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Chapter 4

Model Augmented
Lagrangian Algorithm

We will consider the optimization problem defined by

Minimize f (x)
subject to h(x) = 0,

g (x)≤ 0,
x ∈Ω,

(4.1)

where h :!n →!m , g :!n →!p , f :!n →! are continuous and Ω⊆!n is closed (not
necessarily convex!). In this chapter we do not require the existence of derivatives.

The Lagrangian function% will be defined by

% (x,λ,µ) = f (x)+
m∑

i=1
λi hi (x)+

p∑
i=1
µi gi (x) (4.2)

for all x ∈ Ω, λ ∈ !m , and µ ∈ !p
+, whereas the Augmented Lagrangian [144, 217, 228]

will be given by

Lρ(x,λ,µ) = f (x)+
ρ

2

" m∑
i=1

#
hi (x)+

λi

ρ

$2

+
p∑

i=1

#
max

%
0, gi (x)+

µi

ρ

&$2'
(4.3)

for all ρ> 0, x ∈Ω, λ∈!m , and µ ∈!p
+.

In order to understand the meaning of the definition (4.3), first consider the case in
which λ= 0 and µ= 0. Then,

Lρ(x, 0,0) = f (x)+
ρ
2
(‖h(x)‖2

2+ ‖g (x)+‖2
2
)
. (4.4)

Therefore, Lρ(x, 0,0) is the “external penalty function” that coincides with f (x) within
the feasible set and penalizes the lack of feasibility by means of the term

ρ
2
(‖h(x)‖2

2+ ‖g (x)+‖2
2
)
.

For big values of the penalty parameter ρ, the penalty term “dominates” f (x) and the
level sets of Lρ(x, 0,0) tend to be those of ‖h(x)‖2

2+ ‖g (x)+‖2
2 in the infeasible region.

Consider the problem

Minimize f (x) subject to h(x) = 0, (4.5)

31



32 Chapter 4. Model Augmented Lagrangian Algorithm

where
f (x) = (x1− 6)2+ x2

2

and
h(x) = (x2− (x1/4)

2)2+(x1/4− 1)2− 1,

illustrated in Figure 4.1. The level sets of h(x)2 are shown in Figure 4.2(a), while Fig-
ures 4.2(b)–4.2(d) show the level sets of Lρ(x, 0,0) for ρ ∈ {1,100,1,000}. It is easy to see
that, with ρ = 1,000, the penalty term ρh(x)2 dominates f (x) in Lρ(x, 0,0) and, there-
fore, the level sets depicted in Figures 4.2(a) and 4.2(d) are very similar (in fact, they are
indistinguishable).
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Feasible set

Level sets of the
objective function

Figure 4.1. Feasible set and level sets of the objective function of problem (4.5). Solution is
given by x∗ ≈ (5.3541,0.8507)T .

This means that, for x infeasible, the external penalty function (4.4) gives little infor-
mation about the objective function if ρ is very large. The Augmented Lagrangian (4.3)
may be seen as the penalized function in which “punishment” of infeasibility occurs, not
with respect to the true constraints h(x) = 0 and g (x)≤ 0 but with respect to the shifted
constraints h(x) +λ/ρ= 0 and g (x) +µ/ρ≤ 0. The reasons for employing shifted con-
straints, instead of the original ones, will be explained after the definition of the following
model algorithm.

4.1 Main model algorithm and shifts
The following algorithm is a basic Augmented Lagrangian algorithm for solving (4.1).
The algorithm proceeds by minimizing the Augmented Lagrangian function at each iter-
ation and updating Lagrange multipliers and penalty parameters between iterations. Its
generality will allow us to analyze several particular cases that address the problem (4.1)
under different conditions.
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Figure 4.2. Level sets of (a) h(x)2 and (b)–(d) level sets of Lρ(x, 0,0) for ρ ∈ {1,100,1,000},
respectively.

Algorithm 4.1.
Let λmin < λmax, µmax > 0, γ > 1, and 0< τ < 1. Let λ̄1 ∈ [λmin,λmax]m , µ̄1 ∈ [0,µmax]p ,
and ρ1 > 0. Initialize k← 1.

Step 1. Find xk ∈!n as an approximate solution of

Minimize Lρk
(x, λ̄k , µ̄k ) subject to x ∈Ω. (4.6)

Step 2. Compute new approximations of the Lagrange multipliers

λk+1 = λ̄k +ρk h(xk ) (4.7)

and
µk+1 =

*
µ̄k +ρk g (xk )

+
+

. (4.8)

Step 3. Define
V k

i =min
,
−gi (x

k ), µ̄k
i /ρk

-
for i = 1, . . . , p.

If k = 1 or

max
,
‖h(xk )‖,‖V k‖

-
≤ τmax

,
‖h(xk−1)‖,‖V k−1‖

-
, (4.9)

choose ρk+1 ≥ ρk . Otherwise, define ρk+1 = γρk .



34 Chapter 4. Model Augmented Lagrangian Algorithm

Step 4. Compute λ̄k+1 ∈ [λmin,λmax]m and µ̄k+1
i ∈ [0,µmax]p .

Step 5. Set k← k + 1 and go to Step 1.

Note that λk+1 andµk+1 are not used in this algorithm but will be used in more specific
versions to define λ̄k+1 and µ̄k+1, respectively.

Algorithm 4.1 is said to be conceptual because Step 1, which establishes that the it-
erate xk should be an “approximate minimizer” of the subproblem (4.6), is defined in a
deliberately ambiguous way. (Strictly speaking, any point xk ∈ !n could be accepted as
an “approximate minimizer”!) Constraints defined by x ∈ Ω will be said to be “hard,”
“simple,” or “nonrelaxable,” following the terminology of Audet and Dennis [24]. Other
authors prefer the terms “lower-level constraints” [8] or “subproblem constraints” [48].
The term “hard” only appears contradictory to “simple.” These constraints are generally
simple in the sense that it is not difficult to satisfy them. However, they are hard (or
nonrelaxable) in the sense that it is not admissible not to satisfy them.

The quantitiesρk are said to be “penalty parameters.” Ideally, at each “outer iteration”
one solves the subproblem (4.6) and, if enough progress has been obtained in terms of
improvement of feasibility and complementarity, the same penalty parameter may be used
at the next outer iteration (ρk+1 ≥ ρk ), while the penalty parameter must be increased if
progress is not satisfactory.

The quantities λ̄k
i /ρk ∈ ! and µ̄k

i /ρk ∈ !+ can be interpreted as “shifts.” In (4.6),
one penalizes not merely the violation of infeasibilities (this would be the case if the shifts
were null) but the infeasibilities modified by the shifts λ̄k

i /ρk and µ̄k
i /ρk . The idea is that,

even with a penalty parameter of moderate value, a judicious choice of the shifts makes
possible the coincidence, or near coincidence, of the solution to subproblem (4.6) with
the desired minimizer of (4.1). See Figure 4.3, where we compare the solution for the
problem

Minimize x subject to − x ≤ 0

to the solution for a subproblem with ρk = 1 and null shift (µ̄k = 0) and to the solution
for a subproblem with ρk = 1 and the “correct” shift (µ̄k = 1).

The shifts are corrected according to formulae (4.7) and (4.8). The idea is as follows.
Assume that xk came from solving (4.6) with shifts λ̄k/ρk and µ̄k/ρk . After this process,
if one verifies that the feasibility of an inequality has been violated by a quantity gi (xk )>
0, it is reasonable to think that the shift should be increased by a quantity equal to this
violation. This leads to the formula µk+1/ρk = µ̄k/ρk + gi (xk ) or, equivalently, µk+1 =
µ̄k+ρk g (xk ). Moreover, if the infeasibility has not been violated and−µk/ρk < gi (xk )≤
0, the suggestion is that the shift has been excessively big, and a reduction is necessary to
make it possible that gi (x) = 0 at the new iteration, with a possible improvement of the
objective function. Again, this suggests the updating rule µk+1/ρk = µ̄k/ρk + gi (xk ).
Finally, if gi (xk )<−µk/ρk , we guess that the shift was not necessary and should be null
from now on. Similar reasoning may be done with respect to formula (4.7), which updates
the shifts corresponding to the equality constraints.

