Solos tropicais – propriedades geotécnicas e geoambientais

Maria Eugenia Gimenez Boscov

PEF-3304

Poluição do Solo

Referências bibliográficas

- Progress report (1982-1985). Committee on tropical Soils of the ISSMFE, 1985. ABMS.
- Pavimentação de baixo custo com solos lateríticos. J.S.
 Nogami & D.F. Villibor. Ed. Vilibor, 1995.
- Considerações sobre o dimensionamento de pavimentos utilizando solos lateríticos para rodovias de baixo volume de tráfego. L.L.B. Bernucci. Tese de doutoramento, EPUSP, 1995.
- Comportamento de solos tropicais em aplicações geoambientais. M.E.G.Boscov. Texto de sistematização crítica para Concurso de Livre-Docência, EPUSP, 2004.

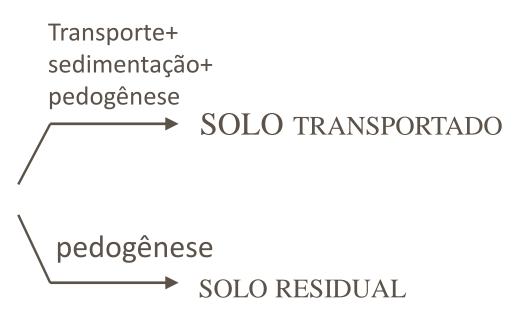
Intemperismo

- Ação do calor do sol, chuvas e de organismos sobre a crosta terrestre.
- Intemperismo físico (desagregação) e intemperismo químico (decomposição).
- Principais fatores: clima, relevo, fauna, flora, rocha e o tempo de exposição aos agentes do intemperismo.

Intemperismo

- O processo de intemperismo transforma a rocha em um material friável, normalmente com pouca modificação no volume, mas com mudanças na cor, textura, consistência e forma.
- Micro-fissuração seguida de dissolução.
- Esse material preserva parcialmente e temporariamente algumas características mineralógicas e estruturas da rocha matriz.

Intemperismo


- Transformação total ou parcial dos minerais primários, que são substituídos por minerais secundários (cristalinos ou amorfos).
- Nas regiões tropicais, sob condições de boa drenagem, os minerais secundários formados têm vida curta, desaparecendo quando a rocha é completamente alterada.
- Caulinita e gibbsita são formadas a partir de rochas ácidas (silício e alumínio), e goethita e esmectitas das rochas ferro-magnesianas.

Pedogênese

- Formação da estrutura do solo na região mais próxima à superfície
- Reorganização, adição, remoção, transferência, transformação dos minerais formadores do solo
- Formação de horizontes ou camadas

Formação dos solos

intemperismo ROCHA → SOLO

Perfil de solo

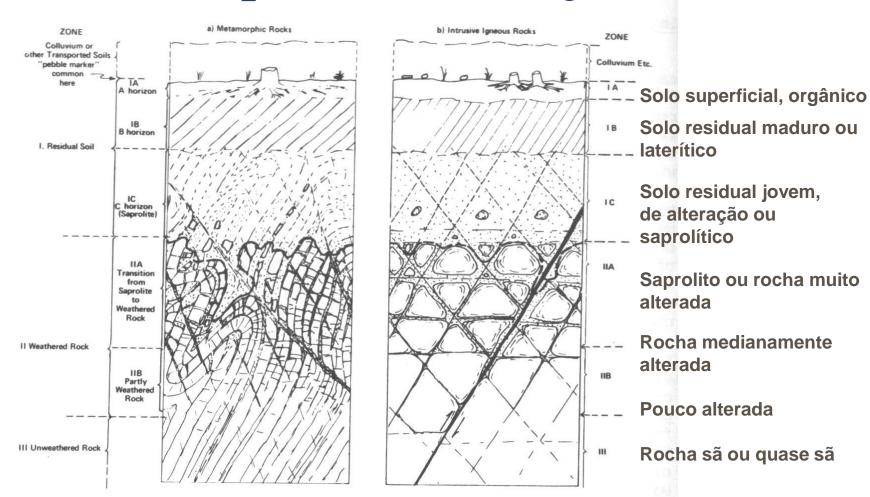
- Resultante do intemperismo e da pedogênese
- É o conjunto de camadas ou horizontes da superfície até a rocha em corte vertical
- Quanto mais distantes da rocha matriz, tanto mais diferentes são os solos em termos de composição química e mineralógica, distribuição granulométrica (textura) e características estruturais (distribuição de poros, fissuras, trincas, falhas, dobramentos, xistosidade etc.)

