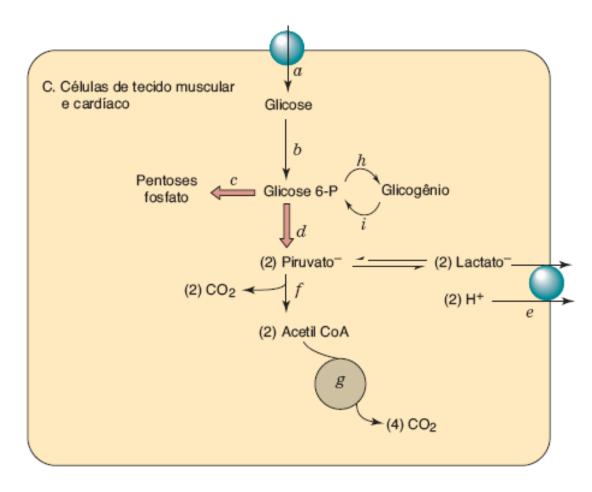
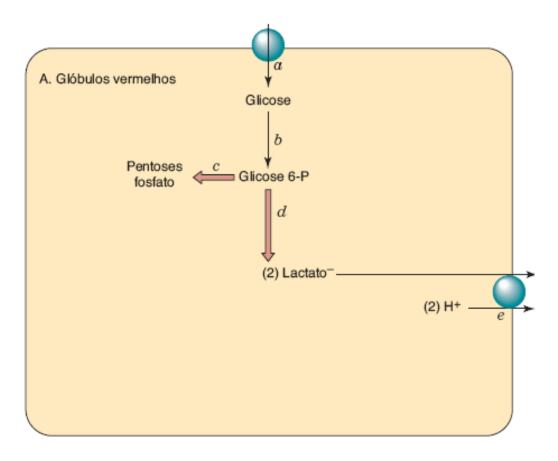

		Te	ecido/ Céli	ula	
Processo	Fígado	Músculo	Hemácia	Tecido Adiposo	Cérebro
Glicólise (Glicose → Piruvato)	+	×	X	×	×
Fermentação (Glicose → Lactato)	1	\times	X	X	\times
Ciclo de Lynen (β-oxidação)	*	×		×	
Ciclo de Krebs		×		X	X
$(Acetil-CoA \rightarrow CO_2 + H_2O)$	X				
Gliconeogênese					
(lactato, aminoácidos, glicerol →glicose)	*				
Formação de Corpos cetônicos	X	,			
Utilização de Corpos Cetônicos		X		×	×
Fosforilação Oxidativa	X	X		×	X



Fígado:

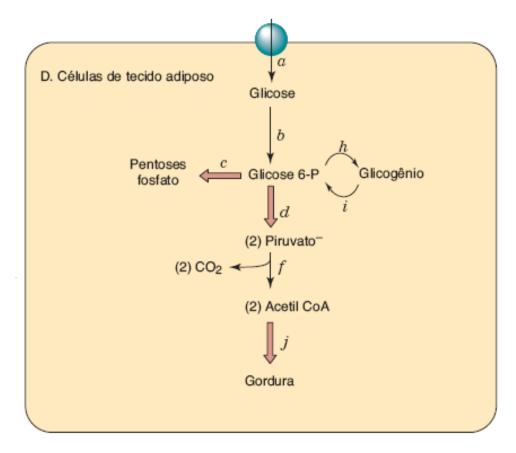
- Glicólise (Glicose → Piruvato) ✓
- Fermentação (Glicose → Lactato) //
- Ciclo de Krebs V
- Produção de Corpos Cetônicos
- Gliconeogênese
- Fosforilação Oxidativa V
- Ciclo de Lynen √

Lactate deside appropri


Metabolismo da glicose no Fígado

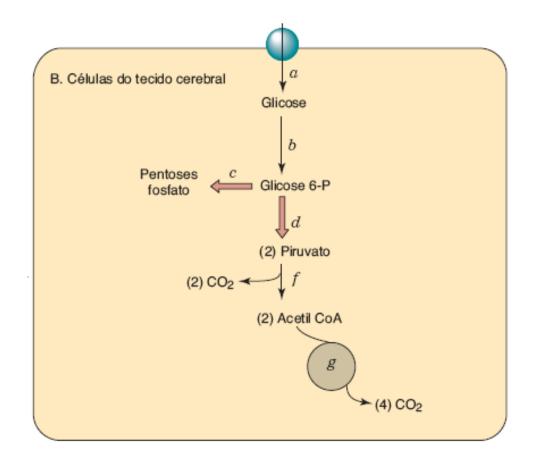
Metabolismo da glicose no Músculo

Músculo:


- Glicólise (Glicose → Piruvato)
- Fermentação (Glicose → Lactato)
- Ciclo de Krebs
- Degradação de Corpos Cetônicos
- Fosforilação Oxidativa
- Ciclo de Lynen

Metabolismo da glicose em Hemácias

Hemácias:


- Glicólise (Glicose → Piruvato)
- Fermentação (Glicose → Lactato)

Metabolismo da glicose em Tecido Adiposo

Tecido adiposo:

- Glicólise (Glicose → Piruvato)
- Ciclo de Krebs
- Degradação de Corpos Cetônicos
- Fosforilação Oxidativa
- Ciclo de Lynen

Metabolismo da glicose em tecido cereberal

Tecido Cerebral:

- Glicólise (Glicose → Piruvato)
- Ciclo de Krebs
- Degradação de Corpos Cetônicos
- Fosforilação Oxidativa

		Te	ecido/ Céli	ula	
Processo	Fígado	Músculo	Hemácia	Tecido Adiposo	Cérebro
Glicólise (Glicose → Piruvato)	+	+	+	+	+
Fermentação (Glicose → Lactato)	+	+	+	+	+
Ciclo de Lynen (β-oxidação)	+	+	-	+	+
Ciclo de Krebs	+	+	-	+	+
$(Acetil-CoA \rightarrow CO_2 + H_2O)$					
Gliconeogênese	+	-	-	-	-
(lactato, aminoácidos, glicerol →glicose)					
Formação de Corpos cetônicos	+	-	-	1	-
Utilização de Corpos Cetônicos	-	+	-	+	-
Fosforilação Oxidativa	+	+	-	+	-

2. Pesquisadores buscavam entender o metabolismo de células tumorais, para isso, eles analisaram alguns parâmetros em **aerobiose**, tais como consumo de O₂, concentração de ATP, etc. e compararam os resultados obtidos com células musculares e hemácias. A tabela a seguir exprime a análise feita pelo grupo.

Tipo Celular	Consumo de O ₂	Consumo de Glicose	[Lactato]	[Acetil-CoA]	[CO ₂]	[ATP]
Miócito						
em "repouso"	+++	++	-	++	+++	+++
Hemácias	-	++	++	-	-	++
Célula Tumoral	+	++++	+++	+	+	++++

Tipo Celular	Consumo de O ₂	Consumo de Glicose	[Lactato]	[Acetil-CoA]	[CO ₂]	[ATP]
Miócito em "repouso"	+++	++	-	++	+++	+++
Hemácias	-	++	++	-	-	++
Célula Tumoral	+_	++++	+++	+	+ -	++++

I. A atividade da cadeia transportadora de elétrons no miócito e na célula tumoral estão elevadas, o que justifica a alta concentração de ATP e o consumo de O₂. F

Tipo Celular	Consumo de O ₂	Consumo de Glicose	[Lactato]	[Acetil-CoA]	[CO ₂]	[ATP]
Miócito em "repouso"	+++	++	-	++	+++	+++
Hemácias	-	++	++	-	-	++
Célula Tumoral	+	++++	+++	+	+	++++

II. O ATP obtido pelas hemácias é originado a partir de fosforilação a nível de substrato. V

Tipo Celular	Consumo de O ₂	Consumo de Glicose	[Lactato]	[Acetil-CoA]	[CO ₂]	[ATP]
Miócito em "repouso"	+++	++	-	++	+++	+++
Hemácias	-	++	++	-	-	++
Célula Tumoral	+	++++	+++	+	+	++++

III. Mesmo na presença de O₂, a célula tumoral da preferência à via de fermentação. V

Tipo Celular	Consumo de O ₂	Consumo de Glicose	[Lactato]	[Acetil-CoA]	[CO ₂]	[ATP]	_
Miócito							
em "repouso"	+++	++	-	++	+++	+++	V
Hemácias	-	++	++	-	-	++	\
Célula Tumoral	+	++++	+++	+	+	++++	V

IV. A atividade da fosfofrutoquinase-1 está elevada somente nas hemácias. F

Tipo Celular	Consumo de O ₂	Consumo de Glicose	[Lactato]	[Acetil-CoA]	[CO ₂]	[ATP]	—
Miócito em "repouso"	+++	++	-	++	+++	+++	6 c c c c c c c c c c c c c c c c c c c
Hemácias	-	++	++	-	-	++	OAA
Célula Tumoral	+	++++	+++	+	+	++++	

V. A concentração de acetil-CoA, no miócito e na célula tumoral, podem aumentar a disponibilidade de oxaloacetato no ciclo de Krebs.