Algorithms are conceivable in which the penalty parameters become fixed and only
shift modifications are made. These algorithms can be interpreted, under convexity as-
sumptions, as “proximal point” methods in the dual problem of (4.1), and their properties
have been exhaustively studied in textbooks and survey papers (see [39, 150, 228], among
others).

In Algorithm 4.1, not only are the shifts updated, but so are the penalty parameters,
according to the test (4.9). In (4.9), the progress of two different quantities is considered.
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−x ≤ 0Penalty function

x + 1
2 (−x)2+

Shifted penalty function

x + 1
2 (−x + 1)2+

f(x) = x

xk = x∗

xk = x∗

Figure 4.3. Comparison between the solution to the problem Minimize x subject to −x ≤
0 and (a) the solution to a subproblem with ρk = 1 and no shift (µ̄k = 0) and (b) the solution to a
subproblem with ρk = 1 and the “correct” shift (µ̄k = 1).

On the one hand, one needs progress in terms of the feasibility of equality constraints,
measured by ‖h(xk )‖. In the absence of improvement of this infeasibility measure, one
decides to increase the penalty parameter. On the other hand, through the test (4.9),
one also requires reduction of the quantities min{−gi (xk ), µ̄k

i /ρk}. Note that µ̄k
i /ρk ,

the shift already employed in (4.6), is nonnegative. Therefore, through consideration
of min{−gi (xk ), µ̄k

i /ρk}, we are implicitly testing the progress in terms of fulfillment
of the inequality constraint gi (x) ≤ 0. In fact, if gi (xk ) tends to zero, improvement of
min{−gi (xk ), µ̄k

i /ρk} very likely occurs, independently of the shifts µ̄k
i /ρk . The inter-

esting question is why we require this improvement even in the case that gi (xk ), 0 and
xk probably converges to a point at which gi (x) is inactive.

The answer is the following. If gi (xk ) is “very feasible” and the shift µ̄k
i /ρk is big,

very likely it was the shift that forced gi (xk ) to be very negative at the solution to (4.6),
since the subproblem penalizes deviations of the constraint from the shift, instead of mere
infeasibility. However, although we are getting a feasible point and we may get a feasible
point in the limit, since the feasible set is unnecessarily being reduced in this case, it is
unlikely that an optimum could be obtained in this way. Therefore, we need to decrease
the shift by increasing the penalty parameter.

According to the arguments above, it is sensible to choose the new Lagrange multi-
pliers λ̄k+1 and µ̄k+1 as λk+1 and µk+1, respectively. In general, this is what is done in
practice, but safeguards that guarantee the boundedness of {λ̄k} and {µ̄k} are necessary.
Safeguarded boundedness guarantees a crucial commonsense property: The shifts should
tend to zero when the penalty parameter tends to infinity. Clearly, if we are led to penal-
ize violations of the constraints with a very large ρk , it does not make sense to use shifts
bounded away from zero since, in this case, we would be punishing hardly suitable fea-
sible points. So, when ρk tends to infinity, common sense dictates that the shifts should
tend to zero, and the most straightforward way to guarantee this is to impose bounds on
the multipliers. Therefore, we may think of µ̄k and λ̄k as being “safeguarded multipliers.”
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In the Augmented Lagrangian context, some authors prefer, at each outer iteration, to
update either the multipliers or the penalty parameters, but not both. Our formulation
in Algorithm 4.1 allows this possibility, although in practice we prefer to update penalty
parameters and multipliers simultaneously.

The reader should observe that, for the motivation arguments given above, differen-
tiability of the objective function or the constraints has not been invoked. Penalty and
Augmented Lagrangian ideas are independent of the degree of smoothness of the func-
tions that define the problem. This characteristic makes possible the application of the
Augmented Lagrangian techniques to many nonstandard optimization problems.

4.2 Multipliers and inactive constraints
Despite the generality of Algorithm 4.1, it is possible to prove a useful property: Inequal-
ity multipliers corresponding to constraints that are inactive in the limit are asymptoti-
cally null, independent of the feasibility of the limit point. Note that, in the statement of
Theorem 4.1, the existence of a limit point x∗ is assumed. The existence of limit points in
this and several other results should be confirmed by employing, in general, boundedness
arguments concerning the feasible set.

Theorem 4.1. Assume that the sequence {xk} is generated by Algorithm 4.1 and K ⊂
∞
" is

such that limk∈K xk = x∗. Then, for k ∈ K large enough,

µk+1
i = 0 for all i = 1, . . . , p such that gi (x

∗)< 0. (4.10)

Proof. By (4.8), µk+1 ∈!p
+ for all k ∈".

Assume that gi (x∗)< 0 and let k1 ∈" and c < 0 be such that

gi (x
k )< c < 0 for all k ∈ K , k ≥ k1.

We consider two cases:

1. The sequence {ρk} tends to infinity.

2. The sequence {ρk} is bounded.

In the first case, since {µ̄k
i } is bounded, there exists k2 ≥ k1 such that, for all k ∈ K ,

k ≥ k2,
µ̄k

i +ρk gi (x
k )< 0.

By (4.8), this implies that

µk+1
i = 0 for all k ∈ K , k ≥ k2.

Consider now the case in which {ρk} is bounded. Then, (4.9) holds for all k large
enough and, consequently,

lim
k→∞

V k
i = 0.

Thus,
lim

k→∞

...min{−gi (x
k ), µ̄k

i /ρk}
...= 0.
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Since gi (xk )< c < 0 for k ∈ K large enough, we have that

lim
k∈K
µ̄k

i /ρk = 0.

Thus, since the sequence {ρk} is bounded,

lim
k∈K
µ̄k

i = 0.

Therefore, for k ∈ K large enough,

µ̄k
i +ρk gi (x

k )< 0.

By the definition (4.8) of µk+1, this implies that µk+1
i = 0 for k ∈ K large enough, as we

wanted to prove.

4.3 Review and summary
The basic Augmented Lagrangian algorithm is composed of outer iterations, and at each,
one minimizes the objective function plus a term that penalizes shifted constraints. The
use of shifts has the appeal of avoiding the necessity of increasing the penalty parameter
up to values at which the objective function becomes numerically neglected. Both the
penalty parameter and the shifts are updated after each outer iteration. In particular,
shifts are updated according to commonsense rules whose plausibility does not depend
on the differentiability of the problem.

4.4 Further reading
In the case in which h is a linear mapping, there are no inequality constraints, andΩ repre-
sents an n-dimensional box, subproblems generated by an Augmented Lagrangian method
based on the Powell–Hestenes–Rockafeller (PHR) [144, 217, 228]Augmented Lagrangian
function (4.3) are box-constrained quadratic optimization problems. This fact was ex-
haustively exploited by Dostál [102] in order to define “optimal” quadratic programming
methods. The use of different penalty functions (instead of the quadratic loss) and the
generalization of the shifting ideas give rise to many alternative Augmented Lagrangian
algorithms [5, 25, 32, 33, 77, 128, 149, 150, 164, 165, 195, 209, 210, 227, 249, 257, 260].
Most of these algorithms can be recommended for particular structures, but, for general
problems reported in popular collections, the classical PHR approach seems to be more
efficient and robust than nonclassical approaches [44, 104]. In this book, all the theory is
dedicated to properties on general (not necessarily convex) problems. When convexity is
assumed for the objective function and constraints, profound results can be obtained us-
ing the dual equivalence with the so-called proximal point methods. Iusem’s survey [150]
offers a good overview of this subject. An alternative Augmented Lagrangian approach
that deals with nonlinear semidefinite programming was proposed in [166] and gave rise
to the PENNON software package [166, 167, 168].

Sometimes, the penalty parameter is increased at the first iterations of the Augmented
Lagrangian method, but, at later iterations, smaller penalty parameters are admissible. An
extension of the basic Augmented Lagrangian method in which a nonmonotone strategy
for penalty parameters is employed may be found in [56]. In cases in which the objective
function takes very low values (perhaps going to −∞) at infeasible points, penalty and
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Augmented Lagrangian algorithms may be attracted by those points at early iterations
and practical convergence could be discouraged. This phenomenon is called “greediness”
in [43] and [75], where theoretically justified remedies are suggested. An application of
the Augmented Lagrangian philosophy to a relevant family of nonsmooth problems may
be found in [42].

