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The military requirements document specifies dynamic response mainly through
the pole-zero requirements. These have been summarized here so that the reader may
evaluate some of the controller designs described later. Much additional information
covering other aspects of flying qualities is available in the requirements document,
and it is essential reading for anyone with other than a casual interest in this field.

4.4 STABILITY AUGMENTATION

Most high-performance commercial and military aircraft require some form of stabil-
ity augmentation. Some military aircraft are actually unstable and would be virtually
impossible to fly without an automatic control system. The SAS typically uses sen-
sors to measure the body-axes angular rates of the vehicle and feeds back processed
versions of these signals to servomechanisms that drive the aerodynamic control sur-
faces. In this way an aerodynamic moment proportional to angular velocity and its
derivatives can be generated and used to produce a damping effect on the motion.
If the basic mode is unstable or if it is desired to change both damping and natural
frequency independently, additional feedback signals will be required, as we will see.

Stability augmentation systems are conventionally designed separately for the lon-
gitudinal dynamics and the lateral-directional dynamics, and this is made possible by
the decoupling of the aircraft dynamics in most flight conditions. In the next two sub-
sections aircraft model dynamics will be used to describe the design of the various
augmentation systems.

Pitch-Axis Stability Augmentation

The purpose of a pitch SAS is to provide satisfactory natural frequency and damp-
ing for the short-period mode. This mode involves the variables alpha and pitch rate;
feedback of these variables to the elevator actuator will modify the frequency and
damping. Figure 4.4-1 shows the arrangement; if the short-period mode is lightly
damped but otherwise adequate, only pitch-rate feedback is required. If the frequency
and damping are both unsatisfactory or the mode is unstable, alpha feedback is neces-
sary. The phugoid mode will be largely unaffected by this feedback. Outer feedback

Figure 4.4-1 Pitch-axis stability augmentation.
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control loops will often be closed around the pitch SAS to provide, for example,
autopilot functions. Automatic adjustment of the augmentation (inner) loop feedback
gains may be arranged when the outer feedback loops are engaged, so that the overall
performance is optimal.

A physical understanding of the effect of alpha feedback follows from the expla-
nation of pitch stiffness in Chapter 2. A statically unstable aircraft has a pitching
moment curve with a positive slope over some range(s) of alpha. If perturbations
in alpha are sensed and fed back to the elevator servo to generate a restoring pitch-
ing moment, the slope of the pitching moment curve can be made more negative in
the region around the operating angle of attack. Furthermore, the overall pitching
moment curve and the trimmed elevator deflection will not be affected, thus preserv-
ing the trim-drag and maneuverability characteristics that the designer built into the
basic airplane design.

The angle-of-attack measurement may be obtained from the pitot-static air data
system, or a small “wind vane” mounted on the side of the aircraft forebody and posi-
tioned (after much testing and calibration) to measure alpha over a wide range of flight
conditions. Two sensors may be used, on opposite sides of the aircraft, to provide
redundancy and possibly to average out measurement errors caused by sideslipping.
In addition, it may be necessary to compute (in real time) a “true” angle of attack
from the “indicated angle of attack,” airspeed, and Mach number, in order to relate
the freestream angle of attack of the airframe to the direction of the flowfield at the
sensor position. The signal from the alpha sensor is usually noisy because of tur-
bulence, and a noise filter is used to reduce the amount of noise injected into the
control system.

Alpha feedback is avoided if possible because of the difficulty of getting an accu-
rate, rapidly responding, noise-free measurement and because of the vulnerability of
the sensor to mechanical damage. Noise from the alpha sensor can make it difficult
to achieve precise pointing (e.g., for targeting), so the amount of alpha feedback is
normally restricted.

The pitch-rate sensor is normally a mechanical gyroscopic device arranged to mea-
sure the (inertial) angular rate around the pitch axis. The location of the gyro must be
chosen very carefully to avoid picking up the vibrations of the aircraft structure. At a
node of an idealized structural oscillation there is angular motion but no displacement,
and at an antinode the converse is true. Thus, the first choice for the rate gyro location
is an antinode corresponding to the most important structural mode. Flight tests must
then be used to adjust the position of the gyros. A bad choice of gyro locations can
adversely affect handling qualities or, in extreme cases, cause oscillations in the flight
control systems (AFWAL-TR-84-3105, 1984). The gyro filter shown in Figure 4.4-1
is usually necessary to remove noise and/or cancel structural-mode vibrations.

