# UNIVERSIDADE DE SÃO PAULO - USP ESCOLA DE ENGENHARIA DE SÃO CARLOS - EESC

# DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO - SEP

LABORATÓRIO DE PROCESSOS AVANÇADOS E SUSTENTABILIDADE - LAPRAS

# GUIA PRÁTICO PARA PROJETO DE FERRAMENTAS DE CORTE E DOBRA EM CHAPAS METÁLICAS

Reginaldo Teixeira Coelho, PhD

AGOSTO 2015 – REVISADA NOV2017

| 1.1 - PROCESSOS DE FABRICAÇÃO                         | 7   |
|-------------------------------------------------------|-----|
| 1.2 – NOÇÕES SOBRE OS MATERIAIS METÁLICOS MAIS COMUNS | 9   |
| 1.2.1 - AÇOS                                          | 10  |
| 1.2.2 - FERRO FUNDIDO                                 | 13  |
| 1.2.3 - LIGAS DE ALUMÍNIO                             | 14  |
| 1.2.4 - LIGAS DE COBRE                                | 15  |
| 1.3 - PROPRIEDADES MECÂNICAS DOS MATERIAIS METÁLICOS  | 16  |
| 1.3.1 - TESTE DE TRAÇÃO UNIAXIAL                      | 17  |
| 1.3 2 - TESTE DE TORÇÃO                               | 23  |
| 1.3.3 - TESTE DE DUREZA                               | 26  |
| 1.4 - TRATAMENTOS TÉRMICOS DOS METAIS                 | 29  |
| 1.5 – Critérios de Resistência em Materiais           |     |
| 1.5.1 – Critério de Máxima Tensão de Cisalhamento     |     |
| 1.5.2 – Critério da Energia de Distorção              | 40  |
| 3.1 – Projeto da Tira                                 | 49  |
| 3.2 – Cálculo da carga de corte no estampo            | 61  |
| 3.3 – Operações de dobra e cargas de dobra no estampo | 67  |
| 3.4 – Localização da posição e seleção da espiga      | 74  |
| 3.5 – Projeto do prensa-chapas                        | 75  |
| 3.6 – Projeto dos punções e matrizes                  | 80  |
| 3.6.1 – Projeto dos punções                           |     |
| 3.6.2 – Projeto das Matrizes                          | 93  |
| 3.7 – Uso de pino guia                                | 98  |
| 3.8 – Projeto das colunas                             | 99  |
| 3.9 – Projeto das bases                               | 102 |
| 3.10 – Fixação do estampo na máquina                  | 104 |

# Lista de símbolos

- a, b = Deslocamento na direção da deformação angular e perpendicular a ela
- $d_w$  = Abertura da matriz de dobramento em "V".
- e = Deformação de engenharia
- $e_{ps}$  = Espessura da chapa do prensa-chapas

f = Folga matriz-punção

- g = Folga entre arestas de corte
- h = Espessura da chapa a ser cortada/dobrada
- k = Tensão de Tresca
- $k_I$  = fator para calcular o raio neutro na operação de dobramento
- $k_c$  = Pressão especifica de corte ao cisalhamento
- $k_v$  = Fator para calcular a força de dobramento em "V"
- $k_U$  = Fator para calcular a força de dobramento em "U"
- $k_F$  = Fator para calcular a força de flangeamento
- l = Comprimento final para cálculo da deformação
- $l_e$  = Comprimento deformado na tensão de escoamento
- $l_f$  = Comprimento deformado máximo

 $l_{\theta}$  = Comprimento inicial

- $l_u$  = Comprimento deformado na tensão máxima
- m = Borda lateral da fita
- n = Expoente na equação entre tensão e deformação.
- p = Passo do estampo progressivo
- $p_r$  = Perímetro de corte ao cisalhamento
- $r_N$  = Raio neutro na operação de dobramento
- $r_i$  = Raio interno de dobra
- t = Espaço entre furos na fita
- $t_l$  = Extensão do talão da matriz
- u = Folga lateral entre punção e matriz
- w = Largura da chapa sem dobrada
- A = Largura do sistema de alimentação

 $A_f =$ Área final

C = Constante na equação de flambagem de Euler

E = Módulo de Young

 $F_{BV}$  = Força para dobramento em "V"

 $F_{BU}$  = Força para dobramento em "U"

 $F_{BF}$  = Força para operação de flangeamento

 $F_c$  = Força de corte por cisalhamento

 $F_{cr}$  = Força crítica para flanmbagem de vigas na Equação de Euler

 $F_e$  = Força do extrator para dobramento em "U"

- G = Módulo de elasticidade transversal
- H = Espessura da chapa de guia no sistema de alimentação da tira

*HB* = Dureza Brinell

J = Momento de inércia da seção transversal

K = Constante de proporcionalidade entre tensão de deformação

*L* = Extensão da matriz de dobra em "V"

 $L_{max}$  = Comprimento máximo para evitar flambagem

 $L_g$  = Comprimento da guia de alimentação da fita

 $M_T$  = Momento torsor

- $P_m$  = Porcentagem mínima da espessura da chapa para calcular a folga matriz-punção
- $P_M$  = Porcentagem máxima da espessura da chapa para calcular a folga matriz-punção
- W Largura da fita
- $X_c$  = Coordenada X do centro de forças do estampo
- $Y_c$  = Coordenada Y do centro de forças do estampo
- Y = Tensão na tração unidimensional para critérios de escoamento
- $\boldsymbol{\theta} = \hat{A}$ ngulo de deformação angular
- $\boldsymbol{\varepsilon}$  = Deformação verdadeira
- $\gamma$  = Deformação angular
- $\sigma_e$  = Tensão de escoamento
- $\sigma_r$  = Tensão de ruptura à tração
- $\sigma_p$  = Tensão de proporcionalidade
- $\tau$  = Tensão de cisalhamento do material a ser cisalhado para calcular a folga matriz-punção
- $\tau_m$  = Tensão de cisalhamento mínima usada para calcular a folga matriz-punção
- $\tau_M$  = Tensão de cisalhamento máxima usada para calcular a folga matriz-punção

- $\tau_c$  = Tensão de ruptura ao cisalhamento
- v = Coeficiente de Poisson

# 1 - INTRODUÇÃO

Os processos de fabricação são a espinha dorsal de toda nação industrializada moderna, pelo fato de que, como uma atividade econômica, compreende, aproximadamente, um terço do valor de todos os bens e serviços produzidos. A fabricação também é utilizada como agente multiplicador dela mesma, na medida em que os processos são utilizados para a produção de máquinas e equipamentos que produzem outros bens. Por exemplo, prensas são usadas para produzir o corpo de carros, peças de outras prensas, e assim por diante. Pode-se afirmar que, atualmente, o nível de vida de uma sociedade moderna é determinado, primeiramente, pelos bens e serviços disponíveis para seu povo. Na maioria dos casos, materiais são utilizados na forma de bens manufaturados, tipicamente divididos em duas classes: bens de consumo e bens de produção. Os primeiros são aqueles adquiridos diretamente pelos consumidores, ou o público em geral. Os outros são usados para a produção de outros bens de capital ou de bens de consumo. Converter materiais em produtos e serviços adiciona valor e quanto mais eficientemente uma sociedade é capaz de realizar essa transformação, melhor será o nível de vida de seus membros.

A história do homem sempre esteve ligada à sua habilidade de trabalhar materiais e transformar o ambiente ao seu redor, desde a pré-história, passando pela idade dos metais básicos e, mais recentemente, a idade do aço, indo para materiais mais sofisticados, como compósitos, polímeros, etc. Atualmente, materiais especiais podem ser fabricados sob encomenda, conforme as necessidades de cada aplicação. Respeitando-se o meio ambiente, preservando-o para as futuras gerações, a humanidade deve seguir transformando os materiais, através dos processos de fabricação, com máxima eficiência e mínimo desperdício no caminho da sustentabilidade.

As aplicações dos processos de fabricação envolvem a combinação de materiais, recursos humanos e equipamentos com o intuito de oferecer qualidade, baixos custos dentro de um determinado prazo de entrega aos clientes de uma empresa. Por meio de dados obtidos em países com larga industrialização, atribui-se, tipicamente, 40% do preço de venda de um produto aos custos de produção, sendo o restante: 15% para os custos de engenharia, 25% para vendas, marketing e administração e 20% de lucros (De Garmo, 1997). Uma vez que, em economias de mercado com acirrada competição o preço final é ditado pelo consumidor, a manutenção dos lucros pode depender da capacidade de reduzir os custos de fabricação. Para uma estratégia bem sucedida, em termos de produtividade, os processos de fabricação devem ser entendidos e dominados. Desta forma, este texto se empenha em fornecer os fundamentos para o entendimento e domínio dos processos de conformação metálica, os quais representam uma significativa parcela dos custos de produção em grande parte das empresas.

Um engenheiro encarregado de desenvolvimento de produtos deve, melhor do que qualquer outro, conhecer o que o produto deve ser capaz de desempenhar em termos de exigências em serviço. A responsabilidade de tornar esse produto uma realidade está com o engenheiro de fabricação, por meio da implementação dos processos para a transformação dos materiais no produto especificado. A correta seleção dos processos de fabricação deve estar baseada em três fatores principais: a competição global, avanços tecnológicos e novas estruturas de fabricação e gestão. Devido à competição global, e aos meios de comunicação, os processos selecionados devem ser os mais eficientes e econômicos, já que os concorrentes também terão acesso às mais recentes e avançadas tecnologias, proporcionando vantagens competitivas. A gestão é, sem dúvida, outra chave para o sucesso nesse sistema competitivo uma vez que deve sempre haver um esforço para melhorar os métodos de gestão pelos quais os materiais são transformados e entregues aos clientes.

# 1.1 - PROCESSOS DE FABRICAÇÃO

Quando os diversos *Processos de Fabricação* são agregados formam um *Sistema Produtivo*. O *Sistema Produtivo* será entendido, neste texto, como um sistema que pode ser uma indústria produzindo bens e/ou serviços, uma companhia, ou uma corporação global. As máquinas, equipamentos e dispositivos, que auxiliam a produção na transformação e na distribuição das informações, de forma a agregar valor e atingir os objetivos estratégicos da produção, serão as "*Tecnologias de Processos*" (Slack, N. et al. 1996). Os *Processos Produtivos* compreendem um termo mais amplo onde se podem agregar aqueles processos utilizados para a produção de bens, ou serviços, onde pode haver, ou não, modificações ou transformações de materiais.

De uma maneira geral, os processos de fabricação podem ser classificados como:

- Processos de fundição e de injeção;
- Processos de conformação;
- Processos de usinagem;
- Processos aditivos;
- Processos de união ou montagem;
- Processos de tratamento superficiais;
- Processos de tratamento térmico;
- Outros processos.

Esta classificação não é rígida e há tecnologias que podem ser empregados para mais de uma dessas classes. Por exemplo, a tecnologia de *laser* pode ser classificada como um processo de

usinagem, de soldagem ou ainda de adição de material (impressão 3D), dependendo do emprego do princípio do *laser*. Os processos de fundição e de injeção consistem em processos primários, usados para obter-se uma forma primária da peça final. O material é fundido e então vazado, ou injetado em uma cavidade, cujo formato e dimensões são próximas à peça final. Os processos de conformação também podem ser considerados processos primários, usados, basicamente para se obter a primeira forma da peça. Neste caso o material é "deslocado" pela aplicação de esforço, fluídico ou mecânico, mudando sua forma original para a desejada. Normalmente, não se remove material, mas apenas se conforma o mesmo. Pode ser executado a frio ou a quente, ou em uma combinação sequencial de ambos. Com os mais recentes desenvolvimentos dos processos de conformação a frio, este pode, em certos casos ser empregado como processo de obtenção da forma final, substituindo operações de usinagem. Exemplo disso são dentes de engrenagens produzidos por forjamento a frio, o qual substituiu o corte de dentes por fresamento. De forma semelhante, o processo de sinterização, normalmente empregado como processo primário, já tem sido utilizado para produção de peças acabadas, devido a recentes avanços tecnológicos e aperfeiçoamentos. Por exemplo, alguns insertos de metal duro são produzidos na forma e dimensões finais, eliminando-se o processo de usinagem por retificação.

Nos processos de usinagem, o excesso de material é removido na forma de cavaco. O material pode ser removido pela ação de uma aresta de corte (gume) com geometria definida, como nos processos de torneamento, fresamento, furação, serramento, mandrilamento, brochamento. Há processos de usinagem, no entanto, nos quais a geometria da aresta de corte não é definida, como nos processos abrasivos. A remoção pode também ser pela ação de energia elétrica, na eletro-erosão, por corrosão química, na usinagem eletroquímica, ou ainda por outras formas menos convencionais.

Quando se fala em processos aditivos associa-se o termo à "impressão 3D", mas esta é um dos vários processos de adição de materiais. O termo processos aditivos abrange toda a gama de processos nos quais peças são produzidas a partir de um modelo CAD 3D sólido, sem a necessidade de ferramentas algum. Nesta classe tem-se o processo PBF (Powder Bed Fusion) no qual camadas de pó metálico são espalhadas e cada uma delas é varrida por um feixe laser fundindo e solidificando apenas uma secção da peça. Camadas sucessivas são adicionadas até que se obtenha a peça final. Este é o sistema mais desenvolvido atualmente para metais. O sistema DED (Direct Energy Deposition) é outro processo que tem sido empregado para peças metálicas, assim como o FDM (Fusion Deposition Modeling) tem sido muito empregado para peças em polímeros (Gibson, et al, 2010).

Nos processos de união ou montagem, estão agrupados todos os aqueles usados para unir, ou montar partes advindas de outros processos. São mais comuns a soldagem, união por parafusos ou rebites, adesão e os processos montagem.

Nos processos de tratamentos superficiais estão todos aqueles empregados para a modificação das características físicas e mecânicas das superfícies somente. Estão neste grupo estão o jateamento, recobrimentos superficial por CVD (Chemical Vapour Deposition), por PDV (Physical Vapour Deposition), recobrimento por plasma, etc.

No grupo dos processos de tratamento térmico estão agrupados os processos de modificação das características mecânicas, físicas, e até químicas, dos materiais, tais como a obtenção de estrutura martensítica, o revenimento, solubilização, precipitação, recozimento, etc.

Neste texto, tratam-se apenas dos processos de conformação, nos seus fundamentos teóricos, de modo a estabelecer os conhecimentos básicos necessários, assim como de aplicações dessa teoria em exemplos práticos. Alguns conhecimentos e noções são necessários antes de se estabelecer o estudo da conformação de metais propriamente.

# 1.2 – NOÇÕES SOBRE OS MATERIAIS METÁLICOS MAIS COMUNS

Quando da seleção de um material para um determinado produto, o engenheiro deve se preocupar, primeiramente, em assegurar que as propriedades físicas e mecânicas sejam adequadas à aplicação. As exigências são estimadas, ou determinadas, e o material que melhor se adapta é eleito, com base em dados determinados por meio de testes e ensaios padronizados aplicados aos materiais. É importante que o engenheiro saiba como utilizar corretamente os dados fornecidos, identificando em cada aplicação as propriedades relevantes, assim como as restrições impostas ao emprego de cada material.

Uma das maneiras mais simples de se classificar os materiais para aplicações em engenharia é separá-los em metálicos e não-metálicos. Na primeira classe estão o aço, ligas de cobre, ligas de alumínio, ligas de magnésio, de níquel, de titânio, etc., enquanto na segunda classe estão as cerâmicas, compósitos, plásticos de engenharia, as madeiras, vidros, borrachas, etc. Os metálicos possuem certas propriedades em comum, tais como: alta condutividade térmica e elétrica, são relativamente dúcteis, alguns com propriedades magnéticas, etc. Os não metálicos, ao contrário, possuem baixa condutividade elétrica e térmica e são, em geral frágeis como vidros e cerâmicas, ou elásticos como polímeros. Esses dois grupos de materiais ainda não competem entre si, pois, na seleção algumas propriedades são decisivas e normalmente recai sobre um grupo apenas. Quando mais de um material é eleito, normalmente os custos são decisivos, incluídos aqueles referentes ao material e à fabricação do componente com este.

Os materiais metálicos são, na sua grande maioria, ligas formadas por um metal base e outros elementos, que lhe dão propriedades particulares. Pode-se citar o aço, tendo como metal base o ferro

com adição de carbono e, por vezes, outros elementos de liga, ligas de alumínio, de titânio, de níquel, etc. O aço, material mais utilizado atualmente, é uma liga Fe-C que, dependendo da porcentagem de carbono, possui distintas micro-estruturas e, conseqüentemente, diferentes propriedades mecânicas. Como exemplo pode-se observar a Figura 1.1, onde se mostram diferentes micro-estruturas de aços, em função da porcentagem de carbono presente.



(a) Aço com menos de 0,07% C

(b) Aço com mais de 0,77% C

Figura 1.1 - Micro-estrutura típica de aços-carbono, em função da porcentagem de carbono (DeGarmo, et al.1997).

#### 1.2.1 - AÇOS

De maneira geral, os aços podem ser divididos, segundo a AISI (American Iron and Steel Institute) em aços ao carbono e aços ligados (Bethlehem, Steel Company, 1961). Os aços ao carbono são aqueles cujas porcentagens dos elementos Al, B, Cr, Co, Mo, Ni, Ti, W, V, e Zr, ou outro qualquer estejam abaixo de um máximo especificado ou estejam presentes apenas como resíduos. Ainda contenham um máximo de 1,65% de Mn, 0.6% Si e o conteúdo de Cu estiver entre 0,4 e 0,6%. Os aços ligados, por sua vez, são aqueles cujos conteúdos daqueles elementos, ou outros quaisquer, estejam presentes em uma faixa especificada em porcentagem.

O carbono é o principal elemento para endurecimento e aumento da resistência mecânica do aço. Por outro lado, aumentos na porcentagem de carbono diminuem sua ductilidade. O manganês contribui também para o aumento da resistência mecânica e da dureza, porém em menor intensidade do que o carbono. O fósforo, quando presente no aço, facilita sua usinabilidade e resistência à corrosão atmosférica. Normalmente a porcentagem de fósforo é limitada, uma vez que prejudica aços que devam

ser tratados termicamente. O enxofre também tem um efeito de facilitar a usinagem, porém tem os mesmos efeitos prejudiciais do fósforo, sendo mantido abaixo de um limite máximo. O silício é também adicionado aos aços ao carbono em pequenas quantidades como desoxidante, e pode prejudicar a usinagem.

O níquel, quando adicionado ao aço, produz melhorias em ductilidade, aumento da resistência à corrosão e facilita o tratamento térmico, melhorando a resposta a meios menos severos de resfriamento. O cromo, se adicionado ao aço, aumenta sua facilidade de endurecimento em secções espessas e melhora a resistência à abrasão. Os carbonetos de cromo são os mais estáveis em altas temperaturas, aumentando a resistência à abrasão em altas temperaturas. Em porcentagens acima de 4% aumentam a resistência à corrosão nos aços. O molibdênio, juntamente com o manganês e o cromo, aumenta o efeito de endurecimento dos aços além de proporcionar uma maior resistência mecânica a altas temperaturas. Aços contendo molibdênio são menos susceptíveis a fragilidade no tratamento térmico. O vanádio é muito usado nos aços ligados para refinar os grãos e melhorar as propriedades mecânicas.

Os aços para construção mecânica são classificados de acordo com a porcentagem de carbono e seus principais elementos de liga. A classificação segue, segundo a ABNT (Associação Brasileira de Normas Técnicas), a AISI e a SAE (Society of Automtive Engineers), uma codificação de 4 dígitos, sendo os dois últimos cem vezes a porcentagem média de carbono. Os dois primeiros dígitos indicam o tipo de aço, conforme a designação abaixo (Dallas, D.B, 1976):

- 10xx Aços carbono não resulfurados, Mn 1% máx.
- 15xx Aços carbono não resulfurados, 1% < Mn < 1,75%.
- 11xx Aços carbono resulfurados
- 12xx Aços carbono refosforados e resulfurados
- 13xx Aços ligados ao Manganês, Mn 1,75%
- 40xx Aços ligados ao Molibdênio, Mo 0,20-0,25%
- 41xx Acos ligados ao Cr-Mo, Cr 0,50, 0,80 ou 0,95% e Mo 0,20 ou 0,30%.
- 43xx Aços ligados ao Ni-Cr-Mo, Ni 1,83%, Cr 0,50-0,80% e Mo 0,25%.
- 44xx Acos ligados ao Mo, Mo 0,53%
- 46xx Aços ligados ao Ni-Mo, Ni 0,85 ou 1,83, Mo, 0,20 ou 0,35.
- 47xx Aços ligados ao Ni-Cr-Mo, Ni 1,05%, Cr 0,45%, Mo 0,20 ou 0,35.
- 48xx Aços ligados ao Ni-Mo, Ni 3,50, Mo 0,25%.
- 50xx Aços ligados ao Cr, Cr 0,40%.
- 51xx Aços ligados ao Cr, Cr 0,80 0,88 0,93 0,95 1,00%.
- 61xx Aços ligados ao Cr-V, Cr 0,60 ou 0,95%, V 0,13 0,15% min.
- 86xx Aços ligados ao Ni-Cr-Mo, Ni 0,55%, Cr 0,50%, Mo 0,20%.

87xx Aços ligados ao Ni-Cr-Mo, Ni 0,55%, Cr 0,50%, Mo 0,25%.

88xx Aços ligados ao Ni-Cr-Mo, Ni 0,55%, Cr 0,50%, Mo 0,35%.

92xx Aços ligados ao Si, Si 2%.

50Bxx Aços ligados ao Cr, Cr 0,28 ou 0,50%.

51Bxx Aços ligados ao Cr, Cr 0,80%.

81Bxx Aços ligados ao Ni-Cr-Mo, Ni 0,3%, Cr 0,45%, Mo 0,12%.

94Bxx Aços ligados ao Ni- Cr-Mo, Ni 0,45%, Cr 0,40%, Mo 0,12%.

Onde o B significa ainda adição de Boro.

No APÊNDICE - I - COMPOSIÇÃO E PROPRIEDADES DE AÇOS E FERROS FUNDIDOS, são apresentadas tabelas com as composições químicas propriedades de alguns aços e ferros fundidos mais comuns em fabricação mecânica. Além dos aços normalizados apresentados acima, outros tipos especiais podem ser encontrados, com composições especiais, segundo especificações dos clientes, ou dos fabricantes. Os códigos, segundo o grupo de 4 dígitos são um indicativo da composição química média dos aços, porém cada produtor de aço pode ter a sua própria designação e, geralmente, uma tabela de equivalência aos códigos AISI, SAE e ABNT é necessária. Um exemplo dessa tabela está no APÊNDICE II – EQUIVALÊNCIAS ENTRE ALGUNS DOS AÇOS MAIS COMUNS.

Além dos aços ao carbono e ligados, para construção mecânica, outros tipos também são fabricados tais como os aços inoxidáveis, aços-ferramenta, tornando o trabalho de especificação de um aço uma tarefa bastante elaborada e especializada. Os aços inoxidáveis possuem, em geral, mais de 4% de Cromo e mais de 50% de Ferro, sendo ainda adicionados outros elementos, tais como o Níquel, Molibdênio, Nióbio, Titânio, Manganês, Enxofre e Selênio. Estas combinações de elementos de liga conferem a esses aços uma grande capacidade de resistência à corrosão. As suas composições químicas típicas encontram-se também no APÊNDICE I. Os aços inoxidáveis podem ser divididos em três grandes grupos, de acordo com suas características metalográficas: as ligas Martensíticas, as Ferriticas e as Austeníticas. Esta classe de aços possui uma enorme variedade de ligas e designações, cujos detalhes não serão tratados neste texto pela limitação de espaço, porém, podem ser encontrados em literaturas especializadas. As aplicações dos aços inoxidáveis têm crescido bastante nas industriais farmacêuticas, alimentícias, instrumentação e petrolífera, principalmente.

A necessidade de que os aços mantivessem suas propriedades mecânicas a altas temperaturas, levou ao desenvolvimento de uma classe conhecida como Superligas. São aços com altas porcentagens de Cromo, Cobalto e, principalmente, Níquel, cujas propriedades a quente superam com vantagens outras ligas. Os principais representantes desta classe são o INCONEL<sup>™</sup> e o WASPALOY<sup>™</sup>, cujas composições químicas completas estão também no APÊNDICE I.

#### 1.2.2 - FERRO FUNDIDO

Após os aços, o material mais largamente utilizado na fabricação mecânica é o Ferro Fundido (FoFo). Da mesma forma que os aços, o FoFo é uma liga Fe-C, porém com conteúdo de carbono entre 2 e 4%. Possui ainda adições de silício, entre 1 e 3%, Manganês, entre 0,20 a 1,0%, Enxofre, entre 0,02 e 0,2% e Fósforo, entre 0,05 e 1,0%. A alta porcentagem de carbono e a presença de Silício tornam o FoFo adequado para o processo de fundição, facilitando a fusão e a sua fluidez. O excesso de carbono faz com que este se precipite, formando uma fase própria na solidificação, identificada na sua micro-estrutura como grafite em pó na forma de lamelas. O formato que essa fase adquire na micro-estrutura do FoFo determina suas propriedades e, consequentemente, sua classificação. Segunda essa classificação os FoFo's mais comuns podem ser divididos em Branco, Cinzento e Nodular, além de outro tipo mais recente o FoFo vermicular. O ferro fundido branco pode ser obtido quando há uma correta combinação de elementos de liga presentes e uma velocidade adequada de resfriamento. Neste caso o carbono dissolvido, na liga fundida, forma colônias de carbonetos, sendo uma fase mais dura e resistente. Uma vez que o principal carboneto presente, o de ferro, conhecido como cementita, é extremamente duro e frágil, o FoFo branco resultante terá também essa natureza. Possui alta resistência mecânica à compressão, à abrasão e mantém suas propriedades a altas temperaturas.

O FoFo cinzento é o mais utilizado, devido às suas boas propriedades mecânicas e a possibilidade de se obter formas complexas por meio da fundição. A maioria dos blocos para motores de combustão interna é fabricada com este material. A fase grafite mostra-se, tipicamente na forma de lamelas, contendo pó de grafite dentro de si. Sendo assim, sempre que se corta o FoFo cinzento, haverá a liberação deste pó de grafite. As lamelas de grafite conferem ao FoFo cinzento propriedades únicas, como a facilidade de usinagem devido à produção de cavacos segmentados, além de excelentes propriedades de amortecimento a vibrações, muito apreciadas em estruturas de máquinas-ferramentas.

O FoFo nodular é, basicamente, uma variação do cinzento, na medida em que as lamelas de grafite adquirem a forma esferoidal, por diferenciação na composição química e adição de magnésio à liga em estado fundido. A forma esferoidal do grafite confere a esses materiais propriedades especiais, além daquelas já encontradas no FoFo cinzento, tais como um significante aumento nas tensões de escoamento e ruptura, e na ductilidade.

Os FoFo vermicular ou *Compacted Graphite Iron* – CGI, pode ser produzido pela adição de Mg-Ce-Ti, resultando em forma de grafite intermediárias entre as lamelas do cinzento e a forma esferoidal do nodular. A usinabilidade, fundibilidade, amortecimento dinâmico e condutividade térmica se aproximam das características do FoFo cinzento, enquanto as propriedades mecânicas são próximas daquelas do FoFo nodular. Blocos de motores diesel começam a ser fabricados com esse material. A

Figura 1.2 mostra dois exemplos de micro-estruturas típicas dos FoFo's. O APÊNDICE I também mostra tabelas com a composição química e propriedades mecânicas dos principais ferros fundidos comercializados e utilizados pela indústria.



(a) FoFo cinzento

(b) FoFo nodular

Figura 1.2 - Micro-estruturas típicas de FoFo's cinzento e nodular (DeGarmo, et al. 1997).

## 1.2.3 - LIGAS DE ALUMÍNIO

Além dos aços e ferros fundidos, as ligas de alumínio também são bastante utilizadas pelas indústrias metal-mecânicas, principalmente a aeronáutica e, mais recentemente, a automobilística. As ligas que empregam o alumínio como metal base formam um grupo bastante extenso, destinadas à laminação e à fundição. O emprego de ligas de alumínio encontra grande aplicação onde o peso deve ser minimizado e a resistência mecânica pode ser moderada, embora algumas ligas de alumínio já apresentem propriedades mecânicas semelhantes, ou superiores a certos aços. Possui densidade média em torno de 2.700 kg/m<sup>3</sup>, comparado ao aço, em média 7.850 kg/m<sup>3</sup>. Também são muito utilizadas onde a resistência à corrosão, condutividade térmica e elétrica devem ser altas.

As ligas de alumínio, em geral, empregam elementos de liga como Mn, Si, Cu, Mg, Cr, Ni, Pb, Bi ou Zn. Com esses ligantes, podem ser submetidas a tratamentos térmicos que melhoram significativamente as propriedades mecânicas. A classificação das ligas de alumínio segue também um código de 4 dígitos, porém distingue-se entre as obtidas para a laminação e as destinadas à fundição. As ligas destinadas à laminação seguem o seguinte código:

- 1xxx Alumínio contendo Al 99% ou mais.
- 2xxx Ligas cujo principal ligante é Cu.

- 3xxx Ligas cujo principal ligante é Mn.
- 4xxx Ligas cujo principal ligante é Si.
- 5xxx Ligas cujo principal ligante é Mg.
- 6xxx Ligas cujos principais ligantes são Mg e Si.
- 7xxx Ligas cujo principal ligante é Zn.
- 8xxx Ligas contendo outros elementos.

As ligas fundidas possuem também um código de 4 dígitos, porém o último indica a forma do produto, a saber, formas para fundição futura, ou em lingotes. Os grupos de códigos são designados como abaixo:

- 1xx.x Alumínio contendo Al 99% ou mais.
- 2xx.x Ligas cujo principal ligante é Cu.
- 3xx.x Ligas cujo principal ligante é Cu/Mn.
- 4xx.x Ligas cujo principal ligante é Si.
- 5xx.x Ligas cujo principal ligante é Mg.
- 7xx.x Ligas cujo principal ligante é Zn.
- 8xx.x Ligas cujo principal ligante é Sn.
- 9xx.x Ligas contendo outros elementos.

Uma outra particularidade encontrada na designação de uma liga de alumínio está no seu tratamento térmico, que também segue uma codificação própria. Normalmente, é designado por uma letra seguido de um número. As letras podem ser:

- F obtido por processos primários;
- O recozido;
- H endurecido por encruamento (*strain-hardened*);
- W tratado por solubilização e;
- T tratado termicamente por outro processo.

Os números, que se seguem às letras, indicam mais detalhes do tratamento térmico e formam uma enorme variedade de combinações. O APÊNDICE I mostra a composição química e propriedades mecânicas de algumas ligas de alumínio mais comuns.

#### 1.2.4 - LIGAS DE COBRE

Ligas de cobre contendo zinco (Zn) são comumente conhecidas como "Ligas de Latão", ou simplesmente Latão. As ligas contendo estanho (Sn) são chamadas "Ligas de Bronze", ou Bronze. Os latões são as ligas mais utilizadas por terem uma boa resistência à corrosão, boa resistência mecânica e algumas possuem ainda excelente ductilidade propiciando boa conformabilidade. São muito utilizados em conexões para ar e água, elementos de fechaduras e cadeados. Ligas de latão contendo 64% Cu são chamadas de *latões alfa* e comumente conhecidos pela sua habilidade de suportar trabalhos a frio. As ligas contendo menos de 64% Cu são conhecidas como *latões beta* e são excelentes para trabalhos a quente. As ligas de latão são comumente usináveis e com pequena adição (0,5 a 4%) de Pb tornam-se mais favoráveis à usinagem. Para a fundição das ligas de latão adicionam-se alguns elementos como Sn (1 a 6%), Pb (1 a 10%), Fe (0,5 a 3%) e pequena porcentagens de Ni, Sb e Al.

As ligas de bronze contendo aproximadamente 1,25 a 10% Sn possuem boa resistência à tração e conformabilidade. Quando são desoxidadas com fósforo são conhecidas como "*Bronze Fosforoso*", restando cerca de 0,35% P na composição final. Esta liga possui alta dureza e resistência à tração, em relação às demais ligas de bronze. Ligas de bronzes para fundição normalmente contêm entre 10 e 25% Pb. Altas concentrações de Pb limitam a conformabilidade das ligas de bronze e suas aplicações em temperaturas próximas à de fusão do chumbo. Adições de até 4% de Sn, Pb e Zn podem melhorar a usinabilidade das ligas de bronze fosforoso.

# 1.3 - PROPRIEDADES MECÂNICAS DOS MATERIAIS METÁLICOS

Os materiais normalmente empregados em fabricação mecânica possuem diversas propriedades importantes para a conformação. Dependendo das suas características mecânicas, um material pode oferecer mais, ou menos, resistência ao escoamento. Quando o material é submetido a esforços mecânicos, deforma-se segundo um dos modelos básicos mostrados na Figura 1.3.



Figura 1.3 – Modelos básicos de deformação de um sólido (Kalpakjian, S., 1995).

A quantificação das deformações se dá segundo as seguintes equações:

$$e = \frac{\ell - \ell_0}{\ell}$$
(1.1)  
$$\varepsilon = ln \left(\frac{\ell}{\ell_0}\right)$$
(1.2)

$$\gamma = \frac{a}{b} \tag{1.3}$$

onde  $e \acute{e}$  a deformação de engenharia, empregada para pequenas deformações, e  $\ell = \ell_0$  são, respectivamente, o comprimento inicial e final do corpo sendo deformado por tração ou compressão,  $\varepsilon$ é a deformação verdadeira, empregada mais comumente grandes deformações como nos processos de conformação,  $\gamma$  é a deformação angular, empregada em pequenas deformações, e a = b são, respectivamente a deformação e o comprimento ao longo do qual se dá a deformação angular. Para grandes deformações a deformação angular é expressa em termos de diferenciais e leva em conta as contribuições das deformações planas nas duas direções perpendiculares (Altan, T., et al., 1999). As deformações nos materiais ocorrem devido à aplicação de cargas, a saber, de tração, de compressão e de cisalhamento. Quando essas cargas são divididas pelas respectivas áreas de atuação têm-se as tensões correspondentes,  $\sigma$ , para tração e compressão e  $\tau$  para cisalhamento.

Para avaliar-se a resistência mecânica dos materiais, com relação às cargas de tração, compressão e cisalhamento, foram desenvolvidos testes padronizados que avaliam e comparam os diversos materiais empregados em engenharia.

#### 1.3.1 - TESTE DE TRAÇÃO UNIAXIAL

Devido à sua simplicidade o teste de tração uniaxial é o mais comum para determinar o comportamento dos materiais quando sujeitos a esforços de tração. Utilizam-se corpos de provas de forma e dimensões padronizadas, conforme mostrados na Figura 1.4.



Figura 1.4 – Corpos de prova para ensaio de tração (Souza, S.A de, 1982).

Os corpos de prova são submetidos a esforço uniaxial com velocidade controlada, registram-se, simultaneamente a deformação e as cargas, em uma máquina própria. A Figura 1.5 mostra um dessas máquinas.



Figura 1.5 – Máquina de ensaio de tração (DeGramo, et al. 1997.).

A Figura 1.6 mostra um gráfico típico obtido durante o ensaio de tração, conforme o corpo de provas se deforma.





O gráfico da Figura 1.6 mostra que inicialmente a tensão é linearmente proporcional à deformação. A tensão na qual esta proporcionalidade termina é a tensão limite de proporcionalidade, ou *limite de proporcionalidade* ( $\sigma_p$ ). Neste trecho o material obedece à *lei de Hooke*, a qual determina que a tensão seja linearmente proporcional à deformação. A constante de proporcionalidade é conhecida como *módulo de elasticidade (E)*, ou módulo de Young. É uma propriedade inerente ao material e de extrema importância em engenharia, principalmente no dimensionamento de elementos de máquinas. Expressa ainda uma medida de rigidez do material sendo submetido a esforços de tração ou compressão. A Tabela 1.1 mostra alguns valores típicos do módulo de elasticidade de materiais comuns em fabricação mecânica.

Tabela 1.1 – Valores típicos do módulo de elasticidade e coeficiente de Poisson para materiais comuns em fabricação. Valores obtidos à temperatura ambiente (Kalpakjian, S. 1995).

| Metais        | E (Gpa) | ν         |
|---------------|---------|-----------|
| Ligas de Al   | 69-79   | 0,31-0,34 |
| Ferro fundido | 105-150 | 0,21-0,30 |

| Ligas de Cu                                                                                                          | 105-150                                                                          | 0,33-0,35                                                    |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|
| Ligas de Pb                                                                                                          | 14                                                                               | 0,43                                                         |
| Ligas de Mg                                                                                                          | 41-45                                                                            | 0,29-0,35                                                    |
| Мо                                                                                                                   | 325                                                                              | 0,32                                                         |
| Ligas de Ni                                                                                                          | 180-214                                                                          | 0,31                                                         |
| Aços carbono                                                                                                         | 200                                                                              | 0,33                                                         |
| Aços Inox                                                                                                            | 190-200                                                                          | 0,28                                                         |
| Ligas de Ti                                                                                                          | 80-130                                                                           | 0,31-0,34                                                    |
| W                                                                                                                    | 400                                                                              | 0,27                                                         |
|                                                                                                                      |                                                                                  |                                                              |
| Não-metálicos                                                                                                        | E (Gpa)                                                                          | ν                                                            |
| Não-metálicos<br>Acrílico                                                                                            | E (Gpa)<br>1,4-3,4                                                               | v<br>0,35-0,40                                               |
| Não-metálicos<br>Acrílico<br>Epoxes                                                                                  | E (Gpa)<br>1,4-3,4<br>3,5-17                                                     | v<br>0,35-0,40<br>0,34                                       |
| Não-metálicos<br>Acrílico<br>Epoxes<br>Nylons                                                                        | E (Gpa)<br>1,4-3,4<br>3,5-17<br>1,4-2,8                                          | v<br>0,35-0,40<br>0,34<br>0,32-0,40                          |
| Não-metálicos<br>Acrílico<br>Epoxes<br>Nylons<br>Borrachas                                                           | E (Gpa)<br>1,4-3,4<br>3,5-17<br>1,4-2,8<br>0,01-0,1                              | v<br>0,35-0,40<br>0,34<br>0,32-0,40<br>0,5                   |
| Não-metálicos<br>Acrílico<br>Epoxes<br>Nylons<br>Borrachas<br>Plásticos reforçados                                   | E (Gpa)<br>1,4-3,4<br>3,5-17<br>1,4-2,8<br>0,01-0,1<br>2-50                      | v<br>0,35-0,40<br>0,34<br>0,32-0,40<br>0,5                   |
| Não-metálicos<br>Acrílico<br>Epoxes<br>Nylons<br>Borrachas<br>Plásticos reforçados<br>Vidro e porcelanas             | E (Gpa)<br>1,4-3,4<br>3,5-17<br>1,4-2,8<br>0,01-0,1<br>2-50<br>70-80             | v<br>0,35-0,40<br>0,34<br>0,32-0,40<br>0,5<br>-<br>0,24      |
| Não-metálicos<br>Acrílico<br>Epoxes<br>Nylons<br>Borrachas<br>Plásticos reforçados<br>Vidro e porcelanas<br>Diamante | E (Gpa)<br>1,4-3,4<br>3,5-17<br>1,4-2,8<br>0,01-0,1<br>2-50<br>70-80<br>820-1050 | v<br>0,35-0,40<br>0,34<br>0,32-0,40<br>0,5<br>-<br>0,24<br>- |

O coeficiente de Poisson é uma medida da proporção entre a deformação observada em na direção de aplicação da carga e aquela nas direções perpendiculares.

Na sequência da aplicação dos esforços se a carga é removida ainda dentro da região elástica, o corpo de provas retorna ao seu comprimento inicial. Para tensões entre valor zero e este valor, a resposta do material é elástica e a tensão máxima em que este efeito é observado é chamada tensão limite de elasticidade, ou *limite elástico (\sigma\_{el})*. Para certos materiais estes limites são muito próximos, com o limite elástico um pouco acima e sua determinação obedece a critérios normalizados (DeGramo, et al. 1995). Para o limite elástico admite-se uma deformação permanente de 0,2%.

A quantidade de energia que uma unidade de volume do material absorve durante o regime elástico é chamada de *resiliência*, tendo o material seu *módulo de resiliência* ( $U_R$ ). Uma vez que energia é o produto da força pela distância, a área sob o gráfico tensão-deformação, até o limite elástico, fornece a energia absorvida pelo corpo de provas. Esta é uma energia potencial liberada quando o corpo de provas é descarregado.

Qualquer deformação além do limite elástico é permanente e chamada *deformação plástica*. A partir deste ponto, componentes de máquinas estariam sujeitos a deformações que mudariam sua forma original permanentemente, não sendo mais úteis em sua função original. Esta região de deformação se torna particularmente importante para os processos de conformação, onde o objetivo é justamente modificar permanentemente a forma dos componentes, conformando-se o material pela aplicação de tensões de tração, compressão e cisalhamento. Quando o limite elástico é ultrapassado, aumentos na deformação não requerem um aumento proporcional na tensão e proporcionalidade deixa de existir, iniciando-se um fluxo plástico do material. Para alguns materiais, atingindo-se um determinado valor

de tensão, adicionais aumentos de deformação ocorrem sem nenhum aumento em tensão, pelo contrário há diminuição. Este ponto é chamado de *limite de escoamento* ( $\sigma_e$ ). Para os aços com baixo teor de carbono há dois limites de escoamento significativos: o superior e o inferior. O primeiro é o pico inicial, atingido antes que haja deformação aparente no corpo de prova. A seguir este apresenta uma secção estrangulada, propiciando o aumento da deformação com uma efetiva diminuição de carga. A Figura 1.7 mostra um corpo de prova de ensaio de tração com este estrangulamento se iniciando.



Figura 1.7 – Exemplo de um corpo de provas de tração em início de estrangulamento (DeGarmo, et al., 1995).

A partir deste ponto o material começa a fluir e a tensão permanece praticamente constante. Tabelas fornecem este valor para o limite de escoamento de diversos materiais. Quando material não apresenta um nítido limite de escoamento na curva tensão-deformação, a transição do limite elástico para o de escoamento é determinada pela deformação permanente admissível de 0,2%, na maioria dos casos, chegando às vezes a 0,02% em certos materiais ou componentes muito exigidos em serviço.

Continuando a aplicação de carga ao material sua deformação plástica prossegue e a tensão suportada aumenta. Uma vez que a secção transversal do corpo de provas diminui, pelo estrangulamento, a tensão (carga dividida por área) aumenta e, este fenômeno se estende até um limite máximo, chamado de *limite de resistência* ( $\sigma_R$ ). Há materiais cujo comportamento neste estágio se altera devido ao fenômeno do *encruamento*, onde a resistência à deformação é proporcional à deformação a frio (Souza, S.A de, 1982). À medida que a deformação aumenta e o material resiste pelo encruamento se a carga persistir também crescendo, chega-se a um ponto onde o aumento da carga é maior do que a resistência e, a ruptura acontecerá. Neste ponto atinge-se o *limite de ruptura* ( $\sigma_R$ ). A Tabela 1.2 mostra alguns valores típicos de propriedades mecânica obtidas em ensaios de tração para vários materiais comumente usinados.

Tabela 1.2 – Propriedades mecânicas de materiais comumente usinados obtidos em ensaios de tração à temperatura ambiente (Kalpakjian, S. 1995).

| Metais | $\sigma_e$ (Mpa) | <b>σ</b> <sub>r</sub> (Mpa) | Alongamento 50mm (%) |
|--------|------------------|-----------------------------|----------------------|
| Al     | 35               | 90                          | 45                   |

| Ligas de Al            | 35-550   | 90-600    | 45-4   |
|------------------------|----------|-----------|--------|
| Be                     | 185-260  | 230-350   | 3,5-1  |
| Nb                     | 205      | 275       | 30     |
| Cu                     | 70       | 220       | 45     |
| Ligs de Cu             | 76-1100  | 140-1310  | 65-3   |
| Fe                     | 40-200   | 185-285   | 60-3   |
| Aços                   | 205-1725 | 415-1750  | 65-2   |
| Pb                     | 7-14     | 17        | 50     |
| Ligs de Pb             | 14       | 20-55     | 50-9   |
| Mg                     | 90-105   | 160-195   | 15-3   |
| Ligas de Mg            | 130-305  | 240-380   | 21-5   |
| Ligas de Mo            | 80-2070  | 90-2340   | 40-30  |
| Ni                     | 58       | 320       | 30     |
| Ligas de Ni            | 105-1200 | 345-1450  | 60-5   |
| Ligas e Ta             | 480-1550 | 550-1550  | 40-20  |
| Ti                     | 140-550  | 275-690   | 30-17  |
| Ligas de Ti            | 344-1380 | 415-1450  | 25-7   |
| W                      | 550-690  | 620-760   | 0      |
| Não-Metálicos          |          |           |        |
| Cerâmicas              | -        | 140-2600  | 0      |
| Vidro                  | -        | 140       | 0      |
| Fibra de Vidro         | -        | 3500-4500 | 0      |
| Fibra de Grafite       | -        | 2100-2500 | 0      |
| Termoplásticos         | -        | 7-80      | 5-1000 |
| Termoplásticos reforc. | -        | 20-120    | 1-10   |
| Termorígidos           | -        | 35-170    | 0      |
| Termorígidos reforc.   | -        | 200-520   | 0      |

A plasticidade que o material demonstra é um importante fator para sua avaliação quanto ao desempenho durante sua submissão aos processos de fabricação. Para os processos de conformação, quanto maior sua plasticidade, mais adequado o material será. Esta habilidade em se deformar sem romper é chamada *ductilidade*. Uma das formas de se avaliar a ductilidade de um material é determinar sua *porcentagem de alongamento* durante o teste de tração. Toma-se um comprimento padronizado na área útil do corpo de provas, antes e depois da ruptura, calculando-se a porcentagem de alongamento. Outra prática para avaliação da ductilidade é a porcentagem de redução de área sofrida pelo corpo de provas, medindo-se a área inicial e área final, no ponto de estrangulamento. Quando um material possui baixa ductilidade é chamado de frágil (*brittle*).

*Tenacidade* é definida como a energia por unidade de volume requerida para a ruptura do material. O teste de tração fornece uma maneira de se estimar a tenacidade de um material, como a área sob a curva tensão-deformação até a ruptura. Variações em temperatura e velocidade de aplicação da carga alteram significativamente o módulo de tenacidade. A tenacidade também é avaliada através de testes de impacto, mas sem correlação com os resultados dos testes de tração.

As curvas tensão-deformação podem usar a área e o comprimento iniciais do corpo de provas para os cálculos ou, a área e comprimentos instantâneos. No primeiro caso chama-se de curva tensão-deformação de engenharia e no segundo a *curva verdadeira*. Esta última curva só tem sentido até o ponto onde se inicia o estrangulamento assim como ela fornece maiores valores de tensão.

Em materiais que apresentam o fenômeno do encruamento a representação da curva tensãodeformação se dá pela aproximação pela seguinte equação:

$$\boldsymbol{\sigma} = \boldsymbol{K}\boldsymbol{\varepsilon}^n \tag{1.4}$$

onde K é uma constante de proporcionalidade e n é o *coeficiente de encruamento*. A Tabela 1.3 mostra alguns valores de K e de n para materiais mais comuns em usinagem

| Material                    | <b>K</b> (MPa) | п    |
|-----------------------------|----------------|------|
| A1100-0                     | 180            | 0,20 |
| 2024-T4                     | 690            | 0,16 |
| 5052-O                      | 210            | 0,13 |
| 6061-O                      | 205            | 0,20 |
| 6061-T6                     | 410            | 0,05 |
| 7075-О                      | 400            | 0,17 |
| Latão 60-39-1Pb recozido    | 800            | 0,33 |
| Latão 70-30 Recozido        | 895            | 0,49 |
| Latão 85-15 laminado quente | 580            | 0,34 |
| Bronze fosforoso, recozido  | 720            | 0,46 |
| Liga de Co (endurecido)     | 2070           | 0,50 |
| Cobre recozido              | 315            | 0,54 |
| Mo recozido                 | 725            | 0,13 |
| Aço baixo carbono           | 530            | 0,26 |
| ABNT1045 – laminado quente  | 965            | 0,14 |
| ABNT1112 – recozido         | 760            | 0,19 |
| ABNT1112 – laminado quente  | 760            | 0,08 |
| ABNT4135 – recozido         | 1015           | 0,17 |
| ABNT4135 – Lam. quente      | 1100           | 0,14 |
| ABNT4340 – recozido         | 640            | 0,15 |
| ABNT52100 – recozido        | 1450           | 0,07 |
| ABNT302 – recozido          | 1300           | 0,30 |
| ABNT304 – recozido          | 1275           | 0,45 |
| ABNT410 - recozido          | 960            | 0,10 |

Tabela 1.3 – Valores típicos de *K* e *n* para materiais comumente usinados (Kalpakjian, S., 1995)

# 1.3 2 - TESTE DE TORÇÃO

O teste de torção não é, geralmente, utilizado para especificar propriedades de materiais, embora seja um ensaio de simples realização. O ensaio de tração sempre o substitui por fornecer maiores informações com menores complicações matemáticas e aproximações. Entretanto, para diversas aplicações os ensaios de torção são indispensáveis, principalmente nos casos de altas velocidades de deformação, como nos processos de usinagem, ou conformações em prensas excêntricas, martelos de forjamento ou de prensas de parafuso (prensas de fricção).

O teste de torção pode ser conduzido da mesma forma que o de tração, traçando-se um gráfico de tensão-deformação e determinando-se algumas propriedades do material. O corpo de provas é bastante semelhante, porém sendo mais comum o de secção tubular a fim de se obter uma distribuição uniforme das tensões de cisalhamento. Para obter-se a tensão de cisalhamento em um corpo de provas circular usa-se a equação:

$$\tau = \frac{M_T}{2\pi r^2 e} \tag{1.5}$$

onde  $M_T$  é o momento de torção aplicado, r é o raio do corpo de provas, entre o diâmetro interno e o externo e e a espessura da parede. A deformação no ensaio de torção é dada por:

$$\gamma = \frac{r\phi}{\ell_o} \tag{1.6}$$

onde  $\gamma \acute{e}$  a deformação angular,  $\phi \acute{e}$  o ângulo de torção e  $\ell_0$  o comprimento útil do corpo de provas. No regime elástico, semelhantemente ao ensaio de tração, a inclinação da curva tensão-deformação é chamada de *módulo de elasticidade transversal G*, dado pela equação:

$$G = \frac{\tau}{\gamma} \tag{1.7}$$

o qual só é válido no regime elástico. Há uma relação entre o módulo de elasticidade E, obtido no ensaio de tração e o módulo de elasticidade transversal G, dada pela equação:

$$G = \frac{E}{2(1+\nu)} \tag{1.8}$$

Todos as outras propriedades mostradas para o gráfico do ensaio de tração podem ser calculadas no ensaio de torção, com as devidas adaptações, o que pode ser encontrado em detalhes em (Souza, S. A. de, 1982).

Normalmente, testes de torção a quente, em altas temperaturas, são executados em corpos de prova circulares para determinação do conformabilidade dos materiais submetidos a severos processos de forjamento. Nestes processos normalmente o estado de tensões não é uniaxial, ou seja, sempre há mais de uma direção de aplicação de tensões ao mesmo tempo. Para esses casos realizam-se ensaios de torção combinados com compressão. A combinação de torção com compressão, um estado bi-axial de tensões, aproxima-se mais dos casos reais de carregamentos em processos de conformação, assim como em usinagem. A Figura 1.8 apresenta um exemplo da variação da tensão de ruptura ao cisalhamento quando o material está submetido simultaneamente à compressão no teste de torção.



Figura 1.8 – Efeito da compressão na tensão de ruptura ao cisalhamento em ensaio de torção.

O efeito do aumento da tensão de ruptura ao cisalhamento devido à compressão também é observado no processo de formação de cavacos em usinagem.

Outros testes de avaliação de propriedades dos materiais são também realizados para estimar propriedades diversas daquelas apresentadas até este ponto, tais como o teste impacto Charpy para avaliar a resistência à fratura em altas velocidades de aplicação de carga, testes de fadiga que avaliam a resistência dos materiais a esforços cíclicos, etc. Outros testes ainda avaliam estas mesmas propriedades, porém em condições diferentes, como em altas temperaturas, em estados bi- e tri-axiais de tensão, testes de flexão, etc.. Estes testes não serão apresentados neste texto, por estarem mais bem detalhados em Souza, S.A. de, 1982, por exemplo. Uma consulta a outros textos mais especializados pode esclarecer maiores dúvidas e curiosidades.

#### 1.3.3 - TESTE DE DUREZA

Depois da avaliação do comportamento do material no teste de tração o seu comportamento no teste de dureza é o segundo fator em importância para os processo de fabricação em metais. A dureza de um material é de difícil definição, mas poderia ser definida de forma simplificada como a resistência que o material oferece à penetração. Por este ponto de vista, deve-se definir, para fins de comparação de dureza em uma escala, um penetrador e a carga. Materiais submetidos e um mesmo penetrador com a mesma carga em um teste padrão, apresentam diferentes comportamentos e podem ser comparados entre si, possibilitando a sua classificação em uma escala de dureza. Desta forma, diversas escalas de dureza, com diferentes penetradores e cargas foram criadas. Cada escala melhor se presta a descrever comportamento do material em determinados estados.

#### 1.3.3.1 - ESCALA BRINELL DE DUREZA

O teste Brinell de dureza consiste em aplicar uma carga sobre uma esfera de carbeto de tungstênio, ou aço endurecido, com 10 mm de diâmetro assentada sobre o material a ser testado. Os valores de carga podem ser 500, 1500 3000 kg aplicadas por um período de 5 a 10 segundos para permitir a total acomodação das deformações plásticas. Removendo-se a carga e a esfera, obtém-se uma calota esférica no material sendo testado. A divisão da carga pela área esférica da calota produzida é a dureza Brinell em kg/mm<sup>2</sup>. Há tabelas que já fornecem o valor da dureza em função do diâmetro da calota, evitando-se o cálculo toda vez que se for medir a dureza de um material. A Figura 1.9 mostra o esquema de medição de dureza Brinell.



Figura 1.9 – Esquema para teste de dureza Brinell.

O teste Brinell tem a característica de avaliar a dureza sobre uma área relativamente grande do material sendo testado, o que fornece uma dureza mais genérica do material como um todo. Por outro lado, não pode ser empregado em materiais que sofreram tratamento térmico de endurecimento, sendo válido somente em materiais com dureza abaixo de 500 HB (Hardness Brinell). Este teste tem também limitações quanto à espessura mínima do material a ser testado, recomendado como sendo 10 vezes a profundidade da calota. Não pode ser aplicado em superfícies de certas peças acabadas, uma vez que a calota esférica é normalmente visível e imprimi uma marca permanente.

