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Abstract--In this paper we demonstrate the power of artificial neural networks in predicting strengthening 
in the transverse direction of metal matrix composites by regularly arranged strong fibers. A neural 
network is trained in different ways based on a numerical study in which the fiber volume fraction and 
the matrix hardening ability was studied systematically for fibers in a hexagonal arrangement loaded at 
0 and 30 ° transverse direction and for a square arrangement of fibers loaded at 0 and 45 ° transverse 
directions. Strengthening predictions are then made for hardening cases of both fiber arrangements which 
were not covered by the finite element calculations as well as for arbitrary loading directions not achievable 
by simple finite element unit cell calculations in the case of square fiber arrangements. 

INTRODUCTION 

Transverse strengthening of  metal  matrix composites 
(MMC) by strong fibers was the focus of  a great deal 
o f  systematic work in the past few years. Researchers 
investigated the influence of  residual stresses on the 
mechanical behavior of  particle reinforced M M C s  
with regularly arranged particles [1], the influence of  
3D fiber arrangements [2] as well as the influence of  
fiber staggering on the overall composite behavior 

[3, 41. 
Recently, a study came up in which for regularly 

arranged fibers with circular cross-section the trans- 
verse mechanical behavior was analyzed [5]. The 
finite element method was used to solve a few cases 
of  loading direction, fiber orientation and matrix 
hardening. As a new model  needs to be set up for 
each situation, it is very complicated and time con- 
suming to generalize this method for any volume 
fraction, material behavior or loading direction. For  
the convenience of  macromechanical  studies the com- 
posite strengthening was summarized in an empirical 
expression for a limited set of  parameters. The devel- 
opment  of  an empirical expression for a strengthen- 
ing model  requires repeated trials with a number of  
parameters. The degree of  generalization achieved by 
such an expression beyond the investigated parameter 
field is difficult to measure. 

In this paper we attempt an alternative method of  
machine learning using artificial neural networks 
(ANN)  to model  the mechanical behavior of  MMCs.  

tPermanent address: Department of Civil Engineering, 
Indian Institute of Technology, Bombay-400 076, India. 

In this method the machine automatically gathers the 
knowledge embodied in the examples presented to it. 
Therefore, no parameter needs to be set by trial and 
error. For  the present study the results of  the finite 
element analysis presented in [5] have been used. The 
artificial neural networks are able to generalize and 
apply the knowledge to a new problem for which they 
has not been trained. Therefore, we have used the 
artificial neural network to predict the strengthening 
of  M M C s  for the loading directions and matrix 
hardening for which analytical and experimental 
solutions are not yet available. 

The questions solved in this paper are as follows: 
(1) Would an A N N  be able to capture the 

strengthening behavior of  M M C s  from a pool of  
examples, 

(2) Would an A N N  be able to predict strengthen- 
ing effects in the fight manner for cases which are 
within the range of  available results but which have 
not yet been computed or have been made available 
otherwise, 

(3) What  degree of  strengthening could be ex- 
pected for square fiber arrangements when the load- 
ing direction is gradually varied? At present, this 
question is not simple to solve by other means. Thus 
this paper deals with a new application of  A N N  in 
materials science. 

NEURAL NETWORKS 

Artificial neural networks are developed in the 
model  of  human brain. The concept of  neural net- 
works is discussed in detail elsewhere [6, 7]. A brief 
description is included in the following section. 
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Fig. 1. Biological and artificial neurons: (a) a biological 
neuron; (b) an artificial neuron. 

Biological neurons 

The structure and the functioning of the human 
brain has been studied by many neurophysiologists. 
However, only an overview of it is available at 
present. Basically the brain functions with a very 
dense network of neurons. Figure 1 (a) shows a typical 
biological neuron. The brain contains as many as 1011 
neurons connected to each other by as many as 10 i5 
interconnections among them. A neuron consists 
mainly of the following parts: 

1. The cell body 
2. The axon 
3. The dendrite. 

The dendrite is responsible for carrying the signals 
from various other neurons to the neuron of which it 
is a part. These dendrites are spread in a branched 
form to carry complex electro-chemical signals. On 
the other hand, an axon carries the signal from the 
cell body to various other neurons. When many 
dendrites carry signals to the cell body they are 
essentially accumulated there. After a sufficient time 
a signal is generated by the cell body and the same is 
sent down by the axon if the accumulation exceeds a 
threshold. The biological neural network also demon- 
strates various other behaviors which is very difficult 
to simulate using presently available hardware and 
software. Hence, the neural units in the artificial 
neural network are developed as a very approximate 
model of the biological neurons. 

