
Chapter 8

Solving Unconstrained
Subproblems

At each iteration of the Augmented Lagrangian method, we need to minimize the func-
tion

Lρk
(x, λ̄k , µ̄k)

with respect to x on a generally simple set that we call Ω. In this chapter, we consider
the less complicated case, in which Ω= !n . This means that, at each outer iteration, we
need to solve an unconstrained minimization problem. For simplicity, we denote ρ= ρk ,
λ= λ̄k , µ= µ̄k , and

F (x) = Lρ(x,λ,µ) (8.1)

throughout this chapter.
In principle, we will assume that F has continuous first derivatives for all x ∈!n with-

out mentioning second derivatives at all. This omission is convenient at the beginning
since the Augmented Lagrangian function has second derivative discontinuities when the
original optimization problem has inequality constraints g (x)≤ 0, independently of the
smoothness of g (x).

8.1 General algorithm
We will define a general algorithm for unconstrained minimization based on line searches.
Many effective algorithms for unconstrained minimization have the general form of the
algorithm described here. For simplicity (with some abuse of notation) we denote by {xk}
the sequence of iterates generated by this and other subproblems’ solvers. They must not
be confused with the iterates {xk} of the main Augmented Lagrangian algorithm.

Algorithm 8.1.
Let θ ∈ (0,1), α ∈ (0,1/2), M̄ ≥ 2, and β> 0 be algorithmic parameters. Let x0 ∈!n be
the initial approximation. Given xk ∈!n , the steps for computing xk+1 are the following:

Step 1. If ‖∇F (xk)‖= 0, finish the execution of the algorithm.

Step 2. Compute d k ∈!n such that

∇F (xk)T d k ≤−θ‖d k‖2‖∇F (xk)‖2 and ‖d k‖ ≥β‖∇F (xk)‖. (8.2)

Step 3. Compute tk > 0 and xk+1 ∈!n such that

F (xk+1)≤ F (xk + tk d k),

F (xk + tk d k)≤ F (xk)+αtk∇F (xk)T d k , (8.3)

73

E.G. Birgin, J.M. Martínez - Practical Augmented Lagrangian Methods, 2014

74 Chapter 8. Solving Unconstrained Subproblems

and
!

tk ≥ 1
"

or
!

F (xk + t̄k d k)> F (xk)+α t̄k∇F (xk)T d k for some t̄k ∈ [tk , M̄ tk]
"
.

Let us explain the reasons that support each step of this algorithm:

1. At Step 1, we establish that, if the gradient at xk is null, it is not worthwhile to
continue the execution of the algorithm. Thus, we accept points where the gradient
vanishes and we do not intend to go further in this case. This is not because we are
happy with stationary points, but because we do not know how to proceed from
that kind of point without using potentially expensive second-order information.

2. If the gradient does not vanish at xk , we seek a search direction d k for which two
conditions are required. The first is that d k should be a first-order descent direction.
This means that the directional derivative ∇F (xk)T d k should be negative. More
precisely, the angle between the direction and −∇F (xk) should be smaller than or
equal to a fixed angle smaller than π/2, whose cosine is defined by the algorithmic
parameter θ. If θ = 1, one forces the direction to be a multiple of the negative
gradient. In general, we are far less exacting, and θ = 10−6 is a traditionally recom-
mended tolerance. The second condition is that the size of d k should be at least
a fixed multiple of ‖∇F (xk)‖. The constant of proportionality is called β. The
reason for this requirement is that we want to accept small directions only if the
gradient is small.

3. At Step 3, we require that the final point of our line search, xk + tk d k , satisfy the
Armijo condition (8.3). If we define ϕ(t) = F (xk + t d k), the Armijo condition is
equivalent to

ϕ(tk)≤ ϕ(0)+αtkϕ
′(0).

In other words, with this condition, we require that ϕ(tk) stay below the line that
passes through (0,ϕ(0)) whose slope is αϕ′(0). In this sense, F (xk + tk d k) should
be sufficiently smaller than F (xk). For this reason, (8.3) is frequently known as a
sufficient descent condition.
However, satisfying (8.3) is not enough. We need to guarantee that we are not taking
artificially small steps. (A step should be small only if it cannot be much larger.)
Consequently, we impose that either tk ≥ 1 (a constant different from 1 having the
same effect) or a frustrated step t̄k exists, not much bigger than tk , for which the
Armijo condition did not hold.

4. Finally, we leave the door open to take a point xk+1 even better than xk + tk d k .
For this reason, we impose for xk+1 the only requirement that its functional value
should not be greater than F (xk + tk d k). Obviously, it is admissible to choose
xk+1 = xk + tk d k .

Step 3 of Algorithm 8.1 may be implemented in many different ways. The most ele-
mentary strategy consists of choosing tk as the first element of the sequence {1,1/2,1/4, . . .}
satisfying the Armijo condition. It is easy to see that, in this way, we obtain a step as
required in the algorithm with M̄ = 2. The direction d k also admits many different defi-
nitions. The most obvious one is to choose d k = −∇F (xk) (which satisfies (8.2) for any
choice of θ ∈ (0,1) and 0<β≤ 1). With these choices, we obtain a version of the steepest
descent method, one of the most popular procedures for unconstrained minimization.

8.2. Magic steps and nonmonotone strategies 75

Algorithm 8.1 requires four algorithmic parameters: θ, α, M̄ , and β. The first three
are dimensionless, that is, their values do not depend on the unities in which the problem
magnitudes are measured. For example, θ is the cosine of an angle and α is a pure fraction
whose traditional value is 10−4. It makes sense to specify recommended values for dimen-
sionless parameters, since the effect of them should not be affected by the scaling of the
problem.

The value of M̄ is related to the strategy used in the line search to backtrack, when
sufficient descent is not verified for some trial step t̄ . When this happens, we wish to
choose a new trial t in the interval (0, t̄). However, t should not be excessively close to 0,
because, in that case, the evaluation of F at xk + t d k would add too little information
to the knowledge of F . Therefore, line-search methods usually employ safeguards that
impose t ≥ (1/M̄) t̄ with 1/M̄ ∈ (0,1). Consequently, the third condition of Step 3 is
satisfied.

Usual algorithms for computing tk at Step 3 of Algorithm 8.1 obey the following
steps:

Step LS1. Start setting ttrial← 1.

Step LS2. If ttrial satisfies the Armijo condition, find tnew ∈ (ttrial, M̄ ttrial]. If tnew also
satisfies the Armijo condition, set ttrial ← tnew and repeat Step LS2. Otherwise,
define tk = ttrial and finish the line search.

Step LS3. Find tnew ∈ [ttrial/M̄ , ttrial/2] and set ttrial ← tnew. If ttrial satisfies the Armijo
condition, define tk = ttrial and finish the line search. Otherwise, repeat Step LS3.

The value of tnew at Step LS3 may be computed as the safeguarded minimizer of a univari-
ate quadratic or cubic interpolating function. At Step LS2, the computation of tnew may
contemplate extrapolating techniques.

The choice of the parameter β is more tricky because, unlike the others, this parame-
ter is a dimensional parameter and compares magnitudes of different types. For example,
suppose that, instead of minimizing the function F (x), we need to minimize the func-
tion F̄ (x) = 10F (x). Both problems are completely equivalent, and therefore we would
like to observe the same behavior of the algorithm in both cases. However, the condi-
tions ‖d k‖ ≥ β‖∇F (xk)‖ and ‖d k‖ ≥ β‖∇F̄ (xk)‖ are not equivalent. In other words,
we should use different values of β in those problems. A more careful analysis would
reveal that β should be proportional to the norm of the inverse of the Hessian at xk .
Fortunately, the usual procedures used to compute d k frequently satisfy the condition
‖d k‖ ≥ β‖∇F (xk)‖ automatically for an unknown value of β. For this reason, we gen-
erally assign a small value to this parameter, trying to accept d k as frequently as possible.

8.2 Magic steps and nonmonotone strategies
At Step 3 of Algorithm 8.1, we require that

F (xk + tk d k)≤ F (xk)+αtk∇F (xk)T d k (8.4)

and
F (xk+1)≤ F (xk + tk d k). (8.5)

Clearly, the choice xk+1 = xk + tk d k already satisfies (8.5), but several reasons motivate
one to try something better. On the one hand, after computing xk + tk d k , it could be
interesting to test whether some extrapolation of type xk + t d k with t > tk could cause

76 Chapter 8. Solving Unconstrained Subproblems

some improvement. Moreover, improvements could come from persevering not only
along the computed direction but also along other directions motivated by the specific
problem we are trying to solve. Heuristic choices of xk+1 satisfying (8.5) are generally
called “magic steps” (Conn, Gould, and Toint [83]) and could be crucial for the good
practical behavior of the algorithm.

Magic steps may be computed by evoking nonmonotone strategies, watchdog tech-
niques [79], and the spacer step theorem of [181, p. 255]. Sometimes, a sequence of iter-
ates is deemed to converge to the solution of a problem (even very fast!), although without
satisfying a monotone decrease of the objective function. This is typical of Newton-like
methods for solving subproblems with extreme penalty parameters (and it is related to
the phenomenon called the Maratos effect in the optimization literature). In these cases,
it is sensible to tolerate some increase in the objective function during some iterations, be-
fore returning to rigorous line searches. These ideas may be formalized in the following
algorithm.

Algorithm 8.2. Nonmonotone pseudomagic procedure
Given integers M ≥ 0 and L≥ 0 (both around 10), in Algorithm 8.1, after the computa-
tion of xk and before the computation of d k , set y0 = xk , j ← 0,

Fmax =max{F (xk), . . . , F (xmax{k−M ,0})},
and execute Steps 1–5 below.
Step 1. If j < L, compute y j+1 and test whether

F (y j+1)≤ Fmax. (8.6)

If y j+1 was computed and (8.6) was satisfied, set j ← j + 1 and repeat Step 1.
Step 2. Let y ∈ {y0, . . . , y j } be such that

F (y) =min{F (y0), . . . , F (y j)}. (8.7)

If F (y) ≥ F (xk), discard y, finish the execution of the present algorithm, and return to
the computation of d k , satisfying (8.2), at Step 2 of Algorithm 8.1.
Step 4. Define d k = y − xk .
Step 5. If d k satisfies (8.2) and, in addition,

F (y)≤ F (xk)+α∇F (xk)T d k , (8.8)

define xk+1 = xk+d k = y and consider that the kth iteration of Algorithm 8.1 is finished.
Step 6. If d k does not satisfy (8.2) or does not fulfill (8.8), replace xk with y and proceed
to the computation of d k at Step 2 of Algorithm 8.1.

Observe that with the inclusion of the nonmonotone magic procedure, the uncon-
strained Algorithm 8.1 preserves its basic form. The procedure may be considered as
an auxiliary device for computing the search direction. If our heuristic for choosing the
magic points y j is good, it could be unnecessary to perform line searches. Note that,
after the execution of Algorithm 8.2, we may obtain the next iterate xk+1 or we may im-
prove (redefining it) the iterate xk . In the second case, we should formally “forget” the
existence of the previously computed xk , and we should consider that the new xk is a
result of further improvement in the sense of (8.5) at iteration k − 1. In the first case,
the magic procedure computed, perhaps by chance, a direction d k that satisfies the ba-
sic requirements of Algorithm 8.1. Apparently, there is not a big difference between the
possibilities, since in both cases we come up with a better point y. The difference is that,

8.3. Well-definiteness and global convergence 77

when (8.2) and (8.8) hold, we avoid the necessity of computing a new direction d k and
we open the possibility that all the iterates could be computed as magic steps. In other
words, in both cases the magic step was successful but the status given to the step at Step 5
is more relevant than the one given at Step 6. In any case, Algorithm 8.2 specifies aspects
of the implementation of Algorithm 8.1 but does not alter its basic structure.

8.3 Well-definiteness and global convergence
We are going to show first that Algorithm 8.1 is well defined. This means that if the
algorithm does not stop at xk , it is possible to obtain xk+1 in finite time. This is the main
theoretical and practical condition that an implementable algorithm must satisfy. Well-
defined algorithms that do not satisfy additional global convergence properties may be
effective in practice [90, 91, 193, 194] but the well-definiteness property is mandatory.

Theorem 8.1. Algorithm 8.1 is well defined and stops at xk if and only if ∇F (xk) = 0.

Proof. Assume that ∇F (xk))= 0. By the conditions imposed at Step 2 of the algorithm
and the differentiability of F ,

lim
t→0

F (xk + t d k)− F (xk)
t

=∇F (xk)T d k < 0.

Thus,

lim
t→0

F (xk + t d k)− F (xk)
t∇F (xk)T d k

= 1.

Since α< 1, for t small enough, we have that

F (xk + t d k)− F (xk)
t∇F (xk)T d k

≥ α.

Now, as ∇F (xk)T d k < 0, we deduce that

F (xk + t d k)≤ F (xk)+αt∇F (xk)T d k

for t > 0 small enough. Thus, choosing tk as the first element of the sequence {M̄−(}(∈"0

satisfying the condition above, we have that the requirements of Step 3 of Algorithm 8.1
are fulfilled.