Solo tropical

Aquele que apresenta peculiaridades de propriedades e de comportamento, relativamente a solo não tropicais, em decorrência da atuação de processos geológicos e/ou pedológicos, típicos da regiões tropicais úmidas.

(Committee on Tropical Soils of the ISSMFE, 1985)

Solo tropical


- Para que um solo seja considerado tropical, não basta que tenha sido formado na região tropical ou sob clima tropical; é indispensável que possua peculiaridades de interesse geotécnico (Nogami & Villibor, 1995).
- Definição tecnológica.

Solo tropical

Duas classes principais:

- solos lateríticos
- solos saprolíticos

Perfil típico de alteração

Modificado de Deere e Patton, 1971

Horizonte	Deere & Patton, 1971	ISSMFE, 1985
I-A	Solo orgânico	Solo orgânico
I-B	Solo residual e/ou coluvial maduro	Solo laterítico
I-C	Solo residual jovem	Solo saprolítico
II-A	Transição de solo residual para rocha alterada	Saprolito
II-B	Rocha parcialmente alterada	Rocha alterada
III	Rocha sã	Rocha sã

Perfil típico de alteração

Pode haver descontinuidade entre o solo laterítico e o solo saprolítico, algumas vezes marcada por uma linha de seixos, Nesse caso, o solo laterítico foi formado por material transportado diferente do material subjacente.

Um solo é considerado laterítico se:

- Pertencer aos horizontes A ou B de perfil bem drenados desenvolvidos sob clima tropical úmido;
- Sua fração argila for constituída essencialmente de minerais do grupo das caulinitas e de óxidos hidratados de ferro ou alumínio, e esses componentes estiverem associados em estruturas de agregados porosos e altamente estáveis.

Formados pelo processo físico-químico avançado da laterização, caracterizada pela decomposição de feldspatos e de minerais ferro-magnesianos, pela lixiviação da sílica e de bases e pela concentração de hidróxidos e óxidos de ferro e/ou alumínio. (Mitchell & Sitar, 1982)

A fração argila é constituída essencialmente por argilo-minerais do grupo das caulinitas e de hidróxidos e óxidos hidratados de ferro e/ou alumínio. A combinação desses componentes forma agregações estáveis em presença de água, graças ao recobrimento dos argilo-minerais pelos hidróxidos de óxidos hidratados, que, além de reduzirem a capacidade de adsorção de água pelos argilo-minerais, atuam como agentes cimentantes naturais entre partículas.

(Bernucci, 1995)

- Na fração areia e silte são encontrados principalmente quartzo, agregações lateríticas e, em menor escala, minerais pesados.
- Em conseqüência da agregação, os solos lateríticos são porosos, com baixa densidade e elevada permeabilidade no estado natural.
- Devido a essa macroestrutura, podem exibir colapsividade, uma diminuição brusca do volume de vazios quando ocorre um aumento do teor de umidade, sem alteração do carregamento.

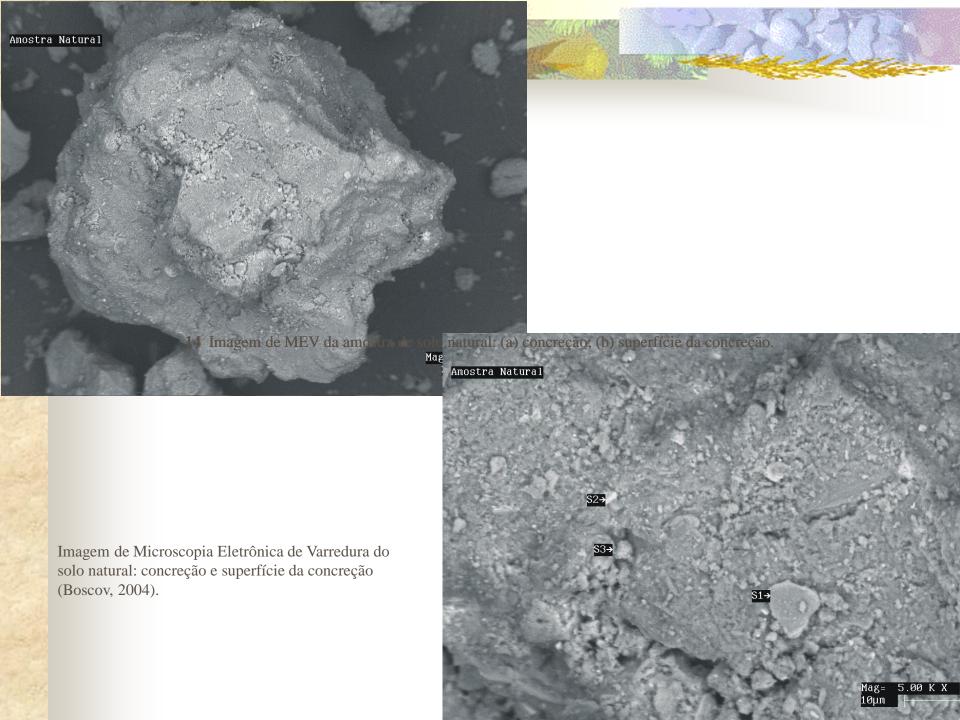
(Bernucci, 1995)

