Média Móvel e Métodos de Suavizamento – Parte 2

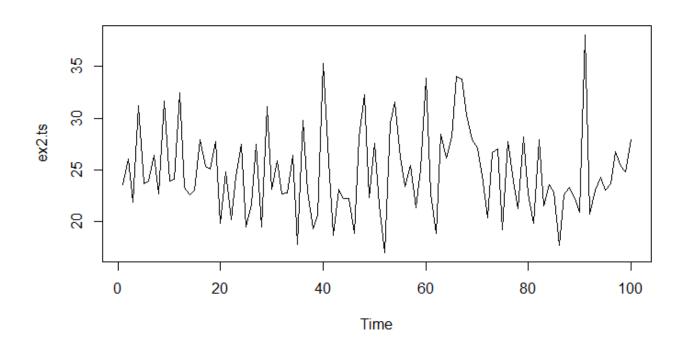
PNV-3421 – Processos Estocásticos

Prof. Dr. João Ferreira Netto

Bibliografia Principal

Hanke, J.E & Reitsch A.G. (1998) Business Forecasting. 6th Edition, Prentice Hall, Upper Sadle River, NJ.

Roteiro


- Suavizamento Exponencial
- Suavizamento Exponencial com Ajuste de Tendência (Método de Holt)
- Suavizamento Exponencial com Ajuste de Tendência e Sazonalidade (Método de Winter)

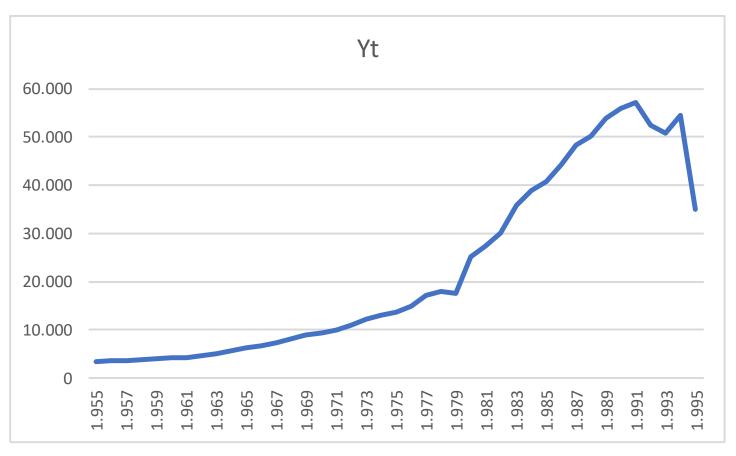
Suavizamento Exponencial

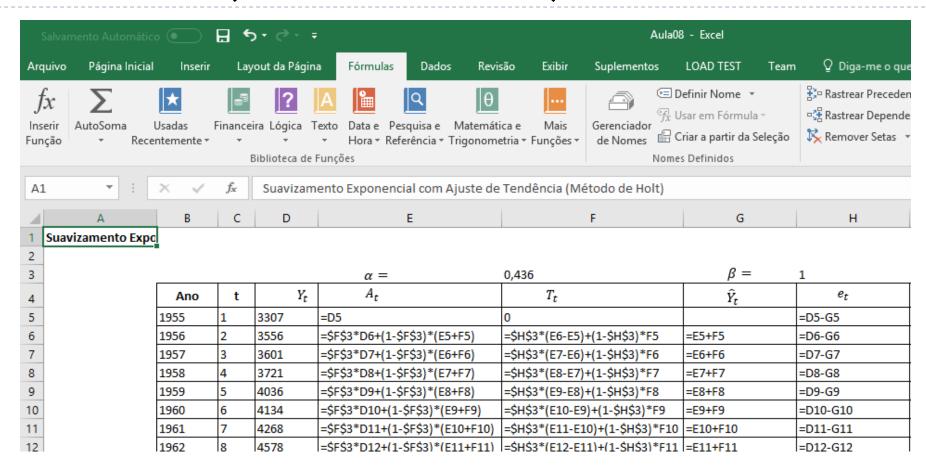
- A previsão (para o instante t+1) consiste em uma média ponderada do dado observado no instante t e da previsão feita para o instante t.
- $\hat{Y}_{t+1} = S_t = \alpha Y_t + (1 \alpha)\hat{Y}_t \qquad (0 < \alpha < 1)$
- $\geq \alpha$ = constante de suavizamento
- > S_t = valor suavizado no instante t

