

Apresentação Parcial

Camilla Castro
Melissa Yukari
Estevan Covari Isaak
Milton Gioia Neto

Sumário

- Objetivos
- Requisitos do projeto
- Características da carga e do navio
- Rotas portos e restrições
- Dimensões principais
- Pesos e centros
- Regulamentações

Objetivos

- Apresentar o andamento do projeto de navio apoiado em estudos e metodologias trabalhadas previamente em outras disciplinas do curso de engenharia naval.
- Seguir cronologicamente as atividades desempenhadas com base no modelo de espiral de projetos.

Requisitos do Projeto

Tipo de navio: Double hull products tanker

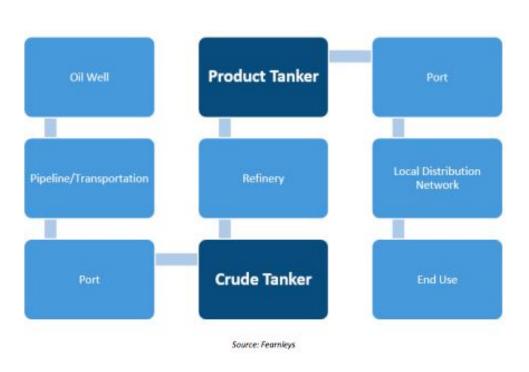
Velocidade de serviço: 15,6 nós

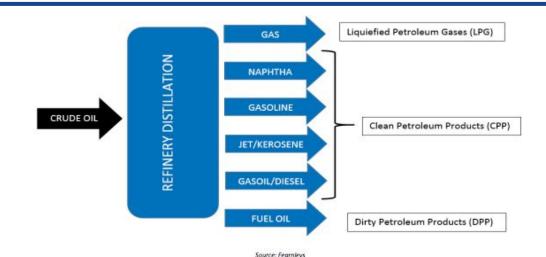
Rota: Golfo do México/ Venezuela -Costa oeste da América Central e Sul

Autonomia: 11.500 milhas náuticas

Deadweight de carga (projeto): 45.100 tons

Características da Carga




Figura: Cadeia de valor do petróleo

- Navios "product tanker" carregam somente produtos derivados do petróleo cru, provenientes de refinarias.
- Por serem líquidos, os produtos se dispõem homogeneamente dentro do tanque.
- Os produtos refinados podem ser classificados em dois grupos:
 - Produtos brancos (gasolina, combustível de aviação, querosene, óleo diesel)
 - Produtos negros (óleo combustível, asfaltos e outros resíduos, óleo lubrificante)

Características da Carga

PNV USP

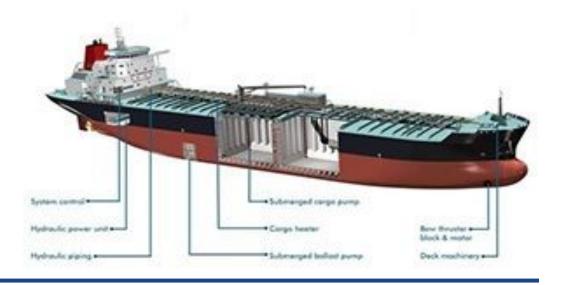
- Segundo as regras da ASTM (American Society for Testing Materials), a determinação da densidade dos produtos é calculada na temperatura de 15,5°C.
- A API (American Petroleum Institute) possui sua própria escala para mensurar a densidade do óleo. Quanto maior a nota API, menos densos e menos viscosos são os óleos e derivados.

Asfalto	11°API
Óleo cru pesado	18°API
¦ Óleo cru leve	36°API
Nafta	50°API
Gasolina	60°API

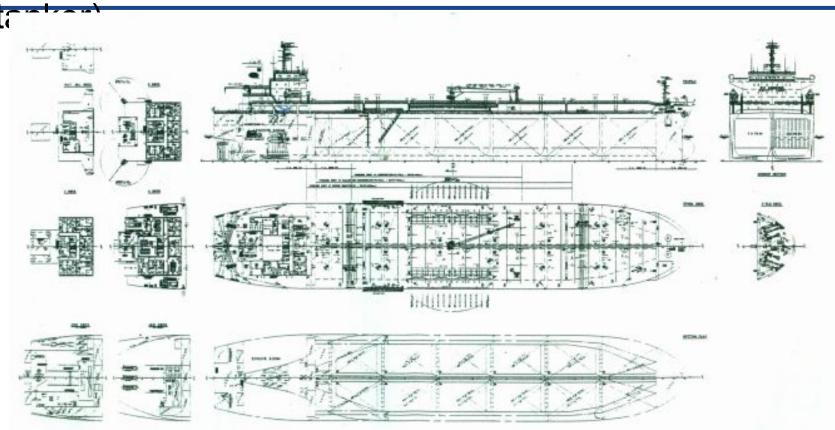
Parafina Óleo Lubrificante Petróleo bruto Querosene	0,73Kg/L 0,80kg/L 0,82Kg/L 0,76Kg/L
Gasolina	0,75Kg/L

Características do Navio

- Estrutura dupla na lateral e no fundo do navio: segundo a regulamentação internacional MARPOL de 1973, navios "tanker" de óleos e derivados devem possuir suas estruturas do costado e fundo duplicadas.
- O espaçamento do duplo casco e fundo são preenchidos com lastro para melhora da estabilidade do navio.
- Antepara longitudinal central com o objetivo de dividir os tanques em dois para reduzir do efeito de superfície livre na embarcação.


