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and
Θ ′′ + µ2Θ = 0, (31)

respectively. Equation (30) is an Euler equation and has the solution
R(r ) = k1rµ + k2r−µ , (32)

while equation (31) has the solution
Θ (θ ) = c1 sin(µθ ) + c2 cos(µθ ) . (33)

In order for Θ to be periodic with period 2π , it is necessary for µ to be a positive integer n.
Since µ = n is a positive integer, it follows that the solution r−µ in equation (32) becomes
unbounded as r → 0 and so must be discarded. Consequently, k2 = 0 and the appropriate
solutions of equation (20) are

un(r, θ ) = rn cos(nθ ) , vn(r, θ ) = rn sin(nθ ) , n = 1, 2, . . . . (34)

These functions, together with u0(r, θ ) = 1, form a set of fundamental solutions for the present
problem.
In the usual way, we now assume that u can be expressed as a linear combination of the

fundamental solutions; that is,

u(r, θ ) =
c0
2 +

∞∑

n=1
rn(cn cos(nθ ) + kn sin(nθ ) ) . (35)

The boundary condition (19) then requires that

u(a, θ ) =
c0
2 +

∞∑

n=1
an(cn cos(nθ ) + kn sin(nθ ) ) = f (θ ) (36)

for 0 ≤ θ < 2π . The function f may be extended outside this interval so that it is periodic
with period 2π and therefore has a Fourier series of the form (36). Since the extended function
has period 2π , we may compute its Fourier coefficients by integrating over any period of the
function. In particular, it is convenient to use the original interval (0, 2π ) ; then

ancn = 1
π

∫ 2π

0
f (θ ) cos(nθ )dθ , n = 0, 1, 2, . . . ; (37)

ankn = 1
π

∫ 2π

0
f (θ ) sin(nθ )dθ , n = 1, 2, . . . . (38)

With this choice of the coefficients, equation (35) represents the solution of the boundary
value problem of equations (19) and (20). Note that in this problem we needed both sine and
cosine terms in the solution. This is because the boundary data were given on 0 ≤ θ < 2π
and have period 2π . As a consequence, the full Fourier series is required, rather than sine or
cosine terms alone.

Problems
1. a. Find the solution u( x , y) of Laplace’s equation in the
rectangle 0 < x < a, 0 < y < b, that satisfies the boundary
conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,
u( x , 0) = 0, u( x , b) = g( x) , 0 < x < a.

b. Find the solution if

g( x) =
{
x , 0 ≤ x ≤ a/2,
a − x , a/2 ≤ x ≤ a.

G c. For a = 3 and b = 1, plot u versus x for several values

of y and also plot u versus y for several values of x . (Use
enough terms in the Fourier series to accurately approximate the
nonhomogeneous boundary condition.)
G d. Plot u versus both x and y in three dimensions. Also draw
a contour plot showing several level curves of u( x , y) in the xy-
plane.

2. Find the solution u( x , y) of Laplace’s equation in the rectangle
0 < x < a, 0 < y < b, that satisfies the boundary conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,
u( x , 0) = h( x) , u( x , b) = 0, 0 < x < a.
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3. a. Find the solution u( x , y) of Laplace’s equation in the
rectangle 0 < x < a, 0 < y < b, that satisfies the boundary
conditions

u(0, y) = 0, u(a, y) = f ( y) , 0 < y < b,
u( x , 0) = h( x) , u( x , b) = 0, 0 < x < a.

Hint: Consider the possibility of adding the solutions of two
problems, one with homogeneous boundary conditions except
for u(a, y) = f ( y) , and the other with homogeneous boundary
conditions except for u( x , 0) = h( x) .
b. Find the solution if h( x) = ( x/a) 2 and f ( y) = 1− y/b.
G c. Let a = 2 and b = 2. Plot the solution in several ways:
u versus x (for a uniform sample of y values), u versus y (for a
uniform sample of x values), u versus both x and y, and a contour
plot.

4. Show how to find the solution u( x , y) of Laplace’s equation in
the rectangle 0 < x < a, 0 < y < b, that satisfies the boundary
conditions

u(0, y) = k( y) , u(a, y) = f ( y) , 0 < y < b,
u( x , 0) = h( x) , u( x , b) = g( x) , 0 < x < a.

