

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Biological Actuators. The muscle

Arturo Forner-Cordero

(<u>aforner@usp.br</u>)

Laboratorio de Biomecatrônica Departamento de Engenharia Mecatrônica e Systems Mecánicos

Contents

- 1. Introduction: Justification and goals
- 2. Biological actuators
 - Organization and structure
 - Functioning principles
 - Muscle models
 - Hill
 - Cross-bridge
- 3. Robotic artificial actuators. Biomimetism
 - Artificial actuators
 - Actuator comparison: biological vs artificial
 - Actuation of a system of biological actuators

Introduction

Justification

- Understanding the system
- Intervention:
 - Rehabilitation
 - Training
- Functional compensation
- Actuation on the muscle
- Development of bioinspired actuation systems

Motor compensation

Goals

- Biological actuators:
 - Muscle physiology
 - Mucle function and properties
 - Muscle models
- Artificial actuators:
 - Actuators overview:
 - Functional compensation
 - Biorobotics and biomimetic robots
 - Artificial drive of natural actuators

Contents

- 1. Introduction: Justification and goals
- 2. Biological actuators
 - Organization and structure
 - Functioning principles
 - Muscle models
 - Hill
 - Cross-bridge
- 3. Robotic artificial actuators. Biomimetism
 - Artificial actuators
 - Actuator comparison: biological vs artificial
 - Actuation of a system of biological actuators

The muscle

scola politécnica da universidade de são pau Muscles

- The human body has more than 400 skeletal muscles
 - 40-50% of total body weight
- Skeletal muscle functions:
 - Force production:
 - Locomotion
 - Postural support
 - Breathing
 - Heat production
- Muscle microstructure:
 - Sarcoleme: Membrane of the mucle cell
 - Myofibrils
 - Actin
 - Myosin
 - Titin

Muscles

- Types:
 - Skeletal:
 - Striate
 - Volunteer
 - Cardiac:
 - Striate
 - Involuntary
 - Smooth:
 - Involuntary
 - Slow

Fiber layout

Motor-neurons

•alpha e gamma

•Alpha:

- Extrafusal
- •60-80 m/s
- •Gamma:
 - Intrafusal
 - •25-60 m/s
- Motor unit: Motoneuron and the innervated muscle fibers

Muscle control architecture

Adapted from McMahon, 1984. Muscles, Reflexes and Locomotion.

Motor plate

Guyton, A.C., 1971. *Textbook of Medical Physiology*, Philadelphia: W.B. Saunders

Neuromuscular junction

- Neuron-muscle fiber
 - Neuromuscular cleft
- Motor plate
 - Bag around the moto-neuron formed by the sarcolemma
- Acetylcholine is released by the neuron:
 - Triggers an action potential in the motor plate (EPP)
 - Depolarization of the muscle fiber

Neuromuscular junction

McMahon, 1984. Muscles, Reflexes and Locomotion.

- Myofibers. Cells with several nuclei:
 - Diameter: 10 60 μ m
 - Length: 5 140 mm
- Myofibrils 1000 8000 por fiber.
 - Diameter: $1 \, \mu m$
 - Contraction mechanism: Myofilaments
- Myofilaments
 - Thick: myosin (long proteins)
 - Thin: actin (globular proteins)

- Sarcomere
- actin
- myosin
- Cross-bridges

Structure of a Skeletal Muscle Cell (Fiber)

- Muscle fiber:
 - Cylindrical cell:
 - From mm to several cm
 - Myofibrils actin, myosin and titin
 - Energy conversion from chemical to mechanical Ca++
 - Functioning characteristics
 - Force-velocity e Force-length

Contractile mechanism

- Transducer:
 - Electrical pulse in the motor plate
 - Chemical diffusion Ca++
 - Linear displacement

Displacement of actin e myosin

Myofibrils

Motor unit

- Myofibers innervated by the same moto-neuron
- Three MU types: I SO, IIB FG and IIA FOG
- Innervation ratio: nº of myofibers x moto-neuron
- Determines the force generation accuracy:
 - Eye muscles: 1:1 muscle/nerve
 - Harmstrings: 300:1 muscle/nerve

Fiber types

- Slow Oxidative (SO) ⇔ Type I
 - Slow twitch oxidative
 - Aerobic
 - Red (highly capilarized)
- Fast-twitch Oxidative (FOG) ⇔ Type IIA
 - Anaerobic with certain resistance
 - Intermediate capilarized (red)
- Fast-twitch Glycolitic (FG) ⇔ Type IIB
 - Anaerobic
 - White

Myofiber types+motor units

- Slow-twitch (S)
 - Slow
- Fast-twitch (F)
 - Fatigue-resistant (FR)
 - Fatigue-intermediate (Fint)
 - Fatigable (FF)

Motor unit

- Muscle contraction: initiated by depolarization of the motor-neuron that innervates the muscle in the motor plate (motor end-plate).
 - excitable muscle tissue
 - changes length generating strength when excited
- Active displacement contraction (energy consumption) of myofilaments
- Each fiber can generate around 0.3 N.

