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� A tensile property database of RAFM
steels was established.

� High correlated features were
selected to train the random forests
regressors.

� Both yield strength and total elonga-
tion of RAFM steels were predicted.

� The process window of RAFM steels
for reasonable tensile property was
calculated.
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The accurate prediction of tensile properties has great importance for the service life assessment and
alloy design of RAFM steels. In order to overcome the limitation of traditional physical metallurgical
models, machine learning algorithm was used to establish universal models for the prediction of RAFM
steels’ yield strength and total elongation. A database with a wide range of compositions and treatment
processes of RAFM steels was first established. Then, feature engineering methods were used to select
the highly correlated features. With the reasonable selection of machine learning algorithm and test/
training set partitioning strategy, random forests regressors were trained by the selected features. The
prediction results proved that, compared with traditional physical metallurgical models, the feature
engineering guided random forests regressors had advantages of accuracy and universality for the
prediction of RAFM steels’ yield strength and total elongation. And the calculated process window for the
balance of strength and plasticity could provide guidance for the further design and development of
RAFM steels.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Reduced activation ferritic/martensitic (RAFM) steels for fusion
reactor structural applications have been focused and developed
hang), xuwei@ral.neu.edu.cn
for several decades because of their inherently excellent properties,
such as strength, thermal conductivity, and irradiation resistance,
compared with those of austenitic stainless steels [1e3]. As a
structural metal material, tensile properties are also the basic fac-
tors, which have high priority during the design and service eval-
uation process for RAFM steels. Therefore, in order to reduce the
time and cost of preparation and testing, computation models have
been widely established and developed for the tensile property
prediction of RAFM steels for long periods.
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Fig. 1. Framework of the feature engineering guided machine learning system.
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Before the development of RAFM steels, tensile property pre-
diction was already a long-standing topic in the field of metal
materials. Based on classical mean-field dislocation theory, tradi-
tional physical metallurgy models were established and widely
used. They included Peierls-Nabarro (PeN) model for PeN stress
[4], Hall-Petch model for grain refinement strengthening [5,6],
Kocks-Mecking model for dislocation interaction strengthening
[7,8], Orowan dislocation looping model [9] and Friedel’s shear
cutting model [10] for precipitation strengthening, etc. Finally, all
the traditional strengthening models could be combined by su-
perposition law and obtain the yield strength of the steels with
multi-method strengthening. Both G.B. Olson in Northwestern
University [11] and E.I. Galindo-Nava in University of Cambridge
[12] used this kind of superposition models to predict the yield
strength of ultra-high strength steels and guide the further opti-
mization and design. In view of Olson and Nava’s results [11,12], the
superpositionmodels were further modified as a multi-scale model
by considering the effect of both temperature and irradiation in
Wang’s work [13]. This multi-scale model was used to simulate
both yield strength and irradiation hardening phenomenon in
RAFM steels. Although physical metallurgy models based on mean-
field dislocation theory obtained series of remarkable achieve-
ments for the yield strength simulation, plastic stage is still a
serious problem because plasticity is a complex process, which is
not only depended on dislocationmultiplication [14]. So, in order to
deal with plasticity, several researches used finite element method
(FEM) to simulate the constitutive relationship of mechanical
properties or microstructure-mechanical properties during plastic
deformation [15,16]. The constitutive behavior of RAFM steels un-
der irradiation conditions were simulated by FEM in J. Aktaa’s work
[15] and more tensile property informationwas obtained instead of
only yield strength.

As mentioned above, after long-period development, traditional
methods for tensile property simulation based on dislocation the-
ory or constitutive relationship obtained great results and helped to
reveal the strengtheningmechanism of RAFM steels. However, with
the deepening of research, the strengthening mechanism of RAFM
steels was founded to be more andmore complex. It meant that the
constitutive equations in these models became more complicated
and more parameters with fitting values should be used. So, in
order to improve the accuracy of the models by the precise
description of strengthening mechanism, the complexity of the
traditional models seriously restricted their universality. However,
the prediction of properties or the design of new alloys needed
models with wide applicability, which could maintain the stability
and accuracy in large range of composition and treatment condi-
tion. It meant that, nowadays, traditional models based on dislo-
cation theory or constitutive relationship were more suitable for
simulation or mechanism explanation, instead of prediction or
alloy design [17].

