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 A B S T R A C T 

The accurate prediction of the mechanical properties of foundry alloys is a 
rather complex task given the substantial variability of metallurgical 
conditions that can be created during casting even in the presence of 
minimal variations in the constituents and in the process parameters. In 
this study an application of different intelligent methods of classification, 
based on the machine learning, to the estimation of the hardness of a 
traditional spheroidal cast iron and of a less common compact graphite 
cast iron is proposed. Microstructures are used as inputs to train the 
neural networks, while hardness is obtained as outputs. As general result, 
it is possible to admit that ‘light’ open source self-learning algorithms, 
combined with databases consisting of about 20-30 measures are already 
able to predict hardness properties with errors below 15 %. 
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1. INTRODUCTION 
 
The cast iron consists of a large family of iron-
carbon alloys where the presence of carbon is 
greater than 2 % in weight [1,2]. According to the 
chemical composition and process parameters, 
each alloy can be characterized by a specific 
microstructure, mechanical properties, tribology 
and, ultimately, a specific practical use [3].  
 
Few changes in chemical balances (as additives 
inoculation [4]) or in the metallurgical conditions 
are sufficient to produce materials with very 
different characteristics and applications [5,6], 

from the common gray iron to the high 
performing ductile cast iron [7,8].  
 
Thanks to this flexibility, cast iron represents one 
of the most appreciate materials, with a relevant 
role in the mankind history as in the present [9].  
 
The first attempts at producing cast iron in the 
Mediterranean basin can be traced back to over 
1000 BC while the earliest artifacts, date to the 
5th century BC, were found in China [9]. Tower 
ovens, essential to allow the metal to gain the 
right temperature, were found in Sweden, dated 
between 1150 and 1350, while the beginning of 
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Renaissance also reported the first cannons 
made of cast irons [9].   
 
From the other side, this versatility is paid with 
the difficulty to predict the material properties. 
This consideration is also true in the case of the 
surface hardness, where, the overall variability 
of the material can be aggravated by additional 
aspects, related to local effects [10]. 
 
However, respect to an industrial interest, it is 
often enough to have quick indications on these 
material properties, even not extremely precise.  
In this study the application of the concepts of 
Artificial Intelligence (AI) and Machine Learning 
(ML) [11] are proposed to estimate the hardness 
of a spheroidal iron (SGI) [12,13] and a less 
common compact graphite iron (CGI) [13-15].  
 
Microstructural macro-indicators, as, e.g., the 
quantity of graphite, ferrite, perlite in the alloy, 
acquired by microstructures, are used as inputs 
to train three (3) different AI algorithms, while 
hardness properties are obtained as outputs.  
 
Two datasets of measures from tests were 
considered, one per each material, consisting of 
20-30 samples, while comparisons of 
predictions were done by a direct correlations. 
 
 
2. MACHINE LEARNING 
 
The Machine Learning (ML) is a branch of the 
Artificial Intelligence (AI) that collects a set of 
methods, developed from the last decades of 
the 20th century in various scientific 
communities, under different names [16] as: 
computational statistics, pattern recognition, 
artificial neural networks, adaptive filtering, 
theory of dynamic systems, data mining, 
adaptive algorithms and so on. It uses 
statistical methods to progressively improve 
the performance of an algorithm in identifying 
patterns inside the available data.  
 
The same Arthur Samuel who coined the term of 
Machine Learning in 1959 [17] identifies in 
terms of principles two distinct approaches.  
 
The first method [18], referred to as an Artificial 
Neural Network (ANN), leads to the 
development of general-purpose ML machines in 
which the ‘behavior’ is learned from a randomly 

connected switching network, following a 
learning routine based on the concept of reward 
and punishment (reinforcement learning). The 
process of determining the values of these 
connections on the basis of a data set is referred 
to as training or training, and therefore the data  
set is usually referred to as a training set [19]. 
 
The second one [18], more specific, reproduces 
the equivalent of a highly organized network, 
designed to learn only certain specific activities. 
Using a supervision, this procedure requires a 
new programming for each new application, but 
appears to be much more efficient from a 
computational point of view. 
 
Independently by the approach, the ML is closely 
linked to pattern recognition and to the 
computational theory of learning [18], while 
explores the study and construction of 
algorithms that can learn from a set of data 
and make predictions about them, building 
into inductive way a model based on samples. 
Thus, ML can be particularly appreciate in 
those fields in which decisions and predictions 
cannot be related to the use of explicit logics. 
In industry its applications are strongly 
related to the solution of engineering 
problems, based on mathematical optimization 
and evaluations.  
 