Figure 2 | Positron-emission tomography imaging with
**fluorodeoxyglucose of a patient with lymphoma. The
mediastinal nodes (purple arrow) and supraclavicular nodes
(green arrows) show high uptake of **fluorodeoxyglucose
(FdG), showing that tumours in these nodes have high levels
of FdG uptake. The bladder (yellow arrow) also has high
activity, because of excretion of the radionuclide.

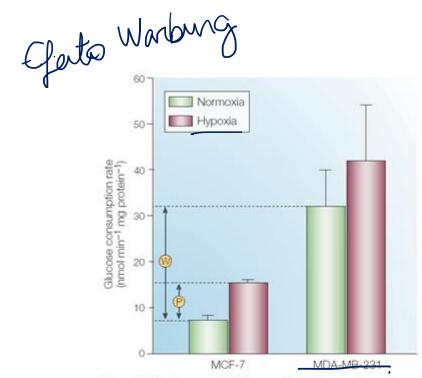
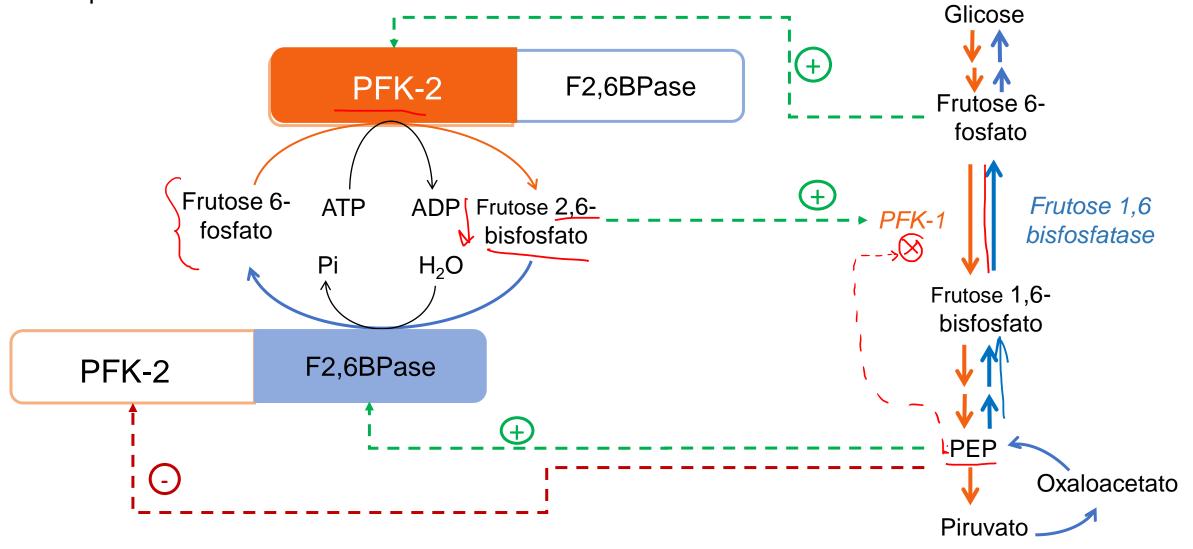


Figure 3 | Pasteur and Warburg effects in non-invasive and metastatic breast cancer cell lines. In both cell lines, glucose consumption is reduced in the presence of oxygen — the Pasteur effect (P). However, the more aggressive cell line, MDA-MB-231, has much higher glucose consumption in the presence of oxygen than the MCF-7 cells with a non-invasive phenotype — the Warburg effect (W). This is consistent with positron-emission tomography scans with ¹⁸fluorodeoxyglucose, which show that higher glucose uptake correlates with more aggressive phenotypes and poorer clinical outcomes.

