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Multiple regression models are commonly used to control for 

confounding in epidemiologic research. Parametric regression 
models, such as multiple logistic regression, are powerful tools 
to control for multiple covariates provided that the covariate- 
risk associations are correctly specified. Residual confounding 
may result, however, from inappropriate specification of the 
confounder-risk association. In this paper, we illustrate the 
order of magnitude of residual confounding that may occur 
with traditional approaches to control for continuous con? 
founders in multiple logistic regression, such as inclusion of a 

single linear term or categorization of the confounder, under a 

variety of assumptions on the confounder-risk association. We 
show that inclusion of the confounder as a single linear term 
often provides satisfactory control for confounding even in 
situations in which the model assumptions are clearly violated. 
In contrast, categorization of the confounder may often lead to 
serious residual confounding if the number of categories is 
small. Alternative strategies to control for confounding, such 
as polynomial regression or linear spline regression, are a useful 

supplement to the more traditional approaches. (Epidemiology 
1997;8:429-434) 
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Regression models commonly employed in the analysis 
of epidemiologic studies assume a specific mathematical 
relation between levels of covariates and disease occur? 
rence.1,2 For example, a continuous logistic regression 
model assumes a linear relation between levels of con? 
tinuous covariates and the log odds of disease. This 

assumption may often be violated, inasmuch as the true 

dose-response is usually unknown. Categorization of 
continuous covariates has been proposed to allow for 
more flexible modeling of the shape of covariate-risk 
association in such situations.3 Inclusion of simple linear 
terms and categorization are currently the most widely 
used strategies to deal with continuous covariates in 

multiple regression models. 
The literature on the pros and cons of categorization 

of continuous covariates in epidemiologic analysis is 
extensive. Most of this discussion has focused on issues 
of power, validity of estimation of the shape of the 
covariate-disease association, influence of outliers, illus- 
trativeness of data presentation,3-6 or selection of cut? 

points of categorical analysis.7-11 Many ofthe disadvan- 

tages of categorical analysis are related to the fact that it 
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does not make efficient use of within-category informa? 
tion. 

During the past years, alternative strategies, such as 

polynomial regression or spline regression,12,13 for dealing 
with continuous covariates in multiple regression models 
have received increased attention. These methods may 
partly overcome the limitations of the more commonly 
employed traditional approaches. 

Most of the discussion on how to deal with continu? 
ous covariates in epidemiologic analyses has focused on 

estimating effects of the exposure variable of primary 
interest. In contrast, the question of how to deal with 
continuous confounders has received much less atten? 
tion. This issue is of considerable importance, however, 
given that misspecification of the confounder-risk asso? 
ciation may hinder adequate control for confounding. 
Cochran14 assessed control for confounding through 
"subclassification" by categories of a continuous con? 
founder when comparing the means of some continuous 
trait in two study groups. He showed that, under certain 
distributional assumptions and for monotonic relations 
of the confounder and the trait under investigation, the 

percentages of bias removed by subclassification are 

roughly 64%, 79%, 86%, 90%, and 92% for classifying 
the confounder into 2, 3, 4, 5, and 6 categories, respec? 
tively. The complementary proportion of bias not re? 
moved by imperfect control for confounding is com? 

monly called "residual confounding." More recently, 
Becher15 reported similar levels of residual confounding 
resulting from confounder classification in simulation 
studies for various types of regression models. Building 
on the work by Cochran, Rothman3 argued that most of 
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the confounding from a given factor can be removed by 
a stratified analysis based on only two categories of a 

continuous variable and that it is rarely necessary to 

have more than about five categories. Nevertheless, 
more complete control for confounding may be neces? 

sary to prevent misleading results in the case of a strong 
confounder, particularly if the exposure has no or only a 

weak effect. Common examples are epidemiologic stud? 

ies on the risk of respiratory disease due to environmen? 

tal factors in the presence of confounding by cigarette 

smoking.16 In such situations, more flexible regression 
models that warrant more complete control of con? 

founding could be particularly useful.13,17 

Here, we assess the efficacy of various strategies to 

control for continuous confounders, using a continuous 

logistic regression model under a variety of confounder- 

risk associations. The strategies we assess include using a 

single linear term or a quadratic and a cubic term along 
with a linear term of the confounder, and categorization 

by a varying number of categories, with or without 

inclusion of linear splines. 

