

1

Como gerar átomos e íons excitados?

Mais simples ———— Termicamente

Aplicações:

- · Análises qualitativas
 - Testes de chama (experimentos de Bunsen-Kirchoff, 1860)
- Análises quantitativas
- Fotometria de chama (FP)
- Espectrometria de emissão atômica em chama (FAES)
- Espectrometria de emissão óptica com plasma indutivamente acoplado (ICP OES)

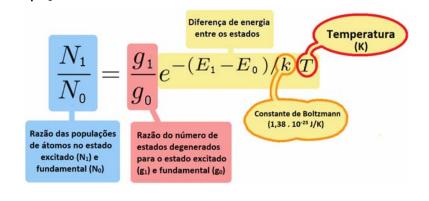
Análise Qualitativa: Testes de chama Quais elementos ? Facilmente excitáveis e ionizáveis Qual a fonte de excitação ? Chama ar-propano (T ~ 1950 °C) Qual o sistema de seleção de λ ? Nenhum Qual o detector ? Olho humano Quírica Análtica Qualitativa Inorgânica UFRJ. @QualitativalnorqUfi, site educacional.

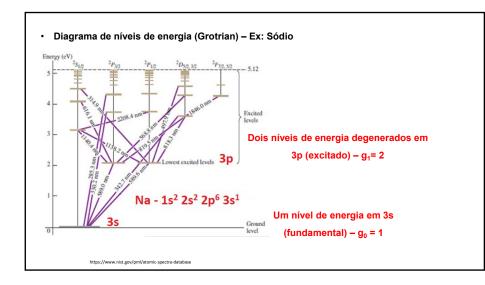
Análise Quantitativa: Fotometria de chama

- Quais elementos ? Principalmente Na e K
- Qual a fonte de excitação ? Chama ar-propano (T ~ 1950 °C)
- Qual o sistema de seleção de λ? Filtros de radiação
- · Qual o detector ? Válvula fotomultiplicadora

https://www.systonic.co.in/flame-photometer.html

Análise Quantitativa: Emissão atômica em chama




- · Quais elementos ? Principalmente elementos do Grupo 1A ,Ca e Sr
- Qual a fonte de excitação ? Chama ar-acetileno (T ~ 2500 K)
- Qual o sistema de seleção de λ? Monocromadores
- Qual o detector ? Dispositivo de carga acoplada (CCD)

https://www.systonic.co.in/flame-photometer.html

Como aumentar a população de elementos no estado excitado?

· Equação de Boltzmann

Exercício em aula

Calcule a relação entre a população de átomos de Na no estado excitado e no estado fundamental (N_1/N_0) numa chama produzida pela mistura ar-acetileno (T = 2500 K), associada ao comprimento de onda 589 nm. Considere ΔE = 2,1 eV = 3,36.10⁻¹⁹J e k = 1,38.10⁻²³

$$\begin{split} \frac{N_1}{N_0} &= \frac{g_1}{g_0} \, e^{\frac{-\Delta E}{kT}} \end{split} \qquad \begin{array}{l} \text{Calcule agora essa relação para um plasma (T ~ 7000 K)} \\ \\ \frac{N_1}{N_0} &= \frac{2}{1} \, e^{-\frac{3,36.10^{-19}}{1,38.10^{-23}.2500}} \\ \\ \frac{N_1}{N_0} &= 6.10^{-5} \\ \\ N_1 &= 0,00006. \, N_0 \\ \\ \end{array} \qquad \begin{array}{l} \frac{N_1}{N_0} &= 6.10^{-2} \\ \\ N_1 &= 0,0006. \, N_0 \\ \\ \end{array} \end{split}$$

~

Como gerar mais átomos e íons excitados?

- Aumentando a temperatura: Tplasma >> Tchamas
- Quanto maior a temperatura, maior será a população de átomos excitados
- Entretanto, N₁ nunca será >> N₀. Por que?

Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.br

O que é um plasma?

- O plasma pode ser definido como um gás parcialmente ionizado no qual coexistem elétrons livres e íons positivos
- Para converter um gás em um plasma, é necessário fornecer energia para que ele se ionize.

