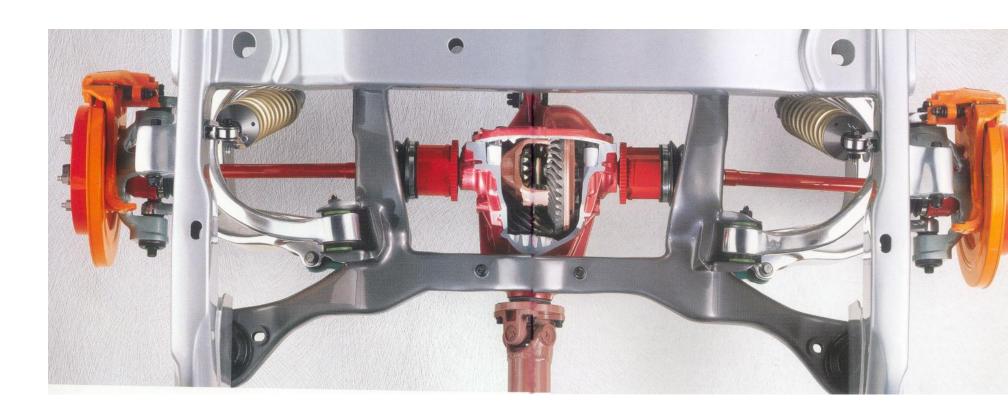
Transmissões de Potência

Transmissões de Potência

- Compatibilizar o conjugado ou velocidade angular do motor com a máquina acionada.
- Ajustar a direção ou sentido da rotação.
- Ligar de eixos distantes entre si.
- · Distribuir a potência para vários consumidores.


TRANSMISSÃO DA POTÊNCIA

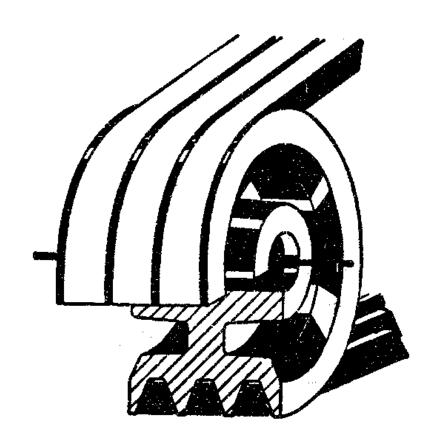
■ MOTOR → TRANSMISSÃO → CONSUMIDOR

■ POTÊNCIA IDEAL

■ POTÊNCIA REAL

Corte de um conjunto eixo "cardã" - diferecncial

1. Introdução

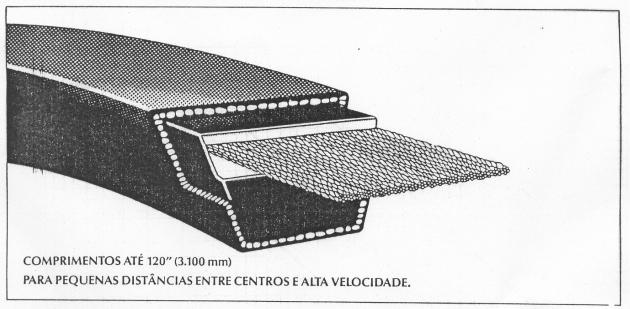

- Transmissão ideal
 Potência de entrada = Potência de saída
 C_eω_e = C_sω_s onde ω é a velocidade angular.
 i = ω_e / ω_s é a relação de redução (cte ≥ 1)
- Transmissão real
 - $P_s = P_e \cdot \eta$, onde η é o rendimento da transmissão.