Características do Navio

- "Product Tanker" de categoria
 "MR" segundo a RMRS (Russian
 Maritime Register of Shipping) e a
 ICS (International Classifications
 Societies).
- Anteparas transversais com o objetivo de compartimentação da carga.
- Estrutura de convés único; não há divisão dos tanques na latitudinal.
- Anteparas de colisão posicionadas segundo as regras da ABS (American Bureau of Shipping).


Product Tanker Fleet:

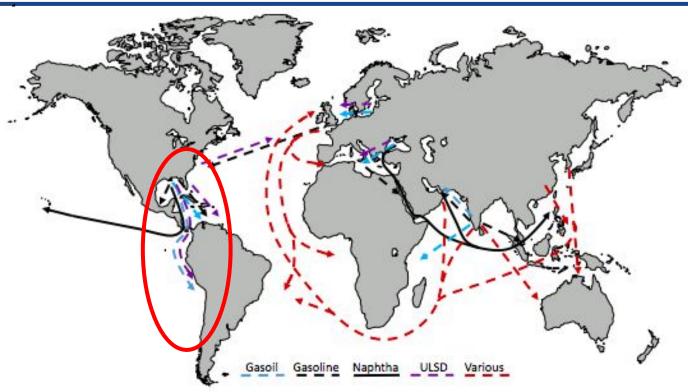
Long Range ("LR2") product tankers: 85,000 - 124,999 DWT
 Long Range ("LR1") product tankers: 60,000 - 84,999 DWT
 Medium Range ("MR") product tankers: 42,000 - 59,999 DWT
 Handysize product tankers: 25,000 - 41,999 DWT

Significant Ships 2003 - ALNOMAN (product

Rotas, Portos e Restrições do

Projeto
Porto de Corpus Christi Porto La Cruz (Venezuela) Canal do Panamá (Panamá)
(EUA)

Rotas, Portos e Restrições do

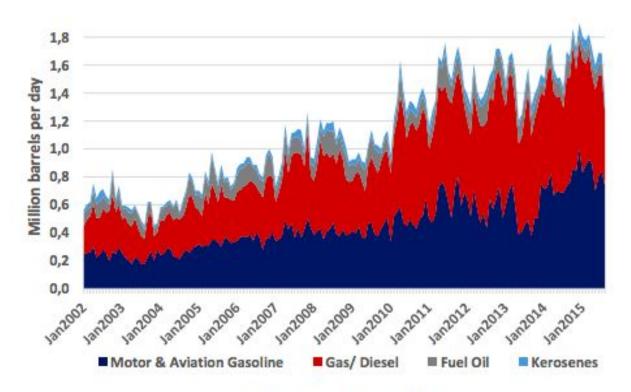


Canal do Panamá (Panamá) Porto de Quintero (Chile)

ROTAS

- Porto de origem: Porto de Corpus Christi, Texas -EUA, às margens do Golfo do México.
- Porto de passagem: Porto La Cruz, Anzoátegui -Venezuela.
- Canal de passagem: Canal do Panamá, Panamá.
- Porto de destino: Porto de Quintero, Quintero Chile, na costa oeste da América do Sul.

Proj€



¹ The map only show a selection of current key CPP trades. Actual net of trade lanes and products are much more complex.

Figura: Demanda latino-americana por derivados

Demanda Latino-Americana por Derivados do Petróleo

Source: Joint Organisations Data Initiative ("JODI")

Rotas, Portos e Restrições do

Projeto

PORTO DE CORPUS CHRISTI (EUA)

Restrições

LOA: 300 metros

Calado: 13,7 metros

Boca: -----

PORTO LA CRUZ (VENEZUELA)

Restrições

LOA: 289,5 metros

Calado: 16,8 metros

Boca: 49 metros

CANAL DO PANAMÁ

Restrições

LOA: 366 metros

Calado: 12 ou 15,2 m

Boca: 32,3 ou 49 m

PORTO DE QUINTERO (CHILE)