#### 1.3.3.2 - ESCALA DE DUREZA ROCKWELL

As escala Rockwell é também largamente empregada, consistindo na aplicação de carga em um penetrador formado por uma esfera de pequeno diâmetro, ou um cone de diamante. Uma carga de 10 kg é inicialmente aplicada para acomodação seguida de carga de ensaio real. O penetrador de esfera utiliza esferas de 1/16" ou 1/8", enquanto o penetrador de diamante é um cone de 120º com pequeno raio na ponta. No caso desta escala o valor de dureza corresponde à penetração sobre a superfície testada. A Figura 1.10 mostra um medidor de dureza do tipo Rockwell.



Figura 1.10 - Exemplo de um medidor do tipo Rockwell.

Dependendo da combinação de cargas e penetradores a escala Rockwell recebe uma letra após as designações comuns de *Hardness Rockwell – HR*. Tabela 1.4 mostra as escalas de dureza Rockwell e suas aplicações comuns.

Tabela 1.4 – Escalas de dureza Rockwell mais comuns, de acordo com as cargas e penetradores.

| Escala | Penetrador   | Carga (kg) | Materiais                                         |
|--------|--------------|------------|---------------------------------------------------|
| А      | Diamante     | 60         | Carbetos, aços de pouca espessura, cemetações     |
| В      | Esfera 1/16" | 100        | Ligas de Cu, aços sem têmpera, ligas de Al, FoFo  |
| С      | Diamante     | 150        | Aços e FoFo's temperados, cemetações, ligas de Ti |
| D      | Diamante     | 100        | Aços de pouca espessura, cementações              |
| E      | Esfera 1/8"  | 100        | FoFo, ligas de Al, ligas de Mg                    |
| F      | Esfera 1/16" | 60         | Ligas de Cu recozidas, aços de pouca espessura    |
| G      | Esfera 1/16" | 150        | Ligas e Cu endurecidas, FoFo                      |
| Н      | Esfera 1/8"  | 60         | Ligas de Al, de Zn e de Pb                        |

Devido ao pequeno tamanho da indentação produzida pelo teste Rockwell, torna-se mais aceitável para avaliação de dureza em superfícies acabadas, mas os resultados podem também ser influenciados pela rugosidade superficial. O método Rockwell é mais rápido que o Brinell, pois fornece a dureza pela leitura direta no medidor.

#### 1.3.3.3 - ESCALA DE DUREZA VICKERS

O teste Vickers é um misto entre os sistemas Rockwell e Brinell, pois utiliza um penetrador na forma de uma pirâmide de diamante e a dureza é dada pela carga utilizada dividida pela área da marca deixada pelo penetrador, em kg/mm<sup>2</sup>. A grande vantagem da escala Vickers está na possibilidade de se medir dureza em áreas muito pequenas e a maior precisão na medição das diagonais deixadas pelo penetrador em forma de pirâmide. Um sistema óptico é acoplado ao medidor para facilitar a medição das diagonais. A Figura 1.11 mostra um medidor de dureza Vickers.



Figura 1.11 – Medidor de dureza Vickers com sistema de microscópio acoplado.

Ainda a pequena área da ponta do penetrador é capaz de produzir uma marca suficientemente grande para medição, mesmo sujeito a cargas tão pequenas quanto 25 g. Quando pequenas cargas são utilizadas, entre 25 e 3600 g o teste é chamado de *teste de microdureza*. Um outro penetrador, contendo uma das diagonais mais alongadas, pode também ser utilizado para facilitar a medição em áreas microscópicas, sendo o teste chamado de *teste Knoop*.

# 1.4 - TRATAMENTOS TÉRMICOS DOS METAIS

Todos os metais podem sofrer, em algum estágio de fabricação, um processo de fusão, seguido de solidificação. No processo de solidificação normal, durante o resfriamento até a temperatura ambiente, pequenos pontos sólidos se formam aleatoriamente no metal liquido. Quando as condições ideais são atingidas, esses pontos se formam pela aglomeração dos átomos presentes, segundo o arranjo atômico de cada material naquelas condições, formando as primeiras células cúbicas (VanVlack, L.H., 1970). Estas células agem como sementes que dão origem aos grãos metálicos que crescem até dimensões maiores, porém ainda em nível microscópicos. A Figura 1.12 ilustra um esquema deste processo desde as dimensões atômicas, no metal fundido, até dimensões microscópicas, com a completa solidificação.



Figura 1.12 – Esquema de solidificação de um metal, formando os grãos vistos ao microscópio. (a) estado líquido com as primeiras sementes; (b) semi-sólido com início de interferência entre os grãos vizinhos; (c) semi-sólido quase ao final da solidificação; (d) figura vista ao microscópio após a total solidificação.

Na solidificação as células vão se expandido espacialmente, em direções e intensidades aleatórias, até encontrarem outras vizinhas, as quais vão limitar sua expansão. Durante o processo de solidificação diversos fenômenos ocorrem, inclusive mudanças de estrutura atômica, conforme a temperatura. O ferro, por exemplo, em temperaturas acima de 910°C apresenta estrutura atômica cúbica de face centrada (cfc), conhecido também como *ferro*  $\gamma$ . Abaixo desta temperatura a estrutura se modifica para cúbica de corpo centrada (ccc), conhecido também como *ferro*  $\alpha$  (Pereira, R.L., 1979). A Figura 1.13 mostra estas duas estruturas esquematicamente.



(a) Cúbica de face centrado (cfc)



(b) Cúbica de corpo centrada (ccc)

Figura 1.13 – Estruturas atômicas do Fe conforme a temperatura acima ou abaixo de 910°C (VanVlack, L.H., 1970).

Os metais utilizados em engenharia, usinados ou conformados, são soluções contendo diversos elementos, além do Fe, os quais possuem átomos de natureza e dimensões diferentes. Tanto no resfriamento, quanto no aquecimento, ocorrem modificações em suas estruturas atômicas devido às acomodações desses elementos em diversos arranjos atômicos, conforme as condições do resfriamento

ou aquecimento. Formam-se fases diferentes, com propriedades diversas, além de variações na solubilidade dessas soluções. Com a variação na velocidade de resfriamento, fenômenos ocorrem, criando a oportunidade de se modificar as propriedades dos metais. A liga Fe-C, por exemplo, passa por diversas mudanças desde a temperatura de fusão até a completa solidificação à temperatura ambiente. Para representar essas mudanças de fase, as quais também dependem da porcentagem de carbono, utiliza-se o diagrama de equilíbrio Fe-C. O equilíbrio se refere ao fato de que as mudanças de fase nele mostradas ocorrem em velocidades de resfriamento/aquecimento muito lentas, praticamente em equilíbrio. A Figura 1.14 mostra um exemplo simplificado desse diagrama.



Figura 1.14 – Diagrama de equilíbrio Fe-C simplificado.

Desde a temperatura de fusão, 1536°C, até a temperatura de 1394°C, o Fe puro (0% C no diagrama), apresenta uma estrutura ccc, chamada de *ferro-* $\delta$ . Nestas condições possui poucas aplicações em engenharia. De 1394 a 912°C o Fe assume a estrutura cfc chamada de *austenita ferro γ*, em homenagem ao metalurgista inglês Sir Roberts Austen. Esta estrutura tem grande importância uma vez que possui boa conformabilidade e boa solubilidade para o carbono (até 2%). O forjamento a quente de aços se vale dessa propriedade, assim como a maioria dos tratamentos térmicos se inicia com o material neste estado.

Abaixo de 912°C a estrutura mais estável é a ccc chamada de *ferrita ou ferro*  $\alpha$ . Esta estrutura pode reter até 0,02% de C em solução sólida forçando, assim, a criação de duas fases na maioria dos

aços. A próxima mudança que ocorre com os aços em temperaturas menores é a transição de nãomagnético para magnético em 770°C, chamado de ponto Curie.

A quarta fase simples mostrada no diagrama de equilíbrio é a *cementita ou Fe\_3C* sendo uma fase intermetálica com alta dureza e frágil.

Há ainda, no diagrama, pontos de equilíbrio de entre três fases distintas, que são:

- O *peritetóide*, a 1495°C, o qual ocorre somente para aços com baixas porcentagens de C;
- O *eutética*, a 1148°C, com a composição eutetóide de 4,3% C. Portanto, todas as ligas contendo mais de 2,11% C passarão pela reação eutetóide e são chamadas FoFo's.
- O *eutetóide*, a 727°C, com a composição de 0,77% C. Ligas contendo menos de 2,11%C não passam pela reação eutética e formam uma mistura de duas fases através da reação eutetóide, sendo chamadas de aços.

Quando o diagrama de equilíbrio é destinado apenas às análises dos aços torna-se simplificado como o da Figura 1.15.



Figura 1.15 – Diagrama Fe-C simplificado para os aços.

O ponto mais importante para os tratamentos térmicos é a mudança da fase austenita para as duas fases ferrita+cementita, com a queda da temperatura. Inicialmente pode-se pensar na queda de temperatura seguindo a linha x-x', Figura 1.15. Em altas temperaturas somente austenita está presente e os 0,77% C estão dissolvidos na solução sólida em estrutura cfc. Quando o aço se resfria para 727°C muitas mudanças ocorrem simultaneamente. O Fe deseja mudar de austenita cfc para ferrita ccc, mas a ferrita somente pode dissolver 0.02%C em solução sólida. O carbono rejeitado forma um composto intermetálico rico em C (Fe<sub>3</sub>C), a cementita. A reação no eutetóide, portanto é:

# $austenita \rightarrow ferrita + cementita \\ 0,77\%C \qquad 0,02\%C \qquad 6,67\%C$

Uma vez que a separação ocorre inteiramente dentro de sólidos cristalinos, a estrutura resultante é uma fina mistura mecânica de ferrita e cementita. A estrutura resultante, lamelar composta por camadas alternadas, está mostrada na Figura 1.16 (a).



Figura 1.16 – Estruturas típicas de aços eutetóides, hipereutetóides e hipoeutetóides.

Aços contendo menos que 0,77%C são chamados hipoeutetóides e se comportam no resfriamento seguindo a linha y-y'. Saindo da estrutura austenitica entra em uma região onde as fases estáveis são a ferrita e a austenita. Nesta região a ferrita, de baixo carbono, nucleia e começa a se expandir, deixando o restante para a austenita, rica em carbono. Aos 727°C, a austenita restante é do tipo eutetóide (0,77%C) e termina por se transformar em perlita, como toda composição eutetóide. A estrutura resultante, portanto, é composta de ferrita, e regiões com perlita, como mostrado na Figura 1.16(b).

Os aços contendo mais de 0,77%C são os hipereutetóides e seguem a linha z-z' no resfriamento. O processo é similar ao hipoeutetóide, porém, ao invés de se formar a ferrita com fase primária, formase a cementita, devido ao excesso de carbono. A Figura 1.16(c) mostra um exemplo típico dessa microestrutura. Estas transformações descritas são obtidas pelo resfriamento, ou aquecimento, lentos. Em casos de resfriamentos rápidos como nos casos de têmpera, as estruturas formadas são inteiramente diferentes e apresentam propriedades diversas. Esta é a propriedade explorada e da qual se beneficiam os tratamentos térmicos de endurecimento, como a têmpera.

Por tratamento térmico entende-se a operação de aquecer um material e, em seguida resfriá-lo, em condições controladas, com a finalidade de dar-lhe propriedades especiais. Como exemplos citamse algumas ligas que podem sofrer tratamentos térmicos: Fe-C, Al-Cu, Cu-Sn (Bronze), Cu-Zn (latão), Cu-Ag, Cu-Cr, etc. (Pereira, R.L., 1979). O primeiro, e mais simples, tratamento térmico aplicado aos aços é o **recozimento**. Trata-se de um tratamento onde o aço é aquecido e resfriado de forma suave, com baixas velocidades. É utilizado com as seguintes finalidades:

- Regularizar a estrutura de um aço vindo de processo de fusão, dando maior homogeneidade á estrutura;
- Regularizar a estrutura de um material vindo de processo de deformação a frio reduzindo tensões;
- Reduzir a dureza em materiais que tenham sofrido aumento indesejado de dureza;

A temperatura de aquecimento varia conforme a porcentagem de carbono no aço, ou a presença de elementos de liga. Para os aços ao carbono esta temperatura varia entre 750 e 930°C, sendo as mais altas para aços de baixo teor de carbono. O material deve permanecer na temperatura de aquecimento estipulada por um tempo suficiente para a completa homogeneização, além de permitir a difusão do carbono na austenita. Grosseiramente, para aços em geral, o tempo de permanência recomendado é em torno de 20 minutos para cada 10 mm de espessura da peça. Normalmente testes práticos são recomendados antes de se recozer uma peça única e importante. Um tempo excessivo de permanência na temperatura de aquecimento permitirá o crescimento dos grãos, uma vez que permite a expansão ou fusão de grãos adjacentes. Um tempo insuficiente pode levar a um recozimento irregular ou distorções. O resfriamento da peça deve ser lento como, por exemplo, mantendo-se a peça no forno e desligando-o, constituindo-se a prática mais comum. São também utilizados outros meios de resfriamento para o recozimento, tais como: resfriamento em areia, em cinza, cal ou ar parado. Peças grandes ou com baixo teor de C podem ser resfriadas mais rapidamente. Aços ligados, ao contrário, devem ser resfriados bem lentamente, pois podem aumentar a dureza, mesmo sendo resfriados em ar parado.

A *normalização* é outro tratamento térmico semelhante ao recozimento, porém as temperaturas de aquecimento são ligeiramente superiores às de recozimento, o resfriamento é sempre ao ar e sua finalidade é a de uniformizar e refinar a granulação dos aços. Sendo mais altas as temperaturas, permite-se ao aço maior uniformidade de distribuição do carbono na austenita. A normalização é muito empregada antes da têmpera, com a finalidade de evitar aparecimento de trincas e empenamentos.

Outro tratamento térmico muito comum aos aços é a *têmpera*, utilizada com a principal finalidade de aumentar a resistência mecânica. Este tratamento consiste em aquecer o aço até temperaturas idênticas àquelas do recozimento, porém seguido por resfriamento rápido. Na têmpera os meios de resfriamento vão desde água salgada (meio severo) até óleo (meio brando). Neste tratamento as finalidades são: aumentar a dureza, os limites de escoamento e de resistência, porém em detrimento da resiliência, alongamento e da ductilidade.

A prática de mergulhar aço aquecido, com a cor vermelha, em água é um procedimento conhecido desde há muito pelo homem. Espadas já passaram por esse procedimento e aqueles que dominavam esta prática já foram conhecidos como possuidores de poderes extraordinários. Estudos científicos, no entanto, tornaram esse conhecimento tácito disponível a qualquer um que se disponha a aprender. Estes estudos possuem somente cerca de 100 anos e muito ainda pode ser desenvolvido nesta área. Um dos grandes desafios iniciais foi o entendimento da importância da velocidade de resfriamento, uma vez que se trabalha fora do diagrama de equilíbrio. Variações na velocidade de resfriamento resultam em aços temperados com grandes diferenças nas propriedades mecânicas. O entendimento do *diagrama TTT*, ou *diagrama tempo-temperatura transformação*, é a chave para entender-se como os aços são endurecidos pela têmpera. A Figura 1.17 mostra um diagrama TTT para aço de composição eutetóide (0,77%C).



Figura 1.17 – Exemplo de diagrama TTT para aço eutetóide (0,77%C)

Acima de 727°C austenita, cfc, é a fase estável e abaixo disso tende a se transformar em ferrita ccc e cementita, rica em C. Dois fatores controlam a taxa de transformação: uma motivação para a transformação e a habilidade para uma difusão em um sólido. Um resfriamento para a temperatura
ambiente em tempo muito curto, usando-se um meio muito severo, com água, por exemplo, em uma peça de pouca massa, produzirá uma estrutura que passando á esquerda da curvas de início e fim de transformação. A estrutura resultante será uma austenita instável, a qual tenderá a se transformar em ferrita+cementita, uma vez que esta é a mais estável nas condições ambientes. Neste caso a motivação para a transformação será alta, porém a habilidade para difusão será baixa, devido à estrutura cristalina sólida. Caso o resfriamento seja muito lento deixará tempo suficiente para que as mudanças ocorram e as estruturas resultantes serão aquelas discutidas no diagrama de equilíbrio.

Se a austenita, no entanto, é resfriada para temperaturas abaixo da temperatura *MS*,(Figura 1.17) um tipo diferente de transformação ocorrerá. A transformação estará distante daquela de equilíbrio e a difusão requerida para formar perlita não ocorrerá. Por outro lado o material ainda tenderá a mudar de austenita cfc para ferrita ccc e acomodar o carbono restante na forma de cementita. Devido à estrutura cristalográfica e à baixa temperatura esta transformação ocorre, mas o excesso C não pode mais ser expulso para forma a ferrita. Em resposta ao severo estado de não equilíbrio, o material passa por uma severa mudança na estrutura cristalina com baixíssimas possibilidades de difusão. O excesso de carbono, nesta nova estrutura, tendendo a ccc, se torna prisioneiro distorcendo a célula unitária em uma estrutura tetragonal de corpo centrado com um grau de distorção proporcional ao excesso de carbono. A nova estrutura conseguida é chamada de *martensita* e, com uma porcentagem suficiente de carbono é extremamente dura e frágil. A Figura 1.18 mostra um exemplo dessa estrutura.



Figura 1.18 – Estrutura típica de martensita. 1000 x

A dureza da estrutura martensítica é proporcional à porcentagem de carbono no aço, sendo que abaixo de 0,10% fica abaixo de 30 HRc, o que não representa vantagem no tratamento térmico. Entre 0,3 e 0,7% C a dureza aumenta rapidamente atingindo cerca de 65 HRc. Acima de 0,7%, contudo, não há significativo aumento de dureza e começam a aparecer traços de austenita retida, prejudicando a dureza e as propriedades mecânicas no material. Os diagramas TTT para aços hipo- ou hipereutetóides

são ligeiramente diferentes, uma vez que haverá outras estruturas primárias além da ferrita. Neste ponto, no entanto, é suficiente somente o entendimento simplificado do processo de endurecimento dos aços através do tratamento térmico de têmpera.

Devido à baixa tenacidade e ductilidade, a estrutura martensítica não encontra grandes aplicações em engenharia e, portanto, deve ser adequada a uma dureza um pouco menor, com maior ductilidade e tenacidade. Para conseguir tais propriedades usa-se outro tratamento térmico chamado *revenimento*. Consiste em aquecer o material abaixo da temperatura crítica de transformação (727°C) resfriado-o em seguida. Como a martensita é uma solução sólida de C supersaturada em uma estrutura de Fe- $\alpha$ , portanto, uma estrutura metaestável, o aquecimento provoca a rejeição de C, levando a transformação na direção de uma ferrita estável e fases de cementita. Esta decomposição é dependente do tempo e da temperatura para facilitar a difusão. As temperaturas de aquecimento variam entre 300 e 700°C dependendo da porcentagem de C e de seus elementos de liga. O tempo de permanência na temperatura de aquecimento depende das propriedades desejadas, sendo que maiores tempos implicam em menor dureza e maior ductilidade.

Em ligas cuja estrutura não permitem a formação de estruturas do tipo martensita, com as ligas de Al, Ni e Cu, necessita-se outro tipo de tratamento para melhoria de suas propriedades mecânicas. Utiliza-se o tratamento de *precipitação* seguida de *envelhecimento*. Ligas contendo determinadas porcentagens de elementos propícios a formar precipitados em solução sólida podem ser submetidos a este tipo de tratamento. Ligas de Al, por exemplo, com porcentagens de Cu abaixo de 5,65% apresentam esta propriedade. Uma liga de Al-4%Cu se aquecida a temperaturas acima de 500°C o Cu presente se dissolverá completamente na solução sólida. Um resfriamento rápido não permitirá que o excesso de cobre se precipite, uma vez que, à temperatura ambiente, somente 0,2% Cu pode existir em solução. Neste caso a estrutura resultante, após o resfriamento, será supersaturada em cobre e o excesso deverá se precipitar tão logo condições de temperatura e tempo o permitam. Se o material for submetido a temperaturas acima de 170°C cachos de cobre se formarão aumentando a resistência mecânica da liga e sua ductilidade. Controlando-se o tempo e a temperatura de envelhecimento, podem-se obter as melhores condições para as propriedades mecânicas desejadas no material.

Para outras ligas como de Cu, Ni, etc. tratamentos térmicos semelhantes são aplicados e leituras em publicações mais especializadas são recomendadas.

### 1.5 – Critérios de Resistência em Materiais

Na maioria das operações envolvendo deformação dos materiais, quer seja em processos de conformação ou de usinagem, dificilmente haverá solicitação de tensões em apenas uma direção como nos ensaios de tração, compressão ou torção. Na sua grande maioria as solicitações são em estado triaxial de tensões. Na conformação por forjamento, por exemplo, o material sendo deformado sofre solicitações de tensões de compressão e cisalhamento, impostas pela pelo estampo. Num ensaio de tração simples as tensões atuam somente na direção axial do corpo de provas e quando esta atinge um determinado valor (tensão de escoamento, por exemplo) o material inicia sua deformação plástica. Contudo, se as solicitações forem em um estado mais complexo de tensões há relações entre este e o estado uniaxial de ensaio, permitindo uma comparação direta, assim, dos valores de escoamento em qualquer estado de solicitações. Estas relações são conhecidas como **Critérios de Resistência**. Os mais comuns são o de máxima tensão de cisalhamento e o da energia de distorção.

# 1.5.1 – Critério de Máxima Tensão de Cisalhamento

Este critério é também conhecido como critério de *Tresca* e estabelece que o escoamento ocorre quando a máxima tensão de cisalhamento atinge um valor crítico *k*. Ou seja,

$$\tau_{máx} \ge k \tag{1.9}$$

A Figura 1.19 mostra alguns exemplos de solicitações uni- bi- e tri-axiais, sua correspondente representação no círculo de Morh e a tensão máxima de cisalhamento.



Figura 1.19 – Diversos estados de tensão, suas representações no círculo de Mohr e a relação com a máxima tensão de cisalhamento. (a) Estado uni-axial de tração; (b) Estado uni-axial de compressão; (c) Estado bi-axial (estado plano); (d) Estado tri-axial.

No ensaio de tração uni-axial, por exemplo, se o valor de tensão de escoamento atinge o valor Y, o valor de k será:

$$k = \frac{Y}{2} \tag{1.10}$$

Para um caso onde o estado de solicitações seja mais complexo pode-se escrever que:

$$\sigma_{max} - \sigma_{min} = Y = 2k \tag{1.11}$$

Isto significa que a máxima e a mínima tensão normal produzem sempre o maior círculo e, portanto a maior tensão de cisalhamento. Consequentemente, as tensões intermediárias não afetam o escoamento.

### 1.5.2 – Critério da Energia de Distorção

Este critério é também conhecido como *Critério de Von Mises-Hencky*, sendo mais aplicável a materiais dúcteis, como a maioria dos materiais metálicos usinados ou conformados. A observação de que os materiais dúcteis, tensionados hidrostaticamente (tração ou compressão iguais em todas as direções), possuíam limites de escoamento muito acima dos valores dados pelos testes de tração

normais originou esta teoria. Com base nestas constatações postulou-se que: o escoamento não é um simples fenômeno de tração ou compressão, mas, ao contrário, está relacionado de algum modo à distorção angular do elemento tensionado. Ora uma das mais antigas teorias de falhas previa que o escoamento começaria sempre que a energia total de deformação armazenada no elemento tensionado se tornasse igual à energia total de deformação de um elemento de um corpo de provas submetido um teste de tração, na ocasião de escoamento. Esta teoria, chamada Teoria da Energia de Distorção máxima, não é mais usada, mas foi precursora da atual energia de distorção. Sendo assim, considera-se a energia total de deformação, subtraindo-se dela qualquer energia usada somente para produzir variação de volume. A energia restante será a responsável pela distorção angular, que efetivamente produzirá o escoamento. A Figura 1.20 mostra como essa subtração pode ser representada:



Figura 1.20 – Esquema representativo do Critério da Energia de Distorção. (a) Elemento com solicitação tri-axial, sofrendo simultaneamente variação de volume e distorção angular; (b) Elemento sob tensão hidrostática, sofre apenas variação de volume; (c) Elemento com distorção angular, sem variação de volume.

Para o elemento unitário mostrado na Figura 1.20(a), submetido a tensões de modo que  $\sigma_1 > \sigma_2 > \sigma_3$ , a energia de deformação pode ser escrita como:

$$u_n = \frac{\sigma_n \varepsilon_n}{2} \tag{1.12}$$

onde n = 1,2,3. Portanto, da Equação (1.12), a energia total de deformação é:

$$u = u_1 + u_2 + u_3 = \left[\frac{1}{(2E)}\right] \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_1\sigma_3)\right] (1.13)$$

onde E é o módulo de elasticidade e  $\nu$  é o coeficiente de Poisson.

A seguir define-se uma tensão média:

$$\sigma_{m\acute{e}d} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} \tag{1.14}$$

e aplica-se esta tensão a cada uma das direções principais de um cubo unitário, Figura 1.20(b). As tensões restantes:

$$\sigma_1 - \sigma_{méd}$$
  
 $\sigma_2 - \sigma_{méd}$   
 $\sigma_3 - \sigma_{méd}$ 

mostradas na Figura 1.20(c) produzirão somente distorção angular. Substituindo-se  $\sigma_1$ ,  $\sigma_2$ , e  $\sigma_3$  por  $\sigma_{méd}$  na Equação (1.13), obtém-se a quantidade de energia que produz somente variação de volume:

$$u_{\nu} = \frac{1}{2E} \left[ 3\sigma_{m\acute{e}d}^2 - 2\nu(3)\sigma_{m\acute{e}d}^2 \right] = \frac{3\sigma_{m\acute{e}d}^2}{2E} \left( 1 - 2\nu \right)$$
(1.15)

Substituindo-se  $\sigma_{méd}^2 = [(\sigma_1 + \sigma_2 + \sigma_3)/3]^2$  na Equação (1.15) e simplificando-se, obtém-se:

$$u_{\nu} = \frac{1 - 2\nu}{6E} \left( \sigma_1^2 + \sigma_2^2 + \sigma_3^2 + 2\sigma_1 \sigma_2 + 2\sigma_2 \sigma_3 + 2\sigma_1 \sigma_3 \right)$$
(1.16)

Obtém-se então a energia de distorção, subtraindo-se a Equação (1.16) de (1.13):

$$u_{d} = u - u_{v} = \frac{1 + v}{3E} \left[ \frac{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}}{2} \right]$$
(1.17)

Nota-se que a energia de distorção é zero se  $\sigma_1 = \sigma_2 = \sigma_3$ . Para o teste de tração simples:

$$\sigma_1 = Y e \sigma_2 = \sigma_3 = 0$$

Portanto, a energia de distorção neste caso é:

$$u_{dT} = \frac{1+\nu}{3E} Y^2$$
(1.18)

Pelo critério estabelecido o escoamento se dará quando a energia de distorção no ensaio de tração uniaxial se igualar ao estado tri-axial de tensões, ou seja:

$$u_{d} = u_{dT} \Longrightarrow 2Y^{2} = (\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}$$
(1.19)

que define o início do escoamento em qualquer estado de tensões.

Para qualquer critério de escoamento que se estabeleça, o escoamento acontecerá sempre que a tensão obtida no ensaio de tração uni-axial se iguale a *Y* calculada pelas relações acima.

### 2 - PROCESSOS DE CORTE E DOBRA DE CHAPAS

Uma grande quantidade de metais extraídos na mineração é transformada em materiais metálicos e esses comercializados na forma de chapas laminadas a frio, ou a quente, a custos compatíveis com o mercado. Tais chapas são transformadas em produtos como automóveis, máquinas de lavar, fogões, aviões, frascos para refrigerantes e alimentos, assim como materiais para construção e uma enorme variedade de objetos de todas as dimensões e utilidades. Metais na forma de chapas oferecem uma grande vantagem, pois se permitem cortar, dobrar e repuxar oferecendo versatilidade para criação das mais diversas formas finais de produtos. Uma gama muito grande de processos e técnicas são empregadas para produção de peças usando a chapa como matéria-prima.

Peças usando chapas metálicas são normalmente fabricadas a frio, embora conformação a quente seja também possível, especialmente quando as forças envolvidas resultam muito altas. Tiras de chapas, ou mesmo partes cortadas por cisalhamento são as formas mais comuns de entrada nas ferramentas de corte e de dobra de chapas. As ferramentas de corte e dobra abordadas neste texto são normalmente aplicadas em casos onde o volume de produção é médio ou alto, de forma que os custos de projeto e fabricação possam ser divididos pelo volume produzido, tornado o preço por unidade produzida acessível ao mercado. Ferramentas de corte e dobra, ou estampos, como normalmente são conhecidas, possibilitam a produção em altos volumes em tempo reduzidos, quando comparados à produção de uma peça somente. Também possibilitam uma excelente repetibilidade das características dimensionais e de propriedades mecânicas das peças, desde que o projeto e fabricação das ferramentas sejam adequados. A operação de uma máquina de conformação com ferramentas adequadas e bem ajustadas possibilita automação, contribuindo para maior produtividade e qualidade.

Os processos de conformação em chapas podem ser divididos em dois grandes grupos: corte e deformação plástica. No grupo de corte são processos que submetem o material ao cisalhamento entre duas arestas afiadas, levando-o à ruptura. Pode-se citar o corte por tesouras, facas de fio linear, curvo ou circular. Neste caso o material é fixado por um mecanismo chamado de prensa-chapas e submetido ao cisalhamento entre duas arestas que se movem na mesma direção e em sentidos opostos, com movimentos em trajetórias retas ou circulares. A Figura 2.1 ilustra, esquematicamente, o corte por cisalhamento com facas de fio linear.



Figura 2.1 – ilustração do processo de corte usando facas de fio linear.

A Figura 2.2 ilustra o corte de chapas com facas de fio circular.



Figura 2.2 – Corte de chapas com facas de fio circular.

Muitas vezes, antes de se usar uma ferramenta de corte e/ou dobra para a produção de peças, as chapas vindas das usinas, na forma retangular ou em bobinas, devem ser partidas em fitas, por processos de corte usando os processos mostrados nas Figuras 2.1 e 2.2.

No puncionamento a chapa é submetida ao cisalhamento pelas arestas da matriz e do punção, conforme ilustrado na Figura 2.3



Figura 2.3 – Ilustração do processo de corte por puncionamento.

O formato da secção transversal dos punções pode ser o mais variado possível, sendo o quadrado e o redondo, os mais comuns. A furação por cisalhamento tem limitações quanto à relação entre o diâmetro do furo a ser executado e a espessura do material, o que é função da resistência ao cisalhamento do material a ser cisalhado, conforme mostrado na Figura 2.4.



Figura 2.4 – Limite para a razão entre a espessura da chapa e o diâmetro do furo (Anonymous, 1998).

Nos processos de deformação plástica dois grupos também podem ser encontrados: Dobra e Repuxo. O processo de dobra consiste em submeter a chapa a tensões impostas por um punção e uma matriz que ao serem pressionados sobre a chapa em sentidos opostos a deformam até o formato final desejado. A Figura 2.5 mostra alguns exemplos de processos de dobra de chapas.



Figura 2.5 – Exemplos de dobra de chapas.

Nos processos de repuxo a chapa presa (por um mecanismo chamado de prensa-chapas) em suas extremidades contra a matriz, a qual somente contém a seção transversal da forma final. Depois disso um punção com a forma desejada a força repuxando a chapa. Este processo é mais comumente empregado para produção de copos, ou recipientes assim parecidos. A Figura 2.6 mostra exemplos dessas operações.



Figura 2.6 – Exemplos de processos de repuxo em chapa.

Os exemplos mostrados anteriormente são os mais tradicionais. Há, no entanto, um número muito grande de variações para cada um dos grupos apresentados, vide, por exemplo os itens relacionados na Bibliografia deste texto.

O projeto de um estampo é uma tarefa importante pelo fato de que essas ferramentas não são, normalmente, encontradas prontas comercialmente. Cada estampo deve ser projetado e construído de forma única, para executar operações específicas. Há, no entanto, partes de um estampo, as quais são comuns e que podem ser adquiridas comercialmente, o que deve sempre ser preferido para diminuir os tempos de projeto e execução. O texto a seguir orienta projetistas e engenheiros na tarefa de projetar ferramentas de corte e dobra.

# **3 PROJETO DE FERRAMENTAS DE CORTE E DOBRA DE CHAPAS.**

A opção por peças estampadas a partir de chapas vai depender, em grande parte, da avaliação de custo e de funcionalidade do componente concebido pelo Engenheiro de Produtos. Em geral, a opção por peças estampadas proporciona um custo inicial maior, porém um custo unitário muito baixo, desde que a expectativa de produção seja de um número alto de peças ou alta a frequência de produção de pequenos lotes. Adicionalmente, o ciclo de tempo de produção tende a ser muito baixo em comparação com outros processos capazes de produzir a mesma peça com qualidade similar, em termos dimensionais e de resistência mecânica. Prensas excêntricas, por exemplo, o tipo mais comum, podem trabalhar entre 60 a 90 golpes por minuto. No caso de se produzir pelo menos uma peça por golpe, temse uma produção horária de 60 a 90 peças por hora. Componentes de forma geométrica simples, que possam ser produzidos com cortes e dobras combinados, são os mais indicados para esse processo. A Figura 3.1 mostra alguns exemplos de peças produzidas pela combinação de cortes e dobras.



Figura 3.1 – Exemplos de peças produzidas pela combinação de cortes e dobras em chapas.

Assim, tomada a decisão de que a peça será produzida por corte e/ou dobra, inicia-se o projeto da ferramenta, o estampo. Um estampo pode ser simples se a cada golpe da prensa uma peça completa é fabricada, ou progressivo se a peça é conformada progressivamente, necessitando, pois de vários passos para completar uma unidade. Independentemente do tipo de estampo, algumas partes são comuns a todos, as quais são mostradas na Figura 3.2.



Figura 3.2 – Exemplo de partes que compõem um típico estampo de corte e dobra.

A Figura 3.3 mostra detalhes internos do mesmo estampo para uma visão mais detalhada das partes internas.



Figura 3.3 – Exemplos de partes internas que compõem um típico estampo de corte e dobra.

Para se iniciar o projeto de uma ferramenta para corte e dobra várias decisões já devem ter sido tomadas com base em informações diversas de ordem econômica, estratégica, por conveniência, etc. O projeto da ferramenta propriamente pode se iniciar de diversas formas, uma vez que todo projeto mecânico se faz por um processo iterativo. Com a experiência adquirida em vários projetos, pode-se diminuir significativamente o número de iterações nesse processo. Sendo assim, este texto está organizado em uma ordem que visa diminuir o número de iterações e, portanto, o tempo de projeto. A

ordem aqui apresentada não significa, no entanto, a ideal para todos os projetos e iterações sempre poderão ocorrer, ou seja, à medida que se avança no projeto, algumas decisões já tomadas podem necessitar revisão e correção. Trata-se de um processo natural em qualquer projeto e mesmo problemas simples, executados por engenheiros e projetistas experientes podem resultar em correções de rumo à medida que se avança. O primeiro passo recomendado para o projeto de um estampo de corte e dobra é o projeto e definição da tira.

# 3.1 – Projeto da Tira

Como projeto da tira compreende-se a definição da matéria-prima a ser inserida no estampo para a produzir a peça estampada e a definição da sequencia de operações de corte e de dobra. Inicialmente deve-se avaliar se a tira será cortada de chapas (em geral com 1200 mm x 3000 mm) ou será na forma de bobinas (com uma largura definida e comprimento de 50m, 100 m, ou mais). O ponto principal a ser considerado é o volume de peças a ser produzido, ou o tamanho do lote, tempo de ciclo de produção, disponibilidade no mercado de matéria-prima desejada. Para lotes grandes (milhares de peças) e reduzidos tempos de produção a compra de bobinas deve ser preferida. Neste caso deve-se especificar a largura necessária, pelo projeto, uma vez que o comprimento dependerá mais da capacidade de se transportar o peso e a dimensão final da bobina. Também deve-se preferir a alimentação automatizada da bobina no estampo, sendo essa mais uma razão para que o volume produzido seja alto e os tempos de ciclo baixos, maximizando a produtividade. A Figura 3.4. Mostra um exemplo de ferramenta trabalhando com matéria-prima na forma de bobina.



Figura 3.4 – Exemplo de um sistema de alimentação por meio de bobona de chapa.

Para outros casos, podem-se cortar em guilhotinas as tiras na largura desejada, a partir de bobinas ou mesmo chapas planas maiores, as quais em geral são compradas das usinas nas dimensões 1200 x 3000 mm, ou em dimensões diferentes, mas padronizadas. A Figura 3.5 mostra um exemplo de corte de uma fita na largura especificada a partir de matéria-prima na forma de bobina.



Figura 3.5 – Exemplo de corte de uma fita na largura especificada a partir de uma bobina.

A alimentação da tira na entrada do estampo deve ser projetada de forma a guiar corretamente a mesma para o corte ou dobra, mantendo-a alinhada e com movimento uniforme ao longo da operação. Um bom projeto permitirá ainda que a tira, ou os retalhos, sejam extraídos ao final sem dificuldades. Um exemplo típico de um sistema de guia é mostrado na Figura 3.6.



Figura 3.6 – Exemplos de sistema de alimentação de tiras para estampos de corte e dobra.

Recomendações para o comprimento  $L_g$  é que esteja entre 0,75 e 1,0 do comprimento das bases, embora essa proporção seja apenas uma indicação, pois vai depender muito do tipo de sistema de alimentação, se manual usando tiras extraídas de chapas, ou automático usando bobinas. Maior importância, no entanto, deve ser dada às dimensões  $A \in H$ , pois dessas dependerá o funcionamento uniforme da ferramenta. Para ilustras melhor essas dimensões a Figura 3.7 mostra uma seção em corte com os perfis das principais partes envolvidas.



Figura 3.7 – Corte dos detalhes do sistema de alimentação da tira.

As recomendações para as dimensões A e H estão na Tabela 3.1.

Tabela 3.1 – Recomendações para as dimensões  $A \in H$  para projeto do sistema de alimentação da tira no estampo.

| Espessura da Chapa<br><i>h</i> (mm) | Dimensâ     | Dimensão A (mm) |            |
|-------------------------------------|-------------|-----------------|------------|
|                                     | Alimentação | Alimentação     | A = W + 2c |
|                                     | Manual      | automatica      |            |

| < 2            | 4 a 6   | 4 a 6   | c = 0,25 |
|----------------|---------|---------|----------|
| $2 \le h < 3$  | 6 a 8   | 6 a 8   | c = 0,25 |
| $3 \le h < 4$  | 8 a 10  | 6 a 8   | c = 0,75 |
| $4 \le h < 6$  | 10 a 12 | 8 a 10  | c = 0,75 |
| $6 \le h < 10$ | 12 a 15 | 10 a 15 | c = 0,75 |

A segunda parte nesta etapa do projeto da tira está em decidir-se como a ferramenta deverá executar cada passo para que se obtenha a peça final. Para estampos simples, nos quais em um único golpe da prensa a peça completa é executada, não há necessidade desta segunda parte, mas para os casos em que o estampo será progressivo, os passos devem ser estipulados. Sempre se deve tentar executar o menor número de passos possível, diminuindo-se assim o tamanho geral do estampo. O custo de fabricação desta ferramenta guarda uma relação direta com o peso final. Assim, quanto mais leve resultar o estampo, menor será o custo, com raras exceções mais ligadas à precisão dimensional dos componentes. Todas as fases seguintes irão depender dessa inicial, mas não se deve tentar minimizar todos os aspectos, inicialmente. Ao tentar pensar em todos os aspectos seguintes e na sua minimização, pode-se incorrer no erro de demorar muito para avançar gastando-se muito tempo nessa fase. Deve-se balancear essa decisão, em termos de tempo, deixando-se aberta a possibilidade de retorno e mudanças, á medida que se avança no projeto. Ao buscar a minimização do número de passos necessários para a peça final, sempre deve-se pensar em reservar um último passo para corte da tira em retalhos o que facilitará a armazenagem e a reciclagem dos retalhos.

A otimização do uso de material deve ser um dos principais aspectos nessa etapa para minimizar a geração de retalhos, os quais serão um dos resíduos do processo de conformação. Para otimizar o aproveitamento de material, várias ideias podem ser usadas. A Figura 3.8 sugere algumas possibilidades para peças no formato de "L", por exemplo.



Figura 3.8 – Sugestões de otimização de material para peças na forma de "L".

A Figura 3.9 sugere ideias para modificações no projeto do produto, que podem minimizar o uso de material.



Figura 39 – Exemplo de pequenas modificações no produto que podem racionalizar o uso de material.

A Figura 3.10 mostra um outro exemplo de peças que podem ser cortadas de forma a maximizar o número de peças por área da tira, minimizando-se o uso de material.



Figura 3.10 – Maximização do número de peças por área da fita.

As dimensões m e n são fundamentais para o bom funcionamento da ferramenta. Se exageradas, perde-se o objetivo de minimização do uso de material. Se muito pequenas, podem levar ao mau funcionamento do estampo. A Tabela 3.2 mostra recomendações para essas dimensões, as quais devem garantir um bom funcionamento.

#### Tabela 3.2 – Recomendações de espaços entre as peças, ou para sobras laterais na fita.



Sempre deve-se lembrar que os valores recomendados pela Tabela 3.1 são mínimos, mas que podem ser alterados mais á frente no projeto, por exemplo, devido a pouca resistência mecânica na matriz, devido à excessiva proximidade entre os passos. Novamente, deve-se lembrar que o projeto é uma atividade que pode demandar iterações entre as suas diversas etapas.

Em outros casos pode-se também pensar maximizar o aproveitamento de material, extraindo-se peças menores do que seria descartado em peças maiores. Isso é ilustrado na Figura 3.11.



Figura 3.11 – Maximização do aproveitamento de material, extraindo-se peças menores de material que seria descartado de peças maiores.

Lembrando-se que cortar a sobra da tira em retalhos pequenos é sempre desejável, a Figura 3.12 mostra dois exemplos de como alcançar esse objetivo, com ideias simples.



Figura 3.12 – Ideias simples para cortar a sobra da fita em retalhos.

Como última recomendação para a definição do desenho da tira e consequente estabelecimento dos passos necessários deve-se balacear os passos no que diz respeito às cargas em cada um. Se as cargas forem demasiadamente desequilibradas entre os passos, pode acontecer que a posição da resultante das forças se localize muito longe do centro das bases. Na posição geométrica dessa resultante se colocará a espiga, a qual liga o cabeçote da prensa à ferramenta. Para evitar momentos sobre o cabeçote a cada golpe, a resultante não deve estar a mais do que 10% fora da posição central. Ferramentas que não obedecem a esses critério e devem produzir milhares de peças, desgaste exessivo e irregular serão certos, além de prejudicarem a precisão dimensional da prensa, a longo prazo. Assim, deve-se sempre que possível tentar o melhor equilíbrio de cargas entre os passos, buscando a uniformidade dos perímetros de corte entre os passos. Caso isso não seja possível, recomenda-se o uso

de colunas em maior número, ou mais reforçadas, para minimizar o momento resultante sobre a prensa. Nesta fase, deve-se buscar esse equilíbrio, sem no entanto, proceder o cálculo final das cargas de corte, e/ou dobra, que será feito na próxima etapa. A Figura 3.13 mostra exemplos mais complexos de projetos de tira.



Figura 3.13 – Exemplos de projetos mais complexos para tiras de peças com corte e dobra.

Para completar o projeto da tira há que se pensar ainda na marcação do passo do estampo progressivo para garantir que a alimentação seja realizada progressivamente e em alinhamento com o passo anterior. Quando a alimentação da máquina é automática, o passo pode ser determinado pelo avanço controlado do alimentador. Quando não for possível essa automação ou a alimentação for manual, algum tipo de marcador deve ser previsto. Diversos são os sistemas para esse fim, com maior ou menor complexidade, dependendo da produtividade desejada e da precisão dimensional da peça

acabada. Algumas ideias são simples para pequenos lotes de peças com baixo grau de precisão dimensional. A Figura 3.14 mostra alguns desses sistemas.



Figura 3.14 – Sistemas simples para marcação do passo em estampos preogressivos.

Para os casos onde maior precisão dimensional é requerida pode-se usar um punção para cortar a lateral da tira garantindo maior precisão de posicionamento, conforme mostrado na Figura 3.15.





Figura 3.15 – Exemplo de sistema de marcação do passo em estampo progressivo usando um punção para corte lateral na tira.

Outra ideia interessante é retalhar a tira no último passo, deixando cair a parte final cortada, conforme mostrado na 3.16.



Figura 3.16 – Exemplo de marcador de passo ao final da tira com corte do retalho.

A Figura 3.17 mostra um exemplo de marcador de passo que usa um pino piloto guiado por furos funcionais na tira.



Figura 3.17 – Exemplo de marcador de passo usando pino piloto.

Definido o desenho da tira, o proximo passo pode ser o cálculo da carga de corte e de dobra necessária para a fabricação da peça.

#### 3.2 – Cálculo da carga de corte no estampo

Para o corte o material passará pelas fases já mostradas anteriormente, na Figura 2.3, sendo elas: deformação elástica, seguida de plástica, penetração das arestas de corte no material da peça e finalmente a ruptura e sepação do material. No exato instante que se segue à ruptura a força exercida pela ferramenta (faca ou punção) tenderia a cair rapidamente para zero, porém o material ainda deve ser removido e no caso de punções este penetrará no furo recém-fabricado com um ajuste interferente, restando ainda uma força para essa penetração. Ao final do movimento do punção se inicia o retorno, ou extração, fase na qual uma força ainda deverá ser exercida, agora em sentido contrário. A Figura 3.18 mostra esquematicamente cada passo da operação de puncionamento seguida do aspecto da secção transversal do furo produzido.



Figura 3.18 – Aspectos do puncionamento e do furo executado por cisalhamento.

Assim sendo, o punção, ou a faca de corte, não necessariamente precisa penetrar por toda a espessura do material para que este se rompa. Geralmente basta uma porcentagem da espessura, valor este que depende da dureza do material, da porcentagem de alongamento e da folga entre punção e matriz. Quanto mais duro e menor seu alongamento, menor a porcentagem da espessura necessária para a ruptura. Quanto maior a folga, maior será a flexão do material antes de atingir as condições de ruptura, resultando assim em maior penetração antes da ruptura. A Tabela 3.3 mostra exemplos de porcentagens de penetração do punção no material, em relação à espessura para alguns materiais mais comuns.

Tabela 3.3 – Exemplos de porcentagens da espessura necessárias para a ruptura do material sendo cisalhado.



|                             | Porcentagem da         |  |  |  |
|-----------------------------|------------------------|--|--|--|
| Material                    | espessura <i>h</i> (%) |  |  |  |
| Ligas de aluminio           | 60                     |  |  |  |
| Ligas de cobre              | 55                     |  |  |  |
| Latão                       | 50                     |  |  |  |
| Bronze                      | 25                     |  |  |  |
| Aço ABNT 1010 Recozido      | 50                     |  |  |  |
| Aço ABNT 1010 laminado frio | 38                     |  |  |  |
| Aço ABNT 1030 recozido      | 33                     |  |  |  |
| Aço ABNT 1030 Laminado frio | 22                     |  |  |  |
| Aço silício                 | 30                     |  |  |  |
| Ligas de níquel             | 55                     |  |  |  |

Os valores típicos de resistência ao cisalhamento de cada material e as folgas recomendadas entre punção e matriz serão discutidos à frente no decorrer das próximas etapas da definição do projeto. Mesmo assim, no projeto do estampo de corte, ou furação, deve-se garantir que o punção penetre pelo menos 20% além da dimensão do talão da matriz para garantir a completa expulsão da parte cortada.

Estudos, detalhados em Altan, T., Uh, S., Gegel, H., (1999) demonstram que durante a penetração do punção no material, a força tem um comportamento típico conforma mostrado na Figura 3.19.



Figura 3.19 – Típico comportamento da força em função do tempo em uma operação de puncionamento (Altan, T., Uh, S., Gegel, H., 1999).

Da origem até o ponto A o material se deforma elasticamente. No ponto B atinge o limite de deformação elástica e o material começa a se deformar plasticamente. Material começa a fluir ao redor das arestas de corte na direção da folga, semelhantemente ao que ocorre nas operações de repuxo. Este fluxo de material pode levar ao encruamento naqueles materiais em que esse efeito está presente aumentando a resistência mecânica. Entre os pontos B e D o aumento na tensão concentrada nas arestas de corte impedem o material de continuar fluido e o cisalhamento se inicia. Para que o cisalhamento se inicie há um acréscimo inicial de força até ponto C, o qual é usado como base para o cálculo da carga necessária para o completo cisalhamento. Após atingir o ponto C as forças de cisalhamento diminuem mais rapidamente do que aumentam devido ao encruamento, graças à diminuição da seção transversal resistente. No último trecho entre D e E a fratura ocorre depois de atingir o limite de resistência do material e as trincas nascidas em cada uma das arestas se encontrarem. Para o cálculo da carga necessária para a fabricação da peça deve-se usas o valor máximo atingido durante o ciclo, ou seja, o ponto C. A Figura 3.20 mostra gráficos experimentais de pressão especifica de corte,  $k_c$ , para uma variedade de materiais.



| Material       | k <sub>c</sub> (N/mm2) |
|----------------|------------------------|
| 1              | 735                    |
| 2              | 598                    |
| 3              | 529                    |
| 4              | 461                    |
| 5              | 451                    |
| 6              | 372                    |
| 7              | 274                    |
| Ligas de Cobre | 157                    |
| Ligas de Zinco | 147                    |
| Duraluminio    | 127                    |

Figura 3.20 – Exemplo de curvas experimentais de pressão especifica de corte,  $k_c$ , para diversos materiais (Frateschi, C., Negrini, L.G., 1980).

Teoricamente sabe-se que no corte por cisalhamento a pressão especifica de corte é proporcional à tensão de ruptura por cisalhamento, obtida por testes padronizados ( $\tau_c$ ). Experimentalmente constata-se que a pressão especifica de corte,  $k_c$ , varia com a porcentagem de penetração das ferramentas, com a folga entre punção e matriz e com a temperatura da peça durante o corte. Observa-se que a espessura da chapa sendo cortada também pode afetar o valor máximo de  $k_c$ . Dada à dificuldade de se medir experimentalmente a pressão específica de corte,  $k_c$ , para vários materiais, pode-se adotar o valor da tensão de ruptura ao cisalhamento,  $\tau_c$ , como valor de  $k_c$ . Quanto mais próximo do cisalhamento ideal for a operação a ser executada, mais real será essa aproximação. Para os casos em que dados de  $k_c$  ou de  $\tau_c$  não estiverem disponíveis para o material a ser cisalhado uma aproximação ainda aceitável é o uso da tensão de ruptura à tração,  $\sigma_r$ . Esse dado é mais comum para uma variedade maior de materiais. No entanto, como o material a ser cortado se romperá por esforço de cisalhamento e não de tração, utiliza-se uma porcentagem de  $\sigma_r$ . Como o esforço por cisalhamento é mais "rigoroso" para com os materiais, usa-se um valor entre 70 e 80% de  $\sigma_r$ . Para operações de corte por cisalhamento que se afastam mais do cisalhamento ideal, maiores porcentagens da tensão de ruptura a tração devem ser adotadas.

O cálculo da força necessária para o corte por cisalhamento pode ser obtido como:

$$F_c = k_c p_r h \tag{3.1}$$

Na qual  $F_c$  é a força necessária para cisalhar o material,  $k_c$  é a sua pressão especifica de corte por cisalhamento,  $p_r$  é o perímetro do corte a ser executado e h é a espessura do material a ser cortado. A Tabela 3.4 mostra alguns valores indicativos para o cálculo de  $F_c$  para diversos materiais.

|                                    | (                                                   |                                            |
|------------------------------------|-----------------------------------------------------|--------------------------------------------|
| Material                           | Tensão ruptura<br>Cisalhamento (N/mm <sup>2</sup> ) | Tensão ruptura Tração (N/mm <sup>2</sup> ) |
| Al 1100-O                          | 65                                                  | 90                                         |
| Al 1100-H14                        | 76                                                  | 124                                        |
| Al 3003-H14                        | 97                                                  | 152                                        |
| Al 2024-T4                         | 283                                                 | 469                                        |
| Al 5005-H18                        | 110                                                 | 200                                        |
| Al 6063-T5                         | 124                                                 | 207                                        |
| Al 6061-T4                         | 165                                                 | 241                                        |
| Al6061-T6                          | 200                                                 | 283                                        |
| Al 7075-T6                         | 338                                                 | 565                                        |
| Latão laminado macio               | 221                                                 | 317                                        |
| Latão laminado medio               | 303                                                 | 448                                        |
| Latão laminado duro                | 345                                                 | 538                                        |
| Cobre medio                        | 172                                                 | 262                                        |
| Bronze laminado                    | 490                                                 |                                            |
| Bronze fosforoso                   | 588                                                 |                                            |
| Cobre duro                         | 241                                                 | 345                                        |
| Aço baixo carbono A-7              | 345                                                 | 448                                        |
| Aço estrutural A36                 | 414                                                 | 586                                        |
| Aço estrutural ASTM242             | 441                                                 | 620                                        |
| AISI 1010 Laminado frio            | 314                                                 |                                            |
| AISI 1010 Laminado quente          | 245                                                 |                                            |
| AISI 1018 Laminado frio            | 414                                                 | 586                                        |
| AISI 1020 Laminado quente          | 314                                                 |                                            |
| AISI 1020 Laminado frio            | 292                                                 |                                            |
| AISI 1030 Laminado a quente        | 353                                                 |                                            |
| AISI 1030 Laminado a frio          | 471                                                 |                                            |
| AISI 1040 Laminado a quente        | 441                                                 |                                            |
| AISI 1040 Laminado a frio          | 549                                                 |                                            |
| AISI 1050 Laminado quente          | 483                                                 | 689                                        |
| AISI 1050 Laminado a frio          | 600                                                 |                                            |
| AISI 1060 Laminado quente          | 686                                                 |                                            |
| AISI 1060 Laminado frio            | 706                                                 |                                            |
| AISI 1080 Laminado quente          | 706                                                 |                                            |
| AISI 1080 Laminado frio            | 882                                                 |                                            |
| AISI 1095 Laminado quente recozido | 758                                                 | 1034                                       |
| AISI 1100 Laminado quente          | 784                                                 |                                            |
| AISI 1100 Laminado frio            | 1029                                                |                                            |
| Aço Silicio                        | 539                                                 |                                            |
| Inox 302 recozido                  | 483                                                 | 620                                        |
| Inox 304 Laminado frio             | 588                                                 | 620                                        |

Tabela 3.4 – Valores indicativos de tensões para uso no cálculo de força de corte por cisalhamento (várias referências).

| Inox 316 Laminado frio | 588 | 620 |
|------------------------|-----|-----|
| Ligas de chumbo        | 30  |     |
| Papel                  | 157 |     |
| Couro                  | 10  |     |
| Zinco                  | 196 |     |
| Baquelite              | 30  |     |

# 3.3 – Operações de dobra e cargas de dobra no estampo

Certas peças necessitam dobras, além do corte, para completa fabricação em estampos progressivos. Quando a dobra pode ser efetuada já no estampo progressivo, estará incluída no projeto da ferramenta. Para os casos de dobras simples as informações aqui contidas são suficientes, mas em casos mais complexos, ou para dobras com maior qualidade, literatura específica deve ser consultada. A operação de dobra mais simples é mostrada na Figura 3.21, chamada dobra em "V" em matriz aberta.