2. Transmissões por Correia

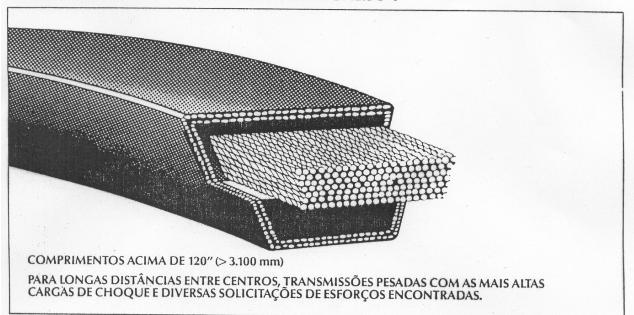
Características Principais:

- Correia Ideal: flexível, inelástica, sem massa, elevado coeficiente de atrito, elevada resistência à tração.
- Transmissão por atrito entre correia e polia
- Polias: Planas, ranhuradas ou denteadas
- Pré-tensão de funcionamento
- Eixos paralelos

Correia Trapezoidal – "V"

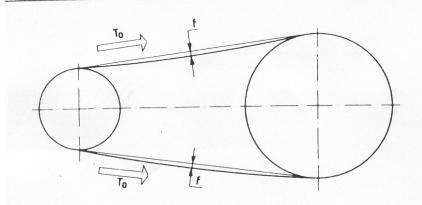


2.1 Tipos de Correias


Definidos pela geometria da secção transversal da correia:

- Correias Planas;
- Correias em "V" ou Trapezoidais;
- Correias Dentadas ou Sincronizadoras.

CORREIAS COM CAMADA SIMPLES DE CORDONÉIS 3-T


CORREIAS COM MÚLTIPLAS CAMADAS DE CORDONÉIS 3-T

2.2 Princípio de Operação das Correias Planas e "V"

- A transmissão de esforços entre a correia e a polia é baseada na força de atrito existente entre a correia e a polia.
- A magnitude desta força de atrito é dependente do valor do coeficiente de atrito estático entre a polia e a correia e da pressão entre a polia e a correia.
- A magnitude desta pressão é dependente da magnitude da força de pré-tensão aplicada na correia.

- Em função do movimento de rotação da polia motora, há um acréscimo de força em um dos tramos da correia e um decréscimo de força no outro tramo.
- A relação entre as forças atuantes nestes tramos é calculada com o emprego da equação de Euler, a qual é dependente do coeficiente de atrito estático e do ângulo de abraçamento da correia na polia menor.

Cf. Manfé, et alii

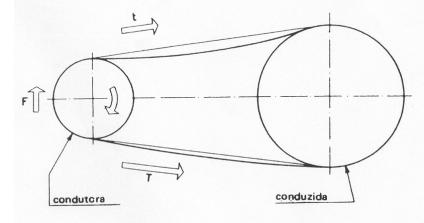
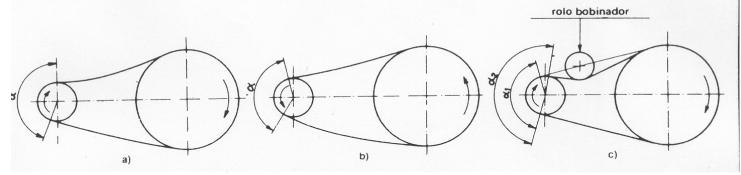


Fig. 3.38 - Em condições de repouso a correia está sujeita a uma tensão inicial T₀ (chamada tensão de montagem) tal a assegurar a aderência necessária entre correias e polias.

Na realidade, os dois ramos da correia que vão de uma polia a outra não são retilíneos mas se aproximam da reta de uma flecha f devida ao peso próprio de cada ramo de correia considerado.

Fig. 3.39 - Durante a transmissão do movimento entre os dois eixos, a tensão T do ramo condutor se torna:


$$T > T_0$$

e a tensão do ramo conduzido:

