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D_u(z) = u(T) — u(r — h}.

Backward-Difference Method

To obtain a method that is unconditionally stable, we consider an implicit-difference
method that results from using the backward-difference quotient for (du/a1)(x;, 1;) in the

form

w(xi, ;) — u(xs, ti—1) 4 X k 9%u
k 2 ar?

du
E(In!}} = — (X, 1),

where g is in (f;_;. ;). Substituting this equation, together with Eq. (12.8) for a2u/dx?,
into the partial differential equation gives

w(x, i) —u(xp, 1) o2 W(Xipr, 6) — 200x:, 6) + w(xi_y,17)

k n
B ka2 u{ ) — h—ﬂ*‘ ALY
T T ) T A sl

for some & < (x;i_1.Xip1).

D*u(z) = —[u(f—h)—2u(z)+ u(z + h)]
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The Backward-Difference method that results is

Wi — Wij_1 2 Wiylj — zlﬂﬁ + W j .
k “ h? =

0, (12.12)

foreachi=1,2,....m—landj=1,2,....
The Backward-Difference method involves the mesh points (x;.f; ). (x;_;. 1), and
(xiy1,1;) to approximate the value at (x;, f;), as illustrated in Figure 12.9.




MAP2320

Since the boundary and initial conditions associated with the problem give information
at the circled mesh points, the figure shows that no explicit procedures can be used to solve
Eq. (12.12). Recall that in the Forward-Difference method (see Figure 12.10), approxima-
tions at (Xi_1,4-1). (Xi,fj—1), and (x;41,4-1) were used to find the approximation at (x;, f;).
So an explicit method could be used to find the approximations, based on the information
from the initial and boundary conditions.
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If we again let A denote the quantity «?(k/h*), the Backward-Difference method

becomes

(1 + 20wy — Awigyj — Awp_yj = wijy,

foreachi=1,2,....m—1landj=1,2,.... Using the knowledge that w; 5 = f(x;), for
eachi=1.2,....m—1and wy; = wp; = 0, foreachj = 1,2,..., this difference method

has the matrix representation:

or AwV = wiU-U foreachi=1.2.....

C (1424 —A D---eeeennnn. 0 1
. : wy
_j‘u'- : H"II-
0 0 /
. : N
: e, Tre, T | Wm—-1j |
} [Joovennnnnnn 0 =i (1420 1

Wy
Wy

| Wm_1-1

. (1213)
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Hence, we must now solve a linear system to obtain w'’ from wU~! . However A > 0, so
the matrix A is positive definite and strictly diagonally dominant, as well as being tridiagonal.
We can consequently use either the Crout Factorization Algorithm 6.7 or the SOR Algorithm
7.3 to solve this system. Algorithm 12.2 solves (12.13) using Crout factorization, which
Is acceptable unless m is large. In this algorithm we assume, for stopping purposes, that a
bound is given for 1.
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Tridiagonal Matrices

Matrices of bandwidth 3 occurring when p = ¢ = 2 are called tridiagonal because they
have the form

_{I“ gz everninnnanannnnnns '[l
az dx an
A — |:3____|:131__ 33 111?34__
0
:'ﬂrl—lﬂ
| EEERTETT T ~0 -ﬂﬂ,rl—] O

The factorization algorithms can be simplified considerably in the case of band matrices
because a large number of zeros appear in these matrices in regular patterns. It is particularly
interesting to observe the form the Crout or Doolittle method assumes in this case.



To illustrate the situation, suppose a tridiagonal matrix A can be factored into the
triangular matrices L and U. Then A has at most (3n — 2) nonzero entries. Then there are
only (3n — 2) conditions to be applied to determine the entries of L and U, provided, of
course, that the zero entries of A are also obtained.