Restrições

LOA: 354 metros

Calado: 24 metros

Boca: 55 metros

Dimensões Críticas

LOA: 289,5 metros

Calado: 12 ou 13,7 metros

Boca: 32,3 ou 49 metros

Dimensões Principais

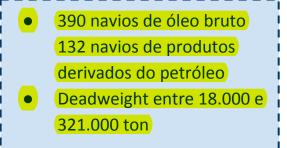
Navios semelhantes

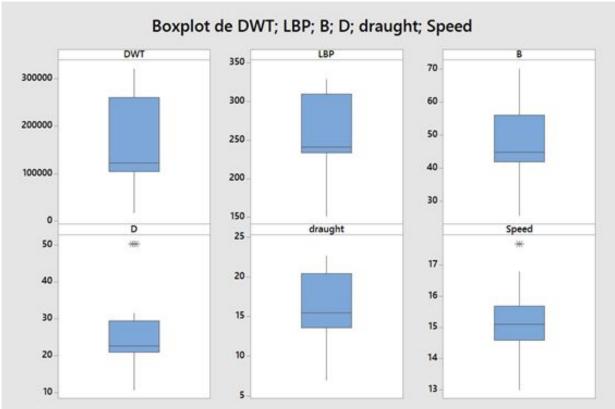
Significant ships

Regressões

Hyundai Lloyds Estabilidade intacta
Coeficientes de
forma

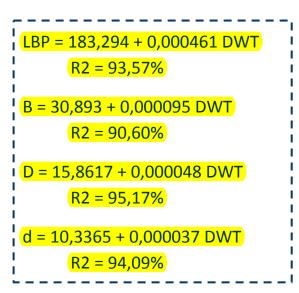
Practical ship design

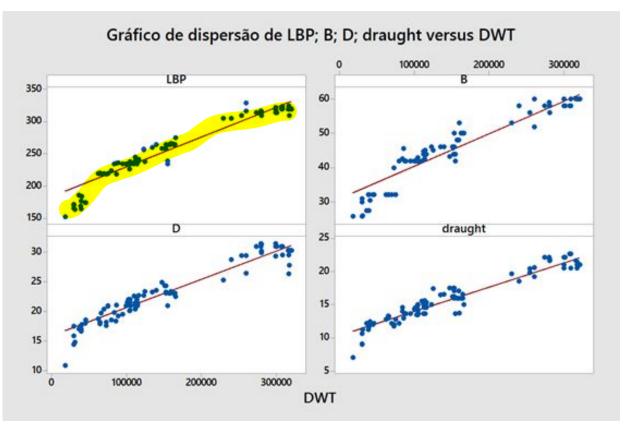

Navios semelhantes



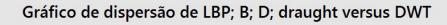
	ELANDRA LYNX (2013)	NORD STABILITY (2012)	HUA YUN (2011)	BORAQ (2003)
Deadweight (ton)	49.999	39.814	40.522	40.060
Velocidade (nós)	-	14,5	15,51	15,25
LBP (m)	174	173,9	174	174
Boca (m)	32,2	32,2	32,2	32,2
Pontal (m)	19,1	19,8	17,3	18,8
Calado (m)	11	11	11	11
Potência instalada	7240 kW x 99 rpm	7570 kW x 108 rpm	9960 kW x 124 rpm	9480 kW x 127 rpm

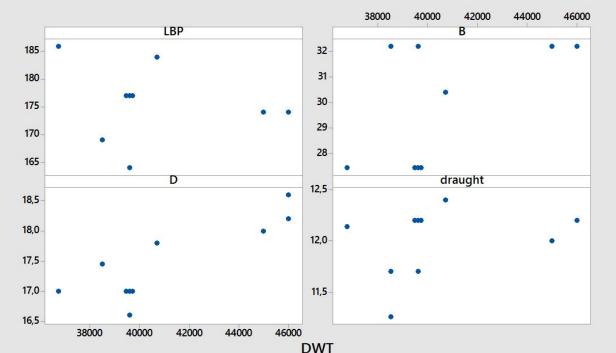
Ship building 2016 Hyundai - Análise global





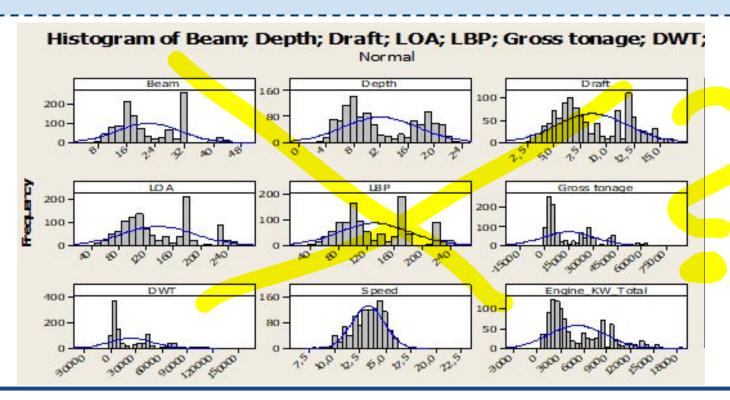
Ship building 2016 Hyundai - Análise global



