Aula 10 - Variáveis Aleatórias Contínuas

Definição

Uma variável aleatória é uma função que associa, a cada ponto pertencente a um espaço amostral (Ω) , um único número real.

Variável aleatória contínua

Uma quantidade X, associada a cada possível resultado do espaço amostral, é denominada **variável aleatória contínua**, se seu conjunto de valores é qualquer intervalo dos números reais, o que seria um conjunto não enumerável.

Exemplo: A distribuição de frequências da velocidade máxima diária do vento (m/s) em 2014, é apresentada a seguir:

0.2000 9. - 0.0630 0.0480

Velocidade do Vento

Tabela 3: distribuição de frequências da velocidade máxima do vento (m/s)

X_i	m_i	f_i	f_i'
2,00 ⊢ 4,00	3,00	11	0,0301
$4,00 \vdash 6,00$	5,00	46	0,1260
$6,00 \vdash 8,00$	7,00	146	0,4000
$8,00 \vdash 10,00$	9,00	100	0,2740
$10,00 \vdash 12,00$	11,00	35	0,0959
$12,00 \vdash 22,00$	17,00	27	0,0740
Total		365	1,000

$$\mathsf{Densidade} = \frac{\mathsf{freq. rel.}}{\mathsf{amplitude}}$$

Dado o histograma acima, obter aproximadamente, a porcentagem de dias com velocidade máxima do vento avaliada

- entre 4 e 8 (m/s)
- entre 6 e 10 (m/s)
- entre 2 e 22 (m/s)

entre
$$Gelo(m|s)$$

= $0,2000 \times 2 + 0,1370 \times 2 = 0,674 = 67,4%$

entre 2 e 22 (m/s) - o todo o intervalo
$$= 9.0150x2 + 9.0630x2 + 9.200x2 + 9.1370x2 + 9.0480x2 + 9.0074x10$$
 $= 1.000 = 100%$

$$= 1,000 = 100\%$$

Função densidade de probabilidade do pro

Condições para que uma função seja uma função densidade de probabilidade:

- (i) $f(x) \geq 0$, $\forall x \in D_f$
- (ii) A área entre o gráfico da função f e o eixo x é igual a 1, ou seja

$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

Consequências...

$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b)$$

Se $a = b = c$, então $P(X = c) = 0$

Exemplo: Seja uma função f(x) dada por:

$$f(x) = \begin{cases} 0 & \text{para} \quad x \le 0\\ ax^3 & \text{para} \quad 0 < x \le 2\\ 0 & \text{para} \quad x > 2 \end{cases}$$

em que a é uma constante.

Obter a de modo que f(x) seja uma função densidade de probabilidade de uma variável aleatória contínua X.

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_{-\infty}^{0} f(x) dx + \int_{0}^{\infty} f(x) dx + \int_{\infty}^{+\infty} f(x) dx$$

$$\int_{-\infty}^{\infty} ax^{3} dx = 1$$

$$\int_{0}^{\pi} ax^{3} dx = 1$$

$$\int_{0}$$

Exemplo: Seja uma função f(x) dada por:

$$f(x) = \begin{cases} 0 & \text{para} & x \le 0 \\ 0, 2 - 0, 02x & \text{para} & 0 < x \le 10 \\ 0 & \text{para} & x > 10 \end{cases}$$

- (a) Verifique que f(x) é uma função densidade de probabilidade; > S+0 // da=1
- (b) Construir o gráfico dessa função;
- (c) Calcular as porcentagens esperadas para
 - X entre 5 e 10 unidades:
 - X entre 3 e 5 unidades;
 - X entre 0 e 2 unidades;
 - X entre 0 e 10 unidades;

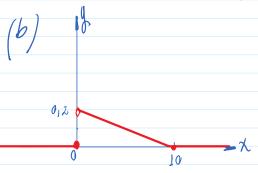
• X maior do que 10 unidades;