Suppose that the matrices L and U also have tridiagonal form, that is,

TR SEREREETRREeLS 0 1wy 0 0
[y, I, 0 1
L=| 0 - and U = .0
0 ,:Efn—ln
| 0-eeeen 0 lyn_i ”;mi IECEEEREREREY 0 1 1

There are (2n — 1) undetermined entries of L and (n — 1) undetermined entries of I/, which
totals (3n — 2). the number of possible nonzero entries of A. The 0 entries of A are obtained
automatically.
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The multiplication involved with A = LU gives, in addition to the 0 entries,

ay = h:
ajj—y = l;;_y, foreachi=23,....n (6.13)
ai; = lij_ui_;+ ;. foreachi=2.3,....n: (6.14)
and
Qv = Lijj 0. foreachi=1.2,....n—1. (6.15)

A solution to this system is found by first using Eq. (6.13) to obtain all the nonzero off-
diagonal terms in L and then using Egs. (6.14) and (6.15) to alternately obtain the remainder
of the entries in UV and L. Once an entry L or U is computed, the corresponding entry in
A is not needed. So the entries in A can be overwritten by the entries in L and U with the

result that no new storage is required.
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Algorithm 6.7 solves an n x n system of linear equations whose coefficient matrix is
tridiagonal. This algorithm requires only (5n — 4) multiplications/divisions and (3n — 3)
additions/subtractions. Consequently, it has considerable computational advantage over the
methods that do not consider the tridiagonality of the matrix.

Example 5 Determine the Crout factorization of the symmetric tridiagonal matrix

2 —1 0 0 |
—1 2 -1 0
0 -1 2 -1
o 0 -1 2

and use this factorization to solve the linear system

11’1— X2 = 1.
—Il—l—ll'g— X3 I'U,
— X+ 20— xy3 =0,

— Ij—|—11’4:1.
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Solution The LU factorization of A has the form

fdyyp  dyr 0 0 |!'|| 0 0 0 1 M2 ] 0
A | @ an as 0 | | by lp 0 0 0 1T wus 0O
0 flzp 3z dyy ] 1’33 If‘_'l,:-',, 0 0 0 1 3y
B 0 0 43 daa B B 0 0 |!'43 f4_¢ i _'U (0 0 | i
[ 1 lyyuyn 0 0 ]
| b I+ ugn l22123 0
0 l3p 33 + [32123 [33134
. 0 0 laz  lag + laztizg |




Thus

) -
a7y .
flr3 .
3 -

43 .

This gives the Crout factorization

2= = lh =2,
—1=bh = b =-1,
— 1 =lnuyy = Uy =—
2=Iln+Ilnun = I3 =

— 1=l = bz = -1,

2 1
-1 2
0 —1
0 0

]

| o taa] 2

=R

.
[ e

{3y .

44 .

—_— 3
—la O D
Bl O O O

-
I

— 1 =l = up =—3,
2=ln+lur = ln=-—
— 1 = lh3uzy = U3y = —

2 = lya ¥ lyzttzs — gy = =.

1
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Solving the system

Lz =

Ux =

oo o -

i

L]

T
2

x|

— | — ] — pa|—

gives

gives
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Lot ot o I o |
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— | ] = | —
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The Crout Factorization Algorithm can be applied whenever [;; #= 0 for each i =
1.2.....1n. Two conditions. either of which ensure that this is true. are that the coefficient

matrix of the system is positive definite or that it is strictly diagonally dominant.



Crout Factorization for Tridiagonal Linear Systems

To solve the n ¢ n linear system

E;: ap Xy + azx; = d1a+ls
Es: az Xy + amxa + ansxs = A2+l
EH—J. . Tn—1n—2Xn—2 + Tn_1a—1Xn—1 + An—1 nXn = An—1n+1.
Eﬂ : Ay n—1Xn—1 + dypXy = dpntl,

which is assumed to have a unique solution:

INPUT the dimension n; the entries of A.
OUTPUT the solution x1.. ... X,.
(Steps 1-3 set up and solve Lz = b.)
Sfﬂp 1 Setly =an;
U2 = arzfln:
21 = aia+1/In.

Step2 Fori=2,....n— l1setlj_y =a;;_y. (ithrowof L.)
li = @ — Liiauiy g,
Wiiv1 = Qije1/lin (i + 1)th column of U.)
Zi = (@inp1 — LinZio) i
Step 3 Setl,, =a,, 1: (nthrowofL.)
EI'I'.H = lyy — gJlu'l:—IHJ']—LJ'i'
ip = {anﬂ+| - Iﬂ,n—lzn—l)l"r!nn'
(Steps 4 and 5 solve Ux = z.)
Step4  Setx, =z,
Stepb Fori=n—1,...,18etx; =7 — i 1Xi,1.

Step6 OUTPUT (xq,....x,):
STOP.

