
Introduction to Deep learning:
a 2-weeks lecture
Part 2

Presented by: Dra. Jeaneth Machicao
machicao@usp.br

October/2020

Part1: Introduction
● Introduction to deep learning
● The brief history of deep learning
● Single-layer neural networks: The perceptron
● Motivation: cases of use
● Hands-on
Part2: Mathematical and computational foundations
● Linear algebra and calculus for deep learning
● Parameter optimization with gradient descent
● Automatic differentiation & PyThorch
Part3: Introduction to neural networks
● Multinomial logistic regression
● Multilayer pecerptrons
● Regularization
● Input normalization and weight initiliazation
● Learning rated and advanced optimization algorithms

Part4: DL for computer vision and language modeling
● Introduction to convolutional neural networks 1-2

○ CNNs Architectures Illustrated
● Introduction to recurrent neural networks 1-2
Part5: Deep generative models
● Autoencoders,
● Autoregressive models
● Variational autoencoders
● Normalizing Flow models
● Generative adversarial networks
● Evaluating generative models

Course overview: STAT 453: Deep Learning, Spring 2020
by Prof. Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20

• Course Playlist on youtube:
Prof. Dalcimar Casanova
https://www.youtube.com/watch?v=0VD_2t6EdS4&list=PL9At2PVRU0ZqVArhU9QMyI3jSe113_m2-

Prof. Sebastian Raschka
https://www.youtube.com/watch?v=e_I0q3mmfw4&list=PLTKMiZHVd_2JkR6QtQEnml7swCnFBtq4P

1: Introduction
● Introduction to deep learning
● The brief history of deep learning
● Single-layer neural networks: The perceptron
● Motivation: cases of use
● Hands-on (report)
2: Mathematical and computational foundations
● Linear algebra and calculus for deep learning
● Parameter optimization with gradient descent
● Automatic differentiation & PyThorch
3: Introduction to neural networks
● Multinomial logistic regression
● Multilayer pecerptrons
● Regularization
● Input normalization and weight initiliazation
● Learning rated and advanced optimization algorithms

Overview of our 2-weeks lecture!

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20

• Course Playlist on youtube:
Prof. Dalcimar Casanova
Prof. Sebastian Raschka

4: DL for computer vision and language modeling
● Introduction to convolutional neural networks 1-2

○ CNNs Architectures Illustrated
● Introduction to recurrent neural networks 1-2

● Deliver report of the hands-on

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 1

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/

Lecture 12

Introduction to
Convolutional Neural Networks

Part 1

https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns

http://pages.stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L12-cnns

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 2

Image Source:
twitter.com%2Fcats&psig=AOvVaw30_o-PCM-
K21DiMAJQimQ4&ust=1553887775741551

Image Source: https://www.pinterest.com/pin/
244742560974520446

output

p(y=cat)

CNNs for Image Classification

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 3

Object Detection

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788).

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 4

Object Segmentation

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask R-CNN." In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2961-2969. 2017.

dining table.96

person1.00

person1.00 person1.00 person1.00 person1.00
person1.00

person1.00 person.94

bottle.99

bottle.99
bottle.99

motorcycle1.00 motorcycle1.00

person1.00
person1.00

person.96person1.00person.83
person.96

person.98person.90 person.92person.99person.91

bus.99

person1.00

person1.00 person1.00

backpack.93

person1.00

person.99

person1.00

backpack.99

person.99

person.98person.89person.95

person1.00

person1.00

car1.00

traffic light.96

person.96

truck1.00 person.99
car.99

person.85

motorcycle.95
car.99car.92person.99person1.00

traffic light.92 traffic light.84

traffic light.95

car.93person.87

person1.00

person1.00

umbrella.98

umbrella.98

backpack1.00

handbag.96

elephant1.00

person1.00
person1.00person.99

sheep1.00

person1.00

sheep.99

sheep.91 sheep1.00

sheep.99

sheep.99

sheep.95

person.99

sheep1.00
sheep.96

sheep.99

sheep.99

sheep.96

sheep.96

sheep.96
sheep.86

sheep.82sheep.93

dining table.99

chair.99

chair.90

chair.99

chair.98

chair.96

chair.86

chair.99

bowl.81

chair.96

tv.99

bottle.99

wine glass.99wine glass1.00

bowl.85

knife.83

wine glass1.00wine glass.93

wine glass.97

fork.95

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [15], achieving a mask AP of 35.7 and

running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

ingly minor change, RoIAlign has a large impact: it im-
proves mask accuracy by relative 10% to 50%, showing
bigger gains under stricter localization metrics. Second, we
found it essential to decouple mask and class prediction: we
predict a binary mask for each class independently, without
competition among classes, and rely on the network’s RoI
classification branch to predict the category. In contrast,
FCNs usually perform per-pixel multi-class categorization,
which couples segmentation and classification, and based
on our experiments works poorly for instance segmentation.

Without bells and whistles, Mask R-CNN surpasses all
previous state-of-the-art single-model results on the COCO
instance segmentation task [23], including the heavily-
engineered entries from the 2016 competition winner. As
a by-product, our method also excels on the COCO object
detection task. In ablation experiments, we evaluate multi-
ple basic instantiations, which allows us to demonstrate its
robustness and analyze the effects of core factors.

Our models can run at about 200ms per frame on a GPU,
and training on COCO takes one to two days on a single
8-GPU machine. We believe the fast train and test speeds,
together with the framework’s flexibility and accuracy, will
benefit and ease future research on instance segmentation.

Finally, we showcase the generality of our framework
via the task of human pose estimation on the COCO key-
point dataset [23]. By viewing each keypoint as a one-hot
binary mask, with minimal modification Mask R-CNN can
be applied to detect instance-specific poses. Without tricks,
Mask R-CNN surpasses the winner of the 2016 COCO key-
point competition, and at the same time runs at 5 fps. Mask
R-CNN, therefore, can be seen more broadly as a flexible
framework for instance-level recognition and can be readily
extended to more complex tasks.

We will release code to facilitate future research.

2. Related Work

R-CNN: The Region-based CNN (R-CNN) approach [10]
to bounding-box object detection is to attend to a manage-
able number of candidate object regions [33, 16] and evalu-
ate convolutional networks [20, 19] independently on each
RoI. R-CNN was extended [14, 9] to allow attending to RoIs
on feature maps using RoIPool, leading to fast speed and
better accuracy. Faster R-CNN [29] advanced this stream
by learning the attention mechanism with a Region Pro-
posal Network (RPN). Faster R-CNN is flexible and robust
to many follow-up improvements (e.g., [30, 22, 17]), and is
the current leading framework in several benchmarks.

Instance Segmentation: Driven by the effectiveness of R-
CNN, many approaches to instance segmentation are based
on segment proposals. Earlier methods [10, 12, 13, 6] re-
sorted to bottom-up segments [33, 2]. DeepMask [27] and
following works [28, 5] learn to propose segment candi-
dates, which are then classified by Fast R-CNN. In these
methods, segmentation precedes recognition, which is slow
and less accurate. Likewise, Dai et al. [7] proposed a com-
plex multiple-stage cascade that predicts segment propos-
als from bounding-box proposals, followed by classifica-
tion. Instead, our method is based on parallel prediction of
masks and class labels, which is simpler and more flexible.

Most recently, Li et al. [21] combined the segment pro-
posal system in [5] and object detection system in [8] for
“fully convolutional instance segmentation” (FCIS). The
common idea in [5, 8, 21] is to predict a set of position-
sensitive output channels fully convolutionally. These
channels simultaneously address object classes, boxes, and
masks, making the system fast. But FCIS exhibits system-
atic errors on overlapping instances and creates spurious
edges (Figure 5), showing that it is challenged by the fun-
damental difficulties of segmenting instances.

