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A B S T R A C T

The design of new materials with useful properties is becoming increasingly important. Machine-learning tools
Materials Genome Integration System Phase and Property Analysis (MIPHA) and rMIPHA (based on the R
programming environment) have been independently developed to accelerate the process of materials discovery
via a data-driven materials research approach. In the present work, MIPHA and rMIPHA are applied to steel,
where machine-learning-based 2D/3D microstructural analysis, direct analysis of property predictions, and
properties-to-microstructure inverse analysis were conducted. The results demonstrate that the prediction
models deliver satisfactory performance. The inverse exploration of microstructures related to desired target
properties (e.g., stress–strain curve, tensile strength, and total elongation) was realized. MIPHA and rMIPHA are
still under improvement. The microstructure-to-processing inverse analysis is expected to be realized in the
future.

1. Introduction

Science is in an exponential world in which the amount of scientific
data is doubly increased every year, which drives the evolution of sci-
entific methods from traditional paper notebooks toward enormous
online databases [1]. As data volumes increase, the ability to efficiently
extract knowledge from the huge amount of data becomes increasingly
important. In response to such a data deluge, the highly efficient and
systematic use of databases has become an integral part of the scientific
process. Machine learning, which is an artificial intelligence approach
to analyzing data and making predictions and decisions based on a huge
data volume through various models and algorithms [2,3], has already
been successfully applied in many scientific fields [4]. Examples include
cognitive game theory (e.g., computer chess) [5,6], pattern recognition
(e.g., facial or fingerprint recognition) [7–9], and event forecasting
[10].

Because of the staggering compositional and configurational de-
grees of freedom in materials, the chemical space of materials is far
from being exhausted; an enormous number of new materials with
useful properties are yet to be discovered [11]. In the traditional ex-
perimental science, a material is generally designed from a given che-
mical composition and processing conditions, followed by micro-
structure analysis and property evaluation, which is high-cost, low-
efficiency, and insufficient for designing a novel material with desired

properties. Therefore, machine learning is now attracting increasing
attention in the materials research field to explore unknown informa-
tion about materials and thus accelerate advances in materials dis-
covery [12,13]. One proposed approach is known as materials infor-
matics, which is scientific and technical and seeks to establish
structure–property relationships in a high-throughput, statistically ro-
bust, and physically meaningful manner using computational science
[13].

The application of machine learning to materials research has led to
numerous achievements: predictions of phase diagrams [14], crystal
structures [15,16], and materials properties [11,17–19]; developments
of interatomic potentials [20–22] and energy functionals [23]; and
mapping of materials behavior to process variables [24]. However,
these applications are mainly restricted to a direct analysis from
structure to property under given chemical compositions and proces-
sing conditions. An inverse analysis method that starts from the desired
property and predicts the required structural features and processing
conditions has not yet been developed.

In the most current materials research, microstructures of materials
are studied in two dimensions. However, the two-dimensional (2D)
approach gives rise to some criticism because real materials are three-
dimensional (3D). For example, flow curves in ferrite–martensite dual
phase steel has been reported to be underestimated compared with the
flow curves obtained by prediction from 2D plane strain modeling and
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those obtained experimentally [25]. Thus, 3D microstructural data of
materials appear to be necessary for data-driven materials research.

The present work is aimed at developing a new machine-learning
tool, Materials Genome Integration System Phase and Property Analysis
(MIPHA), which can realize 2D/3D microstructural analysis and direct
and inverse analyses simultaneously. Furthermore, a machine-learning
program of rMIPHA based on R script has also been developed; it
mainly focuses on analysis of the data obtained from MIPHA. The
purpose of this work is to provide materials researchers with a new
avenue for data-driven materials design and thus accelerate the mate-
rials discovery process.