The following theorem is said to be a global convergence theorem. It establishes that,
independently of the initial point, the gradient must vanish at every limit point. Global
convergence in this sense should not be confused with “convergence to global minimiz-
ers.” Note that the existence of limit points is assumed, and not guaranteed, at this the-
orem. A sufficient condition for the existence of the limit points is the boundedness of
the generated sequence, which, in turn, holds whenever the level set defined by F (x0) is
bounded.

Theorem 8.2. If x∗ is a limit point of a sequence generated by Algorithm 8.1, we have that
∇F (x∗) = 0.

Proof. Let K = {k0, k1, k2, k3, . . . }⊂
∞
" be such that

lim
k∈K

xk = x∗.

78 Chapter 8. Solving Unconstrained Subproblems

By the continuity of F ,
lim
k∈K

F (xk) = F (x∗).

By the Armijo condition, since kj+1 ≥ kj + 1, we have that

F (xkj+1)≤ F (xkj+1)≤ F (xkj)+αtkj
∇F (xkj)T d kj < F (xkj)

for all j ∈". Then,
lim
j→∞

tkj
∇F (xkj)T d kj = 0.

Therefore, by (8.2),
lim
j→∞

tkj
‖∇F (xkj)‖2‖d kj ‖2 = 0

and, by the equivalence of norms in !n ,

lim
j→∞

tkj
‖∇F (xkj)‖‖d kj ‖= 0. (8.9)

Thus, there exists K1⊂∞K such that at least one of the two following possibilities is fulfilled:

(a) limk∈K1
‖∇F (xk)‖= 0,

(b)
lim
k∈K1

tk‖d k‖= 0. (8.10)

In case (a), we deduce that ∇F (x∗) = 0 and the thesis is proved.
In case (b), there exists K2⊂∞K1 such that at least one of the two following possibilities

holds:

(c) limk∈K2
‖dk‖= 0,

(d) limk∈K2
tk = 0.

In case (c), the conditions (8.2) also imply that ‖∇F (xk)‖ → 0 for k ∈ K2 and, therefore,
∇F (x∗) = 0.

Let us consider case (d). Without loss of generality, assume that tk < 1 for all k ∈ K2.
Therefore, by Step 3 of the algorithm, for all k ∈ K2 there exists t̄k > 0 such that

F (xk + t̄ k d k)> F (xk)+α t̄k∇F (xk)T d k . (8.11)

Moreover, since t̄k ≤ M̄ tk , by (8.10), we have that

lim
k∈K2

t̄k‖dk‖= 0.

Thus, defining s k = t̄k d k for all k ∈K2, we have that

lim
k∈K2

‖sk‖= 0. (8.12)

By (8.11) and the mean value theorem, for all k ∈ K2 there exists ξk ∈ [0,1] such that

∇F (xk + ξk s k)T s k = F (xk + s k)− F (xk)> α∇F (xk)T s k . (8.13)

8.4. Local convergence 79

Let K3⊂∞K2 and s ∈ !n be such that limk∈K3
s k/‖s k‖ = s . By (8.12), dividing both

sides of the inequality (8.13) by ‖s k‖ and taking limits for k ∈K3, we obtain

∇F (x∗)T s ≥ α∇F (x∗)T s .

Since α< 1 and∇F (xk)T s k < 0 for all k, this implies that ∇F (x∗)T s = 0. Since by (8.2),

−∇F (xk)T s k

‖s k‖2
≥ θ‖∇F (xk)‖2 (8.14)

for all k ∈K2, taking limits in (8.14) for k ∈K3, we obtain that ∇F (x∗) = 0.

The alert reader should observe that the proof of Theorem 8.2 has two essential argu-
ments. The “argument of success” applies to the case in which the step is bounded away
from zero. In this case, the size of the direction should go to zero; otherwise the func-
tional value would tend to minus-infinity. The “argument of failure” applies to the case
in which the step tends to zero. In this case, there is a different step that also tends to zero
along which the function increased or did not decrease enough. This is possible only if
the gradient in the limit is zero. These two arguments appear persistently in every global
convergence theorem for continuous optimization algorithms. The reader is invited to
find them in other line-search procedures, in trust-region methods, in nonsmooth opti-
mization [69], and in derivative-free minimization algorithms [84].

8.4 Local convergence
Global convergence in the sense used in the former section is a very welcome property for
practical unconstrained minimization algorithms, because it guarantees that convergence
to points where the gradient does not vanish cannot occur. Nevertheless, the efficiency
of algorithms is also linked to theoretical properties of local convergence. These proper-
ties say that, when the sequence generated by the algorithm passes close to a minimizer,
such proximity is recognized and the sequence converges quickly to the solution. To
obtain that property, the distance between xk+1 and xk needs to be small when the gradi-
ent ∇F (xk) is small. We will formalize this requirement in the following assumption.

Assumption 8.1. There exists b > 0 such that consecutive iterates xk and xk+1 in Algo-
rithm 8.1 satisfy

‖xk+1− xk‖ ≤ b‖∇F (xk)‖ (8.15)

for all k ∈".

This assumption is compatible with line searches that obey the requirements of Step 3 of
Algorithm 8.1.

Our strategy to prove local superlinear convergence has three parts. In Theorem 8.3
below, we prove that, if x∗ is an isolated limit point, the whole sequence converges to x∗.
In Theorem 8.4 below, we prove that, if the initial point is close to a strict local mini-
mizer x∗, the whole sequence converges to x∗. Although analogous, these two theorems
are independent (none of them is deduced from the other). However, both show that the
convergence of the whole sequence to a single point may be expected in many cases. In
other words, convergence of the whole sequence is a plausible assumption. Using it, and
assuming further that the directions d k are obtained using a Newtonian philosophy, we
will prove superlinear convergence.

80 Chapter 8. Solving Unconstrained Subproblems

A point x∗ is said to be isolated if there exists ε > 0 such that ∇F (x))= 0 for all
x ∈ B(x∗,ε) such that x)= x∗.

Theorem 8.3. Assume that x∗ is isolated, the sequence {xk} is generated by Algorithm 8.1
with Assumption 8.1, and limk∈K xk = x∗ for some subsequence K⊂

∞
". Then, ∇F (x∗) = 0

and limk→∞ xk = x∗.

Proof. The fact that ∇F (x∗) = 0 is a consequence of Theorem 8.2. Since x∗ is isolated,
there exists ε> 0 such that∇F (x))= 0 for all x ∈ B(x∗,ε) \ {x∗}.

Let us define
C = {x ∈!n | ε/2≤ ‖x − x∗‖ ≤ ε}.

Clearly, C is compact and does not contain points where the gradient vanishes. Therefore,
by Theorem 8.2, C does not contain infinitely many iterates. Let k1 ∈ " be such that
xk /∈C for all k ≥ k1.

Define
K1 = {k ≥ k1 | ‖xk − x∗‖ ≤ ε/2}⊆".

Note that K1 is nonempty since, by hypothesis, limk∈K xk = x∗.
Since x∗ is the unique stationary point in the ball with radius ε/2, by Theorem 8.2,

we have that limk∈K1
xk = x∗ and, by the continuity of ∇F , that limk∈K1

‖∇F (xk)‖ = 0.
Then, by Assumption 8.1, limk∈K1

‖xk+1− xk‖= 0. This implies that, for all k ∈K1 large
enough, ‖xk+1−xk‖< ε/2. Then, since, by the definition of K1, we have ‖xk−x∗‖ ≤ ε/2,
the triangle inequality implies that ‖xk+1 − x∗‖ ≤ ε. However, since xk+1 /∈ C , we have
that ‖xk+1 − x∗‖ ≤ ε/2. Therefore, we proved that, for all k ∈ K1 large enough, we have
that k + 1 also belongs to K1. This implies that ‖xk − x∗‖ ≤ ε/2 for all k large enough.
Invoking again Theorem 8.2 and the isolation of x∗, it follows that

lim
k→∞

xk = x∗,

as we wanted to prove.

Theorem 8.4. Assume that the isolated point x∗ is a strict local minimizer and the sequence
{xk} is generated by Algorithm 8.1 with Assumption 8.1. Then, there exists δ1 > 0 such that,
if ‖xk0 − x∗‖ ≤δ1 for some k0, we have that limk→∞ xk = x∗.

Proof. Let ε> 0 be such that x∗ is a strict global minimizer of f on the ball B(x∗,ε) and
assume that this ball does not contain any other point in which the gradient vanishes. By
the continuity of ∇F and Assumption 8.1, there exists δ ∈ (0,ε/2) such that

‖xk − x∗‖ ≤ δ⇒‖xk+1− xk‖ ≤ ε/2. (8.16)

Let c be the minimum value of F (x) on the set {x ∈ !n | δ ≤ ‖x − x∗‖ ≤ ε}. Let
δ1 ∈ (0,δ) be such that ‖x− x∗‖ ≤ δ1⇒ F (x)< c .

Let us prove by induction that, if there exists k0 such that ‖xk0−x∗‖ ≤δ1, one obtains
‖xk− x∗‖ ≤ δ and F (xk)< c for all k ≥ k0. By the definition of δ1, this is trivially true if
k = k0. Now, let us assume it is valid for k and prove it for k+1. Observe that, by (8.16),
‖xk − x∗‖ ≤ δ implies that ‖xk+1 − x∗‖ ≤ ε. Moreover, F (xk) < c and the fact that
F (xk+1)< F (xk) imply F (xk+1)< c , and this implies that ‖xk+1 − x∗‖< δ.

Therefore, since δ < ε/2 for k large enough, all the elements of the sequence
are contained in B(x∗,ε/2). Since x∗ is the unique point where the gradient vanishes in
this ball, Theorem 8.3 implies that the whole sequence converges to x∗ as we wanted to
prove.

8.4. Local convergence 81

8.4.1 Convergence under Newton-like choices of the search directions

The next algorithm is a particular case of Algorithm 8.1 and defines a general (Newton-
like) form in which the direction d k may be computed. This direction will be the approxi-
mate solution of a linear system of the form Bk d =−∇F (xk). The idea is that the gradient
∇F (x) is well approximated by the linear function Bk (x − xk) +∇F (xk) in a neighbor-
hood of xk or, equivalently, that the objective function F (x) is well approximated by the
quadratic (1/2)(x− xk)T Bk (x − xk) +∇F (xk)T (x − xk) + F (xk) in such a way that a so-
lution of Bk (x − xk)+∇F (xk) = 0 could be a good approximation to the solution of the
problem. In fact, this corresponds to the “Newtonian paradigm” for solving many non-
linear mathematical problems: Approximate the original problem by an easy (in some
sense, linear) problem using information at xk and use the solution of the “subproblem”
to continue the process. The Newtonian linear system may be solved exactly (discarding
rounding errors) and using Bk as the true Hessian at xk (classical Newton). If the sub-
problem is solved approximately employing an iterative linear solver but still using the
true Hessian, we say we are using the inexact Newton or truncated Newton approach.
When Bk is only an approximation of the Hessian at xk , we talk about quasi-Newton
methods (inexact quasi-Newton in the case that the quasi-Newton system is solved only
approximately).

In this context, step tk = 1 should be preferred in some sense because it thoroughly
corresponds to the Newtonian paradigm. When this step satisfies the Armijo condition,
we decide to stop the line search. Global convergence will require, on the other hand,
that the matrices Bk be positive definite and that their inverses be bounded.

Algorithm 8.3. This algorithm corresponds to an implementation of Algorithm 8.1 in
which the following hold:

(a) The direction d k is such that

‖Bk d k +∇F (xk)‖ ≤ ηk‖∇F (xk)‖, (8.17)

where Bk ∈!n×n is symmetric and positive definite and ηk ∈ [0,1).

(b) If F (xk + d k)≤ F (xk)+α∇F (xk)T d k , we choose tk = 1 and xk+1 = xk + d k .

In order to say that Algorithm 8.3 is an implementation of Algorithm 8.1, we must
show that the direction d k computed in (a) satisfies (8.2). A sufficient condition for the
fulfillment of (8.2) is the boundedness of ‖Bk‖ and ‖B−1

k ‖, stated in Assumption 8.2. This
claim is proved in Theorem 8.5 below.

Assumption 8.2. The sets {‖Bk‖, k ∈"} and {‖B−1
k ‖, k ∈"} are bounded.

Theorem 8.5. Assume that the sequence {xk} is generated by Algorithm 8.3 and that As-
sumption 8.2 holds. Then, there exist ηmax ∈ (0,1), θ ∈ (0,1), and β > 0 such that, for all
k ∈", if ηk ≤ ηmax, then (8.2) is satisfied.

Proof. Define r k = Bk d k +∇F (xk). Then,

‖∇F (xk)‖= ‖∇F (xk)− r k + r k‖ ≤ ‖∇F (xk)− r k‖+ ‖r k‖
= ‖Bk d k‖+ ‖r k‖ ≤ ‖Bk‖‖d k‖+ ‖r k‖.

Therefore,
‖∇F (xk)‖−‖r k‖ ≤ ‖Bk‖‖d k‖.

82 Chapter 8. Solving Unconstrained Subproblems

Thus, since by (8.17) ‖r k‖ ≤ ηk‖∇F (xk)‖, we deduce that

(1−ηk)‖∇F (xk)‖ ≤ ‖Bk‖‖d k‖.