Hint: See Problem 3.
5. Find the solution u(r, θ ) of Laplace’s equation

urr + 1
r
ur + 1

r2
uθθ = 0, r > a, 0 < θ < 2π ,

outside the circle r = a, that satisfies the boundary condition
u(a, θ ) = f (θ ) , 0 ≤ θ < 2π ,

on the circle. Assume that u(r, θ ) is single-valued and bounded for
r > a.
6. a. Find the solution u(r, θ ) of Laplace’s equation in the
semicircular region r < a, 0 < θ < π , that satisfies the
boundary conditions

u(r, 0) = 0, u(r, π ) = 0, 0 < r < a,
u(a, θ ) = f (θ ) , 0 < θ < π.

Assume that u is single-valued and bounded in the given region.
b. Find the solution if f (θ ) = θ (π − θ ) .
G c. Let a = 2 and plot the solution in several ways: u versus
r , u versus θ , u versus both r and θ , and a contour plot.

7. Find the solution u(r, θ ) of Laplace’s equation in the circular
sector 0 < r < a, 0 < θ < α , that satisfies the boundary conditions

u(r, 0) = 0, u(r, α ) = 0, 0 < r < a,
u(a, θ ) = f (θ ) , 0 < θ < α.

Assume that u is single-valued and bounded in the sector and that
0 < α < 2π .
8. a. Find the solution u( x , y) of Laplace’s equation in the semi-
infinite strip 0 < x < a, y > 0, that satisfies the boundary
conditions

u(0, y) = 0, u(a, y) = 0, y > 0,
u( x , 0) = f ( x) , 0 < x < a

and the additional condition that u( x , y) → 0 as y → ∞.
b. Find the solution if f ( x) = x(a − x) .

N c. Let a = 5. Find the smallest value of y0 for which
u( x , y) ≤ 0.1 for all y ≥ y0.

9. Show that equation (24) has periodic solutions only if λ is real.
Hint: Let λ = −µ2, where µ = ν + iσ with ν and σ real.
10. Consider the problem of finding a solution u( x , y) of Laplace’s
equation in the rectangle 0 < x < a, 0 < y < b, that satisfies the
boundary conditions

ux (0, y) = 0, ux (a, y) = f ( y) , 0 < y < b,
uy( x , 0) = 0, uy( x , b) = 0, 0 < x < a.

This is an example of a Neumann problem.
a. Show that Laplace’s equation and the homogeneous
boundary conditions determine the fundamental set of solutions

u0( x , y) = c0,

un( x , y) = cn cosh
(nπ x

b

)
cos

(nπ y
b

)
, n = 1, 2, 3, . . . .

b. By superposing the fundamental solutions of part (a),
formally determine a function u satisfying the nonhomogeneous
boundary condition ux (a, y) = f ( y) . Note that when ux (a, y)
is calculated, the constant term in u( x , y) is eliminated, and there
is no condition from which to determine c0. Furthermore, it must
be possible to express f by means of a Fourier cosine series of
period 2b, which does not have a constant term. This means that

∫ b

0
f ( y)dy = 0

is a necessary condition for the given problem to be solvable.
Finally, note that c0 remains arbitrary, and hence the solution is
determined only up to this additive constant. This is a property of
all Neumann problems.

11. Find a solution u(r, θ ) of Laplace’s equation inside the circle
r = a that satisfies the boundary condition on the circle

ur (a, θ ) = g(θ ) , 0 < θ < 2π.

Note that this is a Neumann problem and that its solution is determined
only up to an arbitrary additive constant. State a necessary condition
on g(θ ) for this problem to be solvable by the method of separation
of variables (see Problem 10).
12. a. Find the solution u( x , y) of Laplace’s equation in the

rectangle 0 < x < a, 0 < y < b, that satisfies the boundary
conditions

u(0, y) = 0, u(a, y) = 0, 0 < y < b,
uy( x , 0) = 0, u( x , b) = g( x) , 0 < x < a.

Note that this is neither a Dirichlet nor a Neumann problem, but
a mixed problem in which u is prescribed on part of the boundary
and its normal derivative on the rest.
b. Find the solution if

g( x) =
{
x , 0 ≤ x ≤ a/2,
a − x , a/2 ≤ x ≤ a.