22962

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 5

Similarity/
Distance

Score

x[1]
<latexit sha1_base64="p8Wx+cqqkWj+1zNtDaf7R0Gpalg=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA0ls122y7dbMLuRCyhP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLEykMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3Q2q4FIo3UKDk7URzGoWSt8LRzdRvPXJtRKzucZzwIKIDJfqCUbRS6+kh871g0i2V3Yo7A1kmXk7KkKPeLX11ejFLI66QSWqM77kJBhnVKJjkk2InNTyhbEQH3LdU0YibIJudOyGnVumRfqxtKSQz9fdERiNjxlFoOyOKQ7PoTcX/PD/F/lWQCZWkyBWbL+qnkmBMpr+TntCcoRxbQpkW9lbChlRThjahog3BW3x5mTSrFe+8Ur27KNeu8zgKcAwncAYeXEINbqEODWAwgmd4hTcncV6cd+dj3rri5DNH8AfO5w81Jo97</latexit>

x[2]
<latexit sha1_base64="vzgd/QPklE2GpKgvXahAxpOTUdw=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA0ls122i7dbMLuRiyhP8KLB0W8+nu8+W/ctjlo64OBx3szzMwLE8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1Q6pRcIkNw43AdqKQRqHAVji6mfqtR1Sax/LejBMMIjqQvM8ZNVZqPT1kfjWYdEtlt+LOQJaJl5My5Kh3S1+dXszSCKVhgmrte25igowqw5nASbGTakwoG9EB+pZKGqEOstm5E3JqlR7px8qWNGSm/p7IaKT1OAptZ0TNUC96U/E/z09N/yrIuExSg5LNF/VTQUxMpr+THlfIjBhbQpni9lbChlRRZmxCRRuCt/jyMmlWK955pXp3Ua5d53EU4BhO4Aw8uIQa3EIdGsBgBM/wCm9O4rw4787HvHXFyWeO4A+czx82rI98</latexit>

Face Recognition

machicao
Typewriter
Siamese neural network

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 7

1. Image Classification
2. Convolutional Neural Network Basics
3. CNN Architectures
4. What a CNN Can See
5. CNNs in PyTorch

Lecture Overview

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 8

Image Source:
twitter.com%2Fcats&psig=AOvVaw30_o-PCM-
K21DiMAJQimQ4&ust=1553887775741551

Why Image Classification is Hard

Image Source: https://www.123rf.com/
photo_76714328_side-view-of-tabby-cat-face-over-
white.html

Different lighting, contrast, viewpoints, etc.

Or even simple translation This is hard for traditional
methods like multi-layer
perceptrons, because
the prediction is
basically based on a sum
of pixel intensities

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 9

Traditional Approaches

a) Use hand-engineered features

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 10

Traditional Approaches

a) Use hand-engineered features

Sasaki, K., Hashimoto, M., & Nagata, N. (2016). Person Invariant Classification of Subtle Facial Expressions Using Coded Movement Direction of
Keypoints. In Video Analytics. Face and Facial Expression Recognition and Audience Measurement (pp. 61-72). Springer, Cham.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 11

Traditional Approaches

b) Preprocess images (centering, cropping, etc.)

Image Source: https://www.tokkoro.com/2827328-cat-animals-nature-feline-park-green-trees-grass.html

https://www.tokkoro.com/2827328-cat-animals-nature-feline-park-green-trees-grass.html

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 12

1. Image Classification
2. Convolutional Neural Network Basics
3. CNN Architectures
4. What a CNN Can See
5. CNNs in PyTorch

Lecture Overview

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 13

Main Concepts Behind
Convolutional Neural Networks

• Sparse-connectivity: A single element in the feature map is
connected to only a small patch of pixels. (This is very different
from connecting to the whole input image, in the case of multi-layer
perceptrons.)

• Parameter-sharing: The same weights are used for different
patches of the input image.

• Many layers: Combining extracted local patterns to global patterns

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 15

Convolutional Neural Networks

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition,
Proceedings of IEEE, 86(11):2278–2324, 1998.

machicao
Typewriter
Pooling

http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 16

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Hidden Layers

"Automatic feature extractor" "Regular classifier"

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 17

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Each "bunch" of feature maps represents one
hidden layer in the neural network.

Counting the FC layers, this network has 5 layers

Hidden Layers

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 18

Convolutional Neural Networks

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Yann LeCun, Léon Bottou, Yoshua Bengio and Patrick Haffner: Gradient Based Learning Applied to Document Recognition,
Proceedings of IEEE, 86(11):2278–2324, 1998.

nowadays called "pooling" basically a fully-connected
 layer + MSE loss
(nowadays better to use
fc-layer + softmax
+ cross entropy

"Feature detectors" (weight matrices)
that are being reused ("weight sharing")
=> also called "kernel" or "filter"

Size of the resulting layersNumber of feature detectors
Multi-layer perceptron

http://www.dengfanxin.cn/wp-content/uploads/2016/03/1998Lecun.pdf

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 19

9X

j=1

wjxj

<latexit sha1_base64="A0KexUBWYzFCrOQ6nv7KbgccmW0=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzJTBXUhFN24rGAf0I5DJk3btElmSDJqGWfhr7hxoYhbf8Odf2PazkJbD1w4nHMv994TRIwq7Tjf1tz8wuLScm4lv7q2vrFpb23XVBhLTKo4ZKFsBEgRRgWpaqoZaUSSIB4wUg8GlyO/fkekoqG40cOIeBx1Be1QjLSRfHu3pWLuJ/1zN71NzlJ47/fhg9/37YJTdMaAs8TNSAFkqPj2V6sd4pgToTFDSjVdJ9JegqSmmJE034oViRAeoC5pGioQJ8pLxven8MAobdgJpSmh4Vj9PZEgrtSQB6aTI91T095I/M9rxrpz6iVURLEmAk8WdWIGdQhHYcA2lQRrNjQEYUnNrRD3kERYm8jyJgR3+uVZUisV3aNi6fq4UL7I4siBPbAPDoELTkAZXIEKqAIMHsEzeAVv1pP1Yr1bH5PWOSub2QF/YH3+AHSflbs=</latexit>

Weight Sharing
A "feature detector" (filter, kernel) slides over the inputs to generate
a feature map

Rationale: A feature detector that works well in one region
may also work well in another region

Plus, it is a nice reduction in parameters to fit

The pixels are
referred to
as "receptive field"

"feature map"

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 20

9X

j=1

wjxj

<latexit sha1_base64="A0KexUBWYzFCrOQ6nv7KbgccmW0=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzJTBXUhFN24rGAf0I5DJk3btElmSDJqGWfhr7hxoYhbf8Odf2PazkJbD1w4nHMv994TRIwq7Tjf1tz8wuLScm4lv7q2vrFpb23XVBhLTKo4ZKFsBEgRRgWpaqoZaUSSIB4wUg8GlyO/fkekoqG40cOIeBx1Be1QjLSRfHu3pWLuJ/1zN71NzlJ47/fhg9/37YJTdMaAs8TNSAFkqPj2V6sd4pgToTFDSjVdJ9JegqSmmJE034oViRAeoC5pGioQJ8pLxven8MAobdgJpSmh4Vj9PZEgrtSQB6aTI91T095I/M9rxrpz6iVURLEmAk8WdWIGdQhHYcA2lQRrNjQEYUnNrRD3kERYm8jyJgR3+uVZUisV3aNi6fq4UL7I4siBPbAPDoELTkAZXIEKqAIMHsEzeAVv1pP1Yr1bH5PWOSub2QF/YH3+AHSflbs=</latexit>

A "feature detector" (kernel) slides over the inputs to generate
a feature map

Weight Sharing

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 21

9X

j=1

wjxj

<latexit sha1_base64="A0KexUBWYzFCrOQ6nv7KbgccmW0=">AAAB/3icbVDLSgMxFM34rPU1KrhxEyyCqzJTBXUhFN24rGAf0I5DJk3btElmSDJqGWfhr7hxoYhbf8Odf2PazkJbD1w4nHMv994TRIwq7Tjf1tz8wuLScm4lv7q2vrFpb23XVBhLTKo4ZKFsBEgRRgWpaqoZaUSSIB4wUg8GlyO/fkekoqG40cOIeBx1Be1QjLSRfHu3pWLuJ/1zN71NzlJ47/fhg9/37YJTdMaAs8TNSAFkqPj2V6sd4pgToTFDSjVdJ9JegqSmmJE034oViRAeoC5pGioQJ8pLxven8MAobdgJpSmh4Vj9PZEgrtSQB6aTI91T095I/M9rxrpz6iVURLEmAk8WdWIGdQhHYcA2lQRrNjQEYUnNrRD3kERYm8jyJgR3+uVZUisV3aNi6fq4UL7I4siBPbAPDoELTkAZXIEKqAIMHsEzeAVv1pP1Yr1bH5PWOSub2QF/YH3+AHSflbs=</latexit>