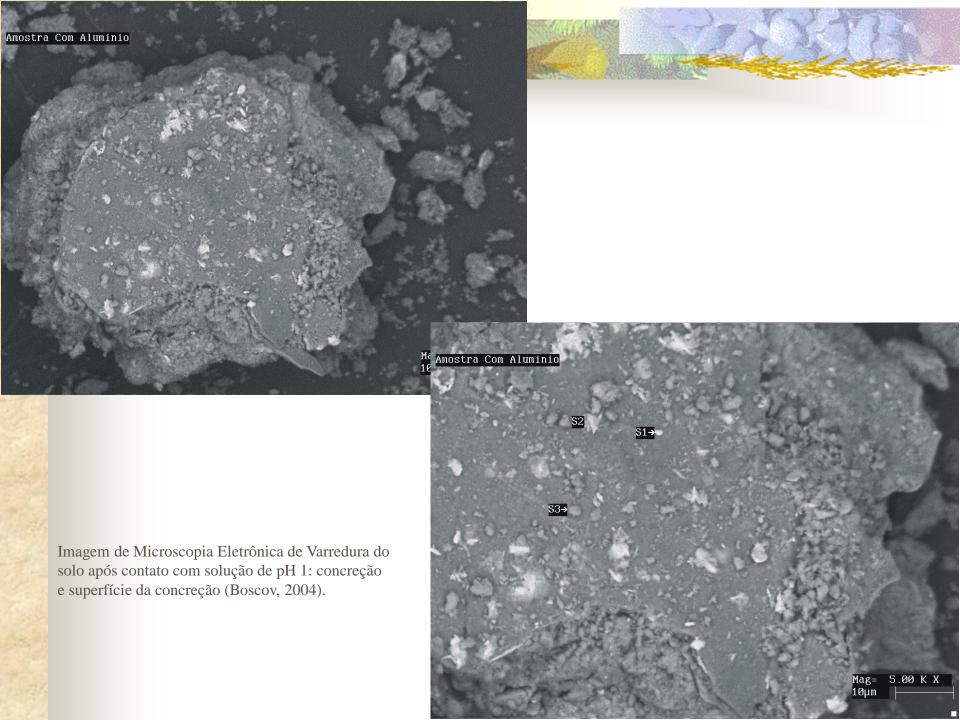
- Podem apresentar lateritas, massa consolidadas, maciças ou porosas, de mesma mineralogia dos solos lateríticos. As lateritas são utilizadas em construção viária.
- Cor: vermelhos, laranjas, amarelos e marrons,
 (Bernucci, 1995)

- Latossolos e luvissolos (solos podzólicos)
 (EMBRAPA, 1999)
- Oxisols e ultisols (Soil Taxonomy, USA, 1975)

Solo saprolítico

Um solo é considerado saprolítico se:


- For solo no sentido geotécnico;
- Exibir feições estruturais claramente herdadas que permitam uma fácil identificação da rocha matriz;
- For autenticamente residual.


Estrutura dos solos

- Macroestrutura: feições que podem ser vistas a olho nu ou com lentes de aumento simples. Exemplos: estratificação, fissuramento, vazios e heterogeneidades
- Microestrutura: distribuição espacial e arranjo de partículas sólidas e de vazios. Exemplos: cimentação, distribuição porosimétrica

Estrutura dos solos lateríticos

- Macroestrutura: depende principalmente do grau de intemperização e não guarda semelhança com a estrutura da rocha matriz; estrutura porosa com grandes vazios.
- Microestrutura: torrões ou agregados formados por grãos de argila cimentados por óxidos e hidróxidos de ferro e alumínio, acarretando distribuição porosimétrica típica.