Figura 3.21 – Exemplo de dobra em "V" em matriz aberta.

Nesta operação a matriz contém duas extremidades com pontos sobre as quais a chapa inicialmente se apoia. O punção é formado pelo ângulo aproximado da dobra com um raio arredondando a intersecção entre as duas faces da ponta angular. O ângulo da ponta do punção não necessariamente será o mesmo da dobra e o ângulo final dependerá de quanto o punção avança entre os pontos de apoio da matriz. Trata-se de um processo de pouca precisão angular para a dobra, assim como para o raio de dobramento. No entanto, a mesma ferramenta serve a vários ângulos e espessuras de chapas. A Figura 3.22 mostra outro exemplo de operação de dobra em chapas, para casos nos quais o ângulo de dobra deve ser mais preciso ao longo da largura da chapa. Trata-se da operação de dobra em "V" com matriz fechada.



Figura 3.22 – Exemplo de dobra em matriz em "V" com matriz fechada.

Nesta operação tanto o punção quanto a matriz possuem o mesmo ângulo, o da dobra, a menos do retorno elástico da chapa, que resultará em um ângulo final ligeiramente menor que o da matriz. Trata-se de uma operação de maior previsibilidade no ângulo final, assim como no raio interno de dobra e, portanto, mais precisa. Porém, para cada ângulo é necessário um conjunto matriz-punção. A dobra a 90°, em particular, pode ser executada como na Figura 3.23, e que pode ser chamada de flangeamento.



Figura 3.23– Exemplo de dobra a 90° com o uso de prensa-chapas e punção (flangeamento).

Variações mais complexas das operações de dobra já mostradas podem ser encontradas, como aquela usando punção rotativo, mostrada na Figura 3.24.



Figura 3.24 - Exemplo de dobra usando punção rotativo.

Nesta operação do punção rotaciona conforme o cabeçote da prensa desce, possibilitando dobras acima de 90° com boa qualidade possibilitando ainda a compensação para o retorno elástico. Outro tipo de dobra é chamado de dobra em "U" o qual é mostrado na Figura 3.25.



Figura 3.25 – Exemplo de dobra em "U"

Nesta operação duas dobras são executadas simultaneamente e pode ser executada em matriz sem extrator (Figura 3.25a) ou com esse recurso (Figura 3.25b). Normalmente a peça estará presa à matriz após a operação e para extração sem interferência do operador o extrator é necessário. Outras variações do processo de dobra em "V" e em "U" são mostradas na Figura 3.26.



Figura 3.26 - Variações dos processos de dobra em "V" e em "U".

Há ainda outro tipo de dobra indicada principalmente quando o raio de dobra é muito grande e poderia ser chamado de "curvamento" ao invés de dobra. Trata-se da operação de calandragem, mostrada na Figura 3.27.



Figura 3.27 – Exemplo de operação de calandragem.

Nesta operação 3 cilindros são necessários. Dois deles, os inferiores na Figura 3.27, possuem um espaçamento *a*, o qual pode ser fixo ou variar, conforme o modelo da calandra. Inicialmente a chapa ainda plana é colocada sobre esses e o terceiro cilindro é levemente pressionado sobre a mesma. Os dois cilindros inferiores são acionados e a chapa é rolada entre os 3 cilindros, tracionada pelos inferiores, ou pelos 3, conforme o modelo da máquina. Após a primeira passagem o cilindro superior é

levemente pressionado sobre a chapa e a rolagem repetida, desta vez em sentido oposto. Certos modelos de calandra aproximam os dois cilindros inferiores, ao invés do superior. Essas operações são repetidas até que a curvatura atinja o grau requerido. Tubos de grande diâmetro (acima de 300 mm, por exemplo) podem ser produzidos por esse processo também. Variações desses processos apresentados são ainda possíveis, conforme as necessidades e a Bibliografia pode ser consultada para esse fim. Este processo, embora aqui mencionado não se aplicaria a estampos progressivos.

Em toda operação de dobra uma camada próxima à superfície interna da chapa sofre compressão, enquanto uma camada externa sofre tração, conforme mostrado esquematicamente na Figura 3.28.



Figura 3.28 – Esquema das tensões em uma chapa dobrada.

Observa-se também que entre as camadas de tração e de compressão há uma fronteira, chamada de linha neutra (ou plano neutro), que não se altera em comprimento, sendo esta usada para o cálculo do comprimento da peça planificada (comprimento desenvolvido). A posição dessa linha neutra, em relação à espessura da chapa, é fundamental para o cálculo das dimensões da peça planificada. Ela depende, entre outras variáveis, principalmente do raio interno ( $r_i$ ), da espessura da chapa h e do material. A referência Anonymous, 1998, indica raios internos de dobra normalizados e recomenda raios mínimos, segundo dados experimentais, os quais podem servir como primeira tentativa, conforme a Tabela 3.5.

Tabela 3.5 – Valores indicativos de raio mínimo para a dobra.

| Tensão de tração<br>do material<br>la | Direção de dobra                              | Espessura da chapa <b>h</b> , mm |                         |                     |                                                              |                 |                  |                                                  |                   |
|---------------------------------------|-----------------------------------------------|----------------------------------|-------------------------|---------------------|--------------------------------------------------------------|-----------------|------------------|--------------------------------------------------|-------------------|
|                                       | em relação à<br>laminação                     | 0,0 < e<br>≤ 1,5                 | 1, 0 < e<br>≤ 1, 5      | $1, 5 < e \le 2, 5$ | $\begin{array}{l} \textbf{2,5} < \\ e \leq 3, 0 \end{array}$ | 3,0<<br>e ≤ 4,0 | 4,0 <<br>e ≤ 5,0 | $5,0 < e \le 6,0$                                | $6,0 < e \le 7,0$ |
| ate 390                               | 90°                                           | 1                                | 1,6                     | 2,5                 | 3                                                            | 5               | 6                | 8                                                | 10                |
|                                       | 0°                                            | 1                                | 1,6                     | 2,5                 | 3                                                            | 6               | 8                | 10                                               | 12                |
| de 390 a 490                          | 90°                                           | 1,2                              | 2                       | 3                   | 4                                                            | 5               | 8                | 10                                               | 12                |
|                                       | 0°                                            | 1,2                              | 2                       | 3                   | 4                                                            | 6               | 10               | 12                                               | 16                |
| de 490 a 600                          | 90°                                           | 1,6                              | 2,5                     | 4                   | 5                                                            | 6               | 8                | 10                                               | 12                |
|                                       | 0°                                            | 1,6                              | 2,5                     | 4                   | 5                                                            | 8               | 10               | 12                                               | 16                |
|                                       |                                               |                                  |                         |                     |                                                              |                 |                  |                                                  |                   |
| Tensão de tração<br>do material       | Direção de dobra<br>em relação à<br>laminação | 7, 0 < e<br>≤ 8, 0               | 8, 0 < <i>e</i><br>≤ 10 | 10 < e<br>≤ 12      | $12 < e \le 14$                                              | 14 <<br>e ≤ 16  | 16 <<br>e≤18     | $\begin{array}{l} 18 < \\ e \leq 20 \end{array}$ |                   |
| ate 390                               | 90°                                           | 12                               | 16                      | 20                  | 25                                                           | 28              | 36               | 40                                               |                   |
|                                       | 0°                                            | 16                               | 20                      | 25                  | 28                                                           | 32              | 40               | 45                                               |                   |
| de 390 a 490                          | 90°                                           | 16                               | 20                      | 25                  | 28                                                           | 32              | 40               | 45                                               |                   |
|                                       | 0°                                            | 20                               | 25                      | 32                  | 36                                                           | 40              | 45               | 50                                               |                   |
| de 490 a 600                          | 90°                                           | 16                               | 20                      | 25                  | 32                                                           | 36              | 45               | 50                                               |                   |
|                                       | 0°                                            | 20                               | 25                      | 32                  | 36                                                           | 40              | 40               | 63                                               |                   |

A mesma referência ainda recomenda que se a dobra for para ângulos maiores do que  $120^{\circ}$  usar o raio normalizado imediatamente acima daquele encontrado na Tabela 3.5. Usando-se os raios mínimos de dobra recomendados pela Tabela 3.4 o raio neutro ( $r_N$ ) será dado por:

$$r_N = r_i + \frac{h}{2}k_1 \tag{3.2}$$

Na qual  $r_i$  é o raio interno da dobra e h a espessura da chapa. O fator  $k_1$  é dado pela curva na Figura 3.29.



Figura 3.29 – Fator  $k_1$  usado para estimar o raio neutro em dobras
O gráfico da Figura 3.29 se inicia com o valor  $r_i/h$  em 0,5, e valores menores que esse não devem ser empregados, a menos que seja absolutamente necessário. Recomenda-se, sempre que possível, não usar o raio de dobra inferior ao valor da espessura da chapa, uma vez que trincas poderão ocorrer na superfície externa da dobra, a menos que o material da chapa seja bastante dúctil, como alguns aços de baixo teor de carbono e certas ligas de alumínio ou de cobre em estado recozido. Como regra geral, deve-se preferir o uso dos maiores valores de raio de dobra possíveis, respeitando-se as especificações do produto.

Para a estimativa da carga necessária ao dobramento em "V" pode-se recorrer à (Tschaetsch, H. (2005)) o qual recomenda:

$$F_{BV} = \frac{k_v w h^2 \sigma_r}{d_w} \tag{3.3}$$



na qual  $F_{BV}$  é a força de dobramento,  $k_v$  é um fator que depende da relação  $r_i/h$  e varia entre 0,75 e 2,5 (para valores menores de  $r_i/h$  usam-se maiores valores de  $k_v$ , segundo Suchy, I, 2006), w é a largura da chapa sendo dobrada, h a sua espessura,  $\sigma_r$  é a tensão de ruptura do material a tração (Tabela 3.4) e  $d_w$ a abertura da matriz em "V". Para fins de projeto da matriz recomenda-se que L seja igual a pelo menos 6 vezes a espessura da chapa sendo dobrada.

Para a operação de dobramento em "U" (Figura 3.25) o valor da força pode ser estimado por:

$$F_{BU} = k_U w h \sigma_r + F_e \tag{3.4}$$

na qual  $F_{BU}$  é a força de dobramento para operação em "U",  $k_U$  é um fator que depende das condições da ferramenta e varia entre 0,4 e 1,0 (valores menores se a folga entre punção e matriz for maior do que a espessura da chapa),  $F_e$  é a força do extrator (Figura 3.25b). A carga de extração pode ser especificada como 25% do valor da carga de dobra em "U".

Para a operação de dobra a 90° como mostrada na Figura 3.23, ou seja, flangeamento, a força é dada por:

$$F_{BF} = k_F w h \sigma_r$$

na qual  $F_{BF}$  é a força de flangeamento,  $k_f$  é o fator que nesta operação assume o valor de 0,2 para todos os casos.

Determinada a carga de corte e dobra do estampo, prossegue-se com a determinação, ou verificação, da localização da posição da espiga.

# 3.4 – Localização da posição e seleção da espiga

Após a decisão dos passos a serem executados sobre a tira e os cálculos das cargas em cada passo, deve-se encontrar o centro de equilíbrio dessas forças para a localização da espiga. Esta localização, por sua vez, deve ser simétrica em relação a todos os passos do estampo. Se não for assim, toda a ferramenta estará sujeita a um momento a cada golpe da prensa, resultando em desgastes acentuados em determinadas partes do estampo e da prensa. As colunas, por sua vez, também estarão sempre sujeitas a esse momento, acentuando seu desgaste ao longo do uso. Para se calcular a localização ideal da espiga estabelece-se um referencial qualquer, por exemplo, em uma das extremidades da ferramenta, como mostrado na Figura 3.30.



Figura 3.30 – Exemplo de cálculo da posição da espiga

Com base nesse referencial calcula-se o centro de equilíbrio de forças para a coordenada  $X_c$  e a  $Y_c$ , segundo:

$$X_{c} = \frac{F_{c1}X_{1} + F_{c2}X_{2} + \dots + F_{n}X_{n}}{F_{c1} + F_{c2} + \dots + F_{cn}}$$
(3.6)

$$Y_{c} = \frac{F_{c1}Y_{1} + F_{c2}Y_{2} + \dots + F_{n}Y_{n}}{F_{c1} + F_{c2} + \dots + F_{cn}}$$
(3.7)

Caso o centro de equilíbrio das forças não resulte simétrico em relação aos passos estabelecidos no projeto da tira, uma nova distribuição de passos deve ser proposta e verificada até que resulte aceitável, levando-se em conta as cargas de corte e de dobra. Quanto maior a carga, mais próximos deve m estar o centro do estampo e o centro de equilíbrio. Afastamentos em torno de até 10% são aceitáveis.

O tipo e as dimensões da espiga são função da prensa a ser usada e esta é, basicamente, selecionada conforme a carga total do estampo, incluindo-se a carga do prensa-chapas a ser determinada no item seguinte. O APÊNDICE IV mostra os tipos mais comuns de espiga com as respectivas dimensões e esta pode ser selecionada ao final do projeto.

#### 3.5 – Projeto do prensa-chapas

Para completar a estimativa de carga total sobre o estampo deve-se ainda determinar a carga do sistema de sujeição da chapa antes do corte, denominado prensa-chapas. As Figuras 3.1 e 3.2, assim como a 3.31 mostram esquematicamente exemplo de prensa-chapas. Este consiste, basicamente, de uma chapa com os mesmos furos da matriz, pelos quais passam livres os punções. O prensa-chapas tem a função de manter a chapa firmemente segura durante a operação de corte, ou dobra, guiar os punções centrados com os furos da matriz e extrair os punções que cisalharam a chapa, durante o retorno do punção, após o corte. A superfície inferior do prensa-chapas deve estar ligeiramente abaixo da extremidade dos punções de modo a tocar e prender a chapa antes do contato para o corte. Para estampos de corte cerca de 2,0-3,0h (h é a espessura da fita) abaixo é suficiente, mas a carga das molas do prensa-chapas deve ser verificada, de modo a atingir pelo menos 20% do valor da carga selecionada. No caso de repuxo, a força de sujeição deve ser calculada de acordo com as recomendações específicas para esse tipo de operação. Na Bibliografia há publicações que abordam esse tipo de operação.

No corte, durante movimento descendente da parte superior do estampo o prensa-chapas inicialmente prensa a chapa a ser cortada contra a face superior das matrizes, devido à força exercida pelas suas molas. Após essa prensagem inicial os punções vêm a seguir no movimento descendente e contatam a chapa iniciando o corte. Com o corte executado a parte superior do estampo inicia o movimento ascendente e a chapa estará presa aos punções de corte devido à interferência entre estes e os furos recém-executados. Durante esse retorno as molas do prensa-chapas se encarregam de extrair a chapa, vencendo aquelas forças de interferência. O presa-chapas pode ter suas próprias colunas de guia, ou quando o projeto do estampo demandar maior precisão de posicionamento dos furos e alinhamento

entre punções e matrizes, devido a menores folgas, o prensa-chapas pode ser guiador pelas colunas do estampo. A Figura 3.31 mostra um exemplo dessa solução de projeto.



Figura 3.31 – Exemplo de prensa-chapas guiado pelas colunas do próprio estampo.

O ajuste entre os punções e o prensa-chapas deve ser deslizante, por exemplo, h6/E8 para chapas com espessura até 1,0 mm e h6/D10 para chapas com espessura acima de 1,0 mm. A chapa do prensa-chapas pode ser de material ABNT 1010/1020, para a maioria das aplicações. Se maior durabilidade é desejada, ou a chapa a ser cortada é de espessura acima de 6 mm, ABNT 1045 é a melhor opção. Da mesma forma, buchas podem ser usadas para refinar o ajuste punção pensa-chapas, conforme mostrado esquematicamente na Figura 3.32.



Figura 3.32 – Exemplo de uso de bucha-guia entre punção e prensa-chapas.

A espessura da chapa para o prensa-chapas deve ser suficiente para não permitir que se flexione durante a prensagem, pois assim perderia uma de suas funções, a de manter a chapa firme contra a matrizes. Uma indicação inicial para essa espessura pode ser:

$$e_{ps} = (0, 15 a 0, 25)W + 2h \tag{3.8}$$

na qual  $e_{ps}$  é a espessura da chapa do prensa-chapas, W é a largura da fita e h é a espessura da mesma (Suchy, I., 2006). Essa é uma indicação, porém a espessura a ser usada dependerá também das necessidades extras de largura capaz de acomodar as molas, assim como do comprimento para não flexionar e da distribuição espacial das molas. Há casos de estampos muito simples nos quais o uso de prensa-chapas se torna desnecessário e apenas uma chapa guia para os punções e para a fita, conforme mostra a Figura 3.33.



Figura 3.33 – Exemplo de guia para a fita, ao invés de prensa-chapas.

No entanto, 8 mm é uma espessura mínima recomendável para a chapa do prensa-chapas. Para a completa definição da largura e comprimento do prensa-chapas, deve-se calcular a carga das molas, a qual será adicionada àquela necessária para o corte, dobra ou repuxo a fim de se fabricar a peça. A Tabela 3.6 mostra indicações de cargas a serem adotadas para o prensa-chapas.

| Espessura da fita            | Porcentagem da força de corte mais a de dobra |                     |  |
|------------------------------|-----------------------------------------------|---------------------|--|
| Lispoistata da ma            | Estampo simples                               | Estampo progressivo |  |
| Até 1 mm                     | 1,2 a 3,5                                     | 5,0 a 7.0           |  |
| Maior que 1 e menor que 5 mm | 3,5 a 5,5                                     | 6,0 a 9,0           |  |
| Maior que 5 mm               | 5,5 a 7,0                                     | 9,0 a 15,0          |  |

Tabela 3.6 – Cargas recomendadas para prensa-chapas em estampos de corte e/ou dobra de chapas.

Com esse valor calculado e somado à carga necessária para o corte e/ou dobra, tem-se assim a carga total no estampo. Esse valor será importante para todos os demais passos no projeto do estampo. Para completar o projeto do prensa-chapas, falta selecionar as molas a serem usadas. O mais comum é o uso de molas helicoidais com arames de secção circular ou de secção retangular. Também pode-se

usar molas-prato, geralmente quando a carga de prensa-chapas resulta muito alta para os tipos comuns de molas e isso levaria ao um estampo muito grande, devido à necessidade de muitas molas, ou molas muito grandes. Há também a possibilidade de se utilizar molas de poliuretano (Plastiprene<sup>™</sup>). Essa decisão deve ser tomada pelo projetista, sob pena de rever, caso haja necessidade, mas à frente no projeto. A Figura 3.34 mostra diferentes tipos de molas e o Apêndice III mostra exemplos de molas helicoidais de secção circular e retangular.



Figura 3.34 Exemplos de diferentes tipos de molas para uso em prensa-chapas. Em (a) mola helicoidal com arame de seção circular, (b) mola helicoidal com arame de seção retangular, (c) Mola-prato e (d) Molas de poliuretano.

Para selecionar a mola correta, toma-se a força necessária para o prensa-chapas e procura-se igualar esse valor com as cargas das molas. No entanto, a carga das molas depende do valor de flexão, sendo aproximadamente linear a relação carga-flexão, exceto para as molas de poliuretano. O valor de flexão das molas deve ser o menor possível, mas deve ser o suficiente para prender a fita, antes da chegada dos punções de corte e estes devem passar pela espessura da fita e pelo talão da matriz o suficiente para expelir as partes cisalhadas. Assume-se para o cálculo inicial mínimo de flexão das como 9-10 vezes a espessura da chapa a ser trabalhada. Com esses valores mínimos procuram-se molas que atendam à necessidade. Ao final do projeto a flexão das molas deve ser verificada levando-se em conta que o prensa-chapas deve pressionar a chapa antes do contato com os punções em pelo menos 20% da carga de prensagem determinada. As molas selecionadas devem ser distribuídas simetricamente de modo a equilibrar a reação na base superior, durante o movimento descendente do estampo. O comprimento das molas também deve ser o menor possível para evitar que os punções resultem muito longos. No entanto, o comprimento estará associado à necessidade de flexão da mola. Independentemente do tipo de mola selecionado, há um limite para a flexão, sob pena de se danificar permanentemente a mesma. Molas muito longas implicarão em punções longos, os quais podem não atender as condições para evitar a flambagem. Assim, a seleção das molas para o prensa-chapas

demonstra que há várias condições de contorno que devem ser atendidas. Como não há meios de se determinar exatamente essas condições neste ponto, devem-se assumir esses valores iniciais de prosseguir, verificando-se ao final. Para estampos que devem executar dobras, além de corte o curso das molas também deve ser capaz de acomodar o deslocamento até o final da dobra.

Ainda sobre o projeto do prensa-chapas, deve-se lembrar que as molas normalmente requerem condições apropriadas de alojamento nas extremidades para que trabalhem de forma segura. A Figura 3.35 mostra algumas recomendações para diferentes tipos de mola.



Figura 3.35 – Exemplos de alojamentos para as extremidades de molas usadas em prensa-chapas.

Selecionadas as molas procede-se à sua distribuição espacial ao redor das matrizes e punções em uma visão sobre o projeto inicial da tira. Com isso segue-se para as próximas etapas do projeto do estampo. Neste ponto o projeto dos punções e matrizes pode ser finalizado.

# 3.6 – Projeto dos punções e matrizes

Os punções e as matrizes devem ser desenhados com base nas especificações da peça a ser fabricada. Um exemplo típico de um punção e de uma matriz está na Figura 3.36 com as recomendações requeridas para a fabricação desses componentes



Figura 3.36 – Exemplo de um desenho de punção e matriz de seção circular com as principais tolerâncias.

Qualquer punção de cisalhamento possui uma cabeça (Figura 3.36), qual servirá para fixa-lo na placa porta-punções (Figuras 3.1 e 3.2), uma ponta útil (Figura 3.36), qual será responsável pela operação de cisalhamento e um corpo entre essas partes. A Figura 3.37 mostra em corte uma visão geral da disposição de alguns componentes do estampo incluindo o punção e a matriz.



Figura 3.37 – Vista em corte da disposição geral de alguns componentes de um estampo de corte.

Para que o corte por cisalhamento resulte com qualidade, a folga entre o punção e a respectiva matriz deve ser calculada. Excessiva folga resultará em peças com rebarbas e pouca folga pode levar à quebra prematura das arestas, nos punções ou nas matrizes, além de exigir força de corte acima daquela calculada. A Figura 3.38 mostra como calcular a folga (f) entre punções e matrizes para casos gerais.



Figura 3.38- Recomendações de folga punção-matriz para ferramentas de corte por cisalhamento.

A folga punção-matriz depende do material sendo cisalhado e da espessura do mesmo. Para caracterizar o material usa-se a sua tensão de cisalhamento ( $\tau_c$ ), dada pela Tabela 3.4. Segundo recomendação das referências listadas ao final desse texto, folgas podem variar entre 6 e 20% da espessura do material a cisalhar. Como regra geral, usam-se folgas de 20% para materiais com altas tensões de cisalhamento e 6% para os de menor valor. Assumindo uma distribuição linear destas

porcentagens para os diversos materiais a serem cisalhados, conforme Tabela 3.3, a equação na Figura 3.38 foi deduzida, sendo:

 $\tau$  = Tensão de cisalhamento do material a ser cisalhado;

 $\tau_m$  = Tensão de cisalhamento do material menos resistente que se possa cisalhar (adotado 65 N/mm<sup>2</sup> segundo Tabela 3.4);

 $\tau_M$  = Tensão de cisalhamento do material mais resistente que se possa cisalhar (adotado 1029 N/mm<sup>2</sup> segundo Tabela 3.4);

 $P_m$  = Mínima porcentagem de folga (adotada 6%);

 $P_M = =$  Máxima porcentagem de folga (adotada 20%);

Devido a essa folga f, necessária para o corte, a dimensão externa da parte destacada pelo punção e a dimensão do vazio deixado na parte sobre a matriz não coincidem. A dimensão da parte destacada corresponde à medida da matriz, pois passou pelo talão da mesma. Da mesma forma, a dimensão do vazio deixado na parte sobre a matriz corresponde à dimensão do punção, pois este passou pelo vazio. Para esclarecer melhor esse conceito estabelecem-se duas operações distintas: O puncionamento e o corte, *blanking*, conforme mostrado na Figura 3.39.



Figura 3.39 – distinção entre a operação de puncionamento e o corte ou *blanking*.

Este conceito é importante para o correto dimensionamento e atribuição das tolerâncias ao punção e à matriz. Têm-se assim duas situações distintas para o dimensionamento:

1 - Na operação de puncionamento. Neste caso, atribui-se ao punção a maior dimensão especificada para o furo levando-se em conta a tolerância do mesmo. Esta será a dimensão nominal do punção. A esta dimensão atribui-se a tolerância típica do punção (h6), segundo a recomendação na Figura 3.36. A seguir calcula-se a folga recomendada, segundo a equação proposta na Figura 3.38.

Soma-se, então a folga ao valor nominal da dimensão do punção obtendo-se a dimensão nominal da matriz. A este valor então atribuir-se a tolerância típica da matriz (H7), recomendada na Figura 3.36.

2 – Na operação de corte ou *blanking*. Neste caso atribui-se ao furo da matriz a menor dimensão especificada para a peça levando-se em conta a tolerância da mesma. Esta será a dimensão nominal da matriz. A esta dimensão atribui-se a tolerância típica da matriz (H7), segundo a recomendação na Figura 3.36. A seguir calcula-se a folga recomendada, segundo a equação proposta na Figura 3.36. Diminui-se, então a folga do valor nominal da dimensão da matriz obtendo-se a dimensão nominal do punção. A este valor então atribuir-se a tolerância típica do punção (h6), recomendada na Figura 3.36.

## 3.6.1 – Projeto dos punções

Para a completa determinação do punção falta ainda o material, o tratamento térmico, a dureza final, comprimento e a verificação à flambagem. Punções para corte devem ser fabricados usando-se aços para trabalho a frio, os quais são adequados para os tratamentos térmicos de têmpera e revenimento. A Tabela 3.7 mostra alguns materiais recomendados para a fabricação de punções.

Tabela 3.7 – Recomendações de materiais para punções e matrizes.

|                                        | Material dos punções e matrizes para produzir até: |              |               |                 |                  |  |
|----------------------------------------|----------------------------------------------------|--------------|---------------|-----------------|------------------|--|
| Material da peça                       | 1000 peças                                         | 10.000 peças | 100.000 peças | 1.000.000 peças | 10.000.000 peças |  |
| Peças tipo 1 até 75 mm                 | 01, A2                                             | 01, A2       | 01, A2        | D2, CPM 10V     | Carbeto          |  |
| Ligas de Al, Cu e Mg                   | 01, A2                                             | O1, A2       | 01, A2        | D2, CPM 10V     | Carbeto          |  |
| Aço inoxidável austenitico             | 01, A2                                             | 01, A2       | A2, D2        | D2, CPM 10V     | Carbeto          |  |
| Aço mola endurecido a 55 HRc           | A2                                                 | A2, D2       | D2            | D4, CPM 10V     | Carbeto          |  |
| Aço silíco até 0,64 mm                 | A2                                                 | A2, D2       | A2, D2        | D4, CPM 10V     | Carbeto          |  |
| Papel, vedações e similares            | W1                                                 | W1           | W1            | W1              | D2, CPM 10V      |  |
| plásticos sem reforço                  | 01, A2                                             | O1, A2       | 01, A2        | D2, CPM 10V     | Carbeto          |  |
| plásticos reforçados                   | O1, A2                                             | A2           | A2            | D2, CPM 10V     | Carbeto          |  |
|                                        |                                                    |              |               |                 |                  |  |
| Peças tipo 2 até 305 mm                |                                                    |              |               |                 |                  |  |
| Ligas de Al, Cu e Mg                   | 4140                                               | 4140         | A2            | A2, D2, CPM 10V | Carbeto          |  |
| Aços Carb. Até 0,70%C e Inóx           | 4140                                               | 4140         | A2            | A2, D2, CPM 10V | Carbeto          |  |
| Inóx austenítico endurecido            | A2                                                 | A2, D2       | D2            | A2, D2, CPM 10V | Carbeto          |  |
| Aço mola até 53 HRc                    | A2                                                 | A2, D2       | D2            | A2, D2, CPM 10V | Carbeto          |  |
| Aço silíco até 0,64 mm                 | A2                                                 | A2, D2       | A2, D2        | A2, D2, CPM 10V | Carbeto          |  |
| Papel, vedações e similares            | 4140                                               | 4140         | A2            | A2              | A2, D2, CPM 10V  |  |
| plásticos sem reforço                  | 4140                                               | 4140         | A2            | D2, CPM 10V     | Carbeto          |  |
| plásticos reforçados                   | A2                                                 | A2           | D2            | D2, CPM 10V     | Carbeto          |  |
|                                        |                                                    |              |               |                 |                  |  |
| Peças tipo 3 até 75 mm                 |                                                    |              |               |                 |                  |  |
| Ligas de Al, Cu e Mg                   | O1, A2                                             | O1, A2       | 01, A2        | A2, D2, CPM 10V | Carbeto          |  |
| Aços Carb. Até 0,70%C e Inóx           | O1, A2                                             | O1, A2       | 01, A2        | A2, D2, CPM 10V | Carbeto          |  |
| Inóx austenítico endurecido            | A2                                                 | A2, D2       | A2, D2        | D2, D4, CPM 10V | Carbeto          |  |
| Aço mola até 53 HRc                    | A2                                                 | A2, D2       | D2, D4        | D2, D4, CPM 10V | Carbeto          |  |
| Aço silíco até 0,64 mm                 | A2                                                 | A2, D2       | D2, D4        | D2, D4, CPM 10V | Carbeto          |  |
| Papel, vedações e similares            | W1                                                 | W1           | W1, A2        | W1, A2          | D2, CPM 10V      |  |
| plásticos sem reforço                  | 01                                                 | 01           | A2            | A2, D2, CPM 10V | Carbeto          |  |
| plásticos reforçados                   | 01                                                 | A2           | A2            | D2, CPM 10V     | Carbeto          |  |
|                                        |                                                    |              |               |                 |                  |  |
| Peças tipo 4 até 305 mm                |                                                    |              |               |                 |                  |  |
| Ligas de Al, Cu e Mg                   | A2                                                 | A2           | A2, D2        | A2, D2, CPM 10V | Carbeto          |  |
| Aços Carb. Até 0,70%C e Inóx ferritico | A2                                                 | A2           | A2, D2        | A2, D2, CPM 10V | Carbeto          |  |
| Inóx austenítico endurecido            | A2                                                 | A2           | A2, D2        | D2, D4, CPM 10V | Carbeto          |  |
| Inóx martensitico                      | A2                                                 | D2           | D2            | D2, D4, CPM 10V | Carbeto          |  |
| Aço mola até 53 HRc                    | A2                                                 | A2, D2       | D2            | D2, D4, CPM 10V | Carbeto          |  |
| Aço silíco até 0,64 mm                 | A2                                                 | A2, D2       | D2            | D2, D4, CPM 10V | Carbeto          |  |
| Papel, vedações e similares            | W1                                                 | W1           | W1            | W1, A1          | D2, CPM 10V      |  |
| plásticos sem reforço                  | A2                                                 | A2           | A2            | A2, D2, CPM 10V | Carbeto          |  |
| plásticos reforçados                   | A2                                                 | A2           | D2            | D2, CPM 10V     | Carbeto          |  |

A Figura 3.39 mostra algumas formas típicas das peças produzidas pelos punções e matrizes indicados na Tabela 3.7



Figura 3.39 – Peças típicas produzidas pelos materiais indicados na Tabela 3.6

A Tabela 3.8 mostra a composição química dos aços normalmente usados em punções e matrizes para corte de chapas. Alguns não são citados na Tabela 3.7, mas que também podem ser usados em ferramentas para diversas outras operações de conformação.

Tabela 3.8 – Composição química de aços típicos para uso em punções e matrizes.

| D                              | esignation       | Composition(a), % |           |           |                 |          |           |           |           |    |
|--------------------------------|------------------|-------------------|-----------|-----------|-----------------|----------|-----------|-----------|-----------|----|
| AISI                           | UNS              | С                 | Mn        | Si        | Cr              | Ni       | Мо        | W         | V         | Со |
| Air-har                        | dening, medium-  | alloy, cold-work  | steels    |           |                 |          |           |           |           |    |
| A2                             | T30102           | 0.95-1.05         | 1.00 max  | 0.50 max  | 4.75-5.50       | 0.30 max | 0.90-1.40 |           | 0.15-0.50 |    |
| A3                             | T30103           | 1.20-1.30         | 0.40-0.60 | 0.50 max  | 4.75-5.50       | 0.30 max | 0.90-1.40 |           | 0.80-1.40 |    |
| A4                             | T30104           | 0.95-1.05         | 1.80-2.20 | 0.50 max  | 0.90-2.20       | 0.30 max | 0.90-1.40 |           |           |    |
| A6                             | T30106           | 0.65-0.75         | 1.80-2.50 | 0.50 max  | 0.90-1.20       | 0.30 max | 0.90-1.40 |           |           |    |
| A7                             | T30107           | 2.00-2.85         | 0.80 max  | 0.50 max  | 5.00-5.75       | 0.30 max | 0.90-1.40 | 0.50-1.50 | 3.90-5.15 |    |
| High-ca                        | rbon, high-chroi | nium, cold-work   | steels    |           |                 |          |           |           |           |    |
| D2                             | T30402           | 1.40-1.60         | 0.60 max  | 0.60 max  | 11.00–13.<br>00 | 0.30 max | 0.70-1.20 |           | 1.10 max  |    |
| D3                             | T30403           | 2.00-2.35         | 0.60 max  | 0.60 max  | 11.00–13.<br>50 | 0.30 max |           | 1.00 max  | 1.00 max  |    |
| D4                             | T30404           | 2.05-2.40         | 0.60 max  | 0.60 max  | 11.00–13.<br>00 | 0.30 max | 0.70-1.20 |           | 1.00 max  |    |
| Oil-hardening cold-work steels |                  |                   |           |           |                 |          |           |           |           |    |
| <b>O</b> 1                     | T31501           | 0.85-1.00         | 1.00-1.40 | 0.50 max  | 0.40-0.60       | 0.30 max |           | 0.40-0.60 | 0.30 max  |    |
| O2                             | T31502           | 0.85-0.95         | 1.40-1.80 | 0.50 max  | 0.50 max        | 0.30 max | 0.30 max  |           | 0.30 max  |    |
| <b>O</b> 6                     | T31506           | 1.25-1.55(c)      | 0.30-1.10 | 0.55-1.50 | 0.30 max        | 0.30 max | 0.20-0.30 |           |           |    |
| Water-hardening tool steels    |                  |                   |           |           |                 |          |           |           |           |    |
| W1                             | T72301           | 0.70-1.50(e)      | 0.10-0.40 | 0.10-0.40 | 0.15 max        | 0.20 max | 0.10 max  | 0.15 max  | 0.10 max  |    |
| W2                             | T72302           | 0.85-1.50(e)      | 0.10-0.40 | 0.10-0.40 | 0.15 max        | 0.20 max | 0.10 max  | 0.15 max  | 0.15-0.35 |    |
| W5                             | T72305           | 1.05-1.15         | 0.10-0.40 | 0.10-0.40 | 0.40-0.60       | 0.20 max | 0.10 max  | 0.15 max  | 0.10 max  |    |

Os punções devem ser temperados e revenidos de forma a atingir dureza suficiente para reter propriedades de corte e minimizar o desgaste, assim como evitar quebra prematura devido a choques. As condições de tratamento térmico dependem de cada material e se constituem em um assunto mais amplo. A Tabela 3.9 mostra durezas tipicamente especificadas para os aços da Tabela 3.7.

Tabela 3.9 – Típica faixa de dureza para os aços mais comuns

| Material | Têmpera e revenimento HRc |
|----------|---------------------------|
| A2       | 57-62                     |
| A3       | 57-65                     |
| A4       | 54-62                     |
| A6       | 54-60                     |
| A7       | 57-67                     |
| D2       | 54-61                     |
| D3       | 54-61                     |
| D4       | 54-61                     |
| 01       | 57-62                     |
| 02       | 57-62                     |
| 06       | 58-63                     |
| W1       | 50-64                     |
| W2       | 50-64                     |
| W5       | 50-64                     |

Tendo já selecionado a forma, algumas dimensões, tolerâncias e os materiais dos punções, deve-se prosseguir com sua fixação na placa porta-punções e seu apoio na placa de choques. (vide Figura 3.1 e 3.2 para esclarecimento sobre as placas). A Figura 3.40 mostra exemplos de como o arranjo dos punções nessas placas pode resultar.



Figura 3.40 – Exemplos de como fixar punções na placa porta-punções em contato com a placa de choque.

A placa porta-punções serve, basicamente, para alojamento dos punções de forma a garantir seus alinhamento e firmeza em posição durante o trabalho, este sujeito a choques e vibrações fortes. É muito importante o alinhamento dos punções em relação às cavidades das matrizes para garantir uma folga uniforme ao longo de todo o perímetro as ser cisalhado. Deve-se sempre ter em mente que a boa qualidade do cisalhamento depende fortemente da folga entre as arestas de corte. Desta forma as tolerâncias de posicionamento dos furos de alojamento dos punções na placa porta-punções é tão importante quanto aquelas nos furos das matrizes. A espessura da placa porta-punções pode ser igual a 2,0 vezes o diâmetro do punção de menor seção transversal, como uma indicação inicial. Espessuras abaixo de 10 mm não devem ser utilizadas. Se for muito fina não ajuda a estabilizar os punções quanto à flambagem. Se for muito espessa demandará punções muito longos, aumentado seu custo. As demais dimensões (largura e comprimento) dessa placa dependerão da localização dos punções de forma a englobar todos eles com sobras laterais maiores do que o raio do punção que ocupa as extremidades. O material normalmente usado nessa peca é ABNT 1045, podendo ser substituído por ABNT 1020 em casos de estampos para lotes de até 10.000 peças. A fixação dessa placa na base do estampo sempre deve incluir dois pinos-guia, para garantir o correto reposicionamento, durante desmontagens do estampo. A seleção de pinos-guia será tratada mais adiante neste texto. Entre a placa porta-punções e a base superior há ainda a placa de choques.

A placa de choques receberá toda a carga do cisalhamento, transmitindo-se para a base superior. Usa-se esta placa para evitar danos à base superior, que muitas vezes é de custo muito maior e se danificada prematuramente, pode levar a inutilização prematura do estampo todo. Assim, a placa de choques pode funcionar como uma peça de "sacrifício" sendo substituída a custos e tempos menores. Para garantir o bom desempenho de sua função a placa de choques deve ser de material e espessura compatíveis com a carga que receberá de todos os punções do estampo. O material dessa chapa pode ser de baixo custo, como ABNT 1010/20 e a espessura superior a 6 mm, para cargas de até 10 toneladas. Para cargas maiores a espessura deve aumentar 2 mm para cada 10 toneladas, como primeira escolha. Selecionada a espessura, verifica-se ainda se a carga de compressão de cada punção sobre a placa de choque não ultrapassa o valor de 70 N/mm<sup>2</sup>, que é 30% da tensão de escoamento do aço ABNT 1020. Calcula-se esse valor usando-se a área da cabeça de cada punção. Caso algum punção resulte em uma carga maior do que 70 N/mm<sup>2</sup> ações corretivas devem ser tomadas, como aumento da área da cabeça do punção em contato com a placa de choques, ou uso de material mais resistente á compressão.

Para a determinação do comprimento dos punções, os quais em geral têm todos a mesma dimensão, recomenda-se que seja desenhada uma vista em corte de pelo menos um deles, com todos os componentes, a saber, a placa de choque, a placa porta punções, as molas do prensa-chapas, a placa do

prensa-chapas e a chapa a ser cisalhada. Com essa vista em corte o comprimento dos punções ficará mais evidente.

Punções muito esbeltos, ou seja, com altos valores de L/D (comprimento/diâmetro) podem estar sujeitos à flambagem, como esquematicamente indicado na Figura 3.41.



Figura 3.41 – Esquema de como um punção pode falhar por flambagem.

Para evitar essa falha, deve-se calcular o comprimento máximo para falha por flambagem. Para isso, calcula-se a força crítica necessária para a flambagem, segundo a equação proposta por Euler:

$$F_{cr} = \frac{\pi^2 EJ}{(CL)^2} \tag{3.9}$$

na qual E é o módulo de elasticidade do material do punções, J é o momento de inércia da seção transversal do punção e C é uma constante, que para vigas engastadas em um ponta é 2. Assim, assume-se que a força crítica seja igual à força necessária para o cisalhamento ( $P_c$ ) e o comprimento máximo para evitar a flambagem no punção será:

$$L_{max} = \sqrt{\frac{\pi^2 E J}{F_c}} \tag{3.10}$$

na qual  $L_{max}$  é o máximo comprimento permitido para evitar a flambagem. O comprimento do punção no estampo nunca deve exceder o valor máximo calculado pela Equação (3.10). Essa verificação não é necessária para todos os punções, mas somente para aqueles de maior risco.

Para punções muito esbeltos cujo comprimento resulte maior do que aquele calculado pela Equação (3.10) pode-se fixá-lo usando soluções como mostradas na Figura 3.42.



Figura 3.42 – Fixação de punções esbeltos

A fixação de punções que devem se manter posicionados sem rotação durante o trabalho pode ser por meio das soluções mostradas na Figura 3.43.



Figura 3.43 – Exemplos de fixação de punções que não podem rotacionar durante o trabalho.

Quando o punção é muito grande, com relação à sua área de contato com a base superior, podese optar por fixá-lo diretamente à placa de choque. A Figura 3.44 mostra um exemplo de como essa fixação pode ser realizada, embora outras formas possam ser usadas.



Figura 3.44 – Exemplo de fixação de um punção diretamente sobre a base superior.

Para casos em que o punção de corte resulta muito grande, pode-se usar material endurecido somente nas bordas, onde efetivamente será necessária aresta de corte. A Figura 3.45 mostra um exemplo desse tipo.



Figura 3.45 exemplo de um punção com material endurecido somente nas bordas.

Também neste caso deve-se optar pelo uso de pinos-guia para garantir a fixação precisa após uma desmontagem. Ainda sobre a fixação de punções a Figura 3.46 mostra outros exemplos, sem, contudo, esgotar o assunto.



Figura 3.46 – Exemplos diversos para a fixação de punções

A Figura 3.47 mostra exemplos de tolerâncias e folgas normalmente recomendadas para a fixação da cabeça dos punções na placa porta-punções.



Figura 3.47 – Recomendações de folgas e tolerâncias para a fixação de punções na placa portapunções.

#### 3.6.2 – Projeto das Matrizes

O projeto das matrizes segue um caminho muito parecido com o dos punções e ambos devem ser projetados quase que simultaneamente. A separação aqui é apenas didática, e neste tópico somente os aspectos particulares serão abordados. Os materiais podem ser os mesmos dos punções, segundo a Tabela 3.6, com um detalhe importante: as matrizes podem ter dureza ligeiramente menor que os punções. Isso se deve ao fato de que, em geral, resultam em corpos maiores, com maior volume e se tornam mais difíceis de atingir durezas mais altas na faixa possível dos materiais para aplicações em ferramentas de cisalhamento. Também estão mais sujeitas a conter furos com cantos vivos, o que deve ser evitado sempre que possível, pois são pontos de concentração de tensões que levam a trincas durante o endurecimento, ou mesmo a falhas prematuras por fadiga mecânica. O projeto da geometria da matriz pode evitar alguns desses problemas de concentração de tensões observando-se alguns princípios básicos. Um deles é a distância mínima entre furos e bordas no projeto da matriz, o qual é derivado do projeto da fita. Neste ponto pode-se ver a necessidade de retornar ao projeto da fita e rearranjar os passos, caso alguma das condições ilustradas na Figura 3.48 não sejam observadas.



Figura 3.48 – Recomendações para limites de bordas em matrizes.

Mesmo obedecidos esses limites de bordas as matrizes podem ser entre 2-3 pontos de dureza HRC em relação aos respectivos punções.

A matriz possui uma parte útil, chamada de "talão" a qual deve ter tolerância mais estreita em diâmetro, e uma folga (f) em relação à dimensão do punção, já calculada anteriormente. Abaixo do talão há um trecho aliviado, o qual pode ser cônico, ou uma dimensão maior com a finalidade de aliviar a saída da parte cisalhada. O comprimento do talão ( $t_l$ ) deve ser cuidadosamente dimensionado, pois dele dependerá o bom funcionamento da matriz e o seu tempo de vida. Um talão muito longo dificultará a saída da parte cisalhada, obrigando o punção a penetrar mais na passagem da matriz, mantendo a força de cisalhamento alta por longos períodos dentro do ciclo de corte. Por outro lado, um talão excessivamente curto não permitirá muitas afiações da matriz, encurtando seu tempo de vida útil. A Figura 3.49 mostra os desenhos mais comuns para a passagem da matriz com matrizes na forma de insertos intercambiáveis.



Figura 3.49 – Dois exemplos de desenho de passagem para a matriz.

A Tabela 3.10 mostra algumas recomendações para a dimensão do talão

Tabela 3.10 – Recomendações para a extensão do talão em matrizes para corte de chapas.

| Espessura $h$ da chapa (mm)                  | < 0,5           | ≤ 0,5 < 5,0    | ≥ 5,0        |
|----------------------------------------------|-----------------|----------------|--------------|
| Extensão do talão <i>t</i> <sub>l</sub> (mm) | 2 a 10 <b>h</b> | 2 a 5 <b>h</b> | 1,5 <b>h</b> |

A fixação das matrizes na base inferior, apoiada na placa de choques pode ser realizada de diversas maneiras. A Figura 3.49 mostra casos, no quais usam-se insertos inseridos em uma placa porta-matrizes, mas o caso mais comum é fabrica-la em placas usando-se os mesmos materiais recomendados para os punções e apoiam-se nas placas de choque. Pinos-guia são também usados para manter precisamente as matrizes alinhadas com os punções durante as desmontagens. A Figura 3.50 mostra algumas técnicas para fixação de matrizes.





Figura 3.50 – Exemplos de fixação de matrizes em estampos.

Em certos casos as matrizes resultam em formas complexas e a sua fabricação pode resultar em altos custos. Há casos, porém, que se simplificam com a colocação de insertos de formas simples, como mostrado na Figura 3.51.



Figura 3.51 – Exemplo de insertos simples para perfis complexos em punções e matrizes.

O projeto da matriz também deve levar em conta certos aspectos como a concentração de tensões em cantos vivos, o que pode resultar em falha prematura da ferramenta. A Figura 3.52 mostra alguns exemplos de escolhas melhores e piores na fabricação de matrizes.



Figura 3.52 – Exemplos de escolhas melhores ou piores em casos de simplificação de matrizes.

As arestas de corte dos punções e das matrizes normalmente são perpendiculares aos seus eixos de simetria e as forças de cisalhamento são calculadas para esses casos. No entanto, podem-se diminuir consideravelmente essas se inclinando as extremidades desses componentes, conforme ilustrado na Figura 3.53.



Figura 3.53 – Exemplos de cortes com arestas inclinadas para diminuição das forças de cisalhamento.

As inclinações usadas para diminuir as forças de cisalhamento não podem ser muito grandes para não provocar escorregamento nas chapas durante o corte, mesmo quando se usam prensa-chapas. Recomenda-se, no entanto ângulos entre 1,5 e 4° para chapas até 10 mm e entre 5 e 10° para chapas mais espessas. Com valores dentro dessas faixas, pode-se reduzir as forças de cisalhamento para até 60% dos valores calculados.

#### 3.7 – Uso de pino guia

Pinos-guia são elementos de referência dimensional em qualquer projeto, em particular nos estampos. Servem principalmente como garantia de que uma peça será novamente posicionada precisamente, após desmontagem e recolocação. Também podem ser usados para resistir a carga de cisalhamento, embora não seja essa a sua principal função. Sendo assim, devem ser montados com ajuste interferente, mas de baixa carga de montagem e desmontagem. Geralmente usam ajustes H7m6 para garantir a interferência leve, além de serem usados sempre em pares, posicionados de forma a permitir a montagem em uma única posição, evitando inversões de posição na recolocação. Normalmente, são fornecidos por fabricantes especializados em medidas padronizadas no diâmetro e, muitas vezes também no comprimento. Conforme a necessidade, podem também ser fabricados em medidas especiais. Os materiais usados variam muito, desde aços ABNT 1010/20 cementados, aço

prata, ou mesmo em aços ligados temperados e revenidos. Sua utilização típica é mostrada na Figura 3.54.



Figura 3.54 – Exemplos típicos de uso de pinos-guia.

É importante que durante o projeto de colocação de pinos-guia sua desmontagem seja também pensada. Pinos com roscas internas são a melhor opção para sua retirada, embora o uso de ferramentas como saca-pinos também seja aceitável, desde que furos de extração sejam deixados. O APÊNDICE V mostra alguns exemplos de pinos-guia com dimensões e arranjos geométricos para uso geral.

#### 3.8 – Projeto das colunas

As colunas são componentes do estampo usados para guiar e alinhar os punções com as matrizes, garantindo o correto funcionamento, quanto à folga entre ambos ao longo do trabalho e da vida útil da ferramenta. São, em geral, componentes robustos, assim como as bases inferior e superior

das ferramentas. A Figura 3.55 mostra um arranjo típico muito simples desses componentes que constituem a "estrutura" dos estampos.



Figura 3.55 – exemplo típico de um arranjo simples entre as colunas e as bases de um estampo.

O diâmetro das colunas dependerá de fatores diversos, mas principalmente da necessidade de guiar as ferramentas. De modo geral, quanto mais punções e matrizes estiverem presentes na ferramenta, quanto maior for esse conjunto, maior deverá ser o diâmetro das colunas para garantir o correto alinhamento dessas ferramentas e, por conseguinte, a manutenção das folgas entre punções e os furos das matrizes, durante o funcionamento do estampo. A presença de punções com dimensões pequenas, cortando chapas finas resultará em folgas pequenas o que demandará colunas de maior diâmetro, ou em maior número. O comprimento das colunas será o resultado da disposição do prensa-chapas com suas molas, mais as dimensões selecionadas para as chapas porta-punções, porta-matrizes, placas de choque e as bases a serem selecionadas. O número e disposição das colunas também será função das cargas envolvidas e das dimensões dos punções e matrizes dispostos na sequencia projetada pelo projeto da tira. A Figura 3.56 mostra algumas disposições mais comuns para as colunas de um estampo.



Figura 3.56 – Exemplos de disposição das colunas para estampos de corte.

Como uma primeira orientação para o dimensionamento das colunas, toma-se a área total dos punções como uma indicação da área total das colunas. Com este valor inicial, e que pode ser adotado com um mínimo, opta-se sempre pelo menor número de colunas. Normalmente as colunas são fixadas na base inferior e a base superior desliza sobre elas durante o funcionamento da ferramenta. Por esta razão, o acoplamento entre a base superior e cada coluna deve ser deslizamento, por meio de mancais entre essas partes, ou com uma bucha de deslizamento. Quando a ferramenta é projetada para centenas, ou milhares de peças, a base superior pode ser de ferro fundido e a coluna de aço, muitas vezes cementado e retificado, sem necessidade de buchas. Canais de lubrificação para alojamento de graxa também são uma solução elegante. Com um acoplamento deslizante garantem-se as folgas matrizes-punções e o lubrificante um funcionamento com baixo atrito e prolongada vida, minimizando o desgaste dessas partes. Um caso simples desse é mostrado na Figura 3.55. Nos casos onde a ferramenta deve produzir milhões de peças, buchas de deslizamento podem ser introduzidas entre a coluna e a base superior. Essas buchas podem também ser de esferas, o que diminui muito o atrito e prolonga ainda mais a vida dessas partes. Nos casos de desgaste as buchas são geralmente substituídas, pois as colunas são fabricadas em aço endurecido (ou cementado) e retificado, retardando ainda mais seu desgaste. A Figura 3.57 mostra exemplos desses arranjos entre bases e colunas em estampos.



Figura 3.57 – Exemplos de acoplamentos entre colunas e bases em estampos.

O Apêndice VI mostra alguns modelos de colunas para a seleção em projetos simples com dimensões comercialmente encontradas, embora outras dimensões e modelos possam ser especificados e construídos.

## 3.9 – Projeto das bases

Como última fase no projeto de uma ferramenta de corte e dobra tem-se o projeto das bases superior e inferior. Neste ponto a decisão deve levar em conta a carga total a ser suportada pela ferramenta, a qual será transmitida do cabeçote da prensa para a base superior, desta para a peça, através dos punções, suportada pela matriz assentada sobre a base inferior e a mesa da prensa. As dimensões externas das bases devem ser capazes de abranger todos os punções, matrizes, molas, colunas e eventuais acessórios. A Figura 3. 58 mostra alguns exemplos de bases e sua disposição.



Figura 3.58 – Exemplos típicos de bases utilizadas em estampo de corte e dobra.

A espessura dessas bases deve ser compatível com as cargas envolvidas, não se deformando durante o trabalho. Como regra geral, as bases não devem resultar menores do que 35 mm de espessura, uma vez que alojarão cabeças de parafusos, pinos-guia, etc. Um limite superior para a espessura deve levar em conta os esforços a que estarão sujeitas as bases, distribuídos conforme as matrizes e punções sejam alocados. Neste dimensionamento um coeficiente de segurança alto deve ser usado, pois flexão é indesejável, mesmo no regime elástico e falhas por fadiga são inadmissíveis durante o trabalho das ferramentas sujeitas, muitas vezes, a milhões de ciclos. Como regra mais geral a Tabela 3.11 indica espessura mínimas para as bases de estampos de corte.

| Force total (tonf)   | Espessura mínima recomendada (mm) |               |  |  |
|----------------------|-----------------------------------|---------------|--|--|
| i orça total (tolli) | Base Inferior                     | Base Superior |  |  |
| 20 a 30              | 40                                | 35            |  |  |
| 30 a 50              | 50                                | 48            |  |  |
| 50 a 80              | 65 a 75                           | 60            |  |  |

Tabela 3.11 – Recomendações para espessura de bases de estampos de corte

Pode-se fabricar as bases em ferro fundido cinzento, GG25, ou equivalente, ou mesmo aço ABNT 1020. No entanto, se pode também comprar bases e colunas já montados e ajustados de fornecedores especializados. Nestes casos, seleciona-se de uma relação de diversas configurações e dimensões já existentes, o que pode encurtar o tempo de fabricação. A Figura 3.59 mostra alguns exemplos de peças fornecidas por fabricantes especializados.