A "feature detector" (kernel) slides over the inputs to generate
a feature map

Weight Sharing

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 22

9X

j=1

w(@3)
j xj

<latexit sha1_base64="N3BOf0nmcHBzr6vnBzaSoMFhcQo=">AAACBnicbVDLSsNAFJ34rPUVdSnCYBHqpiStoC6EohuXFewD2jRMppN22pkkzEzUErJy46+4caGIW7/BnX/j9LHQ1gMXDufcy733eBGjUlnWt7GwuLS8sppZy65vbG5tmzu7NRnGApMqDlkoGh6ShNGAVBVVjDQiQRD3GKl7g6uRX78jQtIwuFXDiDgcdQPqU4yUllzzoCVj7ib9CzttJ+cpvHf77SRfLh2n8MHtu2bOKlhjwHliT0kOTFFxza9WJ8QxJ4HCDEnZtK1IOQkSimJG0mwrliRCeIC6pKlpgDiRTjJ+I4VHWulAPxS6AgXH6u+JBHEph9zTnRypnpz1RuJ/XjNW/pmT0CCKFQnwZJEfM6hCOMoEdqggWLGhJggLqm+FuIcEwkonl9Uh2LMvz5NasWCXCsWbk1z5chpHBuyDQ5AHNjgFZXANKqAKMHgEz+AVvBlPxovxbnxMWheM6cwe+APj8wfnQ5gb</latexit>

9X

j=1

w(@2)
j xj

<latexit sha1_base64="nCqyd07UuJkUGWlSGLMV2F7bQVM=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWpgroQim5cVrAPaNMwmU7aaSeTMDNRS8jKjb/ixoUibv0Gd/6N08dCWw9cOJxzL/fe40WMSmVZ30ZmYXFpeSW7mltb39jcMrd3ajKMBSZVHLJQNDwkCaOcVBVVjDQiQVDgMVL3Blcjv35HhKQhv1XDiDgB6nLqU4yUllxzvyXjwE36F3baTs5TeO/220mhXDpK4YPbd828VbTGgPPEnpI8mKLiml+tTojjgHCFGZKyaVuRchIkFMWMpLlWLEmE8AB1SVNTjgIinWT8RgoPtdKBfih0cQXH6u+JBAVSDgNPdwZI9eSsNxL/85qx8s+chPIoVoTjySI/ZlCFcJQJ7FBBsGJDTRAWVN8KcQ8JhJVOLqdDsGdfnie1UtE+LpZuTvLly2kcWbAHDkAB2OAUlME1qIAqwOARPINX8GY8GS/Gu/Exac0Y05ld8AfG5w/luZga</latexit>

9X

j=1

w(@1)
j xj

<latexit sha1_base64="f26ph3SsblXR0kXxlacC2FehXAE=">AAACBnicbVDLSsNAFJ3UV62vqEsRBotQNyWpgroQim5cVrAPaNMwmU7aaWeSMDNRS8jKjb/ixoUibv0Gd/6N08dCWw9cOJxzL/fe40WMSmVZ30ZmYXFpeSW7mltb39jcMrd3ajKMBSZVHLJQNDwkCaMBqSqqGGlEgiDuMVL3Blcjv35HhKRhcKuGEXE46gbUpxgpLbnmfkvG3E36F3baTs5TeO/220mhbB+l8MHtu2beKlpjwHliT0keTFFxza9WJ8QxJ4HCDEnZtK1IOQkSimJG0lwrliRCeIC6pKlpgDiRTjJ+I4WHWulAPxS6AgXH6u+JBHEph9zTnRypnpz1RuJ/XjNW/pmT0CCKFQnwZJEfM6hCOMoEdqggWLGhJggLqm+FuIcEwkonl9Mh2LMvz5NaqWgfF0s3J/ny5TSOLNgDB6AAbHAKyuAaVEAVYPAInsEreDOejBfj3fiYtGaM6cwu+APj8wfkL5gZ</latexit> Multiple "feature
detectors" (kernels) are used
to create multiple feature
maps

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 23

Feature map size:

O =
W �K + 2P

S
+ 1

<latexit sha1_base64="F3e+5qMk1hWaddof/b46u0hNgJ4=">AAACBXicbZC7SgNBFIbPxluMt1VLLQaDIIhhNwraCEEbwcKI5gLJEmYns8mQ2Qszs0JYtrHxVWwsFLH1Hex8GyfJFpr4w8DHf87hzPndiDOpLOvbyM3NLywu5ZcLK6tr6xvm5lZdhrEgtEZCHoqmiyXlLKA1xRSnzUhQ7LucNtzB5ajeeKBCsjC4V8OIOj7uBcxjBCttdczdG3SO2p7AJGmgI3SNDlG5miZ3qQa7YxatkjUWmgU7gyJkqnbMr3Y3JLFPA0U4lrJlW5FyEiwUI5ymhXYsaYTJAPdoS2OAfSqdZHxFiva100VeKPQLFBq7vycS7Es59F3d6WPVl9O1kflfrRUr78xJWBDFigZkssiLOVIhGkWCukxQovhQAyaC6b8i0sc6EqWDK+gQ7OmTZ6FeLtnHpfLtSbFykcWRhx3YgwOw4RQqcAVVqAGBR3iGV3gznowX4934mLTmjGxmG/7I+PwBia6VZg==</latexit>

output width

input width
kernel width

padding

stride

Size Before and After Convolutions

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 24

Kernel Dimensions and Trainable Parameters

For a grayscale image with a
5x5 feature detector (kernel),
we have the following dimensions
(number of parameters to learn)

What do you think is the output size
for this 28x28 image?

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 30

Backpropagation in CNNs

Same overall concept as before: Multivariable chain rule,
but now with an additional weight sharing constraint

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 34

Pooling Layers Can Help With Local Invariance

Downside: Information is lost.
May not matter for classification, but applications where relative position is
important (like face recognition)

In practice for CNNs: some image preprocessing still recommended

Sebastian Raschka, Vahid Mirjalili. Python Machine
Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019. ISBN: 978-1789955750

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 35

Pooling Layers Can Help With Local Invariance

Downside: Information is lost.
May not matter for classification, but applications where relative position is
important (like face recognition)

In practice for CNNs: some image preprocessing still recommended

Note that typical pooling layers do not have any learnable parameters

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 43

1. Image Classification
2. Convolutional Neural Network Basics
3. CNN Architectures
4. What a CNN Can See
5. CNNs in PyTorch

Lecture Overview

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 44

What a CNN Can See
Simple example: vertical edge detector

(From classical computer vision research)

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 45

What a CNN Can See
Simple example: vertical edge detector

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 46

What a CNN Can See
Simple example: horizontal edge detector

A CNN can learn whatever it finds
best based on optimizing the objective
(e.g., minimizing a particular loss
to achieve good classification accuracy)

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 47

Which patterns from the training set activate the feature map?

What a CNN Can See

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

Method: backpropagate strong activation signals in hidden layers to the input images,
then apply "unpooling" to map the values to the original pixel space for
visualization

Visualizing and Understanding Convolutional Networks 825

Input Image

stride 2�

image size 224�

3�

96�

5�
2�

110�

55

3x3 max pool
stride 2

96�
3�

1�

26

256�

!lter size 7�

3x3 max
pool

stride 2

13
256�

3�
1�

13

384�
3�

1�

13

384�

Layer 1 Layer 2

13

256�

3x3 max
pool

stride 2

6

Layer 3 Layer 4 Layer 5

256�

4096
units�

4096
units�

Layer 6 Layer 7

C
class

softmax�

Output

contrast
norm.

contrast
norm.

Fig. 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with
3 color planes) is presented as the input. This is convolved with 96 different 1st layer
filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting
feature maps are then: (i) passed through a rectified linear function (not shown), (ii)
pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across
feature maps to give 96 different 55 by 55 element feature maps. Similar operations are
repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions).
The final layer is a C-way softmax function, C being the number of classes. All filters
and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Fig. 4. Evolution of a randomly chosen subset of model features through training.
Each layer’s features are displayed in a different block. Within each block, we show
a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64]. The visualiza-
tion shows the strongest activation (across all training examples) for a given feature
map, projected down to pixel space using our deconvnet approach. Color contrast is
artificially enhanced and the figure is best viewed in electronic form.

occluder covers the image region that appears in the visualization, we see a
strong drop in activity in the feature map. This shows that the visualization
genuinely corresponds to the image structure that stimulates that feature map,
hence validating the other visualizations shown in Fig. 4 and Fig. 2.

