and (c) N = 1,000,000 and R= 150.

13.2 Drawing proportional maps
A sketch of a map of the Americas is presented in Figure 13.2. The sketch was drawn
by joining with segments 132 arbitrarily selected points in the borders of 17 regions of a
regular map. Most of the regions are associated with countries (from south to north): Ar-
gentina, Chile, Uruguay, Brazil, Paraguay, Bolivia, Peru, Ecuador, Colombia, Venezuela,
the Guianas (Guyana, Suriname, and French Guiana), Central America (Panama, Costa
Rica, Nicaragua, Honduras, El Salvador, Guatemala, and Belize), Mexico, Cuba, Canada,
and Alaska. It is a fact that no map can maintain proportionality between areas and dis-
tances simultaneously. Here, we wish to redraw the map of the Americas keeping the
proportionality among the area of the regions. Moreover, the redrawn map should be as
similar as possible to the regular map [184]. As a different project, we wish to draw maps
in which the size of each region is proportional to the population of the region or to its
gross domestic product (GDP).

172 Chapter 13. Practical Examples

Figure 13.2. Sketch of a regular map of the Americas. Points were arbitrarily selected in the
borders of some regions and borders were approximated by joining the selected points with segments.

Let nr = 17 be the number of considered regions and let np = 132 be the number
of arbitrarily selected points p̄1, . . . , p̄np

(illustrated in Figure 13.2). For each region j , let
oj be the number of points in its border and let γ1 j , . . . ,γoj j be the indices of its vertices
(regions are in fact polygons) numbered counterclockwise. The area ᾱ j of the polygon
that represents region j can be computed (see, for example, [67]) as

ᾱ j =
oj∑

i=1
(p̄ x
γi j

p̄ y
γi⊕1, j
− p̄ x

γi⊕1, j
p̄ y
γi j
),

where p̄i = (p̄ x
i , p̄ y

i)
T for i = 1, . . . , np , and for each region j , γi⊕1, j represents the index of

its (i+1)th vertex if i < oj and γoj⊕1, j ≡ γ1, j . This means that the area of each region j in
the considered regular map is approximately ᾱ j and the total area of the considered regular
map of the Americas is given by ᾱ =

∑nr
j=1 ᾱ j . Let β̄ j be the target area of region j for

j = 1, . . . , nr , and let β̄ =
∑nr

j=1 β̄ j . These target areas may represent the real territorial
areas of the regions, or their population, or the GDP.

13.2.1 Problem definition: A first approach

We are ready to define our optimization problem, whose variables will be the “new” lo-
cations p1, . . . , pnp

∈!2 of the given points p̄1, . . . , p̄np
. Constraints regarding the propor-

13.2. Drawing proportional maps 173

tionality among the regions will be given by

1
2

oj∑
i=1
(p x
γi j

py
γi⊕1, j
− p x

γi⊕1, j
py
γi j
) =β j (ᾱ/β̄), j = 1, . . . , nr , (13.9)

where the scaling has the purpose of obtaining a new map of the same size of the con-
sidered regular map. The objective function, which represents the desire to obtain a map
similar to the considered regular map, may be given by

1
2

np∑
j=1
‖pj − p̄ j ‖2. (13.10)

Hence, the problem consists of minimizing (13.10) subject to (13.9). The problem has
n = 2np variables, m = nr (equality) constraints, and no bound constraints.

First- and second-order derivatives are easy to code by hand and since there is no
relation (common expressions) between the constraints, we opted for coding subrou-
tines fsub, gsub, hsub, csub, jacsub, and hcsub. The six subroutines are part of
the Algencan distribution (file chap13-america-areas.f90 within folder
sources/examples/f90/). As a starting guess, we consider the natural choice pi =
p̄i for i = 1, . . . , np .

A relevant comment concerns the computation of the gradient and Hessian of each
constraint in (13.9). Constraint j involves points (variables) pγ1, j , . . . , pγo j

, j ∈ !2. Each

point appears twice (interacting with the previous and the next vertex of the polygon
that represents the j th region), and since the constraint is a sum, it is natural to think of
each partial derivative as the sum of the partial derivatives of the two terms where each
variable appears. Since subroutines jacsub and hcsub must compute sparse gradients
and Hessians, respectively, this reasoning leads us to conclude that the user should imple-
ment (within those subroutines) the sum of these particular sparse arrays and matrices.
Another option is to use the possibility of representing an element of a sparse array or
matrix as the sum of several triplets in the sparse structure built up by the user-provided
subroutine. By this, we mean that if, for example, the sparse Hessian of constraint j
computed by subroutine hcsub contains two different entries k1 and k2 saying

hcrow(k1) = r, hccol(k1) = c, hcval(k1) = v,

and

hcrow(k2) = r, hccol(k2) = c, hcval(k2) = w,

Algencan understands this as [∇2c j]r c = v+w. This interpretation eliminates the require-
ment of computing the sum of sparse arrays and/or matrices within the user-provided
subroutine, simplifying the user coding task. The price to be paid is that Algencan might
need to save and manipulate sparse structures with a larger number of elements. This
may be undesirable in critical cases, but in the present problem, in which the number of
variables and constraints is small, it appears to be a very convenient choice.

It is not hard to see that the number of memory positions needed to save the Jacobian
of the constraints is jcnnzmax =

∑nr
j=1 4oj . The number hnnzmax of memory posi-

tions needed to save the Hessian of the Augmented Lagrangian is given by hnnzmax1 =
2np for the (diagonal) Hessian of the objective function plus hnnzmax2 =

∑nr
j=1 2oj to

save, simultaneously, the lower triangles of the Hessians of all constraints plushnnzmax3=

174 Chapter 13. Practical Examples

∑nr
j=1(4oj)(4oj + 1)/2 to save the lower triangle of c ′(x)T c ′(x) =

∑nr
j=1∇c j (x)∇c j (x)T ,

i.e., hnnzmax = 2 np +
∑nr

j=1 2oj +
∑nr

j=1(4oj)(4oj + 1)/2.
The amount of memory hnnzmax described in the paragraph above is the one re-

quired by Algencan to compute the Hessian matrix of the Augmented Lagrangian (see,
for example, (12.3)). This matrix needs to be computed and factorized if the trust-region
approach is used for solving the Augmented Lagrangian subproblems (which is the de-
fault choice for small problems with available second-order derivatives and an available
linear systems solver). On the other hand, if the Newton line-search approach is used to
solve the Augmented Lagrangian subproblems, the matrix to be computed and factorized
is the one in (12.5). In this case, the quantity hnnzmax3 is not needed and can be dis-
missed in the computation of hnnzmax. The same remark applies if a truncated Newton
approach is used to solve the Augmented Lagrangian subproblems (see Section 12.8 for
details). In any case, since the value of hnnzmax must be an upper bound on the required
number of memory positions, the one computed above may be used in combination with
any algorithmic possibility for solving the Augmented Lagrangian subproblems, except
in large-scale cases in which sharp upper bounds on the memory requirements may be
necessary.

