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Abstract: Knowledge of the mechanical properties of structural materials is essential for these 

practical applications. Three-hundred and sixty data samples on four mechanical properties of steels 

– fatigue strength, tensile strength, fracture strength and hardness – were selected for analysis from 

the Japan National Institute of Material Science database, comprising data on carbon steels and low-

alloy steels. Five machine learning algorithms were used to predict the mechanical properties of the 

materials represented by the three-hundred and sixty data samples, and random forest regression 

showed the best predictive performance. Feature selection conducted by random forest and 

symbolic regressions revealed the four most important features that most influence the mechanical 

properties of steels: the tempering temperature of steel, and the alloying of steel with carbon, 

chromium or molybdenum. Mathematical expressions were generated via symbolic regression, and 

the expressions explicitly predicted how each of the four mechanical properties varied 

quantitatively with the four most important features. This study demonstrates the great potential of 

symbolic regression in the discovery of novel advanced materials.  
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1. Introduction 

The identification of structure-property relationships is fundamental to the discovery of 

new materials. However, the ability to comprehensively understand and manipulate 

structure-property relationships of materials is very challenging, due to the diversity and 

complexity of materials. As a result, data-driven discovery of novel advanced materials 

requires the use of advanced techniques such as big data and artificial intelligence, data 

mining and machine learning (ML) to accelerate research and development [1–8]. Materials 
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data and ML provide the foundation of this data-driven materials discovery paradigm, 

which integrates materials domain knowledge and artificial intelligence technology to form 

the new research field of materials informatics.  

In this new field, the Materials Genome Initiative aims to halve the cost and time from 

discovery to development to deployment of advanced materials [9]. This integrated 

approach applies materials data to explore structure-property relationships and to develop 

models and guidance for synthesis of new materials. For example, Homer et al. [10] and 

Zhu et al. [11] used ML tools to investigate grain boundaries in polycrystalline materials, 

and Raccuglia et al. [12] demonstrated a ML strategy to elucidate how to classify 

successful and failed synthesis conditions with the use of historically accumulated 

experimental data. Agrawal et al. [13,14] used ML algorithms to predict the fatigue strength 

of steels, which substantially improved the understanding of fatigue behavior. However, 

their ML predictions did not result in explicit mathematic expressions linking features and 

output properties, which are desirable for materials research, design, development and 

deployment. 

The purpose of this study was to predict the four mechanical properties of steels 

using five ML algorithms, especially using random forest (RF) regression and symbolic 

regression (SR). The performances of the five algorithms were assessed, revealing that RF 

performing the best, and explicit mathematical expressions were obtained from SR.  

2. Data Resource  

The publicly available dataset for steels in the Japan National Institute of Material Science 

(NIMS) [15] was used in this study, as it is among the world’s largest experimental datasets 

of its type. The NIMS dataset contains materials chemical compositions, processing 

conditions and property information, including the mechanical properties of steels at room 

temperature, such as fatigue strength, tensile strength, fracture strength and hardness. 

Fatigue strength is defined as the critical value of an applied stress range, at or below which 

no fatigue failure will occur during a given material’s lifetime. In this study, the rotating 

bending fatigue strength of materials (hereafter ‘fatigue strength’) was measured at a 

fatigue life of 1 × 107 cycles. 
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Fatigue testing conditions, such as the loading frequency and profile, the testing 

temperature and environment, and the specimen dimensions, have significant effects on 

fatigue behavior. The 393 original data samples collected from the NIMS database had all 

been fatigue-tested under the same conditions, and thus the testing conditions are not 

considered in this study. The 393 original fatigue samples comprised 113 carbon steels, 258 

low-alloy steels and 22 stainless steels, characterised by chemical composition, processing 

parameters, inclusion parameters and mechanical properties. In terms of chemical 

composition, the materials were composed of various proportions of nine alloying elements: 

carbon (C), silicon (Si), manganese (Mn), phosphorus (P), sulphur (S), nickel (Ni), 

chromium (Cr), copper (Cu), and molybdenum (Mo). The included parameters were the 

area fraction of non-metallic inclusions, namely dA (inclusions formed during plastic work), 

dB (inclusions that occur in discontinuous arrays) and dC (isolated inclusions). The 

processing parameters were the reduction ratio from the ingot to the bar, and the heat 

treatment parameters, as described in detail below.  