- O plasma indutivamente acoplado (*inductively coupled plasma*, ICP) é um tipo de plasma gerado e mantido por uma fonte externa de energia.
- A energia do ICP é fornecida por uma fonte de rádio-frequência (27 ou 40 MHz)

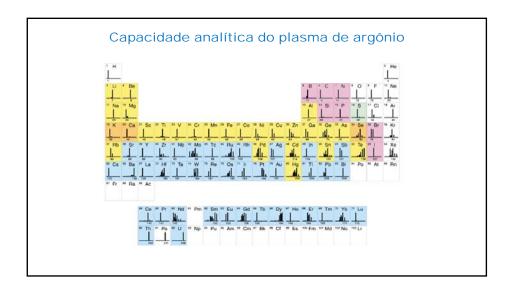
Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.b

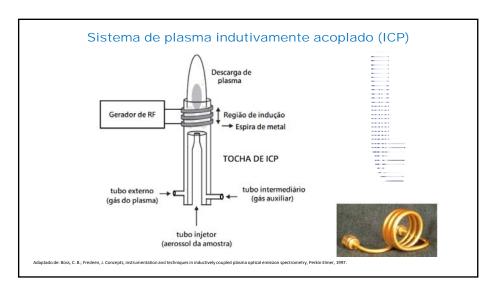
Plasma de ICP

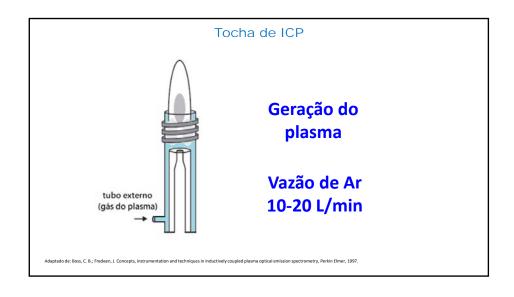
• O plasma indutivamente acoplado foi proposto inicialmente por Fassel (1965) para uso analítico

Características ideais de um plasma

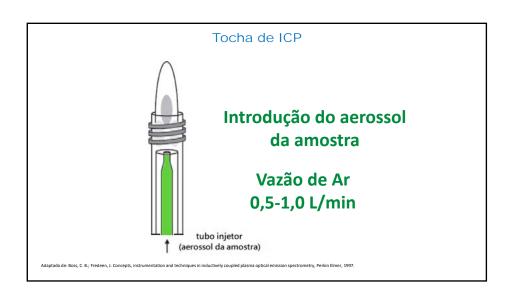
- Elevada energia de ionização (halogênios, ametais)
- Elevada condutividade térmica (transferência de calor)
- Baixo fundo espectral (interferências)
- Alta pureza
- · Baixo custo
- · Ampla disponibilidade