Motor unit

- *Size contraction principle* (Henneman 1957).
 - First the smaller UM ae recruites (SO) and to increase force larger UM are recruited (FG, FOG)
- Rotation of active MUs
 - After some time of stimulation the MU goes off
 - How is rotation controlled? (refractory period?)
- Mechanism to delay fatigue...
- Mechanism to increase force:
 - Increase activation frequency
 - Increase the number of active MUs

Size contraction principle

Descriptive conclusions

- Contraction: electro-chemical phenomenon
 - Bridges actin-myosin (cross-bridges)
 - Difussion of Ca++
 - Delay in the synaptic junction
- Recruitment mechanisms
 - Order
 - Frequency

Functioning principles

• Relation Force-velocity (Hill, 1938)

 Output force of a tetanized sarcomere depends of the contraction velocity v:

 $(v+b)(F+a)=b(F_0+a)$

- Constants: a, b e F_0 : tetanized muscle force
- Rate of work : constant
 - Energy conversion rate of the chemical reaction

Functioning principles

...or:

 $F=F_0 (1-(v/v_0))/(1+c(v/F_0))$ c=F_0/a e v_0= bc max contraction velocity

- Values:
 - Resting length: I_r
 - Fast fibers c=0.1 e v_0 =8 I_r per second
 - Slow fibers c=1 e v_0 =2 l_r per second
 - Depemdency of F_0

Curve Force-velocity

Functioning principles

- Relation Force-length
 - N of overlapped actin-myosin cross-bridges $\boldsymbol{\alpha}$:
 - $-F_0$ depends of sarcomere length:

$$F_0 = F_{max} f(I)$$

F_{max} maximal force at optimal sarcomere length -l-Values: 10-100 N/cm²

 $F=F_{max}f(I)(1-(v/v_0))/(1+c(v/F_0))$

- This is valid for a tetanized fiber
- It is assumed that length and contraction velocity are independent...

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Muscle models

- Compromise: complexity vs detail
- Relation neural ativity=>joint trajectoryr
- Description: Force-length and velocity
- Two approaches

Laboratorio de Biomecatrônica

Muscle models

- Sarcomere poperties:
 - Contraction dynamics:
 - Tension-Length
 - Tension-velocity
 - Activation dynamics:
 - Input: neural signal
 - Output: muscle activation
- Two types of models:
 - Macroscopic (Hill)
 - Microscopic (Huxley)

Hill model

- Sarcomere (CE)
- Tendon (SE)
- Connective tissues: epimysium,... (PE)

Hill model

- Fmus=FsE+FcE
- $F_{SE} = F_{CE} / \cos(\phi)$
- $F_{CE} = F_{max} q(t)f(l)g(v)$
- q(t) is a function of the activation state φ represents the pennation angle g(v) is the tension-velocity relation (atention g(v)=(1-(v/v₀))/(1+c(v/F₀)) is valid only for concentric contractions)

Tension-length curve

- Two contributions:
 - Passive (PE)
 - Active (CE)
 - Passive tension
 depends on
 velocity:
 viscoelasticity
- Polynomic and exponential relation

Activation function

- Neural input u(t) => muscle activity q(t)
- Winters&Stark model (1985):
 - Two differential equations (order 1):
 - 1. Excitation dynamics:
 - 30ms
 - 2. Ca++ concentration:
 - Ativation: 10 ms
 - Deativation: 50 ms
 - Concentration of Ca++ Linear relation with the output force

Reflections of the Hill models

- Independency of the length and velocity
- Unknown paramters:
 - Measured for muscle in vitro
 - Different for a muscle in vivo
- Non constant parameters
- Hill models: experimentals (curve fitting)
- Tension-Length: negative slope=negative stiffness

Cross-bridge models

- Molecular level: Contractile element
 - Two states:
 - Attach f(x)
 - Detach g(x)
 - Depend of the x distance within a range
 - Attachment probability depends on the distance
 - The total force results of the integration of the cross-bridges forces.
 - It is needed to know the rigidity

Nature Reviews | Molecular Cell Biology

Model: muscle and miotatic reflex

Van der Helm FCT, Rozendaal LA (2000). muscleskeletal systems with intrinsic and proprioceptive feedback. In: Winters JM, Crago P (Eds), Neural control of posture and movement, Springer Verlag, NY, 164-174

Contents

- 1. Introduction: Justification and goals
- 2. Biological actuators
 - Organization and structure
 - Functioning principles
 - Muscle models
 - Hill
 - Cross-bridge

3. Robotic artificial actuators. Biomimetism

- Artificial actuators
- Actuator comparison: biological vs artificial
- Actuation of a system of biological actuators

Robotic actuators

- Hydraulic
- Pneumatic
- Electromagnetic
- Other

Hydraulic

- Advantages:
 - High forces
 - High weight-power rate
 - Control:
 - Solenoid (on-off)
 - Servo valve (proportional)
- Disadvantages
 - Need to pump liquid for power supply
 - High cost of fast servo valves
 - Problems of leakages and maintenance