Suavizamento Exponencial

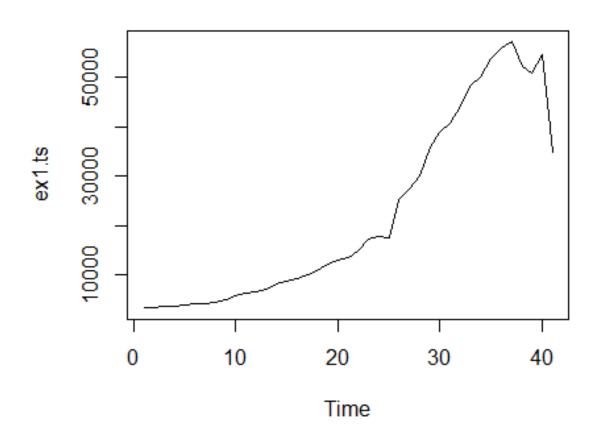
Exemplo: ache a curva de suavizamento para uma série histórica de nível de precipitação (polegadas/ano) em Londres, de 1813 a 1912 (Exemplo 0).

Suavizamento Exponencial

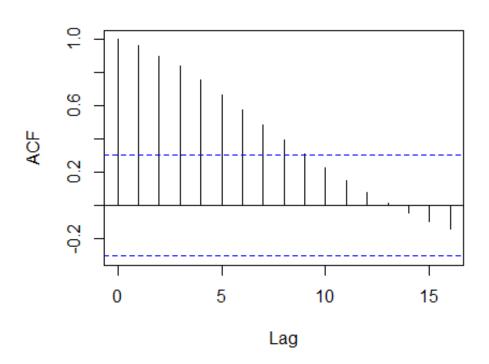

Exemplo: resolva o problema no Excel, e ache o peso ótimo de alfa, que minimiza o erro quadrático médio.


- Método de suavizamento que incorpora a modelagem de uma componente de tendência linear.
- $A_t = \alpha Y_t + (1 \alpha)(A_{t-1} + T_{t-1})$
- $T_t = \beta (A_t A_{t-1}) + (1 \beta) T_{t-1}$
- $\widehat{Y}_{t+p} = A_t + pT_t$
- Onde: Y_t valor observado no período t; A_t valor suavizado; T_t componente de tendência; α constante de suavizamento $(0 < \alpha < 1)$; β constante de suavizamento para a componente de tendência $(0 < \beta < 1)$; \hat{Y}_{t+n} previsão para p períodos futuros.

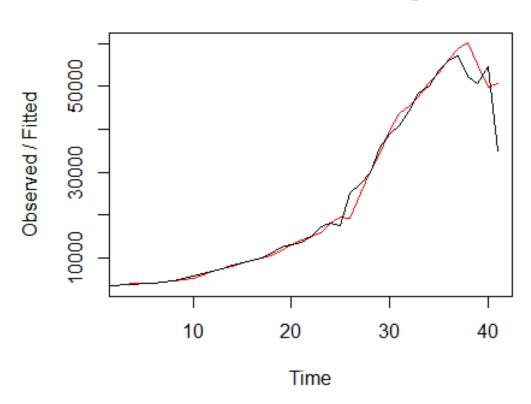
Considere o histórico de vendas de uma grande rede varejista.

