Introduction to Deep learning:

a 2-weeks lecture
Part 2

Presented by: Dra. Jeaneth Machicao

. October/2020
machicao@usp.br

Course overview: STAT 453: Deep Learning, Spring 2020
by Prof. Sebastian Raschka

Part1: Introduction Part4: DL for computer vision and language modeling
e Introduction to deep learning e Introduction to convolutional neural networks 1-2
e The brief history of deep learning o CNNs Architectures lllustrated

e Single-layer neural networks: The perceptron e Introduction to recurrent neural networks 1-2

e Motivation: cases of use Part5: Deep generative models

e Hands-on e Autoencoders,

Part2: Mathematical and computational foundations e Autoregressive models

e Linear algebra and calculus for deep learning e Variational autoencoders

e Parameter optimization with gradient descent e Normalizing Flow models

e Automatic differentiation & PyThorch e Generative adversarial networks

Part3: Introduction to neural networks e Evaluating generative models

e Multinomial logistic regression

e Multilayer pecerptrons http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/ \

e Regularization https://github.com/rasbt/stat453-deep-learning-ss20

e Input normalization and weight initiliazation

) L) « Course Playlist on youtube:
e Learning rated and advanced optimization algorithms

Prof. Dalcimar Casanova
https://www.youtube.com/watch?v=0VD 2t6EdS4&list=PL9At2PVRU0ZqVArhU9QMyI3jSe113 m2-

Prof. Sebastian Raschka
https://www.youtube.com/watch?v=e 10g3mmfw4&list=PLTKMiZHVd 2JkR6QtQEnmI7swCnFBtg4P

Overview of our 2-weeks lecture!

1st week

1: Introduction

e Introduction to deep learning
e The brief history of deep learning

([

e Motivation: cases of use

e Hands-on (report)

2: Mathematical and computational foundations

[]

e Parameter optimization with gradient descent
o

3: Introduction to neural networks

([

e Multilayer pecerptrons

e Regularization

e Input normalization and weight initiliazation

2nd week
4: DL for computer vision and language modeling
e Introduction to convolutional neural networks 1-2

o CNNs Architectures lllustrated
e Introduction to recurrent neural networks 1-2

3rd week
e Deliver report of the hands-on

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20

« Course Playlist on youtube:
Prof. Dalcimar Casanova

Prof. Sebastian Raschka

~

Lecture 12

Introduction to

Convolutional Neural Networks
Part 1

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka
http://stat.wisc.edu/“sraschka/teaching/stat453-ss2020/

https: //github.com /rasbt /stat453-deep-learning-ss20/tree/master/L12-cnns

http://pages.stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns

CNNs for Image Classification

output

Image Source:

twitter.com%2Fcats&psig=AOvVaw30 o-PCM- —_ — —_— p (y: Cat)
K21DiIMAJQimQ4&ust=1553887775741551

Image Source: https://www.pinterest.com/pin/
244742560974520446

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 2

Object Detection

MORE VIDEOS RER

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 3

Object Segmentation

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and
running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

He, Kaiming, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. "Mask R-CNN." In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2961-2969. 2017.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 4

Face Recognition

— —>
| \ Similarity/

Distance

_ Score

Siamese neural network

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 5

machicao
Typewriter
Siamese neural network

Lecture Overview

Image Classification

Convolutional Neural Network Basics
CNN Architectures

What a CNN Can See

CNNs in PyTorch

Al SO A

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 7

Why Image Classification is Hard

Different lighting, contrast, viewpoints, etc.

Image Source: Image Source: https://www.123rf.com/
twitter.com%2Fcats&psig=AOvVaw30_o-PCM- photo 76714328 side-view-of-tabby-cat-face-over-
K21DiMAJQimQ4&ust=1553887775741551 white.html

Or even simple translation This is hard for traditional
) N methods like multi-layer
] 54] perceptrons, because
the prediction is

| | 5-' basically based on a sum
20 20
of pixel intensities

0o 5 1 15 20 2 0o 5 1 15 22 2

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 8

Traditional Approaches

a) Use hand-engineered features

Petal
Samples —~~
(instances, observations)

Sepal Sepal Petal
length width length

Setosa

2 49 3.0 1.4 0.2 Setosa

50 | 6.4 3.5 4.5 1.2 Versicolor 4

150 | 5.9 3.0 5.0 1.8 Virginica

\ Sepal
/ Class labels

(targets)

Features
(attributes, measurements, dimensions)

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

Traditional Approaches

a) Use hand-engineered features

(a) Detected facial keypoints (b) Facial organ keypoints

Sasaki, K., Hashimoto, M., & Nagata, N. (2016). Person Invariant Classification of Subtle Facial Expressions Using Coded Movement Direction of
Keypoints. In Video Analytics. Face and Facial Expression Recognition and Audience Measurement (pp. 61-72). Springer, Cham.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 10

Traditional Approaches

b) Preprocess images (centering, cropping, etc.)

Image Source: https: //www.tokkoro.com /2827328-cat-animals-nature-feline-park-green-trees-grass.html

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 11

https://www.tokkoro.com/2827328-cat-animals-nature-feline-park-green-trees-grass.html

Lecture Overview

Image Classification
Convolutional Neural Network Basics

CNN Architectures
What a CNN Can See
CNNs in PyTorch

g s N

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 12

Main Concepts Behind
Convolutional Neural Networks

Sparse-connectivity: A single element in the feature map is

connected to only a small patch of pixels. (This is very different
from connecting to the whole input image, in the case of multi-layer
perceptrons.)

Parameter-sharing: The same weights are used for different
patches of the input image.

