
 
Chapter 3 Review Questions 
 

1. a) Call this protocol Simple Transport Protocol (STP). At the sender side, STP 

accepts from the sending process a chunk of data not exceeding 1196 bytes, a 

destination host address, and a destination port number. STP adds a four-byte 

header to each chunk and puts the port number of the destination process in this 

header. STP then gives the destination host address and the resulting segment to 

the network layer. The network layer delivers the segment to STP at the 

destination host. STP then examines the port number in the segment, extracts the 

data from the segment, and passes the data to the process identified by the port 

number.  

  

 b) The segment now has two header fields: a source port field and destination port 

 field. At the sender side, STP accepts a chunk of data not exceeding 1192 bytes, a 

 destination host address, a source port number, and a destination port number. 

 STP creates a segment which contains the application data, source port number, 

 and destination port number. It then gives the segment and the destination host 

 address to the network layer. After receiving the segment, STP at the receiving 

 host gives the application process the application data and the source port number.  

 

 c) No, the transport layer does not have to do anything in the core; the transport 

 layer “lives” in the end systems. 

 

2. a) For sending a letter, the family member is required to give the delegate the 

letter itself, the address of the destination house, and the name of the recipient. 

The delegate clearly writes the recipient’s name on the top of the letter. The 

delegate then puts the letter in an envelope and writes the address of the 

destination house on the envelope. The delegate then gives the letter to the 

planet’s mail service. At the receiving side, the delegate receives the letter from 

the mail service, takes the letter out of the envelope, and takes note of the 

recipient name written at the top of the letter. The delegate than gives the letter to 

the family member with this name.  

 

 b) No, the mail service does not have to open the envelope; it only examines the 

address on the envelope. 

 

3. Source port number y and destination port number x. 

 

4. An application developer may not want its application to use TCP’s congestion 

control, which can throttle the application’s sending rate at times of congestion. 

Often, designers of IP telephony and IP videoconference applications choose to 

run their applications over UDP because they want to avoid TCP’s congestion 

control. Also, some applications do not need the reliable data transfer provided by 

TCP. 

 



5. Since most firewalls are configured to block UDP traffic, using TCP for video and 

voice traffic lets the traffic though the firewalls.  

 

6. Yes. The application developer can put reliable data transfer into the application 

layer protocol. This would require a significant amount of work and debugging, 

however. 

 

7. Yes, both segments will be directed to the same socket. For each received 

segment, at the socket interface, the operating system will provide the process 

with the IP addresses to determine the origins of the individual segments. 

 

8. For each persistent connection, the Web server creates a separate “connection 

socket”. Each connection socket is identified with a four-tuple: (source IP 

address, source port number, destination IP address, destination port number). 

When host C receives and IP datagram, it examines these four fields in the 

datagram/segment to determine to which socket it should pass the payload of the 

TCP segment. Thus, the requests from A and B pass through different sockets. 

The identifier for both of these sockets has 80 for the destination port; however, 

the identifiers for these sockets have different values for source IP addresses. 

Unlike UDP, when the transport layer passes a TCP segment’s payload to the 

application process, it does not specify the source IP address, as this implicitly 

specified by the socket identifier. 

 

 

9. Sequence numbers are required for a receiver to find out whether an arriving 

packet contains new data or is a retransmission. 

 

10. To handle losses in the channel. If the ACK for a transmitted packet is not 

received within the duration of the timer for the packet, the packet (or its ACK or 

NACK) is assumed to have been lost. Hence, the packet is retransmitted. 

 

11. A timer would still be necessary in the protocol rdt 3.0. If the round trip time is 

known then the only advantage will be that, the sender knows for sure that either 

the packet or the ACK (or NACK) for the packet has been lost, as compared to 

the real scenario, where the ACK (or NACK) might still be on the way to the 

sender, after the timer expires. However, to detect the loss, for each packet, a 

timer of constant duration will still be necessary at the sender. 

 

12. Java Applet 

 

13. Java Applet 

 

14. a) false b)  false    c) true  d) false  e) true   f) false   g) false 

 

15. a) 20 bytes b) ack number = 90 

 



16. 3 segments. First segment: seq = 43, ack =80; Second segment: seq = 80, ack = 

44; Third segment; seq = 44, ack = 81 

 

17. R/2 

 

18. False, it is set to half of the current value of the congestion window. 



Chapter 3 Problems 
 

Problem 1  
 

 source port 

numbers 

destination port 

numbers 

a) AoS 467 23 

b) BoS 513 23 

c) S A o 23 467 

d) S B o 23 513 

 
e) Yes. 

f) No. 

 

Problem 2 
 

Suppose the  IP addresses of the hosts A, B, and C are a, b, c, respectively. (Note that 

a,b,c are distinct.) 

 

To host A: Source port =80, source IP address = b, dest port = 26145, dest IP address = a 

 

To host C, left process: Source port =80, source IP address = b, dest port = 7532, dest IP 

address = c 

 

To host C, right process: Source port =80, source IP address = b, dest port = 26145, dest 

IP address = c 

 

Problem 3 
 

Note, wrap around if overflow. 

 

11100101

00101010

11001010

�
 

 

00111000

00101110

11100101

�
 

 

One's complement = 1 1 1 0 0 0 1 1. 

 



To detect errors, the receiver adds the four words (the three original words and the 

checksum). If the sum contains a zero, the receiver knows there has been an error. All 

one-bit errors will be detected, but two-bit errors can be undetected (e.g., if the last digit 

of the first word is converted to a 0 and the last digit of the second word is converted to a 

1). 

 

Problem 4 
(a) Adding the two bytes gives 10110010. Taking the one’s complement gives 01001101.  

 

(b) Adding the two bytes gives 00010001; the one’s complement gives 11101110.  

 

(c) First byte = 01011110 ; second byte = 01010100. 

 

Problem 5 
No, the receiver cannot be absolutely certain that no bit errors have occurred. This is 

because of the manner in which the checksum for the packet is calculated. If the 

corresponding bits (that would be added together) of two 16-bit words in the packet were 

0 and 1 then even if these get flipped to 1 and 0 respectively, the sum still remains the 

same. Hence, the 1s complement the receiver calculates will also be the same. This 

means the checksum will verify even if there was transmission error. 
 