(a)
$$\int_{-\infty}^{0} \int_{0}^{1/2} \int_{0}^$$

$$= \left[0.21 - 0.01 \times^{2} \right]^{10} = 0.2.10 - 0.01 (10)^{10}$$

$$= 2 - 1 = 1$$

3. é uma função deridade de probabilidade (fodop)



(c)
$$\times$$
 ontru $5 \in 10$ unidades
$$\int_{5}^{10} Q_{2} - Q_{1}Q_{2} \times dx = \left[Q_{1}2x - Q_{1}Q_{2}^{2} \right]_{5}^{10}$$

$$= 92.10 - 901.100 - \left(Q_{1}2.5 - Q_{1}Q_{2} \cdot 25 \right)$$

$$= Q_{1}25 \quad (25\%)$$

$$X \text{ evitre } 3 e 5 \text{ whideades}$$

$$\int_{3}^{5} 92 - 992 \times du = [92x - 991x^{2}]_{3}^{5}$$

$$\int_{3}^{5} Q_{1}\lambda - Q_{2}Q_{1} \times d\lambda = \left[Q_{2}\lambda - Q_{2}Q_{1}\lambda^{2} \right]_{3}^{5}$$

$$= Q_{2}\lambda.5 - Q_{2}01.25 - \left(Q_{1}2.3 - Q_{2}01.9 \right)$$

$$= Q_{1}24 \quad \left(24\eta_{a} \right)$$

$$X \text{ entre } Q \in \mathcal{L} \text{ unidades}$$

$$\int_{0}^{L} Q_{1} \mathcal{L} - Q_{1} \mathcal{L} \times d\mathcal{L} = \left[Q_{1} \mathcal{L} \times -Q_{1} \mathcal{L} \times \mathcal{L}\right]_{0}^{L}$$

$$= Q_{1} \mathcal{L} \cdot \mathcal{L} - Q_{1} \mathcal{L} \cdot \mathcal{L} - \left(Q_{2} \mathcal{L} - Q_{1} \mathcal{L} \cdot Q\right)$$

$$= Q_{1} \mathcal{L} \cdot \mathcal{L} - Q_{1} \mathcal{L} \cdot \mathcal{L}$$

$$= Q_{1} \mathcal{L} \cdot \mathcal{L} - Q_{2} \mathcal{L} \cdot \mathcal{L}$$

$$= Q_{3} \mathcal{L} \cdot \mathcal{L} - Q_{3} \mathcal{L} \cdot \mathcal{L}$$

$$= Q_{3} \mathcal{L} \cdot \mathcal{L} - Q_{3} \mathcal{L} \cdot \mathcal{L}$$

$$\chi$$
 entre Q e 10 whidades
$$\int_{0}^{19} Q_{2} - Q_{2} Q_{2} \chi \, dx = \left[Q_{2} \chi - Q_{2} \right]_{0}^{19}$$

$$= 0, 2.10 - 0.01.100 - \left(Q_{2} Q_{2} - Q_{2} Q_{3} Q_{4} Q_{2} \right)$$

$$= 1.00 (100\%) \text{ is with } f.d. p.$$

A major do que
$$10$$
 junidades $\int_{10}^{+\infty} f(x) dx = 0$

Valor médio ou esperança matemática de X

$$\mu_X = \mathsf{E}(X) = \int_{-\infty}^{+\infty} x f(x) d(x)$$

Valor médio ou esperança matemática de uma função h(X)

$$\mathsf{E}\big[h(X)\big] = \int_{-\infty}^{+\infty} h(x)f(x)dx$$

Variância de X

$$\sigma_X^2 = \operatorname{Var}(X) = \operatorname{E}[(X - \mu_X)^2]$$

$$= \int_{-\infty}^{+\infty} (x - \mu_X)^2 f(x) dx$$

$$= \dots$$

$$= \operatorname{E}(X^2) - \left[\operatorname{E}(X)\right]^2$$

Função de distribuição acumulada

Dada a variável aleatória X, com função densidade de probabilidade f(x), temos que a função de distribuição acumulada é dada por:

$$F(t) = P(X \le t) = \int_{-\infty}^{t} f(x) dx.$$

Percentil:

 P_{100p} é o valor de t tal que F(t) = p

Caso particular: Mediana

 $Md_X = P_{50}$ é o valor de t tal que F(t) = 0, 5.