Many layers: Combining extracted local patterns to global patterns

Convolutional Neural Networks

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
INPUT 6@28x28 p

32x32 S2: f. maps C5: layer F6 layer OUTPUT

Ay ITT_ :0 \\

Full conr#echon Gaussmn connections
Convolutions Subsampling Convolutions Subsampllng Full connectlon

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Pooling

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition,

Proceedings of IEEE, 86(11):2278-2324, 1998.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

15

machicao
Typewriter
Pooling

http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

Hidden Layers

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16 @5x5
INPUT 6@28x28 p

32x32 S2: f. maps C5: layer F6 layer OUTPUT

R \\

Full conr#echon Gaussmn connections
Convolutions Subsampling Convolutlons Subsampllng Full connectlon

N\

"Automatic feature extractor" "Regular classifier"

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 16

Hidden Layers

PROC. OF THE IEEE, NOVEMBER 1998 7

C1: feature ma
6@28x28

INPUT

o232 CS: layer g jayer OUTPUT

7 |

Full conAection Gaussian connections
Full connection

Convolutiog

Fig. 2. Architecture of LeNet-5, a\Cop#olutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained t& be identical.

Each "bunch" of feature maps represents one
hidden layer in the neural network.

Counting the FC layers, this network has 5 layers

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

17

INPUT
32x32

Convolutional Neural Networks

PROC. OF THE IEEE, NOVEMBER 1998 Size of the resulting |ayers 7
Number of feature detectors ~
Ciffeatremaps oy fmaps16@5x5 Multi-layer perceptron
8X28 S2: f. maps C5: layer y p p
6@14x14 r 150 6 layer OUTPUT

Fig. 2. Archit
whose wei

Convolutions Subsampling

S are constrained to be identical.

FuII conﬁectlon Gaussmn connections
Convolutions Subsampllng Full connectlon

ctjare of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units

\4

v . basically a fully-connected
nowadays called "pooling"
layer + MSE loss
"Feature detectors" (weight matrices) (nowadays better to use
that are being reused ("weight sharing") fc-layer + softmax

—=> also called "kernel" or "filter"

+ cross entropy

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition,
Proceedings of IEEE, 86(11):2278-2324, 1998.

Sebastian Raschka STAT 453: Intro

to Deep Learning and Generative Models SS 2020 18

http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

Weight Sharing

A "feature detector" (filter, kernel) slides over the inputs to generate
a feature map

The pixels are S E=

9
E :ung
j=1

referred to

10 A

as "receptive field"

15 A

20 -

s "feature map"

0 5 W 15 20 25

Rationale: A feature detector that works well in one region
may also work well in another region

Plus, it is a nice reduction in parameters to fit

Weight Sharing

A "feature detector" (kernel) slides over the inputs to generate
a feature map

10 A

15 A

20 -

25 4

Weight Sharing

A "feature detector" (kernel) slides over the inputs to generate
a feature map

10 A

15 A

20 -

25 4

10 A

15 A

20 -

25 -

10 A

15 A

20 -

25 -

25

Sebastian Raschka

Multiple "feature

maps

STAT 453: Intro to Deep Learning and Generative Models

1 detectors" (kernels) are used
to create multiple feature

SS 2020

22

Size Before and After Convolutions

Feature map size: nput width kernel width
/ s padding
W — K+ 2P
O = -1

S

/ |

output width stride

Kernel Dimensions and Trainable Parameters

10 A

15 A

20 4

25 1

o 5 10 15 2 2
a.shape
(1, 28, 28)
import torch

conv = torch.nn.Conv2d(in_channels=1,
out_channels=8,

kernel_size=(5, 5),

stride=(1, 1))

conv.weight.size()

torch.Size([8, 1, 5, 5])

conv.bias.size()

torch.Size([8])

For a grayscale image with a

5x5 feature detector (kernel),

we have the following dimensions
(number of parameters to learn)

What do you think is the output size
for this 28x28 image?

Backpropagation in CNNs

Same overall concept as before: Multivariable chain rule,

but now with an additional weight sharing constraint

Pooling Layers Can Help With Local Invariance

Pooling (P,,,)

i
L

=~ Max-pooling Mean-pooling

O

ale

Sebastian Raschka, Vahid Mirjalili. Python Machine
) Learning. 3rd Edition. Birmingham, UK: Packt
y stride=(3, 3) Publishing, 2019. ISBN: 978-1789955750

Note:

| o Lo ~N O — |
OO P10 Lo

O
6
3

. N

Downside: Information is lost.
May not matter for classification, but applications where relative position is
important (like face recognition)

In practice for CNNs: some image preprocessing still recommended

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 34

Pooling Layers Can Help With Local Invariance

Pooling (P,,,)
r <= 1F 3
2|7 7 N"‘l \2 o Max-pooling Mean-pooling
o0]3 [
L1 7]8
0]3]2 1
62|05 0
L2610 217110 strido=(3, 3)

Note that typical pooling layers do not have any learnable parameters

Downside: Information is lost.
May not matter for classification, but applications where relative position is
important (like face recognition)

In practice for CNNs: some image preprocessing still recommended

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

35

Lecture Overview

Image Classification
Convolutional Neural Network Basics

CNN Architectures
. What a CNN Can See

CNNs in PyTorch

S

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 43

What a CNN Can See

Simple example: vertical edge detector

conv.weight[@, @, :, :]1 = torch.tensor([[1, 0, -11,
[11 @; _1] ’
[1, 0, -1]1]).float()

t = torch.tensor([

(From classical computer vision research)

