
3 4

ESTRUTURA Atômico Características a Aplicações para Diversos Materiais Poliméricos							
Polimero	Estrutura	Nome Comercial	Principais Características	Aplicações			
		Polímeros Termoplásticos					
Acrilonitrila- butadieno- estireno (ABS)	[CH_CH_CH_CH_CH_CH_CH_CH_CH_CH_]		Excepcionais resistências mecânicas e tenacidade, resistência a distorção térmica; boas propriedades elétricas; inflamável e solúvel em alguns solventes orrânicos	<u> </u>			
Acrilicos [poli(metil metacrilato)]			Excepcional transmissão da luz e resistência às intempéries; propriedades mecânicas apenas regulares	3			
Fluorcarbonos (PTFE ou TFE)			Quimicamente inertes em quase todos os ambientes, excelentes propriedades elétricas; baixo coeficiente de atrito; podem ser usados até 260 °C; relativamente pouco resistentes e propriedades de escoamento a fito ruins	K			
Poliamidas (náilons)	[Boa resistência mecânica, resistência à abrasão e tenacidade; baixo coeficiente de atrito; absorvem água e alguns outros liquidos	*			
Policarbonatos	[CH ₃		Dimensionalmente estáveis; baixa absorção de água; transparentes; muito boas resistências ao impacto e ductilidade; a resistência química não é excepcional	A.A.			

	Polietileno		Quimicamente recitente e isolante elétrico; tenar e com coeficiente de antio relativamente baixo; baxar resistência e resistência ruim às intempéries	Ç
	Polipropileno	CH ₂	Rezistente à distorção térmica; excelentes propriedades elétricas e resistência à fadiga; quimicamente ineste; relativamente bazato; resistência ruim à luz UV	
	Poliestireno	[on-on]	Excelentes propriedades elétricas e clareza óptica; boa estabilidade térmica e dimensional; relativamente barato	
	PVC (Vinil)	-{cH₂cH-] _n	Bons materiais de baixos custo poaza uso geral; normalmente rigidos, mais podem ser tornados flexiveis com plastificantes; fequentemente copolimenizados; suscetiveis a distorção térmica	•
	Poliéster (PET ou PETE)	#{°\$-\$-\$	Um dos filmes plásticos mass tenzes; exceletars resirtencias à fadiga e ao rasgamento, e resistència tambade, écidos, garaxa, óleos e solventes	
	Epóxis		Polimeros Termofixos Excelente combinação de propriedades mecinicas e de emitlecia a corrodo, dimensionalmente estrucir do adeles, relativaramente bustos, losos propriedades deficicas propriedades deficicas	-
	Fenólicos	₹	Excelente estabilidade térmica ate acima de 150 °C; podem ser combrados com um grande numero de recinas, cargas etc; baratos	
=	Poliésteres	#[0.jjjj_ou	Excelentes propriedades elérticas e baixo custo, podema es formulados para uso à temperatura ambiente ou em temperatura ambiente ou em temperatura alevadas; geralmente são reforçados com filma.	

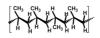
11 12

CONFIGURAÇÃO

Molecular

A configuração está relacionada com a distribuição espacial dos átomos na molécula e com a posição relativa dos grupos químicos. É controlada durante a polimerização. Define o conceito de taticidade que será visto mais a frente.

"Portanto, a configuração está associada a forma como as ligações químicas foram estabelecidas durante a polimerização".

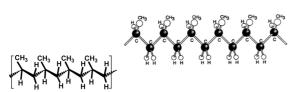

 É importante ressaltar que essa variação na regularidade e na simetria dos átomos pode conferir propriedades diferentes ao polímero.

-Para se alterar a configuração é necessário quebrar as ligações químicas

TATICIDADE

A ordem pela qual os grupos laterais se posicionam em relação à cadeia principal é chamada de taticidade.

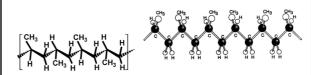
Cada carbono em uma cadeia vinílica é um centro de assimetria e existem duas possibilidades de posicionar os substituintes com respeito a cadeia. Na maioria das polimerizações não há controle estérico e a cadeia é dita atática. Nesse caso, a orientação do grupo lateral (-CH3) é randômica ao longo da cadeia.