Exemplo: Calcular, supondo o modelo teórico,

$$f(x) = \begin{cases} 0 & \text{para} & x \le 0\\ ax^3 & \text{para} & 0 < x \le 2\\ 0 & \text{para} & x > 2 \end{cases}$$

 $f(x) = \begin{cases} 0 & \text{para} & x \le 0 \\ ax^3 & \text{para} & 0 < x \le 2 \\ 0 & \text{para} & x > 2 \end{cases}$

- \bullet o valor médio de $X(\mu_X)$
- \bullet E(X^2)
- \odot a variância e o desvio padrão de X.

$$\mathsf{E}\big[h(X)\big] = \int_{-\infty}^{+\infty} h(x)f(x)dx$$

$$\int_{0}^{4} z_{0} dx = \int_{0}^{4} \int_{0}^{2} z_{1}^{4} dx$$

$$= \int_{0}^{4} z_{0} dx = \int_{0}^{2} z_{1}^{4} dx$$

$$= \int_{0}^{4} \left[z_{1}^{5} \right]_{0}^{2} = \int_{0}^{4} \left[z_{1}^{5} - z_{1}^{5} \right] = \int_{0}^{4} \left[z_{1}^{5}$$

$$\begin{aligned}
(2) & E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx \\
&= \int_{-\infty}^{2} x^{2} | X^{3} dx | = \int_{-4}^{4} \int_{0}^{4} x^{5} dx \\
&= \int_{4}^{2} \left[x^{2} \right]_{0}^{4} = \int_{4}^{4} \left[x^{6} - Q^{6} \right]_{0}^{-2} \frac{8}{3} \\
(3) & Van.(x) = E(X^{4}) - [E(x)]^{2} \\
&= \frac{8}{3} - \left(\frac{8}{5} \right)^{2} = \frac{8}{75} = 21667
\end{aligned}$$

$$(3) & Van.(x) = E(X^{4}) - [E(x)]^{2} \\
&= \frac{8}{75} - \left(\frac{8}{5} \right)^{2} = \frac{8}{75} = 21667$$

Exercício: Para a função f(x), dada por:

$$f(x) = \begin{cases} 0 & \text{para} & x \le 0 \\ 0, 2 - 0, 02x & \text{para} & 0 < x \le 10 \\ 0 & \text{para} & x > 10 \end{cases}$$

Pede-se:

(a) Calcular μ_X

(b) Calcular
$$\sigma_X^2$$
.

$$\begin{aligned}
&\mathcal{D} & \text{manina, avalega, as literator:} \\
&(a) \quad \mathcal{U}_{x} = \mathcal{E}(x) = \int_{-\infty}^{+\infty} x \int_{0}^{+\infty} x \int_{0}^{+\infty} dx \\
&= \int_{-\infty}^{a} x \int_{0}^{+\infty} x \int_{0}^{+\infty} x \cdot \left(0.2 - 0.02x\right) dx + \int_{10}^{+\infty} x \int_{0}^{+\infty} x \int$$

b)
$$E(x^2) = \int_0^\infty x^2 (Q_x - Q_y Q_x x) dx = \int_0^{10} Q_x^2 x^4 - Q_y Q_x^3 dx$$

 $= \left[Q_x Q_x^3 - Q_y Q_x q \right]_0^{10} = Q_x^2 \cdot 1000 - Q_y Q_x^3 \cdot 10000$
 $= 200 - 200 = 800 - 600 = 200 = 50$
 $Q_x^2 = E(x^2) - E(x)]_x^2 = 50 - \left[\frac{10}{3} \right]_x^2 = \frac{50}{3} - \frac{150}{9} = \frac{150}{9}$
 $= \frac{50}{9}$
 $O_x = \sqrt{4} = \sqrt{4} = \sqrt{50}$
 $O_x = \sqrt{4} = \sqrt{50} = \sqrt{50}$