5 Experiments

5.1 ImageNet 2012

This dataset consists of 1.3M/50k/100k training/validation/test examples,
spread over 1000 categories. Table 1 shows our results on this dataset.

Using the exact architecture specified in Krizhevsky et al. [18], we attempt to
replicate their result on the validation set. We achieve an error rate within 0.1%
of their reported value on the ImageNet 2012 validation set.

Next we analyze the performance of our model with the architectural changes
outlined in Section 4.1 (7× 7 filters in layer 1 and stride 2 convolutions in layers

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 48

Which patterns from the training set activate the feature map?

What a CNN Can See

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 49

Which patterns from the training set activate the feature map?

What a CNN Can See

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 50

Which patterns from the training set activate the feature map?

What a CNN Can See

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional
networks. In European conference on computer vision (pp. 818-833). Springer, Cham.

824 M.D. Zeiler and R. Fergus

Layer 2

Layer 1

Layer 3

Layer 4 Layer 5

Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

1

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4. Common Architectures

○ LeNet-5
○ AlexNet
○ VGG-16
○ ResNet-50
○ Inception-v1

5. Transfer learning 2

Padding

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Learning and Generative Models. SS 2020 3

4

no_padding no_strides

Padding jargon
• "valid" convolution: no padding

(feature map may shrink)
• "same" convolution: padding such

that the output size is equal to
the input size

• Common kernel size conventions:
• 3x3, 5x5, 7x7 (sometimes

1x1 in later layers to reduce
channels)

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Learning and Generative Models. SS 2020 5

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4. Common Architectures

○ LeNet-5
○ AlexNet
○ VGG-16
○ ResNet-50
○ Inception-v1

5. Transfer learning 6

7

11

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4. Common Architectures

○ LeNet-5
○ AlexNet
○ VGG-16
○ ResNet-50
○ Inception-v1

5. Transfer learning 12

13

14

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4. Common Architectures

○ LeNet-5
○ AlexNet
○ VGG-16
○ ResNet-50
○ Inception-v1

5. Transfer learning
15

Common Architectures Revisited
We will discuss some additional common CNN architectures since the field evolved quite a bit since 2012 ...

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678. 16

Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

1. LeNet-5
2. AlexNet
3. VGG-16
4. ResNet-50
5. Inception-v1
6. Inception-v3
7. Xception
8. Inception-v4
9. Inception-ResNets
10. ResNeXt-50
...

CNNs Architectures Illustrated

17

18

LeNet-5 AlexNet VGG-16

ResNet-50 Inception-v1

Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

Legend

19

1.LeNet-5 (1998)

● ~60,000 parameters.
● One of the simplest architectures.
● (“5”-layers) 2 convolutional and 3 fully-

connected layers.
● Sub-sampling layer and trainable weights

(aka average-pooling layer)
○ (trainable weights is not current practice of

designing CNNs nowadays).

paper: Gradient-Based Learning Applied to Document Recognition.
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Proceedings of the IEEE (1998).

● This architecture has become the
standard ‘template’: stacking
convolutions and pooling layers, and
ending the network with one or more
fully-connected layers.

20

2.AlexNet (2012)

● ~60M parameters,
● 8 layers — 5 convolutional and 3 fully-

connected.
● AlexNet just stacked a few more layers

onto LeNet-5.
● Trained in two GPUs GTX 580 between

5 and 6 days

paper: ImageNet Classification with Deep Convolutional Neural
Networks. Alex Krizhevsky, Ilya Sutskever, Geoffrey Hinton. University
of Toronto, Canada. NeurIPS 2012

● They were the first to implement
Rectified Linear Units (ReLUs) as
activation functions.

21

227x227x3

22

3.VGG-16 (2014)

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678. 23

3.VGG-16 (2014)

● CNNs starting to get deeper and deeper.
● Creators: Visual Geometry Group (VGG).
● 13 convolutional and 3 fully-connected
layers

○ carrying ReLU tradition from AlexNet.
●Stacks more layers onto AlexNet, and smaller
size filters

○ (2×2 and 3×3).
●~138M parameters.
●~500MB of storage space.

paper: Very Deep Convolutional Networks for Large-Scale Image
Recognition. Karen Simonyan, Andrew Zisserman. University of
Oxford, UK. arXiv preprint, 2014

● The contribution from this paper is the
designing of deeper networks (roughly
twice as deep as AlexNet).

24

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

25

3.VGG-16 (2014)

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

PyTorch implementation:
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13-cnns-
part2/code/vgg16.ipynb

4.ResNet-50 (2015)

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678. 26

4.ResNet-50 (2015)

“with the network depth increasing, accuracy gets
saturated and then degrades rapidly.”
● Microsoft Research addressed this

problem — using skip connections.
● Early adopters of batch normalisation
● ~26M parameters.
● The basic building block for ResNets are

the conv and identity blocks.

GitHub code from keras-team.
Deep Residual Learning for Image Recognition. Kaiming He, Xiangyu
Zhang, Shaoqing Ren, Jian Sun. Microsoft. 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

●ResNet 34, 50, 101 up to 152 layers
○without compromising generalisation
power

●152 layers - trained in a cluster of 8
GPUs for 2 to 3 weeks
●Among the first to use batch
normalisation.

27

4.ResNet-50 (2015)

28

29

4.ResNet-50 (2015)
PyTorch implementations of the previous slides:
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13- cnns-part2/code/resnet-
blocks.ipynb

PyTorch implementations:
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13- cnns-part2/code/resnet-
34.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L13- cnns-part2/code/resnet-
152.ipynb

(Can be substantially improved with more hyperparameter tuning)

5.Inception-v1/ GoogLeNet (2014)

30Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678.

5.Inception-v1/ GoogLeNet (2014)

31

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.

"In this paper, we will focus on an efficient deep neural network architecture for computer vision,
codenamed Inception, which derives its name from the Network in network paper by Lin et al [12] in
conjunction with the famous “we need to go deeper” internet meme"

5.Inception-v1/ GoogLeNet (2014)

32

Full architecture

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions."
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9. 2015.

5.Inception-v1 (2014)

“The main hallmark of this architecture is the improved
utilisation of the computing resources inside the network.”
● 22-layer architecture with 5M parameters.
● Used Network In Network approach

○ using ‘Inception modules’.
Each module presents 3 ideas:
1) Parallel towers of convs. with different filters,

followed by concatenation
○ captures different features at 1×1, 3×3 and 5×5,

‘clustering’ them.
2) 1×1 convs. for dim. reduction (avoid bottlenecks).
3) Two auxiliary classifiers

○ discarded at inference time.

paper. Going Deeper with Convolutions. Christian Szegedy, Wei Liu,
Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. Google,
University of Michigan, University of North Carolina. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)

● Dense modules/blocks instead of stacking
convolutional layers.

● Curiosity: name Inception (from movie).
33

34

5.Inception-v1 (2014)

Appendix: Network In Network (2014)
● Recalling from convolution:

○ A pixel is a linear combination of the weights in
a filter and the current sliding window.

○ NiN proposes a mini neural network with 1
hidden layer instead of this linear combination.

● One hidden layer network in a CNN.
○ a.k.a MLPconv is the same as 1×1 convolutions
○ Main feature for Inception architectures.

Paper: Network In Network. Min Lin, Qiang Chen, Shuicheng Yan.
National University of Singapore. arXiv preprint, 2013.