Problem 6 
Suppose the sender is in state “Wait for call 1 from above” and the receiver (the receiver 

shown in the homework problem) is in state “Wait for 1 from below.”  The sender sends 

a packet with sequence number 1, and transitions to “Wait for ACK or NAK 1,” waiting 

for an ACK or NAK.  Suppose now the receiver receives the packet with sequence 

number 1 correctly, sends an ACK, and transitions to state “Wait for 0 from below,” 

waiting for a data packet with sequence number 0.  However, the ACK is corrupted.  

When the rdt2.1 sender gets the corrupted ACK, it resends the packet with sequence 

number 1.  However, the receiver is waiting for a packet with sequence number 0 and (as 

shown in the home work problem) always sends a NAK when it doesn't get a packet with 

sequence number 0. Hence the sender will always be sending a packet with sequence 

number 1, and the receiver will always be NAKing that packet.  Neither will progress 

forward from that state. 

 

Problem 7 
To best answer this question, consider why we needed sequence numbers in the first 

place. We saw that the sender needs sequence numbers so that the receiver can tell if a 

data packet is a duplicate of an already received data packet.  In the case of ACKs, the 

sender does not need this info (i.e., a sequence number on an ACK) to tell detect a 

duplicate ACK.  A duplicate ACK is obvious to the rdt3.0 receiver, since when it has 



received the original ACK it transitioned to the next state.  The duplicate ACK is not the 

ACK that the sender needs and hence is ignored by the rdt3.0 sender. 

 

Problem 8 
The sender side of protocol rdt3.0 differs from the sender side of protocol 2.2 in that 

timeouts have been added.  We have seen that the introduction of timeouts adds the 

possibility of duplicate packets into the sender-to-receiver data stream.  However, the 

receiver in protocol rdt.2.2 can already handle duplicate packets. (Receiver-side 

duplicates in rdt 2.2 would arise if the receiver sent an ACK that was lost, and the sender 

then retransmitted the old data).  Hence the receiver in protocol rdt2.2 will also work as 

the receiver in protocol rdt 3.0. 

Problem 9 
Suppose the protocol has been in operation for some time. The sender is in state “Wait 

for call from above” (top left hand corner) and the receiver is in state “Wait for 0 from 

below”. The scenarios for corrupted data and corrupted ACK are shown in Figure 1. 

Sender ignores A1 

Packet garbled, receiver 

resends last ACK  (A1) 

M0 corruptedSender sends M0 

Timeout: sender 

resends M0 

M0 

A0 

M1 

A1 

A1 

sender sends M0 M0 

A0 

M1 

A1 corrupted  

sender sends M1 

Ignore ACK 

Timeout: sender 

resends M1 

M1 

A1 

M0 

Corrupted 

data 

Corrupted 

ACK 

 
 

Figure 1: rdt 3.0 scenarios: corrupted data, corrupted ACK 



 

Problem 10 
Here, we add a timer, whose value is greater than the known round-trip propagation 

delay.  We add a timeout event to the “Wait for ACK or NAK0” and “Wait for ACK or 

NAK1” states.  If the timeout event occurs, the most recently transmitted packet is 

retransmitted.  Let us see why this protocol will still work with the rdt2.1 receiver. 

 

x Suppose the timeout is caused by a lost data packet, i.e., a packet on the sender-

to-receiver channel.  In this case, the receiver never received the previous 

transmission and, from the receiver's viewpoint, if the timeout retransmission is 

received, it look exactly the same as if the original transmission is being   

received. 

x Suppose now that an ACK is lost.  The receiver will eventually retransmit the 

packet on a timeout.  But a retransmission is exactly the same action that is take if 

1an ACK is garbled.  Thus the sender's reaction is the same with a loss, as with a 

garbled ACK.  The rdt 2.1 receiver can already handle the case of a garbled ACK. 

Problem 11 
The protocol would still work, since a retransmission would be what would happen if the 

packet received with errors has actually been lost (and from the receiver standpoint, it 

never knows which of these events, if either, will occur).   

 

To get at the more subtle issue behind this question, one has to allow for premature 

timeouts to occur.  In this case, if each extra copy of the packet is ACKed and each 

received extra ACK causes another extra copy of the current packet to be sent, the 

number of times packet n is sent will increase without bound as approaches infinity. n
 

Problem 12 
 

M0 

M0 

M0 

M1 

M1 

A0 

A0 

A1 

A1 

old version of M0  

accepted! 

 



 

Problem 13 
 
In a NAK only protocol, the loss of packet x is only detected by the receiver when packet 

x+1 is received. That is, the receivers receives x-1 and then x+1, only when x+1 is 
received does the receiver realize that x was missed. If there is a long delay between the 

transmission of x and the transmission of x+1, then it will be a long time until x can be 

recovered, under a NAK only protocol.  

 

On the other hand, if data is being sent often, then recovery under a NAK-only scheme 

could happen quickly. Moreover, if errors are infrequent, then NAKs are only 

occasionally sent (when needed), and ACK are never sent – a significant reduction in 

feedback in the NAK-only case over the ACK-only case.  

 

Problem 14 
 

It takes 12 microseconds (or 0.012 milliseconds) to send a packet, as 1500*8/10
9
=12 

microseconds. In order for the sender to be busy 95 percent of the time, we must have 
012.30/)012.0(95.0 nutil    

or n  approximately 2376 packets. 

 

Problem 15  
 
Yes. This actually causes the sender to send a number of pipelined data into the channel.   

Yes. Here is one potential problem.  If data segments are lost in the channel, then the 

sender of rdt 3.0 won’t re-send those segments, unless there are some additional 

mechanism in the application to recover from loss.  

 

Problem 16 
 
In our solution, the sender will wait until it receives an ACK for a pair of messages 

(seqnum and seqnum+1) before moving on to the next pair of messages.  Data packets 

have a data field and carry a two-bit sequence number. That is, the valid sequence 

numbers are 0, 1, 2, and 3. (Note: you should think about why a 1-bit sequence number 

space of 0, 1 only would not work in the solution below.) ACK messages carry the 

sequence number of the data packet they are acknowledging. 