4.5 Problems
4.1 Describe Algorithm 4.1 in terms of “shifts” instead of multipliers. Write explicitly

the updating rules for shifts. Replace the boundedness condition on the multipliers
with some condition on the shifts guaranteeing that shifts go to zero if multipliers
go to infinity.

4.2 Justify the updating formula for the Lagrange multipliers corresponding to equal-
ity constraints using commonsense criteria, as we did in the case of inequalities in
Section 4.1.

4.3 Analyze Algorithm 4.1 in the case that λ̄k = 0 and µ̄k = 0 for all k.

4.4 Analyze Algorithm 4.1 in the case that at the resolution of the subproblem, one
defines xk to be an arbitrary, perhaps random, point of !n .

4.5 Analyze Algorithm 4.1 in the case that there are no constraints at all (m = p = 0)
besides those corresponding to x ∈Ω.

4.6 Compare Algorithm 4.1 in the following two situations: when constraints x ∈ Ω
remain in the lower level and when they are incorporated into the relaxable set
h(x) = 0 and g (x)≤ 0 (if possible).

4.7 Give examples in which constraints x ∈Ω cannot be expressed as systems of equal-
ities and inequalities.

4.8 Assume that you are convinced that (4.7) is the reasonable way to update the equal-
ity Lagrange multipliers, but you are not convinced about the plausibility of (4.8).
Replace each constraint gi (x)≤ 0 in (4.1) with gi (x)+z2

i = 0, where zi is a slack vari-
able, and reformulate Algorithm 4.1 for the new problem, now without inequality
constraints. At the solution xk of the new formulation of (4.6), observe that it is
sensible (why?) to define

(zk
i )

2 =−gi (x
k )− µ̄k

i /ρk if gi (x
k )+ µ̄k

i /ρk < 0

and
(zk

i )
2 = 0 if gi (x

k )+ µ̄k
i /ρk ≥ 0.

Deduce that the infeasibility for the constraint gi (x) + z2
i = 0, or, equivalently,

gi (x)≤ 0, may be defined by
...min

,
−gi (x

k ), µ̄k
i /ρk

-...

and that, according to (4.7), the formula for the new multiplier µk+1 should be
given by (4.8). In other words, the scheme defined in Algorithm 4.1 with inequality
constraints can be deduced from the scheme defined for problems with equality
constraints only. See [39].
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4.9 Consider the following alternative definition for V k in Algorithm 4.1:

V k
i =min{−gi (x

k ),µk+1
i } for i = 1, . . . , p.

Discuss the adequacy of this definition and prove Theorem 4.1 for the modified
algorithm.

4.10 Consider the following alternative definition for V k in Algorithm 4.1:

V k
i = |µk+1

i gi (x
k )| for i = 1, . . . , p, (4.11)

and replace the test (4.9) with

max{‖h(xk )‖,‖g (xk )+‖,‖V k‖}≤ τmax{‖h(xk−1)‖,‖g (xk−1)+‖,‖V k−1‖}.
Discuss the adequacy of these alternatives and prove Theorem 4.1 for the modified
algorithm.

4.11 Define V k as in (4.11) and

W k
i = |λk+1

i hi (x
k )| for i = 1, . . . , m.

Replace the test (4.9) with

max{‖h(xk )‖,‖g (xk )+‖,‖V k‖,‖W k‖}
≤ τmax{‖h(xk−1)‖,‖g (xk−1)+‖,‖V k−1‖,‖W k−1‖}.

Discuss the adequacy of these alternatives and prove Theorem 4.1 for the modified
algorithm.

4.12 Assume that there exists c ∈! such that at Step 1 of Algorithm 4.1, we have that

Lρk
(xk , λ̄k , µ̄k )≤ c

for all k ∈". Prove that any limit point x∗ of {xk} verifies h(x∗) = 0 and g (x∗)≤ 0.

4.13 Consider constrained optimization problems that include at least one “semidefinite
constraint,” which says that a set of variables defines a symmetric positive semidefi-
nite matrix. Consider the possibility of coding that constraint as a set of upper-level
constraints of the form X = M M T , where M is an auxiliary matrix. Consider a
different possibility: setting positive semidefinitness as a lower-level constraint on
which we know how to project (how?). Analyze advantages and disadvantages and
repeat a copy of this problem in all chapters of the book. (Specific Augmented La-
grangian methods for this case may be found in Kocvara and Stingl [162] and Stingl
[241].)

4.14 Make your choices: Discuss reasonable values for the algorithmic parameters λmin,
λmax, µmax, ρ1, γ , and τ. Implement Algorithm 4.1 (in your favorite language)
in the case that Ω is a box and using some simple trial and error strategy for the
approximate minimization of the Augmented Lagrangian subproblem (4.6). Run
your code using simple examples and draw conclusions.

4.15 Try to exploit algorithmically the consequences of these facts:

(a) The original problem that you want to solve is equivalent to the problem in
which you add a fixed penalization to the objective function.

(b) In your specific problem a feasible initial point is easily available.





Chapter 5

Global Minimization
Approach

In this chapter, the subproblems (4.6) at Step 1 of Algorithm 4.1 will be interpreted in
terms of global optimization. Namely, at each outer iteration, we will assume that xk

is an approximate global minimizer of the Augmented Lagrangian on Ω. In principle,
the global minimization of the Augmented Lagrangian on Ω could be as difficult as the
original problem, since we make no assumptions on the geometry of this set. However, in
practice, the set Ω is, in general, simple enough to make global minimization on Ωmuch
easier than on the feasible set of problem (4.1).

The global minimization method for solving (4.1) considered in this chapter will be
Algorithm 4.1 with the following algorithmic assumption.

Assumption 5.1. For all k ∈", we obtain xk ∈Ω such that

Lρk
(xk , λ̄k , µ̄k )≤ Lρk

(x, λ̄k , µ̄k )+ εk for all x ∈Ω,

where the sequence of tolerances {εk}⊆!+ is bounded.

As in Chapter 4, in this chapter we only assume continuity of the objective function
and the functions that define the constraints.

5.1 Feasibility result
Assumption 5.1 says that, at each outer iteration, one finds an approximate global mini-
mizer of the subproblem. In principle, the tolerances εk do not need to be small at all. In
the following theorem, we prove that, even using possibly big tolerances, we obtain, in
the limit, a global minimizer of the infeasibility measure.

Theorem 5.1. Assume that {xk} is a sequence generated by Algorithm 4.1 under Assump-
tion 5.1. Let x∗ be a limit point of {xk}. Then, for all x ∈Ω, we have that

‖h(x∗)‖2
2+ ‖g (x∗)+‖2

2 ≤ ‖h(x)‖2
2+ ‖g (x)+‖2

2.

Proof. Since Ω is closed and xk ∈ Ω, we have that x∗ ∈ Ω. We consider two cases: {ρk}
bounded and ρk →∞.

If {ρk} is bounded, there exists k0 such that ρk = ρk0
for all k ≥ k0. Therefore, for all

k ≥ k0, (4.9) holds. This implies that ‖h(xk )‖ → 0 and ‖V k‖ → 0, so gi (xk )+→ 0 for all
i = 1, . . . , p. Thus, the limit point is feasible.

41
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Now, assume that ρk →∞. Let K⊂
∞
" be such that

lim
k∈K

xk = x∗.

Assume by contradiction that there exists x ∈Ω such that

‖h(x∗)‖2
2+ ‖g (x∗)+‖2

2 > ‖h(x)‖2
2+ ‖g (x)+‖2

2.

By the continuity of h and g , the boundedness of {λ̄k} and {µ̄k}, and the fact that ρk
tends to infinity, there exist c > 0 and k0 ∈" such that for all k ∈ K , k ≥ k0,

////h(xk )+
λ̄k

ρk

////
2

2
+
////
%

g (xk )+
µ̄k

ρk

&

+

////
2

2
>
////h(x)+

λ̄k

ρk

////
2

2
+
////
%

g (x)+
µ̄k

ρk

&

+

////
2

2
+ c .

Therefore, for all k ∈K , k ≥ k0,

f (xk )+
ρk

2

#////h(xk )+
λ̄k

ρk

////
2

2
+
////
%

g (xk )+
µ̄k

ρk

&

+

////
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> f (x)+
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2
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2
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////
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g (x)+
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+

////
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2

$
+
ρk c

2
+ f (xk )− f (x).