[6., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.1,
[6., 0., 0., 0., 0., ©0., 1., 1., 1., 1., 1.1,
[0., 0., 0., 0., 0., ©0., 1., 1., 1., 1., 1.1,
[0., 0., 0., 0., 0., O0., 1., 1., 1., 1., 1.1,
(0., 0., 0., 0., 0., O0., 1., 1., 1., 1., 1.1,
(0., 0., 0., 0., 0., ©0., 1., 1., 1., 1., 1.],
[6., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.1,
[0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1.1, tt = torch.zeros([1, 1] + list(t.size()))
1) tt[o, 0, :, :1 =t
after = conv(tt)
plt.imshow(t, cmap='gray'); plt.imshow(after[@, @, :, :]l.detach().numpy(), cmap='gray');
0 0 -
1
1 -4
2
3 21
4 3<
5
4 4
P
7 31

What a CNN Can See

Simple example: vertical edge detector

conv = torch.nn.Conv2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3))

conv.weight.size()

torch.Size([1, 1, 3, 31])

conv.weight[@, @, :, :] = torch.tensor([[1, 0, -1],

[1, o0, -1],

[1, 9, -1]]).float()
torch.tensor([0.]).float()

conv.bias[0]

images_after = conv(images)

plt.imshow(images[5, @], cmap='gray'); plt.imshow(images_after[5, @].detach().numpy() , cmap='gray');

0 0

15 15

20
20

25
25

0 5 10 15 20 25 0 5 10 15 20 25

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 45

What a CNN Can See

Simple example: horizontal edge detector

conv.weight[@, @, :, :] = torch.tensor([[1, 1, 1],
[0, 0, 0],
[-1, -1, -1]]).float()
conv.bias[0] = torch.tensor([0.]).float()

images_after2 = conv(images)

plt.imshow(images_after2[5, 0].detach().numpy() , cmap='gray');

A CNN can learn whatever it finds
best based on optimizing the objective
(e.g., minimizing a particular loss

to achieve good classification accuracy)

0 5 10 15 20 25

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

46

What a CNN Can See

Which patterns from the training set activate the feature map?

Fig. 4. Evolution of a randomly chosen subset of model features through training.
Each layer’s features are displayed in a different block. Within each block, we show
a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]. The visualiza-
tion shows the strongest activation (across all training examples) for a given feature
map, projected down to pixel space using our deconvnet approach. Color contrast is
artificially enhanced and the figure is best viewed in electronic form.

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

Method: backpropagate strong activation signals in hidden layers to the input images,
then apply "unpooling" to map the values to the original pixel space for

visualization
Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 47

What a CNN Can See

Which patterns from the training set activate the feature map?

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

14/7% T
(] !y g ""*"’!2}—“!

M = =
wﬁ T

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 48

What a CNN Can See

Which patterns from the training set activate the feature map?

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

49

What a CNN Can See

Which patterns from the training set activate the feature map?

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

e ARk WV

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

50

Lecture 13

Introduction to

Convolutional Neural Networks
Part 2

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka
http: //stat.wisc.edu/~sraschka/teaching /stat453-ss2020/

https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L13-cnns-part2

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

1

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4. Common Architectures
o LeNet-5
o AlexNet
o VGG-16
o ResNet-50

o Inception-vl
5. Transfer learning

Padding

output size input size padding pixels per side

x// //// (4-3+2%0)/1+1=2

2p — k
1 —|_ p . _I_ 1 @ut
S
\ \ kernel size nput)

Q
I

5-4+2%)/1+1=6

"floor" function No padding, stride=1 padding=2, stride=1

stride

(5-3+2%0)/2+1=2

Highly recommended:

Dumoulin, Vincent, and Francesco Visin. "A guide to
convolution arithmetic for deep learning." arXiv preprint
arXiv:1603.07285 (2016).

No padding, stride=2

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Leaming and Generative Models. SS 2020

no_padding no_strides

Padding jargon

"valid" convolution: no padding

(feature map may shrink)

"same" convolution: padding such

that the output size is equal to

the input size

Common kernel size conventions:

« 3x3, 5x5, 7x7 (sometimes

1x1 in later layers to reduce
channels)

Padding
- {MJ 1
S

Assume you want to use a convolutional operation with
stride 1 and maintain the input dimensions in the output feature map:

How much padding do you need for "same" convolution?
o=1+2p—k+1

sp=(o—i+k—1)/2
ep=(k-1)/2

Probably explains why common kernel size conventions are
3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4, Common Architectures
o LeNet-5
o AlexNet
o VGG-16
o ResNet-50
o Inception-vl
5. Transfer learning

Spatial Dropout -- Dropout2D

e Problem with regular dropout and CNNs:
Adjacent pixels are likely highly correlated
(thus, may not help with reducing the
"dependency" much as originally intended by
dropout)

e Hence, it may be better to drop entire feature maps

Idea comes from

Tompson, Jonathan, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.
"Efficient object localization using convolutional networks." In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 648-656. 2015.

BatchNorm 2D

In BatchNorm2d, the mean and standard deviation are computed for N¥*H*W, i.e., over the channel dimension

Sebastian Raschka

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
def __init__ (self):
super(Model, self).__init_ ()

self.cnl = nn.Conv2d(3, 192, kernel_size=5,
stride=1, padding=2, bias=False)
self.bnl = nn.BatchNorm2d(192)

model = Model()

model.bnl.weight.size()

torch.Size([192])

STAT 453: Intro to Deep Learning and Generative Models

SS 2020

14

11

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4, Common Architectures
o LeNet-5
o AlexNet
o VGG-16
o ResNet-50
o Inception-vl
5. Transfer learning

12

Computing Convolutions on the GPU

® There are many different approaches to compute (approximate)
convolution operations

® DL libraries usually use NVIDIA's CUDA & CuDNN libraries, which
implement many different convolution algorithms