● MLP convolutional layers, 1×1
convolutions

● Global average pooling (taking
average of each feature map, and
feeding the resulting vector into the
softmax layer)

35

36

LeNet-5 AlexNet VGG-16

ResNet-50 Inception-v1

Source: https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d

Lecture Overview

1. Padding (control output size in addition to stride)
2. Spatial Dropout and BatchNorm
3. Considerations for CNNs on GPUs
4. Common Architectures

○ LeNet-5
○ AlexNet
○ VGG-16
○ ResNet-50
○ Inception-v1

5. Transfer learning 37

Transfer Learning

● Key idea:
● ✦ Feature extraction layers may be generally useful
● ✦ Use a pre-trained model (e.g., pre-trained on ImageNet)
● ✦ Freeze the weights: Only train last layer (or last few

layers)
● Related approach: Fine-tuning, train a pre-trained network

on your smaller dataset

38Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Learning and Generative Models. SS 2020

Example 3 - Feature Extractor (I)

Image
224x224

Two
Conv3

-
64

Max
pool

Two
Conv3

-
128

Max
pool

Four
Conv3

-
256

Max
pool

Four
Conv3

-
512

Max
pool

Four
Conv3

-
512

Max
pool

3 FC

● Pre-trained VGG19 model

Example 3 - Feature Extractor (II)

● Pre-trained VGG19 model

Image
224x224

Two
Conv3

-
64

Max
pool

Two
Conv3

-
128

Max
pool

Four
Conv3

-
256

Max
pool

Four
Conv3

-
512

Max
pool

Four
Conv3

-
512

Max
pool

3 FC

Example 3 - Feature Extractor (III)

● Pre-trained VGG19 model

Image
224x224

Two
Conv3

-
64

Max
pool

Two
Conv3

-
128

Max
pool

Four
Conv3

-
256

Max
pool

Four
Conv3

-
512

Max
pool

Four
Conv3

-
512

Max
pool

3 FC

Example 3 - Feature Extractor (IV)

Image
224x224

Two
Conv3

-
64

Max
pool

Two
Conv3

-
128

Max
pool

Four
Conv3

-
256

Max
pool

Four
Conv3

-
512

Max
pool

Four
Conv3

-
512

Max
pool

3 FC

Etc …..

● Pre-trained VGG19 model

Example 3 - Feature Extractor (V)

Image
224x224

Two
Conv3

-
64

Max
pool

Two
Conv3

-
128

Max
pool

Four
Conv3

-
256

Etc …..

● Pre-trained VGG19 model

+1

 x1

 x2

Capa 1 Capa 2 Capa 3

 +1

a2
(2)

a1
(2) a1

(3)

Which Layers to Replace & Train

39

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video
classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (pp. 1725-1732).

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Learning and Generative Models. SS 2020

Transfer Learning

40

PyTorch implementation: https://github.com/rasbt/stat453-deep-learning- ss20/blob/master/L13-cnns-
part2/code/vgg16-transferlearning.ipynb

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Learning and Generative Models. SS 2020

Transfer Learning

41

Freeze

Replace

PyTorch implementation: https://github.com/rasbt/stat453-deep-learning- ss20/blob/master/L13-cnns-
part2/code/vgg16-transferlearning.ipynb

Adapted from: Sebastian Raschka. STAT 453: Intro to Deep Learning and Generative Models. SS 2020

42

Extra: Useful tools to visualize DL architectures
● Netron
● Tensorboard
● PyTorchViz
● plot_model API by Keras

43

Sebastian Raschka STAT 479: Deep Learning SS 2019 1

STAT 479: Deep Learning, Spring 2019
Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Lecture 13

Introduction to  
Convolutional Neural Networks

Part 3

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Sebastian Raschka STAT 479: Deep Learning SS 2019 !31

Additional Concepts to Wrap Up the 
Intro to Convolutional Neural Networks

Sebastian Raschka STAT 479: Deep Learning SS 2019 32

ConvNets and 3D Inputs

Action
Label

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D
 C

onv
3D

 C
onv

3D
 C

onv
3D

 C
onv

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

2

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 2

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

1

Temporal
Transition

3

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 3

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 1

3D DenseBlock
Conv 4

3D DenseBlock
Conv

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

Conv
Concat

3D Temporal Transition Layer

3D DenseBlock
Conv

Avg
Pooling

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

1*1*T1
Conv

3*3*T2
Conv

3*3*T3
Conv

Figure 1: Temporal 3D ConvNet (T3D). Our Temporal Transition Layer (TTL) is applied to our DenseNet3D. T3D uses
video clips as input. The 3D feature-maps from the clips are densely propagated throughout the network. The TTL operates
on the different temporal depths, thus allowing the model to capture the appearance and temporal information from the short,
mid, and long-range terms. The output of the network is a video-level prediction.

agation, and state-of-the-art performance on image classi-
fication tasks. In specific, (i) we modify 2D DenseNet
by replacing the 2D kernels by 3D kernels in the standard
DenseNet architecture and we present it as DenseNet3D;
and (ii) introducing our new Temporal 3D ConvNets (T3D)
by deploying 3D temporal transition layer (TTL) instead of
transition layer in DenseNet. In both setups, the building
blocks of the network and the architecture choices proposed
in [17] are kept same.

Notation. The output feature-maps of the 3D Convolu-
tions and pooling kernels at the l

th layer extracted for an
input video, is a matrix x 2 Rh⇥w⇥c where h, w and c

are the height, width, and number of channels of the feature
maps, resp. The 3D convolution and pooling kernels are of
size (s⇥ s⇥ d), where d is the temporal depth and s is the
spatial size of the kernels.

3D Dense Connectivity. Similar to 2D dense connectiv-
ity, in our network it is 3D dense connectivity that directly
connects the 3D output of any layer to all subsequent layers
in the 3D Dense block. The composite function Hl in the lth
layer receives the {xi}l�1

i=0 3D feature maps of all preceding
(l � 1) layers as input. The output feature-map of Hl in the
l
th layer is given by:

xl = Hl([x0, x1, . . . , xl�1]) (1)

where [x0, x1, . . . , xl�1] denotes that the features maps are
concatenated. The spatial sizes of the xi features maps are
the same. The Hl(·) is a composite function of BN-ReLU-
3DConv operations.

Temporal Transition Layer. Fig. 1 shows a sketch of
Temporal Transition Layer (TTL). TTL is composed of sev-
eral variable 3D Convolution temporal depth kernels and a
3D pooling layer, the depth of 3D Conv kernels ranges be-
tween d, d 2 {T1, . . . , TD}, where Td have different tempo-

ral depths. The advantage of TTL is that it captures the short,
mid, and long term dynamics, that embody important in-
formation not captured when working with some fixed tem-
poral depth homogeneously throughout the network. The
feature-map of l

th layer is fed as input to the TTL layer,
TTL : x ! x

0
, resulting in a dense-aggregated feature rep-

resentation x
0
, where x 2 Rh⇥w⇥c and x

0 2 Rh⇥w⇥c
0

.
In specific, the feature-map from l

th, xl is convolved with
K variable 3D convolution kernel temporal depths, result-
ing to intermediate feature-maps {S1, S2, . . . , SK}, S1 2
Rh⇥w⇥c1 , S2 2 Rh⇥w⇥c2 , SK 2 Rh⇥w⇥cK , where c1,
c2, and cK have different channel-depths as xl is convolved
with different 3D convolution kernel temporal depths, while
the spatial size (h,w) is same for all the {Sk}Kk=1 feature-
maps. These feature-maps {Sk}Kk=1 are simply concate-
nated into a single tensor [S1, S2, . . . , SK] and then fed into
the 3D pooling layer, resulting to the output TTL feature-
map x

0
. The output of TTL, x

0
is fed as input to (l + 1)th

layer in the T3D architecture. The TTL layer is learned in
an end-to-end network learning, as shown in Fig. 1.

In our work, we also compare T3D with DenseNet3D i.e
with the standard transition layer but in 3D. Compared to
the DenseNet3D, T3D performs significantly better in per-
formance, shown in Experimental Section 4. Although we
agree that T3D model has 1.3 times more model parameters
than DenseNet3D, but it is worth to have it because of its
outstanding performance. It is also worth saying that, one
can readily employ our TTL in other architectures too such
as in Res3D [30] or I3D [4], instead of using fixed 3D Con-
volutions homogeneously through out the network.

3.2. Supervision or Knowledge Transfer

In this section, we describe our method for supervision
transfer between cross architectures, i.e. pre-trained 2D

3

Also very popular for Medical Imaging (MRI, CT scans ...)