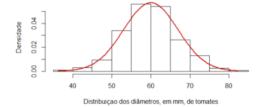
Distribuição normal

- Um dos modelos mais importantes de uma distribuição contínua de probabilidade;
- Representa, com boa aproximação, muitos fenômenos da natureza;
- Alguns exemplos de variáveis aleatórias contínuas que seguem distribuição normal (geralmente):
 - Peso: de matéria seca, de raiz, de animais, de pessoas, de frutos, de sacas de café,...
 - Altura: de árvores, plantas, animais;
 - DAP;
 - Produtividade: de cana-de-açúcar, de soja,...
 - Erros de medida em geral.

Um problema:

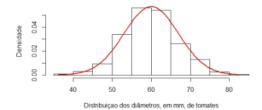
Foi criado no estado de São Paulo um programa para melhoria dos padrões comerciais e embalagens de hortifrutigranjeiros.

- Como parte desse programa pretende-se estabelecer um sistema de classificação para tomates oblongos quanto ao diâmetro.
- Foi feito, então, um levantamento amostral envolvendo diferentes variedades, propriedades, cidades e épocas, observando-se um calibre médio de tomates de 60 mm, variância de 49 mm² e distribuição conforme a figura a seguir.



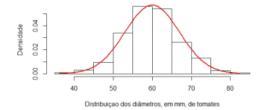
• Sistema I:

Classificação	Diâmetro	Porcentagem esperada
Pequeno	até 50 mm	%
Médio	De 50 a 60 mm	%
Grande	acima de 60 <i>mm</i>	%



Sistema II:

Classificação	Diâmetro	Porcentagem esperada			
Pequeno	até <i>mm</i>	20%			
Médio	De a <i>mm</i>	60%			
Grande	acima de <i>mm</i>	20%			



Sistema II:

Classificação	Diâmetro	Porcentagem esperada
Pequeno	até <i>mm</i>	20%
Médio	De a <i>mm</i>	60%
Grande	acima de <i>mm</i>	20%

Observações:

- As observações estão mais concentradas em torno do valor central e a concentração vai diminuindo a medida que os valores vão aumentando ou diminuindo;
- Distribuição em forma de sino;
- Distribuição simétrica em torno do seu ponto central;
- As distribuições amostrais de estatísticas como médias e proporções podem ser aproximadas pela distribuição normal ⇒ Inferência estatística
- Distribuições binomial e Poisson ⇒ aproximação através da distribuição normal
- Denominação: distribuição gaussinana ⇒ Karl F. Gauss (1777-1855).

Definição

Dizemos que uma variável aleatória X tem distribuição normal, com parâmetros μ e σ , em que $-\infty < \mu < \infty$ e $\sigma > 0$, se sua função densidade de probabilidade f<u>or dad</u>a por:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

Notação: $X \sim N(\mu, \sigma^2)$.

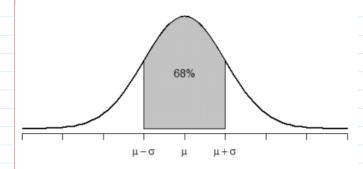
Pode-se demonstrar que:

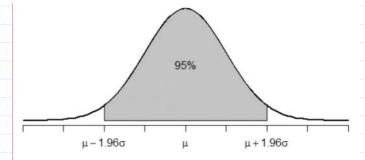
•
$$f_X(x) > 0$$

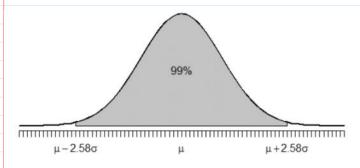
•
$$E(X) = \mu$$

•
$$Var(X) = \sigma^2$$

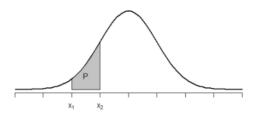
• $f_X(x)$ é simétrica ao redor de μ , ou seja, $f(\mu - x) = f(\mu + x)$ para todo x







A probabilidade de uma variável aleatória com distribuição normal tomar um valor entre dois pontos quaisquer, x_1 e x_2 , tal que $x_1 < x_2$, é igual a área sob a curva normal compreendida entre os dois pontos.