- 3. Mediu-se a glicemia de dois voluntários, o primeiro estava há oito horas sem alimentação, enquanto o segundo tinha se alimentado há dez minutos. Tal diferença ficou evidente nos resultados: 5 mM e 10 mM respectivamente. Ambos tinham uma alimentação equilibrada de carboidratos, lipídeos e proteínas.
- a) Qual a origem da glicose <u>observada no sangue</u> de cada um dos voluntários? Explique bioquimicamente.

a) Qual a origem da glicose <u>observada no sangue</u> de cada um dos voluntários? Explique bioquimicamente.


Voluntário 1

- Situação metabólica: 8 horas sem alimentação (jejum curto).
- Reserva de glicogênio hepática em seu fim.
- Origem da glicose no sangue:
 Degradação de aminoácidos,
 glicerol para formação de glicose
 pela via de gliconeogênese.

Voluntário 2

- Situação metabólica: Período logo após a ingestão •
- Alta concentração de glicose proveniente da degradação de alimentos ricos em carboidratos.
- Origem da glicose no sangue:
 Alimentação

b) O que se pode afirmar acerca da atividade de enzima bifuncional (PFK-2/ F2,6-BPase) nos hepatócitos de cada um dos voluntários?

b) O que se pode afirmar acerca da atividade de enzima bifuncional (PFK-2/ F2,6-BPase) nos hepatócitos de cada um dos voluntários?

Voluntário 1

- Situação metabólica: 8 horas sem alimentação (jejum curto).
- Reserva de glicogênio hepática em seu fim.
- Origem da glicose no sangue:
 Degradação de aminoácidos, glicerol para formação de glicose pela via de gliconeogênese.
- Atividade da Enzima Bifuncional: F 2,6-BPase

Voluntário 2

- Situação metabólica: Período logo após a ingestão
- Alta concentração de glicose proveniente da degradação de alimentos ricos em carboidratos.
- Origem da glicose no sangue:
 Alimentação
- Atividade da Enzima Bifuncional: PFK-2

c) A atividade da enzima **piruvato carboxilase** foi medida e observou-se que estava próxima de 90% da atividade máxima nos dois casos. Como você justificaria este resultado?

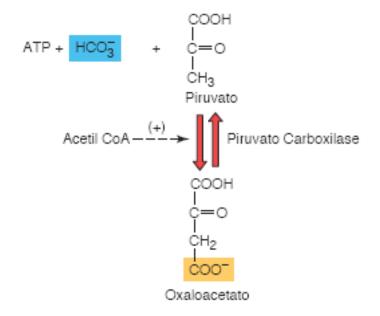


FIGURA 14.23 Reação da piruvato carboxilase.

Acetil-CoA é um ativador essencial da piruvato carboxilase.

- Em um período logo após a alimentação, por que o piruvato é convertido a oxaloacetato?
- Em um período de Jejum, por que o oxaloacetato é convertido a piruvato?
- Qual é o modulador da Piruvato carboxilase?
- Pensando em sua regulação, á reação da piruvato carboxilase pode ocorrer nas duas situações?

c) A atividade da enzima **piruvato carboxilase** foi medida e observou-se que estava próxima de 90% da atividade máxima nos dois casos. Como você justificaria este resultado?

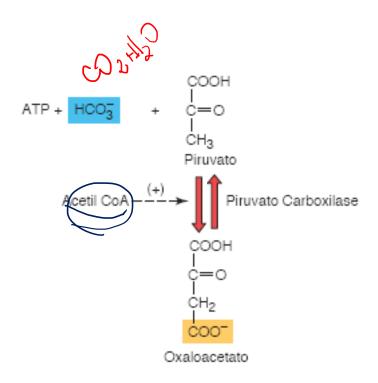


FIGURA 14.23 Reação da piruvato carboxilase.

Acetil-CoA é um ativador essencial da piruvato carboxilase.

Voluntario II > 1 glicol 1 primato Pacitil-GA

em um período logo após a alimentação, por arredo a ordal decetato?

• Em um periodo de Jejum, por que o oxaloacetato é convertido a piruvato?

Qual é o modulador da Piruvato carboxilase?

Pensando em sua regulação, á reação da piruvato carboxilase pode ocorrer nas duas

oxabacidato -> oficialo oxaloxo

oxalo estimato

oxaloxo

c) A atividade da enzima **piruvato carboxilase** foi medida e observou-se que estava próxima de 90% da atividade máxima nos dois casos. Como você justificaria este resultado?