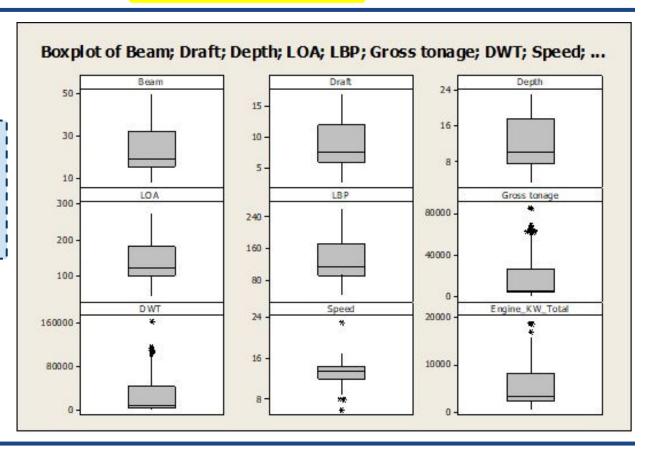


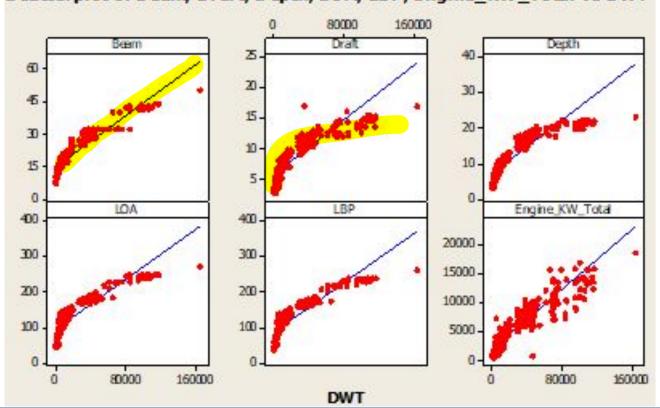
Ship building 2016 Hyundai - Análise local

- 35 navios de produtos derivados do petróleo
- Deadweight entre 36.750 e 46.000 ton

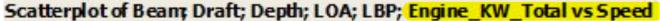


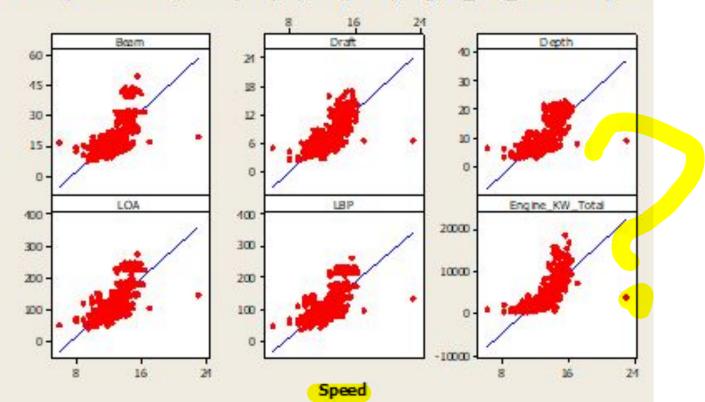
1080 navios de produtos derivados do petróleo

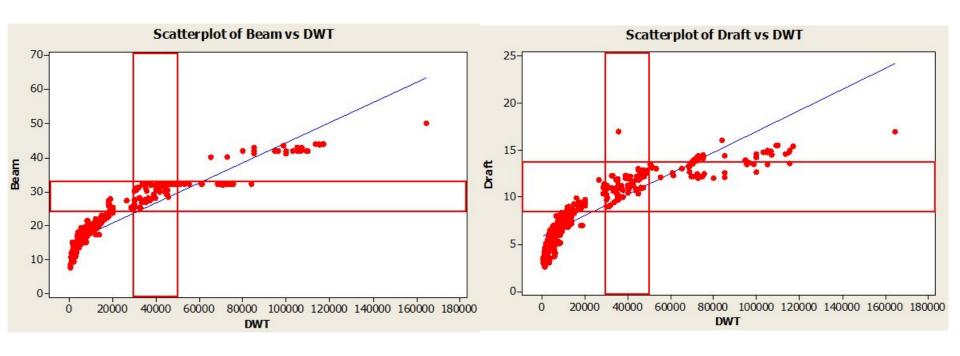

Deadweight entre 350 e 164.000 ton

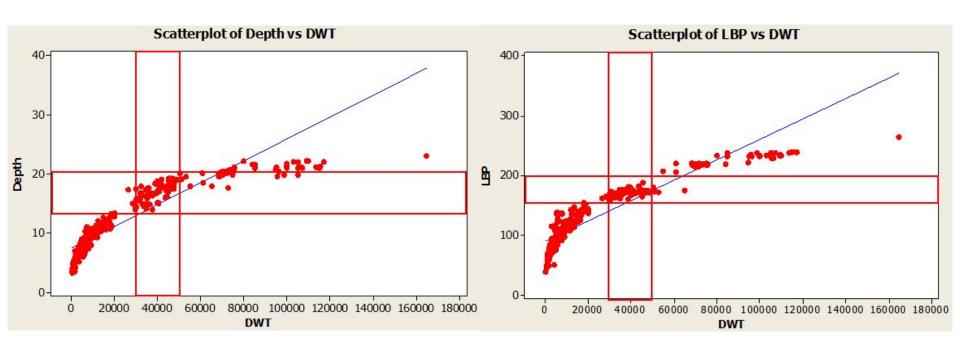

Após a filtragem dos dados:

Velocidades entre 8 e 16 nós Deadweight inferior a 80.000 ton









Regressão de Dados

Análise global

Análise local

Regressão em função do deadweight e da velocidade

d = - 1,88 + 0,000103 DWT + 0,606 Speed	R-Sq = 90,6%
D = - 1,99 + 0,000194 DWT + 0,716 Speed LOA = 54,5 + 0,00191 DWT + 2,97 Speed LBP = 56,2 + 0,00189 DWT + 2,34 Speed	R-Sq = 92,7%
LOA = 54,5 + 0,00191 DWT + 2,97 Speed	R-Sq = 90,0%
LBP = 56,2 + 0,00189 DWT + 2,34 Speed	R-Sq = 90,1%
B = 4,71 + 0,000299 DWT + 0,789 Speed	R-Sq = 88,8%
1	