Figura 3.59 – Exemplos de bases e colunas oferecidas pelo mercado.

Na seleção da espessura e dimensões externas das bases, há que se levar em conta que essas deverão receber furos de fixação, de passagem (base inferior), alívios para passagem das colunas (base superior) e muitas outras remoções que contribuem para seu enfraquecimentos mecânico. Assim, geralmente as bases parecem superdimensionadas externamente, mas contém muitos fatores que as enfraquecem e esses devem ser pensados na sua escolha. O Apêndice VI traz alguns exemplos de dimensões padronizadas por fabricantes de bases e colunas.

# 3.10 – Fixação do estampo na máquina

Para estampos pequenos, com peso até 30 kg aproximadamente, usam-se grampos para prendêlo à mesa da prensa nos rasgos perfil "T", conforme mostrado na Figura 3.60.



Figura 3.60 – Exemplo de fixação de estampos pequenos diretamente na mesa da prensa.

Estampos maiores, geralmente com peso maior que 30 -40 kg, devem possuir rasgos na base inferior para fixação mais forte nos rasgos da mesa da prensa, conforme figura 3.61.



Figura 3.61 – Exemplo de fixação de estampos maiores contendo rasgos na base inferior.

# 4 - BIBLIOGRAFIA

Anonymous, (1998), Metal Working Handbook-Schuler, Springer-Verlag Berlin Heidelberg, Germany.

- Altan, T., Uh, S., Gegel, H., (1999), "Conformação dos Metais Fundamentos e Aplicações", EESC-USP, São Carlos, ISBN 85-85205-25-3.
- Dallas, D.B, (1976), Tool and Manufacturing Engineers Handbook, 3<sup>rd</sup> Ed., McGraw-Hill Book Company.
- DeGarmo, E.P., Black, J.T., Kohser, R.A. (1997), "Materials and Processes in Manufacturing", Prentice Hall, ISBN 0-02-328621-0.
- Frateschi, C., Negrini, L.G., (1980), Estampos de Corte Elementos, Apostila publicada pela Escola de Engenharia de São Carlos – USP, 64p.
- Gibson, I., Rosen, D. W., Stucker, B. (2010), Additive Manufacturing Technologies Rapid Prototyping to Direct Digital Manufacturing, Springer New York Heidelberg Dordrecht London.
- Kalpackjian, S. (1995), "Manufacturing Processes for Engineering Materials", Addison-Wesley Publishing Company, 2<sup>nd</sup> ed., ISBN 0-201-60702-6.
- Suchy, I., (2006), "Handbook of Die Design", 2<sup>nd</sup> ed., McGraw-Hill Books.
- Pereira, R.L., (1979), "Tratamento Térmico dos Metais", EESC-USP. São Carlos.
- Shaw, M.C., (1986), "Metal Cutting Principles", Oxford University Press, USA, ISBN 0-19-859002-4 Slack, N. et al. 1996
- Souza, S.A. de, (1982), "Ensaios Mecânicos de Materiais Metálicos", Editora Edgar Blucher Itda. ISBN 85-212-0012-09.
- Tschaetsch, H. (2005), "Metal Forming Practise Processes Machines Tools, ISBN-10 3-540-33216-2 Springer Berlin Heidelberg New York.
- Trent, E.M., (1984), "Metal Cutting", Butterworths, Londres. ISBN 0-408-10856-8
- VanVlack, L.H., (1970), "Princípios de Ciências dos Materiais", Editora Edgard Blucher Ltda., São Paulo.

# APÊNDICE – I – COMPOSIÇÃO QUÍMICA E PROPRIEDADES MECÂNICAS DE AÇOS E FERROS FUNDIDOS
| Designação | С          | Mn        | P máx. | S máx. |
|------------|------------|-----------|--------|--------|
| ABNT       | (%)        | (%)       | (%)    | (%)    |
| 1008       | 0,10 máx   | 0,30-0,50 | 0,040  | 0,050  |
| 1010       | 0,08-0,013 | 0,30-0,60 | 0,040  | 0,050  |
| 1012       | 0,10-0,15  | 0,30-0,60 | 0,040  | 0,050  |
| 1015       | 0,13-0,18  | 0,30-0,60 | 0,040  | 0,050  |
| 1016       | 0,13-0,18  | 0,60-0,90 | 0,040  | 0,050  |
| 1017       | 0,15-0,20  | 0,30-0,60 | 0,040  | 0,050  |
| 1018       | 0,15-0,20  | 0,60-0,90 | 0,040  | 0,050  |
| 1019       | 0,15-0,20  | 0,70-1,00 | 0,040  | 0,050  |
| 1020       | 0,18-0,23  | 0,30-0,60 | 0,040  | 0,050  |
| 1021       | 0,18-0,23  | 0,60-0,90 | 0,040  | 0,050  |
| 1022       | 0,18-0,23  | 0,70-1,00 | 0,040  | 0,050  |
| 1023       | 0,20-0,25  | 0,30-0,60 | 0,040  | 0,050  |
| 1025       | 0,22-0,28  | 0,30-0,60 | 0,040  | 0,050  |
| 1026       | 0,22-0,28  | 0,60-0,90 | 0,040  | 0,050  |
| 1029       | 0,25-0,31  | 0,60-0,90 | 0,040  | 0,050  |
| 1030       | 0,28-0,34  | 0,60-0,90 | 0,040  | 0,050  |
| 1035       | 0,32-0,38  | 0,60-0,90 | 0,040  | 0,050  |
| 1037       | 0,32-0,38  | 0,70-1,00 | 0,040  | 0,050  |
| 1038       | 0,35-0,42  | 0,60-0,90 | 0,040  | 0,050  |
| 1039       | 0,37-0,44  | 0,70-1,00 | 0,040  | 0,050  |
| 1040       | 0,37-0,44  | 0,60-0,90 | 0,040  | 0,050  |
| 1042       | 0,40-0,47  | 0,60-0,90 | 0,040  | 0,050  |
| 1043       | 0,40-0,47  | 0,70-1,00 | 0,040  | 0,050  |
| 1044       | 0,43-0,50  | 0,30-0,60 | 0,040  | 0,050  |
| 1045       | 0,43-0,50  | 0,60-0,90 | 0,040  | 0,050  |
| 1046       | 0,43-0,50  | 0,70-1,00 | 0,040  | 0,050  |
| 1049       | 0,46-0,53  | 0,60-0,90 | 0,040  | 0,050  |
| 1050       | 0,48-0,55  | 0,60-0,90 | 0,040  | 0,050  |
| 1053       | 0,48-0,55  | 0,70-1,00 | 0,040  | 0,050  |
| 1055       | 0,50-0,60  | 0,60-0,90 | 0,040  | 0,050  |
| 1060       | 0,55-0,65  | 0,60-0,90 | 0,040  | 0,050  |
| 1070       | 0,65-0,75  | 0,60-0,90 | 0,040  | 0,050  |
| 1078       | 0,72-0,85  | 0,30-0,60 | 0,040  | 0,050  |
| 1080       | 0,75-0,88  | 0,60-0,90 | 0,040  | 0,050  |
| 1084       | 0,80-0,93  | 0,60-0,90 | 0,040  | 0,050  |
| 1090       | 0,85-0,98  | 0,60-0,90 | 0,040  | 0,050  |
| 1095       | 0,90-1,03  | 0,30-0,50 | 0,040  | 0,050  |
| 1513       | 0,10-0,16  | 1,10-1,40 | 0,040  | 0,050  |
| 1518       | 0,15-0,21  | 1,10-1,40 | 0,040  | 0,050  |
| 1522       | 0,18-0,24  | 1,10-1,40 | 0,040  | 0,050  |
| 1524       | 0,19-0,25  | 1,35-1,65 | 0,040  | 0,050  |
| 1525       | 0,23-0,29  | 0,80-1,10 | 0,040  | 0,050  |
| 1526       | 0,22-0,29  | 1,10-1,40 | 0,040  | 0,050  |
| 1527       | 0,22-0,29  | 1,20-1,50 | 0,040  | 0,050  |
| 1536       | 0,30-0,37  | 1,20-1,50 | 0,040  | 0,050  |
| 1541       | 0,36-0,44  | 1,35-1,65 | 0,040  | 0,050  |
| 1547       | 0,43-0,51  | 1,35-1,65 | 0,040  | 0,050  |
| 1548       | 0,44-0,52  | 1,10-1,40 | 0,040  | 0,050  |
| 1551       | 0,45-0,56  | 0,85-1,15 | 0,040  | 0,050  |
| 1552       | 0,47-0,55  | 1,20-1,50 | 0,040  | 0,050  |
| 1561       | 0,55-0,65  | 0,75-1,05 | 0,040  | 0,050  |
| 1566       | 0,60-0,71  | 0,85-1,15 | 0,040  | 0,050  |
| 1572       | 0,65-0,76  | 1,00-1,30 | 0,040  | 0,050  |

Tabela AI.1 – Principais elementos químicos na composição típica de aços ao carbono

| Designação | С         | Mn        | P máx. | S         |
|------------|-----------|-----------|--------|-----------|
| ABNT       | (%)       | (%)       | (%)    | (%)       |
| 1109       | 0,08-0,13 | 0,60-0,90 | 0,040  | 0,08-0,13 |
| 1110       | 0,08-0,13 | 0,30-0,60 | 0,040  | 0,08-0,13 |
| 1116       | 0,14-0,20 | 1,10-1,40 | 0,040  | 0,16-0,23 |
| 1117       | 0,14-0,20 | 1,00-1,30 | 0,040  | 0,08-0,13 |
| 1118       | 0,14-0,20 | 1,30-1,60 | 0,040  | 0,08-0,13 |
| 1119       | 0,14-0,20 | 1,00-1,30 | 0,040  | 0,24-0,33 |
| 1132       | 0,27-0,34 | 1,35-1,65 | 0,040  | 0,08-0,13 |
| 1137       | 0,32-0,39 | 1,35-1,65 | 0,040  | 0,08-0,13 |
| 1139       | 0,35-0,43 | 1,35-1,65 | 0,040  | 0,13-0,20 |
| 1140       | 0,37-0,44 | 0,70-1,00 | 0,040  | 0,08-0,13 |
| 1141       | 0,37-0,45 | 1,35-1,65 | 0,040  | 0,08-0,13 |
| 1144       | 0,40-0,48 | 1,35-1,65 | 0,040  | 0,24-0,33 |
| 1145       | 0,42-0,49 | 0,70-1,00 | 0,040  | 0,04-0,07 |
| 1146       | 0,42-0,49 | 0,70-1,00 | 0,040  | 0,08-0,13 |
| 1151       | 0,48-0,55 | 0,70-1,00 | 0,040  | 0,08-0,13 |

Tabela AI.2 - Principais elementos químicos na composição típica de aços ao carbono re-sulfurados

Tabela AI.3 – Principais elementos químicos na composição típica de aços ao carbono re-fosforados

| Designação<br>ABNT | C<br>(%)  | Mn<br>(%) | P<br>(%)  | S<br>(%)  | Pb<br>(%) |
|--------------------|-----------|-----------|-----------|-----------|-----------|
| 1211               | 0,13 máx. | 0,60-0,90 | 0,07-0,12 | 0,10-0,15 |           |
| 1212               | 0,13 máx  | 0,70-1,00 | 0,07-0,12 | 0,16-0,23 |           |
| 1213               | 0,13 máx  | 0,70-1,00 | 0,07-0,12 | 0,24-0,33 |           |
| 1215               | 0,09 máx  | 0,75-1,05 | 0,04-0,09 | 0,26-0,35 |           |
| 12L14              | 0,15 máx  | 0,85-1,15 | 0,04-0,09 | 0,26-0,35 | 0,15-0,35 |

| Designação | С             | Mn        | P máx. | S máx. | Si        | Ni        | Cr        | Мо        |
|------------|---------------|-----------|--------|--------|-----------|-----------|-----------|-----------|
| ABNT       | (%)           | (%)       | (%)    | (%)    | (%)       | (%)       | (%)       | (%)       |
| 1330       | 0,28-0,33     | 1,60-1,90 | 0.035  | 0,040  | 0,20-0,35 | -         | -         | -         |
| 1335       | 0,33-0,38     | 1,60-1,90 | 0.035  | 0,040  | 0,20-0,35 | -         | -         | -         |
| 1340       | 0.38-0.43     | 1.60-1.90 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | -         |
| 1345       | 0.43-0.48     | 1.60-1.90 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | -         |
| 4012       | 0.09-0.14     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | 0.15-0.25 |
| 4023       | 0.20-0.25     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | 0.20-0.30 |
| 4024       | 0.20-0.25     | 0.70-0.90 | 0.035  | 0.035- | 0.20-0.35 | _         | _         | 0.20-0.30 |
| -          | - , - , - , - | - , ,     | - ,    | 0.050  | - , ,     |           |           | - 7 7     |
| 4027       | 0.25-0.30     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | 0.20-0.30 |
| 4028       | 0,25-0,30     | 0,70-0,90 | 0.035  | 0.035- | 0,20-0,35 | -         | -         | 0,20-0,30 |
|            | , ,           | , ,       | ,      | 0.050  | , ,       |           |           | , ,       |
| 4037       | 0.35-0.40     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | 0.20-0.30 |
| 4047       | 0.45-0.50     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | _         | _         | 0.20-0.30 |
| 4118       | 0.18-0.23     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.40-0.60 | 0.08-0.15 |
| 4130       | 0.28-0.33     | 0.40-0.60 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4137       | 0.35-0.40     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4140       | 0.38-0.43     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4142       | 0.40-0.45     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4145       | 0.43-0.48     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4147       | 0.45-0.50     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4150       | 0.48-0.53     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.80-1.10 | 0.15-0.25 |
| 4161       | 0.56-0.64     | 0.75-1.00 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.70-0.90 | 0.25-0.35 |
| 4320       | 0.17-0.22     | 0.45-0.65 | 0.035  | 0.040  | 0.20-0.35 | 1.65-2.00 | 0.40-0.60 | 0.20-0.30 |
| 4340       | 0.38-0.43     | 0.60-0.80 | 0.035  | 0.040  | 0.20-0.35 | 1.65-2.00 | 0.70-0.90 | 0.20-0.30 |
| E4340      | 0.38-0.43     | 0.65-0.85 | 0.035  | 0.025  | 0.20-0.35 | 1.65-2.00 | 0.70-0.90 | 0.20-0.30 |
| 4419       | 0.18-0.23     | 0.45-0.65 | 0.035  | 0.040  | 0.20-0.35 | 1.65-2.00 | _         | 0.45-0.60 |
| 4615       | 0.13-0.18     | 0.45-0.65 | 0.035  | 0.040  | - , ,     | 1.65-2.00 | _         | 0.20-0.30 |
| 4620       | 0.17-0.22     | 0.45-0.65 | 0.035  | 0.040  | 0.20-0.35 | 1.65-2.00 | _         | 0.20-0.30 |
| 4621       | 0.17-0.23     | 0.70-0.90 | 0.035  | 0.040  | 0.20-0.35 | 1.65-2.00 | _         | 0.20-0.30 |
| 4626       | 0.24-0.29     | 0.45-0.65 | 0.035  | 0.040  | 0.20-0.35 | 0.70-1.00 | _         | 0.15-0.25 |
| 4718       | 0,16-0,21     | 0,70-0,90 | 0.035  | 0,040  | 0,20-0,35 | 0,90-1,20 | 0,35-0,55 | 0,30-0,40 |
| 4720       | 0.17-0.22     | 0.50-0.70 | 0.035  | 0.040  | 0.20-0.35 | 0.90-1.20 | 0.35-0.55 | 0.15-0.25 |
| 4815       | 0.13-0.18     | 0.40-0.60 | 0.035  | 0.040  | 0.20-0.35 | 3.25-3.75 | _         | 0.20-0.30 |
| 4817       | 0.15-0.20     | 0.40-0.60 | 0.035  | 0.040  | 0.20-0.35 | 3.25-3.75 | _         | 0.20-0.30 |
| 4820       | 0,18-0,23     | 0,50-0,70 | 0.035  | 0,040  | 0,20-0,35 | 3,25-3,75 | -         | 0,20-0,30 |
| 5015       | 0,12-0,17     | 0,30-0,50 | 0.035  | 0,040  | 0,20-0,35 | -         | 0,30-0,50 | -         |
| 5120       | 0,17-0,22     | 0,70-0,90 | 0.035  | 0,040  | 0,20-0,35 | -         | 0,70-0,90 | -         |
| 5130       | 0,28-0,33     | 0,70-0,90 | 0.035  | 0,040  | 0,20-0,35 | -         | 0.80-1.10 | -         |
| 5132       | 0.30-0.35     | 0.60-0.80 | 0.035  | 0.040  | 0.20-0.35 | _         | 0.75-1.00 | -         |
| 5135       | 0,33-0,38     | 0,60-0,80 | 0.035  | 0,040  | 0,20-0,35 | -         | 0.80-1.05 | -         |
| 5140       | 0,38-0,43     | 0,70-0,90 | 0.035  | 0,040  | 0,20-0,35 | -         | 0,70-0,90 | -         |
| 5145       | 0,43-0,48     | 0,70-0.90 | 0,035  | 0,040  | 0,20-0.35 | -         | 0,70-0.90 | -         |
|            | 0,46-0.51     | 0,70-0.95 | 0.035  | 0,040  | 0,20-0.35 | -         | 0,85-1.15 | -         |
| 5150       | 0,48-0.53     | 0,70-0.90 | 0,035  | 0,040  | 0,20-0.35 | -         | 0,70-0.90 | -         |
| 5155       | 0,51-0.59     | 0,70-0.90 | 0.035  | 0,040  | 0,20-0.35 | -         | 0,70-0.90 | -         |
| 5160       | 0,56-0,64     | 0,75-1,00 | 0,035  | 0,040  | 0,20-0,35 | -         | 0,70-0,90 | -         |
| E51100     | 0,98-1.10     | 0,25-0.45 | 0,025  | 0,025  | 0,20-0.35 | -         | 0,90-1.15 | -         |
| E52100     | 0,98-1,10     | 0,25-0,45 | 0,025  | 0,025  | 0,20-0,35 | -         | 1,30-1,60 | -         |
| 6118       | 0,16-0,21     | 0,50-0,70 | 0,035  | 0,040  | 0,20-0,35 | -         | 0,50-0,70 | 0,10-0,15 |

Tabela AI.4 – Principais elementos químicos na composição típica de aços ligados

| Designação   | С           | Mn            | P máx.    | S máx. | Si        | Ni        | Cr        | Мо        |
|--------------|-------------|---------------|-----------|--------|-----------|-----------|-----------|-----------|
| ABNT         | (%)         | (%)           | (%)       | (%)    | (%)       | (%)       | (%)       | (%)       |
| 6150         | 0,48-0,53   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | -         | 0,80-1,10 | 0,15 min  |
| 8615         | 0,13-0,18   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8617         | 0,15-0,20   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8620         | 0,18-0,23   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8622         | 0,20-0,25   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8625         | 0,23-0,28   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8627         | 0,25-0,30   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8630         | 0,28-0,33   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8637         | 0,35-0,40   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8640         | 0,38-0,43   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8642         | 0,40-0,45   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8645         | 0,43-0,48   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8655         | 0,51-0,59   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,15-0,25 |
| 8720         | 0,18-0,23   | 0,70-0,90     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,20-0,30 |
| 8740         | 0,38-0,43   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,20-0,30 |
| 8822         | 0,20-0,25   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,40-0,70 | 0,40-0,60 | 0,30-0,40 |
| 9254         | 0,51-0,59   | 0,60-0,80     | 0,035     | 0,040  | 1,20-1,60 | -         | 0,60-0,80 | -         |
| 9255         | 0,51-0,59   | 0,70-0,95     | 0,035     | 0,040  | 1,80-2,20 | -         | -         | -         |
| 9260         | 0,56-0,64   | 0,75-1,00     | 0,035     | 0,040  | 1,80-2,20 | -         | -         | -         |
| Aços ao Boro | normalizado | os (0.0005% B | – mínimo) | )      |           |           |           |           |
| 50B44        | 0,43-0,48   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | -         | 0,40-0,60 | -         |
| 50B46        | 0,44-0,49   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | -         | 0,20-0,35 | -         |
| 50B50        | 0,48-0,53   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | -         | 0,40-0,60 | -         |
| 50B60        | 0,56-0,64   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | -         | 0,40-0,60 | -         |
| 51B60        | 0,56-0,64   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | -         | 0,70-0,90 | -         |
| 81B45        | 0,43-0,48   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,20-0,40 | 0,35-0,55 | 0,08-0,15 |
| 94B17        | 0,15-0,20   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,30-0,60 | 0,30-0,50 | 0,08-0,15 |
| 94B30        | 0,28-0,23   | 0,75-1,00     | 0,035     | 0,040  | 0,20-0,35 | 0,30-0,60 | 0,30-0,50 | 0,08-0,15 |

Tabela AI.5 – Principais elementos químicos na composição típica de aços inoxidáveis

| Designação      | С                 | Cr        | Ni.       | Mn       | Outros elementos        |
|-----------------|-------------------|-----------|-----------|----------|-------------------------|
| ABNT            | (%)               | (%)       | (%)       | (%)      | (%)                     |
| Ligas Martensít | ica               |           |           |          |                         |
| 403             | 0,15 max          | 11,5-13,0 | -         | 1,0 max  | Turbine quality         |
|                 |                   |           |           |          | Si 0,50 max             |
| 410             | 0,15 max          | 11,5-13,5 | -         | 1,0 max  |                         |
| 414             | 0,15 max          | 11,5-13,5 | 1,25-2,50 | 1,0 max  |                         |
| 416             | 0,15 max          | 12,0-14,0 | -         | 1,25 max | S 0,15 min              |
| 416 Se          | 0,15 max          | 12,0-14,0 | -         | 1,25 max | Se 0,15 min             |
| 420             | >0,15 (0,30-0,40) | 12,0-14,0 | -         | 1,0 max  |                         |
| 431             | 0,20 max          | 15,0-17,0 | 1,25-2,50 | 1,0 max  |                         |
| 440A            | 0,60-0,75         | 16,0-18,0 | -         | 1,0 max  | Mo 0,75 max             |
| 440B            | 0,75-0,95         | 16,0-18,0 | -         | 1,0 max  | Mo 0,75 max             |
| 440C            | 0,95-1,20         | 16,0-18,0 | -         | 1,0 max  | Mo 0,75 max             |
| Ligas Feríticas | •                 |           | •         | •        |                         |
| 405             | 0,08 max          | 11,5-14,5 | -         | 1,0 max  | Al 0,10-0,30            |
| 430             | 0,12 max          | 14,0-18,0 | -         | 1,0 max  |                         |
| 430F            | 0,12 max          | 14,0-18,0 | -         | 1,25 max | S 0,15 min              |
| 430F Se         | 0,12 max          | 14,0-18,0 | -         | 1,25 max | Se 0,15 min             |
| 446             | 0,20 max          | 23,0-27,0 | -         | 1,5 max  | N <sub>2</sub> 0,25 max |

| Designação       | С        | Cr        | Ni.       | Mn       | Outros elementos        |
|------------------|----------|-----------|-----------|----------|-------------------------|
| ABNT             | (%)      | (%)       | (%)       | (%)      | (%)                     |
| Ligas Austenític | cas      |           |           |          |                         |
| 201              | 0,15 max | 16,0-18,0 | 3,5-5,5   | 5,5-7,5  | N <sub>2</sub> 0,25 max |
| 202              | 0,15 max | 17,0-19,0 | 4,0-6,0   | 7,5-10,0 | N <sub>2</sub> 0,25 max |
| 301              | 0,15 max | 16,0-18,0 | 6,0-8,0   | 2,0 max  |                         |
| 302              | 0,15 max | 17,0-19,0 | 8,0-10,0  | 2,0 max  |                         |
| 302B             | 0,15 max | 17,0-19,0 | 8,0-10,0  | 2,0 max  | Si 2,00-3,00            |
| 303              | 0,08 max | 17,0-19,0 | 8,0-10,0  | 2,0 max  | S 0,15 min              |
| 303 Se           | 0,08 max | 17,0-19,0 | 8,0-10,0  | 2,0 max  | Se 0,15 min             |
| 304              | 0,08 max | 18,0-20,0 | 8,0-12,0  | 2,0 max  |                         |
| 304L             | 0,03 max | 18,0-20,0 | 8,0-12,0  | 2,0 max  |                         |
| 305              | 1,12 max | 17,0-19,0 | 10,0-13,0 | 2,0 max  |                         |
| 308              | 0,08 max | 19,0-0,21 | 10,0-12,0 | 2,0 max  |                         |
| 309              | 0,20 max | 22,0-24,0 | 12,0-15,0 | 2,0 max  |                         |
| 309S             | 0,08 max | 22,0-24,0 | 12,0-15,0 | 2,0 max  |                         |
| 310              | 0,25 max | 24,0-26,0 | 19,0-22,0 | 2,0 max  | Si 1,5 max              |
| 310S             | 0,08 max | 24,0-26,0 | 19,0-22,0 | 2,0 max  | Si 1,50 max             |
| 314              | 0,25 max | 23,0-26,0 | 19,0-22,0 | 2,0 max  | Si 1,50-3,00            |
| 316              | 0,08 max | 16,0-18,0 | 10,0-14,0 | 2,0 max  | Mo 2,00-3,00            |
| 316L             | 0,03 max | 16,0-18,0 | 10,0-14,0 | 2,0 max  | Mo 2,00-3,00            |
| 317              | 0,08 max | 18,0-20,0 | 11,0-15,0 | 2,0 max  | Mo 3,00-4,00            |
| 321              | 0,08 max | 17,0-19,0 | 9,0-12,0  | 2,0 max  | Ti is 5 X carbon (min)  |
| 347              | 0,08 max | 17,0-19,0 | 9,0-13,0  | 2,0 max  | Cb is 10 X carbon (min) |

Tabela AI.6 – Principais elementos químicos na composição típica de ligas de níquel

| Designação    | С    | Mn   | Si   | Cr   | Ni   | Co   | Mo  | W   | Cb  | Fe   | Ti  | Al  | В     | Zr   | Outros |
|---------------|------|------|------|------|------|------|-----|-----|-----|------|-----|-----|-------|------|--------|
| comercial     | (%)  | (%)  | (%)  | (%)  | (%)  | (%)  | (%) | (%) | (%) | (%)  | (%) | (%) | (%)   | (%)  |        |
| Alloy 713C    | 0,12 | -    | -    | 12,5 | Bal  | -    | 4,2 | -   | 2,0 | -    | 0,8 | 6,1 | 0,012 | 0,10 |        |
| Alloy 713 LC  | 0,05 | -    | -    | 12,0 | Bal  | -    | 4,5 | -   | 2,0 | -    | 0,6 | 5,9 | 0,010 | 0,10 |        |
| Alloy 901     | 0,05 | 0,10 | 0,10 | 12,5 | 42,5 | -    | 5,7 | -   | -   | Bal  | 2,8 | 0,2 | 0,015 |      |        |
| Alloy 901     |      |      |      |      |      |      |     |     |     |      |     |     |       |      |        |
| A-286         | 0,05 | 1,35 | 0,50 | 15,0 | 26,0 | -    | 1,3 | -   | -   | Bal  | 2,0 | 0,2 | 0,015 |      |        |
| B-1900        | 0,10 | -    | -    | 8,0  | Bal  | 10,0 | 6,0 | -   | -   | -    | 1,0 | 6,0 | 0,015 | 0,10 | 4,0Ta  |
| D-979         | 0,05 | 0,25 | 0,20 | 15,0 | Bal  | -    | 4,0 | 4,0 | -   | 27,0 | 3,0 | 1,0 | 0,10  |      |        |
| Discaloy*     | 0,04 | 0,90 | 0,80 | 13,5 | 26,0 | -    | 2,7 | -   | -   | Bal  | 1,7 | 0,1 | 0,005 |      |        |
| GMR 235-D     | 0,15 | -    | -    | 15,5 | Bal  | -    | 5,0 | -   | -   | 4,5  | 2,5 | 3,5 | 0,050 |      |        |
| Hastelloy*R-  | 0,15 | -    | -    | 15,5 | Bal  | -    | 5,5 | -   | -   | 10,0 | 2,5 | 2,0 | -     |      |        |
| 235           |      |      |      |      |      |      |     |     |     |      |     |     |       |      |        |
| Hastelloy*X   | 0,10 | 0,50 | 0,50 | 22,0 | Bal  | 1,5  | 9,0 | 0,6 | -   | 18,5 |     |     | -     |      |        |
| Inconel*600   | 0,04 | 0,20 | 0,20 | 15,8 | Bal  | -    | -   | -   | -   | 7,2  |     |     |       |      |        |
| Inconel*625   | 0,05 | 0,15 | 0,30 | 22,0 | Bal  | -    | 9,0 | -   | 4,0 | 3,0  | 0,2 | 0,2 |       |      |        |
| Inconel*700   | 0,12 | 0,10 | 0,30 | 15,0 | Bal  | 28,5 | 3,7 | -   | -   | 0,7  | 2,2 | 3,0 |       |      |        |
| Inconel*702   | 0,04 | 0,05 | 0,20 | 15,6 | Bal  | -    | -   | -   | -   | 0,4  | 0,7 | 3,4 |       |      |        |
| Inconel*718   | 0,04 | 0,20 | 0,30 | 18,6 | Bal  | -    | 3,1 | -   | 5,0 | 18,5 | 0,9 | 0,4 |       |      |        |
| Inconel*718   |      |      |      |      |      |      |     |     |     |      |     |     |       |      |        |
| Inconel*722   | 0,04 | 0,55 | 0,20 | 15,0 | Bal  | -    | -   | -   | -   | 6,5  | 2,4 | 0,6 |       |      |        |
| Inconel*X-750 | 0,04 | 0,70 | 0,30 | 15,0 | Bal  | -    | -   | -   | 0,9 | 6,8  | 2,5 | 0,8 |       |      |        |
| Inconel*X-750 |      |      |      |      |      |      |     |     |     |      |     |     |       |      |        |

| Designação     | С    | Mn     | Si     | Cr     | Ni   | Со   | Mo     | W    | Cb  | Fe    | Ti  | Al     | В     | Zr   | Outros              |
|----------------|------|--------|--------|--------|------|------|--------|------|-----|-------|-----|--------|-------|------|---------------------|
| comercial      | (%)  | (%)    | (%)    | (%)    | (%)  | (%)  | (%)    | (%)  | (%) | (%)   | (%) | (%)    | (%)   | (%)  |                     |
| IN 100         | 0,18 | -      | -      | 10,0   | Bal  | 15,0 | 3,0    | -    | -   | -     | 4,7 | 5,5    | 0,014 | 0,06 | 1,0V                |
| IN 102         | 0,06 | -      | -      | 15,0   | Bal  | -    | 3,0    | 3,0  | 3,0 | 7,0   | 0,6 | 0,4    | 0,005 | 0,03 | 0,02Mg              |
| L-605          | 0,10 | 1,50   | 0,50   | 20,0   | 10,0 | Bal  | -      | 15,0 |     | -     |     |        |       |      |                     |
| M-22           | 0,13 | -      | -      | 5,7    | Bal  | -    | 2,0    | 11,0 | -   | -     |     | 6,3    | -     | 0,60 | 3,0Ta               |
| MAR-M200       | 0,15 | -      | -      | 9,0    | Bal  | 10,0 | -      | 12,5 | 1,0 | -     | 2,0 | 5,0    | 0,015 | 0,05 | -                   |
| MAR-M246       | 0,15 | -      | -      | 9,0    | Bal  | 10,0 | 2,5    | 10,0 | -   | -     | 1,5 | 5,5    | 0,015 | 0,05 | 1,5Ta               |
| MAR-M302       | 0,85 | -      | -      | 21,5   | -    | Bal  | -      | 10,0 | -   | -     | -   | -      | 0,005 | 0,20 | 9,0Ta               |
| M-252          | 0,15 | 0,50   | 0,50   | 20,0   | Bal  | 10,0 | 10,0   | -    | -   | -     | 2,6 | 1,0    | 0,005 |      |                     |
| Nicrotung*     | 0,10 | _      | -      | 12,0   | Bal  | 10,0 | -      | 8,0  | -   | -     | 4,0 | 4,0    | 0,050 | 0,05 |                     |
| Nimonic* 80    | 0,06 | 0,10   | 0,70   | 19,5   | Bal  | 1,1  | -      | -    | -   | -     | 2,5 | 1,3    |       |      |                     |
| А              |      |        |        |        |      |      |        |      |     |       |     |        |       |      |                     |
| Nimonic*90     | 0,07 | 0,50   | 0,70   | 19,5   | Bal  | 18,0 | -      | -    | -   | -     | 2,4 | 1,4    |       |      |                     |
| Nimonic*115    | 0,15 | -      | -      | 15,0   | Bal  | 15,0 | 3,5    | -    | -   | -     | 4,0 | 5,0    |       |      |                     |
| N-155          | 0,15 | 1,50   | 0,50   | 21,0   | 20,0 | 20,0 | 3,0    | 2,5  | 1,0 | Bal   | -   | -      |       |      | 0,15N               |
| IN 162         | 0,12 | -      | -      | 10,0   | Bal  | -    | 4,0    | 2,0  | 1,0 | -     | 1,0 | 6,5    | 0,020 | 0,10 | 2,0Ta               |
| Refractaloy*26 | 0,03 | 0,80   | 1,00   | 18,0   | Bal  | 20,0 | 3,2    | -    | -   | 16,0  | 2,6 | 0,2    |       |      |                     |
| René 41*       | 0,09 | -      | -      | 19,0   | Bal  | 11,0 | 10,0   | -    | -   | -     | 3,1 | 1,5    | 0,005 |      |                     |
| René 41*       |      |        |        |        |      |      |        |      |     |       |     |        |       |      |                     |
| S-816          | 0,38 | 1,20   | 0,40   | 20,0   | 20,0 | Bal  | 4,0    | 4,0  | 4,0 | 4,0   |     |        |       |      |                     |
| TD-Nickel      | 0,01 | < 0,01 | < 0,01 | < 0,01 | Bal  | 0,03 | < 0,01 | -    | -   | <0,01 | -   | < 0,01 | -     | -    | 2,2ThO <sub>2</sub> |
| TD-Nickel      |      |        | -      |        |      |      |        |      |     |       |     |        |       |      |                     |
| TRW 1900       | 0,11 | -      | -      | 10,3   | Bal  | 10,0 | -      | 9,0  | 1,5 | -     | 1,0 | 6,3    | 0,030 | 0,10 |                     |
| Unimet*500     | 0,08 | -      | -      | 18,0   | Bal  | 18,5 | 4,0    | -    | -   | -     | 2,9 | 2,9    | 0,006 | 0,05 |                     |
| Unimet*500     | 0,07 | -      | -      | 19,0   | Bal  | 19,9 | 4,2    | -    | -   | -     | 3,0 | 3,0    | 0,007 | 0,05 |                     |
| Unimet*520     | 0,05 | -      | -      | 19,0   | Bal  | 12,0 | 6,0    | 1,0  | -   | -     | 3,0 | 2,0    | 0,005 |      |                     |
| Unimet*630     | 0,03 | -      | -      | 18,0   | Bal  | -    | 3,0    | 3,0  | 6,5 | 18,0  | 1,0 | 0,5    |       |      |                     |
| Unimet*700     | 0,08 | -      | -      | 15,0   | Bal  | 18,5 | 5,2    | -    | -   | -     | 3,5 | 4,3    | 0,030 |      |                     |
| Unitemp* AF    | 0,24 | -      | -      | 16,3   | Bal  | 7,2  | 1,6    | 8,4  | -   | 9,5   | 3,2 | 1,9    | 0,008 | 0,06 |                     |
| 1753           |      |        |        |        |      |      |        |      |     |       |     |        |       |      |                     |
| WI-52          | 0,45 | 0,25   | 0,25   | 21,0   | -    | Bal  | -      | 11,0 | 2,0 | 2,0   |     |        |       |      |                     |
| Waspaloy       | 0,08 | -      | -      | 19,5   | Bal  | 13,5 | 4,3    | -    | -   | -     | 3,0 | 1,3    | 0,006 | 0,06 |                     |
| X-40           | 0,50 | 0,75   | 0,75   | 25,5   | 10,5 | Bal  | -      | 7,5  |     |       |     |        |       |      |                     |
| 16-25-6        | 0,06 | 1,35   | 0,70   | 16,0   | 25,0 | -    | 6,0    | -    | -   | Bal   | -   | -      | -     | -    | 0,15N               |

|--|

| Tipo     | С       | Si        | Mn       | S         | Р         |
|----------|---------|-----------|----------|-----------|-----------|
|          | (%)     | (%)       | (%)      | (%)       | (%)       |
| Cinzento | 2,5-4,0 | 1,0-3,0   | 0,25-1,0 | 0,02-0,25 | 0,05-1,0  |
| Branco   | 1,8-3,6 | 0,5-1,9   | 0,25-0,8 | 0,06-2,0  | 0,06-0,18 |
| Maleável | 2,0-2,6 | 1,10-1,60 | 0,20-1,0 | 0,04-0,18 | 0,18 máx. |
| Nodular  | 3,0-4,0 | 1,8-2,8   | 0,10-1,0 | 0,03 máx  | 0,10 máx  |

| AA    | Si   | Cu   | Mn                            | Mg          | Cr   | Ni   | Zn   | $\frac{\mathrm{Sn}}{(9/2)}$ | Bi   |
|-------|------|------|-------------------------------|-------------|------|------|------|-----------------------------|------|
| FC    | (70) | (70) | ( <sup>70</sup> )<br>99./5% m | (70)        | (70) | (70) | (70) | (70)                        | (70) |
| 1050  |      |      | 99 50% m                      | nn de Al    |      |      |      |                             |      |
| 1050  |      |      | 99.60% m                      | nn. de Al   |      |      |      |                             |      |
| 1100  |      |      | 99.00% m                      | nín. de Al  |      |      |      |                             |      |
| 1145  |      |      | 99,45% m                      | ún. de Al   |      |      |      |                             |      |
| 1175  |      | 0,12 | 99,75% m                      | nín. de Al  |      |      |      |                             |      |
| 1200  |      |      | 99,00% m                      | ún. de Al   |      |      |      |                             |      |
| 1230  |      |      | 99,30% m                      | nín. de Al  |      |      |      |                             |      |
| 1235  |      |      | 99,35% m                      | nín. de Al  |      |      |      |                             |      |
| 1345  |      |      | 99,45% m                      | nín. de Al  |      |      |      |                             |      |
| 2011  |      | 5,5  |                               |             |      |      |      | 0,40                        | 0,40 |
| 2014  | 0,8  | 4,4  | 0,8                           | 0,50        |      |      |      |                             |      |
| 2017  |      | 4,0  | 0,7                           | 0,60        |      |      |      |                             |      |
| 2018  |      | 4,0  |                               | 0,7         |      | 2,0  |      |                             |      |
| 2024  |      | 4,4  | 0,6                           | 1,5         |      |      |      |                             |      |
| 2025  | 0,8  | 4,5  |                               |             |      |      |      |                             |      |
| 2117  |      | 2,6  |                               | 0,35        |      |      |      |                             |      |
| 2124  |      | 4,4  | 0,6                           | 1,5         |      | •    |      |                             |      |
| 2218  |      | 4,0  | 0.20                          | 1,5         |      | 2,0  |      |                             |      |
| 2219* |      | 6,3  | 0,30                          | 1.0         |      | 1.0  |      |                             |      |
| 2018? |      | 2,3  |                               | 1,0         |      | 1,0  |      |                             |      |
| 3003  |      | 0.12 | 12                            |             |      |      |      |                             |      |
| 3004  |      | 0,12 | 1,2                           | 1.0         |      |      |      |                             |      |
| 3005  |      |      | 1.2                           | 0.40        |      |      |      |                             |      |
| 3105  |      |      | 0,50                          | 0.50        |      |      |      |                             |      |
| 4032  | 12,2 | 0,9  | ,<br>,                        | 1,1         |      | 0,9  |      |                             |      |
| 4043  | 5,2  |      |                               |             |      |      |      |                             |      |
| 4045  | 10,0 |      |                               |             |      |      |      |                             |      |
| 4343  | 7,5  |      |                               |             |      |      |      |                             |      |
|       |      |      |                               |             |      |      |      |                             |      |
| 5005  |      |      |                               | 0,8         |      |      |      |                             |      |
| 5050  |      |      |                               | 1,4         | 0.05 |      |      |                             |      |
| 5052  |      |      | 0.12                          | 2,5         | 0,25 |      |      |                             |      |
| 5083  |      |      | 0,12                          | 5,1<br>4 45 | 0,12 |      |      |                             |      |
| 5086  |      |      | 0,7                           | 4,45        | 0,15 |      |      |                             |      |
| 5000  |      |      | 0,-5                          | ч,0         | 0,15 |      |      |                             |      |
| 5154  |      |      |                               | 3.5         | 0.25 |      |      |                             |      |
| 5252  |      |      |                               | 2,5         | ., - |      |      |                             |      |
| 5254  |      |      |                               | 3,5         | 0,25 |      |      |                             |      |
| 5356? |      |      | 0,12                          | 5,0         | 0,12 |      |      |                             |      |
| 5454  |      |      | 0,8                           | 2,7         | 0,12 |      |      |                             |      |
|       |      |      |                               |             |      |      |      |                             |      |
| 5456  |      |      | 0,8                           | 5,1         | 0,12 |      |      |                             |      |
| 5457  |      |      | 0,30                          | 1,0         | 0.25 |      |      |                             |      |
| 5657  |      |      |                               | 2,5         | 0,25 |      |      |                             |      |
| 2027  |      |      |                               | 0,8         |      |      |      |                             |      |
| 6003  | 0,7  |      |                               | 1,2         |      |      |      |                             |      |

Tabela AI.8 – Principais elementos químicos na composição típica de ligas de alumínio

| AA   | Si   | Cu   | Mn   | Mg  | Cr   | Ni  | Zn  | Sn   | Bi   |
|------|------|------|------|-----|------|-----|-----|------|------|
|      | (%)  | (%)  | (%)  | (%) | (%)  | (%) | (%) | (%)  | (%)  |
| 6053 | 0,7  |      |      | 1,3 | 0,25 |     |     |      |      |
| 6061 | 0,6  | 0,27 |      | 1,0 | 0,20 |     |     |      |      |
| 6063 | 0,4  |      |      | 0,7 |      |     |     |      |      |
|      |      |      |      |     |      |     |     |      |      |
| 6066 | 1,3  | 0,9  | 0,8  | 1,1 |      |     |     |      |      |
| 6070 | 1,4  | 0,3  | 0,7  | 0,8 |      |     |     |      |      |
| 6101 | 0,5  |      |      | 0,6 |      |     |     |      |      |
| 6151 | 0,9  |      |      | 0,6 | 0,25 |     |     |      |      |
|      |      |      |      |     |      |     |     |      |      |
| 6201 | 0,7  |      |      | 0,8 |      |     |     |      |      |
| 6253 |      |      |      | 1,2 | 0,25 |     | 2,0 |      |      |
| 6262 | 0,6  | 0,27 |      | 1,0 | 0,09 |     |     | 0,55 | 0,55 |
| 6463 | 0,40 |      |      | 0,7 |      |     |     |      |      |
| 6951 | 0,30 | 0,25 |      | 0,6 |      |     |     |      |      |
| 7001 |      | 2,1  |      | 3,0 | 0,30 |     | 7,4 |      |      |
| 7072 |      |      |      |     |      |     | 1,0 |      |      |
| 7075 |      | 1,6  |      | 2,5 | 0,30 |     | 5,6 |      |      |
|      |      |      |      |     |      |     |     |      |      |
| 7079 |      | 0,6  | 0,70 | 3,3 | 0,20 |     | 4,3 |      |      |
| 7178 |      | 2,0  |      | 2,7 | 0,30 |     | 6,8 |      |      |

| tensões     along     redução de<br>área (%)     tensões     along<br>ruptura     redução de<br>área (%)     tensões     along<br>o de<br>área     dureza     dureza     dureza     dureza     ruptura<br>(MPa)     ruptura<br>(MPa)     clospective     dureza     dureza     dureza     dureza     dureza     dureza     ruptura<br>funda     clospective     dureza     dureza <th cols<="" th=""><th>20<br/>20<br/>16<br/>15</th><th>edução<br/>le área<br/>(%)<br/>45 131<br/>45 121<br/>40 111<br/>40 101</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <th>20<br/>20<br/>16<br/>15</th> <th>edução<br/>le área<br/>(%)<br/>45 131<br/>45 121<br/>40 111<br/>40 101</th> | 20<br>20<br>16<br>15                                                                               | edução<br>le área<br>(%)<br>45 131<br>45 121<br>40 111<br>40 101 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| ABN1     ruptura<br>(MPa)     esc.<br>(MPa)     along<br>(2"%)     redução de<br>área     dureza<br>HB     ruptura<br>(2"%)     o de<br>área     dureza<br>HB     ruptura<br>(MPa)     esc.<br>(MPa)     along<br>(2"%)     o de<br>área     dureza<br>HB     along<br>(MPa)     along<br>(2"%)     along<br>(2"%)     o de<br>área     dureza<br>HB     along<br>(MPa)     along<br>(2"%)     along<br>(2"%) | 20<br>20<br>16<br>15                                                                                             | le área<br>(%)     dure.<br>HB       45     131       45     121       40     111       40     101 |                                                                  |
| (MPa)     (MPa) <th< th=""><th>20<br/>20<br/>16<br/>15</th><th>(%)     110       45     131       45     121       40     111       40     101</th></th<>                                                                                                                                                                                                                                                                                                          | 20<br>20<br>16<br>15                                                                                             | (%)     110       45     131       45     121       40     111       40     101                    |                                                                  |
| 1018, 1025 16 a 22 483 414 18 40 143   22,1 a 32 448 379 16 40 131 414 310   32,1 a 51 414 345 15 35 121 379 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20<br>20<br>16<br>15                                                                                             | 45 131<br>45 121<br>40 111<br>40 101                                                               |                                                                  |
| 16 a 22   483   414   18   40   143   448   310     22,1 a 32   448   379   16   40   131   414   310     32,1 a 51   414   345   15   35   121   379   310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20<br>20<br>16<br>15                                                                                             | 45     131       45     121       40     111       40     101                                      |                                                                  |
| 22,1 a 32     448     379     16     40     131     414     310       32,1 a 51     414     345     15     35     121     379     310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20<br>16<br>15                                                                                                   | 451214011140101                                                                                    |                                                                  |
| 32.1 a 51 414 345 15 35 121 35 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16<br>15                                                                                                         | 40 111<br>40 101                                                                                   |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                                                                                               | 40 101                                                                                             |                                                                  |
| 51,1 a 76 379 310 15 35 111 345 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                    |                                                                  |
| 1117, 1118 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22 517 448 15 40 149 552 483 15 40 163 483 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18                                                                                                               | 45 143                                                                                             |                                                                  |
| 22,1 a 32 483 414 15 40 143 517 448 15 40 149 448 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16                                                                                                               | 45 131                                                                                             |                                                                  |
| 32,1 a 51 448 379 13 35 131 483 414 13 35 143 414 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 121                                                                                             |                                                                  |
| 51,1 a 76 414 345 12 30 121 448 379 12 35 131 379 310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 111                                                                                             |                                                                  |
| 1035 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22     586     517     13     35     170     621     552     13     35     179     552     414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                               | 45 163                                                                                             |                                                                  |
| 22,1 a 32 552 483 12 35 163 586 517 12 35 170 517 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 45 149                                                                                             |                                                                  |
| 32,1 a 51 517 448 12 35 149 552 483 12 35 163 483 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 143                                                                                             |                                                                  |
| 51,1 a 76 483 414 10 30 143 517 448 10 30 149 448 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                               | 35 131                                                                                             |                                                                  |
| 1040, 1140 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22 621 552 12 35 179 655 586 12 35 187 586 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                               | 45 170                                                                                             |                                                                  |
| 22,1 a 32 586 517 12 35 170 621 552 12 35 179 552 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 45 163                                                                                             |                                                                  |
| 32,1 a 51 552 483 10 30 163 586 517 10 30 170 517 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 149                                                                                             |                                                                  |
| 51,1 a 76 517 448 10 30 149 552 483 10 30 163 483 379                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                               | 35 143                                                                                             |                                                                  |
| 1045,1146,1145 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22 655 586 12 35 187 689 621 12 35 197 621 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                               | 45 179                                                                                             |                                                                  |
| 22,1 a 32 621 552 11 30 179 655 586 11 30 187 586 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 45 170                                                                                             |                                                                  |
| 32,1 a 51     586     517     10     30     170     621     552     10     30     179     552     448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 163                                                                                             |                                                                  |
| 51,1 a 76 552 483 10 30 163 586 517 10 25 170 517 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                               | 35 149                                                                                             |                                                                  |
| 1050,1137,1151 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22 689 621 11 35 197 724 655 11 35 212 655 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                               | 45 187                                                                                             |                                                                  |
| 22,1 a 32 655 586 11 30 187 689 621 11 30 197 621 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 179                                                                                             |                                                                  |
| 32,1 a 51 621 552 10 30 179 655 586 10 30 187 586 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 170                                                                                             |                                                                  |
| 51,1 a 76 586 517 10 30 170 621 552 10 25 179 552 448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                               | 35 163                                                                                             |                                                                  |
| 1141 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22 724 655 11 30 212 758 689 11 30 223 689 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                               | 40 197                                                                                             |                                                                  |
| 22,1 a 32 689 621 10 30 197 738 655 10 30 212 655 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 187                                                                                             |                                                                  |
| 32,1 a 51 655 586 10 30 187 689 621 10 25 197 621 517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 179                                                                                             |                                                                  |
| 51,1 a 76 621 552 10 20 179 655 586 10 20 187 586 483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                               | 20 170                                                                                             |                                                                  |
| 1144 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                    |                                                                  |
| 16 a 22 758 689 10 30 223 793 724 10 30 229 724 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                               | 40 212                                                                                             |                                                                  |
| 22,1 a 32 724 655 10 30 212 758 689 10 30 223 689 586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                               | 40 197                                                                                             |                                                                  |
| 32,1 a 51   689   621   10   25   197   724   655   10   25   212   655   552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                               | 35 187                                                                                             |                                                                  |
| 51,1 a 76   655   586   10   20   187   689   621   10   20   197   621   517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                               | 30 179                                                                                             |                                                                  |

Tabela AI.9 – Propriedades mecânicas típicas de alguns aços ao carbono

Tabela AI.10 – Propriedades mecânicas típicas de alguns aços ligados

|                                                      | tensões          |               | along          | redução        | duraza |
|------------------------------------------------------|------------------|---------------|----------------|----------------|--------|
| ABNT                                                 | ruptura<br>(MPa) | esc.<br>(MPa) | along<br>(2"%) | de área<br>(%) | (HB)   |
| 2330                                                 |                  |               |                |                |        |
| laminado a quente                                    | 724              | 469           | 21             | 50             | 207    |
| laminado a frio                                      | 855              | 820           | 12             | 43             | 223    |
| austenitizado a 830 Celsius e revenido a 534 Celsius | 903              | 731           | 20             | 57             | 262    |
| 2340                                                 |                  |               |                |                |        |
| laminado a quente                                    | 655              | 462           | 17             | 52             | 197    |
| laminado a frio                                      | 758              | 655           | 14             | 42             | 221    |
| austenitizado a 774 Celsius e revenido a 534 Celsius | 945              | 820           | 22             | 59             | 277    |
| 3140                                                 |                  |               |                |                |        |
| laminado a quente                                    | 662              | 441           | 26             | 56             | 197    |
| laminado a frio                                      | 717              | 629           | 17             | 48             | 212    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1027             | 883           | 16             | 45             | 302    |
| 3150                                                 |                  |               |                |                |        |
| laminado a quente                                    | 717              | 503           | 19             | 50             | 212    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1069             | 910           | 14             | 42             | 311    |
| 4130                                                 |                  |               |                |                |        |
| laminado a quente                                    | 621              | 414           | 30             | 45             | 183    |
| laminado a frio                                      | 676              | 600           | 21             | 52             | 201    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1048             | 951           | 12             |                | 302    |
| 4140                                                 |                  |               |                |                |        |
| laminado a quente                                    | 621              | 434           | 27             | 58             | 187    |
| laminado a frio                                      | 703              | 621           | 18             | 50             | 223    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1055             | 903           | 16             | 45             | 302    |
| 4150                                                 |                  |               |                |                |        |
| laminado a quente                                    | 689              | 455           | 21             | 51             | 197    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1089             | 924           | 14             | 42             | 311    |
| 4340                                                 |                  |               |                |                |        |
| laminado a quente                                    | 696              | 476           | 21             | 45             | 207    |
| laminado a frio                                      | 765              | 683           | 16             | 42             | 223    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1255             | 1117          | 15             | 40             | 363    |
| 52100                                                |                  |               |                |                |        |
| laminado a quente                                    | 689              | 558           | 25             | 57             | 192    |
| 6150                                                 |                  |               |                |                |        |
| laminado a quente                                    | 627              | 400           | 22             | 53             | 183    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1069             | 910           | 15             | 44             | 302    |
| 8640                                                 |                  |               |                |                |        |
| laminado a quente                                    | 634              | 421           | 27             | 57             | 192    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1020             | 876           | 15             | 42             | 302    |
| 8642                                                 |                  |               |                |                |        |
| laminado a quente                                    | 641              | 434           | 27             | 57             | 192    |
| laminado a frio                                      | 724              | 621           | 18             | 49             | 223    |
| austenitizado a 843 Celsius e revenido a 534 Celsius | 1027             | 883           | 16             | 45             | 302    |
| 8650                                                 |                  |               |                |                |        |
| laminado a quente                                    | 683              | 400           | 20             | 48             | 197    |
| laminado a frio                                      | 1069             | 910           | 14             | 42             | 311    |
| austenitizado a 843 Celsius e revenido a 534 Celsius |                  |               |                |                |        |
| 9255                                                 |                  |               |                |                |        |
| laminado a quente                                    | 758              | 538           | 22             | 45             | 223    |
| austenitizado a 885 Celsius e revenido a 534 Celsius | 1241             | 1103          | 15             | 32             | 352    |

|                             | módulo            | ten              | sões           | alang | duraza  | Imposto   |  |
|-----------------------------|-------------------|------------------|----------------|-------|---------|-----------|--|
| ABNT                        | elastic.<br>(MPa) | ruptura<br>(MPa) | esc. (MPa)     | (2"%) | (HB)    | Izod (Nm) |  |
| Aços inoxidáveis ferríticos |                   |                  |                |       |         |           |  |
| 405 recozido                | 196.501           | 414              | 241            | 20    | 160-180 | 318 a 556 |  |
| 406 recozido                | 199.948           | 586              |                | 25    |         |           |  |
| 430 recozido                | 203.395           | 448              | 241            | 20-35 | 130-165 | 238 a 556 |  |
| 430 endurecido              |                   | 1034             | 758            | 3     | 255-300 | 239 a 556 |  |
| 430F recozido               | 199.948           | 483              | 310            | 15-30 | 150-190 | 240 a 556 |  |
| 430F endurecido             |                   | 1034             | 758            | 3     | 275-300 |           |  |
| 446 recozido                | 193.053           | 552              | 345            | 25-30 | 160-185 | 16 a 160  |  |
|                             | A                 | Aços inoxidáv    | eis austenítio | COS   |         |           |  |
| 301                         | 196.501           | 758              | 276            | 50-60 | 155-175 | 1113-1748 |  |
| 201                         | 196.501           | 758              | 345            | 50-60 | 165-185 | 1113-1749 |  |
| 302                         | 196.501           | 586              | 241            | 50-60 | 140-160 | 1113-1750 |  |
| 302B                        | 193.053           | 586              | 276            | 50-60 | 150-170 | 1271-1590 |  |
| 303                         | 196.501           | 621              | 241            | 30-55 | 155-175 | 1113-1749 |  |
| 304                         | 196.501           | 586              | 207            | 50-60 | 140-160 | 1113-1750 |  |
| 304L                        | 196.501           | 517              | 193            | 50-60 | 120-140 | 1113-1751 |  |
| 305                         | 196.501           | 586              | 262            | 50-60 |         |           |  |
| 308                         | 196.501           | 586              | 241            | 50-60 | 145-165 |           |  |
| 309                         | 199.948           | 621              | 276            | 45-50 | 165-185 | 1113-1754 |  |
| 310                         | 203.395           | 621              | 28             | 45-50 | 165-185 | 1113-1755 |  |
| 316                         | 193.053           | 552              | 207            | 50-60 | 140-160 | 1113-1756 |  |
| 317                         | 193.053           | 552              | 241            | 50-60 | 140-160 | 1113-1757 |  |
| 321                         | 196.501           | 621              | 241            | 50-55 | 145-160 | 1113-1758 |  |
| 347                         | 196.501           | 621              | 276            | 45-55 | 155-180 | 1113-1759 |  |