Artificial neurons 

An artificial neuron can carry out a simple math- 
ematical operation and/or can compare two values. 
Figure l(b) describes an artificial neuron. An artificial 
neuron gets input from other neurons or directly 
from the environment. The path connecting two 
neurons is associated with a certain variable weight 
which represents the synaptic strength of the connec- 

tion, The input to a neuron from another neuron is 
obtained by multiplying the output of the connected 
neuron by the synaptic strength of the connection 
between them. The artificial neuron then sums up all 
the weighted inputs coming to it 

xj = ~ w~oi (1) 
i=l  

where xj = summation of all the inputs for neuron j, 
w u = synaptic strength between neuron i and neuron 
j, o~= output of neuron i, m = total number of 
neurons sending input to neuron j. 

Each neuron is associated with a threshold value 
and a squashing function. The squashing function is 
used to compare the weighted sum of inputs and the 
threshold value of that neuron. If the threshold value 
is exceeded by the weighted sum the neuron goes to 
a higher state, i.e. the output of the neuron becomes 
high. Many different squashing functions are used in 
different applications. In the present work a back- 
propagation learning algorithm has been used. This 
algorithm necessitates the use of a continuous, differ- 
entiable weighting function. Therefore, a sigmoidal 
squashing function has been used here which is as 
follows 

1 
oj - 1 + e -~(xj -0j) (2) 

where oj = output of the neuron j,  xj = summation of 
all the weighted sum of the inputs for neuron j, 
Oj = threshold value of the neuron j, ct = is a par- 
ameter which controls the slope of the squashing 
function. 

Figure 2 presents the squashing function for 
different values of ct. 

The output of the neuron for a given input can be 
controlled to a desired value by adjusting the synaptic 
strengths and the threshold values of the neuron. In 
an artificial neural network (ANN) several neurons 
can be connected in a variety of ways. Many different 
types of neural nets have already been developed [8]. 
The network architecture has to be selected keeping 
the problem at hand in mind. The present work 
requires training of a set of examples in a supervised 
manner. Therefore, a feedforward network is most 
suitable. A brief description of the feedforward 
network follows. 

1 

0.8 . / ~ ~  
: 
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n f / .  s l o 1 ~ . 8  - a" 8 o~ ¢ 
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0 - -  
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Summation of input (x) 

Fig. 2. Sigmoidal squashing function with different slopes. 
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Fig. 3. A feedforward network. 

be a sufficient number of neural units in the net. The 
adjustments in the synaptic strengths and thresholds 
are carried out following a learning algorithm. The 
back propagation algorithm has been used in the 
present work for this purpose. 

The back propagation algorithm 

The back propagation algorithm is a generalized 
form of the least mean square training algorithm for 
perceptron learning [9, 10]. It uses the gradient search 
method to minimize the error function which is the 
mean square difference between the desired and the 
predicted output. The error for the p th  example is 
given by 

Feedforward networks 

In a feedforward network the neural units are 
classified into different layers. The network consists 
of one input layer, one or two hidden layers and one 
output layer of neurons. Figure 3 presents a typical 
feedforward network. It may be noted that all the 
neurons between two successive layers are fully con- 
nected, i.e. each neuron of a layer is connected to each 
neuron of the neighboring layers. However, there is 
no connection between neurons of the same layer or 
the neurons which are not in successive layers. The 
input layer receives input information and passes it 
onto the neurons of the hidden layer(s), which in turn 
pass the information to the output layer. The output 
from the output layer is the prediction of the net for 
the corresponding input supplied at the input nodes. 
Each neuron in the network behaves in the same way 
as discussed in equations (1) and (2). There is no 
reliable method for deciding the number of neural 
units required for a particular problem. This is de- 
cided based on experience and a few trials are re- 
quired to determine the best configuration of the net. 