Methods 

We assumed that an investigator carries out a cohort 

study to assess the association of some continuous expo? 
sure variable Xx with the risk of some dichotomous 

disease status Y (with values 1 and 0 for presence and 

absence of disease, respectively), while controlling for 

some continuous confounder X2 by multiple logistic re? 

gression. To focus on the efficacy of control for con? 

founding, we assumed that Xx does not influence risk of 

disease, which means that, in the absence of other 

sources of bias, any apparent effect of Xx is due either to 

confounding by X2 or to random error. A necessary 
condition for X2 being a confounder is that X2 is related 

to both Xx and the risk of disease (apart from its associ? 

ation with Xx)3 In the following, we illustrate the per? 
formance of different strategies to control for confound? 

ing by X2 under a variety of conditions. 

Distribution and Association of Covariates 

Many continuous covariates studied in epidemiologic 
research approximately follow a normal distribution in 

the population. For simplicity, we assumed that Xx and 

X2 follow a bivariate normal distribution with mean 0 

and variance 1 for each component. We assessed the 

following levels of correlation between X{ and X2: 0.5, 

0.7, and 0.9. 

Covariate-Risk Associations 

We assessed a variety of scenarios of the confounder-risk 

association, as outlined in Table 1. In all scenarios, we 

assumed disease risk to be affected by the confounder X2 
but not by Xx. 

In scenario A, the risk at the mean level of X2 (X2 = 

0) is 0.10, as reflected in the intercept of ln(l/9) = 

ln(0.1/0.9), and the logit of disease risk follows a linear 

function of X2. In this scenario, the logistic model is 

TABLE 1. Association between Confounder X2 and Dis? 
ease Risk R Assumed in the Scenarios Used for Numerical 
Illustration; P{ = ith Percentile of the Distribution of X2 

Scenario Confounder-Risk Association 

A logir(RlX2) = ln(l/9) + ln(2) X X2 
B logit(RIX2) = ln(l/9) + ln(2) X X2 + ln(4.5) X X] 
C R = 0.05 if X2 < P50, R = 0.15 if X2 > P50 
D R = 0.05 if X2 < P67, R = 0.20 if X2 > P67 
E R = 0.05 if X, < P75, R = 0.25 if X2 > P75 
F R = 0.05 if X2 < P80, R - 0.30 if X2 > P80 

correctly specified with inclusion of a single linear term 

for X2. 
In scenario B, the baseline risk at the mean level of 

the confounder (X2 = 0) is the same as in scenario A 

(0.10), but the logit of the disease risk follows a linear 

combination of X2 and the square of X2. In this scenario, 
the logistic model is correctly specified with inclusion of 

both a linear and a quadratic term of X2. 
The relation between X2 and disease risk in scenarios 

A and B is depicted in Figure 1 for levels of X2 between 

-3 and +3 (this range encompasses 99.7% of the dis? 

tribution of X2). Whereas the association is monotonic 

in scenario A, a J-shaped relation emerges in scenario B. 

Such ]-shaped relations have repeatedly been observed 

in epidemiology. Well-known examples include the as? 

sociations of body mass index or alcohol consumption 
with all-cause mortality.1819 

Scenarios C, D, E, and F reflect situations with a 

threshold effect of X2. Such threshold effects have re? 

peatedly been described for noncarcinogenic agents, par? 

ticularly in the field of occupational epidemiology.20 

i.oRisk 
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FIGURE 1. Confounder-risk relations assumed in scenar? 
ios A and B. 
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FIGURE 2. Confounder-risk relations assumed in scenar? 
ios C, D, E, and F. 

Scenarios C, D, E, and F are further examples of situa? 
tions in which the assumption of a linear increase of the 

logit of disease risk with X2 that is implicitly made when 

including a single linear term of X2 in the logistic model 
is clearly violated. Below the threshold, a baseline risk of 
5% is assumed throughout. The risk threshold is varied 
between the 50th (scenario C), 67th (scenario D), 75th 

(scenario E), and 80th (scenario F) percentile of X2. The 
risk above the threshold is varied in such a way that the 

overall risk of the population equals 0.1 (the risk that 

pertains to the mean level of X2, X2 = 0, in scenarios A 
and B). The relation between the confounder X2 and 
disease risk assumed in scenarios C, D, E, and F is 

depicted in Figure 2. 