30.000 ton \leq DWT \leq 50.000 ton 25 m \leq B \leq 32 m 8 m \leq d \leq 14 m 13 m \leq D \leq 21 m 160 m \leq LOA \leq 200 m 160 m \leq LBP \leq 200 m

Para as especificações do projeto DWT= 45.100 e Speed=15,6:

Coeficiente de Deadweight

$$C_{DWT} = \frac{DWT}{\Delta}$$

TABLE 11.1 Typical Deadweight Coefficient Ranges

Vessel Type	C _{cargo DWT}	Ctotal DWT
Large tankers	0.85-0.87	0.86-0.89
Product tankers	0.77-0.83	0.78-0.85
Container ships	0.56-0.63	0.70-0.78
Ro-Ro ships	0.50-0.59	_
Large bulk carriers	0.79-0.84	0.81-0.88
Small bulk carriers	0.71-0.77	1 <u>01-10</u> 2
Refrigerated cargo ships	0.50-0.59	0.60-0.69
Fishing trawlers	0.37-0.45	_

Figura: Valores típicos de coeficientes de deadweight

Fonte: Practical Ship Design

Com DWT = 45.100 ton e $\rho = 1025$ kg/m³

C _{DWT} carga	Δ (ton)	∇ (m ³)
0,77	58571,43	57142,86
0,78	57820,51	56410,26
0,79	57088,61	55696,20
0,8	56375,00	55000,00
0,81	55679,01	54320,99
0,82	55000,00	53658,54
0,83	54337,35	53012,05

Coeficientes L/B, L/D, B/D e d/D

Segundo Watson e Gilfillan:

A razão d/D está relacionada à fração de borda livre, que é restringida por convenções e órgãos internacionais (como MARPOL e IMO).

Da regressão:
$$L = 177,94 \text{ m}$$

 $D = 17,93 \text{ m}$
 $d = 12,22 \text{ m}$
 $L/D = 9,92$
 $d/D = 0,68$

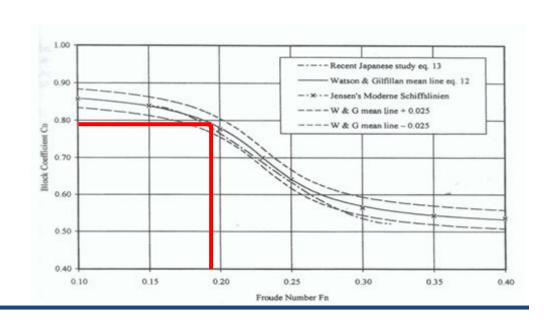
Com L/B =
$$5.5$$
:
B = 32.35

Coeficiente de Bloco

$$C_B = \frac{\nabla}{L \cdot B \cdot d}$$

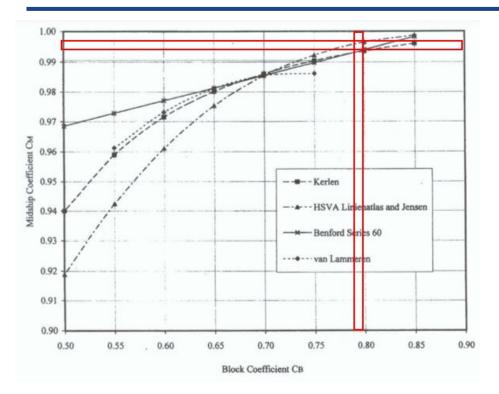
Segundo Watson e Gilfillan:

$$C_B = 0.70 + 0.125 \ tan^{-1}[(23 - 100 \ Fn)/4]$$


Segundo Schneekluth e Bertram, para $0.15 \le Fn \le 0.32$:

$$C_B = -4.22 + 27.8\sqrt{Fn} - 39.1Fn + 46.6Fn^3$$

Numero de Froude:


$$Fn = \frac{V}{\sqrt{g \cdot L}} = \frac{15.6 \cdot 0.5144}{\sqrt{9.8 \cdot 177.94}} = 0.19$$

Com $C_{DWT} = 0.83$: $C_{B} = 0.81$ Watson e Gilfillan: $C_{B} = 0.79$ Schneekluth e Bertram: $C_{D} = 0.78$

Coeficiente Prismático

Coeficiente de seção mestra:

$$C_{SM} = \frac{A_{SM}}{L.B}$$

$$C_{SM} = 0.99$$

Coeficiente prismático:

$$C_P = \frac{\nabla}{A_{SM}.L}$$

$$C_P = \frac{\nabla}{A_{SM}.L} \qquad \qquad C_P = \frac{C_B}{C_{SM}} = 0.8$$

Coeficiente prismático vertical:

$$C_{PV} = \frac{\nabla}{A_{WL}.L} \qquad C_{PV} = \frac{C_B}{C_{WP}}$$

$$C_{PV} = \frac{C_B}{C_{WP}}$$

Figura: Gráfico de coef. de seção mestra vs coef. de bloco Fonte: Practical Ship Design