® These algorithms are usually more efficient than the CPU variants
(convolutions on the CPU e.g., in CPU usually take up much more memory
due to the algorithm choice compared to using the GPU)

If you are interested, you can find more info in:
Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks."
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.

https: //www.cv-foundation.org/openaccess/content _cvpr_2016/papers/
Lavin_Fast_Algorithms_for CVPR_2016_ paper.pdf

13

Computing Convolutions on the GPU

® CuDNN is more geared towards engineers & speed rather than scientists
and is unfortunately not deterministic/reproducible by default

@ l.e., it determines which convolution algorithm to choose during run-time
automatically, based on predicted speeds given the data flow

® For reproducibility and consistent results, | recommend setting the
deterministic flag (speed is about the same, often even a bit faster,
sometimes a bit slower)

import torch
import torch.nn as nn
import torch.nn.functional as F

if torch.cuda.is available():
torch.backends.cudnn.deterministic = True

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Viodels SS 202

~

14

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm

3. Considerations for CNNs on GPUs

4. Common Architectures

o LeNet-5
o AlexNet
o VGG-16
o ResNet-50
o Inception-vil
5. Transfer learning

15

Common Architectures Revisited

We will discuss some additional common CNN architectures since the field evolved quite a bit since 2012 ...

Inception-v4
Inception _3 ResNet-152
VGG-16 VGG-19
751 - ResNet-101 g
ResNet-34 :
E 704 Q ResNet-18
==
8 B Googenet number of
3 ENet
O 65
& model parameters
& © BN-NIN
" 60 1 5M 35M----65M-----95M - 125M ---155M
_ . BN-AlexNet
50 y . :
0 5 10 15 20 25 30 40

Operations [G-Ops]

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models forpractical applications. arXiv preprint arXiv:1605.07678. 16

CNNs Architectures lllustrated

e — Y .
Y50y 2000

L

LeMet-5
LeNet-5
AlexNet
VGG-16
ResNet-50
Inception-v1
Inception-v3
X S m—
Inception-v4
Inception-ResNets
ResNeXt-50

| £ 3
ncEp.I,GH ¥ [ncaption-Reskets
Metwork In Metwork @ ® [nception-v4
1
2010 2m mz' am 24" 15 me T m? Su1a 23
s . » *
AlexMet YaG [¥ception HesheXts
Inception-vi #
ResMets @

Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

17

LeNet-5

1.LeNet-5 (1998)

~60,000 parameters.

One of the simplest architectures.

(“5™layers) 2 convolutional and 3 fully-

connected layers.

Sub-sampling layer and trainable weights.

(aka average-pooling layer)

~ (trainable weights is not current practice of
designing CNNs nowadays)

This architecture has become the standard
‘lemplate’: stacking convolutions and pooling
layers, and ending the network with ane or
more fully-connected layers.

AlexNet

2 AlexNet (2012)

« ~BOM parameters,
8 layers — 5 convolutional and 3 fully-
connected.

+ AlexNet just stacked a few more layers
onto LeNet-5.

They were the first to implement Rectified
Linear Units (ReLUs) as aclivation functions.

VGG-16

3.VGG-16 (2014)

CNNSs starting to get deeper and deeper.
Creators: Visual Geometry Group (VGG).
13 i and 3 fully layers

— camying ReLU tradition from AlexNet.
Stacks more layers onto AlexNet, and

smaller size filters
~ (2x2 and 3x3).
~138M parameters.

ResNet-50

4 ResNet-50 (2015)
B EE -

|

TEm=r |

“with the network depth increasing, accuracy
gets saturated and then degrades rapidly.”

Microsoft Research addressed this
problem — using skip connections.
Early adopters of batch normalisation
~26M parameters.

The basic building block for ResNets are
the conv and identity blocks.

+ RaesNet 34, 50, 101 up to 152 layers
=~ without compromising generalisation power
+ Among the first o use batch normalisation

~500MB of storage space.

Th ibution from this paper is the
designing of deeper networks (roughly twice
as deep as AlexNet)

Inception-v1

5.Inception-v1 (2014)

is the improved
Hr insite the nework
 Z2-ayer architeciure with SM parameters.
Used Network In Network approach
- usinginceplien madules’
Each module presents 3 ideas:
1. Paraliel fowers of convs. with diferent filters. foliowed by
o on

~ captures &flrent foalures al 1x1, 33 and a5, Clustading them. | U higan, Unkersity of
121 convs. for dim. reduciion (aueid botlenecks). 9 K d
Tiwo auxliary classilers to:
1

w

Dense modules/blocks instead of stacking
convolutional layers
Curiasity: name Inception (from movie).

2. incruass tha gradient signal that gets propagated back,
3. provide addiionai regularisation
= The auxiiary networks ars discarded 3t inference time

Source: https://towardsdatascience.comyillustrated-10-cnn-architectures-95d78ace614d

18

Layers

Legend B oo

2,2 | Pooling operalions, in grey

Merge operations eq. concat,
add in purple

Danse layar, blue

Activation Functions

Other Functions

Batch normalisation

@ Softmax

Modules/Blocks

Meodules (groups of convelutional, pooling and merge
aperations). in yellow, green, or orange.

The operations that make up these modules will also
be shown.

_ —
] - —)

Modula A

Module B

) I mu-m
5=5

Maodule C

Repeated layers or modules/blocks

x2

19

1.LeNet-5 (1998)

avg-pool avg-pool
2%x2 2x2
J2=32x=1
120 84 10
- paper: Gradient-Based Learning Applied to Document Recognition.
60’000 parameters' Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.

One of the simplest architectures. Proceedings of the IEEE (1998).