Estrutura dos solos saprolíticos

- Macroestrutura: reliquiar, herdada da rocha matriz.
- Microestrutura: dependente do grau de alteração.

Embasamento cristalino

- Camadas de solos superficais lateríticos de 0,5 m a 2 m de espessura
- Grau de laterização mais baixo
- Na Serra do Mar, na construção da Via Anchieta, espessuras de 50 a 70 m de solo saprolítico!

Rodoanel Mário Covas

Centro de Tratamento de Resíduos Caieiras

Basalto e arenito

- Camadas de solos superficais lateríticos de
 2 m a 8 m de espessura
- Solos argilosos ou areno-argilosos, dependendo da mistura

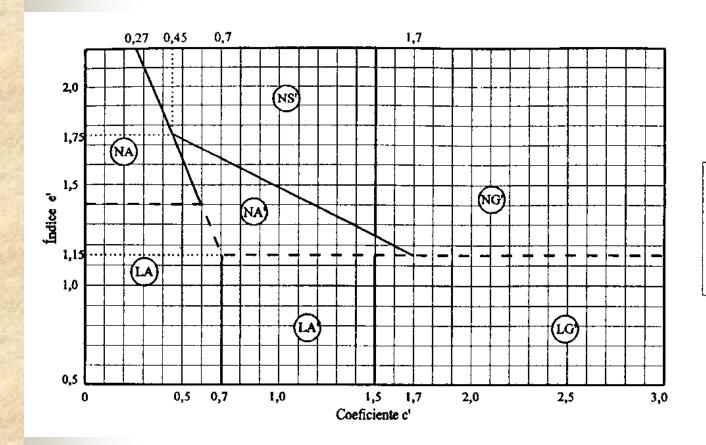
Solo residual estruturado

SOLOS TROPICAIS (Bernucci, 1995)

SOLOS TROPICAIS (Bernucci, 1995)

Dificuldades de classificação

- Ensaios de limites e granulometria muito dependentes de certas condições experimentais: espatulação, defloculante, vácuo, entre outros.
- Discrepância entre o comportamento geotécnico esperado e o real desempenho dos solos no campo.


- Miniatura, Compactado, Tropical
- Sete classes:

NA, NA', NS', NG', LA, LA', LG'

N = comportamento não laterítico

L = comportamento laterítico

A=areia; A'=arenoso; S'=siltoso; G'=argiloso

L= LATERÍTICO

N= NÃO LATERÍTICO

A = AREIA

A'= ARENOSO

G'= ARGILOSO

S'= SILTOSO

- Amostra seca ao ar e passada na peneira de 2mm.
- Compactação em aparelho mini-MCV: 50mm de diâmetro, soquete de seção plena.
- 4 a 6 teores de umidade, 200 g para cada umidade.
- Escala de número de golpes: 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256.
- Altura do corpo-de-prova a cada número prédeterminado de golpes.
- Critério de parada: duas medidas sucessivas com diferença menor do que 0,1mm; ou 256 golpes; ou quando houver nítida expulsão de água.

- Curvas de compactação para cada energia.
- Coeficiente d´ = inclinação da parte retilínea do ramo seco da curva de compactação de 12 golpes
- Para cada teor de umidade:

Curvas de deformabilidade: (An-A4n) x log n Intersecção com (An-A4n) = 2mm ⇒ número de golpes correspondente (Bi)