The sign convention that has been adopted in this book (see Chapter 3) means
that a positive elevator deflection leads to a negative pitching moment. Therefore, for
convenience, a phase reversal will be included between the elevator actuator and the
control surface in each example, so that the positive-gain root-locus algorithm can be
used for design.
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Example 4.4-1: The Effects of Pitch Rate and Alpha Feedback The longitudinal
(four-state) Jacobian matrices for the F-16 model in the nominal flight condition in
Table 3.6-3 are

A =

⎡⎢⎢⎢⎢⎣

vT 𝛼 𝜃 q

−1.9311E − 02 8.8157E + 00 −3.2170E + 01 −5.7499E − 01

−2.5389E − 04 −1.0189E + 00 0.0000E + 00 9.0506E − 01

0.0000E + 00 0.0000E + 00 0.0000E + 00 1.0000E + 00

2.9465E − 12 8.2225E − 01 0.0000E + 00 −1.0774E + 00

⎤⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣

𝛿e
1.7370E − 01

−2.1499E − 03

0.0000E + 00

−1.7555E − 01

⎤⎥⎥⎥⎥⎦
(1)

C =
[

0.000000E + 00 5.729578E + 01 0.000000E + 00 0.000000E + 00

0.000000E + 00 0.000000E + 00 0.000000E + 00 5.729578E + 01

]
𝛼

q

The single input is the elevator deflection, 𝛿e, in degrees, and the two outputs are the
appropriate feedback signals: alpha and pitch rate. The entries in the C-matrix are the
conversions to units of degrees for consistency with the input.

Either of the two SISO transfer functions obtained from the coefficient matrices
will exhibit the dynamic modes for this flight condition; the elevator-to-alpha transfer
function is

𝛼

𝛿e
= −0.1232(s + 75.00)(s + 0.009820± j0.09379)

(s − 0.09755)(s + 1.912)(s + 0.1507 ± j0.1153)
(2)

Unlike the transfer functions for stable cg positions (e.g., xCG = 0.3 c) in Chapter 3,
this transfer function does not exhibit the usual phugoid and short-period poles. The
pole at s ≈ .098 indicates an unstable exponential mode with a time constant of about
10 s. The complex pole pair corresponds to an oscillatory mode with a period of 33 s
and damping ratio of 0.79; this is like a phugoid period with a short-period damping
ratio. This mode is the “third oscillatory mode” of the statically unstable airplane (see
Section Aircraft Rigid-Body Modes).

The modes described above obviously do not satisfy the requirements for good
handling qualities, and providing continuous control of the unstable mode would be
a very demanding job for a pilot. We will now show that alpha and pitch-rate feedback
together will restore stability and provide virtually complete control of the position
of the short-period poles.

The configuration shown in Figure 4.4-1 will be used with an alpha filter but, for
simplicity, no pitch-rate filter. The actuator and alpha filter models are taken from the
original F-16 model report (Nguyen et al., 1979) and are both simple-lag filters with
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time constants 𝜏a = 1∕20.2 s and 𝜏F = 0.1 s, respectively. The aircraft state-space
model (1) augmented with these models, is

x·  =

y = x

C

q =

+
A
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0
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(3a)
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Notice that the original state equations are still satisfied and the original 𝛿e input is
now connected to the actuator state xa through the phase reversal. The actuator is
driven by a new input, ue. Also, the 𝛼 filter is driven by the 𝛼 state of the aircraft
dynamics, and an additional output has been created so that the filtered signal 𝛼F is
available for feedback. These state equations could also have been created by simulat-
ing the filters as part of the aircraft model and running the linearization program again.
In the rest of this chapter the augmented matrices will be created by the MATLAB
“series” command, as used in Chapter 3.