In a feedforward network the knowledge (e.g. 
transverse strengthening of  MMCs) is stored in a 
distributed manner, in the form of synaptic strengths 
and thresholds. Thus it can be generalized, i.e. it may 
be used for the situations for which the net has not 
been trained. Initially, the synaptic strengths and the 
threshold values are allocated randomly. To train the 
network for a specific knowledge a set of training 
examples is prepared. A training example consists of 
a set of values for the input neurons and the corre- 
sponding values for the output neurons. Several of 
such input-output  pairs are to be prepared carefully 
to reflect all the aspects that the net needs to learn. 
All the training examples together form the training 
set. In the beginning of  the training process, as the 
synaptic strengths and thresholds are selected ran- 
domly the output predicted by the net for a particular 
input and the output supplied in the corresponding 
training examples may not match. However, the 
synaptic strengths and the thresholds can be adjusted 
so that the net predicts the output correctly. As 
several examples are to be learnt by the net there must 

Ep = E (4 - oj): (3) 
J 

where dj = the output desired at neuronj  and oj = the 
actual output of neuron j. As presented in equations 
(1) and (2) the output oj is a function of synaptic 
strengths and outputs of the previous layer. 

(4) 

The error can be minimized by moving along the 
steepest descent direction on the error surface 

OE OE Oflj OE 
Ow o = O--~j Ow~ O/~j o, = ~joi (5) 

where 6j for a neuron is 

5j = f ' ( f l j )  ~ 6kWkj (6) 
k 

and f '  indicates the first order derivative of the 
function and k indicates a neuron in the layer which 
is successive to the layer which contains neuron j. 
Therefore, the weight matrix can be adjusted 
recursively for each example 

wij(t + 1) = wij(t) + q6jxi (7) 

where q is an adjustable gain term which controls the 
rate of convergence. 

The above operation is repeated for each example 
and for all the neurons until a satisfactory conver- 
gence is achieved for all the examples present in the 
training set. 

NEURAL NETWORKS IN MATERIAL SCIENCE 

The feedforward neural networks have been ap- 
plied to the solution of various engineering problems 
such as design of equipment and structures, fault 
detection, management of manufacturing and con- 
struction, etc. They have also been effective in com- 
puter implementation of natural processes such as 
natural language understanding, speech recognition, 
pattern recognition, etc. This tool can be utilized very 
effectively in the solution of problems of material 
science. The materials are either available in nature or 
are the product of engineering. The behavior of the 
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0 ° 45 ° ~0°  / 30° 

(a) (b) 
Fig. 4. Arrangements of fiber with primary loading direc- 
tions: (a) rectangular arrangement; Co) hexagonal arrange- 

ment. 

material is best understood by carrying out exper- 
iments. Conventionally, the experimentally observed 
behavior of a material is modeled analytically using 
simple algebraic expressions. The analytical ex- 
pression should predict the material behavior which 
agrees closely with the experimental observations. 
However, it may not always be possible to capture 
every material behavior by means of a simple ex- 
pression. The development of  such expressions can be 
extremely difficult and time consuming. Moreover, 
the behavior of modern materials is becoming more 
and more complicated and they demand a more 
detailed study. The feedforward neural networks can 
be extremely helpful in capturing the experimentally 
observed material behavior directly which precludes 
the necessity of  developing analytical expressions. 
The neural networks generalize on their own. There- 
fore, they are also effective in predicting the behavior 
of a new material before the material is produced in 
the laboratory. This may reduce the cost of expensive 
experiments. The authors, however, have not come 
across any application of feedforward neural net- 
works in the field of material science. The present 
work demonstrates the effectiveness of the method 
in the prediction of strengthening of  metal matrix 
composites. 

ARTIFICIAL NEURAL NETWORKS FOR 
PREDICTION OF STRENGTHENING 

The purpose of the present investigation is to study 
the transverse mechanical behavior of continuous 
fiber metal matrix composites. Study of the effects of 
fiber arrangement, volume fraction and matrix hard- 
ening which has hitherto not been possible by other 
methods has been emphasized here. Only fibers with 
circular cross-section will be studied here. The focus 
of  this paper is limited to the fully developed plastic 
flow of two phase composites. The fibers are well 
bonded to the matrix so that no debonding or sliding 
is permitted at the interface. Figure 4 presents the 
fiber arrangements considered in this work. A square 
arrangement of fibers is shown in Fig. 4(a), with the 
loading directions at 0 and 45 ° indicated. Similarly, 
Fig. 4(b) represents a hexagonal arrangement 

of fibers, with loading directions at 0 and 30 ° 
shown. 

A continuum mechanics approach is used to model 
the composite behavior, thus eliminating the influ- 
ence of size from the calculations. The ultimate 
stress-strain behavior is characterized by 

c r = g 0 ( ~ 0 ) = e E  E~EO (8) 

g ~ O "  0 E: ~ E  0 

where g = axial stress, E = axial strain, g0 = yield 
stress in tension, £0 = go~E, E = Young's modulus 
and N = strain hardening exponent. 