$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Sabendo-se que uma variável X= diâmetro, em mm, de um tomate tem distribuição N(60,49), calcular:

- (a) P(X < 50)
- (b) P(50 < X < 60)
- (c) P(X > 60)

Cálculo da integral ⇒ métodos numéricos

Distribuição normal padrão

Distribuição normal padrão

Se X uma variável aleatória com distribuição $\mathit{N}(\mu,\sigma^2)$, então a variável aleatória Z, definida por:

 $Z = \frac{X - \mu}{2}$

tem uma distribuição N(0,1), cuja função densidade de probabilidade é dada por:

 $f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}z^2}, \quad z \in \mathbb{R}.$

Observações:

- A nova distribuição tem média correspondente a origem e desvio padrão como medida de afastamento da média;
- $E(Z) = \mu_Z = 0$ e $Var(Z) = \sigma_Z^2 = 1$;
- Os valores correspondentes a $P(x_1 < X < x_2) = P(z_1 < Z < z_2)$ estão descritos em uma única tabela.

Exercício: Sabendo-se que $Z \sim N(0,1)$, usando a tabela da distribuição normal padrão, calcular:

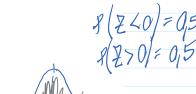
(b)
$$P(-3,01 < Z < 0)$$

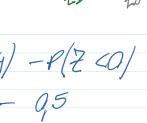
(c)
$$P(-3,01 < Z < 2,14)$$

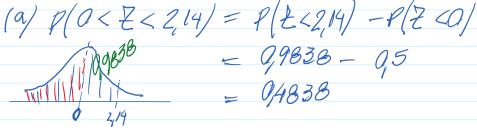
(d)
$$P(Z > 0)$$

(e)
$$P(Z > 1,00)$$

(f)
$$P(Z < -1,00)$$







$$(6) P(-3,01 \angle Z < 0) = P(Z<0) - P(Z<-3,01)$$

$$= 0,5 - 0,0013$$

$$= 0,4987$$

$$(c) P(-3,01<7<2,49) = P(Z<2,49) - P(Z<-3,01)$$

$$= 0,9838 - 0,0013$$

$$= 0,9825$$

$$(d) P(Z>0) = 0,5$$

(e)
$$P(Z>1,0)=1-P(Z<1,0)$$

= 1-0,8413
= 0,1587

Agora podemos calcular as probabilidades associadas aos intervalos correspondentes a variável X = diâmetro, em mm, de um tomate tem distribuição N(60, 49). XNN(6049)

- (a) P(X < 50)
- (b) P(50 < X < 60)
- (c) P(X > 60)

Assim, as porcentagens esperadas são dadas

313 (W) 11)	
(),,,	No North
24/0	$Z = \frac{\lambda - \mu}{2}$
por:	The state of the s

Classificação	Diâmetro	Porcentagem esperada
Pequeno	até 50 mm	7,64%
Médio	De 50 a 60 mm	12.36%
Grande	acima de 60 mm	50,0%

$$(a) P(X(50)) = P(X(-1,93)) = 0,0764$$

$$E = X - \mu = 50 - 60 = 40 = -1,93$$

$$(b) P(50 < x < 60) = P(-1,43 < Z < 0)$$

$$= P(X(-1,43)) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,0) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