The state equations (3) can now be used to obtain the loop transfer functions
needed for root-locus design. In the case of the innermost (alpha) loop, we already
know that the 𝛼-loop transfer function will consist of Equation (2) with the two lag
filters in cascade, and the effect of the feedback k𝛼 can be anticipated using a sketch
of the pole and zero positions. The goal of the alpha feedback is to pull the unsta-
ble pole, at s = 0.098, back into the left-half s-plane. Let the augmented coefficient
matrices in Equation (3) be denoted by aa, ba, and ca. Then the following MATLAB
commands can be used to obtain the root locus:

k= logspace(-2,1,2000);
r= rlocus(aa,ba,ca(3,:),0,k); % 3rd row of C
plot(r)
grid on
axis([-20,1,-10,10])

Figures 4.4-2a and b show the root-locus plot for the inner loop on two different
scales. The expanded scale near the origin (Figure 4.4-2b) shows that the effect of
the alpha feedback is to make the loci from the third-mode poles come together on
the real axis (near s = −0.2). The branch going to the right then meets the locus com-
ing from the unstable pole, and they leave the real axis to terminate on the complex
zeros near the origin. This provides a pair of closed-loop poles that correspond to a
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Figure 4.4-2a Inner-loop root-locus plot for pitch SAS.
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Figure 4.4-2b Expanded inner-loop root-locus plot for pitch SAS.
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phugoid mode. The left branch from the third-mode poles meets the locus from the
pole at s = −1.9, and they leave the axis near s = −1 to form a short-period mode.
Alpha feedback has therefore produced the anticipated effect: The aircraft is stable
with conventional longitudinal modes.

The larger-scale plot (Figure 4.4-2a) shows that as the magnitude of the alpha
feedback is increased, the frequency of the new short-period poles increases and they
move toward the right-half plane. The movement toward the right-half plane is in
accordance with the constant net damping rule and the filter and actuator poles mov-
ing left. A slower (less expensive) actuator would place the actuator pole closer to the
origin and cause the short-period poles to have a lower frequency at a given damp-
ing ratio. The position of the short-period poles for k𝛼 = 0.5 is −070 ± j2.0. At this
position the natural frequency is about 2.2 rad/s, which is acceptable according to the
flying qualities requirements, but the damping ratio (𝜁 = 0.33) is quite low.

A root-locus plot will now show the effect of varying kq, with k𝛼 fixed at 0.5. The
following MATLAB commands can be used:

acl= aa- ba*k𝛼*ca(3,:); % Choose k𝛼
%[z,p,k]= ss2zp(acl,ba,ca(2,:),0) % q/u transf. fn
r= rlocus(acl,ba,ca(2,:),0);
plot(r)

The q/u transfer function with k𝛼 = 0.5 and kq = 0 is

q
u
= 203.2s(s + 10.0)(s + 1.027)(s + 0.02174)

(s + 20.01)(s + 10.89)(s + 0.6990 ± j2.030)(s + 0.008458± j0.08269)
(4)

Note that the zeros of this transfer function are the 1∕T𝜃1
and 1∕T𝜃2

unaugmented
open-loop zeros, with the addition of a zero at s = −10. This zero has appeared
because of the MIMO dynamics (two outputs, one input). It originally canceled the
alpha filter pole out of the pitch-rate transfer function, but the inner-loop feedback
has now moved the alpha filter pole to s = −10.89.

Figure 4.4-3 shows the root-locus plot for variable kq. The phugoid poles move
very slightly but are not visible on the plot. The short-period poles follow a circular
arc around s = −1 (roughly constant natural frequency) as the pitch-rate feedback
is increased. The poles become real for quite low values of kq and, with larger val-
ues, a new higher-frequency oscillatory mode is created by the filter and actuator
poles. Such a mode would be objectionable to the pilot, and we look for lower values
of kq that make the short-period poles match the flying qualities requirements, with
no additional oscillatory mode. The value kq = 0.25 places the short-period poles at
s = −2.02 ± j1.94. This corresponds to a natural frequency of 2.8 rad/s and a damp-
ing ratio of 𝜁 = 0.72. The corresponding closed-loop transfer function for pitch rate
is given by

q
u
= 203.2s(s + 10.0)(s + 1.027)(s + 0.02174)

(s + 16.39)(s + 11.88)(s + 2.018 ± j1.945)(s + 0.008781± j0.06681)
(5)
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Figure 4.4-3 Outer-loop root-locus plot for pitch SAS.