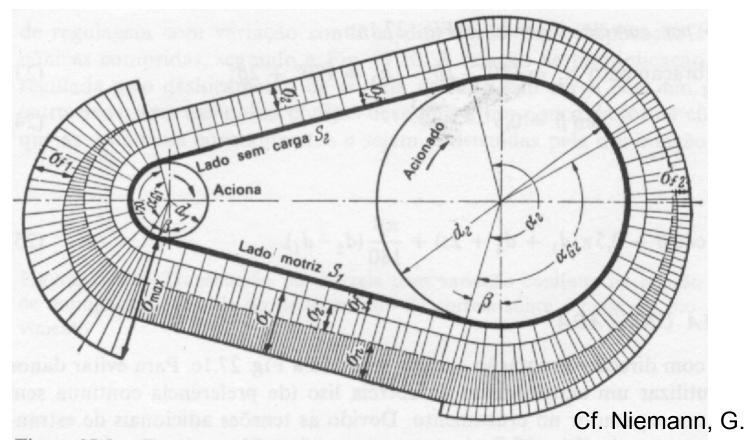
$$t < T_0$$

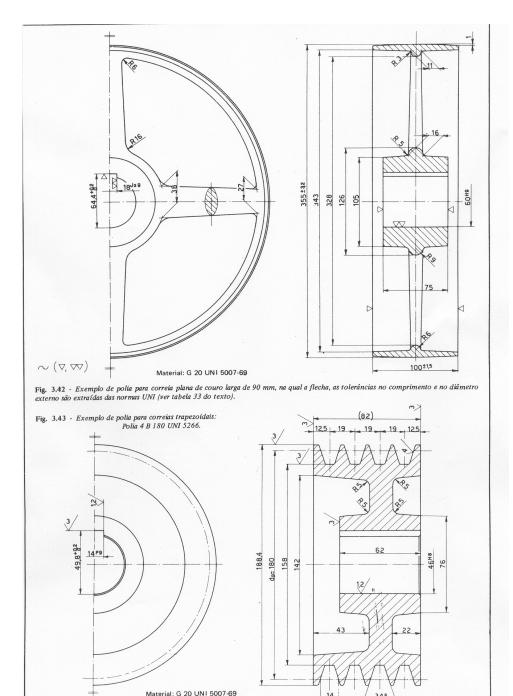
A força tangencial útil resulta então:

$$F = T - t$$
 (kgf)

 A velocidade tangencial de uma transmissão por correias é limitada pela força centrífuga que atua sobre a correia quando a mesma se apoia sobre as polias. A ação desta força centrífuga tende a afastar a correia da polia, reduzindo a pressão existente entre as mesmas e reduzindo a capacidade de transmissão.

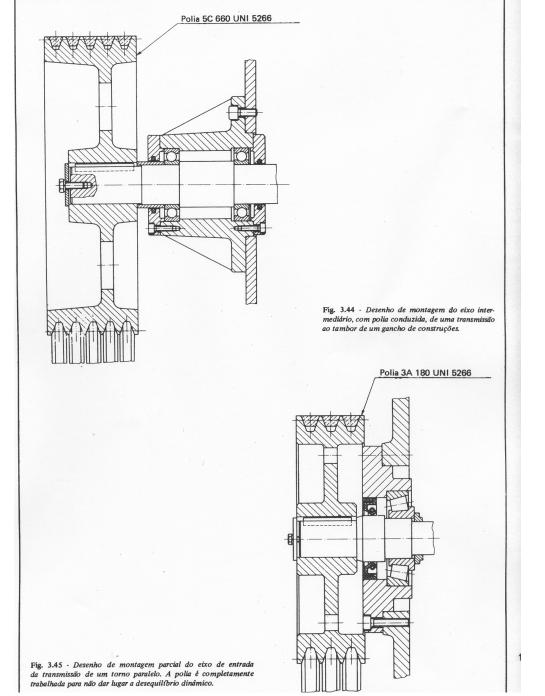
2.2.1 Tensões nas Correias




Figura 27.5 — Tensão na correia na transmissão aberta: σ_f tensão na fôrça centrífuga; σ_2 tensão no lado vazio; σ_1 tensão no lado em carga = $\sigma_2 + \sigma_n$; σ_n tensão útil = σ_U ; σ_{f1} , σ_{f2} tensões de flexão nas polias 1 e 2; α_G ângulo de escorregamento (no campo da variação da tensão devido ao alongamento de deslizamento)

2.3 Relação de Transmissão

A relação de transmissão é igual a relação entre os diâmetros primitivos das polias maior (D₂) e menor (D₁) ou seja:

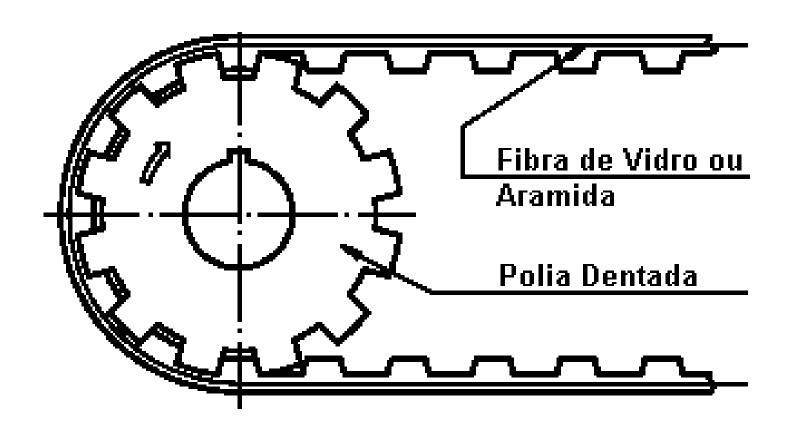

$$i = D_2 / D_1$$

Cf. Manfé, et alii

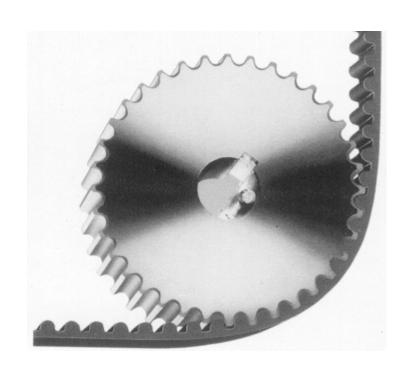
2.4 Comparação entre Correias Planas e "V"

Característica	Correia Plana	Correia "V"
Velocidade	maior	menor
Carga nos Mancais	maior	menor
Relação de transmissão	menor	maior
Capacidade de Operação mais Correias na Polia	não	sim
Sincronização	não	não

Cf. Manfé, et alii


CARACTERÍSTICAS

- projeto não compacto
- projeto simples (elementos padronizados, correias polias)
- montagem entre eixos paralelos e até com 4 correias em paralelo (para correias trapezoidais)
- escorregamento (1-3%)
- distância entre centros não precisa e pode variar com o uso


CARACTERÍSTICAS

- potência de transmissão até 1500 HP
- velocidade tangencial de operação até 26 m/s
- rendimento elevado (95-98%)
- a correia, sendo um elemento flexível, absorve vibrações e choques
- funcionamento silencioso
- vida reduzida das correias

2.5 Correias Sicronizadoras

Correias Sicronizadoras

Cf. Manfé, et alii

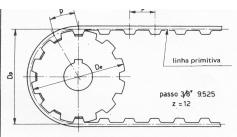


Fig. 3.48 - Exemplo de transmissão mediante correia dentada: a linha primitiva coincide com o eixo do inserto.

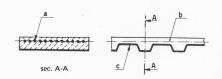


Fig. 3.49 - Vista e secção de uma correia dentada: a) inserto resistente constituído por fios de material de alta resistência; b) corpo da correia em borracha sintética; c) revestimento em nylon dos dentes e da parte interna da correia.

z=48

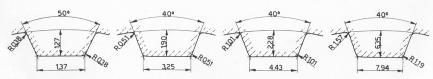


Fig. 3.50 - Dimensões dos quatro tipos de dente das correias POWER GRIP.

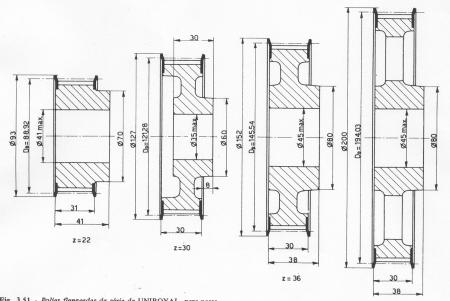


Fig. 3.51 - Polias flangeadas da série da UNIROYAL, para passo 12,70 mm (1/2") e para correias tendo largura 19,05 mm (3/4") e 25,40 (1").