Coeficiente de Linha D'água e de

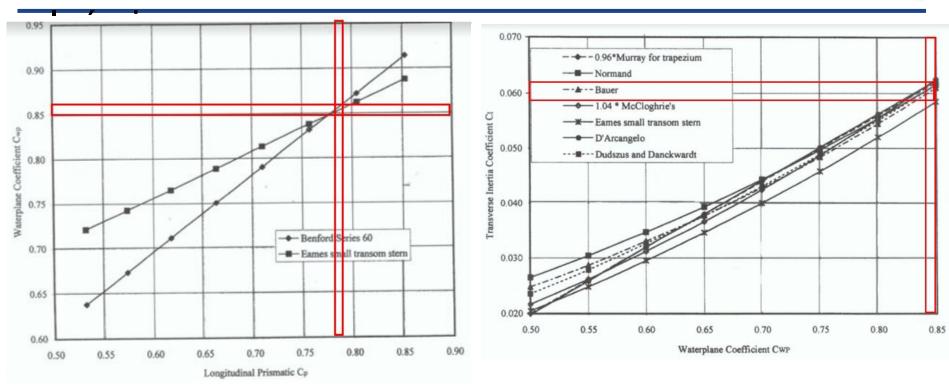


Figura: Gráfico de coef. prismático vs coef. de linha d'água Fonte: Practical Ship Design

Figura: Gráfico de coef. de linha d'água vs coef. de inércia Fonte: Practical Ship Design

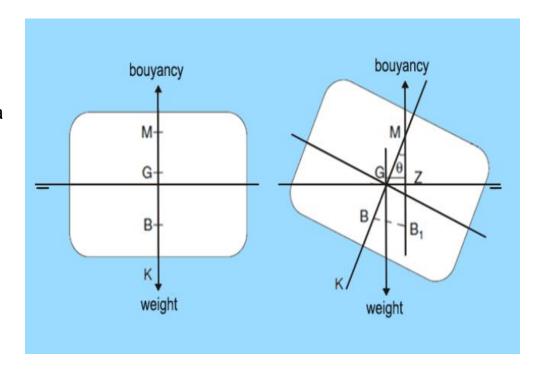
Estabilidade Intacta

Primeira estimativa:

$$BM = \frac{I}{\nabla} = \frac{C_I \cdot L \cdot B^3}{\nabla} = 11,69$$

$$KG = 0,69 \cdot D = 11,69$$

$$KB = \frac{d}{3} \cdot (2,5 - C_{PV}) = 5,88$$


$$GM = KB + BM - 1,03 \cdot KG = 0,55$$

Pesos e Centros

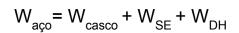
Objetivo:

 Obter uma primeira estimativa de pesos e centros do navio, verificando a coerência das hipóteses iniciais e avaliando as condições de equilíbrio de forças do navio

Fonte: Marine Insight

Pesos e Centros

DWT_{carga}: deadweight de carga


 DWT_op : deadweight operacional

W_{aço}: peso estrutural W_{maq}: peso do maquinário W_{outfit}: peso de outfit W_{margem}: margem de peso

Pesos e Centros

Peso Estrutural

SE: superestrutura

DH: deckhouses

Segundo Watson & Gilfillan:

$$W_{aço} = W_{aço}(E) = KE^{1,36}[1 + 0.5(C_B' - 0.70)]$$

$$C'_B = C_B + (1 + C_B)[(0.8D - d/3d)]$$

Ship type	K mean	K range	Range of E
Tankers	0.032	±0.003	1500 < E < 40 000
Chemical tankers	0.036	±0.001	1900 < E < 2500
Bulk carriers	0.031	±0.002	3000 < E < 15 000
Container ships	0.036	±0.003	6000 < E < 13 000
Cargo	0.033	±0.004	2000 < E < 7000
Refrigerator ships	0.034	± 0.002	4000 < E < 6000
Coasters	0.030	±0.002	1000 < E < 2000
Offshore supply	0.045	±0.005	800 < E < 1300
Tugs	0.044	±0.002	350 < E < 450
Fishing trawlers	0.041	± 0.001	250 < E < 1300
Research vessels	0.045	±0.002	1350 < E < 1500
RO-RO ferries	0.031	±0.006	2000 < E < 5000
Passenger ships	0.038	±0.001	5000 < E < 15 000
Frigates/corvettes	0.023		

Fonte: Practical Ship Design

Peso do Maquinário

• Segundo Watson & Gilfillan:

$$W_{maq} = W_{MCP} + W_{resto}$$

MCP: máquina principal

• Máquina Principal

$$W_{MCP} = 12 \left(\frac{MCR}{RPM}\right)^{0.84} \quad (por\ motor)$$

"Resto"