Voluntário 1

- Situação metabólica: 8 horas sem alimentação (jejum curto).
- Reserva de glicogênio hepática em seu fim.
- Origem da glicose no sangue: Degradação de aminoácidos, glicerol para formação de glicose pela via de gliconeogênese.
- Atividade da Enzima Bifuncional: F 2,6-BPase
- Atividade da Piruvato
 Carboxilase: Alta. Acetil-CoA oriundo da degradação de ácidos graxos.

Voluntário 2

- Situação metabólica: Período logo após a ingestão
- Alta concentração de glicose proveniente da degradação de alimentos ricos em carboidratos.
- Origem da glicose no sangue:
 Alimentação
- Atividade da Enzima Bifuncional: PFK-2
- Atividade da Piruvato Carboxilase: Alta. Acetil-CoA da descarboxilação oxidativa do piruvato.

4. Assista um trecho do vídeo "dieta sem carboidrato emagrece?" do canal *Bem estar com Marcio*

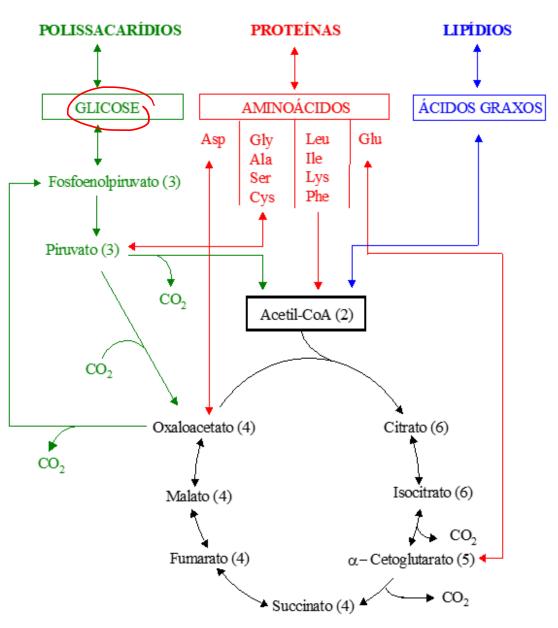
Atalla.

- 4. Assista um trecho do vídeo "dieta sem carboidrato emagrece?" do canal *Bem estar com Marcio Atalla.*
 - a) Observa-se que uma das personagens está uma atividade aeróbica. Qual a principal fonte de energia que seu corpo está utilizando?
 - A personagem está fazendo uma dieta em que não há ingestão de carboidratos.
 - Porém, alguns tecidos apenas utilizam glicose.

· Como faz?

which white pie autil- where the contract of the

DIETA COM DIETA SEM CARBOIDRATO CARBOIDRATO


Atividades Monitoria P2

4. Assista um trecho do vídeo "dieta sem carboidrato emagrece?" do canal *Bem estar com Marcio Atalla.*

b) Durante essa atividade física, como a glicemia é mantida?

prolins and

MAPA II

4. Assista um trecho do vídeo "dieta sem carboidrato emagrece?" do canal *Bem estar com Marcio Atalla.*

c) Nesse contexto, Qual é o destino do acetil-CoA?

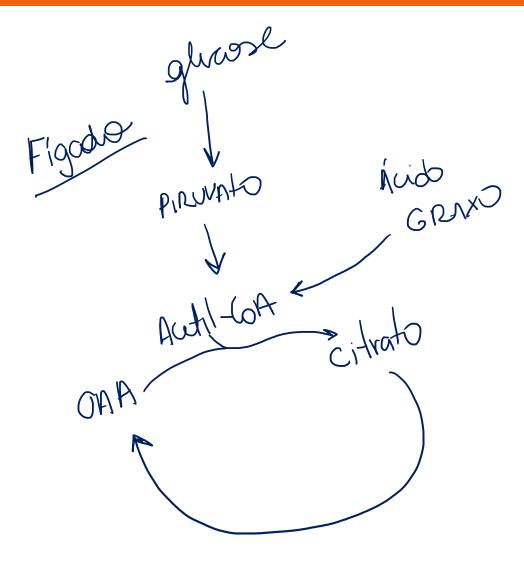
(F'(O ADO)