2. MIPHA and rMIPHA

This section introduces MIPHA and rMIHPA. Fig. 1 shows the pri-
mary functions and characteristics of MIPHA, including image re-
cognition, image processing, 2D/3D analysis, and direct and inverse
analyses. Deep learning [26] and Trainable Weka Segmentation (TWS)
[27] approaches are adopted for image recognition and processing
functions, respectively. Deep learning can extract image features using
an artificial neural network (ANN) with multiple layers, acquiring ab-
stractive features that represent the original image features. Here,
GoogLeNet model is used for deep learning, and dropout and average
image extraction techniques are employed to suppress overfitting and
clear image, respectively. TWS is a machine-learning tool that can
realize segmentation of large image datasets automatically after
training a classifier by a limited number of manual annotations [27].
Twenty alternative training features (e.g., Gaussian blur, mean, min/
max, and anisotropic diffusion) are supplied in TWS to ensure training
accuracy. The functions of image recognition and image processing are
implemented through a free software of Fiji. In 2D and 3D analysis
functions, microstructural characteristics (2D: count fraction, area
fraction, circularity, solidity, and ferret's diameter/angle; 3D: count
fraction (CF: count/total volume), volume fraction (VF), surface area,
Gauss curvature, ferret's diameter, sphericity, genus, Euler-Poincare,
piercing particle, isolated inner particle, and branching point) can be
analyzed and quantified with help of free and commercial software
called the Amira, which is designed for high-dimensional data visuali-
zation, processing, and analysis [28].

Property prediction is the main function in direct analysis, where an
ANN classifier is used to fit the prediction model. Since an excess of
model variables often leads to overfitting [29], a function of data
transformation and variable selection [30,31] is installed in the MIPHA.
The data of the explanatory variables are first subjected to multiple
transformations, such as linear, logarithmic, exponential, square, root,

tangential. A logistic regression is employed to identify the correlation
between the explanatory and objective variables, where the transfor-
mations that contribute to a high correlation are defined by a gene
pattern of 1, while the either ones are defined as 0. Then, a set of ef-
ficient transformations that leads to the highest correlation is extracted
using a genetic algorithm (GA) [32], which is a metaheuristic inspired
by the process of natural selection using for various optimization pro-
blems, especially with incomplete or imperfect information or limited
computation capacity. The explanatory variables that provide efficient
transformations are thereby selected into the input layer of the neural
network. In addition, sigmoid function was used as the activation
function with the MIPHA in this study. In inverse analysis, a direct
analysis model should be established in advance, followed by inverse
analysis using the GA, where the population size of 2000, generation of
50, crossover rate of 0.1, and mutation rate of 0.85 were used in this
work.

Fig. 2 shows the main functions of rMIPHA that works in the R
programming environment, including variable selection, dimension
reduction, regression analysis, and direct and inverse analyses. In the
variable selection function, the Akaike information criterion (AIC) [33],
Bayesian information criterion (BIC) [34], and the least absolute
shrinkage and selection operator (LASSO) [35] packages are installed,
which are designed for selecting a subset of relevant variables for model
construction, so as to simplify the model, shorten the training time,
reduce overfitting, as well as make the model easier to interpret. The
AIC and BIC are formally as AIC =2k – 2ln(L) and BIC = ln(n)k – 2ln
(L), respectively, where k and n are the number of the explanatory
variables and observations estimated by the model, respectively; and L
is the maximum value of the likelihood function for the model. The
variables that result in the lowest AIC or BIC value for the model are
preferred. LASSO is a regression analysis method, which forces re-
gression coefficients of certain variables to be 0, and then effectively
chooses a simpler model with those variables whose corresponding
absolute values of the coefficient are larger than 0.

In the dimension reduction function, principal component analysis
(PCA) [36] and Autoencoder [37] packages are used to convert the
high-dimension dataset to a low dimension. PCA normalizes the high-
dimension dataset with correlated variables and convert it into a set of
linearly uncorrelated vectors that describe the variances of the ob-
servations in the dataset, where two principle components PC1 and PC2
are generally used to evaluate the primary variances of the observa-
tions. Autoencoder is a type of ANN used to compress a high-dimension
dataset into a low-dimension code that can be uncompressed into
something closely matching the original dataset.