$$= (2,5) - (2,5) = -1,43$$

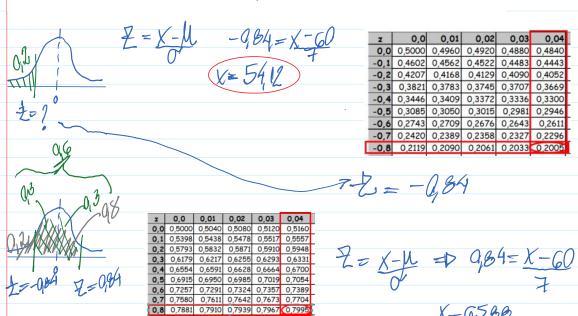
$$= (2,5) - (2,5) = -1,4$$

(c) $p(\sqrt{m}) = p(x > 0) = 05$

$$= 47236$$
(c) $P(X>Q) = P(Z>Q) = 0.5$

Exercício: Calcular os valores de X correspondentes às porcentagens esperadas, em que X = diâmetro, em mm, de um tomate e tem distribuição N(60, 49).

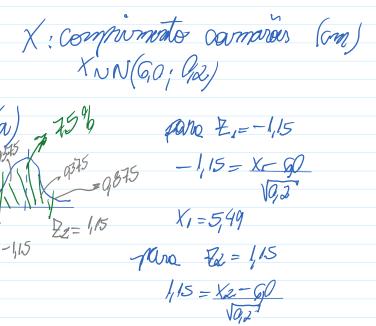
Classificação	Diâmetro	Porcentagem esperada
Pequeno	até <u>54,14</u> mm	20%
Médio	De5411 a (580 mm	60%
Grande	acima de 🔀 mm	20%



Exercício: O comprimento X, em cm, de *Litopenaeus schmitti* (camarão marinho), em condições normais na Lagoa do Ibiraquera, tem distribuição aproximadamente normal, com média de 6,0 cm e variância de 0,2 cm².

- (a) Qual o intervalo simétrico em torno da média, que conterá 75% dos comprimentos dos camarões?
- (b) Qual o comprimento c, que é superado por 7% dos camarões?

XNN (6,0,00)



z	0,0	0,01	0,02	0,03	0,04	0,05	ı		
0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	I		
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	I		
-0,2	0,4207	0,4168	0,4129	0,4090	0,4052	0,4013	I		
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	l		
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	I		
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	l		
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	l		
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	l		
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	l		
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	l		
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	l		
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251			
		20200	1110-100-1-7	11.000 Dad 0	V-0-00				
Z	0,0	0,01	0,02	0,03	0,04	0,05	l		
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	l		
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	l		
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987			
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368			
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	l		
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088			
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	I		
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	I		
0.0	0.7001	0.7010	0.7030	0.7047	0.700E	0.0022	ſ		

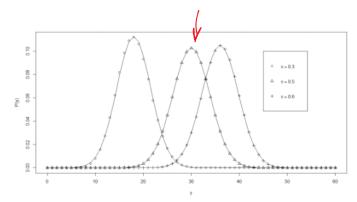
$\chi_{2} = 6.51$	
do 5,49 < X < 651	
w2	
0,93	
(b) 207 t=	Q - M
JIMMIN J	0/
0 7 - 148	4B =
221/10 N	, , ,

2	0,0	0.01	0,02	0,03	0,04	0,05	0,06	0,07	0,08
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997
1,3	0.9032	0,9049	0,9066	0,9082	0,9099	0,9115	0.9131	0.9147	0,9162
1.4	0.9192	0,9207	0.9222	0,9236	0.9251	0.9265	0.9279	0.9292	0.9306

Seja Y uma variável aleatória representando o número de sucessos em um total de n ensaios independentes e π a probabilidade de ocorrer sucesso em um ensaio. Então $Y \sim B(n;\pi)$. Observe os seguintes gráficos:

Página 14 de LCE0212-Estatística CA

total de n ensaios independentes e π a probabilidade de ocorrer sucesso em um ensaio. Então $Y \sim B(n; \pi)$. Observe os seguintes gráficos:



XNN (migg)

A aproximação normal com média $\mu = n\pi$ e variância $\sigma^2 = n\pi(1-\pi)$ aproxima-se bem das distribuições binomiais apresentadas!

Quando a aproximação é boa?