 

The FSM for the sender and receiver are shown in Figure 2.  Note that the sender state 

records whether (i) no ACKs have been received for the current pair, (ii) an ACK for 

seqnum (only) has been received, or an ACK for seqnum+1 (only) has been received. In 

this figure, we assume that the seqnum is initially 0, and that the sender has sent the first 



two data messages (to get things going). A timeline trace for the sender and receiver 

recovering from a lost packet is shown below: 

 

 

wait for
pair of
ACKs

wait for
odd
ACK

wait for
even
ACK

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum+1)

( rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

( rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_ack(seqnum+1))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_ack(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_ack(seqnum+1)

udt_send(sndpkt, seqnum+1)
start_timer

seqnum = seqnum+2
udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)
start_timer

udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)

start_timer

seqnum = seqnum+2
udt_send(sndpkt, seqnum)
udt_send(sndpkt, seqnum+1)
start_timer

udt_send(sndpkt, seqnum)
start_timer

timeout

timeout

timeout

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))
||
(rdt_rcv(rcvpkt) && notcorupt(rcvpkt)
&& has_not_ACK(seqnum)
&& has_not_ACK(seqnum+1) )

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt) && notcorupt(rcvpkt)
&& has_seq(x)

&& x != seqnum
&& x != seqnum+1

sender

wait for
pair of
data

wait for
odd
data

wait for
even
data

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum+1)

udt_send(ACK,seqnum)
seqnum = seqnum+2

udt_send(ACK,seqnum+1)
seqnum = seqnum+2

udt_send(ACK, seqnum+1)

udt_send(ACK, x)

udt_send(ACK, seqnum) udt_send(ACK, seqnum)

udt_send(ACK, seqnum+1)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

rdt_rcv(rcvpkt) && corrupt(rcvpkt)

receiver

 
 

Figure 2: Sender and receiver for Problem 3.15 
 

    Sender       Receiver 
  
    make pair (0,1)  
    send packet 0 



Packet 0 drops 
    send packet 1 
         receive packet 1 
         buffer packet 1 
           send ACK 1 
    receive ACK 1 
    (timeout) 
    resend packet 0 
             receive packet 0 
         deliver pair (0,1) 
         send ACK 0 
    receive ACK 0  
 
 

Problem 17 
 
This problem is a variation on the simple stop and wait protocol (rdt3.0).  Because the 

channel may lose messages and because the sender may resend a message that one of the 

receivers has already received (either because of a premature timeout or because the other 

receiver has yet to receive the data correctly), sequence numbers are needed.  As in 

rdt3.0, a 0-bit sequence number will suffice here. 

 

The sender and receiver FSM are shown in Figure 3.  In this problem, the sender state 

indicates whether the sender has received an ACK from B (only), from C (only) or from 

neither C nor B. The receiver state indicates which sequence number the receiver is 

waiting for. 

 



wait for
B or C
ACK

wait for
ACK

C

wait for
ACK
B

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_ack(seqnum,B)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_ACK(seqnum,C)

( rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_not_ack(seqnum,C))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

( rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_not_ack(seqnum,B))

|| (rdt_rcv(rcvpkt) && corrupt(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& is_ack(seqnum,B)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& is_ack(seqnum,C)

udt_send(sndpkt, seqnum)
start_timer

seqnum = seqnum+1
udt_send(sndpkt, seqnum)
start_timer

udt_send(sndpkt, seqnum)
start_timer

seqnum = seqnum+1
udt_send(sndpkt, seqnum)
start_timer

udt_send(sndpkt, seqnum)
start_timer

timeout

timeout

timeout

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))
||
(rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& is_not_ack(seqnum,*))

(rdt_rcv(rcvpkt) && corrupt(rcvpkt))

(rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(x))
&& x != seqnum

sender

wait for
data

seqnum

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& has_seq(seqnum)

udt_send(ACK, seqnum,B)
seqnum = seqnum+1

udt_send(ACK, x,B)

receiver B

 
 

Figure 3. Sender and receiver for Problem 3.16 

 
 
 
 
 
 
 
 
 
 
 
 
 



Problem 18 

rdt_rcv(rcvpkt)&&from_A(rcvpkt) 

 

� 

 rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt)&&

has_seq0(rcvpkt)&&from_A(rcvpkt) 

 

extract(rcvpkt,data) 

deliver_data(data) 

sndpkt=make_pkt(ACK, 0, checksum) 

udt_send(A,sndpkt) 

Wait 
for  0 

from A

Wait 
for  1 

from B
rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 

||has_seq0(rcvpkt))&&from_B(rcvpkt) 

 

sndpkt=make_pkt(ACK, 0, checksum) 

udt_send(B,sndpkt) 

Wait 
for  0 

from B

rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt)&
&has_seq1(rcvpkt)&&from_A(rcvpkt)  

 

extract(rcvpkt,data)  

deliver_data(data) 
sndpkt=make_pkt(ACK, 1,checksum) 

udt_send(A,sndpkt)  

rdt_rcv(rcvpkt)&&from_A(rcvpkt) 

 

rdt_rcv(rcvpkt)&&not_corrupt(rcvpkt)
&&has_seq0(rcvpkt)&&from_B(rcvpkt

) 
 

extract(rcvpkt,data)  

deliver_data(data) 
sndpkt=make_pkt(ACK, 0,checksum) 

udt send(B sndpkt)

rdt_rcv(rcvpkt)&&from_B(rcvpkt) 

 

� 

rdt_rcv(rcvpkt)&& not_corrupt(rcvpkt) 
&&has _seq1(rcvpkt)&&fr om_B(rcvpkt)  

 

extract(rcvpkt,data) 
deliver_data(data) 

sndpkt=make_pkt(ACK,1,checksum) 
udt_send(B,sndpkt)  

rdt_rcv(rcvpkt)&&from_B(rcvpkt) 

 

� 

rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 

||has_seq1(rcvpkt))&&from_B(rcvpkt) 