Setting the target values β̄ j as the real territorial areas of the 17 considered regions,
we are ready to solve the problem with Algencan. (Constants that define the problem
can be found in the source file chap13-america-areas.f90 within folder
sources/examples/f90/, that accompanies the Algencan distribution. The con-
stants are in fact defined in the module modamerica.f90, within the same folder.) We
set epsfeas = epsopt = 10−8, efstain =

-
epsfeas, eostain = epsopt1.5,

efacc =
-
epsfeas, and eoacc =

-
epsopt. We also set outputfnm = ’’,

specfnm = ’’, and nvparam = 0. A solution was found as a result of the first accel-
eration process, using 8 outer iterations (19 inner iterations, 43 calls to fsub, 48 calls to
gsub, 21 calls to hsub, 51 calls to csub per constraint in average, 48 calls to jacsub per
constraint in average, and 21 calls to hcsub per constraint in average) and 0.05 seconds of
CPU time. Figures 13.3(a) and 13.3(b) show, respectively, the considered regular map of
the Americas and the map redrawn with sizes proportional to the real area of each region.

Note that the map in Figure 13.3(b) is indeed a map (no crossing segments). This
bonus comes from the fact that the regular map is similar to the redrawn map, and using
it as a starting point, together with nearly satisfied constraints, the rest of the map was
easily drawn. We say it is a bonus because there is no constraint in the model requesting
the solution to be associated with the picture of a map. If the target values are replaced by
the population or the GDP of each region, the regular map is far from a solution and the
solution of the optimization problem described above is not a map anymore. For those
cases a new model is needed.

13.2.2 Dealing with population and GDP proportional maps

The inconvenience of the model presented in the previous subsection is that the mini-
mization of the objective function (13.10) is not enough to obtain a solution associated
with a map (i.e., a set of points that after being joined with segments has no crossing seg-
ments). Since adding a small number of constraints to represent exactly this requirement
may be hard and adding simple sufficient constraints (like each point pi to be in a vicinity
of p̄i) can make the problem infeasible, we will try with a different objective function.
The idea is to minimize the distance of each redrawn region to a scaled, slightly rotated
and translated rendering of the region in the regular map.

13.2. Drawing proportional maps 175

(b)(a)

Figure 13.3. (a) Regular map of the Americas. (b) Map redrawn with sizes proportional to
the real area of each region.

The new model can be written as

Minimize
1
2

n∑
j

o j∑
i=1
‖pγi j

− (t j + c̄ j +Rj Dj (p̄γi j
− c̄ j))‖2

subject to
1
2

oj∑
i=1
(p x
γi j

py
γi⊕1, j
− p x

γi⊕1, j
py
γi j
) =β j (ᾱ/β̄), j = 1, . . . , n,

−0.1 ≤ θ j ≤ 0.1, j = 1, . . . , n,
0 ≤ d j

k ≤ 2, j = 1, . . . , n, k = 1,2,
−0.1|c̄ j

k | ≤ t j
k ≤ 0.1|c̄ j

k |, j = 1, . . . , n, k = 1,2,

(13.11)

where c̄ j = (1/oj)
∑oj

i=1 p̄γi j
is the constant “center of mass” of each region j ,

Rj =
9

cos(θ j) − sin(θ j)
sin(θ j) cos(θ j)

:
,

Dj = diag(d j
1 , d j

2), and t j ∈!2 are a variable (counterclockwise) rotation matrix, a variable
deformation, and a variable translation, respectively, for each region j . The objective
function in (13.11) says that a redrawn region resembles its usual picture if it is similar
to a scaled, slightly rotated and/or translated version of its usual picture. The bound
constraints in (13.11) are arbitrary and express our idea of “slightly” rotated and translated.

Problem (13.11) has n = 2np + 5nr variables and m = nr constraints. Second-order
derivatives of the objective function are a little bit harder to code (with respect to the

176 Chapter 13. Practical Examples

second derivatives of the objective function of the previous model), but it is our expe-
rience that their availability, in general, improves the behavior of Algencan. Note that
problems presented up to now in this chapter were solved with the acceleration process,
which can be used only if second derivatives are available. The value of jcnnzmax is
the same as in the previous subsection (since the constraints, other than the bound con-
straints, are the same), i.e., jcnnzmax =

∑nr
j=1 4oj . The upper bound hnnzmax on

the number of memory positions required to compute the Hessian matrix of the Aug-
mented Lagrangian is given by hnnzmax = hnnzmax1 + hnnzmax2 + hnnzmax3.
Values of hnnzmax2 and hnnzmax3 also depend only on the constraints and remain
unchanged, i.e., hnnzmax2 =

∑nr
j=1 2oj and hnnzmax3 =

∑nr
j=1(4oj)(4oj + 1)/2. The

value of hnnzmax1 is given by hnnzmax1 =
∑nr

j=1 24oj .

Setting the target values β̄ j as the GDP of each region, we are ready to solve the prob-
lem with Algencan. The corresponding file that accompanies the Algencan distribution is
chap13-america-pop-gdp.f90 (within folder sources/examples/f90/). Set-
ting the Algencan parameters with the values of the previous subsection, Algencan finds
a solution as a result of the acceleration process after 17 outer iterations. Figure 13.4(a)
shows the solution. In fact, Algencan reaches the required precisions to launch the accel-
eration process after the tenth outer iteration. However, although the required feasibil-
ity and optimality tolerances are almost obtained in every acceleration process, they are
strictly satisfied only after the seventh trial. As a whole, Algencan uses 3.90 seconds of
CPU time, 17 outer iterations, 839 inner iterations, 1,700 calls to fsub subroutine, 1,151
calls to gsub subroutine, 911 calls to hsub subroutine, 1,890 calls to subroutine csub
per constraint in average, 1,151 calls to subroutine jacsub per constraint in average, and
911 calls to subroutine hcsub per constraint in average.

(b)(a)

Figure 13.4. (a) Map redrawn with sizes proportional to the GDP of each region and (b) map
redrawn with sizes proportional to the population of each region.

13.3. Optimal control 177

The behavior described in the paragraph above suggests that increasing the maxi-
mum number of iterations of the acceleration process (whose value is 10 by default) may
improve the performance of Algencan. Setting this value to 100 with the help of the
keyword ACCELERATION-PROCESS-ITERATIONS-LIMIT, we run Algencan again. This
time, the same solution was found in the first acceleration process, using 55 iterations
(of the Newton’s method applied to the KKT system). As a whole, Algencan used 2.97
seconds of CPU time, 10 outer iterations, 693 inner iterations, 1,345 calls tofsub subrou-
tine, 928 calls to gsub subroutine, 742 calls to hsub subroutine, 1,502 calls to subroutine
csub per constraint in average, 928 calls to subroutine jacsub per constraint in average,
and 742 calls to subroutine hcsub per constraint in average.