Pneumatic

- Point-to-point motion
- Simple control

- Non-linear behavior difficult to model

- Low cost
- Low energy efficiency
- Pneumatic manipulators servo-controlled with feedback and proportional control
- Biomimetism: pneumatic muscles

Pneumatic muscles

Prof. Horikawa

Electromagnetic (electric motors)

- Step motors:
 - Open-loop
- DC motors:
 - High weight and size
- Brushless motors:
 - Higher control complexity
 - Rotational and linear actuators

Other types

- Electroactive polymers (EPAM)
- Shape memory alloys
- Piezoelectrics
- Ultrasonic motors

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Artificial actuators: Series Elastic

Actuators

Elastic-series actuators

Comparison of actuators

- Definition of compatible metrics:
 - Output power:
 - Actuator mass
 - Actuator volume
 - Efficiency
 - Other measures: stress, strain, strain rate, cycle life, mechanical impedance
 - Backdrivability

Comparison example

Actuator comparison

Actuator Type (specific example)		Typical (Max.) Strain (%)	Typical (Max.) Stress (MPa)	Typical (Max.) Specific Elastic Energy Density (J/g)	Typical (Max.) Elastic Energy Density (J/cm)	Typical (Max.) Avg. Specific Power Density at 1 Hz (W/g)	Peak Strain rate (%/s)	Elastic Modulus (MPa)	Est. Max. Efficiency (%)	Relative Speed (full cycle)
NATURAL MUSCLE	Mammalian Skeletal Muscle	20 (40)	0.1 (0.35)	0.041 (0.08)	0.041 (0.08)	0.041 (0.08)	> 50	1060	20%	Medium
OTHER ELECTROACTIVE POLYMER	Dielectric elastomer	25 (> 300)	1.0 (7.0)	0.1 (3.4)	0.1 (3.4)	0.1 (3.4)	> 450	0.1-10	60–90	Med Fast
	Electrostrictive Polymer	3.5 (7.0)	20 (45)	0.17 (> 0.53)	0.3 (> 1.0)	0.17 (> 0.53)	> 2000	400-1200	60-90	Fast
	Electrochemo-mechanical Conducting Polymer	2 (20)	5 (200)	0.1 (1.0)	0.1 (1.0)	0.1 (1.0)	1	200-3000	< 5	MedSlow
	Ionic Polymer Metal Composite	0.5 (3.3)	3 (15)	(0.004)	(0.006)	0.004	3.3	50–100	1.5–3	Med Slow
	Mechano-chemical Polymer/Gels (Polyelectrolyte)	> 40	0.3	0.06	0.06	< 0.06	< 1	?	30	Slow
	Piezoelectric Polymer (PVDF)	0.1	4.8	0.0013	0.0024	0.0013	?	450	60–90	Fast
	Liquid Crystal Elastomer (Thermal)	19 (45)	0.12 (0.45)	0.003 (0.06)	0.003 (0.06)	< 0.003	37	0.3 – 4	< 5%	Slow
	Shape Memory Polymer	100	4	2	2	< 0.2	?	?	< 10	Slow
NONPOLYMER ACTUATORS	Electromagnetic Direct (Voice Coil) Motor/transmission	50 50	0.10 NA	0.003 NA	0.025 NA	0.003 0.5	> 1000 < 200	NA NA	> 80 > 50	Fast Medium
	Piezoelectric Ceramic (PZT) Single Crystal (PZN-PT)	(0.2) (1.7)	(110) (131)	(0.013) (0.13)	(0.10) (1.0)	(0.013) (0.13)	> 1000 > 1000	25,000–70,000 9000	> 90 > 90	Fast Fast
	Shape Memory Alloy (TiNi)	> 5	> 200	> 15	> 100	< 15	300 (one direction only)	20,000-80,000	< 10	Slow
	Thermal (Expansion)	1	78	0.15	0.4	< 0.15	Depends on heat transfer	> 70,000 (varies)	< 10	Slow
	Magnetostrictive (Terfenol-D, Etrema Products)	0.2	70	0.0027	0.025	>0.0027	>1000	40,000	60	Fast

Motor compensation

Activation of the physiological actuators

Neurotherapeutics

Functional electrical stimulation

Activation of the physiological actuators

- Electrical current through the nerve:
 - Intracellular
 - Extracellular:
 - Electrical stimulation
 - Magnetic stimulation
- Electrical stimulation
 - Percutaneous
 - Subcutaneous
- Magnetic stimulation

Activation of the physiological actuators

- Excitation of the motoneuron axon
 - Currente density through the tissue:
 - Electrical field
 - Magnetic field
 - Membrane potential must be above the trigger threshold
- Artifical control:
 - Spatial recruitment
 - New electrodes arrays for FES
 - Temporal recruitment

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Commercial system

Commercial system

Thanks