Consequently,

‖d k‖ ≥ 1−ηk

‖Bk‖
‖∇F (xk)‖.

Taking ηk ≤ 1/2, we have that

‖d k‖ ≥ 1
2‖Bk‖

‖∇F (xk)‖.

Assuming that ‖Bk‖ ≤ c for all k ∈ ", the second requirement of (8.2) is satisfied with
β= 1

2c .
Let us prove the fulfillment of the angle condition in (8.2). Since−∇F (xk) = Bk d k −

r k , premultiplying by (d k)T yields

−(d k)T∇F (xk) = (d k)T Bk d k − (d k)T r k .

By the spectral decomposition [127] of Bk , we have that

λmin(Bk)≤
(d k)T Bk d k

‖d k‖2
2
≤ λmax(Bk),

whereλmin(Bk) and λmax(Bk) represent the smallest and the largest eigenvalues of Bk . Since
‖B−1

k ‖2 = λmax(B
−1
k) = 1/λmin(Bk), we have that

(d k)T Bk d k ≥ ‖d
k‖2

2

‖B−1
k ‖2

.

Therefore,

−(d k)T∇F (xk)≥ ‖d
k‖2

2

‖B−1
k ‖2

− (d k)T r k .

Thus, by the first part of the proof and the equivalence of norms in!n , there existsβ2 > 0
such that

−(d k)T∇F (xk)≥β2
‖d k‖2‖∇F (xk)‖2

‖B−1
k ‖2

− (d k)T r k

for all k such that ηk ≤ 1/2. Assuming that ‖B−1
k ‖2 ≤ c2 for all k ∈", this implies that

(d k)T∇F (xk)≤−β2
‖d k‖2‖∇F (xk)‖2

c2
+(d k)T r k .

Now, since ‖r k‖ ≤ ηk‖∇F (xk)‖, by the equivalence of norms in !n , there exists a con-
stant cnorm > 0 such that

‖r k‖2 ≤ cnormηk‖∇F (xk)‖2.

Hence,
(d k)T r k ≤ ‖d k‖2‖r k‖2 ≤ cnormηk‖d k‖2‖∇F (xk)‖2

8.4. Local convergence 83

and, therefore,

(d k)T∇F (xk)≤−(β2/c2)‖d k‖2‖∇F (xk)‖2+ cnormηk‖d k‖2‖∇F (xk)‖2

=−(β2/c2− cnormηk)‖d k‖2‖∇F (xk)‖2.

Thus if, say, ηk ≤min{ 12 , 1
2 (β2/(c2cnorm))}, we have that θ̄ =β2/c2−cnormηk > 0 and that

(d k)T∇F (xk)≤−θ̄‖d k‖2‖∇F (xk)‖2.

This means that the angle condition of (8.2) is satisfied with θ= θ̄.

The following theorem completes the basic convergence theory of Algorithm 8.1.
We will show that under Assumption 8.2, if the sequence generated by Algorithm 8.3
converges to a local minimizer x∗ where the Hessian ∇2F (x∗) is positive definite and
the matrices Bk are approximations of the Hessians ∇2F (xk) in the sense of Dennis and
Moré [97], the convergence is superlinear and, for k large enough, we have that tk = 1. In
other words, for k large enough, we will need only one function evaluation per iteration.

Theorem 8.6. Assume that the sequence {xk} is generated by Algorithm 8.3 with Assump-
tion 8.2 and xk)= x∗ for all k ∈", limk→∞ xk = x∗, F admits continuous third derivatives
in a neighborhood of x∗,∇2F (x∗) is positive definite, and the Dennis–Moré condition

lim
k→∞

###$Bk −∇2F (xk)
%

d k
###

‖d k‖ = 0

and the inexact Newton condition
lim

k→∞
ηk = 0

are verified. Then, there exists k0 ∈ " such that tk = 1 for all k ≥ k0 and the sequence {xk}
converges superlinearly to x∗. Moreover, if Bk = ∇2F (xk) and ηk = 0 for all k ∈ ", the
convergence is quadratic.

Proof. By Taylor’s formula, we have that

F (xk + d k)− F (xk)−α∇F (xk)T d k

= (1−α)∇F (xk)T d k + 1
2 (d

k)T∇2F (xk)d k + o(‖d k‖2)

= (1−α)(d k)T
$∇F (xk)+∇2F (xk)d k%+

&
α− 1

2

'
(d k)T∇2F (xk)d k + o(‖d k‖2).

Defining r k = Bk d k +∇F (xk), by Step 2 of the algorithm and ηk → 0, we have that
‖r k‖= o(‖∇F (xk)‖) = o(‖d k‖). Therefore,

F (xk + d k)− F (xk)−α∇F (xk)T d k = (1−α)(d k)T r k +(1−α)(d k)T
(
∇2F (xk)−Bk

)
d k

+
&
α− 1

2

'
(d k)T∇2F (xk)d k + o(‖d k‖2) = (1−α)(d k)T

(
∇2F (xk)−Bk

)
d k

+
&
α− 1

2

'
(d k)T∇2F (xk)d k + o(‖d k‖2).

Now, by the Dennis–Moré condition, we have that

(1−α)(d k)T
(
∇2F (xk)−Bk

)
d k = o(‖d k‖2),

and, therefore,

F (xk + d k)− F (xk)−α(d k)T∇F (xk) =
*
α− 1

2

+
(d k)T∇2F (xk)d k + o(‖d k‖2). (8.18)

84 Chapter 8. Solving Unconstrained Subproblems

Letµ> 0 be a lower bound for the eigenvalues of∇2F (x∗). Then, there exists k1 such
that µ/2 is a lower bound for the eigenvalues of ∇2F (xk) for all k ≥ k1. Thus, for all
k ≥ k1, we have that

(d k)T∇2F (xk)d k

‖d k‖2
≥µ/2.

Since α< 1/2, by (8.18), we have that

F (xk + d k)− F (xk)−α(d k)T∇F (xk)
‖d k‖2

≤
*
α− 1

2

+ µ
2
+

o(‖d k‖2)
‖d k‖2

(8.19)

for k ≥ k1. But, since {‖B−1
k ‖, k ∈ "} is bounded, ∇F (xk) → 0 (by Theorem 8.2), and

ηk → 0, ‖rk‖ ≤ ηk‖F (xk)‖ implies that ‖d k‖ → 0. Therefore, taking limits in (8.19) for
k→∞, we obtain

F (xk + d k)− F (xk)−α∇F (xk)T d k ≤ 0

for k large enough. Then, by the definition of the algorithm, there exists k0 ∈" such that
tk = 1 for all k ≥ k0. Thus, the first part of the thesis is proved.

By the first part of the thesis and the definition of Algorithm 8.3, we have that

xk+1 − xk = d k for all k ≥ k0. (8.20)

Then, by Taylor’s formula,

∇F (xk+1) =∇F (xk)+∇2F (xk)d k +O(‖d k‖2)

= Bk d k +∇F (xk)+ [∇2F (xk)−Bk]d k +O(‖d k‖2)

= r k +[∇2F (xk)−Bk]d k +O(‖d k‖2).

(8.21)

As in the first part of the proof we have that ‖r k‖= o(‖d k‖). Therefore,

∇F (xk+1) = [∇2F (xk)−Bk]d
k + o(‖d k‖).

Then, by the Dennis–Moré condition and (8.20),

lim
k→∞

‖∇F (xk+1)‖
‖xk+1 − xk‖ = 0.

Since, by the mean value theorem of integral calculus, we have that

∇F (xk+1)−∇F (x∗) =
,∫ 1

0
∇2F (x∗+ t (xk+1 − x∗)d t

.
(xk+1 − x∗),

then, by the continuity and nonsingularity of the Hessian at x∗, we deduce that

lim
k→∞

‖xk+1 − x∗‖
‖xk+1 − xk‖ = 0.

Therefore,

lim
k→∞

‖xk+1 − x∗‖
‖xk+1− x∗‖+ ‖xk − x∗‖ = 0.

8.4. Local convergence 85

Thus,

lim
k→∞

1+
‖xk − x∗‖
‖xk+1 − x∗‖ =∞

and, consequently,

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0. (8.22)

Then, the convergence is superlinear, as we wanted to prove.
Finally, let us prove that the convergence is quadratic when Bk =∇2F (xk) and ηk = 0

for all k ∈". In this case, by (8.21) we have that

‖∇F (xk+1)‖=O(‖d k‖2).

So, since tk = 1 for k large enough, there exists c > 0 such that

‖∇F (xk+1)‖ ≤ c‖xk+1 − xk‖2 (8.23)

for k large enough. By the mean value theorem of integral calculus and the continuity
and nonsingularity of the Hessian at x∗, (8.23) implies that there exists c1 > 0 such that

‖xk+1 − x∗‖ ≤ c1‖xk+1 − xk‖2

for k large enough. Then,

‖xk+1 − x∗‖
‖xk+1 − x∗‖+ ‖xk − x∗‖ ≤ c1‖xk+1 − xk‖.

Therefore,
‖xk − x∗‖
‖xk+1− x∗‖ ≥

1
c1‖xk+1 − xk‖ − 1=

1− c1‖xk+1 − xk‖
c1‖xk+1 − xk‖ .

So,
‖xk+1 − x∗‖
‖xk − x∗‖ ≤

c1‖xk+1 − xk‖
1− c1‖xk+1 − xk‖ .

Taking k large enough, since ‖xk+1 − xk‖→ 0, we have that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ 2c1‖xk+1 − xk‖ ≤ 2c1(‖xk+1 − x∗‖+ ‖xk − x∗‖).

But, by (8.22), ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for k large enough; thus

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ 4c1‖xk − x∗‖,

and the quadratic convergence follows from this inequality.

Theorem 8.6 assumes the existence and continuity of the second derivatives at x∗.
However, we know that the Augmented Lagrangian function Lρ(x,λ,µ) does not admit
second derivatives with respect to x at the points in which gi (x) +µi/ρ = 0 for some i .
This is not a serious drawback and does not eliminate the explicative power of the the-
orem because of three main reasons. On the one hand, in many constrained optimiza-

86 Chapter 8. Solving Unconstrained Subproblems

tion problems, the strict complementarity property holds, meaning that µ∗i > 0 whenever
gi (x∗) = 0. Coming back to the chapter about boundedness of the penalty parameters,
we see that, with additional conditions, this property is inherited by the approximate
Lagrange multipliers and by their safeguarded approximations µ̄i . Since, in addition, the
penalty parameter will be bounded, we probably have continuous second derivatives in a
neighborhood of the solution. On the other hand, even if the second derivatives are dis-
continuous at the solution, the gradient of the Augmented Lagrangian is semismooth in the
sense of Qi and Sun [219]. Roughly speaking, this means that Newton’s method and inex-
act Newton methods (Martínez and Qi [189]) can be defined and have good local conver-
gence properties. Finally, constraints gi (x)≤ 0 may be replaced by gi (x)+ zi = 0, zi ≥ 0,
where zi is a slack variable. With such reformulation, no second derivative discontinuity
occurs.

It is important to interpret correctly the results of this section in order to understand
the computational behavior in practical situations. The global convergence Theorem 8.2
provides a general frame for the behavior of the algorithms, but the user of computational
optimization methods is not expected in practice to observe iterates jumping between dif-
ferent accumulation points of the sequence {xk}. The reason is given by the “capture”
Theorems 8.3 and 8.4. These theorems say that isolated stationary points are powerful
attractors for the algorithms considered here. This means that, in practice, the algorithm
produces a sequence {xk} such that ‖xk‖ →∞ without limit points or such that it con-
verges to a single point x∗. The possibility ‖xk‖ → ∞ is discarded if the level sets are
bounded; therefore the assumption xk → x∗ of Theorem 8.6 is not arbitrary. However,
this theorem includes additional hypotheses that deserve to be discussed.

The Dennis–Moré condition is one of these hypotheses. It states that
###
(
Bk −∇2F (xk)

)
d k
###= o(‖d k‖).

This condition is obviously satisfied if we choose Bk =∇2F (xk) and tends to be fulfilled if
Bk is close to the true Hessian, in particular if ‖Bk −∇2F (xk)‖→ 0. (Consider, for exam-
ple, the case in which the Hessian is computed using finite differences with discretization
steps that tend to zero.) However, the Dennis–Moré condition tends to be fulfilled under
much weaker assumptions. Observe first that, by Taylor,

###∇2F (xk)d k −
(
∇F (xk + d k)−∇F (xk)

)###= o(‖d k‖).

Therefore, the Dennis–Moré condition will hold whenever
###Bk d k −

(
∇F (xk + d k)−∇F (xk)

)###= o(‖d k‖).

Now, assume that we choose the successive matrices Bk in order to satisfy the secant equa-
tion (Dennis and Schnabel [98]) given by

Bk+1d k =∇F (xk + d k)−∇F (xk).