Only as an illustrative example of the expected difference in the performance of Al-
gencan when second derivatives are not provided, we solved the same problems without
considering the coded Hessians. A solution was found after 23 outer iterations. The
solver of the Augmented Lagrangian subproblems achieved its maximum number of it-
erations when solving the subproblems of the second and third outer iterations. It also
stopped by lack of progress when solving the subproblems of outer iterations 11 to 17. As
a whole, Algencan used 29,984 calls to fsub, 6,918 calls to gsub, 30,074 calls to csub
in average, 6,918 calls to jacsub in average, and 17.11 seconds of CPU time (four times
the time required when using second-order derivatives). Of course, sometimes, second
derivatives may not be available and running Algencan without them is the only possible
choice. In such a situation, modifying the relatively strict values of parameters epsfeas
and epsopt used in the present example may be a reasonable course of action.

To end this section, we show in Figure 13.4(b) the result when the target values β̄ j
are the population of each region. Algencan used 13 outer iterations (429 inner iterations,
1,001 calls to fsub subroutine, 621 calls to gsub subroutine, 472 calls to hsub subrou-
tine, 1,110 calls to subroutine csub per constraint in average, 621 calls to subroutine
jacsub per constraint in average, and 472 calls to subroutine hcsub per constraint in
average) and 2.38 seconds of CPU time.

13.3 Optimal control
Optimal control deals with the problem of finding a control law for a given system such
that some functional cost is minimized. The problem includes state and control variables.
The state variables (which describe the physical system) are solutions of a differential sys-
tem of equations and the control variables should be chosen in order to optimize some cri-
terion defined by the cost. The differential equations are known as dynamic constraints.
The system may also include “path constraints” and boundary conditions. Many relevant
engineering problems may be described by the control framework. Typical examples in-
volve minimizing traveling times or fuel consumption of vehicles, from ordinary cars to
rockets and satellites.

In this section, we consider control problems of the form

Minimize
∫ t f

t0

f0(s(t), u(t)) d t

subject to ṡ (t) = F (s(t), u(t)),

s(t0) = s0,

(13.12)

where the state variable is s(t) ∈ !ns , ṡ = d s/d t , the control variable is u(t) ∈ !nu ,
t varies between t0 and t f , f0 :!ns ×!nu →!, and F :!ns ×!nu →!ns . The initial state
is given by s0 ∈!ns .

178 Chapter 13. Practical Examples

13.3.1 Discretization of the optimal control problem

Frequently, shooting techniques [21, 242] are employed for solving control problems. Un-
fortunately, shooting procedures are prone to severe ill-conditioning and usually require
very good initial approximations [160]. A popular approach to overcoming these incon-
veniences consists of discretizing the domain [t0, t f]with discretization of the derivatives
of s(t) and the conversion of the problem into a finite-dimensional optimization problem
with as many dynamic constraints as discretization points [137].

We subdivide the time domain [t0, t f] into N intervals with equidistant points ti =
ti−1 +∆t or, equivalently, ti = t0 + i ∆t , i = 0, . . . ,N , where ∆t = (t f − t0)/N and,
hence, tN = t f . Considering the Euler discretization scheme si+1 = si +∆t F (si , ui) and
approximating the integral in the objective function of (13.12) by its Riemann sum, we
arrive at the discretized optimal control problem

Minimize ∆t
N−1∑
i=0

f0(si , ui)

subject to si+1 = si +∆t F (si , ui), i = 0, . . . ,N − 1,

where s0 is given, the variables si approximate the states s(ti) for i = 1, . . . ,N , and the
variables ui approximate the controls u(ti) for i = 0, . . . ,N − 1. The number of variables
is n = (ns + nu)N and the number of (equality) constraints is m = ns N . Higher-order
discretization schemes, such as the ones in the Runge–Kutta family of methods, can also
be used.

13.3.2 Van der Pol system with unbounded control

As a simple example, we consider the van der Pol system with unbounded control (see,
for example, [159]) given by

ẋ(t) = y(t),
ẏ(t) =−x(t)− (x(t)2− 1)y(t)+ u(t),

where t ∈ [0,1], s(t) ≡ (x(t), y(t))T ∈ !2 describes the state of the system and u(t) ∈ !
is the control. The aim is to minimize

1
2

∫ 1

0
(x(t)2+ y(t)2+ u(t)2) d t .

The initial condition is given by s0 = (−2,4)T .
The discretized optimal control problem (as described in the previous subsection) is

given by

Minimize
1
2
∆t

N−1∑
i=0
(x2

i + y2
i + u2

i)

subject to xi+1 = xi +∆t yi , i = 0, . . . ,N − 1,
yi+1 = yi +∆t (−xi − (x2

i − 1)yi + ui), i = 0, . . . ,N − 1,

(13.13)

where x0 = −2 and y0 = 4 are constants. This problem has n = 3N variables (xi , yi , i =
1, . . . ,N and ui , i = 0, . . . ,N − 1) and m = 2N constraints.

13.3. Optimal control 179

An equivalent formulation of (13.13) that is usually considered in practice is given by

Minimize zN
subject to xi+1 = xi +∆t yi , i = 0, . . . ,N − 1,

yi+1 = yi +∆t (−xi − (x2
i − 1)yi + ui), i = 0, . . . ,N − 1,

zi+1 = zi +∆t (x2
i + y2

i + u2
i)/2, i = 0, . . . ,N − 1,

(13.14)

where x0 = −2, y0 = 4, and z0 = 0 are constants. Problem (13.14) has n = 4N variables
(xi , yi , zi , i = 1, . . . ,N , and ui , i = 0, . . . ,N − 1) and m = 3N constraints.

Modern optimization methods for solving problems of this type may be found in [159]
and [27]. Moreover, computationally more challenging versions of this problem can be
considered by imposing constraints on the state and control variables.

13.3.3 A first run

To illustrate the usage of Algencan, we coded subroutines fsub, gsub, hsub, csub,
jacsub, and hcsub for problems (13.13) and (13.14). Coded subroutines are part
of the Algencan distribution and can be found as files chap13-control.f90
and chap13-control2.f90 (within folder sources/examples/f90/) for prob-
lems (13.13) and (13.14), respectively. In both cases first and second derivatives are very
simple. Computing the values of parameters jcnnzmax and hnnzmax is also simple
and possible values are jcnnzmax = 7N and hnnzmax = 21N for problem (13.13)
and jcnnzmax = 12N and hnnzmax = 37N for problem (13.14). Setting the remain-
ing parameters of Algencan as epsfeas = epsopt = 10−8, efstain =

-
epsfeas,

eostain = epsopt1.5, efacc =
-
epsfeas, and eoacc =

-
epsopt, outputfnm

= ’’, specfnm = ’’, and nvparam = 0, we are ready to run our first examples.
In a first set of numerical experiments, we considered N ∈ {10,100,1,000,2,000,3,000}.