 

sndpkt=make_pkt(ACK, 1, checksum) 

udt_send(B,sndpkt) 

rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 

||has_seq1(rcvpkt))&&from_A(rcvpkt) 

 

sndpkt=make_pkt(ACK, 1, checksum) 

udt_send(A,sndpkt) 

Wait 
for  1 

from A

� rdt_rcv(rcvpkt)&&(corrupt(rcvpkt) 

||has_seq0(rcvpkt))&&from_A(rcvpkt) 

 

sndpkt=make_pkt(ACK, 0, checksum) 

udt_send(A,sndpkt) 

Figure 4: Receiver side FSM for 3.17 



  Sender 
  The sender side FSM is exactly same as given in Figure 3.15 in text 

 

Problem 19 
 
a) Here we have a window size of N=3.  Suppose the receiver has received packet k-1, 

and has ACKed that and all other preceeding packets.  If all of these ACK's have been 

received by sender, then sender's window is [k, k+N-1].  Suppose next that none of the 

ACKs have been received at the sender.  In this second case, the sender's window 

contains k-1 and the N packets up to and including k-1.  The sender's window is thus [k-

N,k-1]. By these arguments, the senders window is of size 3 and begins somewhere in the 

range [k-N,k]. 

 

b) If the receiver is waiting for packet k, then it has received (and ACKed) packet k-1 and 

the N-1 packets before that. If none of those N ACKs have been yet received by the 

sender, then ACK messages with values of [k-N,k-1] may still be propagating back. 

Because the sender has sent packets [k-N, k-1], it must be the case that the sender has 

already received an ACK for k-N-1. Once the receiver has sent an ACK for k-N-1 it will 

never send an ACK that is less that k-N-1.  Thus the range of in-flight ACK values can 

range from k-N-1 to k-1. 

 

Problem 20 
 
Because the A-to-B channel can lose request messages, A will need to timeout and 

retransmit its request messages (to be able to recover from loss). Because the channel 

delays are variable and unknown, it is possible that A will send duplicate requests (i.e., 

resend a request message that has already been received by B).  To be able to detect 

duplicate request messages, the protocol will use sequence numbers.  A 1-bit sequence 

number will suffice for a stop-and-wait type of request/response protocol. 

A (the requestor) has 4 states: 

x “Wait for Request 0 from above.”  Here the requestor is waiting for a call from 

above to request a unit of data.  When it receives a request from above, it sends a 

request message, R0, to B, starts a timer and makes a transition to the “Wait for 

D0” state.  When in the “Wait for Request 0 from above” state, A ignores 

anything it receives from B. 

 

x “Wait for D0” .  Here the requestor is waiting for a D0 data message from B.  A 

timer is always running in this state.  If the timer expires, A sends another R0 

message, restarts the timer and remains in this state. If a D0 message is received 

from B, A stops the time and transits to the “Wait for Request 1 from above” 

state. If A receives a D1 data message while in this state, it is ignored. 

 

x “Wait for Request 1 from above.”  Here the requestor is again waiting for a call 

from above to request a unit of data. When it receives a request from above, it 



sends a request message, R1, to B, starts a timer and makes a transition to the 

“Wait for D1” state.  When in the “Wait for Request 1 from above” state, A 

ignores anything it receives from B. 

 

x “Wait for D1”.  Here the requestor is waiting for a D1 data message from B.  A 

timer is always running in this state.  If the timer expires, A sends another R1 

message, restarts the timer and remains in this state. If a D1 message is received 

from B, A stops the timer and transits to the “Wait for Request 0 from above” 

state. If A receives a D0 data message while in this state, it is ignored. 

 

The data supplier (B) has only two states: 

 

x “Send D0.” In this state, B continues to respond to received R0 messages by 

sending D0, and then remaining in this state. If B receives a R1 message, then it 

knows its D0 message has been received correctly.  It thus discards this D0 data 

(since it has been received at the other side) and then transits to the “Send D1” 

state, where it will use D1 to send the next requested piece of data. 

 

x “Send D1.” In this state, B continues to respond to received R1 messages by 

sending D1, and then remaining in this state. If B receives a R1 message, then it 

knows its D1 message has been received correctly and thus transits to the “Send 

D1” state. 

 

Problem 21 
 

In order to avoid the scenario of Figure 3.27, we want to avoid having the leading edge of 

the receiver's window (i.e., the one with the “highest” sequence number) wrap around in 

the sequence number space and overlap with the trailing edge (the one with the "lowest" 

sequence number in the sender's window).  That is, the sequence number space must be 

large enough to fit the entire receiver window and the entire sender window without this 

overlap condition.  So - we need to determine how large a range of sequence numbers can 

be covered at any given time by the receiver and sender windows. 

 

Suppose that the lowest-sequence number that the receiver is waiting for is packet m.  In 

this case, it's window is [m,m+w-1] and it has received (and ACKed) packet m-1 and the 

w-1 packets before that, where w is the size of the window. If none of those w ACKs 

have been yet received by the sender, then ACK messages with values of [m-w,m-1] may 

still be propagating back.  If no ACKs with these ACK numbers have been received by 

the sender, then the sender's window would be [m-w,m-1]. 

 

Thus, the lower edge of the sender's window is m-w, and the leading edge of the 

receivers window is m+w-1. In order for the leading edge of the receiver's window to not 

overlap with the trailing edge of the sender's window, the sequence number space must 

thus be big enough to accommodate 2w sequence numbers.  That is, the sequence number 

space must be at least twice as large as the window size, . wk 2t



Problem 22 
a) True. Suppose the sender has a window size of 3 and sends packets 1, 2, 3 at 0t . At 

)01( tt !  the receiver ACKS 1, 2, 3. At 2t  )12( tt !  the sender times out and 

resends 1, 2, 3.  At 3t  the receiver receives the duplicates and re-acknowledges 1, 2, 

3.  At 4t  the sender receives the ACKs that the receiver sent at 1t  and advances its 

window to 4, 5, 6.  At 5t  the sender receives the ACKs 1, 2, 3 the receiver sent at 2t . 

These ACKs are outside its window. 

1t

 

b) True. By essentially the same scenario as in (a). 

 

c) True. 