Diba, Ali, Mohsen Fayyaz, Vivek Sharma, Amir Hossein Karami, Mohammad Mahdi Arzani, Rahman Yousefzadeh, and Luc
Van Gool. "Temporal 3d convnets: New architecture and transfer learning for video classification." arXiv preprint arXiv:
1711.08200 (2017).

https://arxiv.org/abs/1711.08200

Sebastian Raschka STAT 479: Deep Learning SS 2019 33

ConvNets and 3D Inputs

X 2 Rn1⇥n2⇥cin
<latexit sha1_base64="GzJ9t8GJxsmHc4EQcbLCmf2kfPA=">AAACIXicbVDLSsNAFJ34rPUVdelmsAiuSlIFuyy6cVnFPqCpYTKdtEMnkzBzI5SQX3Hjr7hxoUh34s84fQjaemDg3HPv5c45QSK4Bsf5tFZW19Y3Ngtbxe2d3b19++CwqeNUUdagsYhVOyCaCS5ZAzgI1k4UI1EgWCsYXk/6rUemNI/lPYwS1o1IX/KQUwJG8u2qFxEYBGHWzrHHJZ6VQXaXP2TSd7EHPGIaS7/yQ6mfcZnnvl1yys4UeJm4c1JCc9R9e+z1YppGTAIVROuO6yTQzYgCTgXLi16qWULokPRZx1BJzLFuNnWY41Oj9HAYK/Mk4Kn6eyMjkdajKDCTEwN6sTcR/+t1UgirXWMoSYFJOjsUpgJDjCdx4R5XjIIYGUKo4uavmA6IIhRMqEUTgrtoeZk0K2X3vFy5vSjVruZxFNAxOkFnyEWXqIZuUB01EEVP6AW9oXfr2Xq1PqzxbHTFmu8coT+wvr4Bx1+j5A==</latexit>

W 2 Rm1⇥m2⇥cin⇥cout
<latexit sha1_base64="IvH8iHAHqViLIgIXdealOqNYh9w=">AAACMHicbVBNSwMxEM36bf2qevQSLIKnslsFPYoe9FjFtkJ3XbJpVoNJdklmhbLsT/LiT9GLgiJe/RVm2wq1+iDw5s0Mk/eiVHADrvvqTE3PzM7NLyxWlpZXVteq6xttk2SashZNRKKvImKY4Iq1gINgV6lmREaCdaK7k7LfuWfa8ERdQj9lgSQ3isecErBSWD31JYHbKM47Bfa5wsMyyi+K61yGHvaBS2awDBs/lIY5V8VYlWRQFGG15tbdAfBf4o1IDY3QDKtPfi+hmWQKqCDGdD03hSAnGjgVrKj4mWEpoXfkhnUtVcReC/KB4QLvWKWH40TbpwAP1PGNnEhj+jKyk6UfM9krxf963Qziw8D6SzNgig4PxZnAkOAyPdzjmlEQfUsI1dz+FdNbogkFm3HFhuBNWv5L2o26t1dvnO/Xjo5HcSygLbSNdpGHDtAROkNN1EIUPaBn9IbenUfnxflwPoejU85oZxP9gvP1DSPwqkc=</latexit>

b 2 Rcout
<latexit sha1_base64="IEwnrR7t13ocT+tV1TkUvtNEGRY=">AAACDHicbVDLSgMxFM3UV62vqks3wVJwVWaqoMuiG5dV7APasWTSTBuaSYYkI5QwH+DGX3HjQhG3foA7/8ZMOwttPRA4Ofde7rkniBlV2nW/ncLK6tr6RnGztLW9s7tX3j9oK5FITFpYMCG7AVKEUU5ammpGurEkKAoY6QSTq6zeeSBSUcHv9DQmfoRGnIYUI22lQbnSj5AeB6EJUtinHM6/gblN7w0eGJHoNLVdbs2dAS4TLycVkKM5KH/1hwInEeEaM6RUz3Nj7RskNcWMpKV+okiM8ASNSM9SjiKifDM7JoVVqwxhKKR9XMOZ+nvCoEipaWT9VjOvarGWif/VeokOL3xDeZxowvF8UZgwqAXMkoFDKgnWbGoJwpJarxCPkURY2/xKNgRv8eRl0q7XvNNa/eas0rjM4yiCI3AMToAHzkEDXIMmaAEMHsEzeAVvzpPz4rw7H/PWgpPPHII/cD5/ANp9nCQ=</latexit>

Same concept as before except 
that we now have 3D 
images and kernels

Sebastian Raschka STAT 479: Deep Learning SS 2019

ConvNets for Text with 1D Convolutions

 36

We can think of text as image with width 1

This Is my great sentence

(concatenated 
word embeddings)

https://pytorch.org/docs/stable/nn.html#conv1d

https://pytorch.org/docs/stable/nn.html#conv1d

Sebastian Raschka STAT 479: Deep Learning SS 2019 !38

wait
for
the

video
and
do
n't

rent
it

n x k representation of
sentence with static and

non-static channels

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

Figure 1: Model architecture with two channels for an example sentence.

necessary) is represented as

x1:n = x1 � x2 � . . .� xn, (1)

where � is the concatenation operator. In gen-
eral, let xi:i+j refer to the concatenation of words
xi,xi+1, . . . ,xi+j . A convolution operation in-
volves a filter w 2 Rhk, which is applied to a
window of h words to produce a new feature. For
example, a feature ci is generated from a window
of words xi:i+h�1 by

ci = f(w · xi:i+h�1 + b). (2)

Here b 2 R is a bias term and f is a non-linear
function such as the hyperbolic tangent. This filter
is applied to each possible window of words in the
sentence {x1:h,x2:h+1, . . . ,xn�h+1:n} to produce
a feature map

c = [c1, c2, . . . , cn�h+1], (3)

with c 2 Rn�h+1. We then apply a max-over-
time pooling operation (Collobert et al., 2011)
over the feature map and take the maximum value
ĉ = max{c} as the feature corresponding to this
particular filter. The idea is to capture the most im-
portant feature—one with the highest value—for
each feature map. This pooling scheme naturally
deals with variable sentence lengths.

We have described the process by which one
feature is extracted from one filter. The model
uses multiple filters (with varying window sizes)
to obtain multiple features. These features form
the penultimate layer and are passed to a fully con-
nected softmax layer whose output is the probabil-
ity distribution over labels.

In one of the model variants, we experiment
with having two ‘channels’ of word vectors—one

that is kept static throughout training and one that
is fine-tuned via backpropagation (section 3.2).2

In the multichannel architecture, illustrated in fig-
ure 1, each filter is applied to both channels and
the results are added to calculate ci in equation
(2). The model is otherwise equivalent to the sin-
gle channel architecture.

2.1 Regularization

For regularization we employ dropout on the
penultimate layer with a constraint on l2-norms of
the weight vectors (Hinton et al., 2012). Dropout
prevents co-adaptation of hidden units by ran-
domly dropping out—i.e., setting to zero—a pro-
portion p of the hidden units during foward-
backpropagation. That is, given the penultimate
layer z = [ĉ1, . . . , ĉm] (note that here we have m
filters), instead of using

y = w · z+ b (4)

for output unit y in forward propagation, dropout
uses

y = w · (z � r) + b, (5)

where � is the element-wise multiplication opera-
tor and r 2 Rm is a ‘masking’ vector of Bernoulli
random variables with probability p of being 1.
Gradients are backpropagated only through the
unmasked units. At test time, the learned weight
vectors are scaled by p such that ŵ = pw, and
ŵ is used (without dropout) to score unseen sen-
tences. We additionally constrain l2-norms of the
weight vectors by rescaling w to have ||w||2 = s
whenever ||w||2 > s after a gradient descent step.

2We employ language from computer vision where a color
image has red, green, and blue channels.