Tabela AI.11 – Propriedades mecânicas típicas de alguns aços inoxidáveis

| tensão de escoamento (MPa) à temperatura (Celsius |         |      |      |      |     |     | )   |       |
|---------------------------------------------------|---------|------|------|------|-----|-----|-----|-------|
| Nome                                              | estado  | 35   | 538  | 649  | 760 | 871 | 982 | 1093  |
| liga 713C                                         | fundido | 738  | 703  | 717  | 745 | 496 | 303 |       |
| liga 713LC                                        | fundido | 752  | 758  | 786  | 758 | 579 | 283 |       |
| liga 901                                          | barra   | 896  | 779  | 786  | 634 |     |     |       |
| liga 901                                          | chapa   | 738  | 662  | 641  | 462 |     |     |       |
| A-286                                             | barra   | 724  | 607  | 607  | 427 |     |     |       |
| B-1900                                            | fundido | 827  | 869  | 924  | 807 | 696 | 414 | 193   |
| D-979                                             | barra   | 1007 | 924  | 889  | 655 | 303 |     |       |
| Discaloy                                          | barra   | 731  | 648  | 627  | 427 | 0   |     |       |
| GMR235-D                                          | fundido | 710  | 565  | 586  | 593 | 448 |     |       |
| Hasteloy<br>R235                                  | chapa   | 807  | 779  | 765  | 724 | 407 | 124 |       |
| Hasteloy X                                        | chapa   | 359  | 290  | 276  | 262 | 179 | 110 | 55    |
| Inconel 600                                       | barra   | 248  | 193  | 179  | 117 | 62  | 28  |       |
| Inconel 625                                       | barra   | 365  | 255  | 255  | 269 | 248 | 131 | 62    |
| Inconel 700                                       | barra   | 710  | 641  | 641  | 614 | 407 | 138 |       |
| Inconel 702                                       | chapa   | 579  | 545  | 524  | 427 | 193 | 48  |       |
| Inconel 718                                       | barra   | 1186 | 1062 | 1020 | 738 | 331 | 103 | 55    |
| Inconel 718                                       | chapa   | 1055 | 945  | 869  | 627 |     |     |       |
| Inconel 722                                       | chapa   | 565  | 524  | 538  | 427 | 193 |     |       |
| Inconel X-750                                     | barra   | 634  | 579  | 565  | 455 | 165 | 34  |       |
| Inconel X-750                                     | chapa   | 827  | 752  | 717  | 538 | 276 |     |       |
| IN 100                                            | fundido | 848  | 883  | 889  | 862 | 696 | 372 | (241) |
| IN 102                                            | barra   | 503  | 400  | 400  | 200 |     |     |       |
| L-650                                             | chapa   | 462  | 248  | 241  | 262 | 241 | 159 | 83    |
| M-22                                              | fundido | 683  | 731  | 765  | 772 | 676 | 359 |       |
| MAR-M200                                          | fundido | 827  | 848  | 862  | 841 | 758 | 469 |       |
| MAR-M246                                          | fundido | 862  | 862  | 862  | 862 | 689 | 379 |       |
| MAR-M302                                          | fundido | 689  | 503  | 448  | 386 | 310 | 214 | 152   |
| M-252                                             | barra   | 841  | 765  | 745  | 717 | 483 |     |       |
| Nicrotung                                         | fundido | 827  | 772  | 758  | 731 | 524 | 359 |       |
| Nimonic 80A                                       | barra   | 621  | 531  | 552  | 503 | 262 | 62  |       |
| Nimonic 90A                                       | barra   | 807  | 724  | 683  | 538 | 262 | 62  |       |
| Nimonic 115                                       | barra   | 862  | 793  | 814  | 800 | 552 | 241 |       |
| N-155                                             | barra   | 400  | 338  | 296  | 248 | 172 |     |       |
| IN 162                                            | fundido | 814  | 793  | 855  | 848 | 710 | 448 |       |
| Refractaloy<br>26                                 | barra   | 627  | 586  | 614  | 552 | 324 |     |       |
| Rene 41                                           | chapa   | 1062 | 1014 | 1000 | 938 | 552 | 262 |       |
| Rene 41                                           | barra   | 1020 | 938  | 896  | 834 | 579 | 172 |       |
| S-816                                             | barra   | 462  | 303  | 303  | 283 | 241 |     |       |
| TD-Nickel                                         | barra   | 621  | 296  | 248  | 214 | 179 | 152 | 131   |
| TD-Nickel                                         | chapa   | 310  | 207  | 179  | 159 | 131 | 117 | 83    |
| TRW 1900                                          | fundido | 814  |      | 772  | 779 | 579 |     |       |
| Udimet 500                                        | barra   | 758  |      | 758  | 731 | 496 | 228 |       |
| Udimet 500                                        | fundido | 814  | 724  | 703  | 703 | 600 |     |       |
| Udimet 520                                        | barra   | 862  | 827  | 793  | 724 | 517 | 310 |       |
| Udimet 630                                        | barra   | 1310 | 1172 | 1103 | 862 |     |     |       |
| Udimet 700                                        | barra   | 965  |      | 855  | 827 | 634 | 303 | 83    |
| Udimet AF<br>1753                                 | barra   | 703  | 676  | 676  | 696 | 496 |     |       |
| WI-52                                             | fundido | 586  | 441  | 400  | 345 | 276 | 193 | 103   |
| Waspaloy                                          | barra   | 793  | 724  | 689  | 676 | 517 |     |       |
| X-40                                              | fundido | 524  | 276  | 262  |     |     |     |       |
| 16-25-6                                           | barra   | 352  | 221  | 221  | 221 |     |     |       |

Tabela AI.12 – Propriedades mecânicas típicas de algumas superligas

| Nomo              | o oto do | tensão de ruptura (MPa) à temperatura ( |      |      |      |     |     | Celsius) |  |  |
|-------------------|----------|-----------------------------------------|------|------|------|-----|-----|----------|--|--|
| Nome              | estado   | 35                                      | 538  | 649  | 760  | 871 | 982 | 1093     |  |  |
| liga 713C         | fundido  | 848                                     | 862  | 869  | 938  | 724 | 469 |          |  |  |
| liga 713LC        | fundido  | 896                                     | 896  | 1082 | 951  | 752 | 469 |          |  |  |
| liga 901          | barra    | 1207                                    | 1027 | 958  | 724  |     |     |          |  |  |
| liga 901          | chapa    | 1145                                    | 951  | 841  | 531  |     |     |          |  |  |
| A-286             | barra    | 1007                                    | 903  | 717  | 441  |     |     |          |  |  |
| B-1900            | fundido  | 972                                     | 1007 | 1014 | 951  | 793 | 552 | 269      |  |  |
| D-979             | barra    | 1407                                    | 1296 | 1103 | 717  | 345 |     |          |  |  |
| Discaloy          | barra    | 1000                                    | 862  | 717  | 483  |     |     |          |  |  |
| GMR235-D          | fundido  | 772                                     | 717  | 758  | 793  | 724 |     |          |  |  |
| Hasteloy<br>R235  | chapa    | 1165                                    | 1034 | 1055 | 896  | 524 | 179 | 65       |  |  |
| Hasteloy X        | chapa    | 786                                     | 648  | 572  | 434  | 255 | 152 | 90       |  |  |
| Inconel 600       | barra    | 621                                     | 579  | 448  | 186  | 103 | 52  |          |  |  |
| Inconel 625       | barra    | 855                                     | 745  | 710  | 503  | 283 | 131 | 62       |  |  |
| Inconel 700       | barra    | 1172                                    | 1007 | 993  | 876  | 607 | 234 |          |  |  |
| Inconel 702       | chapa    | 1020                                    | 814  | 621  | 496  | 331 | 76  |          |  |  |
| Inconel 718       | barra    | 1434                                    | 1276 | 1227 | 951  | 338 | 103 | 62       |  |  |
| Inconel 718       | chapa    | 1276                                    | 1145 | 1034 | 676  |     |     |          |  |  |
| Inconel 722       | chapa    | 1089                                    | 862  | 814  | 586  | 262 |     |          |  |  |
| Inconel X-750     | barra    | 1117                                    | 965  | 827  | 483  | 234 | 62  |          |  |  |
| Inconel X-750     | chapa    | 1234                                    | 1007 | 883  | 676  | 365 |     |          |  |  |
| IN 100            | fundido  | 1014                                    | 1089 | 1110 | 1069 | 883 | 565 | (379)    |  |  |
| IN 102            | barra    | 958                                     | 827  | 710  | 441  | 214 | 0   |          |  |  |
| L-650             | chapa    | 1007                                    | 800  | 710  | 455  | 324 | 234 | 131      |  |  |
| M-22              | fundido  | 731                                     | 779  | 834  | 910  | 883 | 545 |          |  |  |
| MAR-M200          | fundido  | 931                                     | 945  | 951  | 931  | 841 | 552 | 324      |  |  |
| MAR-M246          | fundido  | 965                                     | 1000 | 1034 | 1034 | 862 | 552 |          |  |  |
| MAR-M302          | fundido  | 931                                     | 793  | 786  | 703  | 448 | 276 | 152      |  |  |
| M-252             | barra    | 1241                                    | 1227 | 1158 | 945  | 510 | 0   |          |  |  |
| Nicrotung         | fundido  | 896                                     | 841  | 827  | 807  | 593 | 462 |          |  |  |
| Nimonic 80A       | barra    | 1000                                    | 876  | 793  | 600  | 310 | 76  |          |  |  |
| Nimonic 90A       | barra    | 1234                                    | 1076 | 938  | 655  | 331 | 76  |          |  |  |
| Nimonic 115       | barra    | 1241                                    | 1089 | 1124 | 1082 | 827 | 462 |          |  |  |
| N-155             | barra    | 814                                     | 648  | 545  | 427  | 262 | 0   |          |  |  |
| IN 162            | fundido  | 1007                                    | 1020 | 1089 | 1007 | 827 | 586 |          |  |  |
| Refractaloy<br>26 | barra    | 1062                                    | 986  | 938  | 669  | 331 | 0   |          |  |  |
| Rene 41           | chapa    | 1420                                    | 1400 | 1338 | 1103 | 621 | 290 |          |  |  |
| Rene 41           | barra    | 1276                                    | 1200 | 1131 | 965  | 607 | 276 |          |  |  |
| S-816             | barra    | 965                                     | 834  | 772  | 621  | 414 | 172 |          |  |  |
| TD-Nickel         | barra    | 689                                     | 310  | 262  | 228  | 193 | 165 | 138      |  |  |
| TD-Nickel         | chapa    | 448                                     | 228  | 193  | 172  | 145 | 124 | 97       |  |  |
| TRW 1900          | fundido  | 896                                     | 0    | 876  | 903  | 669 | 365 | 145      |  |  |
| Udimet 500        | barra    | 1213                                    | 0    | 1172 | 1041 | 641 | 290 |          |  |  |
| Udimet 500        | fundido  | 931                                     | 896  | 883  | 855  | 662 | 131 |          |  |  |
| Udimet 520        | barra    | 1310                                    | 1241 | 1172 | 724  | 517 | 310 |          |  |  |
| Udimet 630        | barra    | 1517                                    | 1379 | 1276 | 965  |     |     |          |  |  |
| Udimet 700        | barra    | 1407                                    |      | 1241 | 1034 | 689 | 359 | 103      |  |  |
| Udimet AF<br>1753 | barra    | 1213                                    | 1138 | 1103 | 896  | 545 |     |          |  |  |
| WI-52             | fundido  | 752                                     | 745  | 738  | 607  | 414 | 276 | 159      |  |  |
| Waspaloy          | barra    | 1276                                    | 1172 | 1117 | 793  | 524 |     |          |  |  |
| X-40              | fundido  | 745                                     | 552  | 517  | 483  | 324 | 200 |          |  |  |
| 16-25-6           | barra    | 752                                     | 621  | 434  | 345  |     |     |          |  |  |

| Liga -TT  | Tensão de<br>Ruptura<br>(MPa) | Tensão de<br>Escoamento<br>(MPa) | Alongamento<br>em 2" (1/2"<br>diâmetro) | Dureza<br>(HB) | Tensão de<br>cisalhamento<br>(MPa) | Módulo de<br>Young<br>(MPa x 10 <sup>3</sup> ) |
|-----------|-------------------------------|----------------------------------|-----------------------------------------|----------------|------------------------------------|------------------------------------------------|
|           | ~ /                           |                                  | (%)                                     |                | ~ /                                | ````                                           |
| 2014-0    | 186                           | 97                               | 18                                      | 45             | 124                                | 73                                             |
| 2014-T4,  | 427                           | 290                              | 20                                      | 105            | 262                                | 73                                             |
| T451      |                               |                                  |                                         |                |                                    |                                                |
| 2014-T6,  | 483                           | 414                              | 13                                      | 135            | 290                                | 73                                             |
| T651      |                               |                                  |                                         |                |                                    |                                                |
| 2024-0    | 186                           | 76                               | 22                                      | 47             | 124                                | 73                                             |
| 2024-T3   | 483                           | 345                              | -                                       | 120            | 138                                | 73                                             |
| 2024-T4   | 469                           | 324                              | 19                                      | 120            | 138                                | 73                                             |
| 2024-T361 | 496                           | 393                              | -                                       | 130            | 290                                | 73                                             |
| 6061-0    | 124                           | 55                               | 30                                      | 30             | 83                                 | 69                                             |
| 6061-T4,  | 241                           | 145                              | 25                                      | 65             | 24                                 | 69                                             |
| T451      |                               |                                  |                                         |                |                                    |                                                |
| 6061-T6,  | 310                           | 276                              | 17                                      | 95             | 207                                | 69                                             |
| T651      |                               |                                  |                                         |                |                                    |                                                |
| 7075-0    | 228                           | 103                              | 16                                      | 60             | 152                                | 72                                             |
| 7075-T6,  | 572                           | 503                              | 11                                      | 150            | 331                                | 72                                             |
| T651      |                               |                                  |                                         |                |                                    |                                                |

Tabela AI.13 – Propriedades mecânicas típicas de algumas ligas de alumínio.

Tabela AI.14 - Propriedades mecânicas típicas de alguns ferros fundidos cinzentos

| Dasignação | Dureza (HB)      | Microestrutura   | Ruptura à tração min. |       |  |
|------------|------------------|------------------|-----------------------|-------|--|
| Designação | 2 41 0 2 w (112) |                  | (MPa)                 | (psi) |  |
| G1800      | 143-187          | Ferrita+perlita  | 140                   | 18000 |  |
| G2500      | 170-229          | Perlita +ferrita | 175                   | 25000 |  |
| G3000      | 187-241          | Perlita          | 210                   | 30000 |  |
| G3500      | 207-225          | Perlita          | 245                   | 35000 |  |
| G4000      | 217-269          | Perlite fina     | 280                   | 40000 |  |

Tabela AI.14 – Propriedades mecânicas típicas de alguns ferros fundidos nodulares

|            | Dureza   | Microestrutura   | Tensõ            | es.           | Along. |
|------------|----------|------------------|------------------|---------------|--------|
| Designação | (HB)     | (80% esferoid.)  | Ruptura<br>(MPa) | Esc.<br>(MPa) | (2"%)  |
| D 4018     | 170 máx. | Ferrita          | 420              | 280           | 18     |
| D 4512     | 156-217  | Ferrita +perlita | 456              | 315           | 12     |
| D 5506     | 187-255  | Ferrita +perlita | 560              | 390           | 6      |
| D 7003     | 241-302  | Perlita          | 700              | 490           | 3      |

Dados obtidos de SME – Society of Manufacturing Engineers, "Tool and Manufacturing Engineers Handbook" – McGraw-Hill Book Company, 1976.

## APÊNDICE II – EQUIVALÊNCIA ENTRE ALGUNS DOS AÇOS MAIS COMUNS

| Alemanha<br>1.0401<br>1.1141<br>1.0402 | Alemanha<br>C15                                                                                                                                                                                                                                                                                                                                                                                                                            | Grã-Bretanha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Japão                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0401<br>1.1141<br>1.0402             | C15                                                                                                                                                                                                                                                                                                                                                                                                                                        | 080M15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vapao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.1141                                 | C15                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.0402                                 | Ck15                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0001115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 1417                                 | C22                                                                                                                                                                                                                                                                                                                                                                                                                                        | 050A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.1158                                 | Ck25                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0501120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | \$25C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0501                                 | C35                                                                                                                                                                                                                                                                                                                                                                                                                                        | 060A35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$35C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.1183                                 | Cf35                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0001135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1157                                 | 40Mn4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150M36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0503                                 | C45                                                                                                                                                                                                                                                                                                                                                                                                                                        | 080M46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S45C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1191                                 | Ck45                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.1213                                 | Cf53                                                                                                                                                                                                                                                                                                                                                                                                                                       | 060A52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S50C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.0535                                 | C55                                                                                                                                                                                                                                                                                                                                                                                                                                        | 070M55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S55C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1203                                 | Ck55                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0601                                 | C60                                                                                                                                                                                                                                                                                                                                                                                                                                        | 080A62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S58C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.1221                                 | CK60                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.1274                                 | Ck101                                                                                                                                                                                                                                                                                                                                                                                                                                      | 060A96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0038                                 | GS-CK16                                                                                                                                                                                                                                                                                                                                                                                                                                    | 030A04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0726                                 | 35S20                                                                                                                                                                                                                                                                                                                                                                                                                                      | 212M36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0715                                 | 9SMn28                                                                                                                                                                                                                                                                                                                                                                                                                                     | 230M07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SUM22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0718                                 | 9SMnPb28                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SUM22L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.0737                                 | 9SMnPb36                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1.0736                                 | 9SMn36                                                                                                                                                                                                                                                                                                                                                                                                                                     | 240M7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.1170                                 | 28Mn6                                                                                                                                                                                                                                                                                                                                                                                                                                      | 150M28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCMn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.1167                                 | 36Mn5                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SMn438(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.5680                                 | 12Ni19                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.5710                                 | 36NiCr6                                                                                                                                                                                                                                                                                                                                                                                                                                    | 640A35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SNC236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.5752                                 | 14NiCr14                                                                                                                                                                                                                                                                                                                                                                                                                                   | 655M13:A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SNC815(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.5732                                 | 14NiCr10                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0001110,112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SNC415(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.7218                                 | 25CrMo4                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1717CDS110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCM420:SCM430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 7220                                 | 34CrMo4                                                                                                                                                                                                                                                                                                                                                                                                                                    | 708A37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCM423·SCCRM3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 7223                                 | 41CrMo4                                                                                                                                                                                                                                                                                                                                                                                                                                    | 708M40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCM440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.7225                                 | 42CrMo4                                                                                                                                                                                                                                                                                                                                                                                                                                    | / 0010110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SCM440(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.6582                                 | 35CrNiMo6                                                                                                                                                                                                                                                                                                                                                                                                                                  | 817M40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sellino(II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.5302                                 | 16Mo5                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1503-245-420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.7015                                 | 15Cr3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 523M15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCr415(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.7013                                 | 16MnCr5                                                                                                                                                                                                                                                                                                                                                                                                                                    | (527M20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 501415(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0841                                 | St 52-3                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15M19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.0041                                 | 34Cr4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 530432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCr430(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.7035                                 | 41Cr4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 530A40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SCr440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.7035                                 | 42Cr4                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5501110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SCr440(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.7045                                 | 55Cr3                                                                                                                                                                                                                                                                                                                                                                                                                                      | 527460                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SUP9(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.7170                                 | 50CrV4                                                                                                                                                                                                                                                                                                                                                                                                                                     | 735450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SUP10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.6523                                 | 21NiCrMo2                                                                                                                                                                                                                                                                                                                                                                                                                                  | 805M20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SNCM220(H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0525                                 | 20MoCrS4                                                                                                                                                                                                                                                                                                                                                                                                                                   | 605A32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51(CIVI220(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.541                                  | 40NiCrMo22                                                                                                                                                                                                                                                                                                                                                                                                                                 | 311_TYPE7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SNCM240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.0040                                 | 55Si7                                                                                                                                                                                                                                                                                                                                                                                                                                      | 250453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51(CIVI2+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 6511                                 | 36CrNiMoA(KR)                                                                                                                                                                                                                                                                                                                                                                                                                              | 230A33<br>816M40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 2080                                 | X210Cr12                                                                                                                                                                                                                                                                                                                                                                                                                                   | RD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SKD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 3343                                 | S6-5-7                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4959R A 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SUH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        | 1.0501<br>1.1183<br>1.1157<br>1.0503<br>1.1191<br>1.1213<br>1.0535<br>1.1203<br>1.0601<br>1.1221<br>1.1274<br>1.0038<br>1.0726<br>1.0715<br>1.0718<br>1.0737<br>1.0736<br>1.1170<br>1.1167<br>1.5680<br>1.5710<br>1.5752<br>1.5732<br>1.7218<br>1.7223<br>1.7225<br>1.6582<br>1.5423<br>1.7015<br>1.7131<br>1.0841<br>1.7033<br>1.7035<br>1.7045<br>1.7176<br>1.8159<br>1.6523<br>1.5419<br>1.6546<br>1.0904<br>1.6511<br>1.2080<br>1.3343 | 1.0501C35 $1.1183$ Cf35 $1.1183$ Cf35 $1.1157$ $40Mn4$ $1.0503$ C45 $1.1191$ Ck45 $1.1213$ Cf53 $1.0535$ C55 $1.1203$ Ck55 $1.0601$ C60 $1.1221$ CK60 $1.1274$ Ck101 $1.0038$ GS-CK16 $1.0726$ 35S20 $1.0715$ 9SMn28 $1.0715$ 9SMn28 $1.0736$ 9SMn36 $1.0736$ 9SMn36 $1.0736$ 9SMn36 $1.1170$ 28Mn6 $1.1167$ 36Mn5 $1.5680$ 12Ni19 $1.5710$ 36NiCr6 $1.5752$ 14NiCr14 $1.5732$ 14NiCr10 $1.723$ 41CrMo4 $1.7225$ 42CrMo4 $1.7255$ 42CrMo4 $1.6582$ 35CrNiMo6 $1.5423$ 16Mo5 $1.7015$ 15Cr3 $1.7131$ 16MnCr5 $1.0841$ St.52-3 $1.7035$ 41Cr4 $1.7045$ 42Cr4 $1.7045$ 42Cr4 $1.7045$ 42Cr4 $1.7176$ 55Cr3 $1.8159$ 50CrV4 $1.6523$ 21NiCrMo2 $1.904$ 55Si7 $1.6511$ 36CrNiMo4(KB) $1.2080$ X210Cr12 $1.3343$ S6-5-2 | 1.0501C35060A351.1183Cf3511.1183Cf35080M461.0503C45080M461.1191Ck4511.1213Cf53060A521.0535C55070M551.1203Ck55070M551.0601C60080A621.1221CK60080A621.1224CK101060A961.0038CS-CK16030A041.072635S20212M361.07369SMn28230M071.07189SMnPb36-1.07369SMn36240M71.17028Mn6150M281.16736Mn5-1.575214NiCr14655M13;A21.575214NiCr14655M13;A21.575214NiCr101.722341CrMo4708M401.722542CrMo41.658235CrNiMo6817M401.542316Mo51503-245-4201.701515Cr3523M151.713116MnCr5(527M20)1.0841St.52-315M191.703541Cr4530A321.652321NiCrMo2805M201.541920MoCrS4605A321.654640NiCrMo22311-TYPE71.090455Si7250A531.651136CrNiMo4(KB)816M401.2080X210Cr12BD31.3343S6-5-24959BA2 |

AII.1 – Tabela de equivalência entre aços ao carbono mais comuns em construção mecânica

| ABNT   | W. nr.   | DIN         | BS           | JIS   |
|--------|----------|-------------|--------------|-------|
| Brasil | Alemanha | Alemanha    | Grã-Bretanha | Japão |
|        |          |             |              |       |
| H13    | 1.2344   | X40CrMoV51  | BH13         | SKD61 |
| A2     | 1.2363   | X100CrMoV51 | BA2          | SKD12 |
| S1     | 1.2542   | 45WCrV7     | BS1          |       |
| H21    | 1.2581   | X30WCrV9    | BH21         | SKD5  |
| HW3    | 1.4718   | X45CrSi93   | 401S45       | SUH1  |
| M2     | 1.3343   | S6/5/2      | BM2          | SKH51 |
| M7     | 1.3348   | S2/9/2      |              |       |
| M35    | 1.3243   | S6/5/2/5    | BM35         | SKH55 |

AII.2 – Tabela de equivalência entre aços inoxidáveis mais comuns em construção mecânica

| ABNT   | W. nr.   | DIN      | BS           | JIS    |
|--------|----------|----------|--------------|--------|
| Brasil | Alemanha | Alemanha | Grã-Bretanha | Japão  |
| 403    | 1.4000   | X7Cr13   | 403817       | SUS403 |

APÊNDICE III – SELEÇÃO DE MOLAS PARA PRENSA-CHAPAS

## RECOMENDAÇÕES PARA INSTALAÇÃO CORRETA DE MOLAS HELICOIDAIS







## MOLAS HELICOIDAIS COM ARAME REDONDO



All dimensions are in mm

- D<sub>t</sub> = Wire diameter
- D<sub>i</sub> = Inner diameter
- $D_{V} = Outer diameter D_{i} + D_{t} + D_{t}$
- Lo = Unloaded length
- nt = Total number of coils
- $P_0 = Pitch$
- $L_n$  = Loaded length at spring force  $F_n$
- $F_n = Spring \text{ force in Newtons at } L_n$
- c = Rate
- $L_{st} = Solid length = D_t x n_t$
- s = Deflection

| Dt                       | Di                   | Lo                    | nt                          | Po                           | L <sub>n</sub>               | Fn                           | c                                | Cat.<br>no.                  | Dt               | Di                         | Lo                     | n <sub>t</sub>              | Po                                   | Ln                           | Fn                           | c                                | Cat.<br>no.                  |
|--------------------------|----------------------|-----------------------|-----------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|------------------|----------------------------|------------------------|-----------------------------|--------------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------|
| 3,5<br>3,5<br>3,5<br>3,5 | 14<br>14<br>14<br>14 | 50<br>65<br>80<br>100 | 9,2<br>11,7<br>14,2<br>17,6 | 6,0<br>6,0<br>6,0<br>6,0     | 31,9<br>40,9<br>50,0<br>62,0 | 647<br>647<br>647<br>647     | 35,7<br>26,9<br>21,6<br>17,0     | 2717<br>2718<br>2719<br>2720 | 5<br>5<br>5<br>5 | 16<br>16<br>16<br>16       | 55<br>70<br>85<br>100  | 8,0<br>9,9<br>11,9<br>13,8  | 7,70<br>7,70<br>7,70<br>7,70<br>7,70 | 39,0<br>49,2<br>59,3<br>69,6 | 1638<br>1638<br>1638<br>1638 | 102,3<br>78,7<br>63,7<br>53,8    | 2745<br>2746<br>2747<br>2748 |
| 4<br>4<br>4<br>4         | 10<br>10<br>10<br>10 | 40<br>55<br>70<br>85  | 7,7<br>10,3<br>12,9<br>15,5 | 5,80<br>5,80<br>5,80<br>5,80 | 31,8<br>43,4<br>55,0<br>67,5 | 1206<br>1206<br>1206<br>1206 | 147,1<br>104,0<br>80,4<br>65,2   | 2721<br>2722<br>2723<br>2724 | 5<br>5<br>5<br>5 | 18<br>18<br>18<br>18       | 60<br>75<br>90<br>110  | 8,3<br>10,1<br>12,0<br>14,5 | 8,10<br>8,10<br>8,10<br>8,10         | 40,8<br>50,8<br>60,3<br>73,3 | 1422<br>1422<br>1422<br>1422 | 74,0<br>58,6<br>47,9<br>38,7     | 2749<br>2750<br>2751<br>2752 |
| 4<br>4<br>4<br>4         | 12<br>12<br>12<br>12 | 45<br>60<br>75<br>90  | 8,2<br>10,7<br>13,1<br>15,6 | 6,10<br>6,10<br>6,10<br>6,10 | 32,9<br>43,4<br>54,0<br>64,5 | 1108<br>1108<br>1108<br>1108 | 92,0<br>66,7<br>52,8<br>43,5     | 2725<br>2726<br>2727<br>2728 | 6<br>6<br>6      | 16<br>16<br>16<br>16       | 50<br>65<br>80<br>100  | 6,7<br>8,5<br>10,2<br>12,5  | 8,5<br>8,5<br>8,5<br>8,5             | 39,9<br>51,4<br>63,1<br>78,7 | 2314<br>2314<br>2314<br>2314 | 229,1<br>170,1<br>136,9<br>108,6 | 2753<br>2754<br>2755<br>2756 |
| 4<br>4<br>4<br>4         | 14<br>14<br>14<br>14 | 50<br>65<br>80<br>100 | 8,5<br>10,9<br>13,2<br>16,3 | 6,50<br>6,50<br>6,50<br>6,50 | 33,4<br>42,7<br>52,3<br>65,0 | 1020<br>1020<br>1020<br>1020 | 61,4<br>45,7<br>36,8<br>29,1     | 2729<br>2730<br>2731<br>2732 | 6<br>6<br>6      | 18<br>18<br>18<br>18       | 55<br>70<br>85<br>100  | 7,1<br>8,8<br>10,5<br>12,2  | 8,80<br>8,80<br>8,80<br>8,80         | 41,6<br>52,5<br>63,4<br>74,3 | 2206<br>2206<br>2206<br>2206 | 164,6<br>126,1<br>102,1<br>85,8  | 2757<br>2758<br>2759<br>2760 |
| 4<br>4<br>4<br>4         | 16<br>16<br>16<br>16 | 55<br>70<br>85<br>100 | 9,1<br>11,1<br>13,2<br>15,4 | 6,90<br>6,90<br>6,90<br>6,90 | 34,8<br>44,5<br>54,0<br>63,0 | 833<br>833<br>833<br>833     | 41,3<br>32,7<br>26,9<br>22,6     | 2733<br>2734<br>2735<br>2736 | 6<br>6<br>6      | 20<br>20<br>20<br>20       | 60<br>75<br>90<br>110  | 7,4<br>9,0<br>10,6<br>12,8  | 9,20<br>9,20<br>9,20<br>9,20         | 43,1<br>53,5<br>64,0<br>77,7 | 2069<br>2069<br>2069<br>2069 | 122,3<br>96,2<br>79,6<br>64,0    | 2761<br>2762<br>2763<br>2764 |
| 5<br>5<br>5<br>5         | 12<br>12<br>12<br>12 | 45<br>60<br>75<br>90  | 7,2<br>9,4<br>11,5<br>13,6  | 7,0<br>7,0<br>7,0<br>7,0     | 36,5<br>48,1<br>60,0<br>71,9 | 1873<br>1873<br>1873<br>1873 | 220,3<br>157,3<br>124,8<br>103,4 | 2737<br>2738<br>2739<br>2740 | 6<br>6<br>6      | 22<br>22<br>22<br>22<br>22 | 65<br>80<br>100<br>120 | 7,6<br>9,2<br>11,4<br>13,4  | 9,60<br>9,60<br>9,60<br>9,60         | 44,3<br>54,0<br>66,5<br>79,7 | 1961<br>1961<br>1961<br>1961 | 94,9<br>75,1<br>58,5<br>48,6     | 2765<br>2766<br>2767<br>2768 |
| 5<br>5<br>5<br>5         | 14<br>14<br>14<br>14 | 50<br>65<br>80<br>100 | 7,7<br>9,7<br>11,8<br>14,5  | 7,30<br>7,30<br>7,30<br>7,30 | 37,9<br>49,0<br>59,9<br>74,6 | 1745<br>1745<br>1745<br>1745 | 144,2<br>109,0<br>86,8<br>68,6   | 2741<br>2742<br>2743<br>2744 |                  |                            |                        |                             |                                      |                              |                              |                                  |                              |

## MOLAS HELICOIDAIS COM ARAME SEÇÃO RETANGULAR



All dimensions are in mm

- A = Hole diameter
- B = Shaft diameter
- $L_0 = Unloaded length$
- c = Rate

2

- $s_1 = Spring deflection at F_1$
- $F_n =$ Spring force in Newtons at  $s_1$
- $s_2 = Spring deflection at F_2$
- $F_n =$ Spring force in Newtons at  $s_2$
- $s_3 = Spring deflection at F_3$
- $F_n$  = Spring force in Newtons at  $s_3$
- s<sub>st</sub> = Spring deflection to solid length



1. Low load

2. Medium load

3. High load

4. Very high load

5. Ultrahigh load See separate table on

| Force<br>class | A  | в | ha       | c    | F1  | 51   | Fa       | 51   | Fa  | \$2   | Eat  | Set   |
|----------------|----|---|----------|------|-----|------|----------|------|-----|-------|------|-------|
|                |    |   | -0       |      |     | - 1  | - 2      | -2   | - 3 | -3    | - st | -st   |
| 1              | 10 | 5 | 25       | 10   | 63  | 6,3  | /5       | 7,5  | 100 | 10    | 135  | 13,5  |
| 1              | 10 | 5 | 32       | 6,0  | 65  | 0    | 0Z<br>70 | 9,0  | 109 | 12,0  | 149  | 17,5  |
| 1              | 10 | 5 | 30<br>44 | 6    | 66  | 9,5  | 70       | 13.2 | 105 | 176   | 141  | 20,0  |
| 1              | 10 | 5 | 51       | 5    | 64  | 128  | 75       | 15.2 | 102 | 20.4  | 145  | 23,9  |
| 1              | 10 | 5 | 64       | 4.3  | 69  | 16.0 | 83       | 19,2 | 110 | 25.6  | 155  | 36.1  |
| 1              | 10 | 5 | 76       | 3.2  | 61  | 19.0 | 73       | 22.8 | 97  | 30.4  | 138  | 43.2  |
| 1              | 10 | 5 | 305      | 1,1  | 84  | 76,3 | 101      | 91,5 | 134 | 122   | 197  | 178,7 |
| 2              | 10 | 5 | 25       | 16   | 101 | 6,3  | 120      | 7,5  | 150 | 9,4   | 163  | 10,2  |
| 2              | 10 | 5 | 32       | 13   | 104 | 8,   | 125      | 9,6  | 156 | 12    | 185  | 14,2  |
| 2              | 10 | 5 | 38       | 11,9 | 113 | 9,5  | 136      | 11,4 | 170 | 14,3  | 200  | 16,8  |
| 2              | 10 | 5 | 44       | 10,3 | 113 | 11   | 136      | 13,2 | 170 | 16,5  | 200  | 19,4  |
| 2              | 10 | 5 | 51       | 8,9  | 114 | 12,8 | 136      | 15,3 | 170 | 19,1  | 208  | 23,4  |
| 2              | 10 | 5 | 64       | 7,5  | 120 | 16   | 144      | 19,2 | 180 | 24    | 212  | 28,2  |
| 2              | 10 | 5 | 76       | 5,3  | 101 | 19   | 121      | 22,8 | 151 | 28,5  | 181  | 34,2  |
| 2              | 10 | 5 | 305      | 1,6  | 122 | 76,3 | 146      | 91,5 | 183 | 114,4 | 214  | 133,8 |
| 3              | 10 | 5 | 25       | 22,1 | 111 | 5,0  | 139      | 6,3  | 166 | 7,5   | 203  | 9,2   |
| 3              | 10 | 5 | 32       | 17,5 | 112 | 6,4  | 140      | 8    | 168 | 9,6   | 212  | 12,1  |
| 3              | 10 | 5 | 38       | 17,1 | 130 | 7,6  | 162      | 9,5  | 195 | 11,4  | 226  | 13,2  |
| 3              | 10 | 5 | 44       | 15   | 132 | 8,8  | 165      | 11   | 198 | 13,2  | 227  | 15,1  |
| 3              | 10 | 5 | 51       | 12,8 | 131 | 10,2 | 164      | 12,8 | 196 | 15,3  | 250  | 19,5  |
| 3              | 10 | 5 | 64       | 10,7 | 137 | 12,8 | 171      | 16   | 205 | 19,2  | 233  | 21,8  |
| 3              | 10 | 5 | 76       | 7,5  | 114 | 15,2 | 143      | 19   | 1/1 | 22,8  | 209  | 27,9  |
| 3              | 10 | Э | 305      | 2,1  | 128 | 01   | 100      | /0,3 | 192 | 91,5  | 207  | 127,2 |
| 4              | 10 | 5 | 25       | 36,8 | 158 | 4,3  | 184      | 5    | 232 | 6,3   | 283  | 7,7   |
| 4              | 10 | 5 | 32       | 27,9 | 151 | 5,4  | 179      | 6,4  | 223 | 8     | 296  | 10,6  |
| 4              | 10 | 5 | 38       | 23,7 | 154 | 6,5  | 180      | 7,6  | 225 | 9,5   | 299  | 12,6  |
| 4              | 10 | 5 | 44<br>51 | 19,2 | 144 | 7,5  | 169      | 8,8  | 211 | 110   | 265  | 13,8  |
| 4              | 10 | 5 | 51       | 10,5 | 144 | 6,/  | 160      | 10,2 | 211 | 12,8  | 207  | 10,2  |
| 4              | 10 | 5 | 76       | 10.0 | 144 | 12.0 | 166      | 12,0 | 211 | 10    | 209  | 20,4  |
| 4              | 10 | 5 | 305      | 26   | 135 | 51.9 | 150      | 61   | 108 | 763   | 275  | 110.8 |
| 4              | 10 | 5 | 305      | 2,0  | 155 | 51,9 | 139      | 01   | 190 | 70,5  | 200  | 110,0 |

| Force | ,    |     |              |              |                |                |                |                |                |                 |                 |                 |
|-------|------|-----|--------------|--------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| class | Α    | В   | Lo           | c            | F <sub>1</sub> | <sup>s</sup> 1 | F <sub>2</sub> | <sup>s</sup> 2 | F <sub>3</sub> | <sup>\$</sup> 3 | F <sub>st</sub> | <sup>s</sup> st |
| 1     | 12,5 | 6,3 | 25           | 17,9         | 113            | 6,3            | 134            | 7,5            | 179            | 10              | 236             | 13,2            |
| 1     | 12,5 | 6,3 | 32           | 16,4         | 131            | 8,0            | 157            | 9,6            | 210            | 12,8            | 295             | 18              |
| 1     | 12,5 | 6,3 | 38           | 13,6         | 129            | 9,5            | 155            | 11,4           | 207            | 15,2            | 286             | 21              |
| 1     | 12,5 | 6,3 | 44           | 12,1         | 133            | 11             | 160            | 13,2           | 213            | 17,6            | 290             | 24              |
| 1     | 12,5 | 6,3 | 51           | 11,4         | 146            | 12,8           | 174            | 15,3           | 233            | 20,4            | 327             | 28,7            |
| 1     | 12,5 | 6,3 | 64           | 9,3          | 149            | 16             | 179            | 19,2           | 238            | 25,6            | 333             | 35,8            |
|       | 12,5 | 6,3 | /6           | /,1          | 135            | 19             | 162            | 22,8           | 216            | 30,4            | 303             | 42,/            |
| 1     | 12,5 | 6,3 | 205          | 5,4          | 120            | 22,3<br>76.2   | 144            | 20,7           | 192            | 35,0            | 272             | 50,4<br>172     |
| 1     | 12,5 | 0,5 | 305          | 1,4          | 107            | 70,5           | 120            | 91,5           | 171            | 122,0           | 241             | 172             |
| 2     | 12,5 | 6,3 | 25           | 30           | 189            | 6,3            | 225            | 7,5            | 282            | 9,4             | 357             | 11,9            |
| 2     | 12,5 | 63  | 32           | 24,8         | 203            | 05             | 238            | 9,0<br>11.4    | 298            | 1/2             | 402             | 10,2            |
| 2     | 12,5 | 63  | - 50<br>- 44 | 18.5         | 203            | 9,5<br>11      | 244            | 13.2           | 305            | 16.5            | 304             | 21.3            |
| 2     | 12,5 | 6.3 | 51           | 15,5         | 198            | 12.8           | 237            | 15,2           | 296            | 19,1            | 397             | 25.6            |
| 2     | 12,5 | 6,3 | 64           | 12,1         | 194            | 16             | 232            | 19,2           | 290            | 24              | 392             | 32,4            |
| 2     | 12,5 | 6,3 | 76           | 10,2         | 194            | 19             | 233            | 22,8           | 291            | 28,5            | 398             | 39              |
| 2     | 12,5 | 6,3 | 89           | 8,4          | 187            | 22,3           | 224            | 26,7           | 281            | 33,4            | 386             | 45,9            |
| 2     | 12,5 | 6,3 | 305          | 2,1          | 160            | 76,3           | 192            | 91,5           | 240            | 114,4           | 320             | 152,5           |
| 3     | 12,5 | 6,3 | 25           | 42,1         | 211            | 5,0            | 265            | 6,3            | 316            | 7,5             | 413             | 9,8             |
| 3     | 12,5 | 6,3 | 32           | 33,2         | 212            | 6,4            | 266            | 8              | 319            | 9,6             | 452             | 13,6            |
| 3     | 12,5 | 6,3 | 38           | 29,3         | 223            | 7,6            | 278            | 9,5            | 334            | 11,4            | 428             | 14,6            |
| 3     | 12,5 | 6,3 | 44           | 24,6         | 216            | 8,8            | 271            | 11             | 325            | 13,2            | 445             | 18,1            |
| 3     | 12,5 | 6,3 | 51           | 19,6         | 200            | 10,2           | 251            | 12,8           | 300            | 15,3            | 437             | 22,3            |
| 3     | 12,5 | 6,3 | 64           | 15,0         | 192            | 12,8           | 240            | 16             | 288            | 19,2            | 410             | 27,3            |
| 3     | 12,5 | 6,3 | 76           | 13,2         | 201            | 15,2           | 251            | 19             | 301            | 22,8            | 437             | 33,1            |
| 3     | 12,5 | 6,3 | 205          | 11,4         | 203            | 17,8           | 254            | 22,3           | 304            | 26,7            | 443             | 38,9            |
| 5     | 12,5 | 0,3 | 305          | 2,8          | 171            | 01             | 214            | /0,3           | 250            | 91,5            | 391             | 139,7           |
| 4     | 12,5 | 6,3 | 25           | 58,5         | 252            | 4,3            | 293            | 5              | 369            | 6,3             | 474             | 8,1             |
| 4     | 12,5 | 6,3 | 32           | 43,9         | 237            | 5,4            | 281            | 6,4            | 351            | 8               | 435             | 9,9             |
| 4     | 12,5 | 6,3 | 38           | 30           | 234            | 0,5            | 2/4            | /,0            | 342            | 9,5             | 404             | 12,9            |
| 4     | 12,5 | 63  | 44<br>51     | 20,2<br>26.2 | 227            | 2,7<br>8,7     | 207            | 0,0<br>10.2    | 335            | 17.8            | 427             | 14,1            |
| 4     | 12,5 | 63  | 64           | 20,2         | 220            | 10.9           | 207            | 12.8           | 339            | 12,0            | 430             | 21              |
| 4     | 12.5 | 6.3 | 76           | 17.1         | 221            | 12.9           | 260            | 15.2           | 325            | 19              | 451             | 26.4            |
| 4     | 12.5 | 6.3 | 89           | 14.5         | 219            | 15.1           | 258            | 17.8           | 323            | 22.3            | 457             | 31.5            |
| 4     | 12,5 | 6,3 | 305          | 4,3          | 223            | 51,9           | 262            | 61             | 328            | 76,3            | 479             | 111,3           |

| Force |    | _      |     |            | _   |                | _          |                | _   |              | _    |                 |
|-------|----|--------|-----|------------|-----|----------------|------------|----------------|-----|--------------|------|-----------------|
| class | A  | В      | Lo  | c          | F1  | <sup>s</sup> 1 | F2         | <sup>s</sup> 2 | F3  | \$3          | Fst  | <sup>s</sup> st |
| 1     | 16 | 8      | 25  | 23,4       | 147 | 6,3            | 176        | 7,5            | 234 | 10,0         | 295  | 12,6            |
| 1     | 16 | 8      | 32  | 22,9       | 183 | 8,0            | 220        | 9,6            | 293 | 12,8         | 376  | 16,4            |
| 1     | 16 | 8      | 38  | 19,3       | 183 | 9,5            | 220        | 11,4           | 293 | 15,2         | 380  | 19,7            |
| 1     | 16 | 8      | 44  | 17,1       | 188 | 11,0           | 226        | 13,2           | 301 | 17,6         | 385  | 22,5            |
| 1     | 16 | 8      | 51  | 15,/       | 201 | 12,8           | 240        | 15,3           | 320 | 20,4         | 413  | 26,3            |
| 1     | 10 | 8      | 04  | 10,7       | 1/1 | 16,0           | 205        | 19,2           | 2/4 | 25,6         | 350  | 33,3            |
| 1     | 10 | 8      | 70  | 10         | 190 | 19,0           | 228        | 22,8           | 304 | 30,4         | 402  | 40,2            |
| 1     | 16 | 0      | 102 | 0,0<br>7.9 | 192 | 22,5           | 230        | 20,7           | 210 | 33,0<br>40.9 | 409  | 47,0<br>55 A    |
| 1     | 16 | 0<br>8 | 305 | 7,0        | 199 | 25,5<br>76 3   | 239        | 01 5           | 305 | 122.0        | 452  | 165.3           |
| 2     | 16 | 8      | 25  | 10.1       | 211 | 63             | 371        | 75             | 464 | 0.4          | 510  | 105,5           |
| 2     | 16 | 8      | 32  | 37.1       | 297 | 8              | 356        | 9.6            | 404 | 9,4<br>12    | 490  | 13.2            |
| 2     | 16 | 8      | 38  | 33.9       | 322 | 9.5            | 386        | 11.4           | 485 | 14.3         | 583  | 17.2            |
| 2     | 16 | 8      | 44  | 30         | 330 | 11             | 396        | 13,2           | 495 | 16,5         | 582  | 19,4            |
| 2     | 16 | 8      | 51  | 26,4       | 338 | 12,8           | 404        | 15,3           | 504 | 19,1         | 639  | 24,2            |
| 2     | 16 | 8      | 64  | 20,5       | 328 | 16             | 394        | 19,2           | 492 | 24           | 599  | 29,2            |
| 2     | 16 | 8      | 76  | 17,8       | 338 | 19             | 406        | 22,8           | 507 | 28,5         | 646  | 36,3            |
| 2     | 16 | 8      | 89  | 15,2       | 339 | 22,3           | 406        | 26,7           | 508 | 33,4         | 634  | 41,7            |
| 2     | 16 | 8      | 102 | 13,5       | 344 | 25,5           | 413        | 30,6           | 517 | 38,3         | 660  | 48,9            |
| 2     | 16 | 8      | 305 | 4,8        | 366 | 76,3           | 439        | 91,5           | 549 | 114,4        | 680  | 141,6           |
| 3     | 16 | 8      | 25  | 75,7       | 379 | 5,             | 477        | 6,3            | 568 | 7,5          | 636  | 8,4             |
| 3     | 16 | 8      | 32  | 52,8       | 338 | 6,4            | 422        | 8              | 507 | 9,6          | 554  | 10,5            |
| 3     | 16 | 8      | 38  | 48,5       | 369 | 7,6            | 461        | 9,5            | 553 | 11,4         | 660  | 13,6            |
| 3     | 16 | 8      | 44  | 42,8       | 377 | 8,8            | 471        | 11             | 565 | 13,2         | 681  | 15,9            |
| 3     | 16 | 8      | 51  | 37,1       | 378 | 10,2           | 475        | 12,8           | 568 | 15,3         | 701  | 18,9            |
| 3     | 16 | 8      | 64  | 30,3       | 388 | 12,8           | 485        | 16             | 582 | 19,2         | 754  | 24,9            |
| 3     | 16 | 8      | /6  | 25,/       | 391 | 15,2           | 488        | 19             | 586 | 22,8         | /50  | 29,2            |
| 3     | 10 | 8      | 102 | 21,/       | 380 | 17,8           | 484        | 22,3           | 5/9 | 20,7         | 749  | 34,5            |
| 3     | 16 | 8      | 305 | 7.1        | 433 | 20,4<br>61     | 492<br>542 | 25,5<br>76,3   | 650 | 91.5         | 736  | 103.6           |
| 4     | 16 | 8      | 25  | 118        | 507 | 43             | 590        | 5              | 743 | 63           | 1003 | 85              |
| 4     | 16 | 8      | 32  | 89         | 481 | 5.4            | 570        | 6.4            | 712 | 8            | 979  | 11              |
| 4     | 16 | 8      | 38  | 72,1       | 469 | 6,5            | 548        | 7,6            | 685 | 9,5          | 952  | 13,2            |
| 4     | 16 | 8      | 44  | 60,9       | 457 | 7,5            | 536        | 8,8            | 670 | 11           | 895  | 14,7            |
| 4     | 16 | 8      | 51  | 52,3       | 455 | 8,7            | 533        | 10,2           | 669 | 12,8         | 926  | 17,7            |
| 4     | 16 | 8      | 64  | 41,2       | 449 | 10,9           | 527        | 12,8           | 659 | 16           | 902  | 21,9            |
| 4     | 16 | 8      | 76  | 34,1       | 440 | 12,9           | 518        | 15,2           | 648 | 19           | 948  | 27,8            |
| 4     | 16 | 8      | 89  | 29,5       | 445 | 15,1           | 525        | 17,8           | 658 | 22,3         | 920  | 31,2            |
| 4     | 16 | 8      | 102 | 25,6       | 443 | 17,3           | 522        | 20,4           | 653 | 25,5         | 970  | 37,9            |
| 4     | 16 | 8      | 305 | 8,4        | 436 | 51,9           | 512        | 61             | 641 | 76,3         | 953  | 113,5           |