Generating of Datasets 

We generated hypothetical cohort studies with 

1,000,000 study participants who were each assigned 

? levels of the exposure Xx and the confounder X2, 
using random observations from the bivariate nor? 
mal distribution with mean 0 and variance 1 for 
each component and correlation coefficients 0.5, 
0.7, and 0.9. 

? presence or absence of disease, using a random 
observation B from the uniform distribution on the 
interval (0,1); random observations were generated 
by the SAS function RANUNI21; individuals were 
assumed to be diseased if B < R and undiseased 

otherwise, where R is the risk of disease derived 
from the confounder-risk associations listed in Ta? 
ble 1 (note that this procedure is equivalent to 

generating random binomial deviates for the occur? 

rence of disease). 

Types of Analysis 

We carried out all analyses by fitting logistic regression 
models to the cohort data in which the exposure vari? 
able Xx was either 

? inciuded as continuous variable, or 
? inciuded as a dichotomous variable (with cutpoint 

0, the mean level of Xx). 

We derived odds ratios with pertinent standard errors 
for the exposure variable Xx by exponentiation of the 

regression coefficients of Xx in logistic models. For this 

large population (N = 1,000,000), the variation that 
arises through the generation of the dataset (assignment 
of Xx, X2, and Y) is essentially negligible for practical 
purposes. The odds ratios can be considered as true odds 
ratios for this specific population or as expected odds 
ratios if sampling from the total population were per? 
formed. For models including Xx as a continuous vari? 

able, odds ratios refer to an increase of Xx by 1 unit. For 
models including Xx as a dichotomous variable, odds 
ratios refer to comparisons of individuals with Xx ^ 0 to 
individuals with Xx < 0. Note that the correctly speci? 
fied logistic model uses Xx as a continuous variable; 
inclusion of Xx in the regression models as a dichoto? 
mous variable is not optimal (see introduction). We 
nevertheless include this approach, because it is com? 

monly employed in epidemiologic studies. In the specific 
examples used for illustration in this paper, the correct 
odds ratio should always equal 1.0 regardless whether the 

exposure is inciuded as a continuous variable or a di? 
chotomous variable in the model. 

We derived odds ratios for the exposure variable (OR) 
from logistic regression models in which the confounder 
variable X2 was either 

? not controlled at all (ORun) 
? inciuded as a single linear term (OR^ 
? inciuded as a quadratic term (ORlq) or both a 

quadratic and a cubic term (ORlqc) in addition to a 
linear term 

? inciuded as a k-level categorical variable (using k ? 

1 dummy variables); results are presented with X2 
categorized into either two categories of equal size 

(ORcat2), tertiles (ORcat3), quartiles (ORcat4), or 

quintiles (ORcat5) 
or 

? controlled by linear spline regression as outlined in 

Appendix 1, using two to five equal-sized categories 

(ORspl2, ORspl3, ORspl4, ORspl5). In contrast to tradi? 
tional categorical analysis, spline regression makes 
use of within-category variation of disease risk. 

Results 

In this section, we illustrate the efficacy of control for 

confounding by the various strategies of data analysis for 
the various scenarios of the covariate-risk association. 
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TABLE 2. Odds Ratios, OR [with Exponentiated Standard Errors of ln(OR)], for an Increase of Exposure Xx by 1 Standard 
Deviation as a Function of the Type of Confounder Adjustment 

Results are shown for a correlation coefficient of 0.7 

between Xx and X2. The general patterns were very 
similar for the other levels of correlation between X{ and 

X2 we examined (except for the fact that the magnitude 
of confounding increased with increasing correlation). 

Continuous Exposure Variable 

Table 2 shows the odds ratios for an increase of exposure 

Xt by 1 unit in models in which Xx was included as a 

continuous variable. In all scenarios that we examined, 

unadjusted odds ratios erroneously suggested a moderate 

association between exposure and risk of disease. Con? 

trol for confounding was therefore essential. 