Good results have also been achieved by representing a sentence 
as a matrix of word vectors and applying 2D convolutions 
(where each filter uses a different kernel size)

CNNs for Text (with 2D Convolutions)

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.

https://arxiv.org/abs/1408.5882

Sebastian Raschka STAT 479: Deep Learning SS 2019 45

https://modelzoo.co/model/pytorch-nlp

Pre-Trained Models for Text

https://modelzoo.co/model/pytorch-nlp

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 1

STAT 453: Deep Learning, Spring 2020
Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/

Lecture 14

Introduction to
Recurrent Neural Networks

Lecture Slides:
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L14-rnns

http://stat.wisc.edu/~sraschka/teaching/stat453-ss2020/
https://github.com/rasbt/stat453-deep-learning-ss20/tree/master/L14-rnns

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 2

A Classic Approach for Text Classification:
Bag-of-Words Model

x[1] = ”The sun is shining”
<latexit sha1_base64="OKMSIS0rHzI4u0yb4ZDXL5GhtgA=">AAACGHicbVC7SgNBFJ31GeMramkzJAhWcVcFbYSgjWUEkwjJGmYnd5PB2dll5q4kLPsZNv6KjYUitun8Gycxha8DA4dz7uXOOUEihUHX/XDm5hcWl5YLK8XVtfWNzdLWdtPEqebQ4LGM9U3ADEihoIECJdwkGlgUSGgFdxcTv3UP2ohYXeMoAT9ifSVCwRlaqVs66EQMB0GYDfPbrO35OT2jtIMwxKx8PQBqUkWFoWYglFD9ct4tVdyqOwX9S7wZqZAZ6t3SuNOLeRqBQi6ZMW3PTdDPmEbBJeTFTmogYfyO9aFtqWIRGD+bBsvpnlV6NIy1fQrpVP2+kbHImFEU2MlJDPPbm4j/ee0Uw1M/EypJERT/OhSmkmJMJy3RntDAUY4sYVwL+1fKB0wzjrbLoi3B+x35L2keVr2j6uHVcaV2PqujQHZJmewTj5yQGrkkddIgnDyQJ/JCXp1H59l5c96/Ruec2c4O+QFn/AnSvZ+f</latexit>

x[2] = ”The weather is sweet”
<latexit sha1_base64="5I7HegCmiP0Jx+G/Dp7ZWqZNVss=">AAACGnicbVC7SgNBFJ31GeMramkzJAhWYTcK2ghBG8sIiQZ21zA7uWsGZx/M3FXDst9h46/YWChiJzb+jZNH4evAwOGce7lzTpBKodG2P62Z2bn5hcXSUnl5ZXVtvbKxea6TTHHo8EQmqhswDVLE0EGBErqpAhYFEi6C65ORf3EDSoskbuMwBT9iV7EIBWdopF7F8SKGgyDM74rL3G34BT2i1EO4w7zaHgC9BWODokJTfQuA1aJXqdl1ewz6lzhTUiNTtHqVd6+f8CyCGLlkWruOnaKfM4WCSyjKXqYhZfyaXYFraMwi0H4+jlbQHaP0aZgo82KkY/X7Rs4irYdRYCZHQfRvbyT+57kZhod+LuI0Q4j55FCYSYoJHfVE+0IBRzk0hHElzF8pHzDFOJo2y6YE53fkv+S8UXf26o2z/VrzeFpHiWyTKtklDjkgTXJKWqRDOLknj+SZvFgP1pP1ar1NRmes6c4W+QHr4wuB26CG</latexit>

x[3] = ”The sun is shining,

the weather is sweet, and one and one is two”
<latexit sha1_base64="JiNG/+AXF+oBM1ttTsBLjeFOxpM=">AAACT3icbVFNa9wwEJW3aZtsvzbNMRexS6GHZbGTQHsphPTSYwLZJGA7iyyPd8XKkpHG3SzG/7CX9ta/0UsPCSHyxoR8PRB6vDfDaJ6SQgqLvv/X67xYe/nq9fpG983bd+8/9DY/nlhdGg5jrqU2ZwmzIIWCMQqUcFYYYHki4TSZf2/8059grNDqGJcFxDmbKpEJztBJk14W5QxnSVZd1OdVuBvX9BulEcIFVv3jGVBbKiostTOhhJoO6yhqXXTmAlwvmFXBAgCHlKmUagV3t3Nwofv1pDfwR/4K9CkJWjIgLQ4nvT9RqnmZg0IumbVh4BcYV8yg4BLqblRaKBifsymEjiqWg42rVR41/eSUlGbauKOQrtT7HRXLrV3miatstrePvUZ8zgtLzL7GlVBFiaD47aCslBQ1bcKlqTDAUS4dYdwI91bKZ8wwju4Lui6E4PHKT8nJzijYHe0c7Q32D9o41sk26ZPPJCBfyD75QQ7JmHDyi/wjl+TK++399647bWnHa8kWeYDOxg2D2bOH</latexit>

X =

2

4
0 1 0 1 1 0 1 0 0
0 1 0 0 0 1 1 0 1
2 3 2 1 1 1 2 1 1

3

5

<latexit sha1_base64="96E+QZra0hz6oQdF3fe0hkUBu2c=">AAACfnicbVFdS8MwFE3r16xfUx99iQ5FFGc7BfciDH3xcYLTwTpGmt1uwTQtSSqOsp/hH/PN3+KLWVdlTi9c7sk553KTmyDhTGnX/bDshcWl5ZXSqrO2vrG5Vd7eeVRxKim0aMxj2Q6IAs4EtDTTHNqJBBIFHJ6C59uJ/vQCUrFYPOhRAt2IDAQLGSXaUL3ymx8RPQzCrD3G19gPYMBEFhhOstex4+Ij7Jn8rrPYzdP3nd/EP2bjqZl6YbI2o3mzZ8cH0f8Z3CtX3KqbB/4LvAJUUBHNXvnd78c0jUBoyolSHc9NdDcjUjPKYez4qYKE0GcygI6BgkSgulm+vjE+NEwfh7E0KTTO2dmOjERKjaLAOCfLUvPahPxP66Q6rHczJpJUg6DTQWHKsY7x5C9wn0mgmo8MIFQyc1dMh0QSqs2POWYJ3vyT/4LHWtW7qNbuLyuNm2IdJbSHDtAx8tAVaqA71EQtRNGntW+dWKc2so/sM/t8arWtomcX/Qq7/gU8y6tk</latexit>

vocabulary = {
 'and': 0,
 'is': 1
 'one': 2,
 'shining': 3,
 'sun': 4,
 'sweet': 5,
 'the': 6,
 'two': 7,
 'weather': 8,
}

y =
⇥
0, 1, 0

⇤
<latexit sha1_base64="I1WxPE7V0m67om8S48xR6u6CtsY=">AAACG3icbVDLSgMxFM3UVx1fVZdugkVwUcpMFXQjFN24rGAf0Cklk95pQzOZIcmIZZj/cOOvuHGhiCvBhX9j+kC09UDgcM693Jzjx5wp7ThfVm5peWV1Lb9ub2xube8UdvcaKkokhTqNeCRbPlHAmYC6ZppDK5ZAQp9D0x9ejf3mHUjFInGrRzF0QtIXLGCUaCN1CxUvJHrgB+kowxfY86HPROobTbL7zHZK2C1hx/ZA9H7UbqHolJ0J8CJxZ6SIZqh1Cx9eL6JJCEJTTpRqu06sOymRmlEOme0lCmJCh6QPbUMFCUF10km2DB8ZpYeDSJonNJ6ovzdSEio1Cn0zOU6i5r2x+J/XTnRw3kmZiBMNgk4PBQnHOsLjonCPSaCajwwhVDLzV0wHRBKqTZ22KcGdj7xIGpWye1Ku3JwWq5ezOvLoAB2iY+SiM1RF16iG6oiiB/SEXtCr9Wg9W2/W+3Q0Z8129tEfWJ/feTSgbg==</latexit>

training

Classifier

"Raw" training dataset
Training set as design matrix

class labels

x[3] = ”The sun is shining,

the weather is sweet, and one and one is two”
<latexit sha1_base64="JiNG/+AXF+oBM1ttTsBLjeFOxpM=">AAACT3icbVFNa9wwEJW3aZtsvzbNMRexS6GHZbGTQHsphPTSYwLZJGA7iyyPd8XKkpHG3SzG/7CX9ta/0UsPCSHyxoR8PRB6vDfDaJ6SQgqLvv/X67xYe/nq9fpG983bd+8/9DY/nlhdGg5jrqU2ZwmzIIWCMQqUcFYYYHki4TSZf2/8059grNDqGJcFxDmbKpEJztBJk14W5QxnSVZd1OdVuBvX9BulEcIFVv3jGVBbKiostTOhhJoO6yhqXXTmAlwvmFXBAgCHlKmUagV3t3Nwofv1pDfwR/4K9CkJWjIgLQ4nvT9RqnmZg0IumbVh4BcYV8yg4BLqblRaKBifsymEjiqWg42rVR41/eSUlGbauKOQrtT7HRXLrV3miatstrePvUZ8zgtLzL7GlVBFiaD47aCslBQ1bcKlqTDAUS4dYdwI91bKZ8wwju4Lui6E4PHKT8nJzijYHe0c7Q32D9o41sk26ZPPJCBfyD75QQ7JmHDyi/wjl+TK++399647bWnHa8kWeYDOxg2D2bOH</latexit>