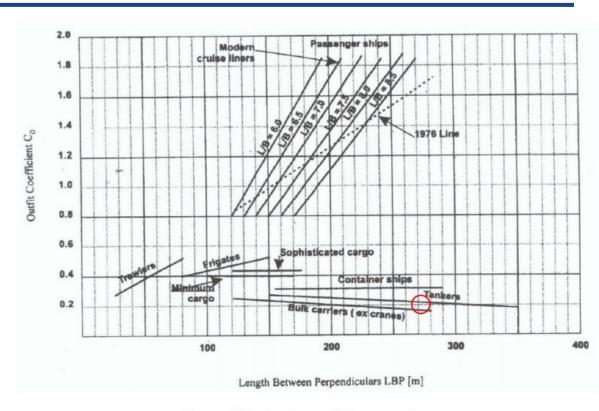
$$W_{resto} = C_m (MCR)^{0,70}$$

 $C_m = 0.69$, para navios de granel, carga geral

= 0,72 , para navios tanque

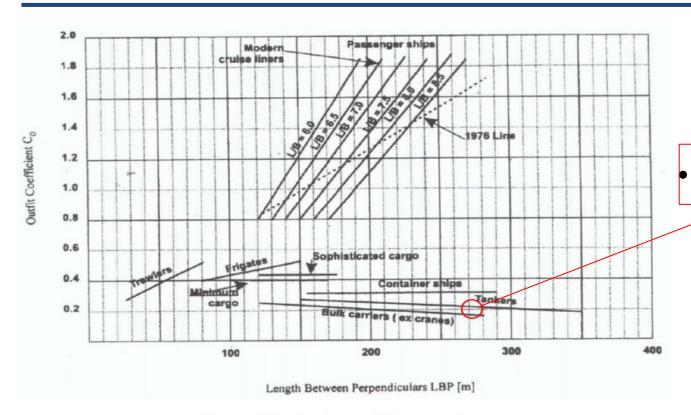
= 0,83, para navios de passageiros

= 0.19, para fragatas e corvetas



Peso de Outfit

• Segundo *Watson & Gilfillan*:


$$W_o = C_o.L.B$$

C_o: Coeficiente de *outfit*, que varia de acordo com o tipo de navio segundo o gráfico ao lado

Fonte: Ship Design and Construction

Estimativa inicial: $C_0 = 0.3$

Fonte: Ship Design and Construction

Deadweight

- *Deadweight* de carga (requisito de projeto): 45100 tons
- Deadweight operacional = W_{OC}+W_{OL}+W_{AG}+W_{Trip}+W_{Prov}

OC: óleo combustível

OL: óleo lubrificante

AG: água doce Trip: tripulação Prov: provisões

Deadweight Operacional

Óleo combustível

$$DWT_{OC} = \gamma.P_B.\frac{A}{V_S}.(1+M)$$

Óleo lubrificante

 γ : consumo específico $\left[\frac{ton}{kwh}\right]$

 $P_{\rm B}$: potência [kW]

A: autonomia

 V_{S} : velocidade de serviço

 $M: margem (\sim 5\%)$

 $DWT_{OL} = 20 \text{ ton, para navios a diesel de velocidade média}$ = 15 ton, para navios a diesel de velocidade baixa

Deadweight Operacional

3. Água doce

$$DWT_{AG} = 0.17 ton/pessoa x dia$$

4. Tripulação e seus efeitos

$$DWT_{trip} = 0.17 ton/pessoa$$

5. Provisões

$$W_{provis\~oes} \cong 0.01 \ ton/(pessoa \ x \ dia)$$

Primeira Estimativa

1. Peso estrutural

K	0,032
E	7725,10
W _{aço}	6515,64 tons

$$E = L.(B + d) + 0.85.L.(D - d) + 0.85.l_1.h_1 + 0.75.l_2.h_2$$

Primeira Estimativa

2. Peso do maquinário: navios semelhantes

Nome	Ano	$L_{pp}[m]$	$B_{M}[m]$	D [m]	d [m]
Alnoman	2003	168,00	31,00	17,20	9,00
Boraq	2003	174,00	32,20	18,80	11,00
Emirates Star	2008	173,90	32,20	19,10	11,00
Glenda Meredith	2010	174,00	32,20	18,80	11,00
Celso Furtado	2011	174,00	32,20	16,60	12,80
Front Arrow	2013	175,90	32,20	19,10	11,00

Nome	$V_s[n \circ s]$	$V_s[m/s]$	%MCR	Unid.	kW
Alnoman	15,00	7,65	90	1	8580
Boraq	15,25	7,7775	90	1	9480
Emirates Star	15,20	7,752	85	1	9480
Glenda	14,80		1-1	1	8598
Meredith	9,000,000.0	7,548			
Celso Furtado	14,80	7,548	90	1	9462
Front Arrow	14,60	7,446	-	1	7260

Coeficiente de almirantado:

- Watson:

$$C_{alm} = (\Delta^{\frac{2}{3}}.V_s^3)/P_B$$

Harvald:

$$C_{alm} = 3.7 \left(\sqrt{L} + \frac{75}{v_s} \right)$$

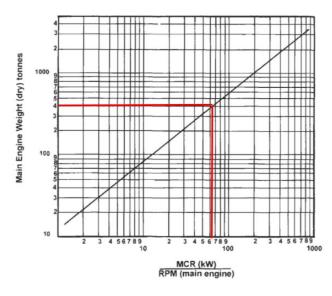
Primeira Estimativa

2. Peso do maquinário: navios semelhantes

Nome	DWT	Δ	C_{DWT}	$\Delta^{2/3}$	V_s	V_s^3	P_B	RPM	C_{alm}
	[ton]	[ton]							i.
Alnoman	30000	46035	0,65	1284,47	7,65	447,70	8580	127	67,02
Boraq	40060	56230	0,71	1467,73	7,78	470,46	9480	127	72,84
Emirates	50301	-	-	-	35		9480	127	-
Star					7,75	465,84			3
Celso	49531	-	-	12			9462	127	-
Furtado					7,55	430,03			
Front	37644	60562	0,62	1542,17			9462	127	67,29
Arrow					7,45	412,83			