In the regression analysis function, ANN [38], support vector

Fig. 1. Functions and characteristics of MIPHA.
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machine (SVM) [39], random forest (RF) [40], and multiple regression
(MR) [41] classifiers with hyper-parameter Bayesian optimization (BO)
are installed for fitting data to models. On the basis of the regression
models, the property prediction and inverse analysis can be realized
using the BO algorithm in direct and inverse analysis functions. In the
present work, sigmoid function was used as the activation function in
the ANN model. The node number of hidden layer and weight decay, as
hyper-parameters, were optimized under a learning rate of 0.01. In the
RF model, the hyper-parameters of the numbers of tree and feature in
each tree were optimized, where 1000 trees and maximum feature
value of 7 were used. In the SVM model, the radial basis function (RBF)
was used as the kernel. The penalty coefficient of cost and parameter
gamma were optimized in a range of 0.25～4.

Fig. 3 compares the functions between MIPHA and rMIPHA. MIPHA
was developed as dependent software using the Visual Basic language.
rMIPHA works in the R language, which is extensively used for statis-
tical computing and data analysis. The functions of image processing
and 2D/3D microstructural analysis are unique for MIPHA, whereas
rMIHPA shows obvious advantages in regression analysis for its se-
lectable classifiers with hyper-parameter BO. In inverse analysis func-
tions, GA and BO are used for MIPHA and rMIPHA with maximum
objective variables of 2 and 3, respectively. In addition, rMIPHA has
more options for variable selection and dimension reduction in sparse
studies. Further details descripting the work of these functions have
been introduced in our previous work [42].

3. Application of MIPHA and rMIPHA in steels

Mechanical properties are the foundation of various steels and are
highly sensitive to their microstructure. Fig. 4 maps the primary mi-
crostructural factors in materials that influence their strength and
plasticity. These microstructural factors are classified into first de-
scriptors and second descriptors. The former mainly describes char-
acteristics of the second phase, grain size, crystal orientation, grain
boundaries, and dislocations. The latter describes factors derived from
the former, such as lattice friction, mobile and immobile dislocation
densities, residual stress, elastic anisotropy, and Schmidt factor. To
thoroughly understand the relationship between microstructure and
properties, estimations of such numerous microstructural factors on the
basis of traditional experimental science are insufficient. In addition,
the microstructure also strongly depends on chemical compositions and
processing conditions of the materials, which makes the estimation
more difficult. Thus, machine learning is a powerful approach to ex-
ploring the potential relationships among processing conditions, mi-
crostructure, and mechanical properties.

In this section, MIPHA and rMIPHA are applied to steels. Direct
analysis of property prediction and properties-to-microstructure inverse
analysis are carried out. One of the objectives is to study the relation-
ship between microstructure and properties by machine learning; the
other objective is to demonstrate the functions of MIPHA and rMIPHA.

3.1. Experimental procedure

Cold-rolled (CR) low-carbon steels with different chemical

Fig. 2. Functions and characteristics of rMIPHA.

Fig. 3. Function comparison between MIPHA and rMIPHA.
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compositions and processing conditions were studied in the present
work. The CR steel samples were austenitized at 1000 °C or 1400 °C and
cooled at 1, 3, 10, or 30 °C/s to room temperature. The chemical
compositions of the raw materials and processing parameters are de-
tailed in Table 1.

Continuous cooling transformation (CCT) curves were measured by
the thermal expansion method. Tensile tests were performed to eval-
uate the mechanical properties of the samples. The microstructures of
the samples were observed on their sections parallel to the rolling di-
rection using a proprietary serial-sectional 3D microscope (Genus_3D)
[43], where approximately 100 images were serially observed at 0.53～
0.96 µm per interval for each sample. Microstructural analysis was
performed by MIPHA. Direct analysis of property prediction and
properties-to-microstructure inverse analysis were carried out with
MIPHA and rMIPHA.

3.2. Machine-learning-based microstructural analysis

Fig. 5 illustrates the 2D and 3D microstructures of sample A10-01.