Figure 5 presents the features of  the overall 
stress-strain curves of primary concern in this work. 
For the case of  fibers perfectly bonded to the matrix, 
the composite will necessarily harden with the same 
strain hardening exponent, N, as the matrix, when 
strains are in the regime of fully developed flow. 
At sufficiently large strains 0 - 5 % )  the composite 
behavior is then described by 

e = eN (9) 

where # =overall stress, ~=ovcral l  strain and 
~N = asymptotic reference stress. 

The asymptotic reference stress can be determined 
by normalizing the composite stress by the stress 
in the matrix alone at the same overall strain, as 
indicated in Fig. 5. 

A detailed study on the asymptotic reference stress 
and its effect on fiber volume fraction and matrix 
hardening has been reported in Ref. [4]. The finite 
element method has been used to model the 
fiber-matrix system very accurately. It was attempted 
to summarize the results of the finite element analysis 
in simple empirical expressions. Many polynomial 
and other forms of  algebraic expressions have been 
attempted to fit the results accurately. The final 
expressions are as follows: 

d o=a* f ~ f *  (10) 

do=Cl( f - f*)2+g~ f > f * .  ( l l )  

Composite, o/a 0 

~N/% -" 

~ ~ ' ~  Matrix, o(5)/6 0 
1--"  

Strain 

Fig. 5. Asymptotic reference stress ~N, for work hardening 
matrices. 
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Table 1. Constants for equations (10) and (11) 

2 
Square arrangement ~ cr o 14.2 0.345 

0 ° loading DN/ 

2 
Square arrangement ~ o o 0.0 N/A 

45 ° loading 

2 
Hexagonal ~5-cr0(1 + 0.26f) 27.2 0.634 

arrangement . / J  

The values of the above parameters for different fiber 
arrangements have been presented in Table 1. 

For  the matrix with strain hardening another 
simple empirical relationship has been attempted 

6u = 6o exp(C2 Nf  c3 ). (12) 

The arbitrary constants C2 and C3 have been pre- 
sented in Table 2. 

Equation (12) in conjunction with equations (10) 
and (11) predicts the composite asymptotic reference 
stresses for the fiber arrangements and volume frac- 
tions considered here. These empirical relationships 
were arrived at after a considerable amount of trial 
and error with the form and the values of arbitrary 
coefficients. 

Here instead of an empirical expression we attempt 
to train an A N N  with the results obtained by the 
finite element analysis. The asymptotic reference 
stress for different volume fractions ( f ) ,  hardening 
exponents (N), fiber arrangements (square and 
hexagonal) and loading directions are available in 
Ref. [5]. The square fiber arrangement has been 
analyzed for two loading directions, 0 and 45 °. In 
case of hexagonal fiber arrangement there is marginal 
difference between the results for loading at 0 and 30 ° 
angles. Therefore, the following cases have been 
included in the present net 

(i) Square arrangement of fibers loaded at 0 °, 
(ii) Square arrangement of fibers loaded at 45 °, 
(iii) Hexagonal arrangement of fibers loaded at 

any angle. 

f I ̀2 Sq0 8q45 Hex N N 2 

Fig. 6. The feedforward network with derived input. 

The results of the finite element analysis have been 
presented to the net in the form of examples. Each 
example consists of volume fraction, fiber arrange- 
ment, loading direction and hardening exponent as 
input information and the corresponding asymptotic 
stress as output information. Figure 6 presents the 
neural net developed. It may be noted that along with 
the volume fraction ( f )  and hardening exponent (N) 
the squares of them f :  and N:  have also been 
provided in the input vector. This has facilitated the 
learning of the net. Three separate nodes have been 
provided for three different cases considered here--  
square fiber arrangement with 0 ° loading, square fiber 
arrangement with 45 ° loading and hexagonal ar- 
rangement. The inputs corresponding to these nodes 
are either 1 or 0. When an example for a particular 
case is being presented the input for that node is 1 and 
the input into nodes for all other cases is 0. All other 
parameters f ,  N , f  2, N 2 and ~u have also been scaled 
down between 0 and 1 by multiplying them with 
suitable scaling factors. 