(1) The heating rate and cooling rate are not considered, because no such data were 

available. 

(2) Three types of heat treatments – normalizing, quenching and tempering – were 

conducted on the steels. The temperatures for normalizing, quenching and tempering were 

included, whilst the holding times at heat treatment temperatures were not, as data for only 

two holding times were available. 

(3) After the heat treatment, the samples were cooled to room temperature to conduct the 

fatigue tests.  

(4) Eleven carbon steels without normalizing treatment (SC25 steels) and 22 stainless steels 

without quenching and tempering treatment were excluded from the study, which reduced 

the original 393 data samples to 360. 

The 360 data samples comprised 16 variables of nine alloying elements, one 

reduction ratio, three heat-treatment temperatures, three inclusions and four target 

properties (fatigue strength, tensile strength, fracture strength and hardness). These 16 
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variables were the named features in ML, and the minimum and maximum values of each 

feature are shown in Table 1. 

 

 Table 1. 16 Features of the 360 NIMS fatigue data 

Features Description Min Max Mean StdDev 

NT Normalizing Temperature (°C) 825 900 865.6 17.37 

QT Quenching Temperature (°C) 825 865 848.2 9.86 

TT Tempering Temperature (°C) 550 680 605 42.4 

C (x1) wt% of Carbon 0.28 0.57 0.407 0.061 

Si (x2) wt% of Silicon 0.16 0.35 0.258 0.034 

Mn (x3) wt% of Manganese 0.37 1.3 0.849 0.294 

P (x4) wt% of Phosphorus 0.007 0.031 0.016 0.005 

S (x5) wt% of Sulphur 0.003 0.03 0.014 0.006 

Ni (x6) wt% of Nickel 0.01 2.78 0.548 0.899 

Cr (x7) wt% of Chromium 0.01 1.12 0.556 0.419 

Cu (x8) wt% of Copper 0.01 0.22 0.064 0.045 

Mo (x9) wt% of Molybdenum 0 0.24 0.066 0.089 

RR Reduction ratio 420 5530 971.2 601.4 

dA Plastic work-inclusions 0 0.13 0.047 0.032 

dB discontinuous array-inclusions 0 0.05 0.003 0.009 

dC isolated inclusions 0 0.04 0.008 0.01 

*Weight percentage of iron is  =
−=

9

110 100
i ixx  

  

3. Results and Discussion 

3.1 ML models with all features 

Four ML algorithms – RF, linear least-square (LLS), k-nearest neighbors (KNN) and 

architecture-neural network (ANN) – were conducted on the dataset comprising all 16 

features (termed ‘All’). The performances of these algorithms were evaluated by ten-fold 

cross-validation, in which the data were divided into ten parts (nine parts for training data 

and one part for testing data) and the training and testing were cycled ten times to allow the 

use of all data in testing. The predictive power of an ML algorithm on the testing data was 

measured by the correlation coefficient (R) and the relative root-mean-square errors 

(RRMSE), which are defined by 
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Figure 1. The R and RRMSE values of the RF (random forest), LLS (linear least-square), KNN (k-

nearest neighbors) and ANN (architecture-neural network) models using all 16 features: (a) fatigue 

strength of all models, and the performance of the best model, ANN@All; (b) tensile strength and 

the performance of the best model, ANN@All; (c) fracture strength and the performance of the best 

model, RF@All; and (d) hardness and the performance of the best model ANN@All. 
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where n is the number of testing data, and y, ŷ and y  denote the actual value, the predicted 

value and the average value, respectively. R lies between 0 and 1, and a value of 1 indicates 

a perfect prediction. An RRMSE value of zero indicates a perfect fit. In general, a higher 

value for R and a lower value for RRMSE indicate a better ML algorithm [16].  