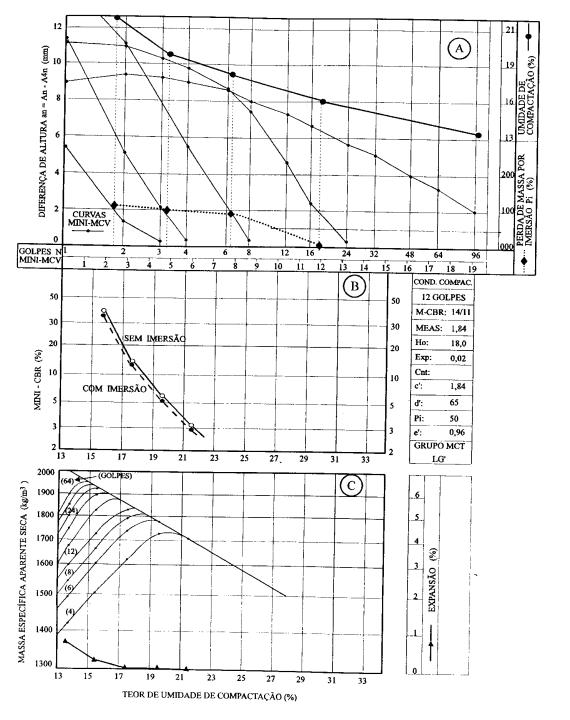
Mini-MCV = 10 log(Bi)

- Interpolar curva de deformabilidade de Mini-MCV = 10
- Coeficiente angular c´
- Curva Mini-MCV em função da umidade

Perda de massa por imersão

Corpos-de-prova extraídos do molde de compactação, de maneira que fiquem salientes 10mm, e transferidos para uma cuba

Cuba preenchida com água


Após 20 horas esgota-se a água da cuba.

Massa seca da parte desagregada dos corpos-de-prova

Pi = massa seca desagregada / massa seca inicialmente saliente

- $e' = \sqrt[3]{\frac{Pi}{100} + \frac{20}{d'}}$
- Ábaco e´x c´
- Classe de solo
- Comportamento esperado para cada classe

Solo saprolítico

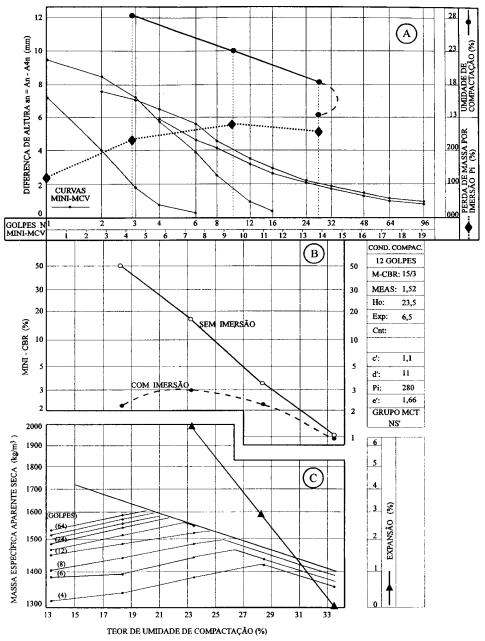
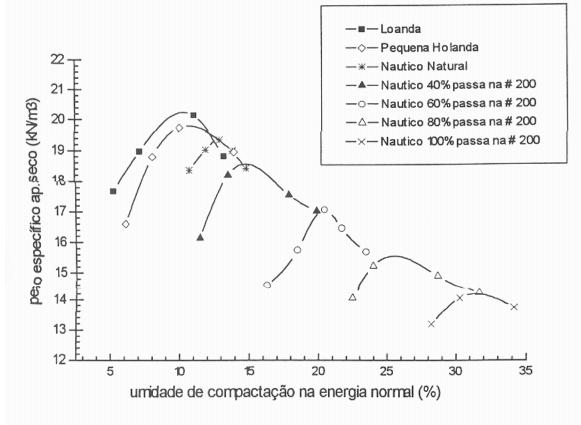


Figura 3.9 - Resultados de ensaios de compactação Mini-MCV, suporte Mini-CBR e perda de massa por imersão de um solo de comportamento não laterítico (saprolítico micáceo-caolinítico)