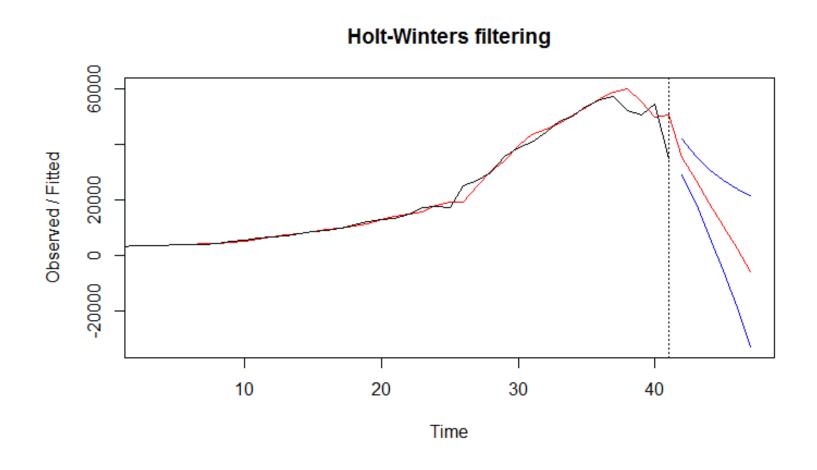

t	Y_t	t	Y_t	t	Y_t	t	Y_t
1.955	3.307	1.966	6.769	1.976	14.950	1.986	44.282
1.956	3.556	1.967	7.296	1.977	17.224	1.987	48.440
1.957	3.601	1.968	8.178	1.978	17.946	1.988	50.251
1.958	3.721	1.969	8.844	1.979	17.514	1.989	53.794
1.959	4.036	1.970	9.251	1.980	25.195	1.990	55.972
1.960	4.134	1.971	10.006	1.981	27.357	1.991	57.242
1.961	4.268	1.972	10.991	1.982	30.020	1.992	52.345
1.962	4.578	1.973	12.306	1.983	35.883	1.993	50.838
1.963	5.093	1.974	13.101	1.984	38.828	1.994	54.559
1.964	5.716	1.975	13.639	1.985	40.715	1.995	34.925
1.965	6.357						

Considere o histórico de vendas de uma grande rede varejista.

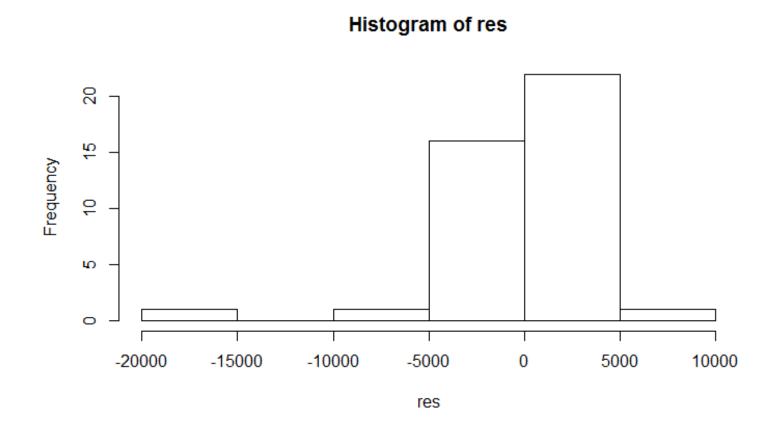


Plota a série temporal: plot (ex1.ts)

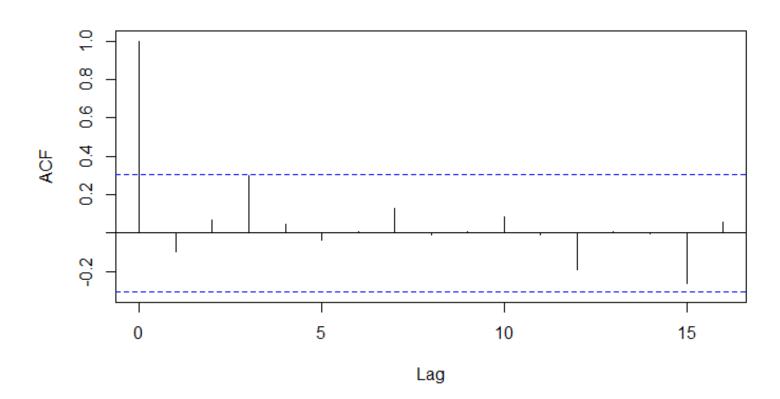

Análise de auto-correlação: acf(ex1.ts)



Método de Holt: holt <- HoltWinters(ex1.ts, gamma = FALSE)</p>


Holt-Winters filtering

Plotando previsões futuras: plot(holt, p)



Histograma dos resíduos: hist(res)

Análise de auto-correlação dos resíduos: acf(res)

Series res

Suavizamento Exponencial com Ajuste de Tendência e Sazonalidade (Método de Holt-Winter)

- Método de suavizamento que incorpora a modelagem de uma componente de tendência linear e sazonalidade.
- $A_t = \alpha \frac{Y_t}{S_{t-L}} + (1 \alpha)(A_{t-1} + T_{t-1})$
- $T_t = \beta (A_t A_{t-1}) + (1 \beta) T_{t-1}$
- $> S_t = \gamma \frac{Y_t}{A_t} + (1 \gamma) S_{t-L}$
- $\hat{Y}_{t+p} = (A_t + pT_t)S_{t-L+p}$

Suavizamento Exponencial com Ajuste de Tendência e Sazonalidade (Método de Holt-Winter)

Onde: Y_t - valor observado no período t; A_t valor suavizado; T_t - componente de tendência; S_t - componente de sazonalidade; α – constante de suavizamento (0 < α < 1); β constante de suavizamento para a componente de tendência ($0 < \beta < 1$); γ – constante de suavizamento para a componente de sazonalidade (0 < γ < 1); \hat{Y}_{t+n} previsão para p períodos futuros.