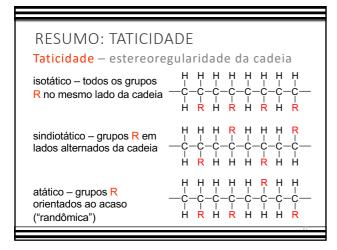

13

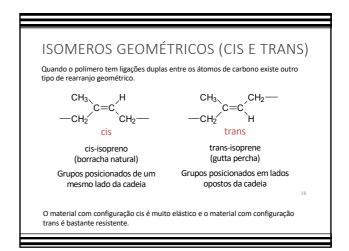
14

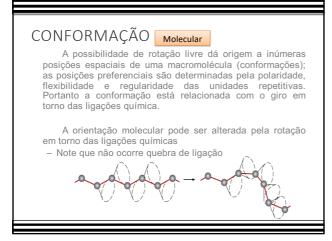
TATICIDADE

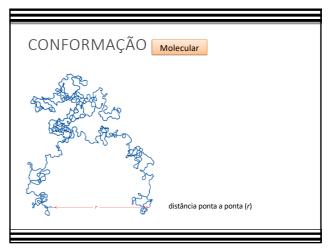
Se todos os carbonos assimétricos ao longo da cadeia tem a mesma estrutura estérica, o polímero é chamado *isotático*. Nesse caso os grupos laterais tem a mesma orientação


polipropileno isotático

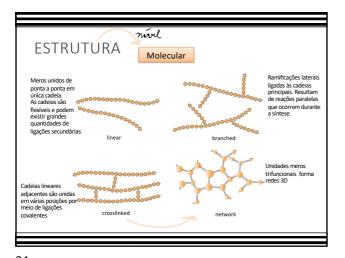

TATICIDADE

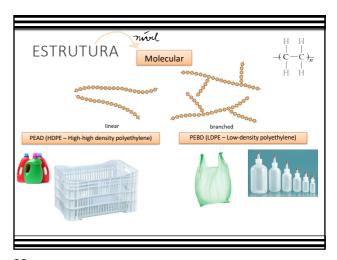

Se existe uma alternância regular em cada segundo carbono, o polímero é chamado **sindiotático.** Nesse caso o grupo lateral tem orientação alternada ao longo da cadeia.