	GRANULOMETRIAS TÍ	ÍPICAS	T	İ		100			S
Designações do T1-71 do DER-SP (equivalentes da Mississipi River- Commission, USA)			S (q,s)	areias siltosas	siltes (k,m)	argilas argilas arenosas argilas siltosas siltes argilosos	areias siltosas	areias argilosas	argilas argilas arenosas argilas siltosas siltes argilosos
k=caolinítico m=micáceo s= sericítico q= quartzoso			argilas siltes (q,s)	areias	siltes siltes	argilas argilas argilas siltes ar	areias	areias	argilas argilas argilas siltes a
COMPORTAMENTO			N = Não Laterítico				L = Laterítico		
GRUPO MCT			NA	NA'	NS'	NG'	LA	LA'	LG'
Propriedades	MINI- sem imersão CBR (%) perda por imersão		M, E B, M	E B	M, E E	E E	E B	E, EE B	E B
	EXPANSÃO		В	В	Е	M, E	В	В	В
	CONTRAÇÃO		В	B, M	M	M, E	В	B, M	M, E
	COEF. DE PERMEABILIDADE (k)		M, E	В	B, M	В, М	B, M	В	В
	COEFICIENTE DE SORÇÃ	(s)	Е	B, M	Е	M, E	В	В	В
	Corpos de prova compactados na massa específica aparente seca máxima da energia normal		1			M = Médio (a) Vide Tabela III.3 pa B = Baixo (a) equivalente numéric		-	
Utilização	Base de pavimento		n	4°	n	n	2°	l°	3°
	Reforço do subleito compactado		4°	5°	n	n	2°	1°	3°
	Subleito compactado		4°	5°	7°	6°	2°	l°	3°
	Aterro (corpo) compactado		4°	5°	6°	7°	2°	l°	3°
	Proteção à erosão		n	3°	n	n	n	2°	I _o
	Revestimento primário		5°	3°	n	n	4°	1°	2°
			n = não recomendado						
Grupos tradicionais obtidos de amostras que se classificam nos			SP SM	MS SC ML	SM, CL ML, MH	MH CH	SP SC	SC	MH ML CH
grupos MCT discriminados nos topos das colunas AASHO		A - 2	A - 2 A - 4 A - 7	A - 4 A - 5 A - 7 - 5	A - 6 A - 7 - 5 A - 7 - 5	A - 2	A - 2 A - 4	A - 6 A - 7 - 5	

Figura 3.15 - Gráfico da classificação MCT e dados diversos dos grupos de solos integrantes da mesma

Solo laterítico

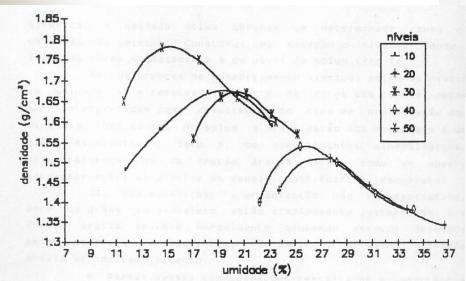

Propriedades mecânicas e hidráulicas não correlacionam diretamente com os limites de consistência, a fração argila, o teor de umidade e a razão de sobreadensamento, como é o caso de alguns solos desenvolvidos em regiões de clima temperado.

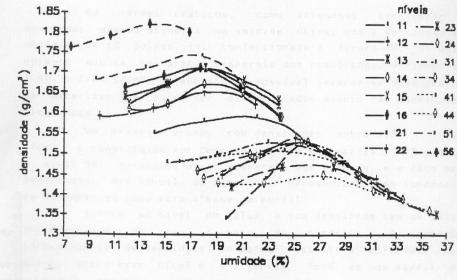
Solo laterítico

A resistência ao cisalhamento é altamente dependente do grau de saturação (uma vez que esses solos são normalmente encontrados em estado não saturado) e é muito influenciada a fatores genéticos, tais como estrutura, grau de intemperização, composição química e mineralógica do solo.

Curvas de compactação de solos

lateríticos

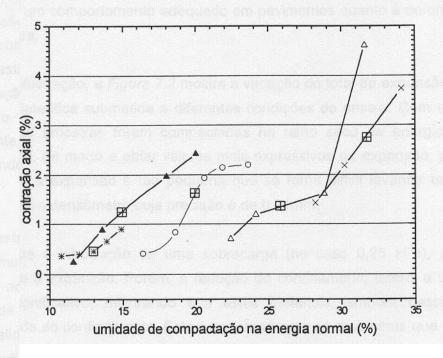



$$\gamma_{smax} = 22,62 - 0,26 h_{ot} (kN/m^3); r = -0,96$$

(Bernucci, 1995)

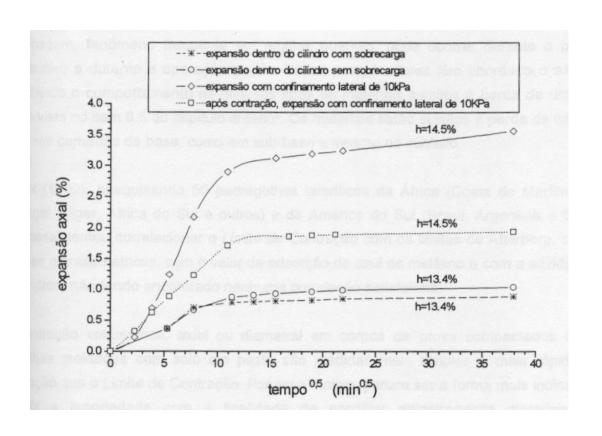
Curvas de compactação de solos tropicais