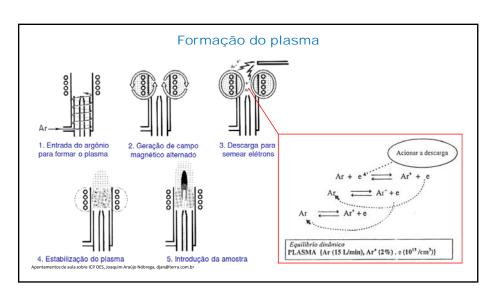

Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.br

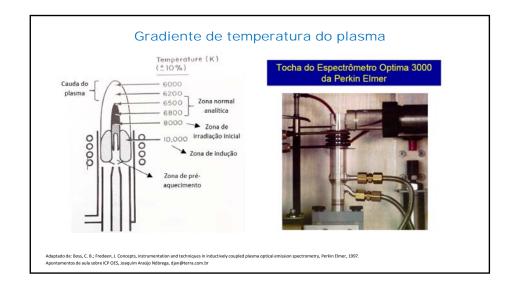

Plasma de argônio

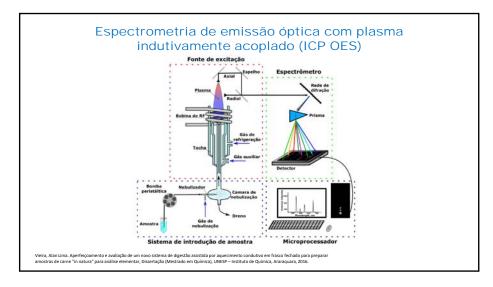

Propriedades de Gases

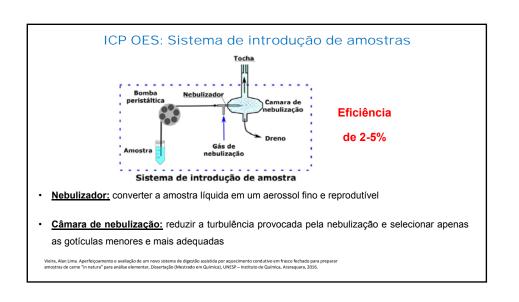

Gás	E _{ioniz.} (eV)	Condutividade Térmica (J / K m s)	Custo por litro (pound)		
He	24,587	0,141	12		
Ne 21,564		0,0461	20		
Ar	15,759	0,0162	0,3		
Kr	13,999	0,0086	73 850		
Xe	12,130	0,0051			
H ₂	13,598	0,166	0,3		
N ₂	14,534	0,0237	0,13		
02	13,618	0,0247	0,10		

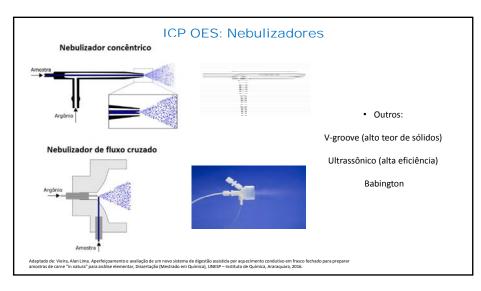

Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.br

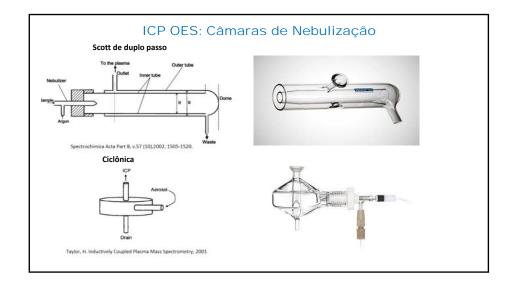


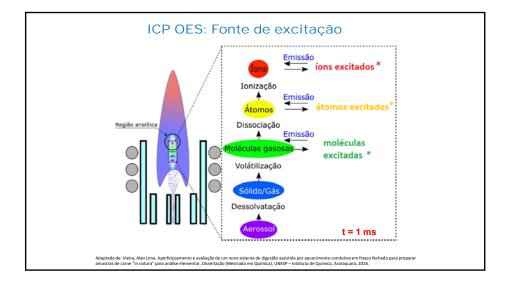












ICP OES: Ionização no plasma

Quando potencial de ionização for menor que 9 eV M+ é a forma predominante no plasma

	Primeira energia de				
Elemento	ionização				
	(eV)				
K	4,34				
Li	5,39				
Ca	6,11				
Cr	6,77				
Mn	7,43				
Cu	7,73				
Be	9,32				
Zn	9,39				
I	10,4				
Ar	15,8				
F	17,4				

Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.br

_	_																	
H	1																	He
	L.																	
100	В	e 5											B	c 5.0	N 0.10	0.10	9×10-	N e 6×10·
100	Ι΄	5											50	5,0	0,10	0,10	9×10-	6×10-
N a	M													Si	Р	S	CI	Ar
100	9	8											98	8.5	33	14	0,90	0,040
K	C	a	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	G a	Ge	As	Se	Br	Kr
100		.0)	100	99	99	98	95	96	93	91	90	75	98	90	52	33	5.0	0,60
RЬ	S		Υ	Zr	N b	Мо	Tc	Ru	Rh	Ρd	Αg		In	Sn	Sb	Te	1	Хe
100		96 4)	98	99	98	98		96	94	93	93	65	99	96	78	66	29	8,5
Cs	В		La	Нf	Ta	w	Re	Os	Ir	Pt	Αu		TI	РЬ	Bi	Ро	At	Rn
100			90	96	95	94	93	78		62	51	38	100	97	92			
Fr	R		(10) Ac	⊢	_							_		(0,01)				ш
	1	_		ı														
	L			ı														
Ce		Pr	N	d	Pm	S m	E	u	Gd	Τb	D	у	Но	Er	Tm	Υb	Lu	
96		90		99		97		100	93	99	1	00		99	91 (9.0)	92	,	7
Th.		Pa	U		Νp	P u		m	C m	Вk	С	f	Es	Fm	M d	No.	Lr	-
10	0		T	100		т	т	\neg		т	┰	\neg				т	-	7
	_	D			1- 1				- 1				!!	de lessi		1.4+ -	1.4++	_
		Por	cent	agen	n de id	ons p			ieiro e 500 K					de ioni.	zação	M⁺ e	M**	