Under the hypotheses of Theorem 8.6, this condition is asymptotically equivalent to

Bk+1(x
k+1 − xk) =∇F (xk+1)−∇F (xk). (8.24)

In this case, the Dennis–Moré condition will be satisfied whenever limk→∞ ‖Bk+1−Bk‖=
0. Over several decades, many efforts in numerical optimization have been made to define

8.5. Computing search directions 87

methods that enjoy compatibility between the secant equation (8.24) and a low-variation
requirement. Those methods, generally called secant methods, avoid the computation of
second derivatives in the context of unconstrained optimization. The Dennis–Moré con-
dition is the key tool for their convergence analysis.

The second important hypothesis of Theorem 8.6 is limk→∞ ηk = 0. The strict inter-
pretation of this hypothesis would require the a priori definition of a sequence that con-
verges to zero, as {1/k} or {1/k2}. A less trivial interpretation comes from considering
that ηk is the tolerance for the error in the solution of the linear system Bk d =−∇F (xk),
measured by the comparison of the residuals at d = 0 and at the computed approximate
solution. The smaller this tolerance, the more accurate the linear system solution, and we
could expect something close to superlinear convergence. In general, we have two possi-
bilities: (i) we solve the linear system “exactly” or (ii) we solve it only approximately using
some iterative method such as conjugate gradients. In the first case, ηk is very small but
not exactly zero, because in the computer we work with high precision but not infinite
precision. The exact solution of the system is frequently associated with the observance of
superlinear convergence. When we solve the system using an iterative method, it is usual
to fix a unique value for ηk (small), so that the convergence, although not superlinear, is
reasonably fast.

Now, how is superlinear convergence observed in practice? Before answering this
question, let us formulate another: Is it observable that, for k large enough, tk = 1, that
is, that each iteration asymptotically involves a single function evaluation? The answer
to the second question is yes. In well-behaved problems, in which the sequence generated
by the algorithm converges to a point x∗ with positive definite Hessian, we really ob-
serve that, near x∗, the first tentative t = 1 produces enough decrease and, consequently,
xk+1 = xk + d k if Bk is similar to a true Hessian ∇2F (xk) and the solution of the linear
system is accurate. This behavior is not observed only if the Hessian is almost singular or
ill-conditioned or if the third derivatives are dominant, so the Lipschitz constant of the
Hessians is very big and the basin of convergence of Newton’s method is small. (Unfor-
tunately this may be the situation when F has the form (8.1) and the penalty parameter
is big.)

Finally, superlinear convergence means that ‖xk+1 − x∗‖/‖xk − x∗‖ → 0, a property
that, assuming that ∇2F (x∗) is nonsingular and continuous in a neighborhood of x∗ (by
the mean value theorem of integral calculus), is equivalent to

lim
k→∞

‖∇F (xk+1)‖
‖∇F (xk)‖ = 0. (8.25)

Usually, in well-behaved problems, one observes that ‖∇F (xk+1)‖ decreases significantly
with respect to ‖∇F (xk)‖, but the user should not expect an academic immaculate con-
vergence to zero of the quotient. If we observe that, at some iteration, the norm of the
gradient is, say, one half the norm of the previous one, with some tendency to (usually
nonmonotone) decrease, this does not mean that superlinear convergence is being vio-
lated. Ultimately, (8.25) is an asymptotic property.

8.5 Computing search directions
8.5.1 Newton and stabilized Newton approaches

Newton’s method may be applied to minimize the function F (x) given by (8.1). Denoting

H (x) = h(x)+λ/ρ and G(x) = g (x)+µ/ρ,

88 Chapter 8. Solving Unconstrained Subproblems

we have that
F (x) = f (x)+

ρ

2
/‖H (x)‖2

2+ ‖G(x)+‖2
2
0
. (8.26)

The function F has continuous first derivatives. The second derivatives are discontinuous,
but∇F (x) = 0 is a semismooth [219] system of equations so that the Newton’s approach
makes sense and its unitary-step version converges quadratically under local nonsingular-
ity conditions. Inexact Newton methods can also be applied for solving that system [189].

The iterates generated by the algorithm for minimizing F (x)will be denoted, as usual,
by xk . Without loss of generality, let us assume that, given a generic iterate xk , we have
that Gi (xk)≥ 0 for all i = 1, . . . , q and Gi (xk)< 0 for i = q + 1, . . . , p. Consequently, we
define

G(x) = (G1(x), . . . ,Gq (x))
T .

Clearly, Newton’s iteration for the minimization of F (x) using the current point xk co-
incides with Newton’s iteration for the minimization of f (x) + ρ

2 (‖H (x)‖2
2 + ‖G(x)‖2

2).
With abuse of notation, let us redefine

F (x) = f (x)+
ρ
2
/‖H (x)‖2

2+ ‖G(x)‖2
2
0
.

Therefore,
∇F (x) =∇ f (x)+ρ

1
∇H (x)H (x)+∇G(x)G(x)

2

and

∇2F (x) =∇2 f (x)+ρ
1

H ′(x)T H ′(x)+G′(x)T G′(x)+
m∑

i=1
Hi (x)∇2Hi (x)

+
q∑

i=1
Gi (x)∇2Gi (x)

2
.

In principle, Newton’s iteration requires the solution of the linear system

∇2F (xk)(x− xk) =−∇F (xk). (8.27)

The value of ρ may be large because it needed to be increased many times after the
test (4.9) or, more frequently, because one deliberately decides to start with a big penalty
parameter with the aim of getting a solution very fast. This “shortcut” strategy (Fletcher
[113]) may be useful when we have a guaranteed good starting point, in addition to a
good approximation of the Lagrange multipliers, and we do not want to lose feasibility
at the first Augmented Lagrangian iterations. (This is exactly what we wish when dealing
with parametric optimization [134, 156].) However, in this case, the naive application of
Newton’s method may lead to poor results due to the following reasons:

1. Although Newton’s direction is generally a descent direction for F (x) (at least af-
ter some possible correction on the matrix of the system), the unitary step, which
should generate quadratic convergence, may not be accepted by monotone line
search procedures unless the current point is very close to the solution.

2. The Newtonian linear system is generally very ill-conditioned if ρ is large.

Both phenomena are associated with the size of the penalty parameter but they are not
the same phenomenon. The second one may be overcome by means of a decomposition
of the Newtonian linear system. This fact leads some people to argue that there is no real
problem with big penalty parameters. However, the first phenomenon persists even if
we solve the linear system by means of decomposition techniques, because it is intrinsic

8.5. Computing search directions 89

-15

-10

-5

0

5

10

-1 0 1 2 3

x2

x1

x̄Level sets

Quadratic model

(a) ρ= 0.1

-10

-8

-6

-4

-2

0

2

4

6

8

-1 0 1 2 3

x2

x1

x̄

Level sets

Quadratic model

(b) ρ= 1

Figure 8.1. Level sets and Newton’s direction for F (x) = f (x) + (ρ/2)‖H (x)‖2
2, where

f (x) = (1− x1)2 and H (x) = 2(x2 − x2
1). (Note that F (x) with ρ= 100 is the Rosenbrock’s function.)

In (a), ρ= 0.1, while in (b) ρ= 1. In both cases, x̄ is approximately at the same distance to the solution
x∗ = (1,1)T . In the first case, the unitary step along the Newton’s direction produces a decrease in F (x),
while in the second case it does not.

to the fact that for big values of ρ, functional values of F (x) are dominated by those of
(ρ/2)[‖H (x)‖2

2+‖G(x)+‖2
2]. Ifρ is large, the level sets of (ρ/2)[‖H (x)‖2

2+‖G(x)+‖2
2] tend

to be parallel surfaces to the feasible set and F (x) tends to produce flat curved valleys as
level sets, more or less following the shape of the boundary of the feasible region. In these
conditions, the minimizer of the quadratic approximation tends to be outside the level
set, as shown in Figure 8.1. Completely overcoming this inconvenience is impossible, but
nonmonotone techniques, which tolerate an occasional increase of the functional value,
tend to alleviate it.

In any case, it is always convenient to decompose the system in such a way that the
computation of Newtonian directions becomes well-conditioned.

90 Chapter 8. Solving Unconstrained Subproblems

The Newtonian linear system may be written as
$
B(xk)+ρ

/
H ′(xk)T H ′(xk)+G′(xk)T G′(xk)

0%
(x − xk)

=− /∇ f (xk)+ρ
/∇H (xk)H (xk)+∇G(xk)G(xk)

00
,

(8.28)

where

B(xk) =∇2 f (xk)+ρ
4

m∑
i=1

Hi (x
k)∇2Hi (x

k)+
q∑

i=1
Gi (x

k)∇2Gi (x
k)
5

. (8.29)

Note that the matrix of (8.28) should be positive definite. (In particular, its diagonal ele-
ments should be positive, a fact that is easy to verify and correct even in the decomposition
context that follows.)

The system (8.28) is equivalent to

B(xk)(x − xk)+ρ∇H (xk)
/
H (xk)+H ′(xk)(x − xk)

0

+ ρ∇G(xk)
/
G(xk)+G′(xk)(x − xk)

0
=−∇ f (xk).

Defining

λnew = ρ
&
H (xk)+H ′(xk)(x − xk)

'
and µnew = ρ

&
G(xk)+G′(xk)(x − xk)

'
,

the system becomes

B(xk)(x− xk)+∇H (xk)λnew+∇G(xk)µnew =−∇ f (xk).

In other words, the Newtonian direction x − xk comes from solving the linear equa-
tions

B(xk)(x− xk)+∇H (xk)λnew+∇G(xk)µnew =−∇ f (xk),

H ′(xk)(x− xk)−λnew/ρ=−H (xk),

G′(xk)(x − xk)−µnew/ρ=−G(xk),

which, in matricial terms, can be written as



B(xk) H ′(xk)T G′(xk)T
H ′(xk) −I/ρ 0
G′(xk) 0 −I/ρ






x − xk

λnew
µnew


=



−∇ f (xk)
−H (xk)
−G(xk)


 . (8.30)

Finally, note that ρHi (xk) = λi +ρhi (xk) and ρGi (x
k) = ρmax{0, gi (xk)+µi/ρ}=

max{0,µi +ρgi (xk)}. In the case that ρ is big and hi (xk) or gi (xk) is big too, the corre-
sponding term may be inconveniently large, and so it is recommendable to redefine (8.29)
as

B(xk) =∇2 f (xk)+
m∑

i=1
λk

i ∇2Hi (x
k)+

q∑
i=1
µk

i ∇2Gi (x
k), (8.31)

where λk andµk may be given by the vectors λnew andµnew obtained in the previous New-
ton’s iteration. By (4.7), (4.8), and the results related to the boundedness of the penalty
parameter given in Chapter 7, ρH (xk) and ρG(xk) are estimates of the Lagrange multi-
pliers at the solution of the subproblem (4.6). On the other hand, if ρ is very big, and one
replaces the matrix B(xk) given by (8.29) with the one given by (8.31) (with λk = λnew and
µk = µnew) in (8.30), the linear system (8.30) becomes a stabilized (with ρ) Newtonian
linear system for the KKT condition of the original problem (4.1).

8.5. Computing search directions 91

The linear system (8.30) (defined with the matrix B(xk) given by (8.29) or (8.31))
is a linear system with n + m + q equations and unknowns and with no apparent ill-
conditioning problems. Note that, when ρ →∞, the condition number of the matrix
tends to the condition number of a matrix where ρ does not appear at all.

It is interesting to analyze the case in which, in the solution of (8.30), we have (x −
xk ,λnew,µnew) = (0,λ,µ). By the second and third blocks of (8.30), we have, in that case,
that h(xk) = 0 and gi (xk) = 0 for all i such that gi (xk) ≥ −µi/ρ. Therefore, xk is a
feasible point of the original problem (4.1). Moreover, the first block of (8.30) states that
the KKT condition of the original problem holds. This means that the distance between
the solution of (8.30) and (xk ,λ,µ) provides a sensible measure of optimality.

The system (8.30) needs a possible correction in the case in which the generated di-
rection d k ≡ x − xk is not a descent direction for F (x) at xk . Note that taking a suffi-
ciently big correcting parameter ck and replacing B(xk) with B(xk) + ck I in (8.30), the
angle between d k and −∇F (xk) can be made as small as desired, so that the condition
∇F (xk)T d k ≤ −θ‖∇F (xk)‖2‖d k‖2, required at Step 2 of Algorithm 8.1, is satisfied.
Moreover, multiplying d k by a suitable scalar, the condition ‖d k‖ ≥ β‖∇F (xk)‖ will
also be satisfied. After the computation of the (perhaps corrected) direction d k , the next
iterate is computed by means of a line search following the general Algorithm 8.1. The
dominance phenomenon of the penalized term with respect to the function f (x) for large
values of ρmakes it desirable to employ a nonmonotone decreasing strategy.

Linear algebra

If ρ is not very large, we may try to obtain the Newton direction by directly solving
(8.27). Since ∇2F (xk) is symmetric, we may try to compute its Cholesky factorization.
If this factorization can be completed, obtaining∇2F (xk) = LLT with L lower-triangular
and nonsingular, the direction obtained solving LLT d k =−∇F (xk) is a descent direction
along which classical line searches produce sufficient descent. However, directions whose
angle with −∇F (xk) is very close to π/2 should be replaced with more conservative di-
rections that may be obtained by increasing the diagonal of ∇2F (xk) by a tiny positive
scalar. If the Cholesky factorization of the Hessian cannot be completed, several possibili-
ties arise. Using a good estimation of the lowest eigenvalue we may add a suitable positive
diagonal matrix to the Hessian by means of which a descent direction is guaranteed af-
ter solving the linear system that replaces (8.27). The direction d k obtained in this way
minimizes the quadratic approximation of F (x) on the region defined by ‖d‖2 ≤ ‖d k‖2, a
property that approximates this strategy to the well-known field of trust-region methods
[83].