Solos lateríticos

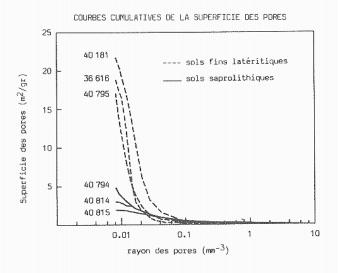


Solos saprolíticos

(Godoy, 1992)


Contração e expansão axiais de solos lateríticos compactados na Energia Normal

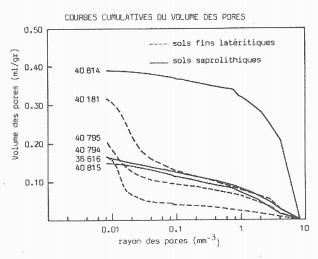
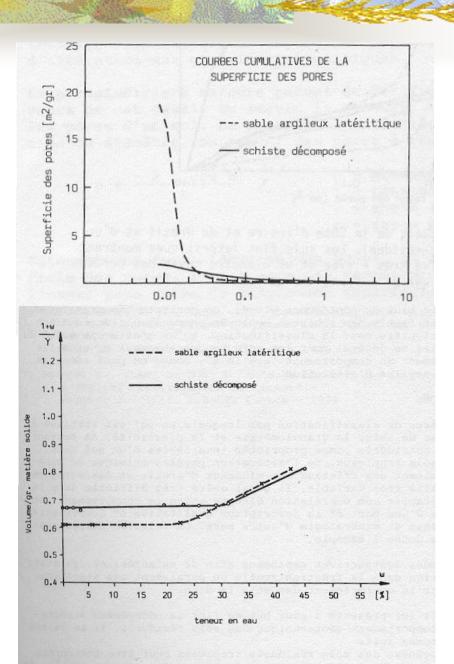
(Bernucci, 1995)

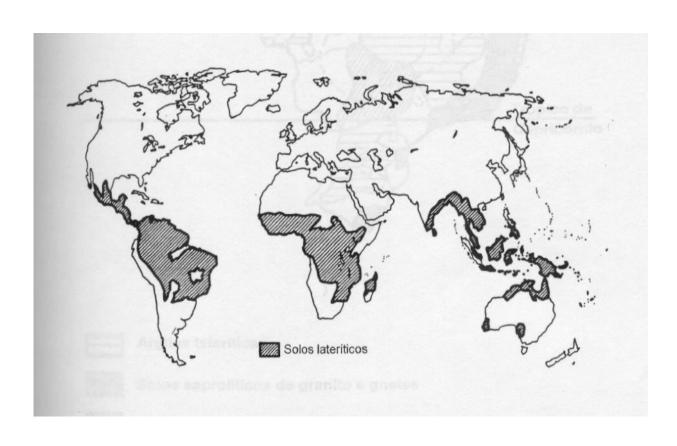

Expansão axial de uma argila laterítica em função do tempo

(Bernucci, 1995)