In scenario A, in which the logit of disease risk 

increases linearly with the confounder, confounding was 

effectively removed with inclusion of the confounder as 

single linear term. There was strong residual confound? 

ing, however, if the traditional categorical analysis was 

used. While confounding was removed only very unsat- 

isfactorily with the inclusion of the dichotomized con? 

founder variable in the model (Orcat2 = 1.31), control 

for confounding remained far from perfect even with as 

many as five confounder categories (ORcat5 = 1.11). 
We observed similar patterns in scenario B, although 

the overall extent of confounding in the crude analysis 
and in the analyses using the categorized confounder 

variable was more limited. Despite the J-shaped relation 

between X2 and disease risk (see Figure 1), confounding 
was controlled very effectively in this situation with 

inclusion of a linear term of X2, whether or not an 

additional quadratic or cubic term of X2 or linear splines 
were included. 

Control for confounding by including the confounder 

as single linear term was also very effective in the ex? 

amined scenarios assuming a threshold effect of the 

confounding variable (scenarios C-F). In these scenar? 

ios, odds ratios for Xx hardly changed if quadratic and 

cubic terms or linear splines were added. Performance of 

control for confounding with the categorized confounder 

variable depends on how well the threshold of risk 

increase coincides with one of the cutpoints used for 

categorization. For example, confounding could be effec- 

tively controlled for with the 2-level and 4-level con? 

founder variable in scenario C (ORcat2 = 1.00, ORcat4 
= 

1.00), as these variables have a cutpoint at X2 = 0, the 

assumed risk threshold in scenario C. Control for con? 

founding was likewise effective with the 3-, 4-, and 

5-level confounder variable in scenarios D, E, and F 

owing to the coincidence of the risk threshold with 

those variables' cutpoints at the 67th, 75th, and 80th 

percentiles of X2, respectively. Residual confounding can 

be severe, however, if none of the cutpoints for catego? 
rization is close to the threshold of disease risk. This 

result was most evident for the dichotomized confounder 

variable in scenario F. In general, the possibility that 

none of the cutpoints is close to the threshold of disease 

risk and, hence, the potential for residual confounding, 
decreases with the number of categories. Overall, using a 

continuous variable X2 performed much better than cat- 

egorizing the confounder variable in the situations that 

we examined. 

Dichotomous Exposure Variable 

For the most part, similar results were obtained in the 

analyses using a dichotomized exposure variable (Table 

3). Control for confounding with a single linear term of 

the confounder was less complete, however, in scenarios 

B, C, D, E, and F. While residual confounding could be 

effectively removed by inclusion of an additional qua? 
dratic term in scenario B (as it should, since the model 
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TABLE 3. Odds Ratios, OR [with Exponentiated Standard Errors of ln(OR)], for Individuals with Exposure Levels Xx ^ 0 

Compared with Individuals with Exposure Levels Xx < 0 as a Function of the Type Confounder Adjustment 

was correctly specified with a linear and a quadratic 
term), an additional cubic term was required in scenarios 

C, D, E, and F to achieve more complete control of 

confounding. Again, traditional categorical analyses 
were most error-prone with the use of a dichotomized 

exposure variable (except for scenario C, in which the 
threshold of disease risk coincides with the cutpoint for 

categorization), and, in some instances, yielded unsatis- 

factory control for confounding even with as many as 
four or five categories of the confounder. In contrast, 
control for confounding by linear spline regression was 

satisfactory in most scenarios that we examined with 
more than three categories of the confounder. 

Discussion 

This paper illustrates that there is no single strategy to 
control for continuous confounders that universally 
yields the most effective control for confounding. This 

finding particularly applies to the most commonly used 

strategies, inclusion of confounders as single linear terms 
or as categorical variables in multiple regression models. 

In theory, control for confounding with categorized 
variables should be increasingly effective if an increasing 
number of categories is employed. Inclusion of too many 
categories will decrease precision, however, particularly 
if several covariates have to be considered simulta- 

neously, which is the rule rather than the exception in 

epidemiologic research. On the other hand, our analyses 
confirm and extend previous findings14,15 that control for 

confounding can be very ineffective with classification 
of individuals into five or less categories. It therefore 

appears that categorization may often be inadequate 
when controlling for continuous confounders. The po? 
tential advantage of traditional categorical analysis over 
other options in confounding control that occurs when 

cutpoints of categorization coincide with eventual 
thresholds of disease risk appears to be restricted to 
rather unusual, rare situations. 