MAP2320
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- Heat Equation Backward-Difference

INPUT

OUTPUT  approximations w; j to u(x;, tj) foreachi=1.....m —landj=1,...

endpoint [; maximum time 7'; constant & integers m = 3, N = 1.

Step 1 Seth=1/m;

Step 2

Step 3

Step 4

Step 5

k=T/N;

A= a’k/h’.
Fori=1,....m— 1setw; = f(ih). (Initial values.)
(Steps 3—11 solve a tridiagonal linear system using Algorithm 6.7.)
Setly =1+42x;

Hp = —.:‘-.ﬂl.

Fori=2,....m—2setl;=14+2A+ Au;_y;
up = —x/l;.

SEI -tlp"_l — ] —|_ 2}'. + lunl_z.

Step6 Forj=1,....N do Steps 7-11.

Step 7 Sett = jk; (Current t;.)

71 = wi /1.

Step8 Fori=2,....m—lsetz; = (w; +Arzi_1)/l;.

Step 9 Setwy_| = zZp_1-

Step 10 Fori=m—2,..., 1 set w; = z; — wjwi.

Step 11 OUTPUT (t): (Note: t =1t;.)

Fori=1,....m—1setx = ih;
OUTPUT (x, w;). (Note: w; = w;;.)

Step 12 STOP. (The procedure is complete.)

MAP2320
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Example 2

Use the Backward-Difference method (Algorithm 12.2) with # = 0.1 and &k = 0.01 to
approximate the solution to the heat equation
a1 3%u

3_:(;:,:}— axz(x.r}:{}. D<x<1, 0<t,

subject to the constraints

w0, ) =u(l,t) =0, 0<t, wx,0)=smmxx, 0<x<1.

Solution This problem was considered in Example 1 where we found that choosing i = 0.1
and k = 0.0005 gave quite accurate results. However,with the values in this example,
h = 0.1 and k = 0.01, the results were exceptionally poor. To demonstrate the unconditional
stability of the Backward-Difference method, we will use i = 0.1 and k£ = 0.01 and again

compare w; sp to u(x;,0.5), wherer =0, 1,...,10.



Solution

RECORDANDO A AULA ANTERIOR

(a) Forward-Difference method with i = 0.1. k = 0.0005 and A = (1)?(0.0005/(0.1)*) = 0.05
gives the results in the third column of Table 12.3. As can be seen these results are quite accurate.

&
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Table 12.3

Wi, 1000 Wisn
X; u(x;,0.5) k = 0.0005 le(x;,0.5) — wy 000! k=001 [ (x;, 0.5) — w50
0.0 0 0 0
0.1 0.00222241 0.00228652 6.411 x 103 8.19876 x 107 8.199 x 107
0.2 0.00422728 0.00434922 1.219 x 10-* —1.55719 % 108 1.557 x 108
0.3 0.00581836 0.00598619 1.678 x 10-* 2.13833 x 108 2.138 x 108
0.4 0.00683989 0.00703719 1.973 x 10* —2.50642 x 108 2.506 x 10°
0.5 0.00719188 0.00739934 2.075 x 10-* 2.62685 x 108 2.627 x 108
0.6 0.00683989 0.00703719 1.973 x 10-* —2.49015 x 108 2.490 x 108
0.7 0.00581836 0.00598619 1.678 x 10~* 2.11200 x 108 2.112 x 108
0.8 0.00422728 0.00434922 1.219 x 10~* —1.53086 x 10° 1.531 x 10°
0.9 0.00222241 0.00228652 6.511 x 1072 8.03604 x 107 8.036 x 107
1.0 0 0 0

(b) Forward-Difference method with/ = 0.1,k = 0.0l and » = (1)%(0.01/(0.1)%) = 1
oives the results in the fifth column of Table 12.3. As can be seem from the sixth column,

these results are worthless.
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The results listed in Table 12.4 have the same values of h and k as those in the fifth and

sixth columns of Table 12.3, which illustrates the stability of this method. |
Table124 wis0 w(.05)  |ws — u(x05)]