(*5-layers) 2 convolutional and 3 fully- e This architecture has become the

connected layers. standard ‘template’: stacking
Sub-sampling layer and trainable weights convolutions and pooling layers, and
(aka average-pooling layer) ending the network with one or more

o (trainable weights is not current practice of fully-connected layers.

designing CNNs nowadays).

20

2.AlexNet (2012)

- — (R) p(R) ps)
3x3 3x%3 i - 3x3
227x227x3 x3
4096 4096 1000
~ paper: ImageNet Classification with Deep Convolutional Neural
¢ 6OM paramete rS’ Networks. Alex Krizhevsky, llya Sutskever, Geoffrey Hinton. University
e 8layers — 5 convolutional and 3 fully- of Toronto, Canada. NeurlPS$ 2012
connected. : :
AlexNet i ced a f | e They were the first to implement
¢ exNet just stacked a few more layers Rectified Linear Units (ReLUs) as
onto LeNet-5. activation functions.

e Trained in two GPUs GTX 580 between
5 and 6 days

21

227
COMNVY Overlapping Overlapping
11x11, Max POOL CONV Max POOL CONV
stride=4, 96 3x3, os<T] 5x5.pad=2 3x3, 3x3,pad=1
96 kernels stride=2 256 kernels smde_g 384 kernels
;e g JRE——
il ' ' 27+2°2:5)/ 7 »q-3)
L J (227-11)/4 +1 (55-3)/2 +1 f” fzz;“ﬁl) {_21333‘2 +1 i113+:2‘13 3N
! =55 =27
__11__
227
e Q][O
CONV CONV Max POOL
3x3.pad=1 384 3x3,pad=1 3x3, O
384 kerels 256 kernels stride=
(1342*1-3)1 (13+241-3)1 13 3y2+1 - | Fc | - :
=1 +1 =13 : -
¢ O Q| 1O
i 9216 O O 1000
13 Softmax
4096

22

3.VGG-16 (2014)

BO - ¢
Inception-v3 . :
ResNet-5 n°

751 ResNet-101
. ResNet-34

Inception-v4

EE 70{ My ResNet-18
E o GooglLeNet
S ENet
o 65 1
;i © Bn-NIN
" 60 5M 35M 65M O5M 125M 155M
BN-AlexNet
55 AlexNet
50 4 . ' ; ; ; ; ' ,
0 5 10 15 20 25 30 35 40

Operations [G-0ps]

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models forpractical applications. arXiv preprint arXiv:1605.07678. 23

224%224x%3

3.VGG-16 (2014)

e @ max-pool max-pool . n >
2x2 2x2 - - -

- x2 . x3

4096 4096 1000

e CNNs starting to get deeper and deeper. '
Creators: Visual Geometry Group (VGG), | S8 0o oo neon o e e
e 13 convolutional and 3 fully-connected Oxford, UK. arXiv preprint, 2014
layers
o carrying ReLU tradition from AlexNet.
eStacks more layers onto AlexNet, and smaller
size filters
o (2x2 and 3x3).
e~138M parameters.
¢~500MB of storage space.

e The contribution from this paper is the
designing of deeper networks (roughly
twice as deep as AlexNet).

Simonyan, Karen, and Andrew Zisserman. "\ ery deep convolutional networks for large-scale image recognition." arXiv preprintarXiv:1409.1556 (2014).

24

3.VGG-16 (2014)

Visualization from

https://www.cs.toronto.edu/~frossard /post /vggl6/

)| % 56 x 256

28 x 28 x 512 TxTx512
; R “a x a x P 2
[ﬂ% 1x1x4096 111000

@ convolution+RelLU

[_'1 max pooling

| fully connected+ReL.U

] softmax

PyTorch implementation:

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13-cnns-
part2/code/vgg16.ipynb

Simonyan, Karen, and Andrew Zisserman. "\ ery deep convolutional networks for large-scale image recognition." arXiv preprintarXiv:1409.1556 (2014).

25

4.ResNet-50 (2015)

Inception-v4

ResNet-152
VGG-16 YiEG-19

ResNet-50
ResNet-101
esMet-34

EE 70{ My ResNet-18
E o GooglLeNet
S ENet
o 65 1
;i © Bn-NIN
" 60 5M 35M 65M O5M 125M 155M
BN-AlexNet
55 AlexNet
50 4 . ' ; ; ; ; ' ,
0 5 10 15 20 25 30 35 40

Operations [G-0ps]

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models forpractical applications. arXiv preprint arXiv:1605.07678. 26

4. ResNet—SO(__)

max pool
-

224%224%3

Conv block

“with the network depth increasing, accuracy gets
saturated and then degrades rapidly.”

Microsoft Research addressed this
problem — using skip connections.

Early adopters of batch normalisation
~26M parameters.

The basic building block for ResNets are
the conv and identity blocks.

global
avg-pool

1000

Identity block

GitHub code from keras-team.

Deep Residual Learning for Image Recognition. Kaiming He, Xiangyu
Zhang, Shaoging Ren, Jian Sun. Microsoft. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

eResNet 34, 50, 101 up to 152 layers

owithout compromising generalisation

power
152 layers - trained in a cluster of 8
GPUs for 2 to 3 weeks

eAmong the first to use batch
normalisation.