As results of finite element analysis were available 
for four hardening exponents (N), 0.0, 0.1, 0.2, 0.5, 
the net has been trained for these four values of N 
only. The training set consisted of 31 and 32 examples 
for square fiber arrangement with loading at 0 and 
45 ° respectively and 35 examples for the hexagonal 
fiber arrangement. That made a total of 98 
input-output pairs. Two hidden layers have been 
used with 20 neurons in each hidden layer. The 
training session consisted of repeated presentation of 
the training set to the net and adjusting the synaptic 
strengths and thresholds using the back propagation 
algorithm. A software in C+ + language on an IBM 
PC/486 computer has been developed for this pur- 
pose. After approx. 1000 cycles of training the 
average root mean square of difference between the 
finite element results and the prediction of the net 
came down to 0.0003. The predictions of the net 
along with the results of the finite element analysis 
and the prediction of equation (12) have been pre- 
sented in Figs 7(a), (b) and (c). It may be noted that 
the agreement in results between the artificial neural 
network and the finite element analysis is very good. 
Therefore, it may be concluded that the artificial 
neural network has been able to capture the behavior 
of asymptotic reference stress very accurately from 
the examples presented to it. The empirical expression 
of equation (12) has predicted the behavior accurately 
in lower hardening exponents, up to N = 0.2. How- 
ever, it overpredicted the asymptotic reference stress 

Table 2. Constants for equation (12) 

C2 C3 
Square arrangement 4.53 1.21 

0 ° loading 
Square arrangement 2.88 1.50 

45 ° loading 
Hexagonal 4.65 1.78 

arrangement 

AM43/II--L 
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3.50 

3.00 FEM • 
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Equation (12) • / /  
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4.00 FEM / /1 N=0.2 

3.00 n Equation (12) ---o-- / 7  / . 

.// / ~ N--o.1 

"~ 2.00 

< 
-0.1 0.0 0.1 0.2 0.3 0.4 0•5 0.6 0.7 0.8 0.9 

Volume fraction (f) 

Fig. 7. Asymptotic reference stress, aN, for (aS square 
arrangement for loading at 0°; (b) square arrangement for 

loading at 45°; (e) hexagonal arrangement. 

f S q 0  S q 4 5  H e x  N 

• • 20 Nodes • • 

• • 20 Nodes • • 

Fig. 8. The feedforward network without derived input. 

in the case of  N = 0.5, especially for square fiber 
loaded at 0 °. This emphasizes the utility of the simple 
empirical expression for lower hardening exponents. 
However, the overall performance of the artificial 
neural network was superior to that of the empirical 
relationship. The empirical expression has been devel- 
oped by experts after many trials and errors [5]. The 
neural network, on the other hand, has learnt the 
relationship intuitively without any help from experts. 
This underlines the learning ability o f  the artificial 
neural networks even for complex relationships. 

The derived inputs 

It may be noted that along with fiber volume 
fraction ( f )  and hardening exponent (N) the squares 
of these values have been presented to the net. These 

6 . 0 0 .  (a) N--0.5 N--0.2 500 ///// 
 4.00. I ¢ N .I 

ANN without D.I. - - ' - -  I / /  
300 - - . -  / / /  / N oo 

• 2.00. - - , : l / z -  ~| 

1.00 
< 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Volume fraction (f) 
4.00. (b) 

3.50- 

3.oo_ 
• FEM * 

2,50- . ~ 1  N=0.5 o ANN without D.I. ---a-- . i .  
'~ • ANN with D.I. "--'-*-- 

• ~ ~ N----0.2 
1.50 N--0.1 

N--0.0 
1.00 

'~ 0.0 ' 0 1 1  " 0 1 2  • 0 ' . 3  " 0 1 4  " 0 ' . 5  ' 0 1 6  " 0 1 7  ' 018 
Volume fraction (f) 

5.00. (c) 
• N - - 0 . 5  

4.00. / ~ N=0.2 

i FEM • 
3.00. ANN without D.1. --~-- I f  

ANN with D.I. ____o - / / N--0.1 

o 2.00. N=0.0 

'5 e 

1.00 • i . i . i • , • , • , • i • , • J • 

"~ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Volume fraction (f) 

Fig. 9. Performance of derived input, asymptotic reference 
stress, 0t7, for (aS square arrangement forloading at 0°; (b) 
square arrangement for loading at 45°; (c) hexagonal ar- 

rangement. 
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o 
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7.00. (c) 
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• Equation (12) ~ * - - -  ~ / =  

~ 4"00" I . o  ~ • ANN - - . - -  | / ~ / / / ~ m  N--'0.4 

2.00. 