Fig. 5(a) shows an image as an example observed using Genus_3D.
According to the contrast, morphology, and CCT curve, the micro-
structure was recognized as being composed of four phases: polygon
ferrite (PF), Widmanstatten ferrite (WF), pearlite (P), and degenerated
pearlite (DP), which were observed as white polygonal, white acicular,
dark, and light features, respectively. In addition, in the samples cooled
at higher rates of 10 and 30 °C/s, bainite (B) and martensite (M) were
observed. Fig. 5(b) shows a cropped image with local contrast nor-
malization corresponding to the area highlighted by the red box in
subfigure (a). The cropping and local contrast normalization were
carried out to ensure that the subsequent phase segmentation pro-
ceeded well. Fig. 5(c) shows a phase-extracted image corresponding to
(b), in which the four aforementioned phases are marked in different
colors. Fig. 5(d) and (e) show the 3D images reconstructed from the
serial images in (b) and (c), which intuitively and proximately present
the real microstructure of the sample. Furthermore, Fig. 5(f) shows a 3D
image segmented from (e) as an example, clearly displaying the mor-
phology and distribution of the P phase.

In the present work, the aforementioned 2D and 3D microstructure

Fig. 4. Microstructural factors that influence the mechanical properties of materials.

Table 1
Chemical compositions and processing conditions of the studied steels.

Steel Chemical composition (wt%, N, O: ppm) Process

A10-01 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000 °C for 5 s→ cooling at 1 °C/s
A10-03 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000 °C for 5 s→ cooling at 3 °C/s
A10-10 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000 °C for 5 s→ cooling at 10 °C/s
A10-30 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1000 °C for 5 s→ cooling at 30 °C/s
A14-01 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→annealed at 1400 °C for 5 s→cooling to 1000 °C at 50 °C/s→cooling at 1 °C/s
A14-03 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1400 °C for 5 s→ cooling to 1000 °C at 50 °C/s→ cooling at 3 °C/s
A14-10 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1400 °C for 5 s→ cooling to 1000 °C at 50 °C/s→ cooling at 10 °C/s
A14–30 0.152C-0.015Si-1.51Mn-0.007P-0.0016S-0.027Al-18N-28O CR→ annealed at 1400 °C for 5 s→ cooling to 1000 °C at 50 °C/s→ cooling at 30 °C/s
B10-01 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000 °C for 5 s→ cooling at 1 °C/s
B10-03 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000 °C for 5 s→ cooling at 3 °C/s
B10-10 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000 °C for 5 s→ cooling at 10 °C/s
B10-30 0.151C-0.013Si-1.53Mn-0.007P-0.002S-0.193Mo-0.028Al-21N-21O CR→ annealed at 1000 °C for 5 s→ cooling at 30 °C/s
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characteristics of each phase were analyzed and quantified with help of
deep learning and TWS, supplying sufficient topological microstructure
information that approaches to a real material. The obtained average
information of each microstructure feature was automatically sum-
marized to a CSV file. In addition, the microstructure information of
each phase was also statistic to separated CSV files. This indicates that
MIPHA has a powerful 2D/3D microstructural analysis function.

3.3. Construction of datasets

In order to avoid a complex model and reduce overfitting resulting
from excess model variables, BIC estimation was performed to identify
the importance of the above 3D microstructure features for the property
(stress). The results demonstrated that the CF and VF of the most of
phases exhibited high importance for the stress, by which the CF and VF
were thereby chosen as the microstructure features for fitting the
models in this study.

The quantitative CF and VF of each phase are detailed in Table 2. In
addition, the mechanical properties of tensile strength (TS) and total
elongation (tEL) estimated from the stress-strain curves are also in-
cluded (the experimental information of strain and stress is listed in
Table S1). These obtained microstructure and property data constitute
the “material genomes” used for subsequent direct and inverse ana-
lyses. In the present work, two datasets were constructed: one was used
for predicting stress-strain curve, and the other was used for inversely
exploring a balanced property of TS and tEL. The former contained 111
observations depending on the number of the overall strain/stress data

items of the samples (Table S1) with 14 features in each observation (6
CFs, 6 VFs, strain, and stress). The latter contained 12 observations
depending on the number of the studied samples (Table 2) with 14
features in each observation (6 CFs, 6 VFs, TS, and tEL).