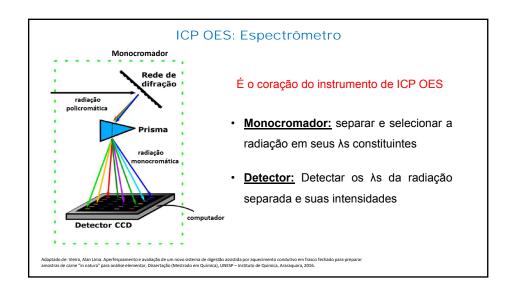
ICP OES: Linhas atômicas e iônicas

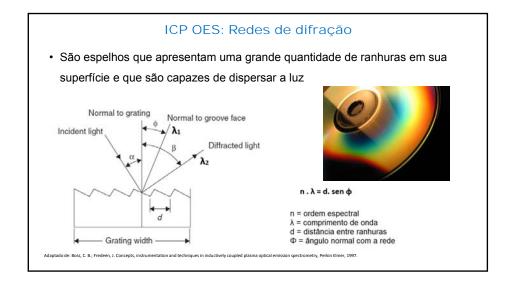
- Linhas atômicas : designadas por M (I)
- Linhas iônicas : designadas por: M(II) 1ª ionização ou M(III) 2ª ionização (raras)
- Espectros de emissão de átomos e íons são diferentes (Ex: Al, E_{ioniz.} = 5,98 eV)
 - 13AI 1s2 2s2 2p6 3s2 3p1
 - 46 níveis eletrônicos para possíveis transições
 - 118 linhas de emissão entre 160 1000 nm
 - 13AI+ 1s2 2s2 2p6 3s2
 - 226 níveis eletrônicos para possíveis transições
 - 318 linhas de emissão entre 160 1000 nm

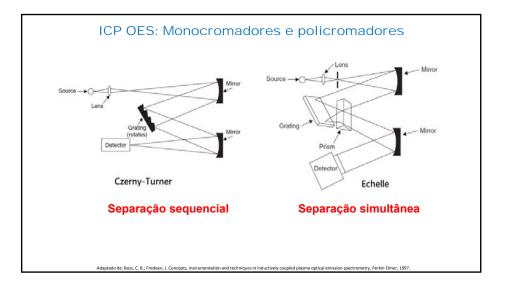
Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.br

Escolhas de linhas atômicas e iônicas

Alumínio

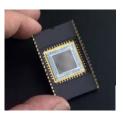

Linha espectral (nm)	Sensibilidade relativa	LOD (ng ml ⁻¹)
1 202,582	16000	15
I 277,983	17000	33
II 279,079	29000	20
II 279,553	5800000	0,1
II 279,806	58000	10

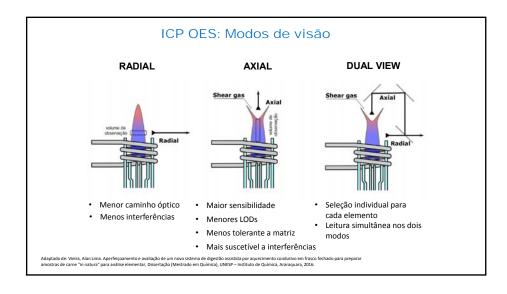

Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.b

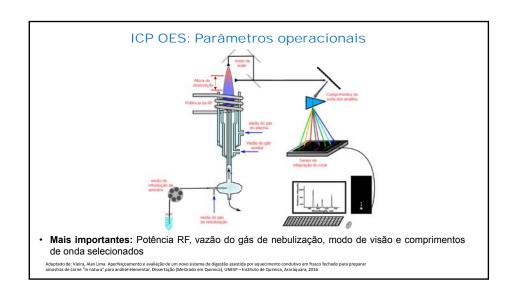

	Número de linhas espectrais de alguns elementos				
Elemento	Linhas de emissão				
Li	30				
Cs	645				
Mg	173				
Ca	662				
Cr	2277				
Fe	4757				
Ce	5755				