Acetil-CoA

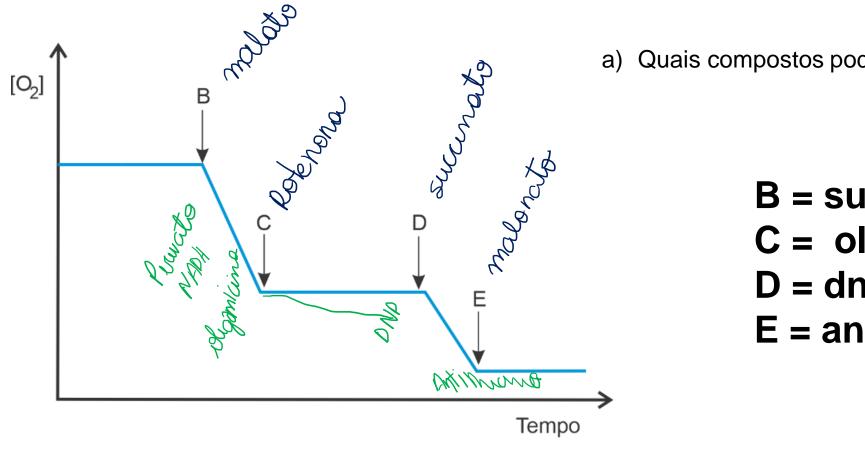
Acetil-CoA

Acetona

B-hidroxiburitado


d) Uma das personagens diz que pretende fazer a dieta por 30 dias. Esta prática poderia causar alguma consequência negativa ao seu corpo?

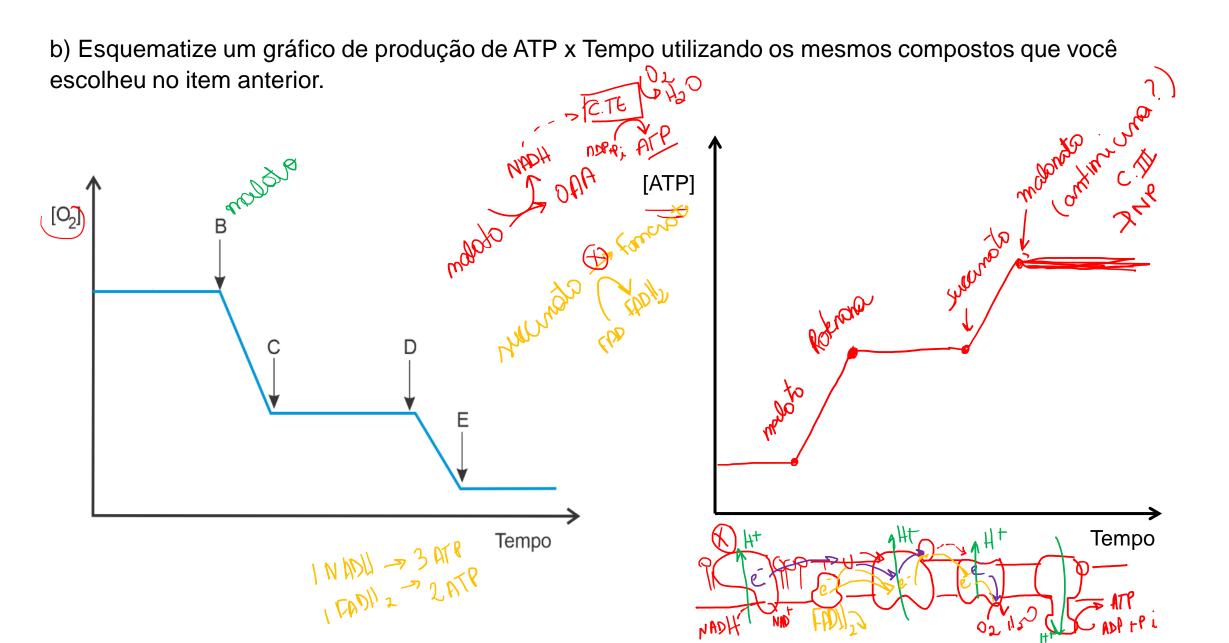
reterrider


7,41

Citrato

OAA

5. Uma solução de mitocôndrias foi incubada com os compostos B C, D, e E em excesso. A concentração de O₂ foi medida ao longo do tempo e plotada no gráfico a seguir.


Quais compostos podem representar B, C, D e E?

B = succinato

C = oligomicina

D = dnp

E = antimicia