Since limk∈K xk = x∗, f is continuous, and {εk} is bounded, there exists k1 ≥ k0 such that,
for k ∈K , k ≥ k1,

ρk c
2
+ f (xk )− f (x)> εk .

Therefore,

f (xk )+
ρk

2
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////
%
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2
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////
%

g (x)+
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+

////
2

2

$
+ εk

for k ∈K , k ≥ k1. This contradicts Assumption 5.1.

5.2 Optimality result
Theorem 5.1 says that Algorithm 4.1, with the iterates defined by Assumption 5.1, finds
minimizers of the infeasibility. Therefore, if the original optimization problem is feasible,
every limit point of a sequence generated by the algorithm is feasible. Note that we only
used boundedness of the sequence of tolerances {εk} in the proof of Theorem 5.1. Now,
we will see that, assuming that εk tends to zero, it is possible to prove that, in the feasible
case, the algorithm asymptotically finds global minimizers of (4.1).

Theorem 5.2. Assume that {xk} is a sequence generated by Algorithm 4.1 under Assump-
tion 5.1 and limk→∞ εk = 0. Moreover, assume that, in the case that (4.9) holds, we always
choose ρk+1 = ρk . Let x∗ be a limit point of {xk}. Suppose that problem (4.1) is feasible. Then,
x∗ is a global minimizer of (4.1).
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Proof. Let K ⊂
∞
" be such that limk∈K xk = x∗. By Theorem 5.1, since the problem is

feasible, we have that x∗ is feasible. Let x ∈Ω be such that h(x) = 0 and g (x)≤ 0.
We consider two cases: ρk →∞ and {ρk} bounded.
Case 1 (ρk →∞). By the definition of the algorithm, we have that

f (xk )+
ρk

2

#////h(xk )+
λ̄k

ρk
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2

2
+
////
%

g (xk )+
µ̄k
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ρk
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λ̄k

ρk

////
2

2
+
////
%

g (x)+
µ̄k

ρk

&

+

////
2

2

$
+ εk

(5.1)

for all k ∈".
Since h(x) = 0 and g (x)≤ 0, we have that

////h(x)+
λ̄k

ρk

////
2

2
=
////
λ̄k

ρk

////
2

2
and

////
%

g (x)+
µ̄k

ρk

&

+

////
2

2
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ρk
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2

2
.

Therefore, by (5.1),

f (xk )≤ f (xk )+
ρk

2

#////h(xk )+
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ρk

////
2

2
+
////
%

g (xk )+
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+

////
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2
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≤ f (x)+
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2

2ρk
+
‖µ̄k‖2

2

2ρk
+εk .

Taking limits for k ∈ K and using that limk∈K ‖λ̄k‖/ρk = limk∈K ‖µ̄k‖/ρk = 0 and
limk∈K εk = 0, by the continuity of f and the convergence of xk , we get

f (x∗)≤ f (x).

Since x is an arbitrary feasible point, it turns out that x∗ is a global minimizer, as we
wanted to prove.

Case 2 ({ρk} bounded). In this case, there exists k0 ∈ " such that ρk = ρk0
for all

k ≥ k0. Therefore, by Assumption 5.1,
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for all k ≥ k0. Since g (x)≤ 0 and µ̄k/ρk0
≥ 0,
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Thus, since h(x) = 0,
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for all k ≥ k0. Let K1⊂∞K , λ∗ ∈ Rm , and µ∗ ∈!p be such that

lim
k∈K1

λ̄k = λ∗ and lim
k∈K1

µ̄k =µ∗.
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By the feasibility of x∗, taking limits in the inequality above for k ∈ K1, we get
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Therefore,
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Thus,
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i=1

%
gi (x
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µ̄∗i
ρk0

&2

+
≤ f (x)+

ρk0

2
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% µ̄∗i
ρk0
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. (5.2)

Now, if gi (x∗) = 0, since µ̄∗i /ρk0
≥ 0, we have that

%
gi (x

∗)+
µ̄∗i
ρk0

&

+
=
µ̄∗i
ρk0

.

Therefore, by (5.2),

f (x∗)+
ρk0
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gi (x∗)<0

%
gi (x

∗)+
µ̄∗i
ρk0

&2

+
≤ f (x)+

ρk0

2

∑
gi (x∗)<0

% µ̄∗i
ρk0

&2

. (5.3)

But, by (4.9), limk→∞max{gi (xk ),−µ̄k
i /ρk0
}= 0. Therefore, if gi (x∗)< 0, we necessarily

have that µ̄∗i = 0. Therefore, (5.3) implies that f (x∗) ≤ f (x). Since x was an arbitrary
feasible point, the proof is complete.

5.3 Optimality subject to minimal infeasibility
Under an additional assumption, this time on the rule for updating multipliers, a stronger
result can be proved that concerns the behavior of the algorithm for infeasible prob-
lems. We have already seen that, in this case, the algorithm considered in this chap-
ter converges to global minimizers of the infeasibility, measured by the sum of squares
‖h(x)‖2

2+ ‖g (x)+‖2
2. Under Assumption 5.2 below, we will show that limit points mini-

mize the objective function subject to minimal infeasibility.

Assumption 5.2. For all k ∈ ", if λk+1 /∈ [λmin,λmax]m or µk+1 /∈ [0,µmax]p , we choose
λ̄k+1 = 0 and µ̄k+1 = 0.

The case in which ‖λk+1‖+‖µk+1‖ is big, contemplated in Assumption 5.2, generally
corresponds to situations in which ρk is big too. As mentioned in Chapter 4, when infea-
sibility is severely penalized (ρk / 1), it makes no sense to employ shifts at all, because
one could be adding a heavy penalization to the objective function even at reasonably fea-
sible points. This argument, which supports the use of safeguards for the multipliers, can
also be used to support the sensibility of the decision made in Assumption 5.2 (see [59]).

Theorem 5.3. Assume that {xk} is a sequence generated by Algorithm 4.1 under Assump-
tions 5.1 and 5.2 and that limk→∞ εk = 0. Moreover, assume that, in the case in which (4.9)
holds, we always choose ρk+1 = ρk . Let x∗ be a limit point of {xk}. Then,

‖h(x∗)‖2
2+ ‖g (x∗)+‖2

2 ≤ ‖h(x)‖2
2+ ‖g (x)+‖2

2 for all x ∈Ω



5.5. Further reading 45

and

f (x∗)≤ f (x) for all x ∈Ω such that ‖h(x)‖2
2+ ‖g (x)+‖2

2 = ‖h(x∗)‖2
2+ ‖g (x∗)+‖2

2.

Proof. If h(x∗) = 0 and g (x∗)≤ 0, the first part of the thesis follows immediately and the
second part of the thesis follows from Theorem 5.2.

Let us assume from now on that ‖h(x∗)‖2
2 + ‖g (x∗)+‖2

2 = c > 0. This implies by
Step 3 that limk→∞ρk =∞. Since by Theorem 5.1 x∗ is a global minimizer of ‖h(x)‖2

2+
‖g (x)+‖2

2, it turns out that, for all k ∈ ", ‖h(xk )‖2
2 + ‖g (xk )+‖2

2 ≥ c . By (4.7), (4.8),
the boundedness of {λ̄k} and {µ̄k}, and the fact that ρk tends to infinity, we have that,
for all k large enough, either λk+1 /∈ [λmin,λmax]m or µk+1 /∈ [0,µmax]p . Therefore, by
Assumption 5.2, there exists k0 ∈ " such that for all k ≥ k0 we have that λ̄k = 0 and
µ̄k = 0.

Let K⊂
∞
{k0, k0+ 1, k0 + 2, . . . } be such that limk∈K xk = x∗.

By Assumption 5.1 and the fact that ‖λ̄k‖= ‖µ̄k‖= 0, we have that, for all x ∈Ω,

f (xk )+
ρk

2
[‖h(xk )‖2

2+ ‖g (xk )+‖2
2]≤ f (x)+

ρk

2
[‖h(x)‖2

2+ ‖g (x)+‖2
2]+ εk (5.4)

for all k ∈ K . In particular, if x ∈ Ω is such that ‖h(x)‖2
2 + ‖g (x)+‖2

2 = ‖h(x∗)‖2
2 +

‖g (x∗)+‖2
2, we have that x is a global minimizer of the infeasibility on Ω. Thus,

ρk

2
[‖h(xk )‖2

2+ ‖g (xk )+‖2
2]≥

ρk

2
[‖h(x)‖2

2+ ‖g (x)+‖2
2].