Table 13.2 shows some figures. In all cases Algencan found a solution with the required
precision, and solutions were found as the result of the acceleration process. The last
column in the table corresponds to the objective function value at the solution. The
values of cnorm, snorm, and nlpsupn as defined in (10.26) are not shown because of
lack of space, but they satisfy the stopping criterion of the acceleration process, i.e., they
fulfill (10.21), (10.22). As expected, solutions to both models coincide. Regarding the re-
maining columns in the table, outit is the number of outer iterations, innit is the total
number of inner iterations, fcnt, gcnt, and hcnt are, respectively, the number of calls to
subroutines fsub, gsub, and hsub. Finally, ccnt, jcnt, and hccnt are the average number
of calls to subroutines csub, jacsub, and hcsub per constraint, and Time is the CPU
time in seconds.

The figures in Table 13.2 call attention to all instances of model (13.13) and to the last
instance of model (13.14) in which the ratio between the number of functional evaluations
(fcnt) and the number of inner iterations (innit) is relatively high. This is a symptom of
poor descent directions when trying to solve the Augmented Lagrangian subproblems.
Along those directions, many functional evaluations are spent in painful backtracking
processes with a very slow decrease of the objective function. Many times the backtrack-
ing processes and, in consequence, the solver of the Augmented Lagrangian subproblems
stop because of lack of progress in the objective function value or a very small step in
the line search. This kind of behavior may be related to ill-conditioned (sub)problems.
(However, if you observe a similar behavior of Algencan in your problem, the first step
is to check the derivatives of the objective function and the constraints!) A detailed out-
put to check the behavior of the subproblems’ solver may be obtained with the keyword
ITERATIONS-OUTPUT-DETAIL followed by, for example, the printing code number 19.

180 Chapter 13. Practical Examples

Table 13.2. Computational effort measures of the application of Algencan to small and
medium-scale instances of the control problems (13.13) and (13.14).

Optimal control model (13.13)
N outit innit fcnt gcnt hcnt ccnt jcnt hccnt Time f (x∗)
10 15 99 603 176 104 642 176 102 0.03 4.6139D+00
100 14 110 559 188 116 600 188 114 0.19 5.4477D+00

1,000 45 979 10,889 1,142 982 10,956 1142 979 18.19 5.5349D+00
2,000 24 142 1,120 326 239 1,147 326 234 18.29 5.5397D+00
3,000 20 105 861 213 145 883 213 140 32.24 5.5413D+00

Optimal control model (13.14)
N outit innit fcnt gcnt hcnt ccnt jcnt hccnt Time f (x∗)
10 9 60 98 100 65 112 100 63 0.01 4.6139D+00
100 9 80 136 125 86 154 125 84 0.15 5.4477D+00

1,000 7 63 99 94 68 108 94 66 4.90 5.5349D+00
2,000 8 56 98 90 61 108 90 59 18.86 5.5397D+00
3,000 9 342 2,236 381 347 2,249 381 326 476.89 5.5413D+00

The most significant digit equal to 1 means that a single line will be printed for each Aug-
mented Lagrangian (outer) iteration. The less significant digit equal to 9 means that you
will get all possible details of the iterations of the subproblems’ solver (inner iterations)
(see Section 12.2). In order to check the coded derivatives against finite difference approx-
imations, set the logical parameter checkder equal to true.

In the particular case of the instances mentioned in the paragraph above, the solver
of the Augmented Lagrangian subproblems stops because of lack of progress in most of
the subproblems. The meaning of lack of progress (for the subproblems’ solver) embed-
ded in Algencan is related to the progress in the objective function value, the norm of
its projected gradient, and the size of the step (difference between consecutive iterates).
If those quantities appear to be stuck for a certain number of consecutive iterations, the
lack of progress is characterized and the subproblems’ solver stops. However, the con-
stants associated with determining that some of those values are “stuck” and the amount
of consecutive iterations with “no progress” that must occur in order to characterize the
lack of progress is arbitrary. Modifying those constants to determine the lack of progress
in advance greatly improves the performance of Algencan in those instances. Unfortu-
nately, in some other situations, a premature stop by lack of progress in the subproblems
may impair the overall performance of Algencan.

13.3.4 Early acceleration

The figures in Table 13.2 do not point to a clear advantage of one of the models over
the other. (Note that comparing the two models is completely outside the scope of these
experiments.) However, the performance of Algencan for solving the control problem
is clearly model dependent. When solving instances of model (13.14), solutions are al-
ways found in the first acceleration process. (The same does not happen with instances of
model (13.13).) Moreover, in those cases, most of the time is spent in the Augmented La-
grangian iterations that precede the acceleration process. The question arises of whether
to launch the acceleration process at the very beginning. Note that (refer to Section 10.2.4)
setting the threshold parameters efacc =

-
epsfeas and eoacc =

-
epsopt (as we

did in these numerical experiments) has no practical effect, since it reduces to the already
default choice of Algencan, which is to start launching the acceleration process after hav-

13.3. Optimal control 181

ing achieved half the required feasibility and optimality tolerances. In the following exper-
iment, we show the behavior of Algencan under a different choice: launch the acceleration
process from the beginning, i.e., starting at the given initial point and even previously to
the first Augmented Lagrangian iteration. As described in Section 10.2.4, this run of Al-
gencan can be obtained by setting parameters efacc and eoacc with large values like
efacc = eoacc = 1020. Table 13.3 shows the results.

Table 13.3. Computational effort measures of the application of Algencan, with early launch-
ing of the acceleration process, to large-scale instances of the control problem model (13.14).

N nwtkktit fcnt gcnt hcnt ccnt jcnt hccnt Time f (x∗)
10 8 10 11 8 10 11 7 0.00 4.6139D+00
100 10 12 13 10 12 13 9 0.02 5.4477D+00

1,000 10 12 13 10 12 13 9 0.12 5.5349D+00
2,000 10 12 13 10 12 13 9 0.23 5.5397D+00
3,000 9 11 12 9 11 12 8 0.31 5.5413D+00
10,000 9 11 12 9 11 12 8 1.03 5.5436D+00
100,000 8 10 11 8 10 11 7 9.00 5.5445D+00

1,000,000 7 9 10 7 9 10 6 88.26 5.5447D+00

Neither outer nor inner iterations of Algencan are done to solve the set of problems
considered in Table 13.3. Therefore, in the table we show nwtkktit, the number of iter-
ations of the Newton method applied to the KKT system of the problem. The largest
problem in Table 13.2 is the one with N = 3,000. (N is the number of (sub)intervals in
the discretization of the optimal control problem, the number of variables is n = 4N ,
and the number of constraints is m = 3N .) Figures in Tables 13.2 and 13.3 show that this
problem is solved between three and four orders of magnitude faster with this setting of
Algencan parameters than with the previous setting. Moreover, Table 13.3 shows addi-
tional instances with N ∈ {104,105,106} from which it is very clear that the required CPU
time grows linearly with respect to N . Once again, Algencan satisfied the required pre-
cision in all the instances and the obtained values of the objective function coincide with
those reported in Table 13.2. Figure 13.5 illustrates the solution to the optimal control
problem (found when solving the instance with N = 1,000 of model (13.14)).

x(t)

y(t)

u(t)

0 0.2 0.4 0.6 0.8 1

−2

0

2

4

Time

St
at

e
an

d
co

nt
ro

lv
ar

ia
bl

es

Figure 13.5. Solution to the optimal control problem.