27

4.ResNet-50 (2015)

- conv

_h‘ global "
avg-pool

Conv block

1000

Identity block

28

4.ResNet-50 (2015)

PyTorch implementations of the previous slides:
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13- cnns-part2/code/resnet-

blocks.ipynb

PyTorch implementations:
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13- cnns-part2/code/resnet-

34.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13- cnns-part2/code/resnet-

152.ipynb

(Can be substantially improved with more hyperparameter tuning)

29

5.Inception-v1/ GooglLeNet (2014)

Inception-v4

B0 4
Inception-v3

75

. ResNet-34

BedNet-152
VGG-16 VGG-19

5M 35M 65M a5M 125M - -155M

ResNet-101

®
i ?ﬂ 4 =
z iﬂ' \
® GooglLeNet
- Etet
J 65
Iy © BN-NIN
o
" 60
BN-AlexNet
35 AlexNet
50 4 .
0 5 10

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models forpractical applications. arXiv preprint arXiv:1605.0767

15 20 25 30 35 40
Operations [G-0ps]

g 30

5.Inception-v1l/ GooglLeNet (2014)

"In this paper, we will focus on an efficient deep neural network architecture for computer vision,
codenamed Inception, which derives its name from the Network in network paper by Lin et al [12] in
conjunction with the famous “we need to go deeper” internet meme"

)*WEHEE‘ﬁ 1060

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.

31

(Siz+LxL
Ao

5.Inception-v1/ GooglLeNet (2014)

Full architecture

£a
£

o3

(SIT+TxT
n

Esuoy3dag

(sit+exe [(S)T+HIXT
o
¥

(sit+sxs [l (siTrexe
nuo) Auo:

sr+1cr il (s11+oxc [l (Sirexe
Auo: Auo: w03

g g 9 o
= B B B B S MlEs
il] i3 2 5 Es
g = 52 =22 s 2 g g =2
Ge £ 2) £ vl 3 o 3 G}

(sit+oxx [l sitrsxs [l (siTrexe
Auod Auo:

+exe [l (S T+TXT
n
(S)T+TxT

sr+rxt [l (sitrsxs [l (Sivrexe
uo: Auod o3

(s)r+xr [l (sitexs
nuos nuo)

=y 9
LE R A i
5t

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.

u0deg

3eau0dyIdea

+XL

(a1
|004aBeIaAY

32

5.Inception-v1 (2014)

1024 1000

224%324%3

“The main hallmark of this architecture is the improved
utilisation of the computing resources inside the network.”
e 22-layer architecture with 5M parameters.

e Used Network In Network approach

o using ‘Inception modules’.
Each module presents 3 ideaS' paper. Going Deeper with Convolutions. Christian Szegedy, Wei Liu,
. . . Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
1) Parallel towers of convs. with different filters,

Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Google,
followed by concatenation University of Michigan, University of North Carolina. 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR)

1024 1000

o captures different features at 1x1, 3x3 and 5x5,
‘clustering’ them.

2) 1x1 convs. for dim. reduction (avoid bottlenecks).
3) Two auxiliary classifiers o

o discarded at inference time.

e Dense modules/blocks instead of stacking
convolutional layers.
Curiosity: name Inception (from movie).

33

5.Inception-v1 (2014)

fi‘L

Inception module

Appendix: Network In Network (2014)

e Recalling from convolution:

o A pixelis a linear combination of the weights in
a filter and the current sliding window.

o NiN proposes a mini neural network with 1
hidden layer instead of this linear combination.

e One hidden layer network in a CNN.
o a.k.a MLPconv is the same as 1x1 convolutions

o Main feature for Inception architectures.

Paper: Network In Network. Min Lin, Qiang Chen, Shuicheng Yan.
National University of Singapore. arXiv preprint, 2013.

|

MLP convolutional layers, 1x1
convolutions

Global average pooling (taking
average of each feature map, and
feeding the resulting vector into the
softmax layer)

35

LeNet-5

1.LeNet-5 (1998)

~60,000 parameters.

One of the simplest architectures.

(“5™layers) 2 convolutional and 3 fully-

connected layers.

Sub-sampling layer and trainable weights.

(aka average-pooling layer)

~ (trainable weights is not current practice of
designing CNNs nowadays)

This architecture has become the standard
‘lemplate’: stacking convolutions and pooling
layers, and ending the network with ane or
more fully-connected layers.

AlexNet

2 AlexNet (2012)

« ~BOM parameters,
8 layers — 5 convolutional and 3 fully-
connected.

+ AlexNet just stacked a few more layers
onto LeNet-5.

They were the first to implement Rectified
Linear Units (ReLUs) as aclivation functions.

VGG-16

3.VGG-16 (2014)

CNNSs starting to get deeper and deeper.
Creators: Visual Geometry Group (VGG).
13 i and 3 fully layers

— camying ReLU tradition from AlexNet.
Stacks more layers onto AlexNet, and

smaller size filters
~ (2x2 and 3x3).
~138M parameters.

ResNet-50

4 ResNet-50 (2015)
B EE -

|

TEm=r |

“with the network depth increasing, accuracy
gets saturated and then degrades rapidly.”

Microsoft Research addressed this
problem — using skip connections.
Early adopters of batch normalisation
~26M parameters.

The basic building block for ResNets are
the conv and identity blocks.

+ RaesNet 34, 50, 101 up to 152 layers
=~ without compromising generalisation power
+ Among the first o use batch normalisation

~500MB of storage space.

Th ibution from this paper is the
designing of deeper networks (roughly twice
as deep as AlexNet)

Inception-v1

5.Inception-v1 (2014)

is the improved
Hr insite the nework
 Z2-ayer architeciure with SM parameters.
Used Network In Network approach
- usinginceplien madules’
Each module presents 3 ideas:
1. Paraliel fowers of convs. with diferent filters. foliowed by
o on

~ captures &flrent foalures al 1x1, 33 and a5, Clustading them. | U higan, Unkersity of
121 convs. for dim. reduciion (aueid botlenecks). 9 K d
Tiwo auxliary classilers to:
1

w

Dense modules/blocks instead of stacking
convolutional layers
Curiasity: name Inception (from movie).