Therefore, by (5.4) and Assumption 5.1,

f (xk )≤ f (x)+ εk for all k ∈ K .

By the continuity of f , taking limits on both sides of this inequality, we obtain the desired
result.

5.4 Review and summary
The Augmented Lagrangian paradigm can be used for solving global optimization prob-
lems. The only requirement is that we need to use a global optimization procedure for
solving the subproblems. Theorem 5.1 indicates that we can always expect to find feasible
points (if they exist) if we globally solve the subproblems, even with a loose tolerance. If
the original problem is feasible, the global form of the Augmented Lagrangian method
finds global solutions. Moreover, with a special safeguard of the Lagrange multipliers, the
method finds global minimizers subject to minimal infeasibility.

5.5 Further reading
Global optimization has many applications in all branches of engineering, sciences, and
production. Several textbooks addressing different aspects of global optimization theory
and applications are available [28, 117, 123, 148, 239, 246, 250, 258]. Useful review papers
have also appeared [118, 211]. In [49], global minimizers of linearly constrained subprob-
lems are computed α-BB method [3, 4]. In [226], Augmented Lagrangian box-constrained
subproblems are solved employing a stochastic population–based strategy that aims to
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guarantee global convergence. A variation of the algorithm introduced in this chapter,
with finite termination and finite detection of possible infeasibility, was introduced by
Birgin, Martínez, and Prudente [58]. Employing duality arguments, some authors (see,
for example, Burachik and Kaya [72] and [124]) transform the original constrained opti-
mization problem into a simpler problem whose variables are Lagrange multipliers and
penalty parameters. Applying subgradient techniques in the dual, convergence to global
solutions is obtained.

5.6 Problems
5.1 If the second derivatives of an unconstrained optimization problem evaluated at a

global minimizer are very big, a slight perturbation of the global minimizer could
represent a large increase in the objective function. In this sense, perhaps, local min-
imizers with small second derivatives should be preferred over global minimizers
with big second derivatives. Reformulate unconstrained minimization problems,
taking into account this robustness issue.

5.2 Discuss the following apparent paradox: You need to solve the subproblems only
very loosely if you want only to minimize the infeasibility (Theorem 5.1). In par-
ticular, it seems that, in order to minimize ‖h(x)‖2

2 + ‖g (x)+‖2
2, you do not need

to employ global optimization procedures at all for solving the subproblems. Does
this mean that global minimization of ‖h(x)‖2

2+‖g (x)+‖2
2 can be achieved without

using global optimization? Does this contradict the fact that for obtaining global
minimizers without further information one needs to evaluate the function on a
dense set?

5.3 Prove Theorem 5.2 without the assumption that ρk+1 = ρk when (4.9) holds.

5.4 Note that Assumption 5.2 says that, under some circumstances, it is sensible to
eliminate shifts and reduce the algorithm to the penalty method. Suggest alternative
tests that could be employed to decide to annihilate λ̄k and µ̄k .

5.5 Make your choices: Implement Algorithm 4.1 with the assumptions made in this
chapter. Consider the possibility of using some heuristic for obtaining an approxi-
mate global minimizer of the Augmented Lagrangian at Step 1. Run simple exam-
ples and draw conclusions.

5.6 Employ your code to solve problems in which the feasible region is empty. Observe
whether it behaves as described by the theorems presented in this chapter.

5.7 Discuss the application of the algorithm and theory presented in this chapter to the
capacity expansion planning problem [176] presented in Chapter 2. Note that the
binary-variable constraints may be modeled as nonlinear constraints, but this does
not prevent the use of mixed-integer techniques in the solution process.

5.8 In terms of detecting infeasibility, the pure penalty method seems to have better
convergence properties than the Augmented Lagrangian algorithm (why?). Sug-
gest a safeguarded updating procedure for the multipliers taking advantage of this
property.



Chapter 6

General Affordable
Algorithms

In the global optimization literature, algorithms that are designed to converge not to
global minimizers but to mere stationary points (in fact, not necessarily local minimizers)
are known as local algorithms. This denomination could be adopted with a warning that
local algorithms are generally guaranteed to converge in some sense to stationary points of
the optimization problem, independently of the initial approximation. In this sense, they
are said to be globally convergent. Roughly speaking, “local algorithm” is synonymous
with the “affordable algorithm” of Chapter 3. In general, global optimization algorithms
are not reliable for solving large-scale problems, and, for small to medium-scale problems,
they are much slower than local algorithms. On the other hand, global optimization soft-
ware makes use of local algorithms when associated with branch-and-bound procedures
by means of which the search space for a global minimizer is reduced.

The denomination local algorithm does not allude to the concept of local convergence,
which is related to the convergence of the whole sequence if one starts close enough to
a solution. In fact, local algorithms are usually globally convergent in the sense of sta-
tionarity of limit points but are not necessarily locally convergent as they may generate
sequences that accumulate in more than one cluster point.

In this chapter, the description of a local algorithm based on the Augmented
Lagrangian corresponds to Algorithm 4.1 with a precise interpretation of Step 1, which
says that the subproblem solution xk is approximately a KKT point of the subproblem.

First, we consider lower-level constraints of the following form:

Ω= {x ∈!n | h(x) = 0, g (x)≤ 0},

where h :!n→!m , g :!n→!p , and f , h, g , h, and g admit continuous first derivatives
on !n . Consequently, the constrained optimization problem that we wish to solve is

Minimize f (x) subject to h(x) = 0, g (x)≤ 0, x ∈Ω. (6.1)

Note that the simple box constraints ' ≤ x ≤ u can be expressed trivially in the form
g (x)≤ 0.

Assumption 6.1 below defines the sense in which the approximate minimization at
Step 1 of Algorithm 4.1 should be interpreted in the local minimization context.

47
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Assumption 6.1. At Step 1 of Algorithm 4.1, we obtain xk ∈!n such that there exist vk ∈
!m and wk ∈!p

+ satisfying

‖∇Lρk
(xk , λ̄k , µ̄k )+∇h(xk )vk +∇g (xk )wk‖ ≤ εk , (6.2)

‖h(xk )‖ ≤ ε′k , and ‖min{−g (xk ), wk}‖ ≤ ε′k , (6.3)

where the sequence {εk} is bounded and the sequence {ε′k} tends to zero.

Assumption 6.1 establishes a criterion to measure the degree of feasibility and opti-
mality at the approximate solution of the subproblem

Minimize Lρk
(x, λ̄k , µ̄k ) subject to x ∈Ω. (6.4)

Sometimes it is useful to replace Assumption 6.1 with a condition that involves the
projection of the gradient∇Lρk

(xk , λ̄k , µ̄k ) onto the tangent approximation of the lower
feasible set Ω. Namely, the requirement for being an approximate solution of the sub-
problem is given in that case by

‖Pk (x
k −∇Lρk

(xk , λ̄k , µ̄k ))− xk‖ ≤ εk , (6.5)

‖h(xk )‖ ≤ ε′k , and ‖g (xk )+‖ ≤ ε′k , (6.6)

where the sequence {εk} is bounded, the sequence {ε′k} tends to zero, and Pk represents
the Euclidean projection operator onto Tk ,

Tk = {x ∈!n |∇h(xk )T (x − xk ) = 0 and g (xk )−+∇g (xk )T (x − xk )≤ 0}. (6.7)

The case in which limk→∞ εk = 0 corresponds to the AGP condition introduced by
Martínez and Svaiter [191]. The geometrical interpretation for (6.5) is given in Figure 6.1.
Note that, in the case that xk ∈ Ω and h and g are affine functions, the subproblem
constraints define a polytope that coincides with Tk . In particular, this is the case whenΩ
is a box (see Figure 6.2). It can be proved that (6.5), (6.6) imply (6.2), (6.3) (see problem 6.1).

It is interesting to interpret conditions (6.2) and (6.3) in the case in which the con-
straints of the subproblem define a box, i.e., in the case in which we have m = 0, p = 2n,

g
i
(x) = 'i − xi and g

n+i
(x) = xi − ui for all i = 1, . . . , n.