In these terms, the process of learning is based 
on a phase when the pattern recognition is 
implemented by a classifier able to track down 
features and weights from data, also benefitting 
by probabilistic approaches.  
 
A large choice of models and algorithms have 
been developed in the years [20]. Between many 
others, the following ones were preferred in this 
investigation in consideration of valid results 
emerged in previous similar researches [21]. 
 
2.1 Random Forest (RF) 
 
The RF is one of the most popular and effective 
methods for solving the problems in ML, such as 
classification and regression [22]. In appearance, 
the learning algorithm is rather simple 
(especially when compared with the learning 
algorithm of other methods). The basic ideas laid 
down in binary decision tree, bootstrapping 
aggregation or bagging, random subspace 
method and decorrelation. 
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2.2 Neural Network (NN) 
  
NNs offer a very powerful and general structure 
for representing a non-linear mapping of several 
input variables for several output variables [23].  
A NN is a structure (network) consisting of a set 
of interconnected links (artificial neurons). Each 
link has a characteristic value for input and 
output and implements a local calculation or 
function. The output of any link is determined by 
the characteristics of its input and output, its 
relationship with other links, as well as external 
inputs, if any. Besides, the NN topology is an 
important issue, since the overall applicability of 
the NN to the specific problem depends on it. A 
multi-layered topology is commonly adopted.  
 
2.3 k-nearest neighbors (kNN) 

 
The kNN is a non-parametric method used for 
classification and regression [24]. The input 
consists of the k closest training examples in the 
feature space. The output depends on whether 
k-NN is used for classification or regression. 
  
In the case of classification, the output is a class 
membership. An object is classified by a plurality 
vote of its neighbors, with the object being 
assigned to the class most common among its k 
nearest neighbors (k is a positive and small 
integer). In the case of regression, the output is the 
property value for the object. This value is the 
average of the values of its k nearest neighbors. In 
any case, the k-NN can be considered as a type of 
instance-based learning, or lazy learning, where 
the function is only approximated locally and the 
computation is deferred until classification. The k-
NN algorithm is among the simplest of all ML 
algorithms. A peculiarity of the k-NN algorithm is 
that it is sensitive to the local structure of the data. 
 
 
3. DATA MINING 
 
Measures for ML of algorithms derived from 
experiments already discussed in details in 
previous works [25-28]. In particular, they 
describe a large experimental experience that 
permitted to characterize material samples in 
SGI and CGI coming from 4 metal castings, 
implemented in two different days. Special care 
was taken to assure similar conditions of casting 
in terms of chemical composition, temperature 
and other process parameters [29].  

For instance, those castings used for extracting 
samples for testing, were realized after several 
hours of foundry production in the way to 
stabilize temperature and metallurgy. Moreover, 
chemical composition tests, performed during 
production, permitted to verify the consistency 
and stability of melt alloy (Fig. 1). 
 

 
                       a)                                            b) 
 

 
c) 

Fig. 1. Different phases of chemical inspection during 
the processing: a) molten metal extraction; b) manual 
transport; c) spilling on the instrument for the 
detection of chemical elements. 

 
Entering in further details, in accordance with 
[28] the measures under consideration belong to 
27 samples in SGI and 21 samples in CGI.  
 
As input for ML, the following metallographic 
parameters were chosen: 

- Quantity of Graphite 

- Quantity of Ferrite 

- Quantity of Perlite 

- Grade of Nodularity 

- Grade of Vermicularity 

with values expressed in percentage. 
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These data, expressed in percentages (%), were 
provided in terms of single values estimated by 
considerations on micrographs (as in Fig. 2). 
 

  

Fig. 2. Example of micrographs (100x) with different 
grade of vermicularity: from their image analysis 
metallographic parameters were evaluated. 

 
Using an image analysis software, the geometric 
parameters related to graphite (area, perimeter, 
diameter of Feret, etc.) were acquire by  
micrograph. Each sample (in SGI or CGI) 
provided a specific set of 5 (five) values, as 
reported in Tables 1 and 2. Every set (in total 
27+21) of metallographic characteristics was 
combined with the related hardness property, as 
measured by Brinell test (HB). 
 
Table 1. Metallographic properties of SGI. 

