## Problems

In each of Problems 1 through 6, determine whether the method of separation of variables can be used to replace the given partial differential equation by a pair of ordinary differential equations. If so, find the equations.

1. $x u_{x x}+u_{t}=0$
2. $t u_{x x}+x u_{t}=0$
3. $u_{x x}+u_{x t}+u_{t}=0$
4. $\left(p(x) u_{x}\right)_{x}-r(x) u_{t t}=0$
5. $u_{x x}+(x+y) u_{y y}=0$
6. $u_{x x}+u_{y y}+x u=0$
7. Find the solution of the heat conduction problem

$$
\begin{array}{lrl}
100 u_{x x} & =u_{t}, & 0<x<1, \quad t>0 \\
u(0, t) & =0, & u(1, t)=0, \quad t>0 \\
u(x, 0) & =\sin (2 \pi x)-\sin (5 \pi x), & 0 \leq x \leq 1
\end{array}
$$

8. Find the solution of the heat conduction problem

$$
\begin{aligned}
u_{x x} & =4 u_{t}, \quad 0<x<2, \quad t>0 \\
u(0, t) & =0, \quad u(2, t)=0, \quad t>0 \\
u(x, 0) & =2 \sin (\pi x / 2)-\sin (\pi x)+4 \sin (2 \pi x), \quad 0 \leq x \leq 2
\end{aligned}
$$

Consider the conduction of heat in a rod 40 cm in length whose ends are maintained at $0^{\circ} \mathrm{C}$ for all $t>0$. In each of Problems 9 through 12, find an expression for the temperature $u(x, t)$ if the initial temperature distribution in the rod is the given function. Suppose that $\alpha^{2}=1$.
9. $u(x, 0)=50,0<x<40$
10. $u(x, 0)=\left\{\begin{array}{lr}x, & 0 \leq x<20, \\ 40-x, & 20 \leq x \leq 40\end{array}\right.$
11. $u(x, 0)=\left\{\begin{array}{rrr}0, & & 0 \leq x<10, \\ 50, & & 10 \leq x \leq 30, \\ 0, & & 30<x \leq 40\end{array}\right.$
12. $u(x, 0)=x, \quad 0 \leq x<40$
24. In solving differential equations, the computations can almost always be simplified by the use of dimensionless variables.
a. Show that if the dimensionless variable $\xi=x / L$ is introduced, the heat conduction equation becomes

$$
\frac{\partial^{2} u}{\partial \xi^{2}}=\frac{L^{2}}{\alpha^{2}} \frac{\partial u}{\partial t}, \quad 0<\xi<1, t>0
$$

b. Since $L^{2} / \alpha^{2}$ has the units of time, it is convenient to use this quantity to define a dimensionless time variable $\tau=\left(\alpha^{2} / L^{2}\right) t$. Then show that the heat conduction equation reduces to

$$
\frac{\partial^{2} u}{\partial \xi^{2}}=\frac{\partial u}{\partial \tau}, \quad 0<\xi<1, \quad \tau>0
$$

25. Consider the equation

$$
\begin{equation*}
a u_{x x}-b u_{t}+c u=0, \tag{25}
\end{equation*}
$$

where $a, b$, and $c$ are constants.
a. Let $u(x, t)=e^{\delta t} w(x, t)$, where $\delta$ is constant, and find the corresponding partial differential equation for $w$.
b. If $b \neq 0$, show that $\delta$ can be chosen so that the partial differential equation found in part a has no term in $w$. Thus, by a change of dependent variable, it is possible to reduce equation (25) to the heat conduction equation.
26. The heat conduction equation in two space dimensions is

$$
\alpha^{2}\left(u_{x x}+u_{y y}\right)=u_{t} .
$$

Assuming that $u(x, y, t)=X(x) Y(y) T(t)$, find ordinary differential equations that are satisfied by $X(x), Y(y)$, and $T(t)$.
27. The heat conduction equation in two space dimensions may be expressed in terms of polar coordinates as

$$
\alpha^{2}\left(u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}\right)=u_{t} .
$$

Assuming that $u(r, \theta, t)=R(r) \Theta(\theta) T(t)$, find ordinary differential equations that are satisfied by $R(r), \Theta(\theta)$, and $T(t)$.