2. incruass tha gradient signal that gets propagated back,
3. provide addiionai regularisation
= The auxiiary networks ars discarded 3t inference time

Source: https://towardsdatascience.comyillustrated-10-cnn-architectures-95d78ace614d

36

Lecture Overview

(0]

(0]

5. Transfer learning

37

Transfer Learning

Key idea:

4+ Feature extraction layers may be generally useful

4+ Use a pre-trained model (e.g., pre-trained on ImageNet)

« + Freeze the weights: Only train last layer (or last few
layers)

« Related approach: Fine-tuning, train a pre-trained network

on your smaller dataset

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Leaming and Generative Models. SS 2020

38

Example 3 - Feature Extractor (I)

e Pre-trained VGG19 model

Two Two Four Four Four

2I2r2agg4 Conv3d | Max | convd | Max | conv3d | Max | conv3d | Max | Conv3 | Max FC
X - pool - pool - pool - pool - pool

64 128 256 512 512

Example 3 - Feature Extractor (ll)

e Pre-trained VGG19 model

Example 3 - Feature Extractor (lll)

e Pre-trained VGG19 model

Two Two Four Four Fo

zlzrzag; Convd Max convd Max convd Max convd Max conv3 ax
. g pool g pool g pool . pool P

3FC
64 128 256 512 12 \
/ g

Example 3 - Feature Extractor (1V)

e Pre-trained VGG19 model

| Two Two
mage — conv3d Max convd Max
204x224 i . i oo
64 128

Etc

Example 3 - Feature Extractor (V)

e Pre-trained VGG19 model

Etc

Which Layers to Replace & Train

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video
classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (pp. 1725-1732).

Model 3-fold Accuracy
Soomro et al [27] 43.9%
Feature Histograms + Neural Net 59.0%
Train from scratch 41.3%
Fine-tune top layer 64.1%
Fine-tune top 3 layers 65.4%
Fine-tune all layers 62.2%

Table 3: Results on UCF-101 for various Transfer Learning
approaches using the Slow Fusion network.

39

Transfer Learning

PyTorch implementation: https://github.com/rasbt/stat453-deep-learning- ss20/blob/master/L13-cnns-

part2/code/vgg16-transferlearning.ipynb

I w233 =3 234 = 224 = 00

112 %112 % 128

TxTuild

JOE X | 1314096 1x1x1000

@ convolution+ Rel.l?

rﬂ miax pooling
—| fully comnected+Hel U

| softmax

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Leaming and Generative Models. SS 2020

40

Transfer Learning

PyTorch implementation: https://github.com/rasbt/stat453-deep-learning- ss20/blob/master/L13-cnns-
part2/code/vgg16-transferlearning.ipynb

e B L g S Bt T

]
= 204
7 7 g 3% TXTx512
S A Aldx1d |_ p
LA .—*“'. ',“_J__J' %1% 4096 1% 1% 1000
|l | j '
I
[_~] convolution+ Rel.U
max pooling

fully connected+RelLU

st

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Leaming and Generative Models. SS 2020

Transfer Learning

https://pytorch.org/docs/stable/torchvision /models.html

TORCHVISION.MODELS

The models subpackage contains definitions of models for addressing different tasks, including: image classification
pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video
classification.

Classification
The models subpackage contains definitions for the following model architectures for image classification:

o AlexNet

¢ VGG

e ResNet

e SqueezeNet
e DenseNet

e Inception v3
e GoogleNet
o ShuffleNet v2
e MobileNet v2
e ResNeXt

e Wide ResNet
o MNASNet

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models

y

SS 2020

82

42

Extra: Useful tools to visualize DL architectures

e Netron
model = nn.Sequential()
¢ Tensorboard model.add module('W0', nn.Linear(8, 16))
H model.add module('tanh’, nn.Tanh())
e m model.add module('Wl', nn.Linear(16, 1))
e M API by Keras X = Variable(torch.randn(1l,8))
y = model(x)

make dot(y.mean(), params=dict(model.named parameters()))

NODE PROPERTIES

ope Con2D

Model plotting

plot_model function

Q

Training exampie O: Anie boot

T (= e

pacding VALID -

stide h 2

stidew 2

meuTS.

<] < B¢

input nome: input_1

rankdir="TB

expand_nested-False,
dpi

oUTPUTS

oMt name: convzd Training exampie 1: T-stirt

Lecture 13

Introduction to

Convolutional Neural Networks
Part 3

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka
http://stat.wisc.edu/ sraschka/teaching /stat479-ss2019/

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Additional Concepts to Wrap Up the
Intro to Convolutional Neural Networks

31

ConvNets and 3D Inputs

S Action
' Label

Temporal
Transition i

3D Temporal Transition Layer

Diba, Ali, Mohsen Fayyaz, Vivek Sharma, Amir Hossein Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh, and Luc
Van Gool. "Temporal 3d convnets: New architecture and transfer learning for video classification." arXiv preprint arXiv:
1711.08200 (2017).

Also very popular for Medical Imaging (MRI, CT scans ...)

Sebastian Raschka STAT 479: Deep Learning SS 2019

32

https://arxiv.org/abs/1711.08200

Cin =
Sum oger input
channels

ConvNets and 3D Inputs

Convolution Pooling

layer layer

N
Same concept as before except

that we now have 3D

images and kernels >-
X 6 Rnl XMoo XCin
W c le XM XCin XCout b - Rcout

Sebastian Raschka STAT 479: Deep Learning SS 2019

33

ConvNets for Text with 1D Convolutions

We can think of text as image with width 1

(concatenated

word embeddings’

This s my great sentence

https://pytorch.org/docs/stable/nn.html#convld

Conv1d

CLASS toxch.nn.Convld(in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True)

Applies a 1D convolution over an input signal composed of several input planes.