182 Chapter 13. Practical Examples

13.4 Grid generation
Grid generation (also called mesh generation) is the art of generating a polygonal or poly-
hedral mesh that approximates a geometric domain. Typical uses are the representation
of a 3D surface on a computer screen or the generation of meshes for finite element com-
putations in computational fluid dynamics.

A curvilinear grid or structured grid is a grid with the same combinatorial structure
as a regular grid, in which the cells are quadrilaterals or cuboids rather than rectangles or
rectangular parallelepipeds.

Optimal, or well-behaved, meshes are crucial for the solution of partial differential
equations in two-dimensional complex regions. A close correlation between the mesh
quality and the errors obtained when solving elliptic equations using different meshes has
been observed in [215].

Variational methods to generate good conforming meshes on curved regions have
shown some difficulties for complicated regions, producing folded, crimped, or rough
meshes [215]. Castillo [76] showed that optimizing a combination of several criteria pro-
duces better-behaved meshes than optimizing any single criterion alone. In [215], two
criteria were employed for the generation of conforming logically rectangular meshes in
two-dimensional (2D) curved regions: Minimization of the sum of the squares of all the
cell sides and minimization of the sum of squares of all the cell areas.

For a 2D domain, for which a suitable bijection with a rectangle exists, a discrete set
of points in its boundary, in the form P (i , j) with j ∈ {1, nord} and i = 1, . . . , nabs and
i ∈ {1, nabs} and j = 1, . . . , nord, is given. The 2D domain is, in fact, defined by this finite
set of points in its boundary. The interior points (P (i , j), i = 2, . . . , nabs−1, j = 2, nord−1)
are the unknowns of the problem. See Figure 13.6. The region in Figure 13.6 corresponds
to the example in [76, p. 466]. For completeness and reproducibility of the numerical
experiments that will be presented below, it is necessary to know that the boundary of
the region is given by a unitary-radius half-circle and a half-ellipse with semiaxes a = 6
and b = 3.

Figure 13.6. Points in the boundary are given and define the 2D domain. The interior points
are the unknowns. The depicted configuration of the interior points is the natural choice of the initial
guess for an optimization process.

The deformed rectangles (cells) have vertices P (i , j), P (i + 1, j), P (i + 1, j + 1), and
P (i , j +1) for i = 1, . . . , nabs−1 and j = 1, . . . , nord−1. As is well known, if the Cartesian
coordinates of P (i , j) are pi j = (p x

i j , py
i j)

T ∈ !2, the area ai j enclosed by a cell whose
vertices in counterclockwise order are P (i , j), P (i + 1, j), P (i + 1, j + 1), and P (i , j + 1)

13.4. Grid generation 183

is given by

ai j = (p x
i j py

i+1, j − p x
i+1, j py

i j) + (p x
i+1, j py

i+1, j+1 − p x
i+1, j+1 py

i+1, j)
+ (p x

i+1, j+1 py
i , j+1 − p x

i , j+1 py
i+1, j+1) + (p x

i , j+1 py
i , j − p x

i , j py
i , j+1).

Let x = (pT
11, . . . , pT

1,nor d
, pT

21, . . . , pT
2,nord

, . . . pT
nabs ,1

, . . . , pT
nabs ,nord

)T ∈!n with n = 2nabsnord

and define

fS (x) =
1
cS


1

2

nabs−1∑
i=1

nord∑
j=1
‖pi j − pi+1, j ‖2+

1
2

nord−1∑
j=1

nabs∑
i=1
‖pi j − pi , j+1‖2


 (13.15)

and

fA(x) =
1
cA


1

2

nabs−1∑
i=1

nord−1∑
j=1

a2
i j


 , (13.16)

where cS = (nabs− 1)nord+(nord− 1)nabs and cA= (nabs− 1)(nord− 1).
The unconstrained optimization problem defined in [215] is given by

Minimize γ fS (x)+ (1− γ) fA(x), (13.17)

where γ ∈ [0,1] is a given constant. It corresponds to a convex combination of the average
of the squared sides of the cells and the average of the squared areas of the cells. Note that
the points in the boundary are fixed and (although included in x) are not variables of
the optimization problem. Hence, cell sides that correspond to a pair of points in the
boundary are fixed too and they were included in the objective function for simplicity
only. Figures 13.7(a)–13.7(c) show the solutions to problem (13.17) with γ = 0, γ = 1,
and γ = 0.1, respectively, for the elliptical region depicted in Figure 13.6 with a 25× 25
grid (i.e., nabs = nord = 25). This problem has 23×23×2= 1,058 variables corresponding
to the abscissae and ordinates of the grid inner points.

(c)(b)(a)

Figure 13.7. (a) Solution to minimizing the average of the squared areas fA. (b) Solution to
minimizing the average of the squared sides fS . (c) Solution to minimizing a convex combination with
weight γ = 0.1 for the average of the squared sizes.

The generated mesh depicted in Figure 13.7(c) illustrates, as observed in [76], that
optimizing a combination of the two considered criteria (with the arbitrarily chosen pa-

184 Chapter 13. Practical Examples

rameter γ = 0.1) produces a better behaved mesh than those produced by the optimization
of any of the two criteria individually. Observe that meshes in Figures 13.7(a) and 13.7(b)
have mesh points outside the 2D region, while the mesh depicted in Figure 13.7(c) does
not.

Problem (13.17) is unconstrained and a few words related to its resolution with
Algencan are in order. When tackled by Algencan, any unconstrained or bound-con-
strained problem is solved by Algencan’s subproblems’ solver Gencan, outside the
Augmented Lagrangians framework. Among the available methods for dealing with the
subproblems (see Section 12.8), by reasons that will be clear soon, having coded first-
and second-order derivatives, we opted for the Newton line-search strategy (keyword
NEWTON-LINE-SEARCH-INNER-SOLVER). Other than the choice of the method used
to solve the (sub)problem, the two relevant parameters of Algencan in the case of uncon-
strained or bound-constrained problems are the optimality tolerance εopt and the max-
imum number of (inner) iterations. The optimality tolerance corresponds, in the case
of unconstrained and bound-constrained problems, to the required tolerance for the sup-
norm of the gradient or the projected gradient of the objective function, respectively. In
this experiment, it was arbitrarily set to 10−8, i.e., epsopt = 1.0d-08. The maximum
allowed number of inner iterations is an implicit or additional parameter whose value can
be modified with the keyword INNER-ITERATIONS-LIMIT. Its default value, which was
not modified in this experiment, is a huge number when the problem is unconstrained or
bound constrained.