 

d) True. Note that with a window size of 1, SR, GBN, and the alternating bit protocol are 

functionally equivalent. The window size of 1 precludes the possibility of out-of-order 

packets (within the window). A cumulative ACK is just an ordinary ACK in this 

situation, since it can only refer to the single packet within the window. 

 

Problem 23 
a) Consider sending an application message over a transport protocol. With TCP, the 

application writes data to the connection send buffer and TCP will grab bytes without 

necessarily putting a single message in the TCP segment; TCP may put more or less than 

a singe message in a segment. UDP, on the other hand, encapsulates in a segment 

whatever the application gives it; so that, if the application gives UDP an application 

message, this message will be the payload of the UDP segment. Thus, with UDP, an 

application has more control of what data is sent in a segment.  

 

b) With TCP, due to flow control and congestion control, there may be significant delay 

from the time when an application writes data to its send buffer until when the data is 

given to the network layer. UDP does not have delays due to flow control and congestion 

control. 

 

Problem 24 
There are  possible sequence numbers. 2964,294,967,232  
a) The sequence number does not increment by one with each segment. Rather, it 

increments by the number of bytes of data sent. So the size of the MSS is irrelevant -- the 

maximum size file that can be sent from A to B is simply the number of bytes 

representable by . Gbytes 4.19232 |

b) The number of segments is 8,012,999
536

232

 »
»

º
«
«

ª
. 66 bytes of header get added to each 

segment giving a total of 528,857,934 bytes of header. The total number of bytes 

transmitted is  bytes. 932 10824.4 4528,857,932 u �

Thus it would take 249 seconds to transmit the file over a 155~Mbps link. 



Problem 25 
a. In the second segment from Host A to B, the sequence number is 197, 

source port number is 302 and destination port number is 80. 

b. If the first segment arrives before the second, in the acknowledgement of 

the first arriving segment, the acknowledgement number is 197, the source 

port number is 80 and the destination port number is 302. 

c. If the second segment arrives before the first segment, in the 

acknowledgement of the first arriving segment, the acknowledgement 

number is 127, indicating that it is still waiting for bytes 127 and onwards. 

d.  

 

Ack = 247 

Ack = 247 

Seq = 127, 70 bytes 

Seq = 127, 70 bytes 

Seq = 197, 50 bytes Ack = 197 

Host A Host B 
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Problem 26 
Since the link capacity is only 100 Mbps, so host A’s sending rate can be at most 

100Mbps. Still, host A sends data into the receive buffer faster than Host B can remove 

data from the buffer. The receive buffer fills up at a rate of roughly 40Mbps. When the 

buffer is full, Host B signals to Host A to stop sending data by setting RcvWindow = 0. 

Host A then stops sending until it receives a TCP segment with RcvWindow > 0. Host A 

will thus repeatedly stop and start sending as a function of the RcvWindow values it 

receives from Host B. On average, the long-term rate at which Host A sends data to Host 

B as part of this connection is no more than 60Mbps. 

 

Problem 27 
a) The server uses special initial sequence number (that is obtained from the hash of 

source and destination IPs and ports) in order to defend itself against SYN FLOOD 

attack. 



 

b) No, the attacker cannot create half-open or fully open connections by simply sending 

and ACK packet to the target. Half-open connections are not possible since a server using 

SYN cookies does not maintain connection variables and buffers for any connection 

before full connections are established. For establishing fully open connections, an 

attacker should know the special initial sequence number corresponding to the (spoofed) 

source IP address from the attacker. This sequence number requires the "secret" number 

that each server uses. Since the attacker does not know this secret number, she cannot 

guess the initial sequence number.  
 
c) No, the sever can simply add in a time stamp in computing those initial sequence 

numbers and choose a time to live value for those sequence numbers, and discard expired 

initial sequence numbers even if the attacker replay them.  

 

Problem 28 
If timeout values are fixed, then the senders may timeout prematurely. Thus, some 

packets are re-transmitted even they are not lost.  

If timeout values are estimated (like what TCP does), then increasing the buffer size 

certainly helps to increase the throughput of that router. But there might be one potential 

problem. Queuing delay might be very large, similar to what is shown in Scenario 1.  

 

Problem 29 
Denote  for the estimate after the nth sample.  )(nTTEstimatedR
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The weight given to past samples decays exponentially. 

 

Problem 30 
Let’s look at what could wrong if TCP measures SampleRTT for a retransmitted 

segment. Suppose the source sends packet P1, the timer for P1 expires, and the source 

then sends P2, a new copy of the same packet. Further suppose the source measures 

SampleRTT for P2 (the retransmitted packet). Finally suppose that shortly after 

transmitting P2 an acknowledgment for P1 arrives. The source will mistakenly take this 

acknowledgment as an acknowledgment for P2 and calculate an incorrect value of 

SampleRTT.  

 

Problem 31 
At any given time t, SendBase – 1  is the sequence number of the last byte that the 

sender knows has been received correctly, and in order, at the receiver. The actually last 

byte received (correctly and in order) at the receiver at time t may be greater if there are 

acknowledgements in the pipe. Thus 

 

SendBase–1 d LastByteRcvd 
 

Problem 32 
 
When, at time t, the sender receives an acknowledgement with value y, the sender knows 

for sure that the receiver has received everything up through y-1. The actual last byte 

received (correctly and in order) at the receiver at time t may be greater if y  d 
SendBase  or if there are other acknowledgements in the pipe. Thus  

 

y-1 d LastByteRvcd  
 



Problem 33 
 
Suppose packets n, n+1, and n+2 are sent, and that packet n is received and ACKed.  If 

packets n+1 and n+2 are reordered along the end-to-end-path (i.e., are received in the 

order n+2, n+1) then the receipt of packet n+2 will generate a duplicate ack for n and 

would trigger a retransmission under a policy of waiting only for second duplicate ACK 

for retransmission.  By waiting for a triple duplicate ACK, it must be the case that two 

packets after packet n  are correctly received, while n+1 was not received.  The designers 

of the triple duplicate ACK scheme probably felt that waiting for two packets (rather than 

1) was the right tradeoff between triggering a quick retransmission when needed, but not 

retransmitting prematurely in the face of packet reordering. 