In the case of a large penalty parameter ρ, the system (8.30) may be solved by means of
variations of a factorization proposed by Bunch and Parlett [71] for symmetric matrices.
Improvements have been obtained in [23] and any of the successors of the classical Har-
well subroutine MA27 (based on [103]), such as MA57, MA86, or MA97, is the rule of
choice in this case. The interpretation of diagonal modifications of Bk is the same as above
and also connects the strategy to the trust-region framework. Iterative linear solvers may
also be used to solve (8.30).

8.5.2 Truncated Newton approach

In the truncated Newton approach, we consider the quadratic problem

Minimize
1
2

d T∇2F (xk)d +∇F (xk)T d (8.32)

92 Chapter 8. Solving Unconstrained Subproblems

and we try to find an approximate solution d k employing the classical conjugate gradi-
ent (CG) method of Hestenes and Stiefel [146]. To achieve this goal, we start with the
iterate d = 0, and, at each CG iteration, we test the conditions (8.2), taking care that the
final approximate solution of (8.32) satisfies them. This is not difficult since the first iter-
ate of the CG method is in general a multiple of −∇F (xk), thus satisfying trivially (8.2).
As far as (8.2) holds at the CG iterate, we continue until minimizing (8.32) with some
required precision.

When the Hessian ∇2F (xk) is not positive definite, the problem (8.32) may have no
solution. In this case, CG is interrupted but the possibility of computing an adequate
direction from the point of view of (8.2) is not affected. (In the worst case we may be
forced to compute the approximate solution of (8.32) as a multiple of −∇F (xk).)

At each step of the CG method, we need to compute a Hessian-vector product. Some-
times, we do not wish to provide the true Hessian because we cannot compute it or be-
cause it is computationally expensive. In this case, each matrix-vector product may be
replaced by an incremental quotient, using the approximation

∇2F (xk)d ≈ 1
t

&
∇F (xk + t d)−∇F (xk)

'

with a small value of t . In this case, each CG iteration involves an additional evaluation
of∇F .

8.5.3 Quasi Newton and preconditioners

We aim to create an adequate quasi-Newton formula for approximating the Hessian ma-
trix ∇2F (x) in the large-scale case. Recall that this Hessian is well defined whenever
µi +ρgi (x))= 0 for all i = 1, . . . , p. By direct calculations, we have that

∇2F (x) =∇2 f (x)+A(x)+C (x),

where

A(x) = ρ

:
m∑

i=1
∇hi (x)∇hi (x)

T +
∑

i∈I (x,µ)
∇gi (x)∇gi (x)

T

;
,

C (x) =
m∑

i=1
[λi +ρhi (x)]∇2hi (x)+

∑
i∈I (x,µ)

[µi +ρgi (x)]∇2 gi (x),

and
I (x,µ) = {i ∈ {1, . . . , p} |µi +ρgi (x)> 0}.

Assume that xc is the current iterate at Algorithm 8.1 and x p is the previous one.
We want to construct a reasonable and cheap approximation of ∇2F (xc). Let us define
s = xc − x p and y = ∇F (xc)−∇F (x p). In order to obtain the Hessian approximation,
the matrix A(xc)will be corrected twice. At the first correction, we add a diagonal matrix
σ I with the objective of guaranteeing nonsingularity. (Note that A(x) is always positive
semidefinite.) Following the “spectral approach” [30, 223, 224, 60], we define

σspec = argmin‖(A(x)+σ I)s − y‖2 .

This implies that

σspec =
(y −A(xc)s)T s

sT s
.

8.6. Review and summary 93

Using safeguards, we correct σspec taking

σ =max{σmin,min{σmax,σspec}},

where 0< σmin < σmax <+∞ are given parameters, and

A+ =A(xc)+σ I .

If sT y ≤ 10−8‖s‖‖y‖, we define H = A+. Otherwise, we correct A+ in order to satisfy
the secant equation, maintaining its positive definiteness. Since A+ is positive definite, it
is natural to correct this matrix using the famous BFGS formula [98]. So,

H =A+ +
yyT

sT y
− A+ s sT A+

sT A+ s
. (8.33)

In this way, the Hessian approximation H satisfies the secant equation and remains posi-
tive definite.

The search direction will be obtained by solving a linear system, whose matrix is H ,
employing the CG method. A suitable preconditioner for the application of CG may be
obtained as follows:

1. Define D = diag(A(xc)).

2. Compute its associated spectral coefficient

σP =max
<
σmin,min

<
σmax,

(y −D s)T s
sT s

==
.

3. Compute D+ = D +σP I .

4. As in the computation of H , if sT y ≤ 10−8‖s‖‖y‖, define HP = D+. Otherwise,
define

HP = D+ +
yyT

sT y
− D+ s sT D+

sT D+ s
. (8.34)

(Note that HP does not need to be computed explicitly.)

In this process, HP is the BFGS correction of a positive definite matrix, and, thus, it
is positive definite too [98]. The inverse of HP is given by

H−1
P = D−1

+ +
(s −D−1

+ y)sT + s(s −D−1
+ y)T

sT y
− (s −D−1

+ y)T y s sT

(sT y)2
. (8.35)

The explicit form of H−1
P shows that HP may be used as preconditioner for the CG

method. Moreover, this preconditioner may be used too for the CG iterations in the
truncated Newton scheme.

8.6 Review and summary
In this chapter, we addressed the unconstrained optimization problem with a focus on the
case in which the objective function is the Augmented Lagrangian. We concentrated on
line-search methods, although a similar chapter could be written along similar lines using
the trust-region framework. For a general line-search algorithm that admits intermediate
“magic” steps, we proved global and local convergence results.

94 Chapter 8. Solving Unconstrained Subproblems

8.7 Further reading
The present chapter may be read as a (biased) short course on unconstrained optimiza-
tion. The classical bibliography on this subject complements this study. The Dennis–
Schnabel book [98] covers the essence of Newtonian and quasi-Newton methods and the
classical book by Ortega and Rheinboldt [214] is a mandatory reference for local and
global properties of Newton and related methods. Trust-region methods, not addressed
in this chapter, were exhaustively surveyed in [83]. Generalizations of the Hestenes–
Stiefel CG method to the nonquadratic case began with the classical Fletcher–Reeves and
Polak–Ribière papers [116, 216] and were followed by many variations. The main draw-
back of these CG generalizations is that they require rather strict line searches due to
their connection with the Hestenes–Stiefel method, in which exact one-dimensional min-
imization is essential. Modern CG methods try to alleviate this inconvenience as much
as possible. The unconstrained CG methods with the best performance according to the
available literature are due to Dai and Yuan [93] and Hager and Zhang [138, 139, 140].

If one applies Newton’s method to an unconstrained minimization problem and the
Hessian is positive definite at every iteration, a reasonable conjecture is that every limit
point is stationary. Surprisingly, this conjecture is not true (Mascarenhas [194]), showing
that safeguards in terms of the angle between the Newton direction and the gradient are
necessary. Related results, concerning the nonconvergence of the BFGS method, were
given by Dai [90, 91] and Mascarenhas [193, 194]. For many years, it was believed that
limit points generated by the BFGS method, with standard line-search procedures, should
be stationary, but the counterexamples exhibited in [90, 91, 193, 194] show that this is not
true.

8.8 Problems
8.1 Prove that, if the search direction is given by d k =−Hk∇F (xk) and the matrix Hk

is symmetric and positive definite, one has that∇F (xk)T d k < 0 and, consequently,
the basic unconstrained optimization algorithm is well defined.

8.2 Find an explicit formula for the global minimizer of a quadratic along a given di-
rection, when such a formula exists.

8.3 Prove that, if the set {‖Bk‖, k ∈ "} is bounded, the condition ‖d k‖ ≥ β‖∇F (xk)‖
is satisfied, as required by Algorithm 8.1. Moreover, prove that if ηk = 0, then the
condition number ‖Bk‖2‖B−1

k ‖2 is smaller than or equal to 1
θ and the angle condi-

tion defined in Step 2 also holds.

8.4 Consider F (x1, x2) = x2
1 + x2. Take x0 = (−π, 0)T as the initial point. Define the

search direction d k as being d k = (1,0)T if xk
1 < 0 and d k = (−1,0)T if xk

1 > 0.
Assume that tk is the largest value in {1,1/2,1/4, . . . } such that xk + tk d k satisfies
the Armijo criterion (8.3) and that xk+1 = xk + tk d k . Show that the sequence {xk}
converges to x∗ = (0,0)T and that ∇F (x∗))= 0. Moreover, show that, although the
search directions d k are descent directions, for any θ ∈ (0,1) there exists k0 such
that the angle condition in (8.2) does not hold for every k ≥ k0.

8.5 Replace condition (8.3) with

F (xk+1)≤ F (xk + tk d k)≤ F (xk)+αtk max{−c ,∇F (xk)T d k},
where c > 0 is a given constant. Interpret geometrically and prove Theorems 8.1
and 8.2 with this modification.

8.8. Problems 95

8.6 Prove that, when the condition number of the positive definite Hessian is uniformly
bounded by c > 0, the cosine of the angle between the negative gradient and the
Newton direction is at least 1/c .

8.7 Prove that, when the objective function is quadratic and one minimizes along the
search direction, the corresponding minimizer satisfies the Armijo condition for
any α≤ 1/2. (This is a strong motivation for using α< 1/2. Why?)

8.8 Consider the function F (x1, x2) = (x1 − 1)2+ ρ
2 (x2 − x2

1)
2. Find δ(ρ) such that, if

‖(x1, x2)T − (1,1)T ‖ ≤ δ(ρ), the unitary step along the Newton direction provides
descent. Note that δ(ρ)→ 0 when ρ→∞.

8.9 Prove that the direction d k obtained solving (8.27) minimizes the quadratic approx-
imation of F (x) on the region defined by ‖d‖2 ≤ ‖d k‖2, a property that approxi-
mates this strategy to the well-known field of trust-region methods (see the Conn,
Gould, and Toint book [83]).

8.10 Consider a matrix B0 that is symmetric and positive definite. Assume that Bk+1
must satisfy the secant equation (8.24) and that the rank of Bk+1 − Bk must be 2.
Discover the BFGS formula.

8.11 Consider a matrix H0 that is symmetric and positive definite. Assume that Hk+1
must satisfy the secant equation Hk+1(∇F (xk+1)−∇F (xk)) = (xk+1− xk) and that
the rank of Hk+1 −Hk must be 2. Discover the so-called DFP (Davidon–Fletcher–
Powell) formula.

8.12 Show that H obtained by (8.33) is positive definite.

8.13 Prove that H−1
P defined by (8.35) is the inverse of HP defined by (8.34).

8.14 The spectral gradient approach comes from approximating the Hessian by a diago-
nal matrix with identical diagonal elements. The idea of employing more general
diagonal approximations has been suggested many times. For general test functions
it does not seem to be a good idea, perhaps because the spectral properties of the
equally diagonal approach are lost. However, in real-life applications, the presence
of separable or almost-separable objective functions is not rare. Practical optimiza-
tion models should deal with noncorrelated variables as far as possible. The lack
of correlation between variables is naturally linked to almost-diagonal Hessians.
In this context, the diagonal updating idea may be useful. Define an optimization
method based on diagonal updatings of a diagonal approximate Hessian and analyze
convergence supported by the theory presented in this chapter.

8.15 Assume that ∇F (x∗) = 0, ∇2F (x∗) is nonsingular, and {xk} converges superlin-
early (respectively, quadratically) to x∗. Prove that F (xk) converges superlinearly
(respectively, quadratically) to F (x∗). Show that this result is not true if we replace
“superlinearly” with “linearly.” Derive consequences for numerical minimization
algorithms from this property. (How reliable is to consider that F (xk) − F (x∗)
measures the distance to the solution?)

8.16 Assume that F (xk) converges to F (x∗) linearly, superlinearly, or quadratically. Imag-
ine that you plot F (xk)− F (x∗) as a function of k. How does this graphic look in
each case? What about the graphic of log(F (xk)− F (x∗)? Repeat this exercise with
‖∇F (xk)‖ instead of F (xk)− F (x∗).

Chapter 9

Solving Constrained
Subproblems

Recall that, at each outer iteration of the Augmented Lagrangian method, we need to
minimize the function Lρk

(x, λ̄k , µ̄k) on a lower-level set Ω. The case in which Ω = !n

was studied in Chapter 8. Here, we will consider the case in which Ω is closed and convex
and the more particular case in which Ω is a box. As in Chapter 8, we will denote ρ= ρk ,
λ= λ̄k , µ= µ̄k , and

F (x) = Lρ(x,λ,µ). (9.1)

Continuous first derivatives of f , h, and g (and, consequently, of F) will be assumed to
exist whenever necessary.