N. Graphite Ferrite Perlite 
Nodu 
Larity 

Vermi 
cularity 

1 13.6 42.5 43.9 75.2 17.0 
2 6.3 52.8 40.9 56.4 34.4 
3 10.2 55.7 34.1 77.7 16.6 
4 12.1 48.5 39.5 67.1 26.2 
5 11.2 42.8 46.0 68.8 23.7 
6 12.2 47.1 40.8 63.6 27.2 
7 8.6 48.6 42.8 62.6 30.4 
8 9.1 47.5 43.4 53.9 36.8 
9 12.6 43.6 43.8 79.0 15.2 

10 7.0 51.6 41.4 72.5 19.7 
11 13.7 39.2 47.1 84.4 10.8 
12 8.1 49.0 42.9 75.7 17.3 
13 7.1 45.2 47.7 61.9 27.6 
14 7.6 33.5 58.8 84.6 10.2 
15 7.1 44.6 48.3 68.6 22.3 
16 9.4 47.3 43.4 75.1 17.1 
17 8.3 43.6 48.1 50.9 40.9 
18 8.6 43.7 47.8 65.7 24.3 
19 12.1 44.8 43.1 75.5 17.1 
20 11.3 30.5 58.2 85.7 9.4 
21 13.2 34.2 52.7 86.1 9.4 
22 9.2 40.8 50.0 66.9 23.6 
23 9.1 32.1 58.8 78.2 16.3 
24 10.2 30.8 59.1 80.8 14.1 
25 7.0 22.7 70.3 81.6 11.9 
26 9.3 24.6 66.1 89.6 5.9 
27 6.5 24.8 68.7 74.2 17.7 

µ 9.7 41.2 49.2 72.7 20.1 
σ 2.3 9.0 9.4 10.2 8.8 
σ% 24 22 19 14 44 

Table 2. Metallographic properties of SGI. 

N. Graphite Ferrite Perlite 
Nodu 
larity 

Vermi 
Cularity 

1 16.7 53.5 29.8 9.0 88.9 

2 21.0 60.2 18.8 16.1 81.2 

3 12.6 61.9 25.6 11.7 86.4 

4 17.3 62.3 20.4 12.1 85.1 

5 15.7 64.3 20.0 17.5 79.7 

6 13.9 62.9 23.2 15.4 82.2 

7 11.2 65.8 22.9 17.9 80.0 

8 14.5 62.6 22.9 23.4 74.3 

9 13.2 64.8 22.0 13.0 84.4 

10 14.5 61.6 23.9 9.4 88.5 

11 14.6 56.6 28.9 19.5 78.5 

12 10.3 63.0 26.8 16.7 81.4 

13 10.1 62.9 27.0 16.7 81.7 

14 9.7 55.2 35.2 13.3 85.4 

15 12.6 53.4 34.0 16.3 81.9 

16 12.8 58.3 28.9 24.0 74.0 

17 11.1 63.5 25.5 16.2 81.8 

18 12.9 52.9 34.2 18.5 79.5 

19 11.4 64.9 23.7 15.1 82.7 

20 9.8 59.9 30.3 17.8 80.5 

21 9.2 67.6 23.3 21.6 74.6 

µ 13.0 61.2 25.8 16.6 81.2 

σ 3.0 4.3 4.7 4.0 4.2 

σ% 23 7 18 24 5 

 
Focusing the attention on these parameters, it is 
evident a not marginal variability in their values. 
The relative standard deviation (σ%), expressed 
as the ratio between the standard deviation (σ), 
and the mean value (µ) permits a homogeneous 
comparison. In particular, in the case of SGI, the 
variability of the metallographic factors under 
investigation, expressed by σ%, is between 14 % 
(nodularity) and 44 % (vermicularity). This 
variability is lower in the case of CGI, between 5 
% (vermicularity) and 24 % (nodularity). 
 
The difficulty in using this kind of information 
for performing valid predictions on material 
properties is evident in Table 3 where the 
correlation between parameters is estimated by 
the Pearson correlation coefficient (considering 
all properties, including the Brinel  hardness, 
and both alloys). It is largely known that this 
coefficient (ρxy) is able to measure the linear 
correlation between two variables: 0 is no linear 
correlation, and −1 is total negative linear 
correlation (Fig. 3).  
 
According to the Cauchy–Schwarz inequality it 
has a value between +1 and −1, where 1 is total 
positive. Values in the middle are typical of 
intermediate dependencies. 
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Table 3. Correlation between parameters. 

SGI Graphite Ferrite Perlite Nodul. Vermic. HB CGS

Graphite 1.00 -0.20 -0.45 -0.24 0.20 -0.74 Graphite

Ferrite 0.04 1.00 -0.79 0.13 -0.19 0.14 Ferrite

Perlite -0.29 -0.79 1.00 0.03 0.05 0.33 Perlite

Nodul. 0.34 0.13 0.03 1.00 -0.99 0.54 Nodul.

Vermic. -0.30 -0.19 0.05 -0.99 1.00 -0.52 Vermic.