0.0 0 0

0.1 0.00289802 0.00222241 6.756 x 107*
0.2 0.00551236 0.00422728 1.285 x 107
0.3 0.00758711 0.00581836 1.769 x 10~
0.4 0.00891918 0.00683989 2.079 x 107
0.5 0.00937818 0.00719188 2.186 % 107
0.6 0.005891918 0.00683989 2.079 x 107
0.7 0.00758711 0.00581836 1.769 x 107
0.8 0.00551236 0.00422728 1.285 x 107
0.9 0.00289802 0.00222241 6.756 x 107*
1.0 0 0

50 tridiagonal
solutions



Forward Difference

Para cada ponto interno m-2
realizam-se cerca de 3
multiplicacdes

Para cada nivel de tempo
3*(m-2) multiplicacdes,
portanto para atingir

o instante 7, sao necessarias
3*(m-2)*T/k multiplicacdes.

O método é limitado em
estabilidade logo k deve
respeitar

h2

k <
20°

_ MAP2320
Backward Difference

Para cada nivel de tempo 5*(m-4)
multiplicacdes/divisbes, portanto para atingir
o instante 7, sdo necessarias 5*(m-4)*T/k
multiplicacbes/divisdes.

Apesar do custo maior (no caso ligeiramente
maior) o método é incondicionalmente estavel.

Porque
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The reason that the Backward-Difference method does not have the stability problems
of the Forward-Difference method can be seen by analyzing the eigenvalues of the matrix
A. For the Backward-Difference method (see Exercise 14), the eigenvalues are

e

[ = 1+4.1.|:sin (E)] , foreachi=1,2,....m—1.

2m

Since A = 0, sowe have u; = 1 foralli =1,2,..., m — 1. Since the eigenvalues of A~
are the reciprocals of those of A, the spectral radius of A=!, p(A~!) < 1. This implies that
A~ is a convergent matrix.

An error e” in the initial data produces an error (A~')"e” at the nth step of the
Backward-Difference method. Since A~! is convergent,

lim (A~ )" =0,

fl— o0

So the method is stable, independent of the choice of A = a’(k/h”). In the terminology
of Chapter 5, we call the Backward-Difference method an unconditionally stable method.
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- Erro de discretizacao e Limite de Estabilidade
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Buscar métodos incondicionalmente estaveis !
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The local truncation error for the method is of order Q(k + h?). provided the solution
of the differential equation satisfies the usual differentiability conditions. In this case, the
method converges to the solution of the partial differential equation with this same rate of
convergence (see [IK], p. 508).

The weakness of the Backward-Difference method results from the fact that the local
truncation error has one of order O(h”), and another of order O(k). This requires that time
intervals be made much smaller than the x-axis intervals. It would clearly be desirable to
have a procedure with local truncation error of order O(k* + h”). The first step in this
direction is to use a difference equation that has O(k?) error for u, (x, t) instead of those we
have used previously, whose error was (k). This can be done by using the Taylor series in
t for the function u(x, ) at the point (x;, #;) and evaluating at (x;, fj+1) and (x;, f;_;) to obtain
the Centered-Difference formula

du u(xi ti) —ulxi,ti1)  k* 8’u

E(Infj} = 7 +Eﬁ(xhﬂj)p

where pt; € (fi-1.tj41).

u(z+h) —u(x —h)

Dyu(z) = o7
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The difference method that results from substituting this and the

usual difference quotient for (3°u/9x?), Eq. (12.8), into the differential equation is called
Richardson’s method and is given by

Wijtl — Wij—1 _ 2 Witly — 2Wij + Wi-1
2k h?

This method has local truncation error of order O(k* + h?), but unfortunately, like the
Forward-Difference method, it has serious stability problems (see Exercises 11 and 12).

= 0. (12.14)

Incondicionalmente Instavel !
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Crank-Nicolson Method

A more rewarding method is derived by averaging the Forward-Difference method at the
jth step in 1,

Wijl = Wij o Wil — 2wij +wi_y
k h?

= 0.

which has local truncation error

k 8%u

= Em(-l’nﬂj} + O(h*),

Tp

and the Backward-Difference method at the (j + 1)st step in £,

Wijt1 = Wij 2 Witljtl — 2wijr + wisyjg

k h? =0

which has local truncation error

k 8%u

—Eﬁ[.ﬂ, ﬁjj + O{hz}

g —
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If we assume that

a%u ) 32 u
@(Xn fLj) ~ ﬁ(-l’n i),

then the averaged-difference method,

B h? h?