9.1 Spectral projected gradient
In this section, we consider the case in which the subproblem (4.6) takes the form

Minimize F (x) subject to x ∈Ω (9.2)

andΩ⊆!n is a closed and convex set, which perhaps is not described by a finite number of
equalities or inequalities. However, we will consider that computing PΩ(x), the Euclidean
projection of an arbitrary x ∈ !n onto Ω, is affordable. If in addition n is large, the
spectral projected gradient method (SPG) [60, 61, 62, 63] may be the best alternative for
solving subproblem (9.2).

The iterates of algorithms for solving (9.2) will be called (with some abuse of nota-
tion) xk for k = 0,1,2, We warn that these iterates should not be confused with the
ones that define the Augmented Lagrangian iterations.

Given x0 ∈Ω, α ∈ (0,1/2), and 0< σmin3 σmax, the SPG method computes

d k = PΩ

4
xk − 1

σ SPG
k

∇F (xk)
5
− xk (9.3)

and xk+1 such that F (xk+1)≤ F (xk+ tk d k), where σ SPG
k ∈ [σmin,σmax] and tk is obtained

by means of a backtracking procedure that guarantees the sufficient descent condition

F (xk + tk d k)≤ F ref
k +αtk∇F (xk)T d k . (9.4)

The reference value F ref
k is generally chosen as

F ref
k =max{ f (xk), f (xk−1), . . . , f (xmax{0,k−M+1})}

97

98 Chapter 9. Solving Constrained Subproblems

(Grippo, Lampariello, and Lucidi [132]) with M around 10. The SPG parameter σ SPG
k is

usually defined by

σ SPG
k =





1 if k = 0,

max
<
σmin,min

<
(s k)T yk

(s k)T s k ,σmax

==
otherwise,

(9.5)

where s k = xk − xk−1 and yk =∇F (xk)−∇F (xk−1). Alternatively, σ SPG
0 may be defined

as

σ SPG
0 =max

B
σmin,min

B
s̄ T ȳ
s̄T s̄

,σmax

CC
, (9.6)

where s̄ = x0 − x̄ and ȳ = ∇F (x0)−∇F (x̄), x̄ = x0 − tsmall∇F (x0), and tsmall is a small
positive number.

The backtracking procedure for computing tk is as follows. It begins with the trial
t = 1 and testing the fulfillment of (9.4) (for tk = t). If (9.4) holds, the backtracking fin-
ishes. Otherwise, a new t in the interval [0.1t , 0.5t] is chosen using safeguarded quadratic
interpolation and the process is repeated. Since the direction d k in (9.3) is a descent direc-
tion, this loop necessarily finishes with the fulfillment of (9.4) for a sufficiently small tk .

The SPG method has three main ingredients: projected gradient ideas [38, 126, 173];
the choice of the steplength, motivated by Barzilai and Borwein [30] and elucidated by
Raydan [223, 224] for unconstrained problems; and nonmonotone line searches [132].
Because of the simplicity of this method and its capacity to deal with huge problems, it
has been used in multiple applications since its introduction by Birgin, Martínez, and
Raydan [60, 61]. It can be proved (see [62]) that every limit point of a sequence generated
by SPG satisfies the optimality condition (3.31), given by PΩ(x∗−∇F (x∗)) = x∗. Here, we
will give a simplified and less ambitious proof, where we only show that, if the sequence
{xk} is bounded, at least one limit point is stationary in the sense of (3.31). In this proof,
we will follow the approach of Birgin, Martínez, and Raydan [62].

9.1.1 Convergence of SPG

Throughout this section, we will denote

Qk(d) =
1
2
σ SPG

k ‖d‖2
2+∇F (xk)T d .

The global minimizer of Qk (d) subject to xk + d ∈Ω is given by (9.3).

Algorithm 9.1. SPG.
Let α ∈ (0,1), 0 < σmin < σmax, and M be a positive integer. Let x0 ∈ Ω be an arbitrary
initial point. Given xk ∈Ω, the steps to compute xk+1 are as follows:

Step 1. Compute σ SPG
k ∈ [σmin,σmax] and d k as in (9.5) and (9.3), respectively. If d k = 0,

stop the execution of the algorithm declaring that xk is a stationary point.

Step 2. Set t ← 1 and F ref
k =max{F (xk− j+1) | 1≤ j ≤min{k + 1, M}}.

If
F (xk + t d k)≤ F ref

k + tα∇F (xk)T d k , (9.7)

set tk = t , choose xk+1 ∈Ω such that

F (xk+1)≤ F (xk + tk d k), (9.8)

9.1. Spectral projected gradient 99

and finish the iteration. Otherwise, choose tnew ∈ [0.1t , 0.5t], set t ← tnew and
repeat test (9.7).

The lemma below shows that Algorithm 9.1 is well defined. In particular, it shows
that the direction d k computed as in (9.3) is a descent direction. Then, for completeness, it
shows (as already shown in Theorem 8.1) that, if d k is a descent direction, a steplength tk
that satisfies the Armijo condition can be computed in a finite number of steps.

Lemma 9.1. Algorithm 9.1 is well defined.

Proof. If d k = 0 the algorithm stops. Otherwise, we have that Qk (d k)≤Qk (0) = 0, i.e.,
∇F (xk)T d k ≤− 1

2σ
SPG
k ‖d k‖2

2 < 0, since d k)= 0 and, by (9.5), 0< σmin ≤ σ SPG
k . Now,

lim
t→0

F (xk + t d k)− F (xk)
t

=∇F (xk)T d k < 0.

Therefore,

lim
t→0

F (xk + t d k)− F (xk)
t∇F (xk)T d k

= 1

and
F (xk + t d k)− F (xk)

t∇F (xk)T d k
> α

if t is small enough. Thus, for t > 0 small enough,

F (xk + t d k)< F (xk)+ tα∇F (xk)T d k ≤ F ref
k + tα∇F (xk)T d k .

This completes the proof.

The lemma below shows that, if Algorithm 9.1 does not generate an infinite sequence
of iterates, it stops at a stationary point.

Lemma 9.2. Assume that the sequence generated by Algorithm 9.1 stops at xk . Then, xk is
stationary.

Proof. The proof follows from the characterization given in Lemma 3.2.

For the remaining results of this section, we assume that the algorithm does not stop.
So, infinitely many iterates {xk}k∈" are generated, and, by (9.7), we have that F (xk) ≤
F (x0) for all k ∈". In order to ensure the existence of limit points, we state the following
assumption.

Assumption 9.1. The level set {x ∈Ω | F (x)≤ F (x0)} is bounded.

Assumption 9.1 will be supposed to be true all along the present section. Note that
Assumption 9.1 holds if Ω is bounded.

The five lemmas below will be used to prove a final theorem that says that the sequence
generated by Algorithm 9.1 has at least one limit point that is stationary.

Lemma 9.3. Assume that {xk}k∈" is a sequence generated by Algorithm 9.1. Define, for all
j = 1,2,3, . . . ,

Vj =max{F (x j M−M+1), F (x j M−M+2), . . . , F (x j M)}
and ν(j) ∈ { j M −M + 1, j M −M + 2, . . . , j M} such that F (xν(j)) =Vj . Then,

Vj+1 ≤Vj + tν(j+1)−1α∇F (xν(j+1)−1)T d ν(j+1)−1 (9.9)

for all j = 1,2,3,

100 Chapter 9. Solving Constrained Subproblems

Proof. We will prove by induction on (that, for all (= 1,2, . . . , M and for all j =
1,2,3, . . . ,

F (x j M+()≤Vj + t j M+(−1α∇F (x j M+(−1)T d j M+(−1 <Vj . (9.10)

By (9.7) and (9.8), we have that, for all j ∈",

F (x j M+1)≤Vj + t j Mα∇F (x j M)T d j M <Vj ,

so (9.10) holds for (= 1.
Assume, as the inductive hypothesis, that

F (x j M+(′)≤Vj + t j M+(′−1α∇F (x j M+(′−1)T d j M+(′−1 <Vj (9.11)

for (′ = 1, . . . ,(. Now, by (9.7) and (9.8) and the definition of Vj , we have that

F (x j M+(+1)≤max1≤r≤M {F (x j M+(+1−r }+ t j M+(α∇F (x j M+()T d j M+(

=max{F (x(j−1)M+(+1), . . . , F (x j M+()}+ t j M+(α∇F (x j M+()T d j M+(

≤max{Vj , F (x j M+1), . . . , F (x j M+()}+ t j M+(α∇F (x j M+()T d j M+(.

But, by the inductive hypothesis,

max{F (x j M+1), . . . , F (x j M+()}<Vj ,

so
F (x j M+(+1)≤Vj + t j M+(α∇F (x j M+()T d j M+(<Vj .

Therefore, the inductive proof is complete, and hence (9.10) is proved. Since ν(j + 1) =
j M + (for some (∈ {1, . . . , M}, this implies the desired result.

From now on, we define

K = {ν(1)− 1, ν(2)− 1, ν(3)− 1, . . . }, (9.12)

where {ν(j)} is the sequence of indices defined in Lemma 9.3. Note that, when M = 1,
we have that K = {0,1,2, . . . }. Clearly,

ν(j)< ν(j + 1)≤ ν(j)+ 2M − 1

for all j = 1,2,3,

Lemma 9.4. Let K be given by (9.12). Then, limk∈K tk Qk (d k) = 0.

Proof. By (9.9), since F is continuous and bounded below,

lim
k∈K

tk∇F (xk)T d k = 0. (9.13)

But
0>Qk (d

k) =
1
2
σ SPG

k ‖d k‖2
2+∇F (xk)T d k ≥∇F (xk)T d k for all k ∈".

Hence, by (9.13), the desired result is proved.

9.1. Spectral projected gradient 101

Lemma 9.5. Assume that K1⊂∞" is a sequence of indices such that

lim
k∈K1

xk = x∗ ∈Ω and lim
k∈K1

Qk (d
k) = 0.

Then, x∗ is stationary.

Proof. Let K2⊂∞K1 be such that

lim
k∈K2

σ SPG
k = σ > 0.

We define
Q(d) =

1
2
σ‖d‖2

2+∇F (x∗)T d for all d ∈!n .

Suppose that there exists d̂ ∈!n such that x∗+ d̂ ∈Ω and

Q(d̂)< 0. (9.14)

Define
d̂ k = x∗+ d̂ − xk for all k ∈ K2.

Clearly, xk + d̂ k ∈Ω for all k ∈K2. By continuity, since limk∈K2
xk = x∗, we have that

lim
k∈K2

Qk (d̂
k) =Q(d̂)< 0. (9.15)

But, by the definition of d k , we have that Qk (d k)≤Qk (d̂ k). Therefore, by (9.15), Qk (d k)≤
Q(d̂)/2 < 0 for k ∈ K2 large enough. This contradicts the fact that limk∈K2

Qk (d k) =
0. The contradiction came from the assumption that d̂ with the property (9.14) exists.
Therefore, Q(d) ≥ 0 for all d ∈ !n such that x∗ + d ∈ Ω. Thus, ∇F (x∗)T d ≥ 0 for all
d ∈!n such that x∗+ d ∈Ω. So, x∗ is stationary.

Lemma 9.6. {d k}k∈" is bounded.

Proof. For all k ∈",

Qk (d
k) =

1
2
σ SPG

k ‖d k‖2
2+∇F (xk)T d k < 0.

Therefore,

‖d k‖2
2 <−

2
σ SPG

k

∇F (xk)T d k ≤ 2
σmin
‖∇F (xk)‖2‖d k‖2.

Thus,
‖d k‖2 ≤

2
σmin
‖∇F (xk)‖2.

Since {xk}k∈" is bounded and F has continuous derivatives, {∇F (xk)}k∈" is bounded.
Therefore, the set {d k}k∈" is bounded.

Lemma 9.7. Assume that K3⊂∞" is a sequence of indices such that

lim
k∈K3

xk = x∗ ∈Ω and lim
k∈K3

tk = 0.

102 Chapter 9. Solving Constrained Subproblems

Then,
lim
k∈K3

Qk (d
k) = 0, (9.16)

and hence x∗ is stationary.

Proof. Suppose that (9.16) is not true. Then, for some infinite set of indices K4⊂∞K3,

Qk (d k) is bounded away from zero.
On the other hand, since tk → 0, by the definition of Algorithm 9.1, for k ∈ K4 large

enough, there exists t ′k ≥ tk such that limk∈K4
t ′k = 0, and (9.7) does not hold for t = t ′k .

So,

F (xk + t ′k d k)>max{F (xk− j+1) | 1≤ j ≤min{k + 1, M}}+ t ′kα∇F (xk)T d k ,

and hence
F (xk + t ′k d k)> F (xk)+αt ′k∇F (xk)T d k

for all k ∈K4. Therefore,

F (xk + t ′k d k)− F (xk)
t ′k

> α∇F (xk)T d k

for all k ∈K4. By the mean-value theorem, there exists ξk ∈ [0,1] such that

∇F (xk + ξk t ′k d k)T d k > α∇F (xk)T dk (9.17)

for all k ∈ K4. Since, by Lemma 9.6, the set {d k}k∈K4
is bounded, there exists a sequence

of indices K5⊂∞K4 such that limk∈K5
d k = d and limk∈K5

σ SPG
k = σ for some d ∈ !n and

some σ > 0. Taking limits for k ∈ K5 in both sides of (9.17), we obtain ∇F (x∗)T d ≥
α∇F (x∗)T d . This implies that∇F (x∗)T d ≥ 0. So,

1
2
σ‖d‖2

2+∇F (x∗)T d ≥ 0.

