Problems

In each of Problems 1 through 8, determine whether the given function is periodic. If so, find its fundamental period.

- **1.** sin(5x)
- **2.** $\cos(2\pi x)$
- **3.** $\sinh(2x)$
- 4. $\sin(\pi x/L)$
- 5. $tan(\pi x)$
- 6. x^2
- 7. $f(x) = \begin{cases} 0, & 2n 1 \le x < 2n, \\ 1, & 2n \le x < 2n + 1; \end{cases} \quad n = 0, \pm 1, \pm 2, \dots$ 8. $f(x) = \begin{cases} (-1)^n, & 2n - 1 \le x < 2n, \\ 1, & 2n \le x < 2n + 1; \end{cases} \quad n = 0, \pm 1, \pm 2, \dots$

9. If f(x) = -x for -L < x < L, and if f(x + 2L) = f(x), find a formula for f(x) in the interval L < x < 2L; in the interval -3L < x < -2L.

10. If $f(x) = \begin{cases} x+1, & -1 < x < 0, \\ x, & 0 < x < 1, \end{cases}$ and if f(x+2) = f(x), find a formula for f(x) in the interval 1 < x < 2; in the interval 8 < x < 9.

11. If f(x) = L - x for 0 < x < 2L, and if f(x + 2L) = f(x), find a formula for f(x) in the interval -L < x < 0.

12. Verify equations (6) and (7) in this section by direct integration. In each of Problems 13 through 18:

a. Sketch the graph of the given function for three periods.

b. Find the Fourier series for the given function.

13.
$$f(x) = -x$$
, $-L \le x < L$; $f(x + 2L) = f(x)$
14. $f(x) = \begin{cases} 1, & -L \le x < 0, \\ 0, & 0 \le x < L; \end{cases}$, $f(x + 2L) = f(x)$
15. $f(x) = \int x, & -\pi \le x < 0, \\ f(x + 2\pi) = f(x) = f(x) \end{cases}$

15.
$$f(x) = \begin{cases} -1 & -1 \\ 0, & 0 \le x < \pi; \end{cases}$$
$$f(x+1) = f(x)$$

16.
$$f(x) = \begin{cases} x+1, & -1 \le x < 0, \\ 1-x, & 0 \le x < 1; \end{cases}$$

$$f(x+2) = f(x)$$
17.
$$f(x) = \begin{cases} x+L, & -L \le x \le 0, \\ L, & 0 < x < L; \end{cases}$$

$$f(x+2L) = f(x)$$

18.
$$f(x) = \begin{cases} 0, & -2 \le x \le -1, \\ x, & -1 < x < 1, \\ 0, & 1 < x < 2; \end{cases} \quad f(x+4) = f(x)$$

In each of Problems 19 through 24:

a. Sketch the graph of the given function for three periods.

- **b.** Find the Fourier series for the given function.
- **G** c. Plot the partial sum $s_m(x)$ versus x for m = 5, 10, and 20.
- **d.** Describe how the Fourier series seems to be converging.

- **19.** $f(x) = \begin{cases} -1, & -2 \le x < 0, \\ 1, & 0 \le x < 2; \end{cases}$ f(x+4) = f(x)
- **20.** f(x) = x, $-1 \le x < 1$; f(x+2) = f(x)
- **21.** $f(x) = x^2/2, -2 \le x \le 2; \quad f(x+4) = f(x)$

22.
$$f(x) = \begin{cases} x+2, & -2 \le x < 0, \\ 2-2x, & 0 \le x < 2; \end{cases} \quad f(x+4) = f(x)$$

23.
$$f(x) = \begin{cases} -\frac{1}{2}x, & -2 \le x < 0, \\ 2x - \frac{1}{2}x^2, & 0 \le x < 2; \end{cases}$$
 $f(x+4) = f(x)$

24.
$$f(x) = \begin{cases} 0, & -3 \le x \le 0, \\ x^2(3-x), & 0 < x < 3; \end{cases} \quad f(x+6) = f(x)$$

25. Consider the function f defined in Problem 21, and let $e_m(x) = f(x) - s_m(x)$.

- a. Plot |e_m(x)| versus x for 0 ≤ x ≤ 2 for several values of m.
 b. Find the smallest value of m for which |e_m(x)| ≤ 0.01 for all x.
- **26.** Consider the function f defined in Problem 24, and let $e_m(x) = f(x) s_m(x)$.
 - **G** a. Plot $|e_m(x)|$ versus x for $0 \le x \le 3$ for several values of m.

N b. Find the smallest value of *m* for which $|e_m(x)| \le 0.1$ for all *x*.

27. Suppose that g is an integrable periodic function with period T.
a. If 0 ≤ a ≤ T, show that

$$\int_0^T g(x)dx = \int_a^{a+T} g(x)dx.$$

Hint: Show first that $\int_0^a g(x)dx = \int_T^{a+T} g(x)dx$. Then, in the second integral, consider the change of variable s = x - T. **b.** Show that for any value of *a*, not necessarily in $0 \le a \le T$,

$$\int_0^T g(x)dx = \int_a^{a+T} g(x)dx.$$

c. Show that for any values of *a* and *b*,

$$\int_{a}^{a+T} g(x)dx = \int_{b}^{b+T} g(x)dx.$$

28. If f is differentiable and is periodic with period T, show that f' is also periodic with period T. Determine whether

$$F(x) = \int_0^x f(t)dt$$

is always periodic.