CARACTERÍSTICAS

- Sincronismo entre eixo motor e movido
- Menor peso
- Menor raio de dobramento
- Maiores velocidades
- Menores conjugados
- Maior custo (correia e polias)

Modelamento Matemático

•CConjugado Útil: C = (T1-T2)d, T1/T2 = $e^{\mu\alpha}$ em geral => T1 > 3 T2

•ÂAng. de Abraçamento: $\alpha_1 = 180^{\circ} - 2.\arcsin[0,5.(d2-d1)/A],$

A = distância entre centros das polias

Modelamento Matemático

Comprimento da Correia:

L =
$$2a\cos\beta+0.5\pi(d1+d2+2s)+\pi\beta(d2-d1)/180$$

$$\beta = arcsen[0,5.(d2-d1)/A]$$

Ref. Niemann, G. Edgard Blucher, 1971

Parâmetros de Seleção

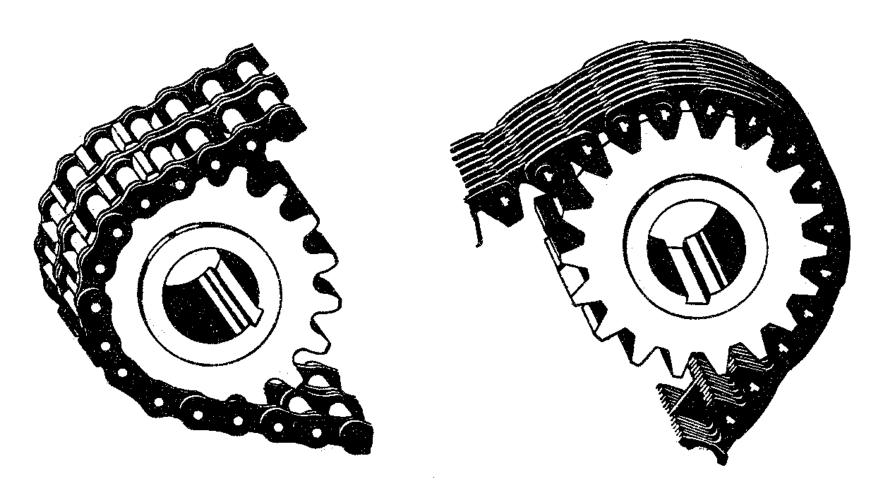
Tipo da Correia

Diâmetro Mínimo (no. de dentes)

Velocidade (rotação)

Potência (Conjugado/Força)

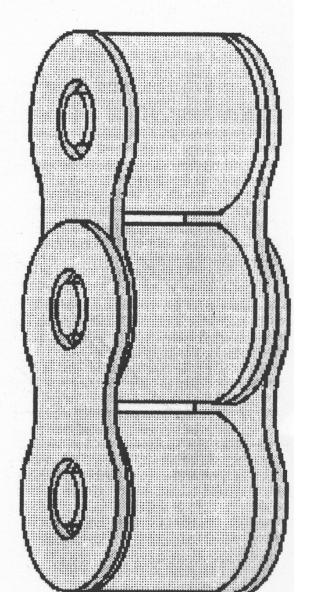
Fator de Serviço (tipo de equip.)