Figure 1 shows the R and RRMSE values of the four ML algorithms and compares 

the best predicted values from one of the ML algorithms with the measured values for each 

of the four mechanical properties. As can be seen, the RF has the greatest predictive power 

for fracture strength (R = 0.9725, RRMSE = 23.56%), whilst the ANN algorithm gives the 

best results for fatigue strength (R = 0.9699, RRMSE = 24.49%), tensile strength (R = 

0.9857, RRMSE = 16.89%) and hardness (R = 0.9836, RRMSE = 18.13%). 

3.2 Feature selection 

Feature selection is crucial in ML; given the fact that ML algorithms such as RF and SR 

have feature selection functions, these algorithms are emphasized here. The importance of 

the features computed by RF is denoted RFI, and that of the features computed by SR is 

called SRI. Figures 2 (a-b) show the RFI and SRI values, respectively, for each original 

feature. The RFI values indicate that the four most important features are the presence of 

Mo and Cr, the normalizing temperature and the tempering temperature, whilst the SRI 

values indicate that the four most important features are the tempering temperature, and the 

presence of C, Cr and Mo, which correspondingly yield two feature subsets of RFI (NT, TT, 

Cr, Mo) and SRI (TT, C, Cr, Mo). 

 

Figure 2. Normalized (a) random forest importance (RFI) and (b) symbolic regression importance 

(SRI) of the 16 features for fatigue strength, tensile strength, fracture strength, and hardness. 
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The four ML algorithms were conducted using the RFI features (NT, TT, Cr, Mo) 

and the SRI features (TT, C, Cr, Mo). Figure 3 shows the cross-validation R values and the 

predicted values of the best model against the measured value for each of the four features. 

The results illustrate that the RF algorithm with the feature subset SRI (TT, C, Cr, Mo) 

outperforms the other algorithms. The RF models with the feature subset SRI (TT, C, Cr, 

Mo) predict the four target properties with high predictive accuracy (R > 0.9550, RRMSE < 

30.00%). 

 

Figure 3.  R values of the RF (random forest), LLS (linear least-square), KNN (k-nearest neighbors) 

and ANN (architecture-neural network) models with the selected RFI and SRI feature subsets: (a) 
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for fatigue strength, and the performance of the best model, RF@SRI; (b) for tensile strength, and 

the performance of the best model, RF@SRI; (c) for fracture strength and the performance of the 

best model, RF@SRI; and (d) for hardness, and the performance of the best model RF@SRI. 

 

3.3 Mathematical expressions  

With SRI features (TT, C, Cr, Mo), SR gave the following mathematical expressions for 

fatigue strength (FaS) (MPa), tensile strength (TS) (MPa), fracture strength (FrS) (MPa), 

and hardness (H) (HV).   

785.0+708.6Mo+227.5Cr-367.6Cr+316.7C+-0.8685TT=FaS 22           (3) 

2122+1514Mo+379.9Cr-643.2Cr+C119.7--1.827TT=TS 22               (4) 

2267+1461Mo+415.3Cr-695.4Cr+C46.12--1.176TT=FrS 22               (5) 

 681.9+104.0Mo+113.3Cr-191.2Cr+C38.41--0.5839TT=H 2             (6) 

where all elements are expressed in wt.% and TT is expressed in (°C). The equations had 

strong predictive power (R > 0.9425, RRMSE < 33.30%), as shown in Figure 4. Equations 

(3-6) each include a minus sign with the tempering temperature, which indicates that lower 

tempering temperatures are should improve the strength and hardness of steels. The 

alloying elements of C, Cr and Mo are also strengthening elements. 

 

 

Figure 4. Performance illustrations of (a) Eq. (3) for fatigue strength, (b) Eq. (4) for tensile strength, 

(c) Eq. (5) for fracture strength and (d) Eq. (6) for hardness.  
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3.4 ML model based on atomic features 

Atomic features were used in this study to generalize the predictive power of ML in new 

alloy discovery. Specifically, iron (Fe) is the matrix of steels, and alloying elements in 

steels may behave as solutes within the iron matrix ‘solvent’, forming metal carbides with 

carbon or intermetallic compounds with Fe and/or among the alloying elements themselves, 

which then may precipitate as clusters or/and tiny phases. Table 2 lists the atomic features, 

which, together with tempering temperatures, are denoted by the term ‘All-AF’ and are 

used in the following ML.   