Quando a probabilidade π de ocorrer sucesso não está muito próxima de 0 ou de 1 e o número n de ensaios é grande, de tal modo que $n\pi \geq 20$.

O cálculo da probabilidade pela normal é feito utilizando-se uma distribuição $N(n\pi, n\pi(1-\pi))$.

Correção de continuidade

Consiste em somar e/ou subtrair 0,5 aos limites do intervalo para o qual desejamos calcular as probabilidades.

- Em muitas situações práticas o cálculo das probabilidades pode ser realizado sem levarmos em conta a correção de continuidade;
- Ignorar a correção para os casos em que $0,30 < \pi < 0,75$ e n maior do que 400.

Orientações:

- Subtrair 0,5 de X quando a probabilidade de X for $P(X \ge X_i)$;
- Acrescentar 0,5 de X quando a probabilidade de X for $P(X \le X_i)$;
- Acrescentar 0,5 de X quando a probabilidade de X for $P(X > X_i)$;
- Subtrair 0,5 de X quando a probabilidade de X for $P(X < X_i)$.

Exercício: Sabe-se que a probabilidade de um indivíduo inoculado contra o surto de gripe vir a ter uma reação séria indeseiável é de 0.05. Usando a

 $T = 0 \frac{1}{\sqrt{7}} = 200$ o contra $\frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7}} = \frac{1}{\sqrt{7$

Exercício: Sabe-se que a probabilidade de um indivíduo inoculado contra o surto de gripe vir a ter uma reação séria indesejável é de 0,05. Usando a aproximação normal à distribuição binomial, calcule a probabilidade de que mais de 16 indivíduos dentre 200 indivíduos inoculados tenham tais reações.

$$707/(1-1) = 200.0,05.095 = 9,5$$

$$\int_{X}^{12} \int_{X}^{12} \int_{X}^{12$$

$$\frac{Z = \frac{16 - 10}{\sqrt{97}} = \frac{195}{\sqrt{100}} = \frac{1 - \sqrt{9744}}{\sqrt{100}} = \frac$$

$$P(X7 | 6) = P(Z > 1,95)$$

= $1 - P(7 \le 1,95)$

$$=1-99744$$

XN Bin (200; 9,05) -> XN N(10, 9,5)

Exercício: Os ovos da produção de uma granja são classificados em grandes ou pequenos, conforme seu diâmetro. Verificou-se que 45% dos ovos são considerados grandes. Supondo que os ovos são colocados em caixas com 60 unidades, aleatoriamente, pergunta-se:

- (a) Em que porcentagem esperada de caixas teremos pelo menos 50% de XNN (MIO) ovos grandes? (50% é igual a 30 ovos).
- (b) Em que porcentagem de caixas teremos exatamente 50% de ovos

$$\pi = 0.45 \Rightarrow \text{grandus}$$

grandes?

$$T = 0.45 \Rightarrow \text{provides}$$
 $A = 60 \text{ mandes}$
 $A = 60 \text{ mandes}$
 $A = 60 \text{ mandes}$
 $A = 60 \text{ mandes}$

$$\int_{X}^{1} = n\pi e \operatorname{variancia}(\sigma^{2} = n\pi(1 - \pi))$$

$$\int_{X}^{2} = n\pi \left(1 - \pi\right) = 60.045 = 27$$

$$\int_{X}^{2} = n\pi \left(1 - \pi\right) = 60.045. \quad 0.55 = 14.85$$

$$7 = \frac{30 - 12}{\sqrt{1485}} = 978 = 92177$$

m amuch de matind de

Com correspond de continuedade $S(29,52 \times 230,5) = P(9.5 < 2. < 9.91)$ Z = 29,5 - 27 = 9.65 = P(2<91) - P(2<965) = 9,8186 - 9,7422 Z = 30,5 - 27 = 9.91 = 9,0764

(i.p. | x = 30 | = 9,0764 (com correção de continuidade)

 $5e \times b (60; 0,45)$ $f(x=30) = \frac{60!}{30! 30!}, 0,45^{30}, 0,55^{30} = 0,0459$