Regarding the output on the screen, by default Algencan shows a single line of in-
formation per Augmented Lagrangian (outer) iteration (see Section 12.2). This means
that in the case of unconstrained and bound-constrained problems, in which there are no
outer iterations, nothing is shown on the screen during the optimization process. In order
to show a single line of information at each iteration of the subproblem’s solver (i.e., at
each inner iteration), the iterations’ output detail should be set to the value 11 using the
keyword ITERATIONS-OUTPUT-DETAIL followed by the integer value 11. The relevant
information here is, in fact, the less significant digit. Therefore, any value “ending” with
1 would have the same effect. Moreover, as already explained in Section 12.2, the larger
the value of the digit, the larger the amount of information in the output. (The less signif-
icant digit corresponds to the inner iterations and the tens digit corresponds to the outer
iterations.)

With the settings described in the paragraph above, Algencan found the solution to
minimizing fA(·), depicted in Figure 13.7(a), in 46 inner iterations and using 198 objec-
tive function evaluations, 68 gradient evaluations, 46 Hessian evaluations, and 1.01 sec-
onds of CPU time. Naming the solution found as x∗A, we have that fS (x∗A)≈ 1.87× 10−1

and fA(x∗A) ≈ 4.25× 10−3. The solution to minimizing fS (·), depicted in Figure 13.7(b),
was found by Algencan using 2 inner iterations, 3 objective function evaluations, 4 gra-
dient evaluations, 2 Hessian evaluations, and 0.02 seconds of CPU time. Naming the
solution found as x∗S , we have that fS (x∗S) ≈ 2.97× 10−2 and fA(x∗S) ≈ 1.90× 10−2. The
solution to the minimization of the convex combination of both objectives (depicted in
Figure 13.7(c)) was found using 4 iterations of Gencan, 5 objective function evaluations, 6
gradient evaluations, 4 Hessian evaluations, and 0.04 seconds of CPU time. Naming the
solution as x∗γ , we have that fS (x∗γ)≈ 4.68×10−2 and fA(x∗γ)≈ 4.91×10−3. The most rele-
vant information of the numerical results mentioned in this paragraph is that minimizing
fA(·) alone appears to be much more time-consuming than minimizing fS (·) or a combi-
nation of both. It seems as if fS (·) would play a regularization role in the optimization
process.

13.4. Grid generation 185

13.4.1 Constrained formulations

Consider the problem

Minimize ξ1 fA(x)+ ξ2 fS (x)
subject to ξ3 fA(x)+ ξ4 fS (x)≤ ξ5,

!≤ x ≤ u,
(13.18)

where ξ1, . . . ,ξ5 ≥ 0 are given constants. Bound constraints serve only the purpose of
fixing the boundary points. This means that for all t , if xt is a component (abscissa or
ordinate) of an interior point, we have !t =−∞ and ut =+∞, and if xt is a component
of a boundary point, then we have !t = ut . These kinds of fixed variables are not variables
at all and they are presented only to simplify the definition of the problem. As mentioned
in Section 12.6, by default Algencan eliminates those variables from the problem to be
solved, in a preprocessing stage.

If ξ1 + ξ2 = 1, for adequate values of ξ3, ξ4, and ξ5 (such as ξ3 = ξ4 = ξ5 = 0), prob-
lem (13.18) coincides with problem (13.17), which deals with a weighted sum of the objec-
tive functions of the biobjective problem of minimizing fA(x) and fS (x). If we consider
the ε-constraint method for multiobjective optimization [183, 141], the problems to be
handled are of the form

Minimize fA(x) subject to fS (x)≤ δS (13.19)

and
Minimize fS (x) subject to fA(x)≤ δA, (13.20)

where δS and δA are given constants. Both problems are also particular cases of prob-
lem (13.18) for suitable (trivial) choices of constants ξ1, . . . ,ξ5.

The ε-constraint method consists of (i) finding a solution x∗S to minimizing fS (x)
(which corresponds to solving problem (13.18) with ξ2 = 1 and ξ1 = ξ3 = ξ4 = ξ5 = 0),
and (ii) solving problem (13.19) with δS = (1+∆S) fS (x∗S) varying ∆S ≥ 0 (which cor-
responds to solving problem (13.18) with ξ1 = ξ4 = 1, ξ2 = ξ3 = 0, and ξ5 = δS). The
procedure considering problem (13.20) is analogous.

13.4.2 Coding the problem

Generating a grid by any of the methods discussed in the previous sections consists of
solving one or more instances of problems (13.17), (13.19), and (13.20). All of these are
particular cases of problem (13.18). Therefore, it appears that problem (13.18) might be
a valuable tool for the generation of meshes. In the rest of this section, we show how to
code and solve problem (13.18) using Algencan.

The objective function and the constraint of problem (13.18) differ only in the value
of the constants and share all nontrivial expressions. Therefore, it is very natural to code
them together, opting by coding subroutines fcsub, gjacsub, and hlsub to compute
(a) the objective function and the constraint, (b) the gradient of the objective function
and the gradient (Jacobian) of the constraint, and (c) the Hessian of the Lagrangian, re-
spectively. See Section 10.2.10.

Problem (13.18) has n = nabsnord variables (although nabsnord− (nabs−1)(nord−1) are
fixed and will be eliminated by Algencan) and a single inequality constraint. The objective
function f (x) is given by

f (x) = ξ1 fA(x)+ ξ2 fS (x)

186 Chapter 13. Practical Examples

and the inequality constraint c1(x)≤ 0 is given by

c1(x) = ξ3 fA(x)+ ξ4 fS (x)− ξ5.

The objective function and the (inequality) constraint are easy to code and do not
deserve any special comment. The only relevant decision is that, to avoid thinking in
special cases, all nabsnord points in the grid are considered as variables. Then, points in
the boundary are fixed (and thus eliminated from the optimization process by Algencan)
by appropriately setting their bounds. Variables corresponding to inner points have no
bound constraints. The gradients of the objective function and of the constraint are dense
n-dimensional arrays. The density of the single-row Jacobian of the constraint will be
addressed when dealing with the value of Algencan’s parameter hnnzmax.

