# Computação Gráfica para Jogos Eletrônicos

#### Métodos de renderização e shaders

Slides por: Gustavo Ferreira Ceccon (gustavo.ceccon@usp.br)
Assistentes: Leonardo Tórtoro Pereira (leonardop@usp.br),
Gabriel Simmel (gabriel.simmel.nascimento@usp.br) e Ítalo Tobler (<u>italo.tobler.silva@usp.br</u>)
Edição 2020: Renata Vinhaga (renatavinhaga@usp.br)



Este material é uma criação do Time de Ensino de Desenvolvimento de Jogos Eletrônicos (TEDJE) Filiado ao grupo de cultura e extensão Fellowship of the Game (FoG), vinculado ao ICMC - USP



#### Objetivos

- → Retomar e aprofundar o básico de GPU e do Pipeline de Renderização
- → Unity templates : Built in, HDRP, URP
- → Conceitos e algoritmos básicos por trás das principais técnicas utilizadas na área, além de exemplos de utilização
- → Shader time
- → Um pouco mais sobre modelos 3D



#### Índice

- 1. Introdução
- 2. Shader
- 3. Iluminação
- 4. Animação + Blender

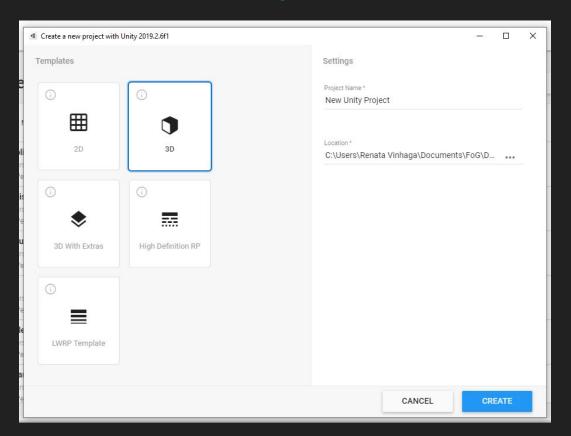


# 1. Introdução



#### 1. Introdução

- → Lembra das APIs?
  - OpenGL, Vulkan, DirectX
- → GLSL vs. HLSL vs. CG
  - Linguagens de shader legíveis




#### Introdução

- → Quem quiser aprender mais:
- → <a href="https://learnopengl.com/">https://learnopengl.com/</a> (curso de OpenGL)
- → <a href="https://www.youtube.com/watch?v=V5XFrIhLpG0">https://www.youtube.com/watch?v=V5XFrIhLpG0</a> (shader graph)
- → <a href="https://unity3d.com/pt/learn/tutorials/topics/graphics/gentle-introduction-shaders">https://unity3d.com/pt/learn/tutorials/topics/graphics/gentle-introduction-shaders</a> (Unity shaders)
- → <a href="https://docs.unity3d.com/Manual/Shaders.html">https://docs.unity3d.com/Manual/Shaders.html</a> (manual geral)
- → <a href="https://docs.unity3d.com/Manual/SL-Reference.html">https://docs.unity3d.com/Manual/SL-Reference.html</a> (especificação CG)



## Templates





#### **Built in Renderer**

- → Rendering de propósito geral
- → Tenta suprir todas as necessidades
- → Contra: acaba não sendo útil para coisas específicas



#### Scriptable Render Pipeline

- → Unity recriou o sistema de Renderização
- → Um engenheiro gráfico pode customizar a Renderização por Scripts em C#
- Com palavras mais simples: Agora a Unity tem mais capacidade gráfica
- → 2 pipelines pré definidos para nós mortais



#### HDRP e URP

- → High Definition Pipeline Render
  - Foca em hardwares mais avançados como PCs, Xbox e Playstation
  - Para finalidades de alto nível gráfico
  - Cada material vai exigir inúmeros mapeamentos
  - Para projetos pequenos ou projetos em 2D é DESNECESSÁRIO



#### HDRP e URP

- → Universal Render Pipeline (ou LWRP)
  - Serve para todas as plataformas
  - Não quer dizer que é inferior!
  - Tem as coisas do HDRP mas foca em performance para todas as plataformas
  - Iluminação e sombras 2D (não tem no HDRP)
  - Se seu projeto é 2D essa é a escolha



#### HDRP e URP

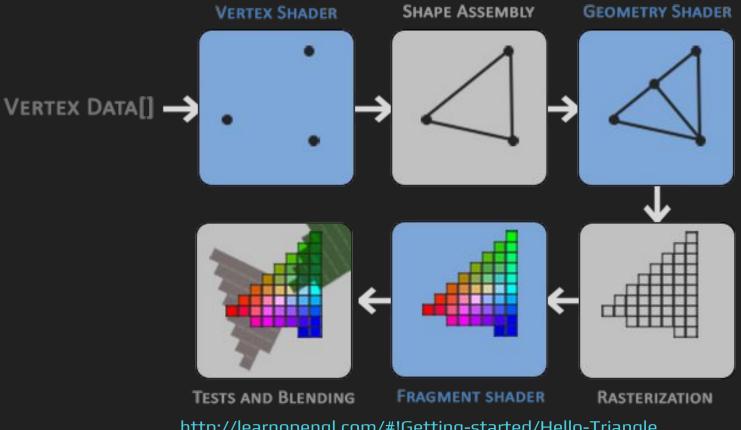
- → O que ambos tem e o Built-in não:
  - VFX Graph
  - Shader Graph
- → Principal diferença:
  - ◆ Iluminação