HB -0.35 0.14 0.33 0.54 -0.52 1.00 HB

SGI Graphite Ferrite Perlite Nodul. Vermic. HB CGS  
 

 

 

Fig. 3. Examples of scatter diagrams with different 
values of correlation coefficient (ρxy). 
 
In particular, by Table 3 it can be observed, as was 
also expected in consideration of the way to define 
these parameters, a perfect negative correlation 
between nodulary and vermicularity (ρxy = -1).  
 
Furthermore, both metallographic properties act 
discreetly influencing the surface hardness 
(approx. ±0.5). Regarding the other parameters, 
the analysis highlights, for both SGI and CGI, 
inverse correlations between: 

- perlite and ferrite (strong) 

- perlite and graphite (low/medium) 

- ferrite and graphite (low/medium).  
 
These correlations can be easily traced back in 
literature [30,31], but they are here presented to 
show how several aspects can simultaneously 
impact in the definition of the material 
properties. These parameters, as said, represent 
the multifaceted input of the ML algorithms. 
 
Focusing now the attention on the material 
output, thanks to the Table 3 a general 
dependency can be detected for the hardness: 
apart for the already mentioned dependency 
respect to the nodulary and vermicularity, also 
the graphite shows its (inverse) influence on the 
hardness, especially in the case of SGI  (=-0.74).  

At the same time, the table gives evidence of the 
complexity behind these relations. 
 
In other terms, Tables 1 and 2 demonstrate that 
experimental data are commonly affected by an 
not-negligible inaccuracy while Table 3 
highlights that correlations between properties 
exist but are, in part, hidden under several 
mutual influences [32]. 
 
 
4. DATA ESTIMATIONS 
 
This situation can be conveniently faced up by AI 
and ML systems. In particular, their algorithms 
can be shown properly adequate to find deep 
relationships between the available data, not 
directly evident, thanks to the construction of 
interconnection networks placed on various 
levels of analysis.  
 
For the same reason, they can also prove 
particularly robust with respect to the use of 
data affected by intrinsic variability. 
 
Evaluations on data were implemented by 
Orange software code, an open source ML and 
data visualization system [33]. Its ANNs were 
learned by these measures and provided outputs 
in terms of Brinell hardness (HB).  
 
Specifically, per each sample, the code provided 
3 (three) different estimations of hardness in 
accordance with the 3 (three) specific methods 
used: 

- Random Forest (RF) 

- Neural Network (NN) 

- k-Nearest Neighbors (kNN) 
 
Table 4 reports the specific parameters selected 
in training the ML algorithms. 
 
Table 4. Parameters in Machine Learning. 

Random Forest (RF) 
Number of trees 15 
Fixed seed for random generator 32 
Do not split subset smaller than 5 

  
Neural Network (NN) 
Learning speed 0.6 
Inertial coefficient 0.5 
Test mass tolerance 0.02 
Tolerance of the learning set 0.03 
Number of layers  5 

https://en.wikipedia.org/wiki/File:Correlation_coefficient.png
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k-Nearest Neighbors (kNN) 
Metric Chebyshev 
Number of neighbour  2 
Weight Uniform 

 
Results are reported in Tables 5 and 6, together 
with the related values of: 

- mean value (µ),  

- standard deviation (σ), 

- relative standard deviation (σ%), 

- Pearson correlation coefficient (ρxy).  

in the way to show the overall variability of 
values and permit a comparison of methods. 
 
 
5. RESULTS 
 
Measures and estimations can be graphically 
observed and compared in Fig. 4 in both cases: 
SGI and CGI. In particular, in that figure, the 
estimation provided by (only) the NN method 
was reported since, according to the Pearson 
correlation coefficients (ρxy) of Tables 5 and 6, 
the NN can be considered the most appropriate 
method for the evaluation. In fact, with values of 
0.59 and 0.43 in the case of, respectively, CGI 
and SGI, the NN demonstrates a good (even not 
perfect) correlation between the experimental 
dataset and the estimated hardness. 
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Fig. 4. Measured and estimated hardness (HB) for SGI 
and CGI. 
 
This estimation is able to guarantee a substantial 
coincidence on the average values of hardness 
(184 vs 180 in the case of SGI, 146 vs 144 for 
CGI) and its variability (e.g. in terms of relative 
standard deviations). It means that, as shown in 
Fig. 5, there is a significant overlapping between 
the density functions, when measures and 
estimations are represented in terms of 
probability distributions. 

Table 5. SGI Hardness as measured and estimated. 

