Problems

In each of Problems 1 through 8, determine whether the given function is periodic. If so, find its fundamental period.

1. $\sin (5 x)$
2. $\cos (2 \pi x)$
3. $\sinh (2 x)$
4. $\sin (\pi x / L)$
5. $\tan (\pi x)$
6. x^{2}
7. $f(x)=\left\{\begin{array}{ll}0, & 2 n-1 \leq x<2 n, \\ 1, & 2 n \leq x<2 n+1 ;\end{array} \quad n=0, \pm 1, \pm 2, \ldots\right.$
8. $f(x)=\left\{\begin{array}{ll}(-1)^{n}, & 2 n-1 \leq x<2 n, \\ 1, & 2 n \leq x<2 n+1 ;\end{array} \quad n=0, \pm 1, \pm 2, \ldots\right.$
9. If $f(x)=-x$ for $-L<x<L$, and if $f(x+2 L)=f(x)$, find a formula for $f(x)$ in the interval $L<x<2 L$; in the interval $-3 L<x<-2 L$.
10. If $f(x)=\left\{\begin{array}{lr}x+1, & -1<x<0, \\ x, & 0<x<1,\end{array}\right.$ and if $f(x+2)=f(x)$,
find a formula for $f(x)$ in the interval $1<x<2$; in the interval $8<x<9$.
11. If $f(x)=L-x$ for $0<x<2 L$, and if $f(x+2 L)=f(x)$, find a formula for $f(x)$ in the interval $-L<x<0$.
12. Verify equations (6) and (7) in this section by direct integration. In each of Problems 13 through 18:
a. Sketch the graph of the given function for three periods.
b. Find the Fourier series for the given function.
13. $f(x)=-x,-L \leq x<L ; \quad f(x+2 L)=f(x)$
14. $f(x)=\left\{\begin{array}{rr}1, & -L \leq x<0, \\ 0, & 0 \leq x<L ;\end{array} \quad f(x+2 L)=f(x)\right.$
15. $f(x)=\left\{\begin{array}{rr}x, & -\pi \leq x<0, \\ 0, & 0 \leq x<\pi ;\end{array} \quad f(x+2 \pi)=f(x)\right.$
16. $f(x)=\left\{\begin{array}{lr}x+1, & -1 \leq x<0, \\ 1-x, & 0 \leq x<1 ;\end{array} \quad f(x+2)=f(x)\right.$
17. $f(x)=\left\{\begin{array}{lr}x+L, & -L \leq x \leq 0, \\ L, & 0<x<L ;\end{array} \quad f(x+2 L)=f(x)\right.$
18. $f(x)=\left\{\begin{array}{ll}0, & -2 \leq x \leq-1, \\ x, & -1<x<1, \\ 0, & 1 \leq x<2 ;\end{array} \quad f(x+4)=f(x)\right.$

In each of Problems 19 through 24:
a. Sketch the graph of the given function for three periods.
b. Find the Fourier series for the given function.

G c. Plot the partial sum $s_{m}(x)$ versus x for $m=5,10$, and 20 .
d. Describe how the Fourier series seems to be converging.
19. $f(x)=\left\{\begin{array}{rr}-1, & -2 \leq x<0, \\ 1, & 0 \leq x<2 ;\end{array} \quad f(x+4)=f(x)\right.$
20. $f(x)=x,-1 \leq x<1 ; \quad f(x+2)=f(x)$
21. $f(x)=x^{2} / 2,-2 \leq x \leq 2 ; \quad f(x+4)=f(x)$
22. $f(x)=\left\{\begin{array}{lr}x+2, & -2 \leq x<0, \\ 2-2 x, & 0 \leq x<2 ;\end{array} \quad f(x+4)=f(x)\right.$
23. $f(x)=\left\{\begin{array}{lr}-\frac{1}{2} x, & -2 \leq x<0, \\ 2 x-\frac{1}{2} x^{2}, & 0 \leq x<2 ;\end{array} \quad f(x+4)=f(x)\right.$
24. $f(x)=\left\{\begin{array}{lr}0, & -3 \leq x \leq 0, \\ x^{2}(3-x), & 0<x<3 ;\end{array} \quad f(x+6)=f(x)\right.$
25. Consider the function f defined in Problem 21, and let $e_{m}(x)=f(x)-s_{m}(x)$.
a. Plot $\left|e_{m}(x)\right|$ versus x for $0 \leq x \leq 2$ for several values of m.
b. Find the smallest value of m for which $\left|e_{m}(x)\right| \leq 0.01$ for all x.
26. Consider the function f defined in Problem 24, and let $e_{m}(x)=f(x)-s_{m}(x)$.

G a. Plot $\left|e_{m}(x)\right|$ versus x for $0 \leq x \leq 3$ for several values of m.
N b. Find the smallest value of m for which $\left|e_{m}(x)\right| \leq 0.1$ for all x.
27. Suppose that g is an integrable periodic function with period T. a. If $0 \leq a \leq T$, show that

$$
\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x
$$

Hint: Show first that $\int_{0}^{a} g(x) d x=\int_{T}^{a+T} g(x) d x$. Then, in the second integral, consider the change of variable $s=x-T$.
b. Show that for any value of a, not necessarily in $0 \leq a \leq T$,

$$
\int_{0}^{T} g(x) d x=\int_{a}^{a+T} g(x) d x
$$

c. Show that for any values of a and b,

$$
\int_{a}^{a+T} g(x) d x=\int_{b}^{b+T} g(x) d x
$$

28. If f is differentiable and is periodic with period T, show that f^{\prime} is also periodic with period T. Determine whether

$$
F(x)=\int_{0}^{x} f(t) d t
$$

is always periodic.