In machine learning, overfitting often occurs when a statistical
model accurately fits the data at hand but fails to describe the under-
lying data, which results in inaccurate predictions for the novel mate-
rial characteristics. One approach to avoiding overfitting is to separate
the datasets for training a model and for testing it. Therefore, in the
present work, the 75% of the data in each dataset was used for training
and the remaining 25% was used for testing. It should be pointed out
that the training and testing datasets were split using a round-robin
algorithm in MIPHA, while they were randomly split in rMIPHA with a
10-fold cross validation for the training data.

3.4. Direct analysis of property prediction

Fig. 6 shows the direct analysis results obtained by MIPHA without
variable selection, including the neural network of the prediction model
and the predicted stress–strain curve of the A10-01 sample in its plastic
deformation period. As shown in Fig. 6(a), in this prediction model, all
microstructures (CF and VF) and true strain were used as the ex-
planatory variables (input layer) and the true stress was used as the
objective variable (output layer). A hidden layer with nine variables
was created between the input and output layers. The correlation
coefficients (CCs) of the training and testing datasets were evaluated as
0.98987 and 0.96062 for the present model, indicating a good linear

Fig. 5. Microstructures of sample A10-01: (a) an original image observed by Genus_3D; (b) an image with local contrast normalization corresponding to the area
highlighted by the red box in (a); (c) a phase-extracted image corresponding to (b); (d) and (e) reconstructed 3D images from the serial images of (b) and (c),
respectively; and (f) a 3D image segmented from (e) with P phase only.
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correlation between the experimental data and the estimated data. As
illustrated in Fig. 6(b), the experimental and predicted curves of sample
A10-01 were well fit to each other. In addition, by comparison for all
samples, the experimental and predicted curves were still keep a good
fitness (Fig. S1). These results suggest satisfactory performance of this
model.

As mentioned above, an excess of model variables can also lead to
overfitting. Therefore, a prediction model with variable selection was
also established by MIPHA. Fig. 7(a) shows the neural network of the
fitted model. The variables in the hidden layer were reduced to seven
after variable selection; however, this simplified model still had an
accuracy approximately equal to that achieved without variable selec-
tion (Fig. 6). A comparison of the experimental and predicted stress–-
strain curves also indicates good performance of this model, as illu-
strated by the A10-01 sample in Fig. 7(b) (Fig. S2 presents the predicted
results of all samples). The aforementioned results demonstrate that
variable selection is beneficial in the case of numerous model variables.

The obtained “materials genomes” were also studied by rMIPHA
using different classifiers with and without variable selection. Fig. 8
shows the direct analysis results without variable selection. The dataset
was pre-estimated by ANN, SVM, and RF classifiers with hyper-para-
meter BO. Fig. 8(a) shows the performance of the fitted models, as in-
dicated by CC and root-mean-square error (RMSE). The results

demonstrate that the ANN model exhibited the best accuracy on the
basis of its high CC and low RMSE. By contrast, substantial overfitting
occurred in the SVM model. Fig. 8(b) shows the hyper-parameter BO
result for the ANN model under the search conditions of 20 initial
points and 10 iterations. The size of 4 and decay of 0.0091 are the best-
fit hyper parameters for model, as indicated by the lowest RMSE.
Fig. 8(c) shows the neural network of the ANN model, which describes
the degree of sensitivity of objective variables to explanatory variables.
Red and blue colors express positive and negative sensitivity, respec-
tively, and a wider connection line expresses a larger value. The
quantitative degrees of sensitivity of the objective variable to each
explanatory variables are listed in Table 3; these values were auto-
matically generated during the model fitting process. The results show
that the explanatory variable of true strain was the factor most sensitive
to the objective variable of true stress. Fig. 8(d) illustrates the experi-
mental and ANN-predicted true stress–strain curves of the A10-01
sample. The experimental and predicted curves are shown to almost
coincide. Similar predictions were also almost observed in the re-
maining samples (Fig. S3), which indicates excellent model perfor-
mance resulting from the hyper-parameter BO.