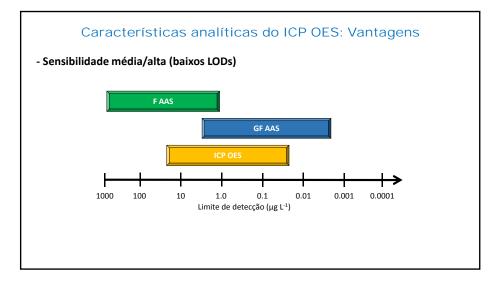
• Possíveis interferências (sobreposição de comprimentos de onda)

Apontamentos de aula sobre ICP OES, Joaquim Araújo Nóbrega, djan@terra.com.br

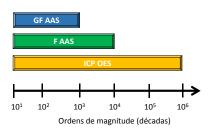





ICP OES: Detectores


- · Compostos por materiais fotossensíveis
- Fótons incidentes são convertidos em corrente elétrica

- Os sinais de emissão são processados através de um computador (que controla também boa parte da operação do instrumento)
- Os detectores mais modernos (CCD e CID) são rápidos, sensíveis, versáteis e possibilitam estender o intervalo linear de resposta

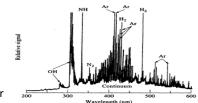


Características analíticas do ICP OES: Vantagens

- Ampla faixa de trabalho (calibração)
- Menor manipulação das amostras
- Menor risco de contaminação e erros

- Maior frequência analítica
- Maior número de elementos analisados por amostra em um determinado tempo

Monoelementares


Multielementar

Cerca de 73 elementos / minuto

Características analíticas do ICP OES: Limitações

- Sinal de fundo elevado (contínuo)
- Sensibilidade relativamente baixa para elementos chave:
- Tóxicos como As, Cd, Hg e Pb
- Não metais como P, S e ametais como F, Cl, Br

- Interferências:
- Espectrais (sobreposição de linhas de emissão)
- Não espectrais (efeitos de matriz)
- Custo: aquisição e operação maiores que AAS (maior consumo e custo do Ar)

Aplicações para ICP OES: Análise de água

PORTARIA Nº 2.914, DE 12 DE DEZEMBRO DE 2011

Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade.

Portaria nº 2914/2011 do Ministério da Saúde

- Dispões sobre limites e valores máximos permitidos As, Ba, Cd, Cr, Hg, Ni, Se, Pb e U em águas potáveis
- Faixas de concentração de 0,001 a 2 mg/L

http://site.sabesp.com.br/site/uploads/file/asabesp_doctos/PortariaMS291412122011.pdf

Análise de água

ANEXO VII

Tabela de padrão de potabilidade para substâncias químicas que representam risco à saúde

Parâmetro	CAS ⁽¹⁾	Unidade	VMP ⁽²⁾
	INORGA	NICAS	
Antimónio	7440-36-0	mg/L	0,005
Arsénio	7440-38-2	mg/L	0,01
Bário	7440-39-3	mg/L	0.7
Cádmio	7440-43-9	mg/L	0,005
Chumbo	7439-92-1	mg/L	0,01
Cianeto	57-12-5	mg/L	0.07
Cobre	7440-50-8	mg/L	2
Cromo	7440-47-3	mg/L	0,05
Fluoreto	7782-41-4	mg/L	1,5
Mercúrio	7439-97-6	mg/L	0,001
Niquel	7440-02-0	mg/L	0,07
Nitrato (como N)	14797-55-8	mg/L	10
Nitrito (como N)	14797-65-0	mg/L	1
Selênio	7782-49-2	mg/L	0,01
Urânio	7440-61-1	mg/L	0,03

- ICP OES seria uma boa técnica para atender essa portaria?
- Quais características tornariam ICP OES atrativa para tal?