The original actuator pole has moved from s = −20.2 to s = −16.39, and the 𝛼-filter
pole has moved from s = −10 to s = −11.88. Apart from these factors, this transfer
function is very similar to the stable-cg transfer function in Example 3.8-3 but with
improved short-period pole positions. ◾

Example 4.4-1 shows that alpha feedback stabilizes the unstable short-period
mode and determines its natural frequency, while the pitch-rate feedback mainly
determines the damping. The amount of alpha feedback needed to get a satisfactory
natural frequency was 0.5∘ of elevator deflection per degree of alpha. The alpha
signal is noisy and sometimes unreliable, and this large amount of alpha feedback is
preferably avoided. In the second root-locus plot it can be seen that, as the pitch-rate
feedback is varied, the locus of the short-period poles circles around the 1∕T𝜃2

zero.
Therefore, by moving the zero to the left, a higher natural frequency can be achieved,
or the same natural frequency can be achieved with less alpha feedback. This will be
demonstrated in the next example.

Example 4.4-2: A Pitch-SAS Design The coefficient matrices aa, bb, cc from
Example 4.4-1 are used again here, and the alpha feedback gain will be reduced
to k𝛼 = 0.1. A lag compensator with a pole at s = −1 and a zero at s = −3 will be
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cascaded with the plant to effectively move the 1∕T𝜃2
zero to s = −3. The MATLAB

commands are

acl= aa - ba*0.1*ca(3,:); % Close alpha loop, K𝛼=.1
qfb= ss(acl,ba,ca(2,:),0); % SISO system for q f.b.
z=3; p=1;
lag= ss(-p,1,z-p,1); % Lag compensator
csys= series(lag,qfb); % Cascade Comp. before plant
[a,b,c,d]= ssdata(csys);
k= logspace(-2,0,2000);
r= rlocus(a,b,c,d,k);
plot(r)
grid on
axis([-20,1,-10,10])

The root-locus plot is the same shape as Figure 4.4-3, and when the pitch-rate
feedback gain is kq = 0.2, the closed-loop transfer function is

q
u
= 203.2s(s + 10.0)(s + 1.027)(s + 0.0217)(s + 3)

(s + 18.02)(s + 10.3)(s + 1.025)(s + 1.98 ± j2.01)(s + 0.0107± j0.0093)
(1)

When the pole and zero close to s = −1 are canceled out, this transfer function is
essentially the same as in Example 4.4-1 except that there is a zero at s = −3 instead
of s = −1. This zero can be replaced by a zero at s = −1 once again, by placing the
lag compensator in the feedback path. However, a zero at s = −1 produces a much
bigger overshoot in the step response than the zero at s = −3. Therefore the flying
qualities requirements on T𝜃2

should be checked (see Section The Handling Qualities
Requirements) to obtain some guidance on the position of the zero.

This example shows that the same short-period mode, as in Example 4.4-1, can
be achieved with much less alpha feedback and less pitch-rate feedback. Also, the
transfer function (1) shows that no additional modes are introduced. A dynamic com-
pensator is the price paid for this. Section 4.3 shows that the 1∕T𝜃2

zero will move
with flight conditions, and so the compensator parameters may have to be changed
with flight conditions. ◾

Lateral-Directional Stability Augmentation/Yaw Damper

Figure 4.4-4 shows the most basic augmentation system for the lateral-directional
dynamics. Body-axis roll rate is fed back to the ailerons to modify the roll subsi-
dence mode, and yaw rate is fed back to the rudder to modify the dutch roll mode
(yaw damper feedback). The lateral (rolling) motion is not, in general, decoupled
from the yawing and sideslipping (directional) motions. Therefore, the augmenta-
tion systems will be analyzed with the aid of the multivariable state equations (two
inputs, ailerons and rudder, and two or more outputs), as implied by the figure. This
analysis will be restricted to the simple feedback scheme shown in the figure; in a
later section additional feedback couplings will be introduced between the roll and
yaw channels.
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