Fig. 9 shows the direct analysis results with variable selection. Here,
BIC was adopted to evaluate the degree of importance of the ex-
planatory variables. Fig. 9(a) shows the results of BIC variable selection

Table 2
Mechanical properties and quantitative microstructures of the samples.

Steel YS(MPa) TS(MPa) tEL(%) CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM

A10-01 323 481 80.6 3.30E- 05 5.16E- 05 0.000165 1.83E- 05 0 0 0.4047 0.2005 0.0845 0.3104 0 0
A10-03 308 489 76.4 5.43E- 05 9.07E- 05 1.28E- 06 9.24E- 05 0 0 0.2608 0.118 0.5537 0.0674 0 0
A10-10 390 591 71.1 5.17E- 05 0.000136 0.000126 0 1.54E- 06 0 0.1836 0.0452 0.1414 0 0.6297 0
A10-30 444 663 63.9 8.63E- 05 0 0.00027 0 9.26E- 07 4.42E- 05 0.1576 0 0.0842 0 0.5765 0.1817
A14-01 353 516 64.4 7.67E- 05 5.15E- 05 4.04E- 06 3.21E- 05 5.30E- 06 0 0.1573 0.0212 0.3938 0.0379 0.3897 0
A14-03 412 561 67.5 4.40E- 05 4.67E- 05 3.12E- 05 5.94E- 05 5.93E- 06 0 0.0808 0.0143 0.2572 0.1232 0.5245 0
A14-10 521 688 61.5 0 2.27E- 05 0 0 1.08E- 05 1.73E- 05 0 0.0094 0 0 0.6249 0.3657
A14–30 620 807 60.7 0 0 0 0 0 3.00E- 05 0 0 0 0 0 1
B10-01 375 550 70.4 0.002244 0.000637 0.001005 0 0 0 0.373652 0.06523 0.561117 0 0 0
B10-03 434 600 66.3 0.00325 0.000344 0.005683 0 0.000477 0 0.109254 0.006947 0.022508 0 0.861291 0
B10-10 483 691 61.5 0.000185 0.000215 0 0 2.76E- 05 0 0.118045 0.006877 0 0 0.875078 0
B10–30 489 725 58.4 0 0 0 0 7.43E- 05 1.52E- 07 0 0 0 0 0.160882 0.839118

Fig. 6. Direct analysis results without variable selection by MIPHA: (a) neural network of the fitted model and (b) experimental and predicted true stress−strain
curves of sample A10-01.
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Fig. 7. Direct analysis results with variable selection by MIPHA: (a) neural network of the fitted model and (b) experimental and predicted true stress−strain curves
of sample A10-01.

Fig. 8. Direct analysis results without variable selection by rMIPHA: (a) performance comparison of different models; (b) hyper-parameter BO result for the ANN
model; (c) neural network of the ANN model; and (d) experimental and predicted true stress−strain curves of sample A10-01.
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(highlighted in the blue box) and a performance estimation of the BIC
variables. Notably, this model was fitted by ANN without hyper-para-
meter optimization. The results show that the model still provided a
satisfactory performance indicated by its high CC and low RMSE values

for the training data and testing data. However, when the BIC data was
estimated by ANN, SVM, and RF with hyper-parameter BO, RF became
the best model, as shown in Fig. 9(b). Fig. 9(c) shows the degree of
importance explanatory variables evaluated by an RF classifier. True
strain is shown to be the most important variable for true stress in this
model, as indicated by its largest IncNodePurity (Increase of Node
Purity: an index to express the variable importance). Fig. 9(d) illustrates
the experimental and RF-predicted true stress–strain curves for the A10-
01 sample. The predictions for all samples are shown in Fig. S4. By
comparison, a satisfactory result was still obtained although it was not
as good as that achieved without variable selection (Fig. 8).

3.5. Properties-to-microstructure inverse analysis

Because of longer training time for finding the best hype-parameters
using BO, in this work, inverse analysis was conducted by MIPHA using
GA with exploration targets: stress–strain curve, and TS/tEL.