Explicação do Brackeys: <a href="https://www.youtube.com/watch?v=5MuA92xUJCA&ab">https://www.youtube.com/watch?v=5MuA92xUJCA&ab</a> channel=Brackeys



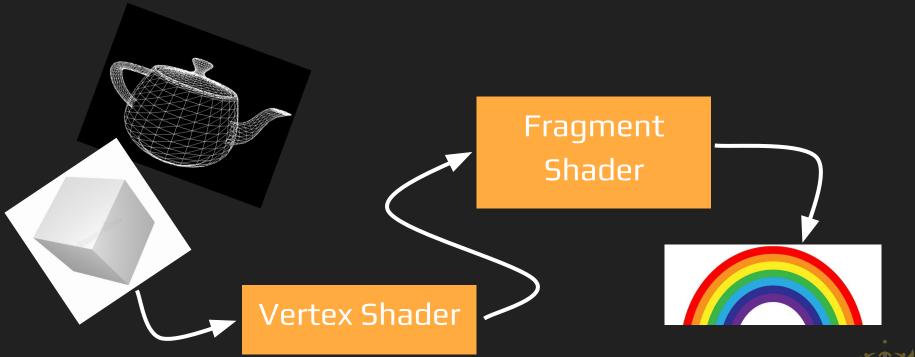
#### **PBR**

#### Physically Based Rendering


- → Usa o comportamento físico da luz para criar materiais com aspecto natural
- Modelo de iluminação que segue algumas das regras da física, como conservação de energia, <u>Fresnel</u> e oclusão
- → Chamado Standard Shader na Unity, é o modelo de iluminação padrão
- Dois principais parâmetros: metallic e smoothness



# 3. Shader




### Pipeline de renderização





## Vamos Simplificar!





- → Shaders
  - ◆ São programas que vão rodar na GPU
  - Tudo paralelo, então não existem informações de vizinhos
  - O shader vai rodar por elemento!
  - A linguagem de shader é baseada em C!

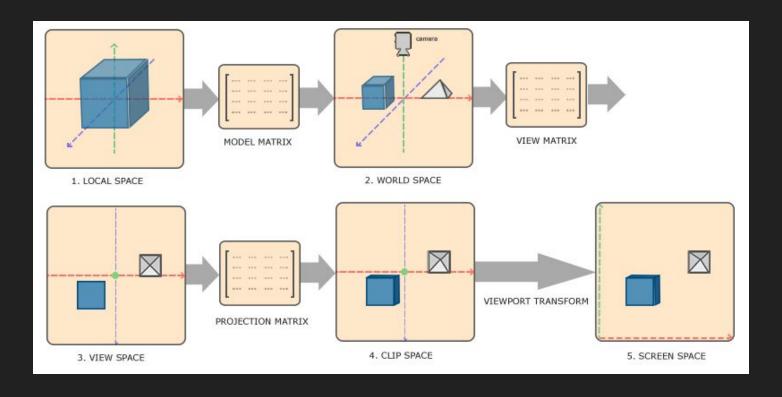


→ Coordenadas **+**Z



→ Coordenadas **+**Z




Cores xyzw rgba **+**Z



## Shader time na Unity!



## 1.Transformações de Espaço





#### 3. Renderização

- → Vertex Shader
  - Transformações de mundo
  - Matriz MVP (Model View Projection)
  - Mapeamento de coordenadas
- → Fragment Shader
  - Nível de pixel/fragmento
  - Definir cor de saída



#### 3. Renderização

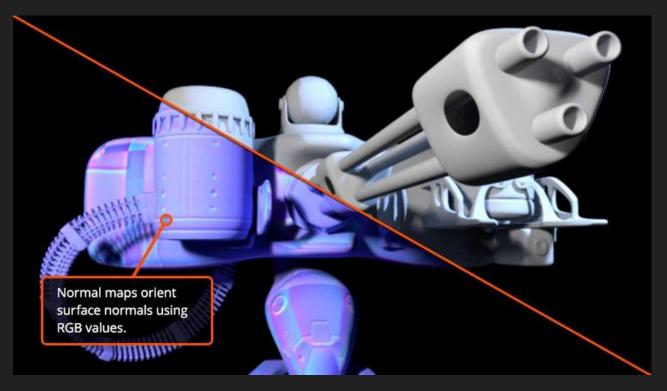
- Mapeamentos (Mapping)
  - Texturas
  - ◆ Bump
    - Displacement
    - Normal
    - Parallax
    - Height
  - Cube
  - Shadow