Methods that solve the subproblem (6.4) when the constraints define a box usually pre-
serve feasibility of all the iterates. Therefore, we will have g (xk ) ≤ 0 for all k. Now, let
us define, for i = 1, . . . , n,

wk
i =max

0
0,
∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )

1
and wk

n+i =max
0

0,− ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )

1
.

With these definitions, condition (6.2) is trivially satisfied (even for εk = 0). Now, let us
define, for i = 1, . . . , 2n,

zk
i =min{−g

i
(xk ), wk

i }.

By definition, if ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )≥ 0, we have that

wk
i =

∂
∂ xi

Lρk
(xk , λ̄k , µ̄k ), wk

n+i = 0, zk
i =min

"
xk

i − 'i ,
∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )

'
,

and zk
n+i = 0,
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g(x) ≤ 0

xk

xk − ∇f(xk)

Linear approximation
of the constraints at xk

AGP vector

Figure 6.1. The AGP vector tends to zero if xk tends to a local minimizer.

xk

xk − ∇f(xk)

PΩ(xk − ∇f(xk))

Ω

Figure 6.2. Gradient projection onto a box.

and, if ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )< 0, we have that

wk
i = 0, wk

n+i =−
∂
∂ xi

Lρk
(xk , λ̄k , µ̄k ), zk

i = 0,

and zk
n+i =min

"
ui − xk

i ,− ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )

'

for i = 1, . . . , n.



50 Chapter 6. General Affordable Algorithms

Therefore, condition (6.3) imposes that ‖ẑk‖ ≤ ε′k , where ẑk ∈!n is defined by

ẑk
i =





min
,

xk
i − 'i ,

∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )

-
if ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )≥ 0,

min
,

ui − xk
i ,− ∂

∂ xi
Lρk
(xk , λ̄k , µ̄k )

-
if ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )< 0

for i = 1, . . . , n. Thus,

ẑk
i =





...max{xk
i −

∂
∂ xi

Lρk
(xk , λ̄k , µ̄k ),'i}− xk

i

... if ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )≥ 0,

...min{xk
i −

∂
∂ xi

Lρk
(xk , λ̄k , µ̄k ), ui }− xk

i

... if ∂
∂ xi

Lρk
(xk , λ̄k , µ̄k )< 0

for i = 1, . . . , n. Therefore, ‖ẑk‖ is the norm of PΩ(xk−∇Lρk
(xk , λ̄k , µ̄k ))−xk , where PΩ

represents the projection onto the box Ω. This means that criterion (6.3) coincides with
the one ordinarily used for box-constrained minimization, based on projected gradients.

The following theorem plays the role of Theorem 4.1 with respect to the multipliers
associated with the subproblem inequality constraints g (x)≤ 0.

Theorem 6.1. Assume that the sequence {xk} is generated by Algorithm 4.1 under Assump-
tion 6.1, limk→∞ εk = 0, and K⊂

∞
" is such that limk∈K xk = x∗. Then, for k ∈ K large

enough there exists w̃k ∈!
p
+ such that

lim
k∈K

///∇Lρk
(xk , λ̄k , µ̄k )+∇h(xk )vk +∇g (xk )w̃k

///= 0 (6.8)

and
w̃k

i = 0 for all i ∈ {1, . . . , p} such that gi (x
∗)< 0. (6.9)

Moreover, w̃k
i = wk

i for all i ∈ {1, . . . , p} such that g
i
(x∗)≥ 0.

Proof. Assume that g
i
(x∗)< 0. By (6.3), since min{−g

i
(xk ), wk

i } tends to zero, we have
that wk

i tends to zero.
By the continuity of∇g

i
, this implies that

lim
k∈K

wk
i ∇g

i
(xk ) = 0

for all i ∈ {1, . . . , p} such that g
i
(x∗) < 0. Therefore, by (6.2) and εk → 0, we have

that (6.8) holds by taking

w̃k
i = 0 if g

i
(x∗)< 0 and w̃k

i = wk
i if g

i
(x∗)≥ 0

for i = 1, . . . , p . This completes the proof.

In the next theorem, we prove that, when the algorithm analyzed in this chapter ad-
mits a feasible limit point, this point satisfies the optimality AKKT condition. In this
case, the AKKT condition makes reference to all the constraints of the problem, not only
those given by h(x) = 0 and g (x) ≤ 0. More precisely, in the case of the problem of
minimizing f (x) subject to h(x) = 0, g (x) ≤ 0, h(x) = 0, and g (x) ≤ 0, according to
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Definition 3.1, we say that x∗ satisfies the AKKT condition when there exist sequences
{xk}⊆!n , {λk}⊆!m , {µk}⊆!p

+, {vk} ∈!m , and {wk} ∈!p
+ such that

lim
k→∞

xk = x∗, (6.10)

lim
k→∞

///∇ f (xk )+∇h(xk )λk+1+∇g (xk )µk+1 +∇h(xk )vk +∇g (xk )wk
///= 0, (6.11)

lim
k→∞

‖min{−g (xk ),µk+1}‖= 0, (6.12)

and
lim

k→∞
‖min{−g (xk ), wk}‖= 0. (6.13)

Of course, we can formally state conditions (6.11) and (6.12) writingλk andµk instead
of λk+1 and µk+1, respectively. We prefer to write λk+1 and µk+1 here in order to stress
the relation with the notation adopted in (4.7) and (4.8).

Theorem 6.2. Assume that the sequence {xk} is generated by Algorithm 4.1 with Assump-
tion 6.1 for the minimization of f (x) subject to h(x) = 0, g (x)≤ 0, h(x) = 0, and g (x)≤ 0
and K⊂

∞
" is such that limk∈K xk = x∗ and x∗ is feasible. Moreover, assume that the bounded

sequence {εk} in Assumption 6.1 is such that limk∈K εk = 0. Then, x∗ satisfies the AKKT
conditions for the optimization problem.

Proof. By (6.2) and straightforward calculations using the definitions (4.7) and (4.8) of
λk+1 and µk+1, we have that

lim
k∈K

///∇ f (xk )+∇h(xk )λk+1+∇g (xk )µk+1 +∇h(xk )vk +∇g (xk )wk
///= 0. (6.14)

Moreover, by Theorem 4.1, we have that limk∈K ‖min{−g (xk ),µk+1}‖ = 0. Therefore,
by the feasibility of x∗ and (6.3), it turns out that x∗ is an AKKT point, as we wanted to
prove.

Theorem 6.2 induces a natural stopping criterion for Algorithm 4.1 under Assump-
tion 6.1. Given ε> 0, it is sensible to stop (declaring success) when

///∇ f (xk )+∇h(xk )λk+1+∇g (xk )µk+1+∇h(xk )vk +∇g (xk )wk
///≤ ε, (6.15)

‖h(xk )‖ ≤ ε,‖min{−g (xk+1),µk+1}‖ ≤ ε, (6.16)

‖h(xk )‖ ≤ ε, and ‖min{−g (xk+1), wk}‖ ≤ ε. (6.17)

Of course, different tolerances may be used in (6.15), (6.16), and (6.17).

Corollary 6.1. Under the assumptions of Theorem 6.2, if x∗ is a feasible limit point of a
sequence generated by Algorithm 4.1, and x∗ fulfills the CPLD constraint qualification, then
x∗ is a KKT point of the problem.

Proof. The proof is a consequence of Theorems 3.6 and 6.2.



52 Chapter 6. General Affordable Algorithms

Constrained optimization algorithms have two goals: finding feasible points and min-
imizing the objective function subject to feasibility. The behavior of algorithms with re-
spect to feasibility thus demands independent study. Employing global optimization tech-
niques, we saw in Chapter 5 that one necessarily finds global minimizers of the infeasibil-
ity, a property that cannot be guaranteed using affordable local optimization procedures.
In the next theorem, we prove that, by means of Algorithm 4.1 under Assumption 6.1,
we necessarily find stationary points of the sum of squares of infeasibilities. The reader
will observe that we do not need εk → 0 for proving this important property.