2
Wijy1 —wii e wiprj — 2w + wiy L Wistj1 — 2wijp +wicjsn | 0
k 2 -

has local truncation error of order O(k* + h?). provided, of course, that the usual differen-
tiability conditions are satisfied.
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This i1s known as the Crank-Nicolson method and is represented in the matrix form
AwUTD = Bw'  foreachj=0,1,2,..., (12.15)

where

T ) r
A= F, w') = {le:-wEUf:-”:urm—]Jj .

B (I—HQ. _%'*.{}::: ........ 0 (1 =) % S 0seeee 0 ]
A= 0. 0 B= 0. 0
0 0 -5 1+ | 0.l 0 % :{1_;.._} i
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The nonsingular matrix A is positive definite, strictly diagonally dominant, and tridi-
agonal matrix. Either the Crout Factorization 6.7 or the SOR Algorithm 7.3 can be used
to obtain w"’ from w'Y~"_ for eachj = 0,1,2,.... Algorithm 12.3 incorporates Crout fac-
torization into the Crank-Nicolson technique. As in Algorithm 12.2, a finite length for the
time interval must be specified to determine a stopping procedure. The verification that the
Crank-Nicolson method is unconditionally stable and has order of convergence O(k* + h?)
can be found in [IK], pp. 508-512. A diagram showing the interaction of the nodes for
determining an approximation at (x;, f;) is shown in Figure 12.11.




Crank-Nicolson

INPUT endpoint /; maximum time T; constant «; integers m > 3, N > 1.

OUTPUT  approximations wy; to u(x;.t;) foreachi=1,....m—landj=1,...

Step 1 Seth=1/m;

k =T/N:
A =a’k/h?;
?.Um = 0.

Step2 Fori=1,...,m— 1setw; = f(ih). (Initial values.)
(Steps 3-11 solve a tridiagonal linear system using Algorithm 6.7.)

Step3 Setly=1+A;
up = —Ar/2h).

Stepd Fori=2,....m—2setli=1+A+ Aui_/2;
up = —r/(2l;).

Step6 Forj=1,...,N do Steps 7-11.

Step 7 Sett=jk; (Current t;.)

A
1= [(1 — A)un +§wg:| /.’].

Step8 Fori=2,...,m— 1 set
A
i = I:U —Aw; + E{wiﬂ + wi—y ‘I'Zi—l)] /fi-

Step 10 Fori=m—2,..., I set w; = z; — ujwj. .
Step 11 OUTPUT (¢); (Note:t =1t;.)

Fori=1,....m— lsetx = ih;

OUTPUT (x, w;). (Note: wi = w;.)
Step 12 STOP. (The procedure is complete.)

.N.

MAP2320
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Use the Crank-Nicolson method with 2 = 0.1 and £ = 0.01 to approximate the solution
to the problem

du 2u

—(x, 1) —

» F(x.r):{}. D<x<1 0<t,
X

subject to the conditions
w0, =u(l.t)y =0, 0 <t,
and

u(x,0) =smn(mrx), 0=<x<1.

Solution Choosing h = 0.1 and kK = 0.01 gives m = 10, N = 50, and A = 1 in Algorithm
12.3. Recall that the Forward-Difference method gave dramatically poor results for this
choice of h and k, but the Backward-Difference method gave results that were accurate to
about 2 x 10~ for entries in the middle of the table. The results in Table 12.5 indicate the
increase in accuracy of the Crank-Nicolson method over the Backward-Difference method.
the best of the two previously discussed techniques. |



Table 125

Xj Wi 50 u(x;, 0.5) |w;iso — u(x;, 0.5)]
0.0 0 0

0.1 0.00230512 0.00222241 8.271 x 10—
0.2 0.004358461 0.00422728 1.573 < 107+
0.3 0.00603489 0.00581836 2.165 x 107
0.4 0.00709444 0.00683989 2.546 x 107*
0.5 0.00745954 0.00719188 2.677 x 1074
0.6 0.00709444 0.00683989 2.546 % 107
0.7 0.00603489 0.00581836 2.165 x 107*
0.8 0.00438461 0.00422728 1.573 < 10
0.9 0.00230512 0.00222241 8.271 x 107
1.0 0 0

MAP2320
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