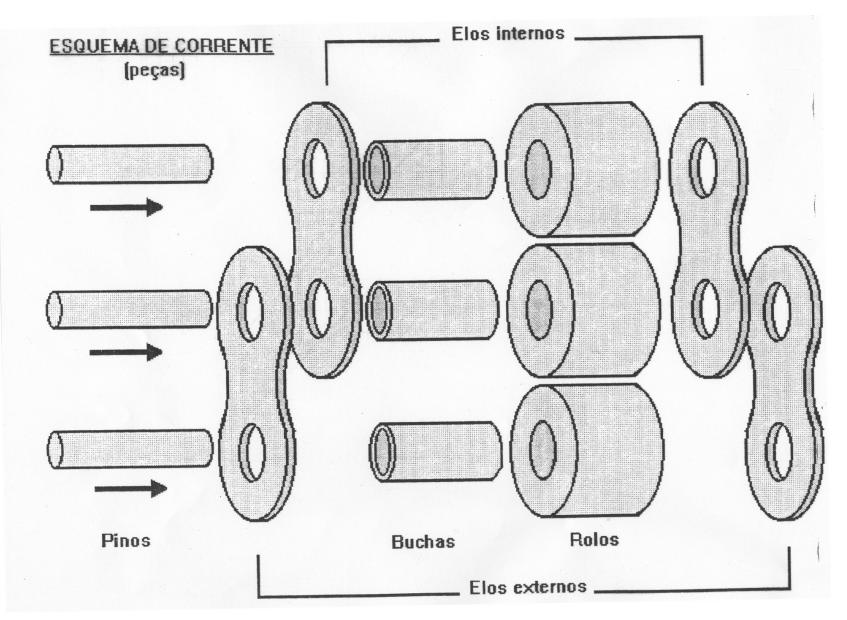

Distância entre centros (compr. da correia)

Relação de Transmissão (âng. de abraçam.)

3 Transmissões por Correntes

A transmissão por corrente é uma alternativa à transmissão por correias e engrenagens quando se deseja transmitir potência entre eixos paralelos distantes entre si. Neste tipo de transmissão emprega-se a corrente, que é um elemento formado por elos padronizados, montados sobre uma roda dentada, havendo contato entre partes da corrente e os dentes da roda dentada, sendo que é através deste contato que se observa a transmissão de potência entre a corrente e a roda dentada.


Exemplos

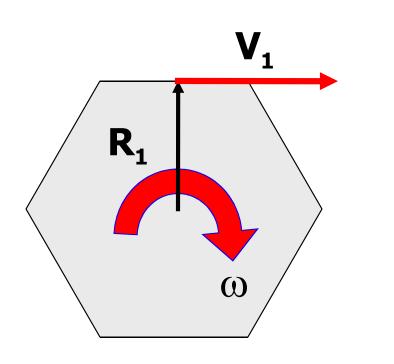


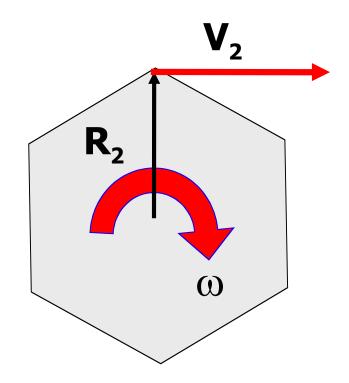
Padronização

As correntes são elementos padronizados, significando que a geometria e as dimensões dos elos são definidas por normas técnicas. Consequentemente, a geometria dos dentes da roda também é padronizada, a fim de garantir a montagem dos elos da corrente. As correntes são especificadas em função do seu passo, ou seja, a distância entre os pontos de articulação de um elo.

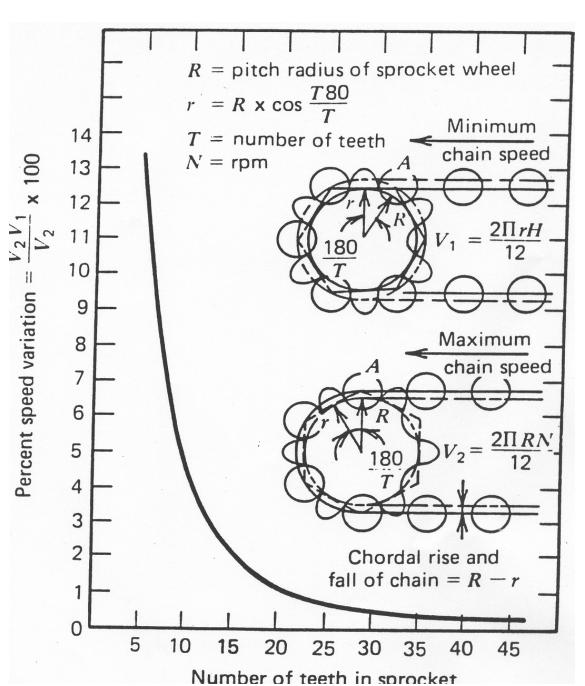
ESQUEMA DE CORRENTE (montada)

Lubrificação, Desgaste e Fadiga


- Como há contato entre os dentes da roda e os elos da corrente, há a imperiosa necessidade de lubrificar tais elementos, a fim de diminuir o desgaste dos elos da corrente e dos dentes da roda dentada.
- A transmissão por corrente apresenta como modo de falha básico a fadiga das talas (porção lateral) dos elos da corrente, fadiga superficial dos rolos e buchas, além do desgaste entre pinos e buchas.