Theorem 6.3. Assume that the sequence {xk} is obtained by Algorithm 4.1 under Assump-
tion 6.1. Let x∗ be a limit point of {xk}. Then, x∗ satisfies the AKKT condition of the problem

Minimize ‖h(x)‖2
2+ ‖g (x)+‖2

2 subject to h(x) = 0, g (x)≤ 0. (6.18)

Proof. Since h and g are continuous and, by Assumption 6.1, limk→∞ ε
′
k = 0, we have

that h(x∗) = 0 and g (x∗)≤ 0.
If the sequence {ρk} is bounded, we have by (4.9), that limk→∞ ‖h(xk )‖ =

limk→∞‖g (xk )+‖ = 0. Thus, the gradient of the objective function of (6.18) vanishes.
This implies that KKT (and, hence, AKKT) holds with null Lagrange multipliers corre-
sponding to the constraints.

Let us consider the case in which ρk tends to infinity. Defining

δk = ∇ f (xk )+
m∑

i=1
(λ̄k

i +ρk hi (x
k ))∇hi (x

k )+
p∑

i=1
max{0, µ̄k

i +ρk gi (x
k )}∇gi (x

k )

+
m∑

i=1
vk

i ∇hi (x
k )+

p∑
i=1

wk
i ∇g

i
(xk )

(6.19)
by (6.2) and the fact that {εk} is bounded, we have that {‖δk‖} is bounded too.

Let K⊂
∞
" be such that limk∈K xk = x∗. By Theorem 6.1, we may assume, without

loss of generality, that wk
i = 0 for all i ∈ {1, . . . , p} such that g

i
(x∗) < 0. Therefore, for

all k ∈ K , we have that

δk = ∇ f (xk )+
m∑

i=1
(λ̄k

i +ρk hi (x
k ))∇hi (x

k )+
p∑

i=1
max{0, µ̄k

i +ρk gi (x
k )}∇gi (x

k )

+
m∑

i=1
vk

i ∇hi (x
k )+

∑
g

i
(x∗)=0

wk
i ∇g

i
(xk ).

Dividing by ρk , we obtain

δk

ρk
=

1
ρk
∇ f (xk )+

m∑
i=1

5
λ̄k

i

ρk
+ hi (x

k )

6
∇hi (x

k )+
p∑

i=1
max

7
0,
µ̄k

i

ρk
+ gi (x

k )
8
∇gi (x

k )

+
m∑

i=1

vk
i

ρk
∇hi (x

k )+
∑

g
i
(x∗)=0

wk
i

ρk
∇g

i
(xk )

and, since {‖δk‖} is bounded and ρk tends to infinity, we have that δk/ρk → 0.
If gi (x∗)< 0, since {µ̄k } is bounded andρk tends to infinity, we have that max{0, µ̄k

i /ρk
+ gi (xk )} = 0 for k ∈ K large enough. Therefore, by the boundedness of {∇ f (xk )} and
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{λ̄k}, δk/ρk → 0 implies that

lim
k∈K

////
m∑

i=1
hi (x

k )∇hi (x
k )+

∑
gi (x∗)≥0

max
"

0,
µ̄k

i

ρk
+ gi (x

k )
'
∇gi (x

k )

+
m∑

i=1

vk
i

ρk
∇hi (x

k )+
∑

g
j
(x∗)=0

wk
j

ρk
∇g

j
(xk )

////= 0.
(6.20)

If gi (x∗) = 0, we clearly have that, by the boundedness of {µ̄k} and {∇g (xk )},

lim
k∈K

max
"

0,
µ̄k

i

ρk
+ gi (x

k )
'
∇gi (x

k ) = 0.

Then, by (6.20), we have that

lim
k∈K

////
m∑

i=1
hi (x

k )∇hi (x
k )+

∑
gi (x∗)>0

max
"

0,
µ̄k

i

ρk
+ gi (x

k )
'
∇gi (x

k )

+
m∑

i=1

vk
i

ρk
∇hi (x

k )+
∑

g
j
(x∗)=0

wk
j

ρk
∇g

j
(xk )

////= 0.

But, if gi (x∗)> 0 and k ∈K is large enough, we have that

max
"

0,
µ̄k

i

ρk
+ gi (x

k )
'
= gi (x

k )+
µ̄k

i

ρk
;

thus

lim
k∈K

////
m∑

i=1
hi (x

k )∇hi (x
k )+

∑
gi (x∗)>0

9
µ̄k

i

ρk
+ gi (x

k )
:
∇gi (x

k )

+
m∑

i=1

vk
i

ρk
∇hi (x

k )+
∑

g
j
(x∗)=0

wk
j

ρk
∇g

j
(xk )

////= 0.

Therefore, since µ̄k
i /ρk → 0, we have

lim
k∈K

////
m∑

i=1
hi (x

k )∇hi (x
k )+

∑
gi (x∗)>0

gi (x
k )∇gi (x

k )

+
m∑

i=1

vk
i

ρk
∇hi (x

k )+
∑

g
j
(x∗)=0

wk
j

ρk
∇g

j
(xk )

////= 0.

This obviously implies that

lim
k∈K

////
m∑

i=1
hi (x

k )∇hi (x
k )+

∑
gi (x∗)≥0

gi (x
k )∇gi (x

k )

+
m∑

i=1

vk
i

ρk
∇hi (x

k )+
∑

g
j
(x∗)=0

wk
j

ρk
∇g

j
(xk )

////= 0. (6.21)
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But

∇[‖h(xk )‖2
2+ ‖g (xk )+‖2

2] = 2




m∑
i=1

hi (x
k )∇hi (x

k )+
∑

gi (x∗)≥0

gi (x
k )∇gi (x

k )


 .

Therefore, by (6.21), the limit point x∗ satisfies the AKKT condition of (6.18).

Corollary 6.2. Every limit point generated by Algorithm 4.1 under Assumption 6.1 at which
the constraints h(x) = 0, g (x) ≤ 0 satisfy the CPLD constraint qualification is a KKT point
of the problem of minimizing the infeasibility ‖h(x)‖2

2 + ‖g (x)+‖2
2 subject to h(x) = 0 and

g (x)≤ 0.

6.1 The algorithm with abstract constraints
We will finish this chapter by considering the case in which the lower-level set Ω, instead
of being defined by h(x) = 0 and g (x)≤ 0, is an arbitrary closed and convex set, possibly
without an obvious representation in terms of equalities and inequalities. In this case, it
may be convenient to define Step 1 of Algorithm 4.1 in a different way than that presented
in Assumption 6.1. Assumption 6.2 below gives the appropriate definition in this case.

Assumption 6.2. At Step 1 of Algorithm 4.1, we obtain xk ∈Ω such that
///PΩ(x

k −∇Lρk
(xk , λ̄k , µ̄k ))− xk

///≤ εk , (6.22)

where the sequence {εk} tends to zero.

Theorem 6.4. Assume that the sequence {xk} is generated by Algorithm 4.1 under Assump-
tion 6.2 for the minimization of f (x) subject to h(x) = 0, g (x)≤ 0, and x ∈Ω, withΩ closed
and convex. Assume that K ⊂

∞
" is such that limk∈K xk = x∗ and x∗ is feasible. Then,

lim
k∈K

///PΩ
?

xk −
*
∇ f (xk )+∇h(xk )λk+1+∇g (xk )µk+1

+@
− xk

///= 0 (6.23)

and
lim
k∈K

min{−gi (x
k ),µk

i+1}= 0 for all i = 1, . . . , p. (6.24)

Proof. By (6.22) and straightforward calculations using the definitions of λk+1 and µk+1,
we have that (6.23) holds. Moreover, by Theorem 4.1, we have that

lim
k∈K
‖min{−g (xk ),µk+1}‖= 0.

This completes the proof.

Theorem 6.4 provides another useful stopping criterion. Given ε> 0, we stop declar-
ing success when

///PΩ
?

xk −
*
∇ f (xk )+∇h(xk )λk+1+∇g (xk )µk+1

+@
− xk

///≤ ε, (6.25)

‖min{−g (xk ),µk+1}‖ ≤ ε, (6.26)
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and
‖h(xk )‖ ≤ ε. (6.27)

This is the criterion usually employed in practice when the lower-level constraints have
the box form '≤ x ≤ u.

It remains to prove the feasibility result that corresponds to Theorem 6.3 in the case
that Ω is an “abstract” closed and convex set. In analogy to Theorem 6.3, Theorem 6.5
below shows that the algorithm makes the best possible work in the process of trying to
find feasible points.