G c. Let a = 3 and b = 1. By drawing suitable plots, compare
this solution with the solution of Problem 1.
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13. a. Find the solution u( x , y) of Laplace’s equation in the
rectangle 0 < x < a, 0 < y < b, that satisfies the boundary
conditions

u(0, y) = 0, u(a, y) = f ( y) , 0 < y < b,
u( x , 0) = 0, uy( x , b) = 0, 0 < x < a.

Hint: Eventually, it will be necessary to expand f ( y) in a
series that makes use of the functions sin(π y/2b) , sin(3π y/2b) ,
sin(5π y/2b) , . . . (see Problem 39 of Section 10.4).
b. Find the solution if f ( y) = y(2b − y) .
G c. Let a = 3 and b = 2; plot several different views of the
solution.

14. a. Find the solution u( x , y) of Laplace’s equation in the
rectangle 0 < x < a, 0 < y < b, that satisfies the boundary
conditions

ux (0, y) = 0, ux (a, y) = 0, 0 < y < b,
u( x , 0) = 0, u( x , b) = g( x) , 0 < x < a.

b. Find the solution if g( x) = 1+ x2( x − a) 2.
G c. Let a = 3 and b = 2; plot several different views of the
solution.

15. Show that Laplace’s equation in polar coordinates is

urr + 1
r
ur + 1

r2
uθθ = 0.

Hint: Use x = r cos θ and y = r sin θ and the chain rule.
16. Show that Laplace’s equation in cylindrical coordinates is

urr + 1
r
ur + 1

r2
uθθ + uzz = 0.

Hint: Use x = r cos θ , y = r sin θ , z = z, and the chain rule.
17. Show that Laplace’s equation in spherical coordinates is

uρρ + 2
ρ
uρ + 1

r2
uθθ + 1

ρ2 sin2 φ
uθθ + cotφ

r2
uφ = 0.

Hint: Use x = ρ sinφ cos θ , y = ρ sinφ sin θ , z = ρ cos θ , and the
chain rule.

18. a. Laplace’s equation in cylindrical coordinates was found in
Problem 15. Show that axially symmetric solutions (i.e., solutions
that do not depend on θ ) satisfy

urr + 1
r
ur + uzz = 0.

b. Assuming that u(r, z) = R(r ) Z ( z) , show that R and Z
satisfy the equations

r R′′ + R′ + λ2r R = 0, Z ′′ − λ2Z = 0.

Note: The equation for R is Bessel’s equation of order zero with
independent variable λr .
19. Flow in an Aquifer. Consider the flow of water in a porous
medium, such as sand, in an aquifer. The flow is driven by the
hydraulic head, a measure of the potential energy of the water above
the aquifer. Let R : 0 < x < a, 0 < z < b be a vertical section
of an aquifer. In a uniform, homogeneous medium, the hydraulic head
u( x , z) satisfies Laplace’s equation

uxx + uzz = 0 in R. (39)

If water cannot flow through the sides and bottom of R, then the
boundary conditions there are

ux (0, z) = 0, ux (a, z) = 0, 0 < z < b (40)
uz( x , 0) = 0, 0 < x < a. (41)

Finally, suppose that the boundary condition at z = b is
u( x , b) = b + α x , 0 < x < a, (42)

where α is the slope of the water table.
a. Solve the given boundary value problem for u( x , z) .
G b. Let a = 1000, b = 500, and α = 0.1. Draw a contour plot
of the solution in R; that is, plot some level curves of u( x , z) .
G c. Water flows along paths in R that are orthogonal to the
level curves of u( x , z) in the direction of decreasing u. Plot some
of the flow paths.

A APPENDIX
Derivation of the Heat Conduction Equation In this section we derive the linear partial
differential equation that, to a first approximation at least, governs the conduction of heat
in solids. It is important to understand that the mathematical analysis of a physical situation
or process such as this ultimately rests on a foundation of empirical knowledge of the
phenomenon involved. The mathematician must have a place to start, so to speak, and this
place is furnished by experience.
Consider a uniform rod insulated on the lateral surfaces so that heat can flow only in

the axial direction. It has been demonstrated many times that if two parallel cross sections of
the same area A and different temperatures T1 and T2, respectively, are separated by a small
distance d, an amount of heat per unit time will pass from the warmer section to the cooler one.
Moreover, this amount of heat is proportional to the area A and to the temperature difference∣∣T2 − T1

∣∣ and is inversely proportional to the separation distance d . Thus

Amount of heat per unit time =
κ A

∣∣T2 − T1
∣∣

d
, (1)