N. HB RF NN kNN 

1 165 182 168 181 
2 166 174 171 171 
3 167 178 178 173 
4 168 182 182 169 
5 169 182 171 168 
6 171 182 182 169 
7 171 182 182 166 
8 173 171 182 171 
9 173 182 184 165 

10 174 181 178 167 
11 176 204 184 165 
12 178 182 181 165 
13 178 181 182 171 
14 180 176 206 183 
15 181 178 178 169 
16 181 173 173 165 
17 182 178 178 171 
18 182 173 171 165 
19 182 178 171 171 
20 183 184 206 180 
21 184 180 176 176 
22 185 169 182 169 
23 186 190 204 180 
24 190 185 206 180 
25 204 206 206 206 
26 206 183 190 180 
27 206 204 204 180 

µ 180 182 184 173 
σ 11 9 12 9 
σ% 6% 5% 7% 5% 
ρxy 1.00 0.48 0.61 0.58 

Table 6. CGI Hardness as measured and estimated. 

N. HB RF NN kNN 

1 132 148 137 137 

2 136 141 141 139 

3 137 145 145 142 

4 139 142 136 136 

5 141 142 144 142 

6 142 147 144 141 

7 142 151 156 147 

8 144 142 149 141 

9 144 142 145 137 

10 145 132 137 137 

11 146 150 149 147 

12 147 147 132 132 

13 147 147 151 151 

14 147 147 151 151 

15 148 150 147 132 

16 149 147 156 144 

17 150 146 148 146 

18 150 142 147 142 

19 151 147 147 147 
20 151 147 147 147 
21 156 147 151 141 

µ 145 145 146 142 
σ 6 4 6 6 

σ% 4% 3% 4% 4% 

ρxy 1 0.17 0.46 0.30 
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Fig. 5. Overlapping in the density function between 
measures and estimations (in the case of SGI and NN). 

 
Moreover, all ANN methods under investigation 
seem able to provide an adequate estimation. 
This aspect is displayed in Fig. 6 where values 
from the different methods (MF, NN and kNN) 
are shown in the case, for instance, of SGI. The 
influence of the method in the estimation is 
marginal when compared to the general 
variability of measures. In particular, in the 
graph it is possible to see how the variability in 
hardness predictions was limited within a range 
of 30-34 % respect to the average measure. 
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Fig. 6. Comparison between the estimation methods 
in the case of SGI and CGI. 

 
This result can be considered more than 
appropriate concerning that: 

- even if the specimens were extracted from  
similar casting conditions, the experimental 

values were characterized by a certain 
intrinsic variability (σ = 11). This variability 
was transferred through the ML process 
even if it is also evident a tendency toward 
an overall reduction. 

- ML algorithms have not been optimized, nor 
as structure or training. This choice is 
related to an investigation strategy aiming 
at demonstrating their general applicability, 
without entering in specific details on AI 
methods.  
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Fig. 7. Correlation between measures (x-axis) and 
estimations (y-axis) as predicted by RF, NN, kNN 
methods (in the case of SGI). 

 
Figure 7 shows, point by point, the correlation 
between measures and estimations as 

30% 

34% 
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predicted by RF, NN, kNN (in the case of SGI). 
It shows, ultimately, the capability of the ML 
approach to find correlation in the 
experimental data. The grouping of values 
around the diagonal shows this good match. 
But they also show that the values that deviate 
greatly from this linearity are very few. 
Moreover, the fact that the points are 
distributed above and below the line lets us 
imagine the non-existence of systematic errors 
in the estimate. 

 
 

6. CONCLUSION 
 
The present research deals with the use of 
artificial intelligent (AI) methods in prediction 
of hardness of spheroidal cast iron (SGI) and 
compact graphite cast iron (CGI). Results from 
previous experiments were used to train three 
ANNs, based on three different principles. 
Open source and easy accessible algorithms 
were used. Even if in the presence of a limited 
number of measures, the ML approach, 
independently of the specific network, is able 
to predict the hardness with an acceptable 
confidence (±15 %). 
 
It is also believed that a greater accuracy 
could be easily achieved by: i) increasing the 
sample of measures on which the ML code is 
trained; ii) optimizing the ML code in terms 
of depth and quality of analysis (‘deep 
learning’), but also preferring other methods 
(e.g. Multiple Regression, Genetic 
Programming, Support Vector Machine…); iii) 
using microstructural information directly at 
a level of details, as done by the largest part 
of available researches. 
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ANNs - Artificial Neural Networks 
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RF - Random Forest method 

NN - Neural Network  method 

kNN - k-Nearest Neighbors method 

µ - Mean Value 

σ - Standard Deviation 
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