Subroutine hlsub must compute the lower triangle of the sparse matrix

s f∇2 f (x)+ sc1
λ1∇2c1(x), (13.21)

where ∇2 f (x) is the Hessian matrix of the objective function f (x) and ∇2c1(x) is the
Hessian matrix of the constraint c1(x). Parameters s f , sc1

, and λ1 are input parameters of
subroutine hlsub and they correspond to the scaling factor of the objective function, the
scaling factor of the constraint, and the Lagrange multiplier of the constraint, respectively
(see Section 10.2.10). Since

∇2 f (x) = ξ1∇2 fA(x)+ ξ2∇2 fS (x)

and
∇2c1(x) = ξ3∇2 fA(x)+ ξ4∇2 fS (x),

we have that (13.21) coincides with
#

s f ξ1+ sc1
λ1ξ3

$
∇2 fA(x)+

#
s f ξ2+ sc1

λ1ξ4

$
∇2 fS (x). (13.22)

Thus, the simpler way to compute the desired Hessian matrix of the scaled Lagrangian
is first to compute ∇2 fA(x) and ∇2 fS (x) and then to multiply them by the constants
in (13.22). The possibility of returning more than a single triplet for each matrix element
(see Section 10.2.10) releases the user from the cumbersome task of efficiently computing
the sum of both matrices.

Needless to say, although first- and second-order derivatives of the problem at hand are
simple, coding derivatives (in particular coding sparse Hessians) is prone to error. There-
fore, we admit that we made extensive use of the checking derivatives feature of Algencan,
setting checkder = .true. until obtaining, after several rounds, correct codes for
the derivatives.

13.4.3 Setting Algencan’s parameters

By default, without a second thought, we set epsfeas = epsopt = 10−8, efstain
=
-
epsfeas, eostain = epsfeas1.5, efacc =

-
epsfeas, eoacc =

-
epsopt,

outputfnm = ’’, and specfnm = ’’. We also set, for a reason that will be eluci-
dated below and is related to the value of parameter hnnzmax,

nvparam = 1
vparam(1) = ’NEWTON-LINE-SEARCH-INNER-SOLVER’

The value of Algencan’s input parameter jcnnzmax, which must be an upper bound on
the number of triplets used to represent the Jacobian of the constraints coded by the user,
is set to n, since the gradient of the constraint is dense, i.e., we set jcnnzmax = n.

13.4. Grid generation 187

As mentioned in Section 10.2.11, the value of parameter hnnzmax depends on which
subroutines are coded to represent the problem and on which method is used to solve the
(Augmented Lagrangian) subproblems. On the one hand, hnnzmax must be an upper
bound on the number of triplets needed to store the lower triangle of the Hessian of the
scaled Lagrangian computed within subroutine hlsub, since this is the way we chose to
code the second derivatives of the problem. On the other hand, in addition, extra space
may be required to store some information related to the Jacobian c ′(x), which, together
with the Hessian of the Lagrangian, is needed to obtain the Hessian of the Augmented
Lagrangian (see (12.3)). If the Euclidean trust-region approach is used to solve the sub-
problems, then there must be space to store the lower triangle of the (symmetric) matrix
c ′(x)T c ′(x), which in the present case is a dense n×n matrix. If the Newton line-search or
any other strategy is used to solve the subproblems, no extra space needs to be considered
when setting the parameter hnnzmax.

The choice of the approach used by Algencan to solve the subproblems is made, by de-
fault, by a simple and arbitrary rule based on the number of variables n (see Section 12.8).
The Euclidean trust-region approach is used for small problems (the paragraph above ex-
plains this choice, at least partially) and the Newton (or truncated Newton) line-search
approach is used for large problems. This is why, since we are thinking in large-scale in-
stances of the grid generation problem, for which an O(n2)memory requirement would
not be affordable, we used the Newton line-search approach. Inhibiting the Algencan de-
fault choice and fixing the subproblems’ solver as the Newton line-search strategy, we are
able to set parameter hnnzmax as an upper bound on the number of triplets needed to
store the lower triangle of the Hessian of the Lagrangian only. Therefore, we set
hnnzmaxS = 6 * (2 * nabs * nord - nabs - nord)
hnnzmaxA = 36 * (nabs - 1) * (nord - 1)
hnnzmax = hnnzmaxS + hnnzmaxA

where nabs and nord correspond to nabs and nord, respectively, and hnnzmaxS and
hnnzmaxA correspond to the number of triplets used to store (the lower triangle of)
the Hessian matrices of fS and fA, respectively. The given values for hnnzmaxS and
hnnzmaxA may not be trivial to see unless you code the Hessians by yourself or at least
check the particular implementation of the Hessian of the Lagrangian considered in sub-
routine hlsub. Coded subroutines are part of the Algencan distribution and can be
found as filechap13-grid-ellip.f90 (within foldersources/examples/f90/).

13.4.4 Solving a sequence of ε-constrained problems

As an example of the many possibilities of considering problem (13.18) to generate grids,
based on the results reported in [76], we considered the problem of minimizing fS (x) sub-
ject to optimality or “near optimality” of fA(x), i.e., problem (13.20) (or problem (13.18)
with ξ1 = ξ4 = 0, ξ2 = ξ3 = 1, and ξ5 = δA) with nabs = nord = 25, δA = (1+∆A) fS (x∗A),
and∆A ∈ {0.0,0.1,0.2, . . . , 0.9}, where x∗A is the solution to minimize fA(x) (with no con-
straints) found at the beginning of the present section and depicted in Figure 13.7(a). In
the numerical experiments, we considered fA(x∗A) = 4.25251962159732197× 10−3.

Figure 13.8 shows the solution to minimize fS (x) subject to fA(x)≤ fA(x∗A), i.e., with
∆A= 0. Of course, the constraint is active at the solution. The value of fS at the solution
is approximately 6.32× 10−2 and, although it has some irregularities, the generated mesh
appears to be similar to the one in Figure 13.7(c). Figure 13.9 shows the solutions to
minimize fS (x) subject to fA(x)≤ (1+∆A) fA(x∗A) for increasing values of∆A. As expected,
as ∆A increases, the solutions increasingly resemble the solution to minimize fS (x) with
no constraints, depicted in Figure 13.7(b). Note that, relaxing the optimality of fA a little
bit, the irregularities depicted on Figure 13.8 are avoided.

188 Chapter 13. Practical Examples

Figure 13.8. Solution to the constrained problem of minimizing fS (x) subject to fA(x) ≤
fA(x∗A), where x∗A is the optimal solution of minimizing fA(x) without constraints. The zoom shows an
“irregular” region of the mesh in detail.

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

Figure 13.9. Solutions to the constrained problem of minimizing fS (x) subject to fA(x) ≤
(1+∆A) fA(x∗A), where x∗A is the optimal solution of minimizing fA(x) without constraints. Solutions
depicted in (a)–(i) correspond to ∆A = 0.1,0.2, . . . , 0.9, respectively.