 

Problem 34 
Note that there is a typo in the textbook. 

part b, “5” is missing in “ RTT� ”. 

“If the timeout values for all three protocol are much longer than RTT� ”  
Æ 

“If the timeout values for all three protocol are much longer than ” RTT�5

 

a).  

GoBackN: 

A sends 9 segments in total. They are initially sent segments 1, 2, 3, 4, 5 and later re-sent 

segments 2, 3, 4, and 5.  

B sends 8 ACKs. They are 4 ACKS with sequence number 1, and 4 ACKS with sequence 

numbers 2, 3, 4, and 5.  

 

Selective Repeat: 

A sends 6 segments in total. They are initially sent segments 1, 2, 3, 4, 5 and later re-sent 

segments 2.  

B sends 5 ACKs. They are 4 ACKS with sequence number 1, 3, 4, 5. And there is one 

ACK with sequence number 2.  

 

TCP: 

A sends 6 segments in total. They are initially sent segments 1, 2, 3, 4, 5 and later re-sent 

segments 2.  

B sends 5 ACKs. They are 4 ACKS with sequence number 2. There is one ACK with 

sequence numbers 6. Note that TCP always send an ACK with expected sequence 

number.   

 

b). TCP. This is because TCP uses fast retransmit without waiting until time out.  

Problem 35 
 

Yes, the sending rate is always roughly cwnd/RTT. 

 



Problem 36 
If the arrival rate increases beyond R/2 in Figure 3.46(b), then the total arrival rate to the 

queue exceeds the queue’s capacity, resulting in increasing loss as the arrival rate 

increases.  When the arrival rate equals R/2, 1 out of every three packets that leaves the 

queue is a retransmission.  With increased loss, even a larger fraction of the packets 

leaving the queue will be retransmissions. Given that the maximum departure rate from 

the queue for one of the sessions is R/2, and given that a third or more will be 

transmissions as the arrival rate increases, the throughput of successfully deliver data can 

not increase beyond Oout.  Following similar reasoning, if half of the packets leaving the 

queue are retransmissions, and the maximum rate of output packets per session is R/2, 

then the maximum value of Oout  is (R/2)/2 or R/4. 

 

Problem 37 
a) TCP slowstart is operating in the intervals [1,6] and [23,26] 

b) TCP congestion advoidance is operating in the intervals [6,16] and [17,22] 

c) After the 16
th

 transmission round, packet loss is recognized by a triple duplicate 

ACK.  If there was a timeout, the congestion window size would have dropped to 

1. 

d) After the 22
nd

 transmission round, segment loss is detected due to timeout, and 

hence the congestion window size is set to 1. 

e) The threshold is initially 32, since it is at this window size that slowtart stops and 

congestion avoidance begins. 

f) The threshold is set to half the value of the congestion window when packet loss 

is detected. When loss is detected during transmission round 16, the congestion 

windows size is 42. Hence the threshold is 21 during the 18
th

 transmission round. 

g) The threshold is set to half the value of the congestion window when packet loss 

is detected. When loss is detected during transmission round 22, the congestion 

windows size is 26. Hence the threshold is 13 during the 24
th

 transmission round. 

h) During the 1
st
 transmission round, packet 1 is sent; packet 2-3 are sent in the 2

nd
 

transmission round; packets 4-7 are sent in the 3
rd

 transmission round; packets 8-

15 are sent in the 4
th

 transmission round; packets 16-31 are sent in the 5
th

 

transmission round; packets 32-63 are sent in the 6
th

 transmission round; packets 

64 – 96 are sent in the 7
th

 transmission round.  Thus packet 70 is sent in the 7
th

 

transmission round. 

i) The congestion window and threshold will be set to half the current value of the 

congestion window (8) when the loss occurred. Thus the new values of the 

threshold and window will be 4. 

j) Threshold is 21, and congestion window size is 1.  

k) round 17, 1 packet; round 18, 2 packets; round 19, 4 packets; round 20, 8 packets; 

round 21, 16 packets; round 22, 21 packets. So, the total number is 52.  

Problem 38 
Refer to Figure 5. In Figure 5(a), the ratio of the linear decrease on loss between 

connection 1 and connection 2 is the same - as ratio of the linear increases: unity.  In this 

case, the throughputs never move off of the AB line segment.  In Figure 5(b), the ratio of 



the linear decrease on loss between connection 1 and connection 2 is 2:1.  That is, 

whenever there is a loss, connection 1 decreases its window by twice the amount of 

connection 2.  We see that eventually, after enough losses, and subsequent increases, that 

connection 1's throughput will go to 0, and the full link bandwidth will be allocated to 

connection 2. 
 

 

 
 

Figure 5: Lack of TCP convergence with linear increase, linear decrease 

 

Problem 39 
If TCP were a stop-and-wait protocol, then the doubling of the time out interval would 

suffice as a congestion control mechanism. However, TCP uses pipelining (and is 

therefore not a stop-and-wait protocol), which allows the sender to have multiple 

outstanding unacknowledged segments. The doubling of the timeout interval does not 

prevent a TCP sender from sending a large number of first-time-transmitted packets into 

the network, even when the end-to-end path is highly congested. Therefore a congestion-

control mechanism is needed to stem the flow of “data received from the application 

above” when there are signs of network congestion. 

Problem 40 
In this problem, there is no danger in overflowing the receiver since the receiver’s receive 

buffer can hold the entire file. Also, because there is no loss and acknowledgements are 

returned before timers expire, TCP congestion control does not throttle the sender. 

However, the process in host A will not continuously pass data to the socket because the 

send buffer will quickly fill up. Once the send buffer becomes full, the process will pass 

data at an average rate or R << S. 