| Force |    | ь  |          |            |            |                | -          |                 | -          |              |            |                 |
|-------|----|----|----------|------------|------------|----------------|------------|-----------------|------------|--------------|------------|-----------------|
| ciass | A  | D  | L0       | ¢          | <b>F</b> 1 | <sup>s</sup> 1 | <b>F</b> 2 | <sup>\$</sup> 2 | <b>r</b> 3 | \$3          | rst        | <sup>s</sup> st |
| 1     | 20 | 10 | 25       | 55,8       | 352        | 6,3            | 419        | 7,5             | 558        | 10           | 675        | 12,1            |
| 1     | 20 | 10 | 32       | 45         | 360        | 8              | 432        | 9,6             | 576        | 12,8         | 689        | 15,3            |
|       | 20 | 10 | 38       | 33,3       | 310        | 9,5            | 380        | 11,4            | 500        | 15,2         | 629<br>645 | 18,9            |
|       | 20 | 10 | 44<br>51 | 30<br>24 5 | 330        | 12.9           | 390        | 15,2            | 528        | 20.4         | 613        | 21,5            |
|       | 20 | 10 | 64       | 24,5       | 314        | 12,0           | 384        | 19,5            | 510        | 20,4         | 622        | 25              |
| 1     | 20 | 10 | 76       | 16         | 304        | 19             | 365        | 22.8            | 486        | 30.4         | 597        | 373             |
| i     | 20 | 10 | 89       | 14         | 312        | 22.3           | 374        | 26.7            | 498        | 35.6         | 623        | 44.5            |
| 1     | 20 | 10 | 102      | 12         | 306        | 25.5           | 367        | 30.6            | 490        | 40.8         | 613        | 51.1            |
| 1     | 20 | 10 | 115      | 10,9       | 314        | 28,8           | 376        | 34,5            | 501        | 46           | 634        | 58,2            |
| 1     | 20 | 10 | 127      | 9,5        | 302        | 31,8           | 362        | 38,1            | 483        | 50,8         | 617        | 64,9            |
| 1     | 20 | 10 | 140      | 8,4        | 294        | 35             | 353        | 42              | 470        | 56           | 601        | 71,5            |
| 1     | 20 | 10 | 152      | 7,5        | 285        | 38             | 342        | 45,6            | 456        | 60,8         | 591        | 78,8            |
| 1     | 20 | 10 | 305      | 4          | 305        | 76,3           | 366        | 91,5            | 488        | 122          | 630        | 157,4           |
| 2     | 20 | 10 | 25       | 98         | 617        | 6,3            | 735        | 7,5             | 921        | 9,4          | 1029       | 10,5            |
| 2     | 20 | 10 | 32       | 72,6       | 581        | 8,             | 697        | 9,6             | 871        | 12           | 1009       | 13,9            |
| 2     | 20 | 10 | 38       | 56         | 532        | 9,5            | 638        | 11,4            | 801        | 14,3         | 930        | 16,6            |
| 2     | 20 | 10 | 44       | 47,5       | 523        | 11             | 627        | 13,2            | 784        | 16,5         | 893        | 18,8            |
| 2     | 20 | 10 | 51       | 41,7       | 534        | 12,8           | 638        | 15,3            | 796        | 19,1         | 963        | 23,1            |
| 2     | 20 | 10 | 64       | 32,3       | 517        | 16             | 620        | 19,2            | 775        | 24           | 888        | 27,5            |
| 2     | 20 | 10 | 76       | 25,1       | 477        | 19             | 572        | 22,8            | 715        | 28,5         | 848        | 33,8            |
| 2     | 20 | 10 | 89       | 22         | 491        | 22,3           | 587        | 26,7            | 735        | 33,4         | 873        | 39,7            |
| 2     | 20 | 10 | 102      | 19,8       | 505        | 25,5           | 606        | 30,6            | 758        | 38,3         | 937        | 47,3            |
| 2     | 20 | 10 | 115      | 18,1       | 521        | 28,8           | 624        | 34,5            | 780        | 43,1         | 950        | 52,5            |
| 2     | 20 | 10 | 127      | 16,6       | 528        | 31,8           | 632        | 38,1            | 790        | 47,6         | 945        | 56,9            |
| 2     | 20 | 10 | 140      | 15,1       | 529        | 35             | 634        | 42              | 793        | 52,5         | 938        | 62,1            |
| 2     | 20 | 10 | 152      | 13,15      | 500        | 38             | 600        | 45,6            | 750        | 57           | 889        | 67,6            |
| 2     | 20 | 10 | 305      | 6,1        | 465        | 76,3           | 558        | 91,5            | 698        | 114,4        | 875        | 143,4           |
| 3     | 20 | 10 | 25       | 216        | 1080       | 5              | 1361       | 6,3             | 1620       | 7,5          | 1793       | 8,3             |
| 3     | 20 | 10 | 32       | 168        | 1075       | 6,4            | 1344       | 8               | 1613       | 9,6          | 1831       | 10,9            |
| 3     | 20 | 10 | 38       | 129        | 980        | 7,6            | 1226       | 9,5             | 1471       | 11,4         | 1613       | 12,5            |
| 3     | 20 | 10 | 44       | 112        | 986        | 8,8            | 1232       | 11              | 1478       | 13,2         | 1680       | 15              |
| 3     | 20 | 10 | 51       | 94         | 959        | 10,2           | 1203       | 12,8            | 1438       | 15,3         | 1654       | 17,6            |
| 3     | 20 | 10 | 64       | 72,1       | 923        | 12,8           | 1154       | 16              | 1384       | 19,2         | 1629       | 22,6            |
| 3     | 20 | 10 | 76       | 59,7       | 907        | 15,2           | 1134       | 19              | 1361       | 22,8         | 1642       | 27,5            |
| 3     | 20 | 10 | 89       | 50,5       | 899        | 17,8           | 1126       | 22,3            | 1348       | 26,/         | 1601       | 31,/            |
| 3     | 20 | 10 | 102      | 44,2       | 902        | 20,4           | 1127       | 25,5            | 1353       | 30,6         | 1658       | 37,5            |
| 3     | 20 | 10 | 115      | 38,4       | 883        | 23             | 1004       | 28,8            | 1325       | 34,5         | 1030       | 42,0            |
| 3     | 20 | 10 | 127      | 34,1       | 800        | 25,4           | 1084       | 31,8            | 1299       | 38,1         | 1552       | 45,5            |
| 2     | 20 | 10 | 140      | 202        | 957        | 20             | 1005       | 20              | 1302       | 42           | 1555       | 50,1            |
| 3     | 20 | 10 | 305      | 15         | 915        | 61             | 1145       | 76,3            | 1373       | 43,0<br>91,5 | 1712       | 114,1           |
| 4     | 20 | 10 | 25       | 293        | 1260       | 4,3            | 1465       | 5               | 1846       | 6,3          | 2022       | 6,9             |
| 4     | 20 | 10 | 32       | 224        | 1210       | 5,4            | 1434       | 6,4             | 1792       | 8            | 2106       | 9,4             |
| 4     | 20 | 10 | 38       | 177        | 1151       | 6,5            | 1345       | 7,6             | 1682       | 9,5          | 2124       | 12              |
| 4     | 20 | 10 | 44       | 149        | 1118       | 7,5            | 1311       | 8,8             | 1639       | 11           | 2012       | 13,5            |
| 4     | 20 | 10 | 51       | 128        | 1114       | 8,7            | 1306       | 10,2            | 1638       | 12,8         | 2074       | 16,2            |
| 4     | 20 | 10 | 64       | 99         | 10/9       | 10,9           | 1267       | 12,8            | 1584       | 16           | 2099       | 21,2            |
| 4     | 20 | 10 | /6       | 81,/       | 1054       | 12,9           | 1242       | 15,2            | 1552       | 19           | 2018       | 24,/            |
| 4     | 20 | 10 | 102      | 69,5       | 1049       | 15,1           | 123/       | 17,8            | 1550       | 22,3         | 2002       | 28,8            |
| 4     | 20 | 10 | 102      | 60,6<br>E2 | 1048       | 17,3           | 1230       | 20,4            | 1545       | 25,5         | 2109       | 34,8            |
| 4     | 20 | 10 | 115      | 475        | 1039       | 21.6           | 1219       | 25              | 1520       | 20,0         | 2007       | 12              |
| 4     | 20 | 10 | 140      | 47,5       | 1020       | 21,0           | 1207       | 25,4            | 1505       | 31,8         | 1049       | 45              |
| 4     | 20 | 10 | 140      | 30         | 1025       | 25,0           | 1204       | 30.4            | 1/182      | 32           | 1940       | 45,5            |
| 4     | 20 | 10 | 305      | 21.2       | 1100       | 51.9           | 1293       | 61              | 1618       | 763          | 2194       | 103.5           |
| -     | 20 | 10 | 505      | 21,2       | 1100       | 5,10           | 1255       | 01              | 1010       | 10,5         | 21.74      | 05,5            |

| Force | •  | в    | i.,      |       | F.   | 54   | Fa   | 53        | Fa   |       | E.   | ۰.    |
|-------|----|------|----------|-------|------|------|------|-----------|------|-------|------|-------|
| 1     | 75 | 12.5 | -0<br>25 | 100   | 630  | 63   | 750  | 75        | 1000 | 10    | 1190 | 11.9  |
| 1     | 25 | 12,5 | 32       | 80.3  | 642  | 8    | 771  | 9.6       | 1028 | 12.8  | 1285 | 16    |
| 1     | 25 | 12,5 | 38       | 62    | 589  | 9,5  | 707  | 11,4      | 942  | 15,2  | 1135 | 18,3  |
| 1     | 25 | 12,5 | 44       | 52,9  | 582  | 11   | 698  | 13,2      | 931  | 17,6  | 1132 | 21,4  |
| 1     | 25 | 12,5 | 51       | 44    | 563  | 12,8 | 673  | 15,3      | 898  | 20,4  | 1096 | 24,9  |
| 1     | 25 | 12,5 | 64       | 35,2  | 563  | 16   | 676  | 19,2      | 901  | 25,6  | 1105 | 31,4  |
| 1     | 25 | 12,5 | 76       | 28    | 532  | 19   | 638  | 22,8      | 851  | 30,4  | 1050 | 37,5  |
| 1     | 25 | 12,5 | 107      | 24    | 535  | 22,3 | 646  | 20,/      | 854  | 35,0  | 1044 | 43,5  |
|       | 25 | 12,5 | 115      | 187   | 530  | 23,5 | 645  | 34.5      | 860  | 40,0  | 1086 | 58.1  |
| i i   | 25 | 12,5 | 127      | 16.7  | 531  | 31.8 | 636  | 38.1      | 848  | 50.8  | 1070 | 64.1  |
| 1     | 25 | 12,5 | 140      | 15,3  | 536  | 35   | 643  | 42,0      | 857  | 56,0  | 1077 | 70,4  |
| 1     | 25 | 12,5 | 152      | 14    | 532  | 38   | 638  | 45,6      | 851  | 60,8  | 1079 | 77,1  |
| 1     | 25 | 12,5 | 178      | 12,5  | 556  | 44,5 | 668  | 53,4      | 890  | 71,2  | 1164 | 93,1  |
| 1     | 25 | 12,5 | 203      | 10,4  | 528  | 50,8 | 633  | 60,9      | 844  | 81,2  | 1068 | 102,7 |
| 1     | 25 | 12,5 | 305      | 7     | 534  | 76,3 | 641  | 91,5      | 854  | 122,0 | 1091 | 155,9 |
| 2     | 25 | 12,5 | 37       | 147   | 920  | 8    | 1133 | 7,5<br>96 | 1416 | 9,4   | 1617 | 13,2  |
| 2     | 25 | 12,5 | 38       | 93    | 884  | 95   | 1060 | 114       | 1330 | 143   | 1460 | 15.7  |
| 2     | 25 | 12,5 | 44       | 80,8  | 889  | 11   | 1067 | 13,2      | 1333 | 16,5  | 1471 | 18,2  |
| 2     | 25 | 12,5 | 51       | 68,6  | 878  | 12,8 | 1050 | 15,3      | 1310 | 19,1  | 1489 | 21,7  |
| 2     | 25 | 12,5 | 64       | 53    | 848  | 16   | 1018 | 19,2      | 1272 | 24    | 1378 | 26    |
| 2     | 25 | 12,5 | 76       | 43,2  | 821  | 19   | 985  | 22,8      | 1231 | 28,5  | 1395 | 32,3  |
| 2     | 25 | 12,5 | 89       | 38,2  | 852  | 22,3 | 1020 | 26,7      | 1276 | 33,4  | 1452 | 38    |
| 2     | 25 | 12,5 | 102      | 33    | 842  | 25,5 | 1010 | 30,0      | 1204 | 38,3  | 1419 | 43    |
| 2     | 25 | 12,5 | 127      | 25.9  | 824  | 31.8 | 900  | 38.1      | 1233 | 45,1  | 1391 | 53.7  |
| 2     | 25 | 12,5 | 140      | 23,2  | 812  | 35   | 974  | 42        | 1218 | 52,5  | 1378 | 59,4  |
| 2     | 25 | 12,5 | 152      | 20,8  | 790  | 38   | 948  | 45,6      | 1186 | 57    | 1327 | 63,8  |
| 2     | 25 | 12,5 | 178      | 17,8  | 792  | 44,5 | 951  | 53,4      | 1189 | 66,8  | 1363 | 76,6  |
| 2     | 25 | 12,5 | 203      | 15,8  | 803  | 50,8 | 962  | 60,9      | 1202 | 76,1  | 1397 | 88,4  |
| 2     | 25 | 12,5 | 305      | 10,2  | 778  | 76,3 | 933  | 91,5      | 1167 | 114,4 | 1378 | 135,1 |
| 3     | 25 | 12,5 | 25       | 304   | 1456 | 4    | 1929 | 5,3       | 2/30 | 7,5   | 3094 | 8,5   |
| 3     | 25 | 12,5 | 32       | 297   | 1664 | 76   | 2370 | 95        | 2621 | 9,0   | 2759 | 126   |
| 3     | 25 | 12,5 | 44       | 187   | 1646 | 8,8  | 2057 | 11        | 2468 | 13,2  | 2768 | 14,8  |
| 3     | 25 | 12,5 | 51       | 156   | 1591 | 10,2 | 1997 | 12,8      | 2387 | 15,3  | 2792 | 17,9  |
| 3     | 25 | 12,5 | 64       | 123   | 1574 | 12,8 | 1968 | 16        | 2362 | 19,2  | 2841 | 23,1  |
| 3     | 25 | 12,5 | 76       | 99    | 1505 | 15,2 | 1881 | 19        | 2257 | 22,8  | 2604 | 26,3  |
| 3     | 25 | 12,5 | 89       | 84    | 1495 | 17,8 | 1873 | 22,3      | 2243 | 26,7  | 2562 | 30,5  |
| 3     | 25 | 12,5 | 102      | 73    | 1489 | 20,4 | 1862 | 25,5      | 2234 | 30,6  | 2723 | 37,3  |
| 2     | 25 | 12,5 | 115      | 57.7  | 1495 | 25,  | 1835 | 20,0      | 2243 | 38.1  | 2724 | 41,9  |
| 3     | 25 | 12,5 | 140      | 52.7  | 1476 | 28.  | 1845 | 35        | 2213 | 42    | 2598 | 49.3  |
| 3     | 25 | 12,5 | 152      | 47,8  | 1453 | 30,4 | 1816 | 38        | 2180 | 45,6  | 2662 | 55,7  |
| 3     | 25 | 12,5 | 178      | 41    | 1460 | 35,6 | 1825 | 44,5      | 2189 | 53,4  | 2669 | 65,1  |
| 3     | 25 | 12,5 | 203      | 35,8  | 1453 | 40,6 | 1819 | 50,8      | 2180 | 60,9  | 2667 | 74,5  |
| 3     | 25 | 12,5 | 305      | 22,9  | 1397 | 61   | 1747 | 76,3      | 2095 | 91,5  | 2524 | 110,2 |
| 4     | 25 | 12,5 | 32       | 381   | 1943 | 5,1  | 2553 | 6,7       | 3162 | 8,3   | 3505 | 9,2   |
| 4     | 25 | 12,5 | 44       | 244   | 1830 | 7.5  | 2030 | 88        | 2684 | 11    | 3514 | 14.4  |
| 4     | 25 | 12,5 | 51       | 207,5 | 1805 | 8,7  | 2117 | 10,2      | 2656 | 12,8  | 3611 | 17,4  |
| 4     | 25 | 12,5 | 64       | 161   | 1755 | 10,9 | 2061 | 12,8      | 2576 | 16    | 3445 | 21,4  |
| 4     | 25 | 12,5 | 76       | 130,8 | 1687 | 12,9 | 1988 | 15,2      | 2485 | 19    | 3519 | 26,9  |
| 4     | 25 | 12,5 | 89       | 110,5 | 1669 | 15,1 | 1967 | 17,8      | 2464 | 22,3  | 3414 | 30,9  |
| 4     | 25 | 12,5 | 102      | 96,3  | 1666 | 17,3 | 1965 | 20,4      | 2456 | 25,5  | 3534 | 36,7  |
| 4     | 25 | 12,5 | 115      | 85,7  | 1649 | 19,6 | 1971 | 23        | 2468 | 28,8  | 3454 | 40,3  |
| 4     | 25 | 12,5 | 12/      | 63.5  | 1638 | 21,0 | 1938 | 25,4      | 2420 | 38    | 3397 | 43,1  |
| 4     | 25 | 12,5 | 178      | 53.9  | 1633 | 30.3 | 1919 | 35.6      | 2399 | 44.5  | 3444 | 63.9  |
| 4     | 25 | 12,5 | 203      | 47    | 1622 | 34,5 | 1908 | 40,6      | 2388 | 50,8  | 3299 | 70,2  |
| 4     | 25 | 12,5 | 305      | 30,9  | 1604 | 51,9 | 1885 | 61        | 2358 | 76,3  | 3402 | 110,1 |

| Force | A  | в  | L.       | c     | F1   | 51   | Fa   | 52   | Fa   | 52    | F    | 5     |
|-------|----|----|----------|-------|------|------|------|------|------|-------|------|-------|
| 1     | 32 | 16 | 38       | 94    | 893  | 95   | 1072 | 11.4 | 1479 | 15.2  | 1720 | 183   |
| 1     | 32 | 16 | 44       | 79,5  | 875  | 11   | 1049 | 13,2 | 1399 | 17,6  | 1709 | 21,5  |
| 1     | 32 | 16 | 51       | 67    | 858  | 12,8 | 1025 | 15,3 | 1367 | 20,4  | 1709 | 25,5  |
| 1     | 32 | 16 | 64       | 53    | 848  | 16   | 1018 | 19,2 | 1357 | 25,6  | 1691 | 31,9  |
| 1     | 32 | 16 | 76       | 44    | 836  | 19   | 1003 | 22,8 | 1338 | 30,4  | 1698 | 38,6  |
| 1     | 32 | 16 | 89       | 37,2  | 830  | 22,3 | 993  | 26,7 | 1324 | 35,6  | 1730 | 46,5  |
| 1     | 32 | 16 | 102      | 32    | 816  | 25,5 | 979  | 30,6 | 1306 | 40,8  | 1702 | 53,2  |
|       | 32 | 10 | 115      | 29    | 835  | 28,8 | 053  | 34,5 | 1334 | 40    | 1/40 | 66.7  |
| 1     | 32 | 16 | 140      | 23    | 805  | 35   | 966  | 47.0 | 1270 | 56    | 1651 | 71.8  |
| 1     | 32 | 16 | 152      | 21.5  | 817  | 38   | 980  | 45.6 | 1307 | 60.8  | 1688 | 78.5  |
| 1     | 32 | 16 | 178      | 18,2  | 810  | 44,5 | 972  | 53,4 | 1296 | 71,2  | 1718 | 94,4  |
| 1     | 32 | 16 | 203      | 15,8  | 803  | 50,8 | 962  | 60,9 | 1283 | 81,2  | 1692 | 107,1 |
| 1     | 32 | 16 | 254      | 12,5  | 794  | 63,5 | 953  | 76,2 | 1270 | 101,6 | 1706 | 136,5 |
| 1     | 32 | 16 | 305      | 10,3  | 786  | 76,3 | 942  | 91,5 | 1257 | 122   | 1676 | 162,7 |
| 2     | 32 | 16 | 38       | 185   | 1758 | 9,5  | 2109 | 11,4 | 2646 | 14,3  | 3016 | 16,3  |
| 2     | 32 | 16 | 44       | 158   | 1738 | 11   | 2086 | 13,2 | 2607 | 16,5  | 2986 | 18,9  |
| 2     | 32 | 16 | 51       | 134   | 1715 | 12,8 | 2050 | 15,3 | 2559 | 19,1  | 3095 | 23,1  |
| 2     | 32 | 16 | 64       | 99    | 1584 | 16   | 1901 | 19,2 | 2376 | 24    | 2822 | 28,5  |
| 2     | 32 | 16 | 70       | 69.1  | 1530 | 773  | 1835 | 22,8 | 2294 | 28,5  | 2/53 | 34,2  |
| 2     | 32 | 16 | 102      | 58.8  | 1499 | 25.5 | 1799 | 30.6 | 2252 | 38.3  | 2822 | 48    |
| 2     | 32 | 16 | 115      | 51,5  | 1483 | 28,8 | 1777 | 34,5 | 2220 | 43,1  | 2796 | 54,3  |
| 2     | 32 | 16 | 127      | 44,8  | 1425 | 31,8 | 1707 | 38,1 | 2132 | 47,6  | 2652 | 59,2  |
| 2     | 32 | 16 | 140      | 42,3  | 1481 | 35   | 1777 | 42   | 2221 | 52,5  | 2762 | 65,3  |
| 2     | 32 | 16 | 152      | 37,8  | 1436 | 38   | 1724 | 45,6 | 2155 | 57    | 2759 | 73    |
| 2     | 32 | 16 | 178      | 32,5  | 1446 | 44,5 | 1736 | 53,4 | 2171 | 66,8  | 2746 | 84,5  |
| 2     | 32 | 16 | 203      | 28,9  | 1468 | 50,8 | 1760 | 60,9 | 2199 | 76,1  | 2800 | 96,9  |
| 2     | 32 | 10 | 254      | 21,4  | 1359 | 03,5 | 1674 | /6,2 | 2039 | 95,3  | 258/ | 120,9 |
| 4     | 52 | 10 | 202      | 6,01  | 1390 | 207  | 10/4 | 5,16 | 2094 | 114,4 | 2000 | 140,9 |
| 3     | 32 | 16 | 38       | 388   | 2949 | 7,6  | 3686 | 9,5  | 4423 | 11,4  | 4850 | 12,5  |
| 3     | 32 | 16 | 44<br>51 | 324   | 2851 | 10.2 | 3304 | 17.8 | 42/7 | 15,2  | 4828 | 14,9  |
| 3     | 32 | 16 | 64       | 212   | 2714 | 12.8 | 3392 | 16   | 4070 | 19,2  | 4749 | 22.4  |
| 3     | 32 | 16 | 76       | 172   | 2614 | 15,2 | 3268 | 19   | 3922 | 22,8  | 4489 | 26,1  |
| 3     | 32 | 16 | 89       | 141   | 2510 | 17,8 | 3144 | 22,3 | 3765 | 26,7  | 4343 | 30,8  |
| 3     | 32 | 16 | 102      | 122   | 2489 | 20,4 | 3111 | 25,5 | 3733 | 30,6  | 4490 | 36,8  |
| 3     | 32 | 16 | 115      | 107   | 2461 | 23   | 3082 | 28,8 | 3692 | 34,5  | 4430 | 41,4  |
| 3     | 32 | 16 | 127      | 93    | 2362 | 25,4 | 2957 | 31,8 | 3543 | 38,1  | 4129 | 44,4  |
| 5     | 32 | 10 | 140      | 80    | 2408 | 28   | 3010 | 35   | 3012 | 42    | 41/1 | 48,5  |
| 2     | 32 | 16 | 178      | 67.2  | 23/1 | 35.6 | 2904 | 44.5 | 3588 | 53.4  | 4274 | 63.6  |
| 3     | 32 | 16 | 203      | 59.1  | 2392 | 40,6 | 3002 | 50,8 | 3599 | 60,9  | 4285 | 72,5  |
| 3     | 32 | 16 | 254      | 46,4  | 2357 | 50,8 | 2946 | 63,5 | 3536 | 76,2  | 4306 | 92,8  |
| 3     | 32 | 16 | 305      | 38    | 2318 | 61   | 2899 | 76,3 | 3477 | 91,5  | 4248 | 111,8 |
| 4     | 32 | 16 | 38       | 520   | 3172 | 6,1  | 4160 | 8    | 5148 | 9,9   | 5460 | 10,5  |
| 4     | 32 | 16 | 44       | 424,4 | 3183 | 7,5  | 3735 | 8,8  | 4668 | 11    | 5814 | 13,7  |
| 4     | 32 | 16 | 51       | 353   | 3071 | 8,7  | 3601 | 10,2 | 4518 | 12,8  | 5507 | 15,6  |
| 4     | 32 | 16 | 64       | 269,2 | 2934 | 10,9 | 3446 | 12,8 | 4307 | 16    | 5384 | 20    |
| 4     | 32 | 16 | 76       | 218,5 | 2819 | 12,9 | 3321 | 15,2 | 4152 | 19    | 5331 | 24,4  |
| 4     | 32 | 16 | 89       | 180,3 | 2/23 | 15,1 | 3209 | 17,8 | 4021 | 22,3  | 5355 | 29,7  |
| 4     | 32 | 10 | 102      | 135   | 2082 | 17,3 | 3102 | 20,4 | 3953 | 25,5  | 5441 | 35,1  |
| 4     | 32 | 16 | 177      | 124   | 2/44 | 21.6 | 3150 | 25   | 3943 | 20,0  | 5307 | 47.8  |
| 4     | 32 | 16 | 152      | 102   | 2632 | 25.8 | 3101 | 30,4 | 3876 | 38    | 5345 | 52.4  |
| 4     | 32 | 16 | 178      | 88,2  | 2672 | 30,3 | 3140 | 35,6 | 3925 | 44,5  | 5371 | 60,9  |
| 4     | 32 | 16 | 203      | 76    | 2622 | 34,5 | 3086 | 40,6 | 3861 | 50,8  | 5259 | 69,2  |
| 4     | 32 | 16 | 254      | 60,8  | 2627 | 43,2 | 3089 | 50,8 | 3861 | 63,5  | 5356 | 88,1  |
| 4     | 32 | 16 | 305      | 49    | 2543 | 51,9 | 2989 | 61   | 3739 | 76,3  | 5106 | 104,2 |

| Force<br>class | A    | в      | L   | č     | F1    | 51   | F <sub>2</sub> | \$2   | F3   | 53    | Fet  | Sct   |
|----------------|------|--------|-----|-------|-------|------|----------------|-------|------|-------|------|-------|
| 1              | 40   | 20     | 51  | 92    | 1178  | 12.8 | 1408           | 15.3  | 1877 | 20.4  | 2346 | 25.5  |
| 1              | 40   | 20     | 64  | 73    | 1168  | 16   | 1402           | 19,2  | 1869 | 25,6  | 2292 | 31,4  |
| 1              | 40   | 20     | 76  | 63    | 1197  | 19   | 1436           | 22,8  | 1915 | 30,4  | 2381 | 37,8  |
| 1              | 40   | 20     | 89  | 51    | 1137  | 22,3 | 1362           | 26,7  | 1816 | 35,6  | 2259 | 44,3  |
| 1              | 40   | 20     | 102 | 43    | 1097  | 25,5 | 1316           | 30,6  | 1754 | 40,8  | 2180 | 50,7  |
| 1              | 40   | 20     | 115 | 39,6  | 1140  | 28,8 | 1366           | 34,5  | 1822 | 46    | 2301 | 58,1  |
| 1              | 40   | 20     | 127 | 37    | 1177  | 31,8 | 1410           | 38,1  | 1880 | 50,8  | 2390 | 64,6  |
| 1              | 40   | 20     | 140 | 32    | 1120  | 35   | 1344           | 42,0  | 1792 | 56    | 2243 | 70,1  |
| 1              | 40   | 20     | 152 | 28    | 1064  | 38   | 1277           | 45,6  | 1702 | 60,8  | 2145 | 76,6  |
| 1              | 40   | 20     | 1/8 | 25,2  | 1121  | 44,5 | 1346           | 53,4  | 1/94 | /1,2  | 2278 | 90,4  |
|                | 40   | 20     | 203 | 17    | 1090  | 50,8 | 1382           | 76.7  | 1843 | 81,2  | 2324 | 102,4 |
|                | 40   | 20     | 305 | 14.8  | 1129  | 763  | 1295           | 915   | 1/2/ | 101,0 | 2190 | 120,0 |
|                | -10  | 20     | 505 | 14,0  | 2224  | 10,0 | 1334           | 2,12  | 1000 | 101   | 2010 | 130,1 |
| 2              | 40   | 20     | 51  | 181,0 | 2324  | 12,8 | 2//8           | 15,3  | 3409 | 19,1  | 3880 | 21,4  |
| 2              | 40   | 20     | 76  | 140   | 2240  | 10   | 2065           | 19,2  | 3300 | 24    | 3/32 | 20,8  |
| 2              | 40   | 20     | 20  | 00.7  | 2052  | 773  | 2402           | 22,0  | 3070 | 20,5  | 3532 | 30    |
| 2              | 40   | 20     | 102 | 81    | 2025  | 25.5 | 2422           | 306   | 3102 | 383   | 3572 | 44.1  |
| 2              | 40   | 20     | 115 | 71.8  | 2068  | 28.8 | 2477           | 34.5  | 3095 | 43.1  | 3633 | 50.6  |
| 2              | 40   | 20     | 127 | 62,7  | 1994  | 31,8 | 2389           | 38,1  | 2985 | 47,6  | 3505 | 55,9  |
| 2              | 40   | 20     | 140 | 57,5  | 2013  | 35   | 2415           | 42    | 3019 | 52,5  | 3554 | 61,8  |
| 2              | 40   | 20     | 152 | 51,6  | 1961  | 38   | 2353           | 45,6  | 2941 | 57    | 3483 | 67,5  |
| 2              | 40   | 20     | 178 | 44,1  | 1962  | 44,5 | 2355           | 53,4  | 2946 | 66,8  | 3405 | 77,2  |
| 2              | 40   | 20     | 203 | 36,7  | 1864  | 50,8 | 2235           | 60,9  | 2793 | 76,1  | 3369 | 91,8  |
| 2              | 40   | 20     | 254 | 30,1  | 1911  | 63,5 | 2294           | 76,2  | 2869 | 95,3  | 3392 | 112,7 |
| 2              | 40   | 20     | 305 | 24,6  | 1877  | 76,3 | 2251           | 91,5  | 2814 | 114,4 | 3397 | 138,1 |
| 3              | 40   | 20     | 51  | 315   | 2583  | 8,2  | 3371           | 10,7  | 4820 | 15,3  | 5827 | 18,5  |
| 3              | 40   | 20     | 64  | 262   | 2662  | 10,2 | 3497           | 13,4  | 5011 | 19,2  | 6026 | 23    |
| 3              | 40   | 20     | 76  | 219   | 3329  | 15,2 | 4161           | 19    | 4993 | 22,8  | 5847 | 26,7  |
| 3              | 40   | 20     | 89  | 190   | 3382  | 17,8 | 4237           | 22,3  | 5073 | 26,7  | 5947 | 31,3  |
| 3              | 40   | 20     | 102 | 163   | 3325  | 20,4 | 4157           | 25,5  | 4988 | 30,6  | 604/ | 3/,1  |
| 3              | 40   | 20     | 115 | 142   | 3200  | 23   | 4090           | 20,0  | 4899 | 34,5  | 5052 | 41    |
| 7              | 40   | 20     | 140 | 115   | 3220  | 25,4 | 4075           | 35    | 4830 | 47    | 6107 | 53.1  |
| 3              | 40   | 20     | 152 | 105   | 3192  | 30.4 | 3990           | 38    | 4788 | 45.6  | 5891 | 56.1  |
| 3              | 40   | 20     | 178 | 89    | 3168  | 35,6 | 3961           | 44,5  | 4753 | 53,4  | 5999 | 67,4  |
| 3              | 40   | 20     | 203 | 77    | 3126  | 40,6 | 3912           | 50,8  | 4689 | 60,9  | 5867 | 76,2  |
| 3              | 40   | 20     | 254 | 61    | 3099  | 50,8 | 3874           | 63,5  | 4648 | 76,2  | 5868 | 96,2  |
| 3              | 40   | 20     | 305 | 51    | 3111  | 61   | 3891           | 76,3  | 4667 | 91,5  | 5855 | 114,8 |
| 4              | 40   | 20     | 51  | 620   | 5084  | 8,2  | 6634           | 10,7  | 8246 | 13,3  | 9424 | 15,2  |
| 4              | 40   | 20     | 64  | 487   | 5308  | 10,9 | 6234           | 12,8  | 7792 | 16    | 9497 | 19,5  |
| 4              | 40   | 20     | 76  | 379   | 4889  | 12,9 | 5761           | 15,2  | 7201 | 19    | 8831 | 23,3  |
| 4              | 40   | 20     | 89  | 321   | 4847  | 15,1 | 5714           | 17,8  | 7158 | 22,3  | 8571 | 26,7  |
| 4              | 40   | 20     | 102 | 281   | 4861  | 17,3 | 5732           | 20,4  | 7166 | 25,5  | 9498 | 33,8  |
| 4              | 40   | 20     | 115 | 245   | 4802  | 19,6 | 5635           | 23    | 7056 | 28,8  | 8869 | 36,2  |
| 4              | 40   | 20     | 127 | 221   | 4774  | 21,6 | 5613           | 25,4  | 7028 | 31,8  | 8995 | 40,7  |
| 4              | 40   | 20     | 152 | 168   | 4334  | 25,8 | 5107           | 30,4  | 6384 | 38    | 8333 | 49,6  |
| 4              | 40   | 20     | 1/8 | 140   | 4424  | 30,3 | 5198           | 35,0  | 6705 | 44,5  | 8/45 | 59,9  |
| 4              | 40   | 20     | 203 | 107   | 4554  | 34,5 | 5426           | 40,0  | 6705 | 67.5  | 005/ | 96.2  |
| 4              | 40   | 20     | 305 | 87.8  | 4557  | 51.9 | 5356           | 61    | 6699 | 763   | 9096 | 103.6 |
| 1.000          | 1000 | 000000 |     |       | 0.000 |      |                | N 638 |      |       |      |       |

| Force | A  | в  | L.  | ç    | F1   | 51   | Fa   | 52   | Fa    | 50    | F     | 5     |
|-------|----|----|-----|------|------|------|------|------|-------|-------|-------|-------|
| 1     | 50 | 25 | 64  | 156  | 2496 | 16   | 2995 | 19.7 | 3994  | 25.6  | 4836  | 31    |
| i     | 50 | 25 | 76  | 125  | 2375 | 19   | 2850 | 22.8 | 3800  | 30.4  | 4650  | 37.2  |
| i     | 50 | 25 | 89  | 109  | 2431 | 22.3 | 2910 | 26.7 | 3880  | 35.6  | 4752  | 43.6  |
| 1     | 50 | 25 | 102 | 94   | 2397 | 25,5 | 2876 | 30,6 | 3835  | 40,8  | 4728  | 50,3  |
| 1     | 50 | 25 | 115 | 81   | 2333 | 28,8 | 2795 | 34,5 | 3726  | 46    | 4706  | 58,1  |
| 1     | 50 | 25 | 127 | 71   | 2258 | 31,8 | 2705 | 38,1 | 3607  | 50,8  | 4523  | 63,7  |
| 1     | 50 | 25 | 140 | 66,5 | 2328 | 35   | 2793 | 42   | 3724  | 56    | 4622  | 69,5  |
| 1     | 50 | 25 | 152 | 60   | 2280 | 38   | 2736 | 45,6 | 3648  | 60,8  | 4590  | 76,5  |
| 1     | 50 | 25 | 178 | 52   | 2314 | 44,5 | 2777 | 53,4 | 3702  | 71,2  | 4779  | 91,9  |
| 1     | 50 | 25 | 203 | 44   | 2235 | 50,8 | 2680 | 60,9 | 3573  | 81,2  | 4607  | 104,7 |
| 1     | 50 | 25 | 254 | 35   | 2223 | 63,5 | 2667 | 76,2 | 3556  | 101,6 | 4571  | 130,6 |
| 1     | 50 | 25 | 305 | 28,5 | 2175 | 76,3 | 2608 | 91,5 | 3477  | 122   | 4415  | 154,9 |
| 2     | 50 | 25 | 64  | 209  | 3344 | 16   | 4013 | 19,2 | 5016  | 24    | 5894  | 28,2  |
| 2     | 50 | 25 | 76  | 168  | 3192 | 19   | 3830 | 22,8 | 4788  | 28,5  | 5863  | 34,9  |
| 2     | 50 | 25 | 89  | 140  | 3122 | 22,3 | 3738 | 26,7 | 4676  | 33,4  | 5488  | 39,2  |
| 2     | 50 | 25 | 102 | 119  | 3035 | 25,5 | 3641 | 30,6 | 4558  | 38,3  | 5629  | 47,3  |
| 2     | 50 | 25 | 115 | 106  | 3053 | 28,8 | 3057 | 34,5 | 4509  | 43,1  | 55/6  | 52,6  |
| 2     | 50 | 25 | 12/ | 97   | 3085 | 31,8 | 3090 | 38,1 | 401/  | 47,0  | 5801  | 59,8  |
| 2     | 50 | 25 | 140 | 80   | 3040 | 38   | 3649 | 42   | 4560  | 57    | 5664  | 70.8  |
| 2     | 50 | 25 | 178 | 69.5 | 3040 | 44.5 | 3040 | 45,0 | 4500  | 66.8  | 5857  | 84.2  |
| 2     | 50 | 25 | 203 | 50.8 | 3038 | 50.8 | 3642 | 60.0 | 4045  | 76.1  | 5771  | 04,2  |
| 2     | 50 | 25 | 205 | 43.9 | 2788 | 63.5 | 3345 | 76.2 | 4184  | 95 3  | 5347  | 121.8 |
| 2     | 50 | 25 | 305 | 386  | 2945 | 763  | 3532 | 91.5 | 4416  | 114.4 | 5666  | 146.8 |
| 3     | 50 | 25 | 64  | 413  | 5286 | 128  | 6608 | 16   | 7930  | 19.7  | 9251  | 27.4  |
| 3     | 50 | 25 | 76  | 339  | 5153 | 15.2 | 6441 | 19   | 7729  | 77.8  | 8984  | 26.5  |
| 3     | 50 | 25 | 89  | 288  | 5126 | 17.8 | 6422 | 22.3 | 7690  | 26.7  | 9072  | 31.5  |
| 3     | 50 | 25 | 102 | 245  | 4998 | 20.4 | 6248 | 25.5 | 7497  | 30.6  | 9212  | 37.6  |
| 3     | 50 | 25 | 115 | 215  | 4945 | 23   | 6192 | 28.8 | 7418  | 34,5  | 9181  | 42,7  |
| 3     | 50 | 25 | 127 | 192  | 4877 | 25,4 | 6106 | 31,8 | 7315  | 38,1  | 9120  | 47,5  |
| 3     | 50 | 25 | 140 | 168  | 4704 | 28   | 5880 | 35   | 7056  | 42    | 8702  | 51,8  |
| 3     | 50 | 25 | 152 | 154  | 4682 | 30,4 | 5852 | 38   | 7022  | 45,6  | 8901  | 57,8  |
| 3     | 50 | 25 | 178 | 134  | 4770 | 35,6 | 5963 | 44,5 | 7156  | 53,4  | 9179  | 68,5  |
| 3     | 50 | 25 | 203 | 117  | 4750 | 40,6 | 5944 | 50,8 | 7125  | 60,9  | 9079  | 77,6  |
| 3     | 50 | 25 | 254 | 89   | 4521 | 50,8 | 5652 | 63,5 | 6782  | 76,2  | 8713  | 97,9  |
| 3     | 50 | 25 | 305 | 73   | 4453 | 61   | 5570 | 76,3 | 6680  | 91,5  | 8811  | 120,7 |
| 4     | 50 | 25 | 64  | 709  | 7728 | 10,9 | 9075 | 12,8 | 11344 | 16    | 13684 | 19,3  |
| 4     | 50 | 25 | 76  | 572  | 7379 | 12,9 | 8694 | 15,2 | 10868 | 19    | 13842 | 24,2  |
| 4     | 50 | 25 | 89  | 4/5  | /1/3 | 15,1 | 8455 | 17,8 | 10593 | 22,3  | 13300 | 28    |
| 4     | 50 | 25 | 102 | 405  | /00/ | 17,3 | 8262 | 20,4 | 10328 | 25,5  | 13568 | 33,5  |
| 4     | 50 | 25 | 115 | 352  | 6899 | 19,0 | 8096 | 23   | 10138 | 28,8  | 1358/ | 38,0  |
| 4     | 50 | 25 | 12/ | 230  | 6166 | 21,0 | 7266 | 25,4 | 0092  | 31,8  | 11009 | 41,4  |
| 4     | 50 | 25 | 178 | 239  | 6515 | 303  | 7654 | 35.6 | 9568  | 44.5  | 13137 | 61.1  |
| 4     | 50 | 25 | 203 | 187  | 6452 | 345  | 7597 | 40.6 | 9500  | 50.8  | 12660 | 67.7  |
| 4     | 50 | 25 | 254 | 153  | 6610 | 43.2 | 7772 | 50.8 | 9716  | 63.5  | 13311 | 87    |
| 4     | 50 | 25 | 305 | 127  | 6591 | 51.9 | 7747 | 61   | 9690  | 76.3  | 13132 | 103.4 |
|       |    |    |     |      |      |      |      |      |       |       |       |       |

| Force<br>class | A  | в  | Lo  | c    | F1    | 51   | Fo    | \$7  | Fa    | 52    | F <sub>et</sub> | Sct   |
|----------------|----|----|-----|------|-------|------|-------|------|-------|-------|-----------------|-------|
| 1              | 63 | 29 | 76  | 190  | 3501  | 10   | 4300  | 22.8 | 5746  | 30.4  | 6900            | 36.5  |
|                | 63 | 38 | 89  | 158  | 3573  | 223  | 4309  | 22,0 | 5625  | 35.6  | 6857            | 43.4  |
|                | 63 | 38 | 102 | 131  | 3341  | 25.5 | 4009  | 30.6 | 5345  | 40.8  | 6511            | 497   |
| i i            | 63 | 38 | 115 | 116  | 3341  | 28.8 | 4002  | 345  | 5336  | 46.0  | 6450            | 55.6  |
| i i            | 63 | 38 | 127 | 103  | 3275  | 31.8 | 3974  | 381  | 5737  | 50.8  | 6458            | 62.7  |
| l i            | 63 | 38 | 152 | 843  | 3203  | 38   | 3844  | 456  | 5125  | 60.8  | 6500            | 77 1  |
| i i            | 63 | 38 | 178 | 71.5 | 3182  | 44.5 | 3818  | 534  | 5091  | 71.2  | 6592            | 97.7  |
| 1              | 63 | 38 | 203 | 61.7 | 3134  | 50.8 | 3758  | 60.9 | 5010  | 81.2  | 6386            | 103.5 |
| i i            | 63 | 38 | 254 | 47   | 2985  | 63.5 | 3581  | 76.2 | 4775  | 101.6 | 6129            | 130,4 |
| 1              | 63 | 38 | 305 | 38,2 | 2915  | 76,3 | 3495  | 91,5 | 4660  | 122,0 | 6013            | 157,4 |
| 2              | 63 | 38 | 76  | 312  | 5978  | 19   | 7114  | 228  | 8897  | 28.5  | 9578            | 30.7  |
| 2              | 63 | 38 | 89  | 260  | 5798  | 22.3 | 6947  | 267  | 8684  | 33.4  | 9490            | 36.5  |
| 2              | 63 | 38 | 102 | 200  | 5636  | 25.5 | 6763  | 30.6 | 8464  | 383   | 9636            | 43.6  |
| 2              | 63 | 38 | 115 | 187  | 5386  | 28.8 | 6452  | 345  | 8060  | 43.1  | 9144            | 48.9  |
| 2              | 63 | 38 | 127 | 168  | 5342  | 31.8 | 6401  | 381  | 7997  | 47.6  | 9106            | 54.2  |
| 2              | 63 | 38 | 152 | 136  | 5168  | 38   | 6202  | 45.6 | 7752  | 57    | 8935            | 65.7  |
| 2              | 63 | 38 | 178 | 114  | 5073  | 44.5 | 6088  | 53.4 | 7615  | 66.8  | 8721            | 76.5  |
| 2              | 63 | 38 | 203 | 100  | 5080  | 50.8 | 6090  | 60.9 | 7610  | 76.1  | 8800            | 88    |
| 2              | 63 | 38 | 229 | 89.2 | 5111  | 57.3 | 6128  | 68.7 | 7662  | 85.9  | 9268            | 103,9 |
| 2              | 63 | 38 | 254 | 78.4 | 4978  | 63.5 | 5974  | 76.2 | 7472  | 95.3  | 8812            | 112.4 |
| 2              | 63 | 38 | 305 | 64,7 | 4937  | 76,3 | 5920  | 91,5 | 7402  | 114,4 | 8657            | 133,8 |
| 3              | 63 | 38 | 76  | 618  | 9394  | 15.2 | 11742 | 19   | 14090 | 22.8  | 15265           | 24.7  |
| 3              | 63 | 38 | 89  | 515  | 9167  | 17.8 | 11485 | 22.3 | 13751 | 26.7  | 15450           | 30    |
| 3              | 63 | 38 | 102 | 438  | 8935  | 20.4 | 11169 | 25.5 | 13403 | 30.6  | 15374           | 35.1  |
| 3              | 63 | 38 | 115 | 370  | 8510  | 23   | 10656 | 28.8 | 12765 | 34.5  | 13875           | 37.5  |
| 3              | 63 | 38 | 127 | 333  | 8458  | 25,4 | 10589 | 31,8 | 12687 | 38,1  | 15285           | 45,9  |
| 3              | 63 | 38 | 152 | 269  | 8178  | 30,4 | 10222 | 38   | 12266 | 45,6  | 15199           | 56,5  |
| 3              | 63 | 38 | 178 | 226  | 8046  | 35,6 | 10057 | 44,5 | 12068 | 53,4  | 15097           | 66,8  |
| 3              | 63 | 38 | 203 | 198  | 8039  | 40,6 | 10058 | 50,8 | 12058 | 60,9  | 15602           | 78,8  |
| 3              | 63 | 38 | 254 | 155  | 7874  | 50,8 | 9843  | 63,5 | 11811 | 76,2  | 15763           | 101,7 |
| 3              | 63 | 38 | 305 | 128  | 7808  | 61   | 9766  | 76,3 | 11712 | 91,5  | 15667           | 122,4 |
| 4              | 63 | 38 | 76  | 952  | 12281 | 12,9 | 14470 | 15,2 | 14470 | 15,2  | 14471           | 15,2  |
| 4              | 63 | 38 | 89  | 819  | 12367 | 15,1 | 14578 | 17,8 | 14580 | 17,8  | 19040           | 20    |
| 4              | 63 | 38 | 102 | 700  | 12110 | 17,3 | 14280 | 20,4 | 17850 | 25,5  | 21449           | 30,7  |
| 4              | 63 | 38 | 115 | 620  | 12152 | 19,6 | 14260 | 23   | 17856 | 28,8  | 21640           | 34,9  |
| 4              | 63 | 38 | 127 | 565  | 12204 | 21,6 | 14351 | 25,4 | 17967 | 31,8  | 21470           | 38    |
| 4              | 63 | 38 | 152 | 458  | 11816 | 25,8 | 13923 | 30,4 | 17404 | 38    | 21618           | 47,2  |
| 4              | 63 | 38 | 178 | 384  | 11635 | 30,3 | 13670 | 35,6 | 17088 | 44,5  | 21427           | 55,8  |
| 4              | 63 | 38 | 203 | 337  | 11627 | 34,5 | 13682 | 40,6 | 17120 | 50,8  | 21838           | 64,8  |
| 4              | 63 | 38 | 254 | 263  | 11362 | 43,2 | 13360 | 50,8 | 16701 | 63,5  | 22802           | 86,7  |
| 4              | 63 | 38 | 305 | 218  | 11314 | 51,9 | 13298 | 61   | 16633 | 76,3  | 23043           | 105,7 |

| Force |     |      |     |      | Ε.    |      | Ε.    |      | ۶.    |       | -                   |     |
|-------|-----|------|-----|------|-------|------|-------|------|-------|-------|---------------------|-----|
| Class | ~   | B    | -0  |      |       | *1   | F2    | °2   | -3    | *3    | rst                 | °st |
| 5     | 25  | 12,5 | 04  | 044  | 4122  | 0,4  | 4959  | 1,1  | 6182  | 9,6   | 83/2                | 13  |
| 5     | 25  | 12,5 | 70  | 250  | 4220  | 7,0  | 4943  | 9,1  | 6168  | 11,4  | 0740                | 20  |
| 5     | 25  | 12,5 | 102 | 300  | 3078  | 10.2 | 4745  | 10,7 | 5067  | 15,4  | 9240                | 20  |
| 5     | 25  | 12,5 | 115 | 360  | 4140  | 11,2 | 47.50 | 12,2 | 6210  | 173   | 0360                | 25  |
| 5     | 25  | 12,5 | 127 | 326  | 4140  | 127  | 4955  | 15,0 | 6210  | 191   | 9178                | 20  |
| 5     | 25  | 125  | 152 | 255  | 3876  | 15.2 | 4641  | 18.2 | 5814  | 22.8  | 8670                | 34  |
| 5     | 25  | 12.5 | 178 | 230  | 4094  | 17.8 | 4922  | 21.4 | 6141  | 26.7  | 8970                | 39  |
| 5     | 25  | 12.5 | 203 | 202  | 4101  | 20.3 | 4929  | 24.4 | 6151  | 30.5  | 9090                | 45  |
| 5     | 25  | 12,5 | 305 | 136  | 4148  | 30,5 | 4978  | 36,6 | 6222  | 45,8  | 8568                | 63  |
| 5     | 32  | 16   | 64  | 1077 | 6892  | 6,4  | 8270  | 7,7  | 10337 | 9,6   | 13998               | 13  |
| 5     | 32  | 16   | 76  | 874  | 6642  | 7,6  | 7971  | 9,1  | 9964  | 11,4  | 13984               | 16  |
| 5     | 32  | 16   | 89  | 721  | 6419  | 8,9  | 7702  | 11   | 9628  | 13,35 | 14424               | 20  |
| 5     | 32  | 16   | 102 | 620  | 6324  | 10   | 7589  | 12   | 9486  | 15,3  | 14260               | 23  |
| 5     | 32  | 16   | 115 | 560  | 6440  | 12   | 7728  | 14   | 9660  | 17,25 | 14560               | 26  |
| 5     | 32  | 16   | 127 | 496  | 6299  | 13   | 7559  | 15   | 9449  | 19,05 | 13888               | 28  |
| 5     | 32  | 16   | 152 | 408  | 6202  | 15   | 7442  | 18   | 9302  | 22,8  | 13872               | 34  |
| 5     | 32  | 16   | 178 | 353  | 6280  | 18   | 7536  | 21   | 9420  | 26,7  | 13759               | 39  |
| 5     | 32  | 16   | 203 | 304  | 6171  | 20   | 7405  | 24   | 9257  | 30,45 | 13680               | 45  |
| 5     | 32  | 16   | 254 | 243  | 6177  | 25   | 7413  | 30   | 9266  | 38,1  | 15078               | 62  |
| 5     | 32  | 16   | 305 | 196  | 5978  | 31   | 7174  | 37   | 8967  | 45,75 | 14700               | 75  |
| 5     | 40  | 20   | 89  | 880  | 7832  | 8,9  | 9416  | 10,7 | 11748 | 13,4  | 17600               | 20  |
| 5     | 40  | 20   | 102 | 762  | 7772  | 10,2 | 9296  | 12,2 | 11659 | 15,3  | 17526               | 23  |
| 5     | 40  | 20   | 115 | 679  | 7809  | 11,5 | 9370  | 13,8 | 11713 | 17,3  | 17654               | 26  |
| 5     | 40  | 20   | 127 | 622  | 7899  | 12,7 | 9454  | 15,2 | 11849 | 19,1  | 17416               | 28  |
| 5     | 40  | 20   | 152 | 509  | 7737  | 22,8 | 9264  | 18,2 | 11605 | 22,8  | 18324               | 36  |
| 5     | 40  | 20   | 1/8 | 429  | /030  | 17,8 | 9181  | 21,4 | 11454 | 20,7  | 18447               | 43  |
| 5     | 40  | 20   | 203 | 3/4  | 7592  | 20,3 | 9120  | 24,4 | 11388 | 30,5  | 18320               | 49  |
| 5     | 40  | 20   | 254 | 290  | 7518  | 25,4 | 9028  | 30,5 | 112/8 | 38,1  | 18352               | 02  |
| 5     | -10 | 20   | 202 | 1410 | 10540 | 0.0  | 1007  | 10.7 | 10024 | 12.4  | 26700               | 10  |
| 5     | 50  | 25   | 107 | 1410 | 12049 | 10.2 | 1/007 | 10,7 | 18624 | 15,4  | 20/90               | 19  |
| 5     | 50  | 25   | 115 | 1076 | 12373 | 10,2 | 14025 | 12,2 | 19561 | 173   | 20/30               | 22  |
| 5     | 50  | 25   | 127 | 968  | 123/4 | 127  | 14714 | 15,0 | 18440 | 191   | 27104               | 25  |
| 5     | 50  | 25   | 152 | 806  | 12251 | 15.2 | 14669 | 18.2 | 18377 | 22.8  | 27404               | 34  |
| 5     | 50  | 25   | 178 | 698  | 12424 | 178  | 14937 | 21.4 | 18637 | 26.7  | 27920               | 40  |
| 5     | 50  | 25   | 203 | 612  | 12424 | 20.3 | 14933 | 24.4 | 18635 | 30.5  | 27540               | 45  |
| 5     | 50  | 25   | 254 | 472  | 11989 | 25,4 | 14396 | 30,5 | 17983 | 38,1  | 27376               | 58  |
| 5     | 50  | 25   | 305 | 388  | 11834 | 30,5 | 14201 | 36,6 | 17751 | 45,8  | 27160               | 70  |
|       |     |      |     |      |       |      |       |      |       |       | CONTRACTOR OF STATE |     |