 $http://site.sabesp.com.br/site/uploads/file/asabesp_doctos/PortariaMS291412122011.pdf$

Aplicações para ICP OES: Análise de sucos Application Note Trace Metala in Food Reduced Plasma Flow ICP-OES Method for the Analysis of Fruit Juices Fast, stable and accurate analysis using the Agilent 5110 ICP-OES

Análise de sucos

- Amostras de suco (altos teores de açúcar e carbono)
- Diluição prévia de 40X com HNO₃ 2% (v/v)

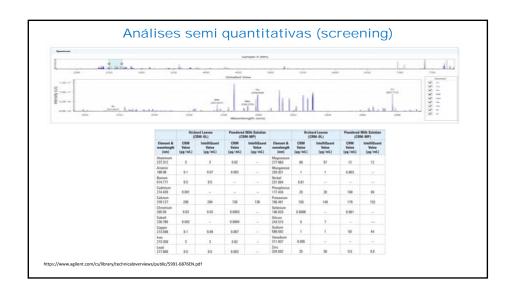
Parameter	Setting				
Viewing mode	Axial	Radia			
Replicate read time (s)	10	. 5			
Stabilization time (s)		10			
Replicates.		3			
Sample uptake delay (s)	15				
Rinse time (s)	30				
Pump speed (rpm)	12				
Fast pump during uptake and rinse	Yes				
RF power (kW)	0.9				
Plasma flow (L/min)	9.5				
Aux flow (L/min)	1				
Nebulizer flow (L/min)	0.5				
Viewing height (mm)		10			

Figure 3. Long-term stability: recovery of a QC sample analyzed after every 10 samples over an 8.5 hour period.

Análise de sucos

Cranberry juice

https://www.agilent.com/cs/library/applications/application-fruit-juice-5110-icp-oes-5994-0785en-us-agilent.pdf


Element and wavelength (nm)	Viewing mode	Calibration range (mg/L)	Correlation coefficient	MDL (mg/L)	Measured sample* (mg/L)	Spike concentration (mg/L)	Measured spiked sample (mg/L)	Recovery (%)
Al 396.152	Axial	0-2	1 :	0.13	0.003	0.05	0.05	94
As 188.980	Axial	0-2	1	0.32	<mdl< td=""><td>0.1</td><td>0.1</td><td>97</td></mdl<>	0.1	0.1	97
Ca 317.933	Radial	0-20	1	0.43	0.96	0.98	1.96	102
Cd 226.502	Axial	0-2	1	0.017	<mdl< td=""><td>0.05</td><td>0.05</td><td>100</td></mdl<>	0.05	0.05	100
Cu 327.395	Axial	0-2	1	0.049	0.001	0.05	0.05	98
Fe 238.204	Axial	0-2	1	0.034	0.008	0.05	0.06	104
K 766.491	Radial	0-100	0.99999	12.08	3.38	10.33	13.4	97
Mg 280.270	Radial	0-20	0.99999	0.053	0.26	1.06	1.27	95
Mn 257.610	Axial	0-2	1	0.0040	0.0083	0.05	0.06	103
Na 589.592	Radial	0-20	0.99999	1.39	0.47	1.02	1.49	100
Ni 216.555	Axial	0-2	1	0.094	<mdl< td=""><td>0.05</td><td>0.05</td><td>98</td></mdl<>	0.05	0.05	98
P 177.434	Axial	0-20	1	0.30	0.18	0.5	0.67	99
Pb 220.353	Axial	0-2	1	0.29	<mdl< td=""><td>0.1</td><td>0.1</td><td>101</td></mdl<>	0.1	0.1	101
S 181.972	Axial	0-20	1	0.80	0.16	0.51	0.66	98
Sn 189.925	Axial	0-2	0.99998	0.34	<mdl< td=""><td>0.2</td><td>0.2</td><td>97</td></mdl<>	0.2	0.2	97
Zn 202.548	Axial	0-2	1	0.021	0.058	0.19	0.26	106

Aplicações para ICP OES: Análises semi quantitativas (screening)

Os laboratórios que trabalham com análises de alimentos monitoram rotineiramente um conjunto de elementos para controle de qualidade:

- · Verificar a presença de níveis preocupantes de um elemento tóxico
- · Verificar perdas de um determinado nutriente
- Alertar para possíveis falhas de processo

Análises rápidas e confiáveis são necessárias para resultados estimados e triagem de materiais para análises mais criteriosas

Exercício em aula

A tabela abaixo mostra um comparativo de limites de detecção (em μg/L) para espectrometria de emissão em chama (FAES) e em plasma (ICP OES)

Element	to FAES	ICP OES
Na	0,1	0,1
Zn	50	0,1

Discuta por que os valores dos limites são similares para Na e diferentes para Zn.

Apontamentos de aula sobre ICP OES, Fábio R. P. Rocha, frprocha@cena.usp.br