For the situation mentioned above, several researches tried to
develop the models suitable for tensile property prediction and
alloy design, which meant the models didn’t focus on complex
physical mechanism, but paid close attention to the universality
[18,19]. A. Tavassoli [18] arranged large amount of data for reduced
activationmartensitic steel, and established several fitting equation
to predict themechanical properties in a large range of temperature
and irradiation condition. However, succinct fitting equations
couldn’t accurately express the complex relationship between
properties and critical factors. So, as awell-known effectivemethod
for expressing universal relationship in large amount of complex
data, machine learning algorithm began to be used [20]. In R.
Kemp’s work [19], an artificial neural network was used to express
the irradiation hardening of low-activation ferritic/martensitic
steels. A database of the tensile properties of various kinds of RAFM
steels was compiled for the training of artificial neural network and
the composition and treatment condition information was selected
as 37 features for training the model. The model showed relatively
better universality than the traditional models based on physical
mechanism. However, its training approximation and generaliza-
tion ability was still not as good as expected. In fact, traditional
machine learning algorithms were already used for tensile strength
prediction in several different kinds of steels (as pipeline steels,
TRIP steels, etc.) and obtained promising results [21e26]. However,
the situation of RAFM steels was quite different with them. The
training approximation and generalization ability of machine
learning models was significantly depended on the amount and
quality of the data used for training. However, the sensitivity of the
application limited the amount of data for RAFM steels. Also, the
usage of microelements (as B, N, Ta, etc.) which were difficult to be
tested limited the quality of data for RAFM steels. So, it was
extremely difficult to predict tensile properties of RAFM steels well
only by traditional machine learning algorithm without artificial
guidance. In order to establish an effective machine learning model
for RAFM steels’ tensile property prediction, data should be further
analysis and artificial guidance or constraint should be added to
modify the traditional machine learning algorithm. For example,
using feature engineering treatment to tell the models how to
select the useful features and ignore the useless ones [27].

In this work, feature engineering idea was used to guide the
modification of machine learning algorithm. And the modified
machine learning models were used to predict the tensile proper-
ties of RAFM steels. The analysis of the results could provide
guidance for the application of machine learning algorithm in
property prediction and alloy design of RAFM steels.

2. Modeling process

The framework of the feature engineering guided machine
learning system was schematically illustrated in Fig. 1. As the
premise of the calculation by machine learning algorithm, an
original database was firstly established. Then, in order to improve
the quality of the database, feature engineering was used to select
the highly correlated features and a modified database was ob-
tained. For the modified database, normalization was used as data
preprocessing method to eliminate dimensional differences
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between inputs. Finally, after the selection of machine learning
algorithm and test/training set partitioning strategy, the modified
database were divided into a training dataset (80%) and a test
dataset (20%) and feature engineering guided random forests re-
gressors (FE-RFRs) were trained for the prediction of both yield
strength and total elongation of RAFM steels.
3. Calculation results

3.1. Database and feature engineering

For the original database, ~100 references were first collected.
After careful consideration of the comparability, 11 of them were
used for the establishment of original database [28e38]. The orig-
inal database included 60 samples of RAFM steels with all the in-
formation of composition, treatment process, and conventional
mechanical properties. As shown in Fig. 2, Both traditional RAFM
steels in different countries (as traditional/modified Eurofer97 in
Europe, traditional/modified CLAM in China, etc.) and new devel-
oped prototype alloy by different research institute (as CNAs by Oak
Ridge National Laboratory, M-RAFM in Tsinghua University, etc)
were included in the original database with relatively uniform
distribution of the properties.

Based on the original database, feature engineering was used to
further improve the quality and analyzability of the database. For
anymachine learning algorithmwhich targeted to the prediction of
material property, it should depend on features (descriptors). As
important inputs of machine learning models, the features strongly
related to the prediction results. For a complex problem, the
amount of the features could be extremely large. However, with the
limitation of data, the number of features used in machine learning
models should be reasonably controlled. The best strategy was to
choose features that perfectly represented the materials’ property
and the number of features should be far less than the number of
samples in database to avoid the curse of dimensionality [27]. In
this work, the feature engineering process included two stages:
artificial selection and machine learning selection. For the original
database, 19 initial features were included. Firstly, by considering
the data quality, 8 features were ignored artificially. The 8 ignored
features included the content of Mo, Ni, Nb, Mn, V (The data range
was too narrow), the content of P, S (Doubts about data quality
because of the testing accuracy) and the austenitizing temperature/
time (data amount was too small). Then the 11 remaining features
were used for the further selection. After the artificial feature se-
lection, the inputs of the modified database were shown in Table .1.
Fig. 2. Visualization of the orig
For the machine learning selection progress, the random forests
(RF) algorithm was used to evaluate the importance of the 11
remaining features quantitatively and “last-place elimination” rules
were further used to efficiently exclude the features which had less
effect on the property prediction.