In the situations that we examined, control for con? 

founding by inclusion of single linear terms tended to be 
a reasonable choice for a broad variety of confounder- 
risk associations, even if these associations deviated from 
the specific shape assumed in the regression model (such 
as the linear increase of the logit of disease risk with the 
level of covariates assumed in multiple logistic regres? 
sion). These results may not hold in general, as the 

examples were restricted to a small region of the param? 
eter space. Even within this restricted parameter space, 
control for confounding by inclusion of a single linear 
term remained suboptimal in some situations (see sce? 
narios B, C, D, E, and F in Table 3). Therefore, various 

approaches to improve control for confounding may be 
worthwhile. 

Two general types of such approaches have been ad? 
dressed in this paper. The first approach is to include 
additional nonlinear terms of the confounder. Inclusion 
of a quadratic or both a quadratic and a cubic term along 
with a linear term assessed in this paper are simple 
examples of such polynomial regression. The second 

approach is control for confounding by spline regression. 
The type of spline regression assessed in this paper can 
be considered a refinement of both control for con? 

founding by a single linear term (in that it allows for 

changes of the slope of the confounder-risk association 
between categories of the confounder) and control for 

confounding by the traditional categorical analysis (in 
that it makes use of within-category variation of disease 

risk). Our analyses suggest that both polynomial and 

spline regression approaches may considerably reduce 
residual confounding in some, but not all, instances. It 
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may be worthwhile to use such strategies more often in 

epidemiologic research, particularly in situations in 
which weak exposure effects are assessed and potentially 
strong confounders have to be controlled for. A typical 
example would be studies on the effects of air pollution 
or radon on the risk of lung cancer in the presence of 

confounding by smoking. The commonly employed 
crude classification of smoking in such studies may often 
be insufficient for effective control of smoking effects. 

In this paper, we restricted examples to bivariate 
normal distributions of covariates. Clearly, other distri? 
butions are more relevant in specific situations. Like- 

wise, the covariate-risk associations assessed in this pa? 
per reflect special (and partly unrealistic) situations. 

They were chosen to facilitate illustration of the condi? 
tions under which control for confounding by various 

strategies may or may not work. The general approach 
introduced in this paper may be easily adapted by inves? 

tigators to assess the performance of various strategies to 
control for confounding under the specific circum? 

stances in their areas of research. 

Examples in this paper were also restricted to partic? 
ularly simple applications of polynomial regression and 

spline regression to facilitate illustration of the main 

principles. These methods may be further refined (for 

example, by inclusion of fractional and inverse powers of 

covariates in polynomial regression or by inclusion of 

quadratic terms in spline regression) to attain more 

complete control of confounding.22 Our examples indi? 

cate, however, that such refinement may rarely be nec- 

essary in practice. Inclusion of too many terms would 

tend to decrease the precision and may even be harmful 

rather than beneficial if the size of the study population 
is limited and several confounders have to be controlled 

for. 

Application of polynomial regression and spline re? 

gression has been proposed for more flexible estimation 

of exposure-risk associations in epidemiology. The price 
for the gain in flexibility, however, is a less parsimonious 
description of the exposure-disease association, which 

may hinder communication of main results. More flex? 

ible modeling of the confounder-risk association allows 

for more complete control of confounding without shar? 

ing this potential drawback (provided that the con? 
founder-risk association is not of primary interest). Con? 
trol for confounding may therefore be a particularly 
attractive field of application of techniques like polyno? 
mial regression or spline regression. 
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Appendix 1 

Spline regression is a simple alternative to basic categorical 
analysis that can easily be performed with conventional regres? 
sion programs. As with conventional categorical analysis, con? 
tinuous covariates are categorized in the first place. In contrast 
to conventional categorical analysis, however, spline regres? 
sion allows for (1) continuity in risk estimates across categories 
(that is, no sudden jumps at the cutpoints of categorization) 
and (2) variation of risk within categories. 

In this paper, we used the following simple example of 
inclusion of linear splines into the logistic regression model to 
control the association of the exposure variable Xx with disease 
risk for confounding by the continuous covariate X2: 

logit (RIX?X2) = a + pXl + ylX1 + y1s2 + ... + yksk, 

where a denotes the intercept and j8 and y{ denote the regres? 
sion coefficients, Xz is assumed to be categorized into k cate? 

gories, Cj (i=2,. . . ,k) denotes the cutpoint between the 
(/?l)th and the ith category of the categorized covariate, and 
S: = 0 if X7 < c, X7 - c if X7 > c,. 
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