MOLAS DO TIPO PRATO



|      |      |      |      |                | s = 0.2 | 2 h <sub>o</sub> | s = 0.4 | ۱ h <sub>o</sub> | s = 0. | 6 h <sub>o</sub> | s = 0.7 | 75 h <sub>o</sub> |
|------|------|------|------|----------------|---------|------------------|---------|------------------|--------|------------------|---------|-------------------|
|      |      |      |      |                | F *)    | S                | F*)     | S                | F *)   | S                | F*)     | S                 |
|      | D    | t    | h    | l <sub>0</sub> | (N)     |                  | (N)     |                  | (N)    |                  | (N)     |                   |
| 8,0  | 4,2  | 0,3  | 0,25 | 0,55           | 42,5    | 0,05             | 75,6    | 0,10             | 102    | 0,15             | 119     | 0,19              |
| 8,0  | 4,2  | 0,4  | 0,2  | 0,6            | 63,5    | 0,04             | 120     | 0,08             | 173    | 0,12             | 210     | 0,15              |
| 10,0 | 5,2  | 0,4  | 0,3  | 0,7            | 72,1    | 0,06             | 130     | 0,12             | 178    | 0,18             | 213     | 0,23              |
| 10,0 | 5,2  | 0,5  | 0,25 | 0,75           | 98,5    | 0,05             | 187     | 0,10             | 268    | 0,15             | 329     | 0,19              |
| 12,5 | 6,2  | 0,5  | 0,35 | 0,85           | 98,3    | 0,07             | 180     | 0,14             | 248    | 0,21             | 291     | 0,26              |
| 12,5 | 6,2  | 0,7  | 0,3  | 1,0            | 194     | 0,06             | 372     | 0,12             | 539    | 0,18             | 673     | 0,23              |
| 14,0 | 7,2  | 0,5  | 0,4  | 0,9            | 98,9    | 0,08             | 177     | 0,16             | 239    | 0,24             | 279     | 0,30              |
| 14,0 | 7,2  | 0,8  | 0,3  | 1,1            | 229     | 0,06             | 444     | 0,12             | 648    | 0,18             | 813     | 0,23              |
| 15,0 | 5,2  | 0,7  | 0,4  | 1,1            | 174     | 0,08             | 326     | 0,16             | 461    | 0,24             | 555     | 0,30              |
| 16,0 | 8,2  | 0,6  | 0,45 | 1,05           | 141     | 0,09             | 255     | 0,18             | 349    | 0,27             | 412     | 0,34              |
| 16,0 | 8,2  | 0,9  | 0,35 | 1,25           | 293     | 0,07             | 566     | 0,14             | 825    | 0,21             | 1000    | 0,26              |
| 18,0 | 9,2  | 0,7  | 0,5  | 1,2            | 191     | 0,10             | 348     | 0,20             | 480    | 0,30             | 572     | 0,38              |
| 18,0 | 9,2  | 1,0  | 0,4  | 1,4            | 364     | 0,08             | 703     | 0,16             | 1020   | 0,24             | 1250    | 0,30              |
| 20,0 | 10,2 | 0,8  | 0,55 | 1,35           | 249     | 0,11             | 456     | 0,22             | 631    | 0,33             | 745     | 0,41              |
| 20,0 | 10,2 | 0,9  | 0,55 | 1,45           | 336     | 0,11             | 624     | 0,22             | 877    | 0,33             | 1040    | 0,41              |
| 20,0 | 10,2 | 1,1  | 0,45 | 1,55           | 443     | 0,09             | 854     | 0,18             | 1240   | 0,27             | 1530    | 0,34              |
| 22,5 | 11,2 | 0,8  | 0,65 | 1,45           | 252     | 0,13             | 450     | 0,26             | 608    | 0,39             | 710     | 0,49              |
| 22,5 | 11,2 | 1,25 | 0,5  | 1,75           | 560     | 0,10             | 1080    | 0,20             | 1570   | 0,30             | 1950    | 0,38              |
| 23,0 | 12,2 | 1,25 | 0,6  | 1,85           | 700     | 0,12             | 1330    | 0,24             | 1920   | 0,36             | 2330    | 0,45              |
| 25,0 | 12,2 | 0,9  | 0,7  | 1,6            | 302     | 0,14             | 542     | 0,28             | 737    | 0,42             | 868     | 0,53              |
| 25,0 | 12,2 | 1,5  | 0,55 | 2,05           | 838     | 0,11             | 1630    | 0,22             | 2380   | 0,33             | 2910    | 0,41              |
| 28,0 | 14,2 | 1,0  | 0,8  | 1,8            | 392     | 0,16             | 702     | 0,32             | 949    | 0,48             | 1110    | 0,60              |
| 28,0 | 14,2 | 1,5  | 0,65 | 2,15           | 836     | 0,13             | 1600    | 0,26             | 2320   | 0,39             | 2850    | 0,49              |
| 31,5 | 16,3 | 1,25 | 0,9  | 2,15           | 648     | 0,18             | 1180    | 0,36             | 1620   | 0,54             | 1920    | 0,68              |
| 31,5 | 16,3 | 1,75 | 0,7  | 2,45           | 1120    | 0,14             | 2170    | 0,28             | 3160   | 0,42             | 3900    | 0,53              |
| 35,5 | 18,3 | 1,25 | 1,0  | 2,25           | 602     | 0,20             | 1080    | 0,40             | 1460   | 0,60             | 1700    | 0,75              |
| 35,5 | 18,3 | 2,0  | 0,8  | 2,8            | 1500    | 0,16             | 2910    | 0,32             | 4230   | 0,48             | 5190    | 0,60              |
| 40,0 | 20,4 | 1,5  | 1,15 | 2,65           | 911     | 0,23             | 1640    | 0,46             | 2240   | 0,69             | 2620    | 0,86              |
| 40,0 | 20,4 | 2,25 | 0,9  | 3,15           | 1890    | 0,18             | 3640    | 0,36             | 5300   | 0,54             | 6540    | 0,68              |
| 45,0 | 22,4 | 1,75 | 1,3  | 3,05           | 1250    | 0,26             | 2260    | 0,52             | 3100   | 0,78             | 3660    | 0,98              |
| 45,0 | 22,4 | 2,5  | 1,0  | 3,5            | 2240    | 0,20             | 4320    | 0,40             | 6290   | 0,60             | 7720    | 0,75              |
| 50,0 | 25,4 | 2,0  | 1,4  | 3,4            | 1600    | 0,28             | 2910    | 0,56             | 4020   | 0,84             | 4760    | 1,05              |
| 50,0 | 25,4 | 2,5  | 1,4  | 3,9            | 2820    | 0,28             | 5300    | 0,56             | 7520   | 0,84             | 9060    | 1,05              |
| 50,0 | 25,4 | 3,0  | 1,1  | 4,1            | 3430    | 0,22             | 6660    | 0,44             | 9740   | 0,66             | 12000   | 0,83              |
| 56,0 | 28,5 | 2,0  | 1,6  | 3,6            | 1570    | 0,32             | 2810    | 0,64             | 3810   | 0,96             | 4440    | 1,20              |
| 56,0 | 28,5 | 3,0  | 1,3  | 4,3            | 3350    | 0,26             | 6430    | 0,52             | 9320   | 0,78             | 11400   | 0,98              |
| 63,0 | 31   | 2,5  | 1,75 | 4,25           | 2410    | 0,35             | 4400    | 0,70             | 6080   | 1,05             | 7180    | 1,31              |
| 63,0 | 31   | 3,5  | 1,4  | 4,9            | 4360    | 0,28             | 8420    | 0,56             | 12300  | 0,84             | 15000   | 1,05              |

------




| D_ | D <sub>i</sub> | L <sub>o</sub> | D  | D <sub>1</sub> | D_  | D <sub>i</sub> | L <sub>o</sub> | D   | D <sub>1</sub> |
|----|----------------|----------------|----|----------------|-----|----------------|----------------|-----|----------------|
| 16 | 6,5            | 12             | 22 | 28             | 63  | 17             | 32             | 85  | 90             |
|    |                | 16             |    |                |     |                | 40             |     |                |
|    |                | 20             |    |                |     |                | 50             |     |                |
|    |                | 25             |    |                |     |                | 63             |     |                |
| 20 | 8,5            | 16             | 27 | 32             |     |                | 80             |     |                |
|    |                | 20             |    |                |     |                | 100            |     |                |
|    |                | 25             |    |                |     |                | 125            |     |                |
|    |                | 32             |    |                | 80  | 21             | 32             | 108 | 112            |
| 25 | 10,5           | 20             | 34 | 36             |     |                | 40             |     |                |
|    |                | 25             |    |                |     |                | 50             |     |                |
|    |                | 32             |    |                |     |                | 63             |     |                |
|    |                | 40             |    |                |     |                | 80             |     |                |
| 32 | 13,5           | 32             | 43 | 45             |     |                | 100            |     |                |
|    |                | 40             |    |                |     |                | 125            |     |                |
|    |                | 50             |    |                | 100 | 21             | 32             | 135 | 140            |
|    |                | 63             |    |                |     |                | 40             |     |                |
| 40 | 13,5           | 32             | 54 | 56             |     |                | 50             |     |                |
|    |                | 40             |    |                |     |                | 63             |     |                |
|    |                | 50             |    |                |     |                | 80             |     |                |
|    |                | 63             |    |                |     |                | 100            |     |                |
|    |                | 80             |    |                |     |                | 125            |     |                |
| 50 | 17             | 32             | 68 | 71             | 125 | 27             | 32             | 169 | 180            |
|    |                | 40             |    |                |     |                | 40             |     |                |
|    |                | 50             |    |                |     |                | 50             |     |                |
|    |                | 63             |    |                |     |                | 63             |     |                |
|    |                | 80             |    |                |     |                | 80             |     |                |
|    |                | 100            |    |                |     |                | 100            |     |                |
|    |                |                |    |                |     |                | 125            |     |                |
|    |                |                |    |                |     |                | 160            |     |                |







### APÊNDICE IV – GUIA PARA SELEÇÃO DE ESPIGAS PARA ESTAMPOS DE CORTE





### Sem Tratamento Térmico Material: Aço SAE 1045

| Caracter   | ísticas da Prensa                   |            |            |                     |           |                     |                      |                     |                     |                     |
|------------|-------------------------------------|------------|------------|---------------------|-----------|---------------------|----------------------|---------------------|---------------------|---------------------|
| Capacidade | Furo do Martelo<br>Ø x Profundidade | Código     | D<br>-0,20 | L<br>+0,50<br>-0,50 | Rosca     | B<br>+0,50<br>-0,50 | D1<br>+0,20<br>-0,20 | H<br>+0,50<br>-0,50 | F<br>+0,50<br>-0,50 | G<br>+0,50<br>-0,50 |
| 3 ton.     | 25 x 55                             | PEE-2525-2 |            | E0                  |           | 25                  |                      | 12                  |                     |                     |
| 4 ton.     | 25 x 57                             | PEE-2530-2 | 25         | 50                  |           | 30                  | 20                   | 12                  | 6                   |                     |
| 8 ton.     | 25 x 62                             | PEE-2540-2 | ]          | 55                  |           | 40                  | ]                    | 14                  |                     |                     |
|            |                                     | PEE-3225-2 |            |                     | M20 X 2,5 | 25                  |                      |                     |                     | 1                   |
| 12 ton.    | 32 x 100                            | PEE-3230-2 | 32         |                     |           | 30                  | 27                   |                     |                     | 8                   |
|            |                                     | PEE-3240-2 | ]          |                     |           | 40                  | ]                    |                     | -                   |                     |
|            |                                     | PEE-3525-2 |            |                     |           | 25                  |                      |                     | · '                 |                     |
| 22 ton.    | 35 x 100                            | PEE-3530-2 | 35         |                     |           | 30                  | 30                   | 18                  |                     |                     |
|            |                                     | PEE-3540-2 |            |                     | N24 X 2 0 | 40                  |                      |                     |                     |                     |
| 40 ton.    |                                     | PEE-3825-2 |            |                     | M24 X 3,0 | 25                  |                      |                     |                     |                     |
|            | 38 x 110                            | PEE-3830-2 | 38         | 70                  |           | 30                  | 33                   |                     | 8                   | 10                  |
| 45 ton.    |                                     | PEE-3840-2 | ]          |                     |           | 40                  |                      |                     |                     |                     |
| 65 ton.    | 50 X 90                             | DEE 6020 2 |            | 70                  |           | 20                  |                      |                     |                     |                     |
| 80 ton.    |                                     | PEE-5030-2 |            | /0                  |           | 30                  |                      |                     |                     |                     |
| 100 ton.   | E0 x 100                            |            | 50         |                     | M30 X 3,5 |                     | 43                   | 20                  | 10                  | 13                  |
| 130 ton.   |                                     | PEE-5040-2 |            | 90                  |           | 40                  |                      |                     |                     |                     |
| 160 ton.   |                                     |            |            |                     |           |                     |                      |                     |                     |                     |

APÊNDICE V – GUIA PARA SELEÇÃO DE PINOS-GUIA

| MATERIAL:           | Aço 52100                        |
|---------------------|----------------------------------|
| DUREZA:             | 54 /58 HRC                       |
| SUPERFÍCIE:         | Retificada                       |
| MEDIDAS COMERCIAIS: | Medidas marcadas com a cor cinza |



## Pino de Guia Paralelo (ISO 2338)

| MATERIAL:   | Aço 52100   |
|-------------|-------------|
| DUREZA      | Sem têmpera |
| SUPERFÍCIE: | Retificada  |
| MEDIDAS:    | Comerciais  |





# PINOS GUIA - DIN 7979 (COM ROSCA)

#### SÉRIE - 7979 PG

|    |      |    |                    |    |    |    |    | P  | inos Gu | ia - DIN | 7979 (c | om rosc | a) |    |     |     |     |     |     |     |     |
|----|------|----|--------------------|----|----|----|----|----|---------|----------|---------|---------|----|----|-----|-----|-----|-----|-----|-----|-----|
|    |      |    |                    |    |    |    |    |    |         | Série 7  | 979 PG  |         |    |    |     |     |     |     |     |     |     |
| d1 | d2   |    | Comprimento L (mm) |    |    |    |    |    |         |          |         |         |    |    |     |     |     |     |     |     |     |
| 4  | M2.5 | 12 | 16                 | 20 | 25 | 30 | 35 | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
| 5  | M3   | 12 | 16                 | 20 | 25 | 30 | 35 | 40 | 45      | 50       | 60      |         |    |    |     |     |     |     |     |     |     |
| 6  | M4   | 12 | 16                 | 20 | 25 | 30 | 35 | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 |     |     |     |     |     |     |
| 8  | M5   |    |                    | 20 | 25 | 30 | 35 | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 |     |     |     |     |
| 10 | M6   |    |                    | 20 | 25 | 30 | 35 | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 |     |     |     |     |
| 12 | M6   |    |                    | 20 | 25 | 30 | 35 | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |     |
| 14 | M8   |    | -                  |    |    | 30 | 35 | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |     |
| 16 | M8   | 1  |                    |    |    |    |    | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |
| 20 | M10  |    |                    |    |    | l. |    | 40 | 45      | 50       | 60      | 70      | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |

\*\*\* Consulte medidas especiais \*\*\*

PARA SOLICITAR O PRODUTO DESENHO TÉCNICO -ESPECIFIQUE:



Exemplo 7979 PG 6X20



Material AÇO carbono Norma ISO 8735 tipo B Tratamento térmico Cementado, temperado e revenido Dureza 58 - 62 HRC Tolerância ISO (m6) Aplicações Pino guia para moldes, estampos e dispositivos com encaixe de furo cego.

ESPECIFICAÇÕES DO PRODUTO:

APÊNDICE VI – ALGUNS MODELOS DE COLUNAS E BUCHAS PARA ESTAMPOS SIMPLES DE CORTE





L2

L

|         |    |    | Col | una Prin   | cipal |    |    |     |   |          |    |    | Col | una Prin  | cipal |          |
|---------|----|----|-----|------------|-------|----|----|-----|---|----------|----|----|-----|-----------|-------|----------|
|         |    |    | Sér | rie CP - ( | CPG   |    |    |     |   |          |    |    | Sér | ie CP - ( | CPG   |          |
| Prefixo | D1 | D2 | D3  | G          | k     | L1 | L2 | L   |   | Prefixo  | D1 | D2 | D3  | G         | k     | L1       |
| 01      | 16 | 21 | 25  | 12         | 5     | 20 | 20 | 40  |   | 48       | 32 | 42 | 47  | 21        | 8     | 34       |
| 02      | 16 | 21 | 25  | 12         | 5     | 20 | 34 | 54  |   | 49       | 32 | 42 | 47  | 21        | 8     | 46       |
| 03      | 16 | 21 | 25  | 12         | 5     | 20 | 60 | 80  |   | 50       | 32 | 42 | 47  | 21        | 8     | 40       |
| 04      | 16 | 21 | 25  | 12         | 5     | 26 | 20 | 46  | 1 | 52       | 32 | 42 | 47  | 21        | 0     | 40<br>60 |
| 05      | 16 | 21 | 25  | 12         | 5     | 26 | 34 | 60  | 1 | 52       | 32 | 42 | 47  | 21        | 0     | 60       |
| 06      | 16 | 21 | 25  | 12         | 5     | 26 | 58 | 84  | 1 | 54       | 32 | 42 | 47  | 21        | 8     | 60       |
| 07      | 16 | 21 | 25  | 12         | 5     | 34 | 20 | 54  | 1 | 55       | 32 | 42 | 47  | 21        | 8     | 70       |
| 08      | 16 | 21 | 25  | 12         | 5     | 34 | 34 | 68  | 1 | 56       | 32 | 42 | 47  | 21        | 8     | 70       |
| 09      | 16 | 21 | 25  | 12         | 5     | 34 | 60 | 94  | 1 | 57       | 32 | 42 | 47  | 21        | 8     | 70       |
| 10      | 16 | 21 | 25  | 12         | 5     | 46 | 20 | 66  |   | 58       | 32 | 42 | 47  | 21        | 8     | 90       |
| 11      | 16 | 21 | 25  | 12         | 5     | 46 | 34 | 80  |   | 59       | 32 | 42 | 47  | 21        | 8     | 90       |
| 12      | 16 | 21 | 25  | 12         | 5     | 46 | 60 | 106 |   | 60       | 32 | 42 | 47  | 21        | 8     | 90       |
| 12      | 10 | 21 | 25  | 12         | 5     | 40 | 20 | 00  | + | 61       | 42 | 52 | 59  | 21        | 10    | 60       |
| 13      | 10 | 21 | 25  | 12         | 5     | 00 | 20 | 00  | + | 62       | 42 | 52 | 59  | 21        | 10    | 60       |
| 14      | 16 | 21 | 25  | 12         | 5     | 60 | 34 | 94  | + | 63       | 42 | 52 | 59  | 21        | 10    | 60       |
| 15      | 16 | 21 | 25  | 12         | 5     | 60 | 60 | 120 | + | 64       | 42 | 52 | 59  | 21        | 10    | 70       |
| 16      | 20 | 26 | 31  | 17         | 6     | 26 | 20 | 46  | - | 65       | 42 | 52 | 59  | 21        | 10    | 70       |
| 17      | 20 | 26 | 31  | 17         | 6     | 26 | 34 | 60  | - | 66       | 42 | 52 | 59  | 21        | 10    | 70       |
| 18      | 20 | 26 | 31  | 17         | 6     | 26 | 60 | 86  | 4 | 67       | 42 | 52 | 59  | 21        | 10    | 90       |
| 19      | 20 | 26 | 31  | 17         | 6     | 34 | 20 | 54  | _ | 68       | 42 | 52 | 59  | 21        | 10    | 90       |
| 20      | 20 | 26 | 31  | 17         | 6     | 34 | 34 | 68  |   | 68       | 42 | 52 | 59  | 21        | 10    | 90       |
| 21      | 20 | 26 | 31  | 17         | 6     | 34 | 60 | 94  |   | 69<br>70 | 42 | 52 | 59  | 21        | 10    | 90       |
| 22      | 20 | 26 | 31  | 17         | 6     | 46 | 20 | 66  |   | 70       | 42 | 52 | 59  | 21        | 10    | 115      |
| 23      | 20 | 26 | 31  | 17         | 6     | 46 | 34 | 80  |   | 72       | 42 | 52 | 59  | 21        | 10    | 115      |
| 24      | 20 | 26 | 31  | 17         | 6     | 46 | 60 | 106 |   | 73       | 42 | 52 | 59  | 21        | 10    | 140      |
| 25      | 20 | 26 | 31  | 17         | 6     | 60 | 20 | 80  |   | 74       | 42 | 52 | 59  | 21        | 10    | 140      |
| 26      | 20 | 26 | 31  | 17         | 6     | 60 | 34 | 94  |   | 75       | 42 | 52 | 59  | 21        | 10    | 140      |
| 27      | 20 | 26 | 31  | 17         | 6     | 60 | 60 | 120 |   |          |    |    |     |           |       |          |
| 28      | 20 | 26 | 31  | 17         | 6     | 70 | 20 | 90  |   |          |    |    |     |           |       |          |
| 29      | 20 | 26 | 31  | 17         | 6     | 70 | 34 | 104 |   |          |    |    |     |           |       |          |
| 30      | 20 | 26 | 31  | 17         | 6     | 70 | 60 | 130 |   |          |    |    |     |           |       |          |
| 31      | 24 | 32 | 37  | 17         | 7     | 26 | 20 | 46  | 1 |          |    |    |     |           |       |          |
| 32      | 24 | 32 | 37  | 17         | 7     | 26 | 34 | 60  |   |          |    |    |     |           |       |          |
| 33      | 24 | 32 | 37  | 17         | 7     | 26 | 60 | 86  |   |          |    |    |     |           |       |          |
| 34      | 24 | 32 | 37  | 17         | 7     | 34 | 20 | 54  |   |          |    |    |     |           |       |          |
| 35      | 24 | 32 | 37  | 17         | 7     | 34 | 34 | 68  |   |          |    |    |     |           |       |          |
| 36      | 24 | 32 | 37  | 17         | 7     | 34 | 60 | 94  |   |          |    |    |     |           |       |          |
| 37      | 24 | 32 | 37  | 17         | 7     | 46 | 20 | 66  |   |          |    |    |     |           |       |          |
| 38      | 24 | 32 | 27  | 17         | 7     | 46 | 34 | 80  |   |          |    |    |     |           |       |          |
| 20      | 24 | 32 | 27  | 17         | 7     | 40 | 60 | 106 | - |          |    |    |     |           |       |          |
| 40      | 24 | 32 | 37  | 17         | 7     | 40 | 20 | 100 | - |          |    |    |     |           |       |          |
| 40      | 24 | 32 | 37  | 17         | 7     | 60 | 20 | 80  | - |          |    |    |     |           |       |          |
| 41      | 24 | 32 | 37  | 17         | 7     | 60 | 34 | 94  |   |          |    |    |     |           |       |          |
| 42      | 24 | 32 | 37  | 17         | 7     | 60 | 60 | 120 | - |          |    |    |     |           |       |          |
| 43      | 24 | 32 | 37  | 17         | 7     | 70 | 20 | 90  |   |          |    |    |     |           |       |          |
| 44      | 24 | 32 | 37  | 17         | 7     | 70 | 34 | 104 |   |          |    |    |     |           |       |          |
| 45      | 24 | 32 | 37  | 17         | 7     | 70 | 60 | 130 |   |          |    |    |     |           |       |          |
| 46      | 32 | 42 | 47  | 21         | 8     | 34 | 34 | 68  |   |          |    |    |     |           |       |          |
| 47      | 32 | 42 | 47  | 21         | 8     | 34 | 60 | 94  |   |          |    |    |     |           |       |          |

| Post<br>Diameter<br>A | Length | Catalog<br>Numbers |  | Post<br>Diameter<br>A | Length | Catalog<br>Numbers | Post<br>Diamete<br>A | Length | Catalog<br>Numbers | Post<br>Diameter<br>A | Length    | Catalog<br>Numbers |
|-----------------------|--------|--------------------|--|-----------------------|--------|--------------------|----------------------|--------|--------------------|-----------------------|-----------|--------------------|
|                       | 90     | 510-19900          |  | 32                    | 280    | 510-32280          | 44                   | 330    | 510-44330          | 62                    | 430       | 510-63430          |
|                       | 100    | 510-19100          |  | 52                    | 300    | 510-32300          |                      | 360    | 510-44360          | 03                    | 500       | 510-63500          |
|                       | 110    | 510-19110          |  |                       | 150    | 510-40150          |                      | 150    | 510-50150          |                       | 200       | 510-80200          |
| 19                    | 115    | 510-19115          |  |                       | 165    | 510-40165          |                      | 165    | 510-50165          |                       | 215       | 510-80215          |
|                       | 120    | 510-19120          |  |                       | 1/5    | 510-40175          |                      | 1/5    | 510-50175          |                       | 230       | 510-80230          |
|                       | 125    | 510-19125          |  |                       | 190    | 510-40190          |                      | 200    | 510-50190          |                       | 240       | 510-80240          |
|                       | 150    | 510-19150          |  |                       | 200    | 510-40200          |                      | 200    | 510-50200          |                       | 250       | 510-00240          |
|                       | 125    | 510-25125          |  |                       | 215    | 510-40215          |                      | 230    | 510-50230          |                       | 200       | 510-80230          |
|                       | 135    | 510-25135          |  | 40                    | 230    | 510-40230          |                      | 240    | 510-50240          | 80                    | 280       | 510-80280          |
|                       | 140    | 510-25140          |  | 40                    | 240    | 510-40240          | 50                   | 250    | 510-50250          |                       | 300       | 510-80300          |
|                       | 145    | 510-25145          |  |                       | 250    | 510-40250          |                      | 265    | 510-50265          |                       | 330       | 510-80330          |
|                       | 150    | 510-25150          |  |                       | 200    | 510-40205          |                      | 280    | 510-50280          |                       | 360       | 510-80360          |
| 25                    | 165    | 510-25165          |  |                       | 200    | 510-40200          |                      | 300    | 510-50300          |                       | 430       | 510-80430          |
|                       | 175    | 510-25175          |  |                       | 300    | 510-40300          |                      | 315    | 510-50315          |                       | 500       | 510-80500          |
|                       | 190    | 510-25190          |  | 1 - F                 | 315    | 510-40315          |                      | 330    | 510-50330          |                       |           |                    |
|                       | 200    | 510-25200          |  |                       | 330    | 510-40330          |                      | 360    | 510-50360          |                       |           |                    |
|                       | 215    | 510-25215          |  |                       | 360    | 510-40360          |                      | 380    | 510-50380          |                       |           |                    |
|                       | 230    | 510-25230          |  |                       | 150    | 510-44150          |                      | 400    | 510-50400          |                       | <b></b> A |                    |
|                       | 125    | 510-32125          |  |                       | 165    | 510-44165          |                      | 430    | 510-50430          |                       |           |                    |
|                       | 135    | 510-32135          |  |                       | 175    | 510-44175          |                      | 460    | 510-50460          |                       | T E       |                    |
|                       | 140    | 510-32140          |  |                       | 190    | 510-44190          |                      | 200    | 510-63200          |                       |           |                    |
|                       | 145    | 510-32145          |  |                       | 200    | 510-44200          |                      | 215    | 510-03215          |                       |           |                    |
|                       | 150    | 510-32150          |  |                       | 215    | 510-44215          |                      | 240    | 510-63230          |                       |           |                    |
|                       | 165    | 510-32165          |  |                       | 230    | 510-44230          |                      | 250    | 510-63250          |                       | !   _     |                    |
| 32                    | 175    | 510-32175          |  | 44                    | 240    | 510-44240          |                      | 265    | 510-63265          |                       | i I       |                    |
|                       | 190    | 510-32190          |  |                       | 250    | 510-44250          | 63                   | 280    | 510-63280          |                       |           |                    |
|                       | 200    | 510-32200          |  |                       | 265    | 510-44265          |                      | 300    | 510-63300          |                       |           |                    |
|                       | 215    | 510-32215          |  |                       | 280    | 510-44280          |                      | 315    | 510-63315          |                       |           |                    |
|                       | 230    | 510-32230          |  |                       | 290    | 510-44290          | 90<br>90<br>00       | 330    | 510-63330          |                       |           |                    |
|                       | 250    | 510-32250          |  |                       | 300    | 510-44300          |                      | 360    | 510-63360          |                       | LL        | J                  |
|                       | 260    | 510-32260          |  |                       | 315    | 510-44315          |                      | 380    | 510-63380          |                       |           |                    |

|           | Diame                  | ter                           | No     | minal Len | gth       | Ontoine            |           |           |
|-----------|------------------------|-------------------------------|--------|-----------|-----------|--------------------|-----------|-----------|
| Post<br>A | Flange<br>B            | С                             | ш      | F         | L         | Catalog<br>Numbers |           |           |
|           |                        |                               |        | 70        | 100       | 508-25100          |           |           |
|           |                        |                               |        | 80        | 110       | 508-25110          |           |           |
|           |                        |                               |        | 85        | 115       | 508-25115          |           |           |
|           |                        |                               |        | 90        | 120       | 508-25120          |           |           |
|           |                        |                               |        | 95        | 125       | 508-25125          |           |           |
|           |                        |                               |        | 105       | 135       | 508-25135          |           |           |
| 25        | 33                     | <u>24.961</u>                 | 30     | 110       | 140       | 508-25140          |           |           |
|           |                        | 24.953                        |        | 115       | 145       | 508-25145          |           |           |
|           |                        |                               |        | 120       | 150       | 508-25150          |           |           |
|           |                        |                               |        | 135       | 165       | 508-25165          |           |           |
|           |                        |                               |        | 145       | 175       | 508-25175          |           |           |
|           |                        |                               |        | 160       | 190       | 508-25190          |           |           |
|           |                        |                               |        | 170       | 200       | 508-25200          |           |           |
|           |                        |                               |        | 185       | 215       | 508-25215          |           |           |
|           |                        |                               |        | 200       | 230       | 508-25230          |           |           |
|           |                        |                               |        | 85        | 115       | 508-32115          |           |           |
|           |                        |                               |        | 90        | 120       | 508-32120          |           |           |
|           |                        |                               |        | 95        | 125       | 508-32125          |           |           |
|           |                        |                               |        | 105       | 135       | 508-32135          |           |           |
|           |                        |                               |        | 110       | 140       | 508-32140          |           |           |
|           |                        |                               |        | 115       | 145       | 508-32145          |           |           |
| 32        | 10                     | 31 961                        | 30     | 120       | 150       | 508-32150          |           |           |
| 32        | 40                     | <u>31.961</u><br>31.953       | 31.961 | 30        | 135       | 165                | 508-32165 |           |
|           |                        |                               |        | 145       | 1/5       | 508-32175          |           |           |
|           |                        |                               |        | 160       | 190       | 508-32190          |           |           |
|           |                        |                               |        | 1/0       | 200       | 508-32200          |           |           |
|           |                        |                               |        | 185       | 215       | 508-32215          |           |           |
|           |                        |                               |        | 200       | 230       | 508-32230          |           |           |
|           |                        |                               |        | 220       | 200       | 508-32250          |           |           |
|           |                        |                               |        | 250       | 200       | 500-32200          |           |           |
|           |                        |                               |        |           |           | 270                | 300       | 509 40115 |
|           |                        |                               |        | 94        | 110       | 508 40120          |           |           |
|           |                        |                               |        | 04        | 120       | 500-40120          |           |           |
|           |                        |                               |        | 09        | 125       | 508 40125          |           |           |
|           |                        |                               |        | 104       | 140       | 508 40140          |           |           |
|           |                        |                               |        | 104       | 145       | 508 40145          |           |           |
|           |                        |                               |        | 114       | 145       | 508-40145          |           |           |
| 40        | 40                     | 20.050                        | 20     | 129       | 165       | 508-40165          |           |           |
| 40        | 48                     | 39.959                        | 36     | 139       | 175       | 508-40175          |           |           |
|           |                        | 39.951                        |        | 154       | 190       | 508-40190          |           |           |
|           |                        |                               |        | 164       | 200       | 508-40200          |           |           |
|           |                        |                               |        | 179       | 215       | 508-40215          |           |           |
|           |                        |                               |        | 194       | 230       | 508-40230          |           |           |
|           |                        |                               |        | 214       | 250       | 508-40250          |           |           |
|           |                        |                               |        | 244       | 280       | 508-40280          |           |           |
|           |                        |                               |        | 264       | 300       | 508-40300          |           |           |
|           |                        |                               |        | 107       | 150       | 508-44150          |           |           |
|           |                        |                               |        | 122       | 165       | 508-44165          |           |           |
|           | 44 57 <u>43.960</u> 43 |                               | 132    | 175       | 508-44175 |                    |           |           |
|           |                        |                               |        | 147       | 190       | 508-44190          |           |           |
|           |                        | E7 42.000 40                  | 157    | 200       | 508-44200 |                    |           |           |
| 44        |                        | <u>43.960</u><br>43.952<br>43 | 172    | 215       | 508-44215 |                    |           |           |
|           |                        |                               |        | 187       | 230       | 508-44230          |           |           |
|           |                        |                               | 43.902 |           | 207       | 250                | 508-44250 |           |
|           |                        |                               |        | 237       | 280       | 508-44280          |           |           |
|           |                        |                               |        | 257       | 300       | 508-44300          |           |           |
|           |                        |                               |        | 317       | 360       | 508-44360          |           |           |

|           | Diame       | ter    | N  | lominal L | ength |                    |           |           |           |
|-----------|-------------|--------|----|-----------|-------|--------------------|-----------|-----------|-----------|
| Post<br>A | Flange<br>B | С      | ш  | F         | L     | Catalog<br>Numbers |           |           |           |
|           |             |        |    | 101       | 150   | 508-50150          |           |           |           |
|           |             |        |    | 116       | 165   | 508-50165          |           |           |           |
|           |             |        |    | 126       | 175   | 508-50175          |           |           |           |
|           |             |        |    | 141       | 190   | 508-50190          |           |           |           |
|           |             |        |    | 151       | 200   | 508-50200          |           |           |           |
| 50        | 62          | 40.050 | 40 | 166       | 215   | 508-50215          |           |           |           |
| 50        | 63          | 49.959 | 49 | 181       | 230   | 508-50230          |           |           |           |
|           |             | 49.951 |    | 201       | 250   | 508-50250          |           |           |           |
|           |             |        |    | 231       | 280   | 508-50280          |           |           |           |
|           |             |        |    | 251       | 300   | 508-50300          |           |           |           |
|           |             |        |    |           | 281   | 330                | 508-50330 |           |           |
|           |             |        |    |           | 311   | 360                | 508-50360 |           |           |
|           |             |        |    | 376       | 425   | 508-50425          |           |           |           |
|           |             |        |    | 451       | 500   | 508-50500          |           |           |           |
|           |             |        |    | 151       | 200   | 508-63200          |           |           |           |
|           |             |        |    |           | 166   | 215                | 508-63215 |           |           |
|           |             |        |    | 181       | 230   | 508-63230          |           |           |           |
| 62        | 76          | 62.050 | 40 | 201       | 250   | 508-63250          |           |           |           |
| 03        | 10          | 02.909 | 49 | 231       | 280   | 508-63280          |           |           |           |
|           |             | 62.951 |    |           | 251   | 300                | 508-63300 |           |           |
|           |             |        |    |           | 281   | 330                | 508-63330 |           |           |
|           |             |        |    | 311       | 360   | 508-63360          |           |           |           |
|           |             |        |    | 381       | 430   | 508-63430          |           |           |           |
|           |             |        |    | 451       | 500   | 508-63500          |           |           |           |
|           |             |        |    | 138       | 200   | 508-80200          |           |           |           |
|           |             |        |    | 153       | 215   | 508-80215          |           |           |           |
|           |             |        |    | 168       | 230   | 508-80230          |           |           |           |
|           |             |        |    | 188       | 250   | 508-80250          |           |           |           |
| 80        | 93          | 79.959 | 62 | 218       | 280   | 508-80280          |           |           |           |
|           |             | 79.951 |    | 238       | 300   | 508-80300          |           |           |           |
|           |             |        |    |           |       |                    | 268       | 330       | 508-80330 |
|           |             |        |    |           |       | 298                | 360       | 508-80360 |           |
|           |             |        |    | 368       | 430   | 508-80430          |           |           |           |
|           |             |        |    | 438       | 500   | 508-80500          |           |           |           |

The Lempco Flanged Demountable Guide Post for plain bearing assemblies is manufactured from electric furnace 52100 chromium tool steel, through-hardened and precision ground for longest wear with all Lempco plain bearing bushings, steel and bronze precision grade.

This removable type post is tap fit into the dieholder bore with the flange flush to the ground surface of the shoe. It is secured with clamps and cap screws. It may be removed, and on re-installation the die set will register accurately. The end radius is ground with the tool marks running in the direction of vertical motion to minimize wear from engagement and disengagement.



| Diameter<br>A | в      | Length | с  | D   | Catalog<br>Numbers |
|---------------|--------|--------|----|-----|--------------------|
|               |        | 115    |    | 80  | 509-25115          |
|               |        | 125    |    | 90  | 509-25125          |
|               |        | 140    |    | 105 | 509-25140          |
| 25            | 38 227 | 150    | 35 | 115 | 509-25150          |
| 20            | 00.227 | 165    | 00 | 130 | 509-25165          |
|               |        | 175    |    | 140 | 509-25175          |
|               |        | 190    |    | 155 | 509-25190          |
|               |        | 200    |    | 165 | 509-25200          |
|               |        | 125    |    | 77  | 509-32125          |
|               |        | 140    |    | 92  | 509-32140          |
|               |        | 150    |    | 102 | 509-32150          |
|               |        | 165    |    | 117 | 509-32165          |
| 32            | 45.212 | 175    | 48 | 127 | 509-32175          |
|               |        | 190    |    | 142 | 509-32190          |
|               |        | 200    |    | 152 | 509-32200          |
|               |        | 215    |    | 167 | 509-32215          |
|               |        | 230    |    | 182 | 509-32230          |
|               |        | 175    |    | 115 | 509-40175          |
|               |        | 190    |    | 130 | 509-40190          |
|               |        | 200    |    | 140 | 509-40200          |
| 40            | 54.229 | 215    | 60 | 155 | 509-40215          |
|               |        | 230    | 00 | 170 | 509-40230          |
|               |        | 240    |    | 180 | 509-40240          |
|               |        | 250    |    | 190 | 509-40250          |
|               |        | 190    |    | 117 | 509-44190          |
|               |        | 200    |    | 127 | 509-44200          |
| 11            | 58 216 | 215    | 73 | 142 | 509-44215          |
|               | 50.210 | 230    | 15 | 157 | 509-44230          |
|               |        | 240    |    | 167 | 509-44240          |
|               |        | 250    |    | 177 | 509-44250          |
|               |        | 200    |    | 114 | 509-50200          |
|               |        | 230    |    | 144 | 509-50230          |
| 50            | 65.227 | 250    | 86 | 164 | 509-50250          |
|               |        | 280    |    | 194 | 509-50280          |
|               |        | 300    |    | 214 | 509-50300          |
|               |        | 330    |    | 244 | 509-50330          |
|               |        | 230    |    | 132 | 509-63230          |
|               |        | 250    |    | 152 | 509-63250          |
| 62            | 91 000 | 280    | 09 | 182 | 509-63280          |
| 03            | 81.229 | 300    | 90 | 202 | 509-63300          |
|               |        | 330    |    | 232 | 509-63330          |
|               |        | 360    |    | 262 | 509-63360          |

Shoulder Guide Posts are intended for use with Shoulder Guide Post Bushings and therefore the mounting diameters of the posts are the same as those of related bushings on the preceding page. These mounting diameters are a minimum of .007" over the size of Precision Press Fit Bushings and .009" over Precision Demountable Bushings so as to allow grind stock for precision fitting in the construction of new sets and to allow reboring where necessary to replace guide posts and bushings in used sets.

Lempco Shoulder Guide Posts are manufactured of electric furnace 52100 tool steel, through hardened and precision ground. Mounting instructions on Page 122 of this catalog should be strictly followed. Mounting diameter lead edge should be smoothly blended after grinding to prevent hole broaching or drift during assembly. The end radius of the guide post is ground with the tool marks running in the direction of vertical motion to minimize wear from engagement and disengagement.

Other diameters and lengths not listed can be provided on special order.







| Do | D1 | D2 | D3  | DA  | E  | ц |    | C  | omprin | nento da | a Flang | e F (mn | n)  |     |
|----|----|----|-----|-----|----|---|----|----|--------|----------|---------|---------|-----|-----|
| Dp |    | DZ | DS  | 04  |    |   | 20 | 35 | 50     | 65       | 80      | 100     | 120 | 140 |
| 20 | 28 | 38 | 42  | 47  | 22 | 5 | 20 | 35 | 50     |          |         |         |     |     |
| 25 | 33 | 45 | 49  | 54  | 25 | 5 |    | 35 | 50     | 65       |         |         |     |     |
| 32 | 40 | 54 | 58  | 63  | 30 | 5 |    |    | 50     | 65       | 80      |         |     |     |
| 40 | 48 | 65 | 70  | 75  | 35 | 5 |    |    | 50     | 65       | 80      | 100     |     |     |
| 50 | 62 | 81 | 88  | 93  | 48 | 5 |    |    |        | 65       | 80      | 100     | 120 |     |
| 63 | 75 | 95 | 103 | 108 | 48 | 5 |    |    |        |          |         | 100     | 120 | 140 |



| De | D1 | D2 | D3 | DA  | (  | Comprir | nento d | a Flange | e F (mm | 1) |
|----|----|----|----|-----|----|---------|---------|----------|---------|----|
| Dp | DI | DZ | 03 | D4  | 20 | 25      | 29      | 32       | 36      | 44 |
| 20 | 28 | 38 | 36 | 47  | 20 | 25      |         |          |         |    |
| 25 | 33 | 45 | 43 | 54  | 20 | 25      |         |          |         |    |
| 32 | 40 | 54 | 50 | 63  | 20 | 25      |         | 32       |         |    |
| 40 | 48 | 65 | 64 | 75  |    |         | 29      |          | 36      | 44 |
| 50 | 62 | 81 | 79 | 93  |    |         | 29      |          | 36      | 44 |
| 63 | 75 | 95 | 94 | 108 |    |         | 29      |          | 36      | 44 |





Acessórios utilizados



Material Alumínio ou bronze D1 Diâmetro do pino

- L Comprimento total
- X Distância entre a face e o canal interno
- e Esfera

|         |     |   |    | C  | omprime | ento L (r | nm) |     |     |
|---------|-----|---|----|----|---------|-----------|-----|-----|-----|
| D1      | X   | е | 40 | 52 | 63      | 80        | 100 | 125 | 140 |
| 24 - 25 | 4.2 | 4 | 40 | 52 | 63      | 80        |     |     | 1   |
| 30 - 32 | 4.9 | 4 | 40 | 52 | 63      | 80        | 100 | 1   |     |
| 38 - 40 | 5.7 | 4 |    | 52 | 63      | 80        | 100 | 125 |     |
| 48 - 50 | 6.7 | 6 |    |    | 63      | 80        | 100 | 125 |     |
| 63      | 6.7 | 6 |    |    |         |           |     | 125 |     |
| 80      | 6.7 | 6 |    |    |         |           |     |     | 140 |

### APÊNDICE VII – ALGUNS MODELOS DE BASES PARA ESTAMPOS SIMPLES DE CORTE



T

E





ALL STEEL

| c - 16                    |                                       |                 |                                          |            |                                         |             | NOM                                                                | INAL                                                           | DI       | MENSIC                           | DN  | IS                    |                                   |     |                                        |    |                                      |     |
|---------------------------|---------------------------------------|-----------------|------------------------------------------|------------|-----------------------------------------|-------------|--------------------------------------------------------------------|----------------------------------------------------------------|----------|----------------------------------|-----|-----------------------|-----------------------------------|-----|----------------------------------------|----|--------------------------------------|-----|
|                           | Le<br>t<br>Rie                        | eft<br>o<br>ght | Froi<br>to<br>Bac                        | nt<br>:k   | For<br>Round<br>Dies                    |             | Die<br>Holder                                                      | Punc<br>Holde                                                  | :h<br>er |                                  |     |                       |                                   |     |                                        |    |                                      |     |
| $(-)_{+}$                 | 4                                     | 4               | B<br>(BE                                 | 3)         |                                         | Τ           | L                                                                  | к                                                              |          | с                                | Τ   | D                     | E                                 | Τ   | F                                      | Τ  | G                                    |     |
|                           | 4<br>reg.                             | 101             | 4<br>(4 <sup>3</sup> / <sub>8</sub> )    | 101<br>111 | 4 10                                    | 1 1         | <sup>3</sup> /8 34                                                 | 11/4                                                           | 32       | 4 <sup>7</sup> /8 12             | 3 3 | 31/4 82               | 2 <sup>7</sup> /16 6 <sup>-</sup> | 1.  | <b>1</b> ½ 3                           | 38 | 5 <sup>1</sup> /2                    | 139 |
| SEE DIAMETER<br>IN TABLES | 4<br>rev.                             | 101             | 5<br>(5 <sup>3</sup> /8)                 | 127<br>136 |                                         | 1           | <sup>3</sup> /8 34                                                 | 11/4                                                           | 32       | 5 <sup>7</sup> /8 14             | 9 4 | 4 101                 | 2 <sup>11</sup> /16 66            | в . | 11/2 3                                 | 38 | 6 <sup>1</sup> /2                    | 165 |
|                           | 4<br>rev.                             | 101             | 6<br>(6 <sup>3</sup> /8)                 | 152<br>162 |                                         | 1           | 1/2 38                                                             | 11/4                                                           | 32       | 6 <sup>7</sup> /8 17             | 5 5 | 5 <sup>1</sup> /8 130 | 3 <sup>1</sup> /4 82              | 2   | 11/2 3                                 | 38 | <b>7</b> 1/2                         | 190 |
|                           | 5<br>reg.                             | 127             | 4<br>(4 <sup>3</sup> / <sub>8</sub> )    | 101<br>111 | 41/2 11                                 | 4 1         | <sup>3</sup> / <sub>8</sub> 34                                     | 11/4                                                           | 32       | 4 <sup>7</sup> /8 12             | 3 4 | 4 101                 | 2 <sup>3</sup> /16 5              | 5   | <b>1</b> ½ 3                           | 38 | <b>5</b> <sup>1</sup> / <sub>2</sub> | 139 |
|                           | 5<br>reg.                             | 127             | 5<br>(5 <sup>3</sup> /8)                 | 127<br>136 | 5 12                                    | 7 1         | 1/2 38                                                             | 1 <sup>1</sup> /4                                              | 32       | 5 <sup>7</sup> /8 14             | 9 4 | 4 101                 | 2 <sup>11</sup> /16 66            | в . | <b>1</b> ½ 3                           | 38 | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165 |
|                           | 5 <sup>1</sup> /2<br>kick             | 140             | 3 <sup>7</sup> /8<br>(4 <sup>1</sup> /8) | 98<br>104  | 4 10                                    | 1 15        | <sup>5</sup> / <sub>16</sub> 23                                    | 7/ <sub>8</sub>                                                | 22       | 4 <sup>1</sup> / <sub>2</sub> 11 | 4 5 | 51/8 130              | 1 <sup>15</sup> /16 49            | , , | 1 <sup>5</sup> /32 2                   | 29 | 5                                    | 127 |
|                           | 6 <sup>1</sup> / <sub>2</sub><br>reg. | 165             | 4<br>(4 <sup>3</sup> /8)                 | 101<br>111 | 5 12                                    | 7<br>7<br>1 | 1 <sup>1</sup> / <sub>2</sub> 38                                   | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>4</sub> | 32<br>32 | 4 <sup>7</sup> /8 12             | 3 5 | 51/8 130              | <b>2</b> <sup>1</sup> /8 5        | 3.  | 11/2 3                                 | 38 | 5 <sup>1</sup> /2                    | 140 |
|                           | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 165             | 6                                        | 152        | 61/2 16                                 | 1           | <sup>1</sup> / <sub>2</sub> 38<br>  <sup>1</sup> / <sub>2</sub> 38 | 1 <sup>1</sup> /4<br>1 <sup>3</sup> /4                         | 32<br>44 | 6 <sup>7</sup> /a 17             |     | 51/2 120              | 33/10 8                           |     | 11/2 (                                 | 28 | 71/2                                 | 10( |
|                           | reg.                                  |                 | (6 <sup>3</sup> /8)                      | 162        | 012 10                                  | 2<br>2<br>2 | 2 50<br>2 50                                                       | 1 <sup>1</sup> /4<br>1 <sup>3</sup> /4                         | 32<br>44 | 0 / ° / /                        |     | 578 130               | 0716 0                            | Ί   | 172 0                                  | Ū  | 1 12                                 | 130 |
|                           | <b>7</b> <sup>1</sup> / <sub>2</sub>  | 190             | 5                                        | 127        | 5 <sup>3</sup> /4 14                    | 1           | 1 <sup>1</sup> / <sub>2</sub> 38                                   | 1 <sup>1</sup> /4<br>1 <sup>3</sup> /4                         | 32<br>44 | 5 <sup>7</sup> /8 14             | 96  | 6 <sup>1</sup> /2 165 | 2 <sup>3</sup> /4 6               | , I | <b>1</b> <sup>1</sup> / <sub>2</sub> : | 38 | 6 <sup>1</sup> /2                    | 165 |
|                           | reg.                                  |                 | (5 <sup>3</sup> /8)                      | 136        |                                         | 2           | 2 50<br>2 50                                                       | 1 <sup>1</sup> /4<br>1 <sup>3</sup> /4                         | 32<br>44 |                                  |     |                       |                                   |     |                                        |    |                                      |     |
|                           | <b>7</b> 1/2                          | 190             | 7                                        | 177        | <b>7</b> <sup>1</sup> / <sub>2</sub> 19 | 1           | 1 <sup>1</sup> / <sub>2</sub> 38                                   | 1 <sup>1</sup> /4<br>1 <sup>3</sup> /4                         | 32<br>44 | 7 <sup>7</sup> /₅ 20             | 0   | 6 <sup>1</sup> /2 165 | 3 <sup>11</sup> /16 9             | , . | 11/2                                   | 28 | 8 <sup>1</sup> /2                    | 216 |
|                           | reg.                                  |                 | (7 <sup>3</sup> /8)                      | 187        | 12 10                                   | 2<br>2      | 2 50<br>2 50                                                       | 1 <sup>1</sup> /4<br>1 <sup>3</sup> /4                         | 32<br>44 |                                  |     |                       |                                   |     | . /2 (                                 |    | - 12                                 | 2.0 |
| PLAIN BEARING             | 8 <sup>1</sup> /2<br>long             | 206             | 4<br>(4 <sup>3</sup> / <sub>8</sub> )    | 101<br>111 |                                         | 1<br>2      | 1 <sup>1</sup> / <sub>2</sub> 38<br>2 50                           | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>4</sub> | 32<br>32 | 47/8 12                          | 3 7 | 73/4 196              | 2 <sup>5</sup> /16 56             | 8.  | <b>1</b> ½ 3                           | 38 | <b>5</b> <sup>1</sup> / <sub>2</sub> | 140 |

| c <u>1'</u><br>16                 |                                       |     |                                       |     | NC  |    | AL DI              | ME  | NSIO                                  | NS  |                                        |     |                                                                |                 |
|-----------------------------------|---------------------------------------|-----|---------------------------------------|-----|-----|----|--------------------|-----|---------------------------------------|-----|----------------------------------------|-----|----------------------------------------------------------------|-----------------|
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | Mi<br>Sh<br>Hei                                                | n.<br>ut<br>ght |
|                                   | N                                     | 1   | N                                     |     |     | 0  | R                  |     | S                                     |     | т                                      |     | L                                                              |                 |
|                                   | 6 <sup>1</sup> /4                     | 158 | 3 <sup>15</sup> / <sub>16</sub>       | 100 | 1   | 25 | 6                  | 152 | <b>7</b> 1/2                          | 190 | 6 <sup>3/8</sup>                       | 162 | 5 <sup>1</sup> /4                                              | 133             |
|                                   | 7                                     | 177 | 4 <sup>3</sup> / <sub>16</sub>        | 106 | 1   | 25 | 6                  | 152 | 7 <sup>3</sup> /4                     | 196 | 7 <sup>3</sup> /8                      | 187 | 5 <sup>1</sup> /4                                              | 133             |
| T                                 | 8 <sup>1</sup> /8                     | 206 | 4 <sup>3</sup> /4                     | 120 | 1   | 25 | 6                  | 152 | 8 <sup>1</sup> /8                     | 206 | 8 <sup>3</sup> /8                      | 212 | 5 <sup>1</sup> /4                                              | 133             |
| M G R S                           | 7                                     | 177 | 3 <sup>11</sup> / <sub>16</sub>       | 93  | 1   | 25 | 6 <sup>3</sup> /4  | 171 | 8 <sup>1</sup> /4                     | 209 | 6 <sup>3</sup> /8                      | 162 | 5 <sup>1</sup> /4                                              | 133             |
|                                   | 7                                     | 177 | 4 <sup>3</sup> / <sub>16</sub>        | 106 | 1   | 25 | 6 <sup>3</sup> /4  | 171 | 81/4                                  | 209 | <b>7</b> ³/8                           | 187 | 5 <sup>1</sup> /4                                              | 133             |
|                                   | <b>7</b> <sup>7</sup> / <sub>16</sub> | 189 | <b>3</b> <sup>3</sup> / <sub>32</sub> | 78  | 3/4 | 19 | 6 <sup>3</sup> /4  | 171 | <b>7</b> <sup>3</sup> /4              | 196 | <b>5</b> <sup>21</sup> / <sub>32</sub> | 144 | <b>4</b> <sup>1</sup> / <sub>2</sub>                           | 114             |
| L. CÚ                             | 8 <sup>1</sup> /8                     | 206 | <b>3</b> <sup>5</sup> /8              | 92  | 1   | 25 | <b>8</b> 5/8       | 218 | <b>10</b> <sup>1</sup> / <sub>2</sub> | 266 | 6 <sup>3/8</sup>                       | 162 | 5 <sup>1</sup> / <sub>4</sub><br>5 <sup>1</sup> / <sub>2</sub> | 133<br>140      |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 5 <sup>1</sup> /4                                              | 133             |
|                                   | 01/                                   |     |                                       |     |     |    | 05/                |     | 401/                                  |     | 02/                                    |     | 5 <sup>3</sup> /4                                              | 146             |
| <u>⊎</u> data<br>L data<br>L data | 8'/8                                  | 206 | 4''/16                                | 119 | 1   | 25 | 8º/8               | 218 | 10 1/2                                | 266 | 83/8                                   | 212 | 5 <sup>3</sup> /4                                              | 146             |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 6                                                              | 152             |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 5 <sup>1</sup> /4                                              | 133             |
| BALL BEARING                      | 01/-                                  | 244 | <b>4</b> 1/.                          | 407 | 1   | 05 | 01/.               | 005 | 11                                    | 070 | 73/-                                   | 407 | 5 <sup>3</sup> /4                                              | 146             |
|                                   | 9.12                                  | 241 | 4 74                                  | 107 | '   | 25 | 914                | 235 |                                       | 219 | 7-78                                   | 107 | 5 <sup>3</sup> /4                                              | 146             |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 6                                                              | 152             |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 5 <sup>1</sup> /4                                              | 133             |
|                                   | <b>9</b> <sup>1</sup> / <sub>2</sub>  | 241 | 5 <sup>3</sup> /10                    | 121 | 1   | 25 | Q1/4               | 225 | 11                                    | 270 | <b>Q</b> <sup>3</sup> /。               | 238 | 5 <sup>3</sup> /4                                              | 146             |
| BB                                | 012                                   | 241 | 0 / 10                                | 101 |     | 20 | 0 /4               | 200 |                                       | 210 | 0 /0                                   | 200 | 5 <sup>3</sup> /4                                              | 146             |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 6                                                              | 152             |
| PLAIN BEARING                     | 10 <sup>3</sup> /4                    | 273 | 3 <sup>13</sup> /16                   | 96  | 1   | 25 | 10 <sup>5</sup> /8 | 269 | 12 <sup>1</sup> /2                    | 317 | 6 <sup>3</sup> /8                      | 162 | 5 <sup>1</sup> /4                                              | 133             |
|                                   |                                       |     |                                       |     |     |    |                    |     |                                       |     |                                        |     | 5 <sup>3</sup> /4                                              | 146             |