The calculated importance and correlation of the selected fea-
tures for the yield strength of RAFM steels was shown in Fig. 3(a)
and (b). The results showed that the tempering temperature took
the most important role on the yield strength prediction, followed
by the content of C, tempering time, the content of Cr, Ti, W and B
(Fig. 3(a)). It was worth noting that the importance of tempering
temperature, time and C content was significantly higher than
other features. These results were basically consistent with the
principles of traditional physical metallurgy and previous under-
stand of RAFM steels. RAFM steel was a kind of aging steel with
precipitation strengthening as the main strengthening mechanism
and the main contributor of the strength was the MX carbonitride,
which was mainly formed during tempering [13]. So, it was
reasonable that tempering process and C content was critical for
the yield strength of RAFM steels. Pearson correlation coefficient
matrices were calculated to express the positive and negative cor-
relations between pairs of features (Fig. 3(b)). The low linear cor-
relations for most of features indicated that, by using the top 7
important features, redundant and negligible features were suc-
cessfully removed, which would probably help to improve the
performance of the machine learning algorithm.

Similar with the feature analysis for yield strength, the calculated
importance and correlation of the selected features for the total
elongation of RAFM steels was also shown in Fig. 3(c) and (d). The
results showed that the tempering time took the most important
role on the total elongation prediction, followed by the content of Cr,
Ta, N, W, Si and C (Fig. 3(c)). It was reasonable that the plasticity
could be significantly affected by the tempering time and Cr. Based
on the previous experimental results of RAFM steels, plasticity of
RAFM steels had strong relationshipwith the coarsening of M23C6 at
the grain boundary. Because Cr was themain alloy element of M23C6
and M23C6 usually had large coarsening rate during the tempering,
tempering time and Cr could affect the total elongation of RAFM by
M23C6 [13]. Also, similar with the feature analysis for yield strength,
redundant and negligible features were successfully removed by
using the top 7 important features for total elongation (Fig. 3(d)).
3.2. Prediction results

After the analysis of feature engineering, 7 most important
inal database in this work.



Table 1
Inputs and outputs information for the modified database.

Inputs and output Maximum minimum mean Standard deviation

Inputs C (wt.%) 0.13 0.03 0.10 0.02
Cr (wt.%) 9.30 4.61 7.71 1.74
W (wt.%) 3.01 0.00 1.84 0.70
Si (wt.%) 0.77 0.00 0.16 0.11
V (wt.%) 0.30 0.05 0.23 0.04
Ta (wt.%) 0.55 0.00 0.08 0.08
Ti (wt.%) 0.15 0.00 0.01 0.04
N (wt.%) 0.43 0.00 0.02 0.06
B (wt.%) 0.01 0.00 0.001 0.003
Temp (�C) 780.00 650.00 737.87 27.88
Time (min) 120.00 30.00 74.00 29.23

Outputs YS (MPa) 824.00 464.00 621.44 99.57
TE (%) 32.00 6.60 15.01 6.96

Fig. 3. Importance and correlation of the features: (a) ranking of the features for yield
strength prediction; (b) Pearson correlation coefficient matrix among the features for
yield strength prediction; (c) ranking of the features for total elongation prediction; (d)
Pearson correlation coefficient matrix among the features for total elongation
prediction.

Fig. 4. Prediction results by FE-RFRs (a) prediction results of yield strength; (b) MAE of
the yield strength prediction; (c) prediction results of total elongation; (d) MAE of the
total elongation prediction.
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features are sorted out from the 11 remaining features and
constitute as an optimal feature set. Then, random forests re-
gressors (RFRs) were trained by the optimal feature set for the
prediction of both yield strength and total elongation of RAFM
steels. The feature engineering guided RFRs (FE-RFRs) included 100
decision trees and the max depth of the decision trees was set as 5.
The prediction results of yield strength were shown in Fig. 4(a) and
(b). Squared correlation coefficient (R2) between experimental
value and predicted value was used to evaluate the predicted ac-
curacy. Both training and testing set showed high value of R2

(>90%), which meant that the model had no overfitting or under-
fitting problem and it could probably make relatively accurate
prediction of the yield strength (Fig. 4(a)). Fig. 4(b) showed that, for
all the 60 samples in the database, the mean absolute deviation
(MAE) of the yield strength prediction results was less than 30MPa.
It indicated that feature engineering guided machine learning
models could obtain better accuracy and universality than previous
multi-scale models based on physical metallurgy (MAE¼ 50MPa
for 8 samples) [13].