Therefore, since Qk (d k)< 0 for all k,

lim
k∈K5

1
2
σ SPG

k ‖d k‖2
2+∇F (xk)T d k = 0.

Thus, limk∈K5
Qk(d k) = 0. This contradicts the assumption that Qk(d k) is bounded away

from zero for k ∈K4. Therefore, (9.16) is true. Thus, the hypothesis of Lemma 9.5 holds,
with K3 replacing K1, and, therefore, by Lemma 9.5, x∗ is stationary.

Theorem 9.1. Every limit point of {xk}k∈K is stationary.

Proof. Let K6⊂∞K be such that limk∈K6
xk = x∗. By Lemma 9.4, we have that

lim
k∈K6

tk Qk (d
k) = 0.

9.2. Active set methods 103

Now we have two possibilities: (a) limk∈K6
Qk (d k) = 0 or (b) there exists K7⊂∞K6 such

that Qk (d k)≤ c < 0 for all k ∈ K7. In case (a), by Lemma 9.5, x∗ is stationary. In case (b),
tk → 0 for k ∈K7. By Lemma 9.7, this implies that x∗ is stationary.

Theorem 9.1 shows that every limit point of {xk}k∈K is stationary. If M = 1, since in
this case we have that K =", this means that every limit point is stationary. Even when
M > 1, it is also true that every limit point is stationary. See [62] for details.

9.1.2 SPG and magic steps

As discussed in the case of unconstrained subproblems, the requirement (9.8) allows one
to employ a big variety of heuristic procedures, accelerations, and “magic” ideas that may
improve the behavior of SPG. In many cases, the efficiency of an algorithm depends on
such heuristics, although its global convergence is guaranteed by an underlying algorithm
like SPG. Assuming that one believes in a standard heuristic procedure, we may formalize
its interlacing with SPG in the following way.

Algorithm 9.2. SPG with magic steps.
Let θprogress ∈ [0,1) and the parameters α ∈ (0,1) and 0 < σmin < σmax that are necessary
to execute SPG. Let x0 ∈ Ω be an arbitrary initial point. Set ItType0 = MAGIC. Given
xk ∈Ω and the iteration type ItTypek , in order to compute xk+1, proceed as follows:

Step 1. If ItTypek =MAGIC, execute Steps 1.1–1.3 below. Otherwise, go to Step 2.

Step 1.1. Compute y ∈Ω by means of a heuristic procedure.

Step 1.2. If F (y)> F (xk), discard y and go to Step 2.

Step 1.3. Set xk+1 = y. If

‖PΩ(xk+1 −∇F (xk+1))− xk+1‖ ≤ θprogress‖PΩ(xk −∇F (xk))− xk‖, (9.18)

set ItTypek+1 =MAGIC. Otherwise, set ItTypek+1 = SPG. In any case, finish the
kth iteration.

Step 2. Compute xk+1 using SPG (with M = 1) and set ItTypek+1 =MAGIC.

If in employing Algorithm 9.2, infinitely many SPG iterations are performed, the SPG
convergence theory guarantees that every limit point of the corresponding subsequence
is stationary. The other possibility is that, for all k large enough, the inequality (9.18)
holds. In this case, by the continuity of the projection, every limit point is stationary. Al-
gorithm 9.2 also defines a watchdog strategy in the sense of [79] and can be employed as
an alternative to the Grippo, Lampariello, and Lucidi [132] nonmonotone strategy in the
implementation of SPG. For example, SPG may be executed using M = 1 but establishing
that the heuristic y is also obtained by means of some SPG iterations without requiring
descent.

9.2 Active set methods
In this section, we consider the case in which the lower-set Ω is a box, given by

Ω= {x ∈!n | (≤ x ≤ u}.

104 Chapter 9. Solving Constrained Subproblems

The vectors (and u in!n , with (< u, are the lower and upper bounds of Ω, respectively.
It will be useful to consider that Ω is the union of disjoint faces. Given a set of indices

I ⊆ {1, . . . , 2n}, we denote by4I the set of points x ∈Ω such that

1. xi = (i if i ∈ I ,

2. xi = ui if n+ i ∈ I ,

3. (i < xi < ui if i /∈ I and n+ i /∈ I .

For example,45 is the topological interior of Ω,4{1,...,n} is the set whose unique element
is ((1, . . . ,(n), and so on. Clearly, ∪4I = Ω and, if I)= J , we have that 4I ∩4J = 5. A
face is also characterized by its free variables and fixed variables. The free variables at the
face 4I are those variables xi such that i /∈ I and n + i /∈ I . The variables xi such that
i ∈ I are said to be fixed at the lower bound and the variables xi such that n+ i ∈ I are said
to be fixed at the upper bound. Given x̄ ∈ Ω, we also denote by4I (x̄) the face to which x̄
belongs, i.e., I (x̄) = {i | x̄i = (i }∪ {n+ i | x̄i = ui }. We denote by 4̄I the closure of4I .
For example, 4̄5 =Ω. Since boxes are simple sets, reasonable algorithms for minimizing
onto boxes generate points xk that belong to the box for all k. Therefore, each iterate xk

belongs to one (and only one) face of Ω. Many algorithms are based on the principles of
active constraints that we state below.

9.2.1 Strong principle of active constraints

Assume that our goal is to find a global minimizer of the continuous function F (x) subject
to x ∈Ω. Let x0 ∈Ω and assume that the sequence {xk}, generated starting from x0, obeys
the following axioms:

A1. If xk is a global minimizer of F on Ω, the sequence stops at xk . Otherwise, the point
xk+1 satisfies F (xk+1)< F (xk).

A2. If xk is not a global minimizer of F on 4I (xk), the point xk+1 is a global minimizer
of F on4I (xk) or belongs to the boundary of4I (xk), i.e., belongs to 4̄I (xk) \4I (xk).

We say that an algorithm whose iterates xk obey the axioms A1 and A2 follows the
strong principle of active constraints. The philosophy behind this principle is that a face
must be explored until a global minimizer on that face is found or until a point on its
boundary is reached (and, in consequence, xk+1 belongs to a “boundary” face).

The iterations of an algorithm of this type may be of three types:

Internal iterations: These are the iterations in which xk is not a global minimizer of F
on4I (xk) and xk+1 ∈4I (xk) is a global minimizer of F on4I (xk).

Boundary iterations: These are the iterations in which xk is not a global minimizer of F
on4I (xk) and xk+1 belongs to the boundary of4I (xk).

Leaving-face iterations: These are the iterations in which xk is a global minimizer of F
on4I (xk) (and hence on its closure) but, because it is not a global minimizer on Ω,
we have that F (xk+1)< F (xk) and xk+1 /∈ 4̄I (xk).

In the following theorem, we prove that, if an algorithm is able to obey the strong
principle of active constraints, it finds a global minimizer in a finite number of steps.

9.2. Active set methods 105

Theorem 9.2. Assume that the sequence {xk} was generated by an algorithm that obeys the
strong principle of active constraints. Then, the sequence is finite and there exists k such that xk

is a global minimizer of F onto Ω.

Proof. Assume that the sequence {xk} has infinitely many elements. Since the number
of faces is finite and F (xk+1)< F (xk)whenever xk is not a global solution of the problem,
the number of internal iterations and the number of leaving-face iterations are finite. This
means that there exists k0 such that, for all k ≥ k0, all the iterations are of boundary
type. But, at each boundary iteration, the number of free variables strictly decreases.
Therefore, there cannot be infinitely many boundary iterations either. Thus, the sequence
necessarily stops at some xk , which must be a global minimizer of F onto Ω.

9.2.2 Practical principle of active constraints

The strong principle of active constraints indicates an algorithmic direction but does not
generate affordable methods, at least for problems with a large number of variables. The
reason is that we are almost never able to meet, in finite time, a global minimizer of F on
the face to which xk belongs.

Nevertheless, the principle of staying in a face while good progress is obtained at ev-
ery internal iteration is valid. The sensible way to stay in the face to which the iterate xk

belongs comes from evoking the unconstrained problem whose variables are the free vari-
ables at the face and to apply an unconstrained minimization iteration starting from xk .
The unconstrained algorithm could converge to a stationary point with respect to the free
variables (a point where the derivatives with respect to the free variables vanish) or could
hit the boundary of the face, stopping at a face of lower dimension. On the other hand, at
each iteration, it will be necessary to decide whether it is worthwhile to continue in the
same face (perhaps hitting the boundary) or if it is convenient to abandon it, in order to
explore a face with additional free variables. We now give a reasonable criterion for such
a decision.

Decision based on the continuous projected gradient

The decision of persisting on a face or changing it may be taken using the components of
the continuous projected gradient.

Given xk ∈Ω, consider the problem

Minimize ∇F (xk)T (x− xk)+
1
2
‖x − xk‖2

2 subject to x ∈Ω. (9.19)

It is easy to see that this problem is equivalent to

Minimize ‖xk −∇F (xk)− x‖2
2 subject to x ∈Ω. (9.20)

The solution x̄ of (9.20) is, by definition, the projection of xk−∇F (xk) ontoΩ. By direct
inspection, we see that this solution is given by

x̄i =max
<
(i ,min

<
xk

i −
∂ F
∂ xi
(xk), ui

==
, i = 1, . . . , n.

We denote x̄ = PΩ(xk −∇F (xk)). It is easy to see that x̄ is the unique stationary point of
(9.19) and that x̄ depends continuously on xk .

On the other hand, if xk were a KKT point of the problem of minimizing F (x) ontoΩ,
it would also be a KKT point of (9.19), and vice versa. This fact would be equivalent to

106 Chapter 9. Solving Constrained Subproblems

saying that ‖x̄− xk‖= 0. These considerations lead us to define the continuous projected
gradient gP (xk) as

gP (x
k) = PΩ(x

k −∇F (xk))− xk

and to define the degree of stationarity of xk as the norm of this vector.
Moreover, gP (xk)may be decomposed in a unique way as

gP (x
k) = gI (x

k)+
(

gP (x
k)− gI (x

k)
)

,

where gI (xk) belongs to the subspace associated with4I (xk) and gP (xk)− gI (xk) belongs
to its orthogonal complement. In other words, gI (xk) is identical to gP (xk) for the free
variables while the remaining coordinates are null. Of course gI (xk), which will be called
the internal gradient, also depends continuously on xk .

If gI (xk) = 0, we have that xk is a stationary point of F (x) restricted to x ∈4I (xk). In
this case, nothing else can be expected from an unconstrained algorithm that uses gra-
dients, and so the sensible recommendation is to abandon the face (unless, of course,
gP (xk) = 0, in which case the problem of minimizing F on the box should be consid-
ered solved). The same recommendation should be made if the norm of gI (xk) is small
with respect to the norm of gP (xk). Summing up, in a practical algorithm, the face4I (xk)
should be abandoned when

‖gI (x
k)‖ ≤ η‖gP (x

k)‖,
where η ∈ (0,1) is an algorithmic parameter.

9.2.3 Practical scheme for the active set strategy

In [8] and [51, 52, 19], box-constrained minimization problems are solved by using un-
constrained methods within the faces and abandoning the faces, when necessary, using
monotone SPG iterations.

Monotone SPG iterations

As described in Section 9.1, an SPG iteration, which requires constants α ∈ (0,1/2) and
0 < σmin 3 σmax defined independently of k, computes the (scaled) projected gradient
direction d k and the SPG parameter σ SPG

k given by (9.3) and (9.5), respectively. Given the
direction d k , a monotone SPG iteration requires a step tk satisfying the Armijo criterion

F (xk + tk d k)≤ F (xk)+αtk∇F (xk)T d k . (9.21)

Note that it corresponds to satisfying (9.4) with F ref
k ≡ F (xk), i.e., with M = 1. As already

described, the backtracking procedure for computing tk begins with t = 1 and computes
a new t ∈ [0.1t , 0.5t] while (9.21) is not satisfied. When a value of t that satisfies (9.21) is
found, we define tk = t and xk+1 such that F (xk+1)≤ F (xk + tk d k).
Lemma 9.8. The monotone SPG iteration is well defined.

Proof. See Lemma 9.1.

Lemma 9.9. Assume that there exists an infinite sequence of indices K = {k1, k2, . . . } such
that, for all k ∈K, xk+1 is obtained by means of a monotone SPG iteration. Then, every limit
point of the sequence {xk}k∈K is stationary for the box-constrained optimization problem.

Proof. This lemma is a particular case of Theorem 9.1 with M = 1. (Note that iterates xkj

with j > 1 in the sequence {xk}k∈K can be seen as the result of some magic steps computed
after the iterate xkj−1+1 that was computed by means of a monotone SPG iteration.)