Efeito Poligonal

 A transmissão por corrente é sincronizada, porém a mesma não apresenta uma relação de transmissão constante, pois ocorre o chamado "efeito poligonal". Este efeito ocorre em virtude da forma de encaixe da corrente à roda, o qual forma um polígono e não um arco de circunferência como nas correias.


EFEITO POLIGONAL

R2 > R1 = > V2 > V1, p/ $\omega = cte$

"Pinhão com 6 dentes"

Vmin/Vmáx = cos(180/Z)

Z = número de dentes

EFEITO DO DESGASTE

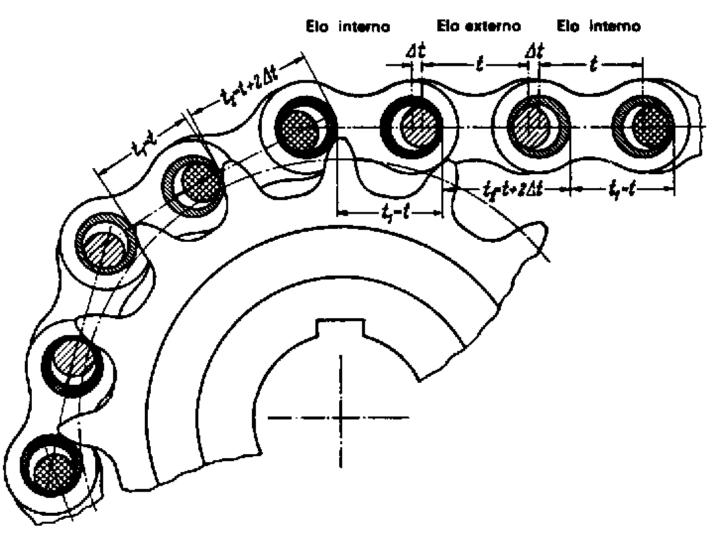


Figura 26.29 — Apoio desigual de uma corrente de buchas sôbre uma engrenagem de corrente devido ao descraste

CARACTERÍSTICAS

- projeto não compacto
- montagem entre eixos paralelos
- uma só corrente pode acionar várias rodas
- sem escorregamento
- distância entre centros não precisa
- relação de transmissão até 6
- potência de transmissão até 5000 HP
- velocidade tangencial de operação até 17 m/s e rotações de até 5000 rp
- rendimento elevado (97-98%)
- custo reduzido (85% das transmissões por engrenagens)
- elementos padronizados (correntes e rodas dentadas)

Parâmetros de Seleção

Tipo de Corrente

Diâmetro Mínimo (no. de dentes)

Velocidade (rotação)

Potência (Conjugado/Força)

Fator de Serviço (tipo de equip.)

Distância entre centros (compr. da correia)

Relação de Transmissão (âng. de abraçam.)

Coef. de Segurança (~5)

Vida Estimada: 10.000h / 2.000 h

4. Comparação entre Tipos de Transmissão

	Vel	Sinc	η	Conjug	I	Dist.	Manut.	Cust
			_	•				
Tipo								
Rodas Atrito	2	Não	2	2	≥ 8	1	3	3
Correias Planas	4	Não	3	2	≥ 5	3	2	2
Correias Trapezoidais	2	Não	3	2	≥ 7	3	2	2
Correias Sincronizadoras	3	Sim	4	2	≥ 8	3	1	3
Correntes	1	Sim	3	4	≥ 6	3	4	3
Engrenagens	3	Sim	4	4	≥ 8	1	4	4

4 = Alto / Grande

1 = Baixo / Pequeno