Also, the prediction results of total elongation of RAFM steels by
FE-RFRs were shown in Fig. 4 (c) and (d). Similar with FE-RFRs for
yield strength, FE-RFRs for total elongation also showed high value
of R2 (>90%) for both training and testing set (Fig. 4(c)). Also, the
MAE of the total elongation prediction results was only about 1.5%,
which meant that the FE-RFRs for total elongation had even better
performance than the FE-RFRs for yield strength (Fig. 4(d)).
Restricted by the complex and controversial plastic deformation
mechanism, the prediction of elongation was a long-standing
problem in the field of physical metallurgy modeling. So, the FE-
RFRs used in this work could not only be used for the RAFM
steels’ property prediction, but also provide new ideas for plasticity
simulation in the field of other metal materials.

In summary, with the guidance of feature engineering, the
trained FE-RFRs showed gratifying accuracy and universality for the
prediction of RAFM steels’ tensile properties. They could be used to
predict the yield strength and total elongation of RAFM steels in a
wide range of compositions and treatment processes. In the range
of 0.03e0.13wt %C, 4.61e9.30wt % Cr, 0e3.01wt % W, 0e0.77wt %
Si, 0.05e0.3wt % V, 0e0.55wt % Ta, 0e0.15wt % Ti, tempering
temperature 650e780 �C, tempering time 30e120min, the pre-
diction error of FE-RFRs could probably be <5% for both yield
strength and total elongation. This modeling framework could be
considered as a new strategy for the quantitative guidance of the
alloy design of RAFM steels.
4. Discussion

4.1. Selection of machine learning algorithm

As one of the main topic in machine learning, supervised



Fig. 5. Squared correlation coefficient for different machine learning algorithms.
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learning was studied in decades and various kinds of regressors
were developed, as back propagation artificial neural network (BP-
ANN) [39], support vector regressor (SVR) [40], random forests
regressor (RFR) [41], Gradient boosting regressor (GBR) [42], Kernel
ridge regressor (KRR) [43], etc.. Every regressor had its advantages
and characteristic of dealing with different kinds of database. So,
the selection of regressor types should be considered before the
establishment of the whole structure of machine learning predic-
tion system. Before RFRs were used as the main machine learning
algorithm for the tensile property prediction of RAFM steels, most
traditional regressors were tested and the results of R2 for both
training and testing set were shown in Fig. 5. It was clear that, as an
efficient algorithm which was usually good at dealing with high-
Fig. 6. Squared correlation coefficient for differ
dimensional data, SVR showed better performance than most
other traditional regressors. However, for the database in this work,
RFR showed even better performance than SVR. For the database
used in this work, SVR still showed slight over-fitting, as the R2 for
training set was about 10% larger than that for testing set by SVR.
Similar with SVR, RFR was also good at dealing with high-
dimensional data. In addition, by combining large amount of de-
cision trees, RFR had better ability to overcome the over-fit problem
than SVR. So, RFR was selected as the optimal machine learning
algorithm in this work.

4.2. Selection of test/training set partitioning strategy

In order to avoiding underfitting or overfitting problems, the
selection of test/training set partitioning strategy was always the
key point for the training of machine learning models. With
different partitioning ratio, the effect of test/training set parti-
tioning strategy on the performance of RFRs was analyzed as Fig. 6.
For the database used in this work, when the percentages of
training set were less than 80%, the R2 for training set was much
larger than testing set, which represented a serious over-fitting.
When the percentages of training set were equal to 80%, R2 for
both training and testing set was relatively balanced. And when the
percentages of training set were more than 80%, the R2 for testing
set became slightly higher than training set, which indicated the
slight trend of under fitting. So, as mentioned in section 2, 80% data
for training set was finally used as the optimal test/training set
partitioning strategy in this work.