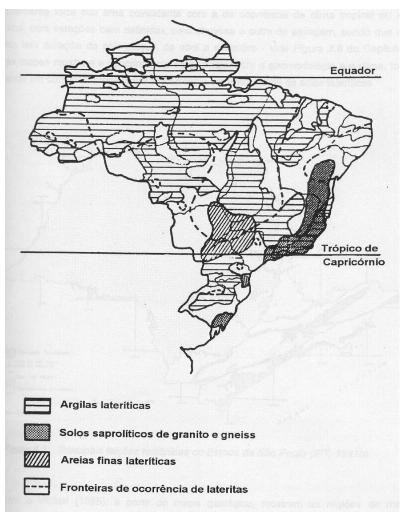
Porosimetria

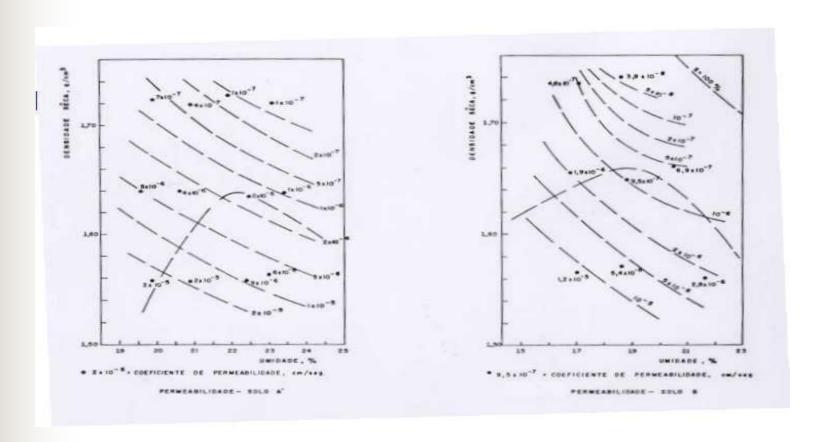
(Arnold, 1985)

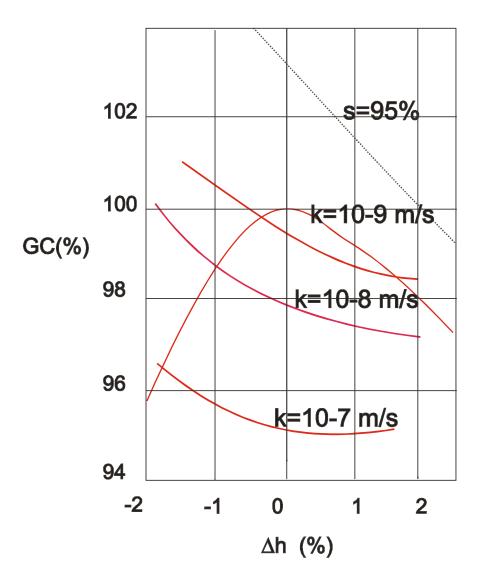



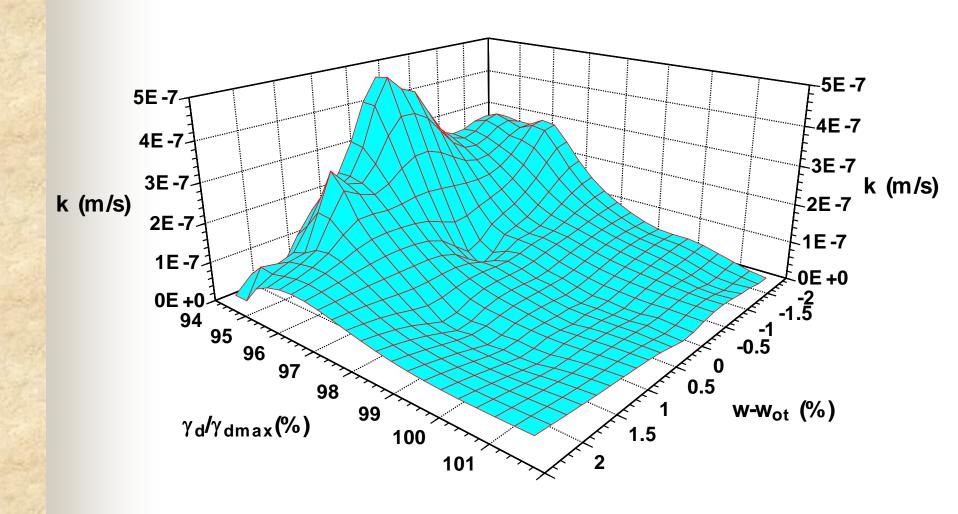

fig.2: Porosité des sols résiduels de la Côte d'Ivoire et du Brésil et d'un sol fin latéritique non-résiduel. Les sols fins latéritiques montrent une superficie cumulative très élevée et un diamètre moyen des pores très petit par rapport aux sols saprolithiques.

Porosimetria


(Arnold, 1985)


Ocorrência de solos lateríticos no mundo (Charman 1988)


Ocorrência de solos lateríticos no Brasil (Medina & Motta 1989)


Permeabilidade de solos tropicais

Permeabilidade de solo laterítico

Permeabilidade de solo laterítico

Peculiaridades de comportamento de solos tropicais de interesse para aplicação em "clay liners"

- Trincas de secagem
- Colapsividade
- Expansão/retração
- Ponto de carga nula
- Porosidade e curva porosimétrica