In Table 2, ri and rFe denote the atomic radii of element i and Fe, respectively; VECi, 

VECFe and VECC are the valance electrons of element i, Fe and C, respectively; and i, Fe 

and C are the Pauling electronegativities of element i, Fe and C, respectively. Table S1 in 

the Supplementary Material lists the values of these atomic properties. In addition, ai is the 

atomic percentage of element i, which is linked to the weight percentage xi by the 

expression 
( )

=

i ii

ii
i

Mx

Mx
a , where Mi is the atomic weight of element i. 

Table 2. Atomic features used in this work 

Features Description Formula 

aFe Atomic percentage of Fe a10 

tr Total atomic radius ii ira =

10

1
 

dr-Fe Atomic radius difference (Fe-based) 
2

10

1
Fe

1 =







 −
i

i
i r

r
a  

tVEC Total valance electron ii ia VEC
10

1 =
 

dVEC-Fe Valance electron difference (Fe-based) 
2

10

1
FeVEC
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dVEC-C Valance electron difference (C-based) 
2
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1
CVEC
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dχ-C Electronegativity difference (C-based) 
2
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The selection of atomic features was conducted by RF and SR. Thus, RFI selected 

four important features (tVEC, dVEC-Fe, dVEC-C and TT for fatigue strength and hardness and 

tVEC, aFe, dVEC-C and TT for tensile strength and fracture strength), and SRI selected four 

important features (dVEC-C, dr-Fe, aFe and TT for all four mechanical properties). The features 

selected by RF and SR are referred to as RFI-AF (TT, tVEC, dVEC-Fe, dVEC-C), RFI-AF (TT, 

tVEC, aFe, dVEC-C) and SRI-AF (TT, aFe, dr-Fe, dVEC-C), respectively.  

The RF algorithm was conducted again with the All-AF, RFI-AF and SRI-AF 

features. Figure 5(a) shows the R values for each of the four properties. The results indicate 

that the RF model with SRI-AF (TT, aFe, dr-Fe, dVEC-C) has similar performance to that of 

the RF model with All-AF, and the RF model with SRI-AF performs better than the RF 

model with the two RFI-AF feature sets. Figures 5(b-e) show the values predicted by the 

RF model with SRI-AF against the measured values for the four mechanical properties, 

respectively (all R > 0.9510; all RRMSE < 31.00%). 

 

Figure 5. (a) R values of RF (random forest) models with All-AF, RFI-AF and SRI-AF features for 

the four mechanical properties. Predicted values of RF model with SRI-AF features against the 

measured values for (b) fatigue strength, (c) tensile strength, (d) fracture strength and (e) hardness. 
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Similarity, Equations (7-10) from SR gave the explicit correlations of FaS in MPa, 

TS in MPa, FrS in MPa, and hardness (H) in HV, with the SRI-AF, respectively. 

10610-27690+6679+2771--0.8631TT=FaS C-VECFe-Fe dda r                                      (7) 

24019-58552+14852+4438--1.801TT=TS C-VECFe-Fe dda r                                         (8) 

24003-60564+9863+4718--1.148TT=FrS C-VECFe-Fe dda r                                    (9) 

8062-18906+4810+1122--0.5724TT=H C-VECFe-Fe dda r                                   (10) 

where aFe is expressed in at.% (atomic percentage) and TT is expressed in degrees Celsius 

(°C). Those equations indicate that the alloying elements enhance the strength of steels. 

Figures 6 (a-d) show the predictive performances of Equations (7-10), respectively, and the 

associated R and RRMSE values. 

 

Figure 6. Performance illustrations of (a) Eq. (7) for fatigue strength, (b) Eq. (8) for tensile strength, 

(c) Eq. (9) for fracture strength and (d) Eq. (10) for hardness. 