4.3. Comprehensive analysis of the prediction results

As mentioned in section 3.1, the top two important features for
ent test/training set partitioning strategy.
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yield strength and total elongation was respectively tempering
temperature, C content, tempering time, and Cr content. In order to
make further understanding of the prediction results, the effect of
these four features on tensile properties were comprehensive
analyzed as Fig. 7. As shown in Fig. 7(a), relatively higher yield
strength could be obtained when the C content was about
0.06e0.08wt% and the tempering temperature was in the range of
670e760 �C. In that situation, if the total elongation was further
considered, the tempering temperature should be limited in the
range of 750e760 �C (Fig. 7(b)). Relatively higher tempering tem-
perature (>760 �C) would lead to the insufficient yield strength
(<460MPa) and relatively lower tempering temperature (<750 �C)
would lead to the insufficient plasticity (total elongation<15%). So,
the prediction results indicated that, in order to obtain good bal-
ance between strength and plasticity, the tempering temperature
should be fixed at about 750e760 �C. This was also consistent with
the standard treatment process of most RAFM steels, like F82H,
Eurofer97, CLAM, etc. [32e36]. However, for tempering time and Cr
content, relatively larger ranges were available. As shown in Fig. 7
(c) and (d), for a good balance of strength and elongation, the
range of tempering time could be 30e120min and the Cr content
could be 8e9wt %, which was also reasonable based on the tradi-
tional physical metallurgy theory and previous experimental re-
sults of RAFM steels [13]. So it provided an appropriate design space
for other properties, as the irradiation resistance, creep, etc.. For the
further development and design of the new generation of RAFM
steels, this process window could be used as the reference for the
design of the composition and treatment process.

In summary, although several prospective results were shown in
this work for the RAFM steels’ tensile property prediction, the
feature engineering guided machine learning prediction system
Fig. 7. Comprehensive analysis of the prediction results: (a) contour map of yield strengt
elongation with the factors of tempering temperature and C content; (c) contour map of yie
elongation with the factors of tempering time and Cr content.
used in this work was only a preliminary attempt for how to use
feature engineering idea to modify the performance of machine
learning algorithm in the field of RAFM steels. The main idea of
feature engineering was to select and obtain the most useful fea-
tures, not only remove the useless one as shown in this work, but
also introduce the critical features which shouldn’t be ignored. As
well-known, the properties of steels critically depended on mi-
crostructures. However, in most previous researches by traditional
machine learning algorithms, only composition and treatment
process were used as features. It was reasonable that, if more
microstructure information could be added as the features, they
could probably give more useful guidance for improving the per-
formance of machine learning algorithms. As shown in Fig. 8, for
the further researches, microstructure information (as phase frac-
tion, driving force, growth rate, etc.) could be calculated by various
thermodynamic simulation methods and used as the features for
the machine learning prediction of various properties in different
steels. So, based on the results in this work, more meaningful re-
searches could be made in the field of feature engineering guided
machine learning. They could be not only for tensile property
prediction, and also not only for RAFM steels.
5. Conclusion

In this work, a database covered a wide range of compositions
and treatment processes of RAFM steels was established. Based on
the database, feature engineering guided random forests regressors
were trained and used to predict the tensile properties of RAFM
steels, including yield strength and total elongation. The main
points of this paper were as follows:
h with the factors of tempering temperature and C content; (b) contour map of total
ld strength with the factors of tempering time and Cr content; (b) contour map of total



Fig. 8. The prospect of feature engineering guided machine learning for steels.
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(1) A machine learning modeling framework, which included
the database, feature engineering, model selection and
training, was established and proved to be suitable for the
universal prediction of tensile properties in the field of RAFM
steels. It also provided a useful mode for the prediction of
other properties in the field of RAFM steels.

(2) With the help of feature engineering, the high correlated
features could be found, as tempering temperature and C
content for yield strength and tempering time and Cr content
for elongation. The sorting of features by the importance
could effectively guide the training process of machine
learning models and improve the performance of the models
for the prediction of RAFM steel’s tensile properties.

(3) By the reasonable selection of machine learning algorithm
and test/training set partitioning strategy, feature engineer-
ing guided random forests regressors were trained for the
prediction of RAFM steels’ tensile properties. The trained
models showed significantly higher accuracy and universal-
ity than traditional physical metallurgical model.

(4) Based on the prediction results, a process window of RAFM
steels for the balance of strength and plasticity was estab-
lished (tempering temperature 750e760 �C, tempering time
30e120mins, Cr content 8e9wt %, etc.). It could provide a
guidance for the further design of the new generation of
RAFM steels with better comprehensive properties.
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