3.5.1. Exploration of a target stress–strain curve
As an example, a target stress–strain curve was arbitrarily written.

The stress–strain prediction model in Fig. 6 was inversely analyzed with

Table 3
Sensitive degrees of the objective variable to explanatory variables.

Variable CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM True strain

Degree of sensitivity 0.51599 0.54173 0.31269 0.54976 0.50816 0.37722 0.18469 0.98668 0.35119 0.17412 0.44629 0.33054 1.02794

Fig. 9. Direct analysis results with variable selection by rMIPHA: (a) the result of BIC variable selection and performance estimation of the BIC variables by ANN; (b)
a performance comparison of different models; (c) the degree of importance of explanatory variables evaluated by an RF classifier; and (d) experimental and
predicted true stress−strain curves of sample A10-01.

Table 4
Inversely explored microstructure related to the explored stress−strain curve in Fig. 10.

CFPF CFP CFWF CFDP CFB CFM VFPF VFP VFWF VFDP VFB VFM

0.000975 0.000153 0.003751 0.000085 0.000448 3.54E- 06 0.012221 0.021191 0.160972 0.182781 0.079276 0.543559

Fig. 10. Comparison of the inversely explored and target stress−strain curves.
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a target stress–strain search, which was to explore the microstructure
candidate that relates to the written curve. As a result, the micro-
structure corresponding to the target curve was obtained, as listed in
Table 4. Moreover, the explored and target stress–strain curves well fit
with each other, as shown in Fig. 10.

3.5.2. Exploration of targets TS and tEL
Generally, the quality of steel is evaluated by its strength and

plasticity, which are characterized by TS and tEL, respectively.
Therefore, a direct analysis model with explanatory variables of mi-
crostructure and objective variables of TS and tEL was first established
by MIPHA; the resultant model showed a CC of 0.95957. This model
was then inversely analyzed with a TS×tEL maximum search, which
was designed to explore the microstructure that relates to the best
balance of strength and plasticity. Table 5 lists the explored potential TS
and tEL as well as the corresponding microstructure. The potential TS
and tEL are much higher than the experimental results listed in Table 2.
The potential TS×tEL can reach 62,300.86, which is 1.27 times larger
than the largest experimental result of 48,984.90 (A14–30). In addition,
in the explored microstructure, hard phase M and soft phase PF can be
considered the primary phases that impart better strength and plasticity
to the present steels.

It should be pointed out that the given examples of inverse analysis
here explored the microstructures corresponding to desired properties.
However, systematical evaluation of the inverse analysis model per-
formance and microstructure-to-processing inverse analysis were not
performed in this work restricted by the present functions of MIPHA
and rMIPHA, which are still yet under improvement. A properties-to-
microstructure-to-processing inverse analysis with evaluation of model
performance will be demonstrated in future work. Moreover, the ex-
plored results of the properties, and their corresponding microstructure
and processing will also be evaluated by both experiment and finite
element method [44] in the future.

In this study, data science was applied to steels, which exhibited
remarkable advantages compared to the experimental science, such as
savings of labor, time and cost, and a more thorough estimation of the
relationship between the microstructure and properties. In particular,
the proposed properties-to-microstructure inverse analysis explored the
potential properties of the studied steels as well as the corresponding
microstructure. Since microstructure is a junction connecting the pro-
cessing and properties, an adequate properties-to-microstructure-to-
processing inverse analysis is expected to effectively accelerate the
materials discovery process.

4. Conclusions

Independently developed machine-learning tools MIPHA and
rMIPHA were applied in steels, where machine-learning based micro-
structural analysis, property prediction, and properties-to-micro-
structure inverse analysis were conducted. The microstructural com-
ponents of the samples were quantified, constituting the “materials
genomes”. Stress–strain curves were predicted on the basis of the ma-
terials genomes. The prediction models showed satisfactory accuracies.
The microstructures corresponding to desired properties (a target
stress–strain curve and target TS/tEL) were inversely explored by
MIPHA successfully, where the explored and the target stress–strain
curves well matched each other; and the inversely explored potential TS
and tEL were much larger than the experimental results. The results
presented in this work are expected to provide a new approach in

materials design to accelerate the materials discovery process.
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