| c             |                                |                 |                                   |          |                                      |                 | N                                    | ON | INAL                                 | DI       | MEN               | SIO | NS                 |     |                    |     |                     |    |                    |     |
|---------------|--------------------------------|-----------------|-----------------------------------|----------|--------------------------------------|-----------------|--------------------------------------|----|--------------------------------------|----------|-------------------|-----|--------------------|-----|--------------------|-----|---------------------|----|--------------------|-----|
|               | Le<br>to<br>Rig                | eft<br>o<br>ght | From<br>to<br>Bac                 | nt<br>:k | Fo<br>Rou<br>Die                     | or<br>Ind<br>es | Die<br>Hold                          | er | Punc<br>Hold                         | :h<br>er |                   |     | 2                  |     |                    |     |                     |    | <u>Env</u>         |     |
| ┝╶┼(╌─┤──)╆┍  | A                              | <b>v</b>        | B<br>(BE                          | 3)       |                                      |                 | J                                    |    | к                                    |          | С                 | :   |                    | )   | E                  |     | F                   |    | G                  |     |
|               |                                |                 |                                   |          |                                      |                 | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 8 <sup>1</sup> /2              | 206             | 6                                 | 152      | 7                                    | 177             | 11/2                                 | 38 | 1 <sup>3</sup> /4                    | 44       | 67/2              | 174 | 73/.               | 106 | 31/2               | 70  | 11/2                | 20 | 71/2               | 100 |
| SEE DIAMETER  | reg.                           |                 | (63/8)                            | 162      |                                      |                 | 21/4                                 | 57 | 11/4                                 | 32       | 0 /8              | 114 | 1 /4               | 190 | 5 /8               | 13  | 1 /2                | 30 | 1 12               | 190 |
|               |                                |                 |                                   |          |                                      |                 | 2 <sup>1</sup> /4                    | 57 | 1 <sup>3</sup> /4                    | 44       |                   |     |                    |     |                    |     |                     |    |                    |     |
| T 16          |                                |                 |                                   |          |                                      |                 | 1 <sup>1</sup> /2                    | 38 | 11/4                                 | 32       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 8 <sup>1</sup> /2              | 206             | 8                                 | 203      | <b>8</b> <sup>1</sup> / <sub>2</sub> | 206             | 11/2                                 | 38 | 1 <sup>3</sup> /4                    | 44       | 87/8              | 225 | 7 <sup>3</sup> /4  | 196 | 4 <sup>3</sup> /16 | 106 | 11/2                | 38 | 91/2               | 241 |
|               | reg.                           |                 | (83/8)                            | 212      |                                      |                 | 2                                    | 50 | 11/4                                 | 32       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               |                                |                 |                                   |          |                                      |                 | 2                                    | 50 | 13/4                                 | 44       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               |                                |                 | -                                 |          |                                      |                 | 11/2                                 | 38 | 1 <sup>3</sup> /8                    | 34       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 10                             | 254             | 5                                 | 127      |                                      |                 | 11/2                                 | 38 | 13/4                                 | 44       | 6                 | 152 | 9 <sup>1</sup> /8  | 231 | 3 <sup>3</sup> /16 | 81  | 1 <sup>13</sup> /16 | 45 | 6 <sup>3</sup> /4  | 171 |
|               | long                           |                 | (5%)                              | 136      |                                      |                 | 2                                    | 50 | 1 7/8                                | 34       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               |                                |                 |                                   |          |                                      |                 | 2                                    | 50 | 1%4                                  | 44       |                   |     |                    |     |                    |     |                     |    |                    |     |
| •N•           | 10                             | 254             | 7                                 | 477      |                                      |                 | 15/-                                 | 41 | 1-78                                 | 34       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | reg                            | 204             | (73/a)                            | 187      |                                      |                 | 21/4                                 | 41 | 13/0                                 | 44       | 8                 | 203 | 9 <sup>1</sup> /8  | 231 | 3 <sup>9</sup> /16 | 79  | 1 <sup>13</sup> /16 | 45 | 8 <sup>3</sup> /4  | 222 |
| Ch            | reg.                           |                 | (1 /8)                            | 107      |                                      |                 | 21/4                                 | 57 | 13/4                                 | 34       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               |                                |                 |                                   |          |                                      |                 | 15/0                                 | 41 | 13/0                                 | 34       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 10                             | 254             | 10                                | 254      | 10                                   | 254             | 1 <sup>5</sup> /8                    | 41 | 13/4                                 | 44       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | rea.                           | 201             | (10 <sup>3</sup> / <sub>8</sub> ) | 263      |                                      | 201             | 21/4                                 | 57 | 13/8                                 | 34       | 11                | 279 | 10 <sup>1</sup> /4 | 260 | 5 <sup>1</sup> /4  | 133 | 1 <sup>13</sup> /16 | 45 | 11 <sup>3</sup> /4 | 298 |
|               |                                |                 | (                                 |          |                                      |                 | 21/4                                 | 57 | 13/4                                 | 44       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 11 <sup>1</sup> /4             | 285             | 7                                 | 177      | 8                                    | 203             | 421                                  |    |                                      |          |                   |     |                    |     |                    | 1   |                     |    |                    |     |
|               | reg.                           |                 | (7 <sup>1</sup> / <sub>2</sub> )  | 190      |                                      |                 | 13/4                                 | 44 | 11/2                                 | 38       | 8 <sup>1</sup> /8 | 206 | 101/4              | 260 | 4                  | 101 | 1 <sup>13</sup> /16 | 45 | 8′/8               | 225 |
|               | 121/2                          | 317             | 4                                 | 101      |                                      |                 | 11/                                  |    | 41/                                  |          | F                 | 407 | 101/               | 000 | 29/                | 05  | 413/                | 45 | E3/                |     |
|               | long                           |                 | (4 <sup>3</sup> /8)               | 111      |                                      |                 | 1 1/2                                | 38 | 1 1/2                                | 38       | 5                 | 127 | 10 %               | 260 | 2°/16              | 65  | 1 15/16             | 45 | 5%                 | 146 |
|               |                                |                 |                                   |          |                                      |                 | 1 <sup>1</sup> /2                    | 38 | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 12 <sup>1</sup> /2             | 317             | 6                                 | 152      |                                      |                 | 1 <sup>1</sup> /2                    | 38 | 2                                    | 50       | 71/0              | 181 | 101/               | 260 | 1                  | 101 | 113/40              | 45 | 77/0               | 200 |
|               | long                           |                 | (61/2)                            | 165      |                                      |                 | 2                                    | 50 | 11/2                                 | 38       | 1 10              | 101 | 10 /4              | 200 | 7                  | 101 | 1 /16               | 45 | 1 /0               | 200 |
|               |                                |                 |                                   |          |                                      |                 | 2                                    | 50 | 2                                    | 50       |                   |     |                    |     |                    |     |                     |    |                    |     |
|               | 12 <sup>1</sup> / <sub>2</sub> | 317             | 10                                | 254      | 10 <sup>3</sup> /4                   | 273             | 13/4                                 | 44 | 15/8                                 | 41       | 111/8             | 282 | 14                 | 355 | 5 <sup>3</sup> /8  | 136 | 21/16               | 52 | 12                 | 304 |
|               | reg.                           |                 | (103/8)                           | 263      |                                      |                 |                                      |    |                                      |          |                   |     |                    |     |                    |     |                     |    |                    |     |
| PLAIN BEARING | 15                             | 381             | 7                                 | 177      |                                      |                 | 11/2                                 | 38 | 11/2                                 | 38       | 8 <sup>1</sup> /8 | 206 | 14                 | 355 | 4 <sup>3</sup> /8  | 111 | 2 <sup>1</sup> /16  | 52 | 9                  | 228 |
|               | long                           |                 | $(7^{3}/8)$                       | 187      |                                      |                 | 2                                    | 50 | 11/2                                 | 38       |                   |     | 31.11              |     | and the second     |     |                     |    |                    |     |

| c - 1'                                  |                    |                                                                          |                           |                   | NOM               | INA                    |                                       | NSIO                                  | NS                  |                                 |                                    |                                      |                 |
|-----------------------------------------|--------------------|--------------------------------------------------------------------------|---------------------------|-------------------|-------------------|------------------------|---------------------------------------|---------------------------------------|---------------------|---------------------------------|------------------------------------|--------------------------------------|-----------------|
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | Mii<br>Sh<br>Heig                    | n.<br>ut<br>ght |
| ┆─┤                                     | Μ                  | I                                                                        | N                         |                   | 0                 |                        | R                                     | S                                     |                     | т                               |                                    | L                                    |                 |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 5 <sup>1</sup> /4                    | 133             |
|                                         | 10 <sup>3</sup> /4 | 273                                                                      | <b>4</b> <sup>5</sup> /8  | 117               | 1                 | 25                     | 10 <sup>5</sup> /s 269                | <b>12</b> <sup>1</sup> / <sub>2</sub> | 317                 | <b>8</b> <sup>3</sup> /8        | 212                                | 5 <sup>3</sup> /4                    | 146             |
| SEE DIAMETER                            | 10 /4              | 2/0                                                                      | 470                       |                   |                   | 20                     | 10 /0 200                             | 12 /2                                 | 011                 | 0,0                             | 212                                | 6                                    | 152             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 5 <sup>1</sup> /4                    | 133             |
|                                         | 10 <sup>3</sup> /4 | 273                                                                      | 5 <sup>11</sup> /16       | 144               | 1                 | 25                     | 10 <sup>5</sup> /8 269                | <b>12<sup>1</sup>/</b> 2              | 317                 | 10 <sup>3</sup> /8              | 263                                | 5 <sup>3</sup> /4                    | 146             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 5 <sup>3</sup> /4                    | 146             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6                                    | 152             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6                                    | 152             |
|                                         | 12 <sup>3</sup> /4 | 323                                                                      | 5                         | 127               | 1 <sup>1</sup> /4 | 32                     | 12 <sup>1</sup> /4 311                | 14                                    | 355                 | 7 <sup>13</sup> / <sub>16</sub> | 198                                | 6 <sup>1</sup> /2                    | 152             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6 <sup>1</sup> /2                    | 165             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6                                    | 152             |
| - N -                                   |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6 <sup>1</sup> / <sub>2</sub>        | 165             |
|                                         | 12 <sup>3</sup> /4 | 323                                                                      | 5 <sup>3</sup> /8         | 136               | 11/4              | 32                     | 12 <sup>1</sup> /4 311                | 14                                    | 355                 | 9 <sup>13</sup> /16             | 249                                | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165             |
| L, M                                    |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 7                                    | 177             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6                                    | 152             |
|                                         | 127/-              | 050                                                                      | 71/                       | 470               | 11/.              | 20                     | 121/ 044                              | 127/-                                 | 252                 | 1013/                           | 205                                | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165             |
| L B B B B B B B B B B B B B B B B B B B | 13.18              | 352                                                                      | 1 '/16                    | 179               | 1 7/4             | 32                     | 12.14 311                             | 13.18                                 | 352                 | IZ <sup>™</sup> /16             | 325                                | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 7                                    | 177             |
|                                         | 13 <sup>7</sup> /8 | 352                                                                      | 5 <sup>13</sup> /16       | 147               | 1 <sup>1</sup> /4 | 32                     | 13 <sup>1</sup> /2 342                | 15 <sup>1</sup> /2                    | 393                 | 9 <sup>15</sup> / <sub>16</sub> | 252                                | 6                                    | 152             |
|                                         | 137/8              | 352                                                                      | 4 <sup>3</sup> /8         | 111               | 1 <sup>1</sup> /4 | 32                     | 14 <sup>3</sup> /4 374                | 165/8                                 | 422                 | 6 <sup>13/</sup> 16             | 173                                | 6                                    | 152             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 6                                    | 152             |
|                                         | 137/2              | 252                                                                      | <b>5</b> 13/              | 147               | 11/.              | 22                     | 1/3/ 27/                              | 165/2                                 | 422                 | <b>Q</b> 15/                    | 227                                | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165             |
|                                         | 13-78              | 302                                                                      | J 716                     | 141               | 1 /4              | 32                     | 14 14 314                             | 10-78                                 | 422                 | 0 /16                           | 221                                | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165             |
|                                         |                    |                                                                          |                           |                   |                   |                        |                                       |                                       |                     |                                 |                                    | 7                                    | 177             |
|                                         | 181/8              | <b>46</b> 0                                                              | <b>7</b> 7/ <sub>16</sub> | 188               | 11/2              | 38                     | 14 <sup>3</sup> /4 374                | 16 <sup>3</sup> /4                    | 425                 | 13 <sup>3</sup> /16             | 335                                | 7                                    | 177             |
| PLAIN BEARING                           | 18¹/8              | 460 7 <sup>7</sup> / <sub>16</sub><br>460 6 <sup>7</sup> / <sub>16</sub> | 163                       | 1 <sup>1</sup> /2 | 38                | 17 <sup>1</sup> /4 438 | <b>19</b> <sup>1</sup> / <sub>2</sub> | <b>49</b> 5                           | 10 <sup>3</sup> /16 | 259                             | 6 <sup>1</sup> / <sub>2</sub><br>7 | 165<br>177                           |                 |











BALL BEARING



#### PLAIN BEARING

#### METRIC EQUIVALENTS

| 3/4"               | = 19 mm | 4 <sup>1</sup> /2" | = 114 mm |
|--------------------|---------|--------------------|----------|
| 1"                 | = 25 mm | 43/4"              | = 121 mm |
| 11/4"              | = 32 mm | 5"                 | = 127 mm |
| 1 <sup>1</sup> /2" | = 38 mm | 51/4"              | = 133 mm |
| 1 <sup>3</sup> /4" | = 44 mm | 5 <sup>1</sup> /2" | = 140 mm |
|                    |         | 5 <sup>3</sup> /4" | = 146 mm |

|                        |                          |                                      | NOMI                           | NAL [                                | DIMEN                                       | ISION                          | IS                                                                                                                               |                                                                                                                                  |                 |                                                                                                                                  |
|------------------------|--------------------------|--------------------------------------|--------------------------------|--------------------------------------|---------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| SIZE                   | LR                       | F                                    | FF                             | FB                                   | Ρ                                           | PP                             | DH                                                                                                                               | PH                                                                                                                               | POST<br>DIA.    | L                                                                                                                                |
| <b>0503</b><br>133/84  | 5 <sup>1</sup> /4<br>133 | 3 <sup>5/</sup> 16<br>84             | <b>3</b><br>76                 | 4 <sup>7</sup> / <sub>8</sub><br>123 | 2 <sup>1</sup> /8                           | 1 <sup>1</sup> /2<br>38        | 1<br>1 <sup>1</sup> /4                                                                                                           | 1<br>1                                                                                                                           | <sup>3</sup> /4 | 4 <sup>1</sup> / <sub>4</sub><br>4 <sup>3</sup> / <sub>4</sub>                                                                   |
| <b>0504</b><br>133/109 | 5 <sup>1</sup> /4<br>133 | 4 <sup>5</sup> /16<br>109            | 3 <sup>15/</sup> 16<br>100     | 5 <sup>7</sup> /8<br>149             | 2 <sup>1</sup> /8                           | 1 <sup>1</sup> /2<br>38        | 1<br>1 <sup>1</sup> /4                                                                                                           | 1<br>1                                                                                                                           | <sup>3</sup> /4 | 4 <sup>1</sup> / <sub>2</sub><br>4 <sup>3</sup> / <sub>4</sub>                                                                   |
| <b>0505</b><br>133/131 | 5 <sup>1</sup> /4<br>133 | 5 <sup>7</sup> /16<br>138            | 5 <sup>1/</sup> 16<br>128      | 7<br>177                             | 2 <sup>1</sup> / <sub>8</sub>               | 1 <sup>1</sup> /2<br>38        | 1<br>1 <sup>1</sup> /4                                                                                                           | 1<br>1                                                                                                                           | <sup>3</sup> /4 | 4 <sup>1</sup> / <sub>2</sub><br>4 <sup>3</sup> / <sub>4</sub>                                                                   |
| <b>0604</b><br>152/111 | 6<br>152                 | 4 <sup>3</sup> /8<br>111             | <b>4</b><br>101                | 6 <sup>1</sup> /4<br>158             | 2 <sup>1</sup> /4                           | 1 <sup>1</sup> /2              | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub>                                                                   | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>4</sub>                                                                   | 1               | 5<br>5 <sup>1</sup> /4                                                                                                           |
| <b>0605</b><br>152/136 | 6<br>152                 | 5 <sup>3</sup> /8<br>136             | 5<br>127                       | 7 <sup>1</sup> /4<br>184             | 2 <sup>1</sup> /4                           | 1 <sup>1</sup> /2<br>38        | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub>                                                                   | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>4</sub>                                                                   | 1               | 5<br>5 <sup>1</sup> /4                                                                                                           |
| <b>0606</b><br>152/155 | 6<br>152                 | 6 <sup>1</sup> /8<br>155             | 5 <sup>3</sup> /4<br>146       | 8<br>203                             | 2 <sup>1</sup> /4<br>57                     | 1 <sup>1</sup> /2<br>38        | $\frac{1^{1}/2}{1^{1}/2}$<br>$\frac{1^{3}/4}{1^{3}/4}$                                                                           | $\frac{1^{1}/4}{1^{1}/2}$<br>$\frac{1^{1}}{4}$                                                                                   | 1               | $5^{1}/_{4}$<br>$5^{1}/_{2}$<br>$5^{1}/_{2}$                                                                                     |
| <b>0704</b>            | 7<br>177                 | 3 <sup>11</sup> / <sub>16</sub>      | 3 <sup>5</sup> /16<br>84       | 5 <sup>1</sup> /4<br>133             | 3 <sup>7</sup> /8<br>98                     | 3 <sup>3/16</sup>              | 1 <sup>3</sup> /4<br>1<br>1 <sup>1</sup> /4                                                                                      | 1 '/2<br>1<br>1                                                                                                                  | <sup>3</sup> /4 | $\frac{5^{3}/4}{4^{1}/2}$ $\frac{4^{3}/4}{4^{3}/4}$                                                                              |
| 0804                   | 8                        | 4 <sup>7</sup> / <sub>16</sub>       | 4 <sup>1</sup> / <sub>16</sub> | 6                                    | 4 <sup>7</sup> / <sub>8</sub>               | 4 <sup>3</sup> / <sub>16</sub> | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub> | 3/4             | 5<br>5<br>5<br>5                                                                                                                 |
| 2007 112               | 200                      | 112                                  | 100                            | 102                                  | 120                                         | 100                            | 1 <sup>3</sup> /4<br>1 <sup>3</sup> /4                                                                                           | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub>                                                                   |                 | 5<br>5                                                                                                                           |
| <b>0806</b><br>203/155 | 8<br>203                 | 6 <sup>1</sup> /8<br>155             | 5 <sup>3</sup> /4<br>146       | 8<br>203                             | <b>4</b> <sup>1</sup> / <sub>4</sub><br>107 | 3 <sup>1</sup> /2<br>88        | 1 <sup>1</sup> /2<br>1 <sup>1</sup> /2<br>1 <sup>3</sup> /4<br>1 <sup>3</sup> /4                                                 | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub> | - 1             | $\frac{5^{1}/4}{5^{1}/2}$ $\frac{5^{1}/2}{5^{3}/4}$                                                                              |
| <b>0808</b><br>203/206 | 8<br>203                 | 8 <sup>1</sup> / <sub>8</sub><br>206 | 7 <sup>3</sup> /4<br>196       | 10<br>254                            | 4 <sup>1</sup> / <sub>4</sub><br>107        | 3 <sup>1</sup> / <sub>2</sub>  | 1 <sup>1</sup> /2<br>1 <sup>1</sup> /2<br>1 <sup>3</sup> /4<br>1 <sup>3</sup> /4                                                 | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub> | 1               | 5 <sup>1</sup> / <sub>4</sub><br>5 <sup>1</sup> / <sub>2</sub><br>5 <sup>1</sup> / <sub>2</sub><br>5 <sup>3</sup> / <sub>4</sub> |
| <b>0904</b>            | 9<br>228                 | 3 <sup>11</sup> / <sub>93</sub>      | 3 <sup>5</sup> /16             | 5 <sup>1</sup> /4                    | 5 <sup>7</sup> /8                           | 5 <sup>3</sup> /16             | 1<br>1 <sup>1</sup> /4                                                                                                           | 1                                                                                                                                | <sup>3</sup> /4 | $\frac{4^{1}/_{2}}{4^{3}/_{4}}$                                                                                                  |



## 

|                                                                                                                                                            |                          |           | _                                           | NOMI                                        | NALI            | DIMEN                                 | ISION                                 | IS                                                                                                                               |                                                                                                                                  |                               |                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|---------------------------------------------|---------------------------------------------|-----------------|---------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------|
| PP →                                                                                                                                                       | SIZE                     | LR        | F                                           | FF                                          | FB              | Р                                     | PP                                    | DH                                                                                                                               | PH                                                                                                                               | POST<br>DIA.                  | L                                                                        |
|                                                                                                                                                            | <b>1212</b><br>304 / 292 | 12<br>304 | 11 <sup>1</sup> / <sub>2</sub><br>292       | <b>11</b><br>279                            | 14<br>355       | <b>7</b><br>177                       | <b>6</b><br>152                       | $\frac{1^{3}}{4}$<br>$\frac{1^{3}}{4}$<br>2<br>$\frac{1^{1}}{2}$                                                                 | $ \frac{1^{1}/_{2}}{1^{3}/_{4}} \\ \frac{1^{1}/_{2}}{1^{3}/_{4}} \\ \frac{1^{1}/_{4}}{1^{1}/_{4}} $                              | 1 <sup>1</sup> / <sub>2</sub> |                                                                          |
|                                                                                                                                                            | <b>1406</b><br>355 / 149 | 14<br>355 | 5 <sup>7</sup> / <sub>8</sub><br>149        | 5 <sup>3</sup> /8<br>136                    | 8<br>203        | 9 <sup>3</sup> / <sub>4</sub><br>247  | 8 <sup>7</sup> /8<br>225              | $1^{1}/_{2}$<br>$1^{3}/_{4}$<br>$1^{3}/_{4}$                                                                                     | $1^{1}/_{2}$<br>$1^{1}/_{4}$<br>$1^{1}/_{2}$                                                                                     | 1 <sup>1</sup> /4             | 6<br>6<br>6                                                              |
|                                                                                                                                                            | <b>1408</b><br>355 / 200 | 14<br>355 | <b>7</b> 7/ <sub>8</sub><br>200             | <b>7</b> <sup>3</sup> / <sub>8</sub><br>187 | 10<br>254       | 9 <sup>3</sup> /4<br>247              | 8 <sup>7</sup> / <sub>8</sub><br>225  | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> /4             | 5 <sup>3</sup> / <sub>4</sub><br>6<br>6<br>6                             |
|                                                                                                                                                            | <b>1410</b><br>355 / 241 | 14<br>355 | 9 <sup>1</sup> / <sub>2</sub><br>241        | <b>9</b><br>228                             | 12<br>304       | <b>9</b><br>228                       | <b>8</b><br>203                       | 1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2                                                         | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> / <sub>2</sub> | 6 <sup>1</sup> / <sub>2</sub><br>7<br>7<br>7                             |
|                                                                                                                                                            | <b>1412</b><br>355 / 292 | 14<br>355 | 11 <sup>1</sup> / <sub>2</sub><br>292       | <b>11</b><br>279                            | 14<br>355       | <b>9</b><br>228                       | <b>8</b><br>203                       | 1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2                                                         | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> / <sub>2</sub> | 6 <sup>1</sup> / <sub>2</sub><br>7<br>7<br>7                             |
|                                                                                                                                                            | <b>1414</b><br>355 / 342 | 14<br>355 | 13 <sup>1</sup> / <sub>2</sub><br>342       | <b>13</b><br>330                            | 16<br>406       | <b>9</b><br>228                       | <b>8</b><br>203                       | 1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2                                                         | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> / <sub>2</sub> | 6 <sup>1</sup> / <sub>2</sub><br>7<br>7<br>7                             |
| <b>METRIC EQUIVALENTS</b><br>1 <sup>1</sup> /4" = 32 mm 5 <sup>3</sup> /4" = 146 mm                                                                        | <b>1606</b>              | 16<br>406 | 5 <sup>7</sup> /8<br>149                    | 5 <sup>3</sup> /8<br>136                    | <b>8</b><br>203 | 11 <sup>3</sup> /4<br>298             | 10 <sup>7</sup> /8<br>276             | 1 <sup>1</sup> / <sub>2</sub><br>2                                                                                               | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub>                                                                   | 1 <sup>1</sup> / <sub>4</sub> | 6<br>6 <sup>1</sup> / <sub>2</sub>                                       |
| $1/4" = 32 \text{ mm}$ $5^{3}/4" = 146 \text{ mm}$<br>1/2" = 38  mm $6" = 152  mm3/4" = 44 \text{ mm} 6^{1}/2" = 165 \text{ mm}1" = 51  mm$ $7" = 178  mm$ | <b>1608</b><br>406 / 200 | 16<br>406 | <b>7</b> <sup>7</sup> / <sub>8</sub><br>200 | <b>7</b> <sup>3</sup> / <sub>8</sub><br>187 | 10<br>254       | 11 <sup>3</sup> / <sub>4</sub><br>298 | 10 <sup>7</sup> / <sub>8</sub><br>276 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>2<br>2                                                         | 1 <sup>1</sup> / <sub>2</sub><br>2<br>1 <sup>1</sup> / <sub>2</sub><br>2                                                         | 1 <sup>1</sup> /4             | 6<br>6 <sup>1</sup> / <sub>2</sub><br>6 <sup>1</sup> / <sub>2</sub><br>7 |

. .

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOMINAL DIMENSIONS       |                  |                                       |                      |                 |                  |           |                                                                          |                                                                          |                                      |                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|---------------------------------------|----------------------|-----------------|------------------|-----------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SIZE                     | LR               | F                                     | FF                   | FB              | Р                | PP        | DH                                                                       | PH                                                                       | POST<br>DIA.                         | L                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1610                     | 16               | <b>Q</b> <sup>1</sup> / <sub>0</sub>  | Q                    | 12              | 11               | 10        | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub>           | 1 <sup>1</sup> / <sub>2</sub><br>2                                       | <b>1</b> <sup>1</sup> / <sub>0</sub> | 6 <sup>1</sup> / <sub>2</sub><br>7                                       |
| $ \begin{vmatrix} \mathbf{F} \mathbf{F} \\ \mathbf{F} \\$ | 406 / 241                | 406              | 241                                   | 228                  | 304             | 279              | 254       | 2<br>2                                                                   | 1 <sup>1</sup> / <sub>2</sub><br>2                                       | 172                                  | 7<br>7 <sup>1</sup> / <sub>2</sub>                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1612                     | 16               | 11 <sup>1</sup> / <sub>2</sub>        | 11                   | 14              | 11               | 10        | $\frac{2}{2^{1/2}}$                                                      | $\frac{1^{1}}{2}$<br>$\frac{1^{1}}{2}$                                   | <b>1</b> <sup>1</sup> / <sub>2</sub> | 7<br>$7^{1}/_{2}$<br>$7^{1}/_{2}$                                        |
| Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 406 / 292                | 406              | 292                                   | 279                  | 355             | 279              | 254       | $\frac{2}{2^{1}/_{2}}$                                                   | 2                                                                        |                                      | 8                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1614</b><br>406 / 342 | 16<br>406        | 13 <sup>1</sup> /2<br>342             | <b>13</b><br>330     | 16<br>406       | <b>11</b><br>279 | 10<br>254 | $\frac{2}{2^{1/2}}$                                                      | 1 1/2<br>2<br>1 <sup>1</sup> /2<br>2                                     | <b>1</b> <sup>1</sup> / <sub>2</sub> | $7^{1}/_{2}$<br>$7^{1}/_{2}$<br>8                                        |
| <sub>PH</sub>    <sub>DH</sub>  <br>BALL BEARING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>1806</b><br>457 / 139 | 18<br>457        | 5 <sup>1</sup> /2<br>139              | 5<br>127             | <b>8</b><br>203 | 13<br>330        | 12<br>304 | 1 <sup>1</sup> / <sub>2</sub>                                            | -<br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub>      | 1 <sup>1</sup> / <sub>2</sub>        | 6 <sup>1</sup> / <sub>2</sub><br>7                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1808</b><br>457 / 190 | 18<br>457        | <b>7</b> 1/2<br>190                   | <b>7</b><br>177      | 10<br>254       | 13<br>330        | 12<br>304 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>2<br>2 | 1 <sup>1</sup> / <sub>2</sub><br>2<br>1 <sup>1</sup> / <sub>2</sub><br>2 | 1 <sup>1</sup> / <sub>2</sub>        | 6 <sup>1</sup> / <sub>2</sub><br>7<br>7<br>7 <sup>1</sup> / <sub>2</sub> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1810</b><br>457 / 241 | 18<br>457        | 9 <sup>1</sup> / <sub>2</sub><br>241  | <b>9</b><br>228      | 12<br>304       | 13<br>330        | 12<br>304 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>2<br>2 | 1 <sup>1</sup> / <sub>2</sub><br>2<br>1 <sup>1</sup> / <sub>2</sub><br>2 | 1 <sup>1</sup> / <sub>2</sub>        | 6 <sup>1</sup> / <sub>2</sub><br>7<br>7<br>7 <sup>1</sup> / <sub>2</sub> |
| PH DH<br>PLAIN BEARING<br>METRIC EQUIVALENTS<br>1 <sup>1</sup> /2" = 38 mm 6 <sup>1</sup> /2" = 165 mm<br>2" = 51 mm 7" = 178 mm<br>2 <sup>1</sup> /2" = 63 mm 7 <sup>1</sup> /2" = 190 mm<br>8" = 203 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1812</b><br>457 / 292 | 18<br>457        | 11 <sup>1</sup> / <sub>2</sub><br>292 | 11<br>279            | 14<br>355       | 13<br>330        | 12<br>304 | 2<br>2<br>2 <sup>1</sup> / <sub>2</sub><br>2 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub><br>2<br>1 <sup>1</sup> / <sub>2</sub><br>2 | 1 <sup>1</sup> / <sub>2</sub>        | 7<br>7 <sup>1</sup> / <sub>2</sub><br>7 <sup>1</sup> / <sub>2</sub><br>8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1816</b><br>457 / 393 | <b>18</b><br>457 | 15 <sup>1</sup> / <sub>2</sub><br>393 | 15<br><sup>381</sup> | 18<br>457       | <b>13</b><br>330 | 12<br>304 | 2<br>2<br>2 <sup>1</sup> / <sub>2</sub><br>2 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub><br>2<br>1 <sup>1</sup> / <sub>2</sub><br>2 | <b>1</b> <sup>1</sup> / <sub>2</sub> | 7<br>7 <sup>1</sup> / <sub>2</sub><br>7 <sup>1</sup> / <sub>2</sub><br>8 |

#### "Soft" metric equivalents in italic numerals for reference only - DO NOT USE TO ORDER.

|                                                                    | Son metri | c equiva | ients in ita | alic nume | erais for re | eterence | oniy - DC |                               | JSE TO                               | ORDER        | -                                    |
|--------------------------------------------------------------------|-----------|----------|--------------|-----------|--------------|----------|-----------|-------------------------------|--------------------------------------|--------------|--------------------------------------|
|                                                                    |           |          |              | NOMI      | NAL I        | DIME     | ISIO      | IS                            |                                      |              |                                      |
|                                                                    | SIZE      | LR       | F            | FF        | FB           | Р        | PP        | DH                            | PH                                   | POST<br>DIA. | L                                    |
|                                                                    |           |          |              |           |              |          |           | 1 <sup>1</sup> / <sub>2</sub> | <b>1</b> <sup>1</sup> / <sub>2</sub> |              | 6 <sup>1</sup> / <sub>2</sub>        |
|                                                                    | 2010      |          | 01/          | •         | 10           | 45       |           | 1 <sup>1</sup> / <sub>2</sub> | 2                                    | 410          | 7                                    |
|                                                                    | 2010      | 20       | 9'/2         | 9         | 12           | 15       | 14        | 2                             | $1^{1}/_{2}$                         | 172          | 7                                    |
| <u>+ + + </u>                                                      | 508 / 241 | 508      | 241          | 228       | 304          | 381      | 355       | 2                             | 2                                    |              | <b>7</b> <sup>1</sup> / <sub>2</sub> |
| <b></b> I                                                          |           |          |              |           |              |          |           | 2                             | 1 <sup>1</sup> / <sub>2</sub>        |              | 7                                    |
| Post                                                               | 2012      |          | 441/         | 44        |              | 45       |           | 2                             | 2                                    | 41/          | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                    | 2012      | 20       | 11 72        | 11        | 14           | 15       | 14        | 2 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        | 17/2         | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                    | 508 / 292 | 508      | 292          | 279       | 355          | 381      | 355       | $2^{1}/_{2}$                  | 2                                    |              | 8                                    |
|                                                                    |           |          |              |           |              |          |           | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        |              | 6 <sup>1</sup> / <sub>2</sub>        |
|                                                                    | 2200      |          | 71/          | -7        | 10           | 47       | 10        | 1 <sup>1</sup> / <sub>2</sub> | 2                                    | 410          | 7                                    |
|                                                                    | 2208      | 22       | 1'/2         | 1         | 10           | 17       | 16        | 2                             | 1 <sup>1</sup> / <sub>2</sub>        | 1'/2         | 7                                    |
| → PH ++ DH +-                                                      | 558 / 190 | 558      | 190          | 177       | 254          | 431      | 406       | 2                             | 2                                    |              | <b>7</b> <sup>1</sup> / <sub>2</sub> |
| BALL BEARING                                                       |           |          |              |           |              |          |           | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        |              | 6 <sup>1</sup> / <sub>2</sub>        |
| Harmon I                                                           | 2210      | 22       | 01/          | ~         | 10           | 47       | 10        | 1 <sup>1</sup> / <sub>2</sub> | 2                                    | 41/          | 7                                    |
| Post                                                               | 2210      | 22       | 9'/2         | 9         | 12           | 17       | 16        | 2                             | <b>1</b> <sup>1</sup> / <sub>2</sub> | 17/2         | 7                                    |
|                                                                    | 558 / 241 | 558      | 241          | 228       | 304          | 431      | 406       | 2                             | 2                                    |              | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                    |           |          |              |           |              |          |           | 2                             | 1 <sup>1</sup> / <sub>2</sub>        |              | 7                                    |
|                                                                    | 2212      | 22       | 441/         | 11        | 14           | 17       | 16        | 2                             | 2                                    | 41/          | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                    | 2212      | 22       | 11.72        | - 11      | 14           | 17       | 10        | 2 <sup>1</sup> / <sub>2</sub> | <b>1</b> <sup>1</sup> / <sub>2</sub> | 1'/2         | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                    | 558/292   | 558      | 292          | 279       | 355          | 431      | 406       | 2 <sup>1</sup> / <sub>2</sub> | 2                                    |              | 8                                    |
| —➡ PH ━─ →= DH ━─                                                  |           |          |              |           |              |          |           | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        |              | 6 <sup>1</sup> / <sub>2</sub>        |
| PLAIN BEARING                                                      | 2600      | 26       | 71/          | 7         | 10           | 24       | 20        | 1 <sup>1</sup> / <sub>2</sub> | 2                                    | 41/          | 7                                    |
|                                                                    | 2000      | 20       | 1.12         | 1         | 10           | 21       | 20        | 2                             | 1 <sup>1</sup> / <sub>2</sub>        | 172          | 7                                    |
| METRIC EQUIVALENTS                                                 | 660 / 190 | 660      | 190          | 177       | 254          | 533      | 508       | 2                             | 2                                    | 1            | <b>7</b> <sup>1</sup> / <sub>2</sub> |
| $1^{1}/2^{"} = 38 \text{ mm}$ $6^{1}/2^{"} = 165 \text{ mm}$       |           |          |              |           |              |          |           | 2                             | <b>1</b> <sup>1</sup> / <sub>2</sub> |              | 7                                    |
| $2^{-51}$ = 1/8 mm<br>$2^{1}/2^{"}$ = 63 mm $7^{1}/2^{"}$ = 190 mm | 2612      | 20       | 441/         | 44        |              | 24       | 20        | 2                             | 2                                    | 41/          | <b>7</b> <sup>1</sup> / <sub>2</sub> |
| 8" = 203 mm                                                        | 2012      | 26       | 11 1/2       | 11        | 14           | 21       | 20        | 2 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        | 1'/2         | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                    | 660 / 292 | 660      | 292          | 279       | 355          | 533      | 508       | 2 <sup>1</sup> / <sub>2</sub> | 2                                    |              | 8                                    |



| This Post Offset                                                                                                 |           |     |     | NOM                           | INAL                          | DIME                          | NSIO                          | <b>NS</b>                            |                                      |                                      |                               |
|------------------------------------------------------------------------------------------------------------------|-----------|-----|-----|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|
|                                                                                                                  | SIZE      | LR  | FB  | F                             | FF                            | Ρ                             | PP                            | DH                                   | PH                                   | POST<br>DIA.                         | L                             |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 1                                    | 1                                    |                                      | 4 <sup>1</sup> / <sub>2</sub> |
|                                                                                                                  | 0808      | 0   | 0   | 171                           | 13/                           | 171                           | 13/                           | 1                                    | 1 <sup>1</sup> /4                    | 3/                                   | 4 <sup>3</sup> / <sub>4</sub> |
|                                                                                                                  | 0000      | 0   | 0   | 4 78                          | 4 716                         | 4 78                          | 4 716                         | 1 <sup>1</sup> /4                    | 1                                    | -74                                  | 4 <sup>3</sup> /4             |
|                                                                                                                  | 2037203   | 203 | 203 | 123                           | 107                           | 123                           | 107                           | 1 <sup>1</sup> / <sub>4</sub>        | 1 <sup>1</sup> / <sub>4</sub>        |                                      | 5                             |
| ⊨ P+I                                                                                                            |           |     |     |                               |                               |                               |                               | <b>1</b> <sup>1</sup> / <sub>4</sub> | <b>1</b> <sup>1</sup> / <sub>4</sub> |                                      | 5                             |
| ре— L ——ер                                                                                                       |           |     |     |                               |                               |                               |                               | 11/4                                 | 11/2                                 |                                      | 51/4                          |
| Post                                                                                                             | 1008      | 10  | 8   | 4 <sup>1</sup> /4             | 3 <sup>1</sup> /2             | 6 <sup>1</sup> /4             | 5 <sup>1</sup> /2             | 1 <sup>1</sup> / <sub>2</sub>        | 1 <sup>1</sup> /4                    | 1                                    | 5 <sup>1</sup> / <sub>4</sub> |
|                                                                                                                  | 254/203   | 254 | 203 | 107                           | 89                            | 158                           | 140                           | 11/2                                 | 1 <sup>1</sup> / <sub>2</sub>        |                                      | 51/2                          |
|                                                                                                                  |           | 201 | 200 |                               |                               |                               |                               | 1 <sup>3</sup> /4                    | 1 <sup>1</sup> /4                    |                                      | 51/2                          |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 13/4                                 | 11/2                                 |                                      | 53/4                          |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 11/4                                 | 11/4                                 |                                      | 5                             |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 11/4                                 | 11/2                                 |                                      | 51/4                          |
| BALL BEARING                                                                                                     | 1010      | 10  | 10  | 6 <sup>1</sup> / <sub>4</sub> | 5 <sup>1</sup> / <sub>2</sub> | 6 <sup>1</sup> / <sub>4</sub> | 5 <sup>1</sup> / <sub>2</sub> | 11/2                                 | 11/4                                 | 1                                    | 5'/4                          |
|                                                                                                                  | 254 / 254 | 254 | 254 | 158                           | 140                           | 158                           | 140                           | 11/2                                 | 11/2                                 |                                      | 51/2                          |
| + L+                                                                                                             |           |     |     |                               |                               |                               |                               | 13/.                                 | 11/4                                 |                                      | 5 <sup>3</sup> / <sub>2</sub> |
|                                                                                                                  |           |     |     | 2                             |                               |                               |                               | 11/4                                 | 11/2                                 |                                      | 53/.                          |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 11/2                                 | 11/2                                 |                                      | 6                             |
|                                                                                                                  | 1208      | 12  | 8   | 3 <sup>3</sup> / <sub>4</sub> | 2 <sup>7</sup> /8             | 7 <sup>3</sup> /4             | 6 <sup>7</sup> /8             | 13/4                                 | 11/4                                 | <b>1</b> <sup>1</sup> / <sub>4</sub> | 6                             |
|                                                                                                                  | 304 / 203 | 304 | 203 | 95                            | 73                            | 196                           | 175                           | 13/4                                 | 11/2                                 |                                      | 6                             |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 11/2                                 | 11/4                                 |                                      | 5 <sup>3</sup> /4             |
|                                                                                                                  |           |     |     |                               |                               |                               |                               | 11/2                                 | 11/2                                 |                                      | 6                             |
| PLAIN BEARING                                                                                                    |           |     |     |                               |                               |                               |                               | 11/2                                 | 13/4                                 |                                      | 6                             |
| METRIC EQUIVALENTS                                                                                               | 1010      | 40  | 10  | <b>5</b> 37                   | 471                           | 721                           | 071                           | 13/4                                 | <b>1</b> <sup>1</sup> / <sub>4</sub> | 410                                  | 6                             |
| <sup>3</sup> /4" = 19 mm 4 <sup>3</sup> /4" = 121 mm                                                             | 1210      | 12  | 10  | 5%/4                          | 4'/8                          | 13/4                          | 6'/8                          | 13/4                                 | 11/2                                 | 1 1/4                                | 6                             |
| 1'' = 25  mm $5'' = 127  mm1'/4'' = 32  mm$ $51/4'' = 133  mm$                                                   | 304 / 254 | 304 | 254 | 146                           | 124                           | 196                           | 175                           | 1 <sup>3</sup> /4                    | 1 <sup>3</sup> /4                    |                                      | 6 <sup>1</sup> / <sub>2</sub> |
| $1^{1}/2" = 38 \text{ mm}$ $5^{1}/2" = 140 \text{ mm}$                                                           |           |     |     |                               |                               |                               |                               | 2                                    | 1 <sup>1</sup> /4                    |                                      | 6                             |
| $1^{3}/4^{"} = 44 \text{ mm}$ $5^{3}/4^{"} = 146 \text{ mm}$<br>$2^{"} = 51 \text{ mm}$ $6^{"} = 152 \text{ mm}$ |           |     |     |                               |                               |                               |                               | 2                                    | <b>1</b> <sup>1</sup> / <sub>2</sub> |                                      | 6 <sup>1</sup> / <sub>2</sub> |
| $4^{1}/2^{"} = 114 \text{ mm}$ $6^{1}/2^{"} = 165 \text{ mm}$                                                    |           |     |     |                               |                               |                               |                               | 2                                    | 1 <sup>3</sup> /4                    |                                      | 61/2                          |

| LR                                                                                                       |           |     |     | NOM                      | NAL                           | DIME                     | NSIO                          | <b>IS</b>                     |                                      |                               |                               |
|----------------------------------------------------------------------------------------------------------|-----------|-----|-----|--------------------------|-------------------------------|--------------------------|-------------------------------|-------------------------------|--------------------------------------|-------------------------------|-------------------------------|
| 1/8" Direction Shown                                                                                     | SIZE      | LR  | FB  | F                        | FF                            | Р                        | PP                            | DH                            | PH                                   | POST<br>DIA.                  | L                             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>4</sub>        |                               | 5 <sup>3</sup> /4             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        |                               | 6                             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>3</sup> /4                    |                               | 6                             |
|                                                                                                          | 1212      | 12  | 12  | <b>7</b> <sup>3</sup> /, | 6 <sup>7</sup> /a             | <b>7</b> <sup>3</sup> /, | 67/0                          | 1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> / <sub>4</sub>        | 11/.                          | 6                             |
| P                                                                                                        | 204/204   | 204 | 304 | 106                      | 175                           | 106                      | 175                           | 1 <sup>3</sup> /4             | <b>1</b> <sup>1</sup> / <sub>2</sub> | 174                           | 6                             |
|                                                                                                          | 3047 304  | 304 | 304 | 190                      | 115                           | 190                      | 115                           | 1 <sup>3</sup> /4             | 1 <sup>3</sup> /4                    |                               | 6 <sup>1</sup> / <sub>2</sub> |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>1</sup> / <sub>4</sub>        |                               | 6                             |
| │ <mark>│ </mark> ↓ <sub>1</sub> −−− ┤ │                                                                 |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>1</sup> / <sub>2</sub>        |                               | 6 <sup>1</sup> / <sub>2</sub> |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>3</sup> / <sub>4</sub>        |                               | 6 <sup>1</sup> / <sub>2</sub> |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>4</sub>        |                               | 5 <sup>3</sup> / <sub>4</sub> |
|                                                                                                          | 1408      | 14  | 8   | 3 <sup>3</sup> /4        | 2 <sup>7</sup> /8             | 9 <sup>3</sup> /4        | 8 <sup>7</sup> /8             | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        | 1 <sup>1</sup> / <sub>4</sub> | 6                             |
|                                                                                                          | 355 / 203 | 355 | 203 | 95                       | 73                            | 247                      | 225                           | 1 <sup>3</sup> /4             | 11/4                                 |                               | 6                             |
| BALL BEARING                                                                                             |           |     |     |                          |                               |                          |                               | 1%                            | 11/2                                 |                               | 6<br>53/                      |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 11/2                          | 1'/4                                 |                               | 5%                            |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 11/2                          | 13/                                  |                               | 6                             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 13/                           | <b>1</b> <sup>1</sup> / <sub>4</sub> |                               | 6                             |
| ▁」╟┵┯┤│                                                                                                  | 1410      | 14  | 10  | 5 <sup>3</sup> /4        | 4 <sup>7</sup> / <sub>8</sub> | 9 <sup>3</sup> /4        | 8 <sup>7</sup> / <sub>8</sub> | 1 <sup>3</sup> /4             | 1 /4                                 | 1 <sup>1</sup> / <sub>4</sub> | 6                             |
| Dia.                                                                                                     | 355 / 254 | 355 | 254 | 146                      | 124                           | 247                      | 225                           | 13/4                          | 13/4                                 |                               | 6 <sup>1</sup> /2             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>1</sup> /4                    |                               | 6                             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>1</sup> / <sub>2</sub>        |                               | 6 <sup>1</sup> /2             |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>3</sup> /4                    |                               | 6 <sup>1</sup> / <sub>2</sub> |
| PLAIN BEARING                                                                                            |           |     |     |                          |                               |                          |                               | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> / <sub>2</sub>        |                               | 6                             |
| <b>METRIC EQUIVALENTS</b><br>11/4" = 32 mm 2" = 51 mm                                                    |           |     |     |                          |                               |                          |                               | 1 <sup>1</sup> / <sub>2</sub> | 1 <sup>3</sup> /4                    |                               | 6                             |
| $1^{1}/2" = 38 \text{ mm}$ $5^{3}/4" = 146 \text{ mm}$                                                   | 1412      | 14  | 12  | 7 <sup>3</sup> /4        | 6 <sup>7</sup> /8             | 9 <sup>3</sup> /4        | 8 <sup>7</sup> /8             | 1 <sup>3</sup> /4             | <b>1</b> <sup>1</sup> / <sub>2</sub> | 1 <sup>1</sup> /4             | 6                             |
| $1^{\circ}/4^{\circ} = 44 \text{ mm}$ $6^{\circ} = 152 \text{ mm}$<br>$6^{1}/2^{\circ} = 165 \text{ mm}$ | 355 / 304 | 355 | 304 | 196                      | 175                           | 247                      | 225                           | 1 <sup>3</sup> / <sub>4</sub> | 1 <sup>3</sup> / <sub>4</sub>        |                               | 6 <sup>1</sup> / <sub>2</sub> |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>1</sup> / <sub>2</sub>        |                               | 6 <sup>1</sup> / <sub>2</sub> |
|                                                                                                          |           |     |     |                          |                               |                          |                               | 2                             | 1 <sup>3</sup> / <sub>4</sub>        |                               | 6 <sup>1</sup> / <sub>2</sub> |

|                                                                                                                                                                                                                            | NOMINAL DIMENSIONS       |                  |                  |                                       |                                       |                                       |                                       |                                                                                                                                            |                                                                                                                                                                                                    |                   |                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|------------------|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------|
| This Post Offset<br>1/8" Direction Shown                                                                                                                                                                                   | SIZE                     | LR               | FB               | F                                     | FF                                    | Р                                     | PP                                    | DH                                                                                                                                         | PH                                                                                                                                                                                                 | POST<br>DIA.      | L                                                                                      |
|                                                                                                                                                                                                                            | <b>1414</b><br>355 / 355 | <b>14</b><br>355 | <b>14</b><br>355 | 9 <sup>3</sup> /4<br>247              | 8 <sup>7</sup> / <sub>8</sub><br>225  | 9 <sup>3</sup> /4<br>247              | 8 <sup>7</sup> / <sub>8</sub><br>225  | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> /4 | $ \begin{array}{c} 6 \\ 6 \\ 6 \\ 6^{1/_{2}} \\ 6^{1/_{2}} \\ 6^{1/_{2}} \end{array} $ |
| Post<br>Pia.                                                                                                                                                                                                               | <b>1610</b><br>406 / 254 | 16<br>406        | 10<br>254        | 5 <sup>3</sup> /4<br>146              | 4 <sup>7</sup> / <sub>8</sub><br>124  | 11 <sup>3</sup> / <sub>4</sub><br>298 | 10 <sup>7</sup> / <sub>8</sub><br>276 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> /4 | $ \begin{array}{c} 6 \\ 6 \\ 6 \\ 6^{1}/_{2} \\ 6^{1}/_{2} \\ 6^{1}/_{2} \end{array} $ |
|                                                                                                                                                                                                                            | <b>1612</b><br>406 / 304 | 16<br>406        | <b>12</b><br>304 | 7 <sup>3</sup> /4<br>196              | 6 <sup>7</sup> / <sub>8</sub><br>175  | 11 <sup>3</sup> / <sub>4</sub><br>298 | 10 <sup>7</sup> / <sub>8</sub><br>276 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> /4 | $ \begin{array}{c} 6 \\ 6 \\ 6 \\ 6^{1}/_{2} \\ 6^{1}/_{2} \\ 6^{1}/_{2} \end{array} $ |
|                                                                                                                                                                                                                            | <b>1614</b><br>406 / 355 | 16<br>406        | <b>14</b><br>355 | 9 <sup>3</sup> /4<br>247              | 8 <sup>7</sup> / <sub>8</sub><br>225  | 11 <sup>3</sup> /4<br>298             | 10 <sup>7</sup> / <sub>8</sub><br>276 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2 | $ \frac{1^{1}/_{2}}{1^{3}/_{4}} \\ \frac{1^{1}/_{2}}{1^{3}/_{4}} \\ \frac{1^{1}/_{2}}{1^{3}/_{4}} \\ \frac{1^{3}/_{4}}{1^{3}/_{4}} $                                                               | 1 <sup>1</sup> /4 | $ \begin{array}{c} 6\\ 6\\ 6\\ 6\\ 6^{1/_{2}}\\ 6^{1/_{2}}\\ 6^{1/_{2}} \end{array} $  |
| <b>METRIC EQUIVALENTS</b><br>1 <sup>1</sup> / <sub>4</sub> " = 32 mm 2" = 51 mm<br>1 <sup>1</sup> / <sub>2</sub> " = 38 mm 6" = 152 mm<br>1 <sup>3</sup> / <sub>4</sub> " = 44 mm 6 <sup>1</sup> / <sub>2</sub> " = 165 mm | <b>1616</b><br>406 / 406 | 16<br>406        | <b>16</b><br>406 | 11 <sup>3</sup> / <sub>4</sub><br>298 | 10 <sup>7</sup> / <sub>8</sub><br>276 | 11 <sup>3</sup> / <sub>4</sub><br>298 | 10 <sup>7</sup> / <sub>8</sub><br>276 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>3</sup> / <sub>4</sub><br>2<br>2 | 1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub><br>1 <sup>1</sup> / <sub>2</sub><br>1 <sup>3</sup> / <sub>4</sub> | 1 <sup>1</sup> /4 | $ \begin{array}{c} 6 \\ 6 \\ 6 \\ 6^{1}/_{2} \\ 6^{1}/_{2} \\ 6^{1}/_{2} \end{array} $ |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | <b>-</b>                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6                                    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6 <sup>1</sup> / <sub>2</sub>        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6 <sup>1</sup> / <sub>2</sub>        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6 <sup>1</sup> / <sub>2</sub>        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6 <sup>1</sup> / <sub>2</sub>        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 6 <sup>1</sup> / <sub>2</sub>        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | <u>(</u>                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                         | 0'/2<br>7                            |
| $\begin{array}{c c} \hline & 1 & 1/2 \\ \hline & 2 & 1/2 \\ \hline & 2 & 1^3/4 \\ \hline & 2 & 1^3/4 \\ \hline & 2 & 2 \\ \hline \end{array}$                                  | 7                                    |
| -+PH++DH+-                                                                                                                                                                     | 7                                    |
|                                                                                                                                                                                | 7                                    |
|                                                                                                                                                                                | <b>7</b> <sup>1</sup> / <sub>2</sub> |
| BALL BEARING                                                                                                                                                                   | 7                                    |
| <b>1814</b> 18 14 9 8 13 12 2 2 $1\frac{1}{2}$                                                                                                                                 | 7 <sup>1</sup> / <sub>2</sub>        |
| $457/355  457  355  228  203  330  304  \frac{2^{1}/_{2}}{2^{1}/_{2}}  \frac{1^{1}}{2^{1}}$                                                                                    | $\frac{7^{1}}{2}$                    |
| Post 2 <sup>1</sup> / <sub>2</sub> 2                                                                                                                                           | 8                                    |
| <b>1816</b> 18 16 11 10 13 12 2 2 $1\frac{1}{2}$                                                                                                                               | 71/2                                 |
| Dia. $457/406$ 457 406 279 254 330 304 $2^{1/2}$ $1^{1/2}$                                                                                                                     | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                                                                                                                                | 8                                    |
|                                                                                                                                                                                | 7                                    |
| <b>1818</b> 18 18 13 12 13 12 2 2 1 <sup>1</sup> / <sub>2</sub>                                                                                                                | <b>7</b> <sup>1</sup> / <sub>2</sub> |
| PLAIN BEARING 457 / 457 457 330 304 330 304 2 <sup>1</sup> / <sub>2</sub> 1 <sup>1</sup> / <sub>2</sub>                                                                        | <b>7</b> <sup>1</sup> / <sub>2</sub> |
|                                                                                                                                                                                | 8                                    |
| METRIC EQUIVALENTS                                                                                                                                                             | 6                                    |
| $1^{1/4}$ = 32 mm 6" = 152 mm<br>$1^{1/2}$ = 38 mm $6^{1/2}$ = 165 mm <b>2010 20 10 5</b> 3/. <b>4</b> 7/. <b>15</b> 3/. <b>14</b> 7/. <b>13</b> /. <b>11</b> /. <b>11</b> /.  | 6                                    |
| $1^{3}/4^{"} = 44 \text{ mm}$ 7" = 178 mm<br>$7^{"} = 178 \text{ mm}$ 508 (254 508 254 146 124 400 278 $1^{3}/4$ $1^{4}/72$ $1^{4}/4$                                          | 6 <sup>1</sup> /2                    |
| $2^{-1} = 51 \text{ mm}$ $1^{-1} = 190 \text{ mm}$ $3007234$ $300$ $234$ $140$ $124$ $400$ $370$ $174$ $174$ $174$ $2^{1}/_{2}$ $2^{1}/_{2}$ = 63 mm $8^{-1} = 203 \text{ mm}$ | 6 <sup>1</sup> /2                    |
|                                                                                                                                                                                | 61/2                                 |