13.4. Grid generation 189

Similar results can also be obtained for an 11× 11 mesh in the hard horn-shaped 2D
region depicted in Figure 13.10, which is known to be more difficult than the previous
one, since it has no equal area solution [76]. For the sake of reproducibility, points in the
border of the 2D domain are given by (a) a segment from (1,1)T to (1,2)T (left); (b) the arc
from (4,0)T to (4,4)T of a circle centered at (2.5,2)T with radius 2.5 (right); (c) a parabola
of the form y = ax2 + b x + c with a = −5/21, b = −3.6a, and c = 1+ 2.6a (bottom);
and (d) a parabola with a = 10/21, b =−3.6a, and c = 1+2.6a (top). Figure 13.11 shows
the solutions to minimize fS (x) subject to fA(x) ≤ (1+∆A) fA(x∗A) for increasing values
of ∆A, where x∗A is the optimal solution to minimizing fA(x) with no constraints. In the
numerical experiments, we considered fA(x∗A) = 1.00260900832775720× 10−2. Analyz-
ing the quality of the generated meshes for this particular problem and determining the
most adequate value of ∆A are outside the scope of this work. Numerical experiments
appear to show that problem (13.18) is a useful tool for developing meshes. Source codes
related to the horn-shaped 2D region problem depicted in Figure 13.10 are part of the Al-
gencan distribution and can be found as file chap13-grid-horn.f90 (within folder
sources/examples/f90/).

(c)(b)(a)

Figure 13.10. (a) Given boundary points and “natural” initial guess. (b) Solution to mini-
mizing the sum of the squared areas fA. (c) Solution to minimizing the sum of the squared sides fS .

13.4.5 Solving a larger instance

Both problems considered in the previous section were taken from [76]. Merely increas-
ing the number of points in the mesh (i.e., increasing nabs and/or nord) is not enough to
generate large instances of the optimization problem. This is because, in either of the
two problems, if the area of the 2D domain remains fixed while the number of points
in the mesh increases, the considered initial guess satisfies the stopping criteria with the
prescribed tolerance εopt = 10−8. This serves as an alert to the fact that the value 10−8 for
the optimality tolerance εopt is an arbitrary choice for a problem-dependent parameter.

In this section, we consider a 100× 100 mesh in a scaled version of the horn-shaped
region in which the boundary is given by (a) a segment from (10,10)T to (10,20)T (left);
(b) the arc from (40,0)T to (40,40)T of a circle centered at (25,20)T with radius 25 (right);
(c) a parabola of the form y = ax2+ b x + c with a =−5/210, b =−36a, and c =−160a
(bottom); and (d) a parabola with a = 1/21, b =−36a, and c = 40−160a (top). The source
files are available in the Algencan distribution as filechap13-grid-horn-large.f90
within folder sources/examples/f90/.

Based on the experiments of the previous sections, we aim at first to solve the un-
constrained problem of minimizing fA(x) with no constraints to obtain x∗A and then to
minimize fS (x) subject to fA(x)≤ (1+ 0.1) fA(x∗A).

190 Chapter 13. Practical Examples

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

Figure 13.11. Solutions to the constrained problem of minimizing fS (x) subject to fA(x) ≤
(1+∆A) fA(x∗A), where x∗A is the optimal solution of minimizing fA(x) without constraints. Solutions
depicted in (a)–(i) correspond to ∆A = 0.1,0.2, . . . , 0.9, respectively.

The problem of minimizing fA(x) is an unconstrained problem with n = 19,208 vari-
ables. When tackled by Algencan, it is solved by the bound constraints solver Gencan.
Setting εopt = 10−8, Gencan took 565 iterations, 3,490 functional evaluations, 841 gra-
dient evaluations, 565 Hessian evaluations, and 1,500.21 seconds of CPU time. Note
that, in the case of unconstrained and bound-constrained problems, the number of (in-
ner) iterations and the number of Hessian evaluations coincide if the inner-to-the-face
strategy is the Newton’s method with line search. At the solution x∗A found, we have
fA(x∗A)≈ 1.04403487484171029× 10−2. Note that it is not very clear whether such preci-
sion would be needed in order to be used in the second step of the process of generating
the mesh. A rough approximation x̄A, with fA(x̄A)≈ 1.08×10−2, would have been found
in less than half the time (177 inner iterations) setting εopt = 10−4.

In the second stage of the mesh generation problem, we solved the problem of mini-
mizing fS (x) subject to fA(x)≤ (1+0.1) fA(x∗A)with fA(x∗A) = 1.04403487484171029×10−2.

13.5. Review and summary 191

Algencan solved the problem using 14 outer iterations, 75 inner iterations, 293 calls to sub-
routine fcsub, 167 calls to subroutine gjacsub, 105 calls to subroutine hlpsub, and
93.19 seconds of CPU time. In the case of this constrained problem, although the inner
solver Gencan is using the Newton’s method with line searches, the number of Hessians
evaluations is larger than the number of inner iterations because some Hessians evalu-
ations are used in unsuccessful (therefore, discarded) trials of the acceleration process.
At the solution x∗γ found, we have fS (x∗γ) ≈ 8.40936730531235827× 10−2 and fA(x∗γ) ≈
1.14843878681980868×10−2. Figures 13.12 and 13.13 illustrate the solution found. Note
that, while the first-stage unconstrained problem appears to be a bit time-consuming (a
drawback that can be circumvented by requiring a looser stopping-criterion tolerance),
the constrained problem of the second stage is solved by Algencan relatively fast.

Figure 13.12. Solution to the large horn-shaped 2D region mesh generation problem.

13.5 Review and summary
In this chapter, we tackled practical problems using the Augmented Lagrangian software
Algencan. Models were fully described, were the main code and the user-provided sub-

192 Chapter 13. Practical Examples

Figure 13.13. Zoom of the shaded part of Figure 13.12.

routines needed to solve each problem. Users were oriented toward clever choice of algo-
rithmic parameters. Problems were used as examples, while the main focus was in the use
of Algencan.

13.6 Further reading
The practical application of computing initial points for molecular dynamics simulations
is fully described in [186, 192]. The Packmol package implements these ideas and is avail-
able at http://www.ime.unicamp.br/~martinez/packmol/.

The “sparse” implementation of the nonoverlapping objective function is described in
detail in [65]. The problem of map projections appears to be a very controversial subject.
In this chapter, we tackled the problem of drawing proportional maps from the optimiza-
tion point of view, ignoring every possible subject that concerns cartographers, with the
single purpose of illustrating the use of Algencan. A complete source of information on
many approaches to this subject appears to be the book [240]. The main references to the
control and mesh generation problems were given in the text.

13.7 Problems
13.1 The possibilities for problems in this chapter are enormous. Check the available

codes related to the examples described in the present chapter. Reproduce the pre-
sented results. Modify the Algencan parameters, rerun, and compare the results.

13.2 Create your own examples. For each problem, tune the Algencan parameters to
obtain something that you may consider a good approximation to a solution with
a “satisfactory” performance of Algencan.

13.3 The unconstrained collection of Moré, Garbow, and Hillstrom (MGH) [204] de-
scribes 35 test functions f : !n → !m . Use Algencan to solve the 35 feasibility