Sebastian Raschka STAT 479: Deep Learning SS 2019 36

https://pytorch.org/docs/stable/nn.html#conv1d

CNNs for Text (with 2D Convolutions)

Good results have also been achieved by representing a sentence
as a matrix of word vectors and applying 2D convolutions
(where each filter uses a different kernel size)

wait [T 1 1 T T 1
gl B o mir=
g A S T
video . __ ...
and B B %
do e o e e
n't ___
rent | | | | | | e -
it =
I | I | I I |
n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Figure 1: Model architecture with two channels for an example sentence.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

Sebastian Raschka STAT 479: Deep Learning SS 2019

38

https://arxiv.org/abs/1408.5882

Pre-Trained Models for Text

https://modelzoo.co/model/pytorch-nlp

https://modelzoo.co/model/pytorch-nlp

L ecture 14

Introduction to
Recurrent Neural Networks

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka
http://stat.wisc.edu/“sraschka/teaching/stat453-ss2020/

Lecture Slides:
https://github.com/rasbt/stat453-deep-learning-ss20/tree /master/L14-rnns

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 1

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L14-rnns

A Classic Approach for Text Classification:
Bag-of-Words Model

Evocabulary ={

I I . 'and': 0,
Raw" training dataset _ :
st Training set as design matrix
. 'one': 2, i
Xt ="The sun is shining’ ishining": 3, | 0 1 0 1 1 0 1 0 0
x2l = " The weather is sweet” lsun': 4 |
x3 = ”The sun is shinin _ I I. : X — O 1 O O O 1 1 O
g; : sweet': 5, i
the weather is sweet, and the' 6 § 2 3 2 1 1 1 2 1
one and one is two” | |. ’ j -
two': 7, 5]
. 'weather". 8 y = |0, 1, O]
} i] .
; ' trainin
= class labels &

Classifier

Ex.: https://github.com/rasbt/python-machine-learning-book-3rd-
edition /tree/master/ch08

(e.g., logistic regression, MLP, ...)

https://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch08
https://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch08

1D CNNs for text (and other sequence data)

......

Lecture Overview

RNNs and Sequence Modeling Tasks

Backpropagation Through Time

Long-short term memory (LSTM)
Many-to-one Word RNNs

Generating Text with Character RNNs

Attention Mechanisms and Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

Sequential data is not i.i.d.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

Applications:

[Dense Layer]

Working with Sequential Data

- ~
e e e e e o

7’

e Text classification

’/

e Speech recognition (acoustic modeling)
e |anguage translation

i Embedding i
¢ \ Matrix i

~
__

[——

__

Stock market predictions

Shen, Zhen, Wenzheng Bao, and De-Shuang Huang. "Recurrent

s ! e : — Neural Network for Predicting Transcription Factor Binding Sites."
13- Vo | A el Scientific reports 8, no. 1 (2018): 15270.
12 ‘ e ! y < LST™ I

8 /\A ; | ———RNN

&4 B £ \ : : : ! b 1 - . .
i [T DNA or (amino acid/protein)
09 | 1 |

Trading Day

sequence modeling

Fig 8. Displays the actual data and the predicted data from the four models for each stock index in
Year 1 from 2010.10.01 to 2011.09.30.

https://doi.org/10.1371/journal.pone.0180944.9008

Bao, Wei, Jun Yue, and Yulei Rao. "A deep learning framework for financial time series using
stacked autoencoders and long-short term memory." PloS one 12, no. 7 (2017): e0180944.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 6

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944
https://www.nature.com/articles/s41598-018-33321-1
https://www.nature.com/articles/s41598-018-33321-1

Overview

time step t

Ly e
Networks we used

previously: also called Recurrent Neural @
feedforward neural Network (RNN)
networks

<t>

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Mh e Learning. 3rd Edition. Birmingham, UK: Packt
PbIhg2019

Recurrent edge

Overview

Single layer RNN

Unfold>

Unfold

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

Different Types of Sequence Modeling Tasks

) C JcC JC
. JC JC))

many-to-one one-to-many

igure: Sebastian
Machine Learning.
Publishing, 201 9

many-to-many many-to-many

Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

Different Types of Sequence Modeling Tasks

. JC JC)

many-to-one

Many-to-one: The input data is a sequence, but the output is a fixed-size

vector, not a sequence.

Ex.: sentiment analysis, the input is some text, and the output is a class
label.

Sentiment analysis

NEGATIVE NEUTRAL POSITIVE

Totally dissatisfied with the Good Job but | will expect a Brilliant effort guys! Loved
service. Worstl customer lot more in fulure, Your Work.
care ever.

Different Types of Sequence Modeling Tasks

C JcC JC
)

one-to-many
One-to-many: Input data is in a standard format (not a sequence), the
output Is a sequence.

Ex.: Image captioning, where the input is an image, the output is a text
description of that image

Image captioning

(Train image 2) Caption -> The white cat is walking on road (Test image) Caption -> The black cat is walking on grass

"man in black shirt is playing "construction worker in orange "two young girls are playing with
guitar” safety vest is working on road.’ lego toy."

Image Captioning

Different Types of Sequence Modeling Tasks

Many-to-many: Both inputs and outputs are sequences. Can be direct

or delayed.

Ex.: Video-captioning, i.e., describing a sequence of images via text

(direct).

Translating one language into another (delayed)

C JC) C JC)

many-to-many many-to-many

Video captioning

5
—_ b a R .

|

Caption “Two boys are playing baseball in the ground”

Video