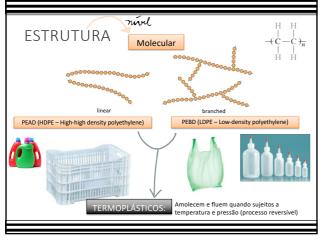

polipropileno sindiotático

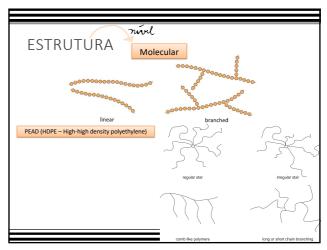


15 16

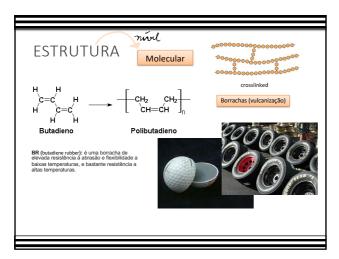


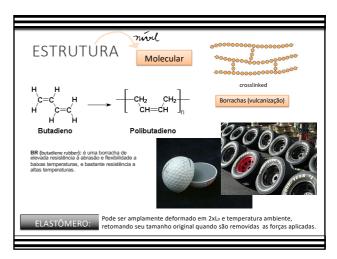


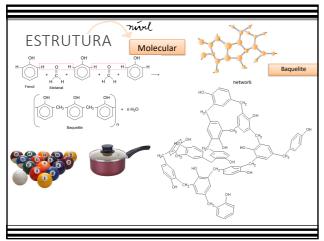


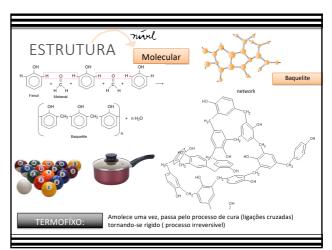


19 20

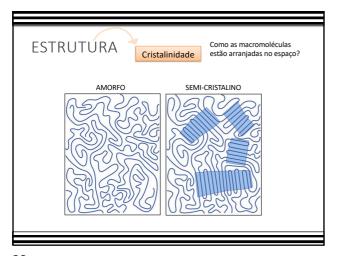


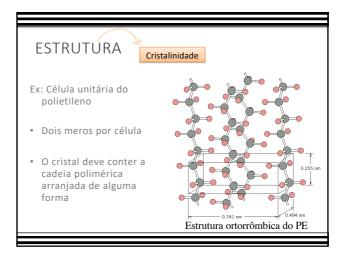


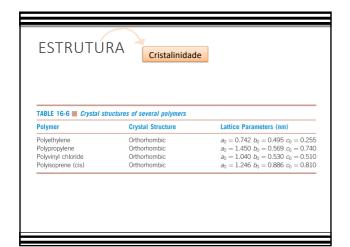


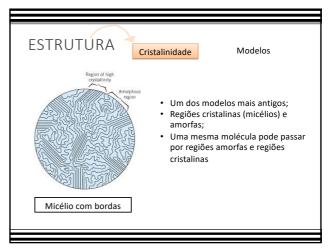


23 24

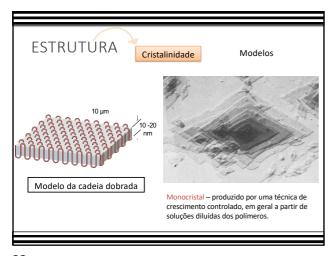


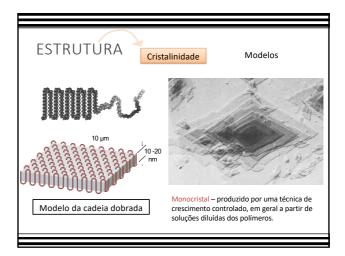




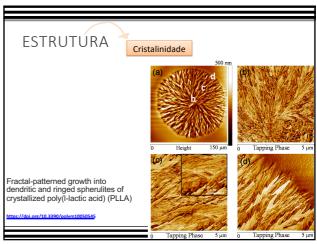


27 28

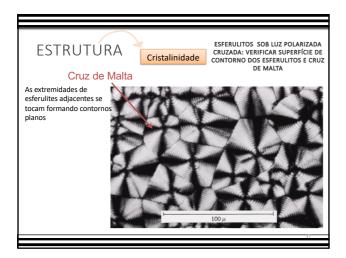


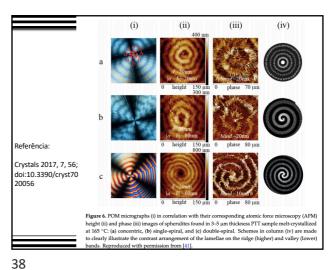


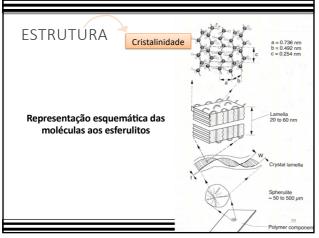


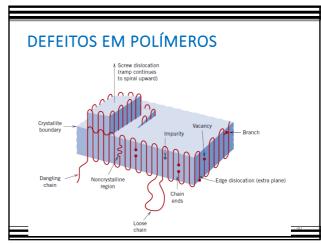


31 32

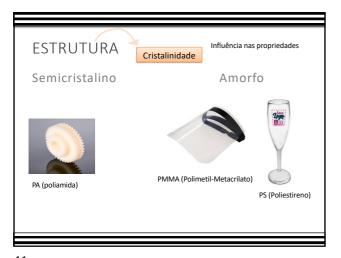


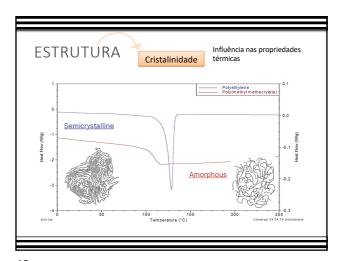


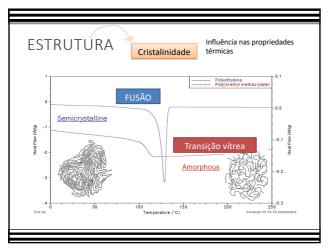


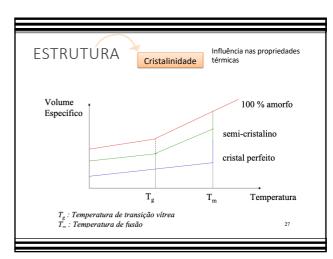


35









39 40

43 44