Theorem 6.5. Assume that the sequence {xk} is obtained by Algorithm 4.1 under Assump-
tion 6.2. Assume that x∗ is a limit point of {xk}. Then, x∗ is a stationary point (in the sense
of (3.31)) of

Minimize ‖h(x)‖2
2+ ‖g (x)+‖2

2 subject to x ∈Ω. (6.28)

Proof. If the sequence {ρk} is bounded, the desired result follows as in Theorem 6.3.
Assume that ρk →∞ and let K⊂

∞
" be such that limk∈K xk = x∗. By (6.22), for all

k ∈ K , we have that
/////PΩ

9
xk −

9
∇ f (xk )+ρk

A
∇h(xk )

9
h(xk )+

λ̄k

ρk

:

+∇g (xk )
B

g (xk )+
µ̄k

ρk

C

+

D::
− xk

/////≤ εk . (6.29)

Since ρk →∞, we have that 1/ρk < 1 for k large enough. Therefore, by (3.29), (6.29)
implies

/////PΩ

9
xk −

9
∇ f (xk )/ρk +∇h(xk )

9
h(xk )+

λ̄k

ρk

:

+∇g (xk )
B

g (xk )+
µ̄k

ρk

C

+

::
− xk

/////≤ εk (6.30)

for k ∈K large enough. Since ρk →∞ and {µ̄k} is bounded, we have that for k ∈ K large
enough, (gi (xk )+ µ̄k

i /ρk)+ = 0 whenever gi (x∗)< 0. Therefore, by (6.30),
/////PΩ

9
xk −

9
∇ f (xk )/ρk +∇h(xk )

9
h(xk )+

λ̄k

ρk

:

+
∑

gi (x∗)≥0

∇gi (x
k )
9

gi (x
k )+

µ̄k
i

ρk

:

+

66
− xk

//////
≤ εk (6.31)

for k ∈K large enough. By the boundedness of {λ̄k}, the continuity of∇ f ,∇h,∇g , and
PΩ, and, consequently, the uniform continuity of these functions on a compact set that
contains the points xk for all k ∈ K , since {εk} tends to zero, (6.31) implies

lim
k∈K

//////
PΩ


xk −


∇h(xk )h(xk )+

∑
gi (x∗)≥0

∇gi (x
k )gi (x

k )+




− xk

//////
= 0. (6.32)

This implies the thesis of the theorem.
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6.2 Review and summary
In this chapter, we considered the model Algorithm 4.1, where the approximate solution
of the subproblem is interpreted as the approximate fulfillment of its KKT condition. In
this way, we may use a standard affordable solver for solving the subproblems. According
to the theoretical results, if the sequence generated by the algorithm converges to a fea-
sible point, this point satisfies the AKKT condition. Moreover, some iterate satisfies, up
to any arbitrarily given precision, the KKT condition of the original problem. However,
since the original problem may be infeasible, it is useful to show that the limit points of
sequences generated by Algorithm 4.1 with the assumptions of this chapter are stationary
points of the infeasibility measure (probably local or even global minimizers of infea-
sibility). Assumptions 6.1 and 6.2 represent different instances of the main algorithm,
corresponding to different definitions of the subproblem constraints.

6.3 Further reading
Using an additional smoothness (generalized Kurdyka–Lojasiewicz) condition, the fulfill-
ment of a stronger sequential optimality condition by the Augmented Lagrangian method
was proved by Andreani, Martínez, and Svaiter [18]. The CAKKT defined in [18] states,
in addition to the usual AKKT requirements, that the products between multipliers and
constraint values tend to zero. CAKKT is strictly stronger than AKKT. Since stopping
criteria based on sequential optimality conditions are natural for every constrained opti-
mization algorithm, the question arises of whether other optimization algorithms gener-
ate sequences that satisfy AKKT. Counter-examples and results in [15] indicate that for
algorithms based on sequential quadratic programming the answer is negative. The be-
havior of optimization algorithms in situations where Lagrange multipliers do not exist
at all is a subject of current research (see [15]).

6.4 Problems
6.1 Prove that (6.5), (6.6) implies (6.2), (6.3).

6.2 Work on the calculations to prove (6.14) using (6.2) and the definitions (4.7) and
(4.8) of λk+1 and µk+1.

6.3 Formulate Algorithm 4.1 with the assumptions of this chapter for the case in whichΩ
is a box. Suggest a projected gradient criterion for deciding to stop the iterative sub-
problem solver.

6.4 Observing that, for proving Theorem 6.3, it is not necessary to assume that εk →
0, define a version of Algorithm 4.1 in which εk is a function of the infeasibility
measure ‖h(xk )‖+ ‖g (xk )+‖ (see Martínez and Prudente [188]).

6.5 Formulate Algorithm 4.1 with the assumptions of this chapter for the case in which
p = 0 andΩ=!n . Observe that, if εk = 0, the stopping condition for the subprob-
lem is a nonlinear system of equations. Formulate Newton’s method for this system
and identify causes for ill-conditioning of the Newtonian linear system when ρk is
large. Decompose the system in order to eliminate the ill-conditioning.

6.6 Suppose that your constrained optimization problem is feasible and that the only
stationary points of the infeasibility are the feasible points. Assume that the se-
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quence {xk} is obtained by Algorithm 4.1 under Assumption 6.1. Assume that
K⊂
∞
" is such that limk∈K xk = x∗. Discuss the following arguments:

(a) By Theorem 6.3, x∗ feasible.
(b) By (a) and Theorem 4.1, limk∈K max{‖h(xk )‖,‖Vk‖}= 0.
(c) As a consequence of (a), (b), and (4.9), {ρk} remains bounded.
(d) Hence, unboundedness of the penalty parameters occurs only in the case of

infeasibility.

Transform these (wrong) arguments in a topic of research.

6.7 Prove (6.23).

6.8 Complete the details of the proof of Theorem 6.5.

6.9 In many nonlinear optimization problems, restoring feasibility is easy because there
exists a problem-oriented procedure for finding feasible points efficiently. This
possibility can be exploited within the Augmented Lagrangian framework in the
choice of the initial point for solving the subproblems. Namely, one can choose
that initial approximation as the result of approximately restoring feasibility start-
ing from the Augmented Lagrangian iterate xk−1. In order to take advantage of
this procedure, the penalty parameter should be chosen in such a way that the
Augmented Lagrangian function decreases at the restored point with respect to its
value at xk−1. Define carefully this algorithm and check the convergence theory.
(This idea approximates the Augmented Lagrangian framework to the so-called in-
exact restoration methods and other feasible methods for constrained optimization
[1, 53, 111, 129, 159, 172, 185, 187, 197, 198, 199, 229, 230, 231].)

6.10 It is numerically more attractive to solve (4.6) dividing the Augmented Lagrangian
by ρk , at least when this penalty parameter is large. Why? Formulate the main
algorithms in this form and modify the stopping criterion of the subproblems con-
sequently.

6.11 The process of solving (4.6) with a very small tolerance for convergence can be
painful. Suggest alternative practical stopping criteria for the subproblems in ac-
cordance (or not) with the theory. (Hints: Relative difference between consecutive
iterates and lack of progress during some iterations.) Discuss the theoretical and
practical impact of the suggested modifications.

6.12 In the context of the problem above, suggest a stopping criterion for the subprob-
lems that depends on the best feasibility-complementarity achieved at previous outer
iterations. Note that it may not be worthwhile to solve subproblems with great pre-
cision if we are far from optimality.

6.13 In the case of convergence to a nonfeasible point, the penalty parameter goes to in-
finity and, consequently, it is harder and harder to solve the subproblems (4.6) with
the given stopping criterion. Why? However, probable infeasibility can be detected
evaluating optimality conditions of the sum of squares of infeasibities subject to the
lower-level constraints. Add this test to Algorithm 4.1. Discuss the possible effect
of this modification in numerical tests. Note that you need a test of stationarity
for the infeasibility measure with relative big value of the sum of squares (two tol-
erances are involved).
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6.14 Study classical acceleration procedures for sequences in !n and apply these proce-
dures to the choice of initial points for solving the Augmented Lagrangian subprob-
lems. Hint: See Brezinski and Zaglia [70] and the DIIS method of Pulay [218].

6.15 Study different ways of exploiting parallelization in Augmented Lagrangian algo-
rithms, for example, using different initial points in parallel at the solution of the
subproblems or solving subproblems with different penalty parameters simultane-
ously.


