Seção 14.B - Moral Hazard

Exercise 1. Consider the principal-agent problem from section 14.B of MWG (1994). Let $E = \{0, 1\}$ be the set of possible effort levels the agent has and $\Pi = [0, 1]$ the set of possible project's profit (which is observable), and the cost of effort given by g(0) = 0 and g(1) = k > 0. Suppose the agent is risk neutral with v(w) = w and that the profit distribution, conditional on effort, is given by $f(\pi|0) = 1$, $\forall \pi \in \Pi$, e $f(\pi|1) = \pi + 1/2$, $\forall \pi \in \Pi$. The agent's opportunity cost is 0.

- (a) Verify that the profit distribution with high effort first order stochastically dominates the profit distribution with low effort.
- (b) If effort is observable, which condition the wage should satisfy in order to implement e = 0 optimally? And to implement e = 1 optimally?
- (c) Assume further that effort is observable. For which values of k is the optimal contract given by e = 1?
- (d) Suppose the optimal contract when effort is observable is with e = 1. Which wage should be set in order to implement the optimal contract when effort is not observable, but the agent can make payments to the principal?

Exercise 2 (MGW 14.B.2). Derive the first-order condition characterizing the optimal compensation scheme for the two-effort-level hidden action model studied in section 14.B when the principal is strictly risk averse.

Exercise 3 (MGW 14.B.3). Consider a hidden action model in which the owner is risk neutral while the manager has preferences defined over the mean and the variance of his income w and his effort level e as follows: Expected utility $= E[w] - \phi Var(w) - g(e)$, where g'(0) = 0, $(g'(e), g''(e), g''(e)) \gg 0$ for e > 0, and $\lim_{e\to\infty} g'(e) = \infty$. Possible effort choices are $e \in \mathbb{R}_+$. Conditional on effort level e, the realization of profit is normally distributed with mean e and variance σ^2 .

- (a) Restrict attention to linear compensation schemes $w(\pi) = \alpha + \beta \pi$. Show that the manager's expected utility given $w(\pi)$, e and σ^2 is given by $\alpha + \beta e \phi \beta^2 \sigma^2 g(e)$.
- (b) Derive the optimal contract when e is observable.

(c) Derive the optimal linear compensation scheme when e is not observable. What effects do changes in ϕ and σ^2 have?

Exercise 4 (MGW 14.B.4). Consider the following hidden action model with three possible actions $E = \{e_1, e_2, e_3\}$. There are two possible profit outcomes: $\pi_H = 10$ and $\pi_L = 0$. The probabilities of π_H conditional on the three effort levels are $f(\pi_H|e_1) = \frac{2}{3}$, $f(\pi_H|e_2) = \frac{1}{2}$, and $f(\pi_H|e_3) = \frac{1}{3}$. The agent's effort cost function has $g(e_1) = \frac{5}{3}$, $g(e_2) = \frac{8}{5}$, $g(e_3) = \frac{4}{3}$. Finally, $v(w) = \sqrt{w}$, and the manager's reservation utility is $\bar{u} = 0$.

- (a) What is the optimal contract when effort is observable?
- (b) Show that if effort is not observable, then e_2 is not implementable. For what levels of $g(e_2)$ would e_2 be implementable? [Hint: Focus on the utility levels the manager will get for the two outcomes, v_1 and v_2 , rather than on the wage payments themselves.]
- (c) What is the optimal contract when effort is not observable?
- (d) Suppose, instead, that $g(e_1) = \sqrt{8}$, and let $f(\pi_H|e_1) = x \in (0, 1)$. What is the optimal contract if effort is observable? As x approaches 1, is the level of effort implemented higher or lower when effort is not observable than when it is observable?