< 0.0 " 0'.1 " 0'.2 ' 013 ' 0'.4 ' 015 ' 0 1 6 '  0'.7 
Volume fraction (f) 

Fig. 10. New hardening exponents, asymptotic reference 
stress, 0N, for (a) square arrangement for loading at 0°; (b) 
square arrangement for loading at 45°; (c) hexagonal ar- 

rangement. 

extra input parameters have been derived from the set 
of  natural input parameters. This has been done as it 
was evident from the finite element results that the 
relationship the net is asked to learn is not linear with 
either f or N. The derived inputs when selected 
judiciously are known to accelerate the convergence. 
However, wrong selection of the derived inputs 
may adversely affect the performance of the net. 
Therefore, it is necessary to examine the suitability of 
the derived inputs. Moreover, it may be difficult, 
especially for a beginner, to select the correct derived 
inputs. Therefore, to test the efficiency of  the derived 
inputs another net has been trained without provid- 
ing the derived inputs. The net is shown in Fig. 8. The 
net has been trained in the same manner as discussed 
in the previous section. It has been observed that this 
net took longer time to train for the same relation- 

ships. Moreover, the average root mean square differ- 
ence at the end of 2000 cycles has been observed to 
be 0.0008, marginally higher than the net with derived 
inputs. This is evident in Figs 9(a), (b) and (c) where 
the prediction of  asymptotic reference stress from the 
two nets along with that of the finite element analysis 
is presented. The net with derived input shows mar- 
ginally better agreement. This emphasizes the efficacy 
of the derived input. In all following examples the net 
with derived input has been used. 

Predictions for new hardening exponents 

It has already been mentioned that the artificial 
neural networks store the knowledge in a distributed 
manner. Therefore, the knowledge can be utilized to 
solve a new problem which it has not been trained 
for. Now we test the generalization capability of the 
net by presenting it with new problems with harden- 
ing exponents of 0.3 and 0.4 which was not a part of 
the training set. To obtain the output from the net 
only the input for the new problem is presented, and 
the prediction of the net is tested against reliable 
values. However, FEM results for these hardening 
exponents are not presently available. Therefore, the 
empirical relationship of equation (12) has been used 
for a qualitative testing of the net. The prediction of 
the net for hardening exponents of 0.3,0.4 and 0.5 
along with the results of the empirical expression 
have been presented in Figs 10(a), (b) and (c). It has 
been stated earlier that the empirical equation was 
very accurate for lower hardening exponents and it 
overpredicted in the case of higher hardening 
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i 2.0" 0.75/0,25 

.~ 1,5 - 0.5•0.5 
- 0.25/0 75 

, . 0 :  . . . .  0.O/l.0 

0.0 072 074 0'.6 0'.8 
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6.0- (b) 0/45= 
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00 0:2 0:4 0:6 
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Fig. 11. Mixture of 0 and 45 ° loading, asymptotic reference 
stress, 0M, for (a) hardening exponent N = 0.0; (b) harden- 

ing exponent N = 0.5. 
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Fig. 12. Asymptotic reference stress, 0~, for various loading 
angles and varying volume fraction, hardening exponent 

N =0.0. 

exponents. The same trend is observed for the new 
cases as well. The prediction of the two methods 
agree very well for the hardening exponent of  0.3. The 
discrepancy between the two results increases pro- 
gressively along with the increase in the hardening 
exponent. The predictions of the net were generally 
lower than that of the empirical expression. The 
expression is known to overpredict the asymptotic 
stresses. Therefore, the prediction of the net for the 
new cases is reasonable. 

Prediction for  new loading angles 

The finite element analysis has been carried out for 
only two loading angles, 0 and 45 °. It is not easy to 
carry out the finite element calculations for other 
loading angles as the provision of boundary con- 
ditions becomes extremely difficult. As a result, no 
numerical result exists for loading angles other than 
the above two angles. Experimental results are also 
not available for this case. Here we investigate 
whether the artificial neural network can be applied 
to this new situation. As results for only two loading 
angles were available it was envisaged that the input 
information may not be sufficient for the net to 
generalize for all intermediate angles. However, as 
two different input nodes have been provided for two 
cases of  loading (e.g. Fig. 6) it was possible to mix the 
two loading angles in different proportions which 
roughly simulates different loading angles. To mix the 

4.0-  

3.5- 

3.0 

~ 2.5 

~ 2.0 

S 1,5 
< 

1.0 
lb 2'o 3'o ~ 5b 

Loading angle (~) 

Fig. 13. Asymptotic reference stress, #N, for various loading 
angles and varying hardening exponent, volume fraction 

f =  0.5. 