Problem 41 
a) It takes 1 RTT to increase CongWin to 6 MSS; 2 RTTs to increase to 7 MSS;  3 

RTTs to increase to 8 MSS; 4 RTTs to increase to 9 MSS; 5 RTTs to increase to 10 

MSS; and 6 RTTs to increase to 11 MSS. 

b) In the first RTT 5 MSS was sent; in the second RTT 6 MSS was sent; in the third 

RTT 7 MSS was sent; in the forth RTT 8 MSS was sent; in the fifth RTT, 9 MSS 

was sent; and in the sixth RTT, 10 MSS was sent. Thus, up to time 6 RTT, 

5+6+7+8+9+10 = 45 MSS were sent (and acknowledged).  Thus, we can say that 

the average throughput up to time 6 RTT was (45 MSS)/(6 RTT) = 7.5 MSS/RTT.  

 

Problem 42 
The loss rate, L , is the ratio of the number of packets lost over the number of packets 

sent. In a cycle, 1 packet is lost. The number of packets sent in a cycle is 
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Problem 43 
a. Let W denote the max window size measured in segments. Then, W*MSS/RTT = 

10Mbps, as packets will be dropped if the maximum sending rate exceeds link 

capacity. Thus, we have W*1500*8/0.1=10*10^6, then W is about 84 (ceiling of 

83.3) segments.  

b. As congestion window size varies from W/2 to W, then the average window size 

is 0.75W=63 segments. Average throughput is 63*1500*8/0.1=7.56Mbps. 

c. 84/2 *0.1= 4.2 seconds, as the number of RTTs (that this TCP connections needs 

in order to increase its window size from W/2 to W) is given by W/2. Recall the 

window size increases by one in each RTT. 

 

Problem 44 
Let W denote max window size. Let S denote the buffer size. For simplicity, suppose 

TCP sender sends data packets in a round by round fashion, with each round 

corresponding to a RTT. If the window size reaches W, then a loss occurs. Then the 

sender will cut its congestion window size by half, and waits for the ACKs for W/2 

outstanding packets before it starts sending data segments again. In order to make sure 

the link always busying sending data, we need to let the link busy sending data in the 

period W/(2*C) (this is the time interval where the sender is waiting for the ACKs for the 

W/2 outstanding packets). Thus, S/C must be no less than W/(2*C), that is, S>=W/2. 

 

Let Tp denote the one-way propagation delay between the sender and the receiver. 

When the window size reaches the minimum W/2 and the buffer is empty, we need to 

make sure the link is also busy sending data. Thus, we must have W/2/(2Tp)>=C, thus, 

W/2>=C*2Tp. 

 

Thus, S>=C*2Tp.   

Problem 45 
a. Let W denote the max window size. Then, W*MSS/RTT = 10Gbps, as packets 

will be dropped if maximum sending rate reaches link capacity. Thus, we have 

W*1500*8/0.1=10*10^9, then W= 83334 segments.  

b. As congestion window size varies from W/2 to W, then the average window size 

is 0.75W=62501 segments. Average throughput is 62501*1500*8/0.1=7.5Gbps. 

c. 83334/2 *0.1 /60= 69 minutes. In order to speed up the window increase process, 

we can increase the window size by a much larger value, instead of increasing 

window size only by one in each RTT. Some protocols are proposed to solve this 

problem, such as ScalableTCP or HighSpeed TCP. 



 

Problem 46 

As TCP’s average throughput B is given by 
LRTT

MSS
B
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22.1
, so we know that, 

L= (1.22*MSS / (B*RTT) ) 
2
  

Since between two consecutive packet losses, there are 1/L packets sent by the TCP 

sender, thus, T=(1/L)*MSS/B. Thus, we find that T=B*RTT
2
/(1.22

2
*MSS), that is, T is a 

function of B.   

 

Problem 47 
a. The key difference between C1 and C2 is that C1’s RTT is only half of that of C2. 

Thus C1 adjusts its window size after 100 msec, but C2 adjusts its window size after 200 

msec.   

Assume that whenever a loss event happens, C1 receives it after 100msec and C2 

receives it after 200msec.  

 

We further have the following simplified model of TCP. 

After each RTT, a connection determines if it should increase window size or not. For 

C1, we compute the average total sending rate in the link in the previous 100 msec. If that 

rate exceeds the link capacity, then we assume that C1 detects loss and reduces its 

window size. But for C2, we compute the average total sending rate in the link in the 

previous 200msec. If that rate exceeds the link capacity, then we assume that C2 detects 

loss and reduces its window size. 

Note that it is possible that the average sending rate in last 100msec is higher than the 

link capacity, but the average sending rate in last 200msec is smaller than or equal to the 

link capacity, then in this case, we assume that C1 will experience loss event but C2 will 

not.  

 

The following table describes the evolution of window sizes and sending rates based on 

the above assumptions. 

 
 C1 C2 

Time 

(msec) 

Window Size 

(num. of 

segments sent in 

next 100msec) 

Average data sending rate 

(segments per second, 

=Window/0.1) 

Window 

Size(num. of 

segments sent 

in next 

200msec) 

Average data sending rate 

(segments per second, 

=Window/0.2) 

0 10 100 (in [0-100]msec] 10 50 (in [0-100]msec) 

100 5 

(decreases 

window size as 

the avg. total 

sending rate to 

the link in last 
100msec is 150= 

100+50) 

50 (in [100-200]msec]  50 (in [100-200]msec) 



200 2  

(decreases 

window size as 

the avg. total 

sending rate to 

the link in last 
100msec is 100= 

50+50) 

20 5 

(decreases 

window size as 

the avg. total 

sending rate to 

the link in last 
200msec is 

125= 

(100+50)/2 + 

(50+50)/2) 

25 

300 1 

(decreases 

window size as 

the avg. total 

sending rate to 

the link in last 

100msec is 45= 

(20+25) 

10  25 

400 1 

(no further 

decrease, as 

window size is 

already 1) 

10 2 

(decreases 

window size as 

the avg. total 

sending rate to 

the link in last 
200msec is 

40= (20+10)/2 

+ (25+25)/2) 

10 

500 2 20  10 

600 3 30 3 15 

700 1 10  15 

800 2 20 1 5 

900 3 30  5 

1000 1 

(decreases 

window size as 

the avg. total 

sending rate to 

the link in last 

100msec is 35= 

(30+5) 

10 2 

(increases 

window size as 

the avg. total 

sending rate to 

the link in last 
200msec is 

30= (20+30)/2 

+ (5+5)/2) 

10 

1100 2 20  10 

1200 3 30 3 15 

1300 1 10  15 

1400 2 20 1 5 

1500 3 30  5 

1600 1 10 2 10 

1700 2 20  10 

1800 3 30 3 15 

1900 1 10  15 

2000 2 20 1 5 

2100 3 30  5 

2200 1 10 2 10 

 



 

Based on the above table, we find that after 2200 msec, C1’s window size is 1 segment 

and C2’s window size is 2 segments.  