9.2. Active set methods 107

Internal iterations

Following the active set strategy, we minimize functions on a box by combining iterations
that do not modify the fixed variables of the current iterate (perhaps hitting the boundary
of the current face) with monotone SPG iterations that abandon the current face when
the corresponding test indicates this decision.

The internal iterations only modify the free variables, in such a way that they can
be considered as unconstrained iterations with respect to those variables. The objective
function remains to be F but modifying the fixed variables is impossible. Infinitely many
consecutive iterations of such an algorithm should lead to a point at which the internal
gradient vanishes. This property is formalized in the following assumption.

Assumption 9.2. If xk , xk+1, · · · ∈ 4I is a sequence of infinitely many iterations obtained
by an unconstrained internal algorithm, then

lim
k→∞

∂ F
∂ xj
(xk) = 0

for all the free variables xj . (This implies that gI (xk+()→ 0 when (→∞.)

The results of Chapter 8 indicate that Assumption 9.2 is easy to verify if we use a rea-
sonable unconstrained algorithm within the faces. There is subtlety in this statement due
to the existence of bounds for the free variables. In fact, the unconstrained algorithm may
indicate as a new iterate a point that does not fulfill the constraints for the free variables.
In this case, one should be able to reject that iterate returning to the interior of the face
or be able to hit the boundary providing a decrease of the objective function.

Convergence of the active set strategy

The following algorithm condenses the main characteristics of a suitable active set strategy
for the box-constrained minimization problems that must be solved in the Augmented
Lagrangian context.

Algorithm 9.3. Active set strategy.
Let η ∈ (0,1) be the algorithmic parameter that provides the criterion for abandoning

the faces. (Typically one takes η= 0.1 in practical calculations.) Let x0 ∈ Ω be the initial
point. If xk ∈ Ω is a typical iterate, the steps for obtaining xk+1 ∈ Ω or interrupting the
execution of the algorithm are the following.
Step 1. If gP (xk) = 0, stop. (The point xk is stationary for minimizing F on Ω.)
Step 2. If ‖gI (xk)‖ ≤ η‖gP (xk)‖, obtain xk+1 using a monotone SPG iteration.
Step 3. If ‖gI (xk)‖ > η‖gP (xk)‖, obtain xk+1 ∈ 4I (xk) such that F (xk+1) < F (xk) using
an unconstrained internal algorithm or obtain xk+1 in the boundary of 4I (xk) such that
F (xk+1)< F (xk).

Theorem 9.3. Let {xk} be generated by Algorithm 9.3. Then, this sequence stops at a sta-
tionary point xk or admits a stationary limit point.

Proof. Assume that the sequence does not stop and thus generates infinitely many itera-
tions. If infinitely many iterations are of SPG type, the thesis follows from Lemma 9.9.

Assume that only a finite number of iterations are of type SPG. Therefore, for k large
enough, xk+1 belongs to the same face as xk or belongs to a face of lower dimension.

108 Chapter 9. Solving Constrained Subproblems

Then, there exist k0 and a face 4I (xk0) such that for all k ≥ k0 all the iterates belong to
4I (xk0). By Assumption 9.2, this implies that gI (xk)→ 0. But, by Step 2, we have that
‖gI (xk)‖ > η‖gP (xk)‖ for all k ≥ k0. Therefore, gP (xk)→ 0. By the continuity of gP ,
this implies that gP (x) vanishes at every limit point.

Theorem 9.3 has the merit of showing that, ultimately, the active set algorithm finds
stationary points. However, it is rather disappointing that the gradient SPG iterations
are of overwhelming importance in the proof. It would be better if we were able to show
that only a finite number of SPG iterations would be needed at each execution of the
algorithm, so that convergence should rest on the properties of the internal algorithm,
which, as we showed in Chapter 8, may be quite strong. In Theorem 9.4 below, we will
give a sufficient condition to ensure that, from some iteration on, all the iterations are
internal.

We say that a stationary point is dual-degenerate if there exists i ∈ {1, . . . , n} such that
i ∈ I (x∗) or n+ i ∈ I (x∗), but

∂ F
∂ xi
(x∗) = 0.

A dual-nondegenerate point is a point that is not dual-degenerate. In other words, at dual-
nondegenerate points, only derivatives with respect to free variables can vanish.

Theorem 9.4. Assume that all the stationary points of the box-constrained problem are dual-
nondegenerate. Then, the number of SPG iterations in Algorithm 9.3 is finite.

Proof. Let K be the set of indices such that xk+1 is obtained by means of monotone SPG
iterations for all k ∈ K . Suppose that K has infinitely many terms. By Lemma 9.9, there
exists K1⊂∞K such that

lim
k∈K1

xk = x∗

and x∗ is stationary. Without loss of generality, let us assume, by contradiction, that there
exist K2⊂∞K1 and i ∈ {1, . . . , n} such that xk

i = (i and xk+1
i > (i for all k ∈ K2. Hence, we

have that x∗i = (i . However, since x∗ is dual-nondegenerate,

∂ F
∂ xi
(x∗)> 0.

By the continuity of ∇F , we deduce that

∂ F
∂ xi
(xk)> 0

for all k ∈K2 large enough. Therefore, for those indices k,

[gP (x
k)]i = 0.

This implies that the constraint xi = (i could not be abandoned at iteration k.

9.5. Further reading 109

9.2.4 Active set stabilized Newton

Consider again the case in which Ω = {x ∈ !n | (≤ x ≤ u}. The active set philoso-
phy described in the previous section allows one to use any unconstrained minimization
method for minimizing Lρ(x,λ,µ) within a particular face. Newton’s method is one of
these possibilities. Writing, as before, F (x) = Lρ(x,λ,µ), and, in addition,

H (x) = h(x)+λ/ρ and G(x) = g (x)+µ/ρ,

we have that F (x) has the form (8.26). Moreover, the function that we need to minimize
within the current face also has the form (8.26) with different values for the number of
(free) variables. If we consider, with some abuse of notation, that F :!n →!, H :!n →
!m , and G : !n → !p (even in the case in which x is constrained to some face and
hence the number of variables is less than n), then the stabilizing techniques explained in
Section 8.5.1 may be applied.

9.3 Interior stabilized Newton
Unfortunately, there is no unanimous opinion with respect to the best strategy for solving
box-constrained subproblems. Interior-point strategies are the main competitors of active
set ones. Assume, as before, that we wish to minimize F (x) subject to (≤ x ≤ u, where
F is given by (8.26). The interior-point (or barrier) idea consists of considering the barrier
function

Fν (x) = F (x)− ν
4

n∑
i=1

log(xi − (i)+
n∑

i=1
log(ui − xi)

5
(9.22)

for a small ν > 0 that tends to zero. The application of Newton’s method to the minimiza-
tion of Fν (x) should take into account possible instabilities due not only to big values of ρ
but also to small values of ν. As a consequence, the basic Newtonian linear systems give
rise to stabilized decoupled systems as in (8.30).

9.4 Review and summary
The reason the Augmented Lagrangian method is useful for solving large-scale optimiza-
tion problems is that well-established large-scale methods for solving the subproblems
are available. The most usual case is when the nonrelaxable constraints define a box.
In this chapter, we described, in a self-contained way, an active set framework based on
unconstrained methods and projected gradients for solving the Augmented Lagrangian
subproblems. Chapters 8 and 9 may be used as an independent (biased) short course on
unconstrained, bound-constrained, and convex-constrained optimization.

9.5 Further reading
In 1988, Barzilai and Borwein published a new gradient algorithm (the BB method) for
minimizing convex quadratics. Given q : !n → ! defined by q(x) = 1

2 xT Ax + b T x,
where A is symmetric and positive definite, the BB method computes

xk+1 = xk −αk∇q(xk), (9.23)

where α0 > 0 is arbitrary and, for all k = 0,1,2, . . . ,

αk+1 =
∇q(xk)T∇q(xk)
∇q(xk)T A∇q(xk)

. (9.24)

110 Chapter 9. Solving Constrained Subproblems

Formula (9.24) used in the BB method for defining the step at iteration k+1 was used in the
classical Cauchy steepest descent method for defining the step at iteration k [78] and could
also be derived from the scaling strategy of Oren [213]. Raydan [223] proved the conver-
gence of the BB method for general strictly convex quadratic functions. The possibility of
obtaining superlinear convergence for arbitrary n was discarded by Fletcher [114]. How-
ever, the conditions were given for the implementation of the BB method for general
unconstrained minimization with the help of a nonmonotone procedure. Raydan [224]
defined this method in 1997 using the Grippo–Lampariello–Lucidi strategy [132]. He
proved global convergence and exhibited numerical experiments that showed that the
method was more efficient than classical CG methods for minimizing general functions.
These nice comparative numerical results were possible because although the CG method
of Hestenes and Stiefel continued to be the rule of choice for solving many convex quadratic
problems, its efficiency was hardly inherited by generalizations for minimizing general
functions. Therefore, a wide space existed for variations of the Barzilai–Borwein idea [64].
The SPG method of Birgin, Martínez, and Raydan [60, 61, 62] combines Barzilai–Borwein
(spectral) nonmonotone ideas with classical projected gradient strategies [40, 126, 173].
SPG is applicable to convex-constrained problems in which the projection onto the fea-
sible set is easy to compute. Since its appearance, the method has been intensively used
in applications, including optics [7, 26, 45, 46, 80, 89, 207, 208, 221, 251, 252, 253], sup-
port vector machines [86, 92, 237], optimal control [47], topology optimization [245],
compressive sensing [36, 37, 110, 178], geophysics [31, 41, 87, 95, 259], image restoration
[35, 68, 135], and atmospheric sciences [155, 206]. Moreover, it has been the object of
several spectral-parameter modifications, alternative nonmonotone strategies have been
suggested, convergence and stability properties have been elucidated, and it has been com-
bined with other algorithms for different optimization problems.

Fletcher [115] introduced a limited memory steepest descent method that generalizes
the spectral gradient method by using a few additional vectors of storage and obviously
can be extended to convex-constrained minimization. On the CG box-constrained side,
the CG active set method of Hager and Zhang [139] seems to be the best known alterna-
tive. Spectral residual methods that extend spectral gradient ideas to nonlinear systems of
equations were introduced by La Cruz, Martínez, and Raydan [170, 171].

9.6 Problems
9.1 In the discussion of SPG, we observed that a theorem exists that says every limit

point satisfies the optimality condition. For simplicity, we included a shorter the-
orem that guarantees that if limit points exist, at least one of them satisfies the op-
timality condition. Do you think that the results are equally relevant from the
practical point of view? Give arguments supporting positive and negative answers
to this question.

9.2 Define variations of the algorithms presented in this chapter in which the initial step
size at the current iteration depends on the successful step size at the previous one.
Furthermore, try to exploit “regularities” observed at different iterations regarding
step size acceptance.

9.3 Consider the following alternative to Algorithm 9.3. At each ordinary iteration,
we define as free variables those variables that verify (i < xk

i < ui (as always) plus
those that verify xi = (i with ∂ F /∂ xi < 0 and those that verify xi = ui with
∂ F /∂ xi > 0. We compute a descent direction d k for F in the face defined by

9.6. Problems 111

these free variables. For all i such that xk
i = (i with d k

i < 0 and for all i such that
xk

i = ui with d k
i > 0, we redefine d k

i = 0. Prove that d k is a descent direction. We
redefine d k again, taking the maximal step such that xk+ t d k is feasible. Prove that
t > 0. If the descent direction computed so far is smaller than a fixed small multiple
of the projected gradient, we discard this direction and we proceed to a projected
gradient iteration. Otherwise, we execute a sufficient descent line search. Prove
convergence, suggest different choices for d k , and write a code.

9.4 In the case of minimization with box constraints, consider the stopping criterion
in which one finishes the execution when no progress is obtained along coordinate
variations with small relative tolerances. Analyze this stopping criterion in connec-
tion with subproblems of Augmented Lagrangian methods.

9.5 Generalize the active set strategies to the case of general linear (equality and in-
equality) constraints. Moreover, extend the generalization to general nonlinear
constraints, pointing out the difficulties of implementation.

9.6 Try different strategies for the choice of steplength in projected gradient methods,
including random choices. Compare with the one-dimensional exact minimization
strategy in the case of convex quadratics. Develop an “artificial intelligence” strat-
egy that chooses the steplength according to the performance of different strategies
at previous iterations.

9.7 Analyze the strategy that consists of leaving the current face following gradient
components orthogonal to the current face (called “chopped gradient” by Friedlan-
der and Martínez [121] and “proportional gradient” by Dostál [101]). Show that,
in the case of a convex quadratic objective function, it is possible to define a leaving
criterion that guarantees returning to the current face a bounded number of times,
which leads to complexity conclusions.

9.8 Write subroutines implementing the active set stabilized Newton method and the
interior stabilized Newton method and compare.

9.9 Box-constrained optimization problems can be reformulated as unconstrained op-
timization problems by means of a nonlinear change of variables. To fix ideas, con-
sider the change of variables xi = y2

i to eliminate a constraint of the form xi ≥ 0.
The inconvenience of this approach is that derivatives with respect to null variables
are null, and so algorithms tend to stay artificially close to the boundary. A pos-
sible remedy for this drawback is to consider second derivatives information [9].
Discuss.