 

3.5 Development of anti-fatigue high strength steel 

In the 360 data samples used, the lowest tempering temperature was 550°C for forming 

tempering sorbate, and the maximum proportions of C, Cr and Mo were 0.57 wt.%, 1.12 

wt.% and 0.24 wt.%, respectively. Thus, the conditions required for the formation of a 

novel anti-fatigue high-strength steel were possibly discovered, i.e., the heat-treatment 

condition and compositions shown in Table 3, and the ML-predicted mechanical properties 

shown in Table 4. As can be seen, although the ML predictions from Equations (3-6) 

deviate slightly from the corresponding values from Equations (7-10), the average predicted 

fatigue strength (682.5 ± 27.5 MPa at a fatigue life of 107), tensile strength (1286 ± 48 MPa) 
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and hardness (406 ± 16 HV) each exceed the corresponding maximum values, and the 

average predicted fracture strength (1922 ± 41 MPa) is comparable to the maximum 

reported fracture strength (1931 MPa). 

Table 3. The tempering temperature and composition of the data-driven discovered anti-fatigue high 

strength steel 

TT C Cr Mo Other Features 

550 °C 0.57 wt% 1.12 wt% 0.24 wt% Maximum value (minimize aFe) 

 

Table 4. The four mechanical properties of the data-driven discovered anti-fatigue high strength 

steel 

Properties 
Maximum value in the 

dataset 

Predictions of Eq. (3)-

(6) 

Predictions of Eq. (7)-

(10) 

Average 

Predictions 

FaS (MPa) 643 655 710 682.5 ± 27.5 

TS (MPa) 1206 1238 1334 1286 ± 48 

FrS (MPa) 1931 1881 1963 1922 ± 41 

H (HV) 380 390 422 406 ± 16 

 

4. Concluding Remarks 

ML and feature selection were conducted on 360 data samples of steels to predict the 

fatigue strength at a fatigue life of 1 × 107 cycles and the tensile strength, fracture strength 

and hardness, and to find the features that were most important for the optimisation of these 

four mechanical properties. The ML results demonstrated that the tempering temperature 

and the presence of C, Cr and Mo were key to the mechanical properties of steels, with 

respect to which the RF model exhibited high validation accuracy (R > 0.9550, RRMSE < 

30.00%). In particular, the SR gave explicit mathematic expressions of the four mechanical 

properties as functions of the four important features, and revealed the required features of 

novel an anti-fatigue high-strength steel. 
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Method and Software 

Four ML algorithms (RF, LLS, KNN, ANN) in the WEKA software library [17] and the 

SR algorithm in HeuristicLab [18] were used in this study. All parameters of ML 

algorithms were set as the default in the open-source software, unless otherwise requested  

RF: The number of features randomly chosen at each node is denoted by numFeatures and 

is determined via grid search to achieve the greatest predicting accuracy. The search results 

are shown in Table 5 for each feature subset. The RFI value was computed on the basis of 

the mean decrease impurity [19] in WEKA. 

Table 5. The number of features randomly chosen for each subset 

Training set All RFI SRI All-AF RFI-AF SRI-AF 

numFeatures 7 1 2 5 2 2 

KNN: The number of neighbors is denoted by KNN and is determined via grid search, KNN 

is recommend to be 4, 2, and 3 for All, RFI, and SRI feature subsets, respectively.  

ANN: The number of hidden layers in the neural network and the learning rate of weight 

update are denoted by hiddenLayers and learningRate, respectively. The two hyper- 

parameters were determined via grid search to be learningRate = 0.1 and the hiddenLayers 

of 8, 7 and 7 for the All, RFI and SRI feature subsets, respectively. 

SR: Genetic programming (GP) in HeuristicLab was used to search for an optimal 

expression. The parameters of GP that were used in this study are listed in Table 6. One 

hundred independent GP runs were conducted, and, based on these, the SRI value was 

computed as the fitness-weighted variable importance as defined in [20]. 

Table 6 The used parameters in GP  

Parameter 
Population 

Size 

Number of 

Generation 

Mutation 

Probability 

Crossover 

Probability 

Maximum 

Tree Depth 

Maximum 

Tree Length 

Value 1000 10000 20% 80% 10 15 
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