 

b. No. In the long run, C1’s bandwidth share is roughly twice as that of C2’s, because C1 

has shorter RTT, only half of that of C2, so C1 can adjust its window size twice as fast as 

C2.  If we look at the above table, we can see a cycle every 600msec, e.g. from 1400msec 

to 1900msec, inclusive. Within a cycle, the sending rate of C1 is 

(20+30+10+20+30+10)/6 = 120, which is twice as large as the sending of C2 given by 

(5+5+10+10+15+15)/6=60. 

Problem 48  
 

a. Similarly as in last problem, we can compute their window sizes over time in the 

following table. Both C1 and C2 have the same window size 2 after 2200msec. 

 

 
 C1 C2 

Time 

(msec) 

Window Size 

(num. of 

segments sent in 

next 100msec) 

Data sending speed 

(segments per second, 

=Window/0.1) 

Window 

Size(num. of 

segments sent 

in next 

100msec) 

Data sending speed 

(segments per second, 

=Window/0.1) 

0 15 150 (in [0-100]msec] 10 100 (in [0-100]msec) 

100 7 70 5 50 

200 3 30 2 20 

300 1 10 1 10 

400 2 20 2 20 

500 1 10 1 10 

600 2 20 2 20 

700 1 10 1 10 

800 2 20 2 20 

900 1 10 1 10 

1000 2 20 2 20 

1100 1 10 1 10 

1200 2 20 2 20 

1300 1 10 1 10 

1400 2 20 2 20 

1500 1 10 1 10 

1600 2 20 2 20 

1700 1 10 1 10 

1800 2 20 2 20 

1900 1 10 1 10 

2000 2 20 2 20 

2100 1 10 1 10 

2200 2 20 2 20 

 

 

b. Yes, this is due to the AIMD algorithm of TCP and that both connections have the 

same RTT.  



c. Yes, this can be seen clearly from the above table. Their max window size is 2.  

d. No, this synchronization won’t help to improve link utilization, as these two 

connections act as a single connection oscillating between min and max window 

size. Thus, the link is not fully utilized (recall we assume this link has no buffer). 

One possible way to break the synchronization is to add a finite buffer to the link 

and randomly drop packets in the buffer before buffer overflow. This will cause 

different connections cut their window sizes at different times. There are many 

AQM (Active Queue Management) techniques to do that, such as RED (Random 

Early Detect), PI (Proportional and Integral AQM), AVQ (Adaptive Virtual 

Queue), and REM (Random Exponential Marking), etc. 

 

Problem 49 
 

Note that W represents the maximum window size. 

First we can find the total number of segments sent out during the interval when TCP 

changes its window size from W/2 up to and include W. This is given by: 

S= W/2 + (W/2)*(1+D) + (W/2)*(1+D)
2
 + (W/2)*(1+D)

3
 + … + (W/2)*(1+D)

k
  

We find k=log(1+D)2, then S=W*(2D+1)/(2D). 

 

Loss rate L is given by: 

L= 1/S = (2D) / (W*(2D+1) ). 

 

The time that TCP takes to increase its window size from W/2 to W is given by:  

k*RTT= (log(1+D)2) * RTT,  

which is clearly independent of TCP’s average throughput.  

 

Note, TCP’s average throughput is given by: 

B=MSS * S/((k+1)*RTT) = MSS / (L*(k+1)*RTT). 

Note that this is different from TCP which has average throughput: 
LRTT

MSS
B
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 , 

where the square root of L appears in the denominator.  

Problem 50 
 
Let’s assume 1500-byte packets and a 100 ms round-trip time. From the TCP throughput 

equation 
LRTT

MSS
B
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22.1
, we have 

10 Gbps = 1.22 * (1500*8 bits) / (.1 sec * srqt(L)), or 

 

sqrt(L) = 14640 bits / (10^9 bits) = 0.00001464, or 

 

L = 2.14 * 10^(-10) 



Problem 51 
 

An advantage of using the earlier values of cwnd and ssthresh  at t2 is that TCP would 

not have to go through slow start and congestion avoidance to ramp up to the throughput 

value obtained at t1.  A disadvantage of using these values is that they may be no longer 

accurate.  In particular, if the path has become more congested between t1 and t2, the 

sender will send a large window’s worth of segments into an already (more) congested 

path. 

Problem 52 
 
a) The server will send its response to Y.  

 

b) The server can be certain that the client is indeed at Y. If it were at some other address 

spoofing Y, the SYNACK would have been sent to the address Y, and the TCP in that 

host would not send the TCP ACK segment back. Even if the attacker were to send an 

appropriately timed TCP ACK segment, it would not know the correct server sequence 

number (since the server uses random initial sequence numbers.) 



Problem 53 em 53 
  

a) Referring to the figure below, we see that the total delay is  a) Referring to the figure below, we see that the total delay is  

  

RTT + RTT + S/R + RTT + S/R + RTT + 12S/R = 4RTT + 14 S/R RTT + RTT + S/R + RTT + S/R + RTT + 12S/R = 4RTT + 14 S/R 

  

b) Similarly, the delay in this case is:  b) Similarly, the delay in this case is:  

  

RTT+RTT + S/R + RTT + S/R + RTT + S/R + RTT + 8S/R = 5RTT +11 S/R RTT+RTT + S/R + RTT + S/R + RTT + S/R + RTT + 8S/R = 5RTT +11 S/R 

  

c) Similarly, the delay in this case is: c) Similarly, the delay in this case is: 

  

RTT + RTT + S/R + RTT + 14 S/R = 3 RTT + 15 S/R RTT + RTT + S/R + RTT + 14 S/R = 3 RTT + 15 S/R 
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