#### **Normal Map**

- → Normal Map
  - Modifica a luz através da superfície da textura
  - Baseia-se no vetor normal à superfície




https://learnopengl.com/Lighting/Basic-Lighting



#### Normal

Cores Normal xyzw r g b a -Z **+**Z

### **Normal Map**



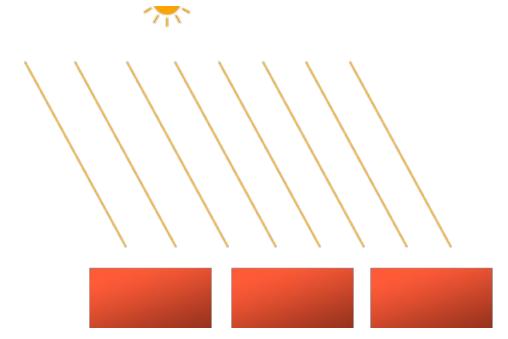


# 2. Iluminação



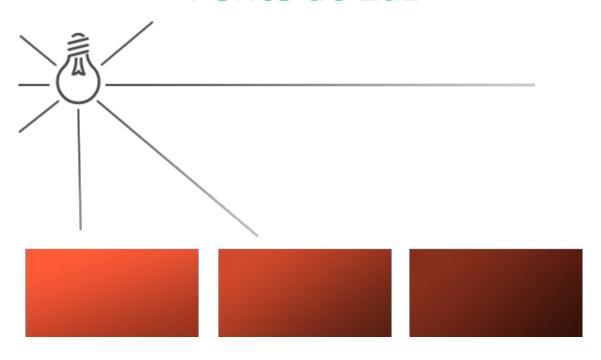
- → Materiais
  - Instâncias de um programa (um ou mais shaders)
  - Descrevem como o objeto deve se comportar visualmente
  - Podem conter informações como reflexão, transparência, quão metálico, quão liso, etc.




- Modelos de iluminação são os modelos matemáticos e físicos de como os objetos interagem com a luz
  - Lambert Blinn-Phong
  - Physically Based Rendering (PBR)

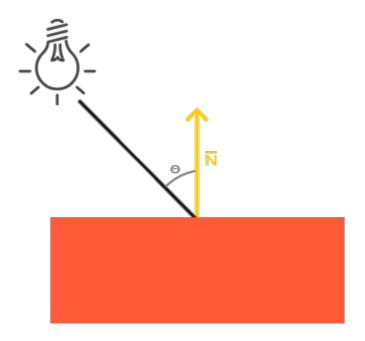


- → Difusa
  - Cor que objeto recebe sob luz direta
  - Mais forte na direção da luz e esmaece conforme o ângulo da superfície aumenta
- → Especular
  - Cor de destaque de um objeto.
  - Aparece como reflexão da luz na superfície
- → Exemplo



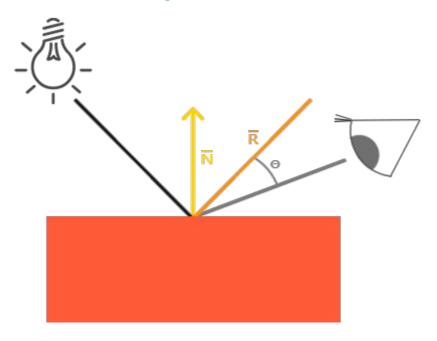

## Luz Direcional



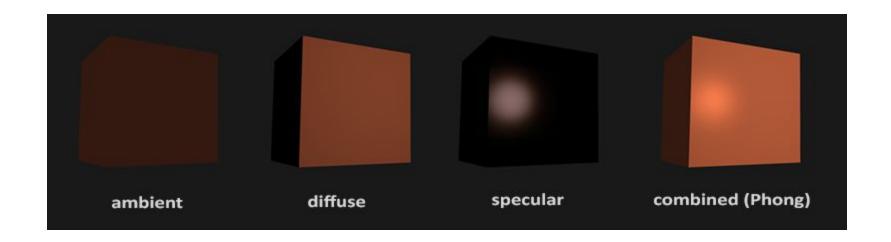



#### Ponto de Luz






### Difusa






## Especular









- → Physically Based Rendering (PBR)
  - Modelo de iluminação que segue algumas das regras da física, como conservação de energia, <u>Fresnel</u> e oclusão
  - Chamado Standard Shader na Unity, é o modelo de iluminação padrão
  - Dois principais parâmetros: metallic e smoothness



## Import e Export



# Animação + Mixamo



## Animação

→ Animação por bones





#### **Shader Graph**

- → Programação visual de shaders!
- → Te poupa muito trabalho
- → Menos controle mas pra um iniciante é show!
- → Não tem no template built-in da Unity
- https://www.youtube.com/watch?v=Ar9eIn4z6XE&app=d esktop&ab\_channel=Brackeys



# Dúvidas?