0 ° L o a d  

• Maxm.  shear  

Fig. 14. Critical angle for strengthening for arbitrary load- 
ing direction. 

two loading angles a value between 0 and 1 has been 
input in the nodes corresponding to 0 and 45 ° loading 
directions. The summation of the two entries is 
always 1. Hence, an entry of 1 in the node for 0 ° 
loading and 0 for the node for 45 ° loading signifies 
that all the fibers are loaded at 0 ° and vice versa. By 
changing the above two inputs the two directions of 
loading can be mixed in different proportions to 
simulate other loading directions. In Fig. l l(a) the 
results of this mixing in different proportions for a 
nonhardening matrix have been presented. The re- 
suits for a hardening exponent of 0.5 have been 
presented in Fig. l l (b).  It can be seen that the 
asymptotic stress is extremely sensitive to angle 
changes near 0 ° loading. Near 45 ° it is not sensitive 
at all. The asymptotic stress has changed approxi- 
mately exponentially with the change in angle. The 
sensitivity increases when the hardening exponent or 
the fiber volume fraction is high. To study the effects 
of varying f and N two graphs have been plotted 
(Figs 12 and 13). They show that the strengthening 
reduces gradually as the loading angle is changed 
from 0 to 45 °. At lower volume fractions there is little 
strengthening even when the loading angle is changed 
slightly from 0 °. Figure 14 shows that at lower 
volume fractions the maximum shear plane which is 
at 45 ° with the loading direction goes entirely through 
the matrix without impinging any fiber. Therefore, 
there is no strengthening due to the presence of fiber. 
At high volume fractions (e.g. f =  0.6) there is a 
considerable strengthening even when the loading 
angle is away from 0 °. The critical loading angle (ct) 
after which there will be no interference of the fiber 
in case o f f =  0.6 is calculated as 37 ° . In Fig. 12, it 
may be noticed that the strengthening continued up 
to a loading angle of approx. 35 °. Therefore, the 
predictions of the net seem to be realistic. It may be 
noted in Fig. 12 that f o r f  = 0.6 a change in curvature 
at about 5 ° loading direction has taken place. This is, 
however, expected as the curves are symmetric to 0 ° 
loading angle. This signals that at high volume 
fractions the strengthening is relatively stable for 
small changes in loading directions. At high volume 
fractions the relative diameter of a single fiber is 
larger. Therefore, for small changes in loading 
angle the maximum shear plane hits the fiber at 
approximately the same distance, resulting in higher 
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strengthening. Thus the behavior of the net seems to 
be sensible. In the absence of any reliable experimen- 
tal or analytical results, the behavior of the net could 
be explained only by logical reasoning. However, 
a test with a reliable experimental or analytical 
investigation will be most desirable. 

CLOSURE 

The power of artificial neural networks in predict- 
ing the strengthening of metal matrix composites 
under transverse loading has been demonstrated in 
this paper. An artificial neural network has been 
accordingly trained based on an accurate numerical 
study on these materials. The network was able to 
learn the behavior from the examples presented to it. 
The trained network has been used in prediction for 
the cases for which no other results, analytical or 
experimental, are available. The predictions of the 
network for hardening exponents for which it has not 
been trained were reasonable. The network has been 
used to predict the mechanical behavior of com- 
posites with square arrangement of fibers loaded at 
angles other than 0 or 45 ° where at present no other 
reliable predictions are available. The net predicted a 
high sensitivity for loading angles near 0 ° and a very 
fiat behavior in the case of loading in the vicinity of 
45 °. Thus high strength values are restricted to a very 
narrow regime of loading directions. Although the 
predictions of the net seem reasonable it is desirable 
to compare the predictions of the net with a reliable 
analytical or experimental investigation. 

The present work emphasizes the usefulness of this 
new technique of machine learning in solving difficult 
problems of materials science, The complicated ma- 
terial behavior obtained through experimental or 
numerical work can be directly captured into an 
artificial neural net and the net can later be used 
for cases for which experiments have not been 
performed. This will be attempted in a future work. 
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