x[3] = ”The sun is shining,

the weather is sweet, and one and one is two”
<latexit sha1_base64="JiNG/+AXF+oBM1ttTsBLjeFOxpM=">AAACT3icbVFNa9wwEJW3aZtsvzbNMRexS6GHZbGTQHsphPTSYwLZJGA7iyyPd8XKkpHG3SzG/7CX9ta/0UsPCSHyxoR8PRB6vDfDaJ6SQgqLvv/X67xYe/nq9fpG983bd+8/9DY/nlhdGg5jrqU2ZwmzIIWCMQqUcFYYYHki4TSZf2/8059grNDqGJcFxDmbKpEJztBJk14W5QxnSVZd1OdVuBvX9BulEcIFVv3jGVBbKiostTOhhJoO6yhqXXTmAlwvmFXBAgCHlKmUagV3t3Nwofv1pDfwR/4K9CkJWjIgLQ4nvT9RqnmZg0IumbVh4BcYV8yg4BLqblRaKBifsymEjiqWg42rVR41/eSUlGbauKOQrtT7HRXLrV3miatstrePvUZ8zgtLzL7GlVBFiaD47aCslBQ1bcKlqTDAUS4dYdwI91bKZ8wwju4Lui6E4PHKT8nJzijYHe0c7Q32D9o41sk26ZPPJCBfyD75QQ7JmHDyi/wjl+TK++399647bWnHa8kWeYDOxg2D2bOH</latexit>

(e.g., logistic regression, MLP, ...)Ex.: https://github.com/rasbt/python-machine-learning-book-3rd-
edition/tree/master/ch08

https://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch08
https://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch08

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 3

1D CNNs for text (and other sequence data)

T
h
e

s
u
n

i
s

s
h
i
n
i
n
g

.

.

.

...

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 4

RNNs and Sequence Modeling Tasks
Backpropagation Through Time

Long-short term memory (LSTM)
Many-to-one Word RNNs

Generating Text with Character RNNs
Attention Mechanisms and Transformers

Lecture Overview

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 5

Sequential data is not i.i.d.

[��! [��! [��! [��! [��! [��!

\��! \��! \��! \��! \��! \��!

7LPH,QSXW�

2XWSXW�

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 6

Bao, Wei, Jun Yue, and Yulei Rao. "A deep learning framework for financial time series using
stacked autoencoders and long-short term memory." PloS one 12, no. 7 (2017): e0180944.

according to previous literature [32, 36]. The trading returns of each model will be compared
against the returns of the buy-and-hold strategy. Specifically, as holding the future contract for
a long time would be subject to great risk in reality, we execute the buy-and-hold strategy by
trading in the spot stock market instead of trading in index future market. The computation
procedure of transaction costs in the spot stock market follows the rule that we describe above.
Finally, the unified cost in the spot market is 0.25% for buying and 0.45% for selling.

Results

For each stock index, we show the yearly predicted data from the four models and the corre-
sponding actual data in the graph. Fig 8 illustrates Year 1 results and the remaining figures for
Year 2 to Year 6 can be found in S1–S5 Figs. According to Fig 8 and S1–S5 Figs, we can find
that LSTM and RNN have larger variations and distances to the actual data than WSAEs-
LSTM and WLSTM. Furthermore, comparing WSAEs-LSTM with WLSTM, the former out-
performs the latter: WSAEs-LSTM has less volatility and is closer to the actual trading data
than WLSTM. Specifically, the advantage of WSAEs-LSTM in predicting is more obvious in
less developed markets than in developed market.

Fig 8. Displays the actual data and the predicted data from the four models for each stock index in
Year 1 from 2010.10.01 to 2011.09.30.

https://doi.org/10.1371/journal.pone.0180944.g008

A deep learning framework for financial time series

PLOS ONE | https://doi.org/10.1371/journal.pone.0180944 July 14, 2017 16 / 24

Stock market predictions

www.nature.com/scientificreports/

7SCIENTIFIC REPORTS | (2018) 8:15270 �ȁ����ǣͷͶǤͷͶ;Ȁ�ͺͷͻͿ;ǦͶͷ;ǦͷǦͷ

data. A!er word embedding, words from the corpus would be mapped to vectors of real numbers, which can be
processed by a neural network model.

In practical use, all the word vectors will be deposited into a matrix ∈ ×WE Rd N , where N denotes the size of
the corpus and d denotes the word vector dimension. We call this matrix as the embedding layer or the lookup
table layer. "e embedding layer can be initialized through a pre-trained algorithm, and some algorithms have
been proposed based on neural networks70, dimensionality reduction on the word co-occurrence matrix72,

Figure 5. "e basic architectural structure of our model KEGRU. (1) We #rst built the k-mer corpus, which
consists of a number of k-mer sequence built by splitting DNA sequence. (2) Based on the k-mer corpus built at
#rst step, we use the pre-trained model word2vec to learn the k-mer embedding vectors. All k-mer vectors are
stacked into the embedding matrix that will be used to initialize the embedding layer. (3) We use bidirectional
GRU network to solve long-range dependencies problem and to learn feature information from input k-mer
sequence. (4) "e prediction results were generated by the dense layer and the sigmoid layer, and then we use a
loss function to compare the prediction results with the true target labels.

Figure 6. Structural comparison between (a) LSTM and (b) GRU67. (a) i, f and o denote the input, forget and
output gates, respectively. C and E denote the current memory cell state and the new memory cell state. (b) r and
z represent the reset and update gates. h and m are the current unit state and the candidate unit state.

Shen, Zhen, Wenzheng Bao, and De-Shuang Huang. "Recurrent
Neural Network for Predicting Transcription Factor Binding Sites."
Scientific reports 8, no. 1 (2018): 15270.

DNA or (amino acid/protein)
sequence modeling

Applications:
Working with Sequential Data

• Text classification
• Speech recognition (acoustic modeling)
• language translation
• ...

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0180944
https://www.nature.com/articles/s41598-018-33321-1
https://www.nature.com/articles/s41598-018-33321-1

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020

K

\

[

K�W!

\�W!

[�W!

7

Networks we used
previously: also called
feedforward neural
networks

Recurrent Neural
Network (RNN)

Overview time step t

Recurrent edge

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 8

Overview

K�W!

\�W!

[�W!

K�W��!

\�W��!

[�W��!

K�W!

\�W!

[�W!

K�W���

\�W���

[�W���

8QIROG

K�W!

\�W!

[�W!

K�W��!

\�W��!

[�W��!

K�W!

\�W!

[�W!

K�W���

\�W���

[�W���

8QIROG

K�W! K�W��! K�W! K�W���

0XOWLOD\HU�511

6LQJOH�OD\HU�511

� � � �

� � � �

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 9

Figure based on:

The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

PDQ\�WR�RQH RQH�WR�PDQ\

PDQ\�WR�PDQ\ PDQ\�WR�PDQ\

Different Types of Sequence Modeling Tasks

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 10

PDQ\�WR�RQH RQH�WR�PDQ\

PDQ\�WR�PDQ\ PDQ\�WR�PDQ\

Different Types of Sequence Modeling Tasks

Many-to-one: The input data is a sequence, but the output is a fixed-size
vector, not a sequence.
 
Ex.: sentiment analysis, the input is some text, and the output is a class
label.

https://www.kdnuggets.com/images/sentiment-fig-1-689.jpg

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 11

PDQ\�WR�RQH RQH�WR�PDQ\

PDQ\�WR�PDQ\ PDQ\�WR�PDQ\

Different Types of Sequence Modeling Tasks

One-to-many: Input data is in a standard format (not a sequence), the
output is a sequence.

Ex.: Image captioning, where the input is an image, the output is a text
description of that image

https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2

Sebastian Raschka STAT 453: Intro to Deep Learning and Generative Models SS 2020 12

PDQ\�WR�RQH RQH�WR�PDQ\

PDQ\�WR�PDQ\ PDQ\�WR�PDQ\

Different Types of Sequence Modeling Tasks

Many-to-many: Both inputs and outputs are sequences. Can be direct
or delayed.

Ex.: Video-captioning, i.e., describing a sequence of images via text
(direct).

Translating one language into another (delayed)

https://static-01.hindawi.com/articles/mpe/volume-2018/3125879/figures/3125879.fig.001.svgz