Nome	C _{alm} (Harvald)
Alnoman	84,23
Boraq	84,49
Emirates Star	84,59
Celso Furtado	85,57
Front Arrow	86,34

Para nosso navio, pela formulação de Harvald: $C_{alm} = 80,94$.


Primeira Estimativa

2. Peso do maquinário: navios semelhantes

Comparando nosso navio com o navio Boraq semelhante, adotando MCR de 90% e $RPM = 127 \frac{rot}{min}$:

Navio	C_{alm}	P_B [kW]	MCR [kW]	RPM	W _{maq} [ton]
Boraq	84,48	9480	8532	127	411,21
Projeto	80,94	9361,24	8425,12	127	406,88

 $obs: P_B = (\Delta^{\frac{2}{3}}.V_s^3)/C_{alm}$, sendo que o primeiro coeficiente de almirantado foi obtido pela formulação de Harvald.

Fonte: Practical Ship Design

$$W_{mag} = 407 \text{ tons}$$

Primeira Estimativa

2. Peso do maquinário: <u>"resto"</u>

$$W_{resto} = C_m . MCR^{0,70}$$

Sendo: $C_m = 0.72 \ para \ navios \ tanque$.

Assim: $W_{resto} \cong 401,94 \ tons$.

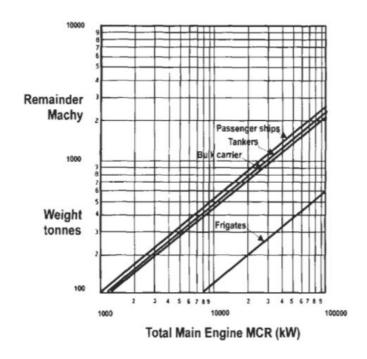
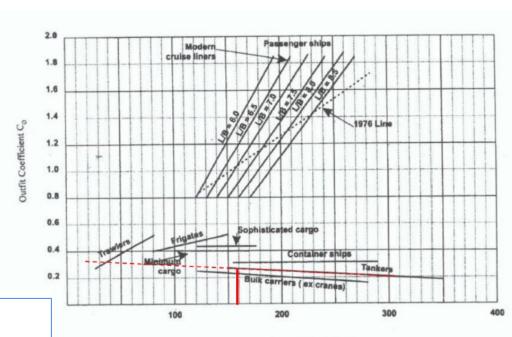



Fig. 4.16. Weight of "remainder" of machinery weight versuss main engine MCR (kW).

Primeira Estimativa

3. Peso de outfit

Do gráfico: $C_0 \cong 0,3$.

 $W_O = L.B.C_O \cong 155m.31m.0,3 = 1441,5 tons.$

Length Between Perpendiculars LBP [m]
Figure 11.17 Outfit Weight Coefficient C_n (18)

Primeira Estimativa

5. Combustível:

$\gamma[t/kWh]$	MCR[kW]	A[m]	$V_s[m/s]$	М	$W_{comb}[tons]$
0,000190	8425,12	21298000	7,96	0,05	1250

6. Óleo lubrificante: $W_{LO} \cong 15 \ ton$, diesel de baixa rotação

7. Água doce:

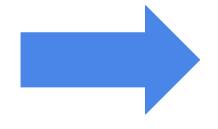
$$W_{\'agua} \cong 0.17 \ ton/(pessoa \ x \ dia)$$

8. Tripulação: $W_{trip} \cong 2,55 ton$

Dias de navegação: 16 (estimativa)

Tripulação estimada: 15 pessoas

9. Provisões: $W_{provisões} \cong 2,4 tons$.


 $W_{\'agua} \cong 40.8 tons$

Obs.: Não estamos considerando dessalinizador.

Primeira Estimativa

$W_{a\varsigma o}$	[tons]	6515,64	
W_{maq}	[tons]	407,00	
W_{rest}	[tons]	401,94]
W_{outf}	it [tons]	1441,50	
Wcomi	b+oL [tons]	1265,00	
W_{Gera}	uis [tons]	45,75	
DWT	carga [tons]	45100,00	
W _{total}	[tons]	55176,83	
			+

SEGUNDA ESTIMATIVA

Erro > 10%

Segunda Estimativa

• Novas dimensões e coeficientes:

Deslocamento (Δ) [tons]	55176,83
Velocidade (V) [m/s]	7,96
Comprimento (L) [m]	174,14
Boca (B) [m]	32,2
Deslocamento (V) [m^3]	53831,05

Pontal (D) [m]	17,7
Calado (d) [m]	12
Froude (Fn)	0,19

L/B	5,41
B/D	1,82
L/D	9,84
d/D	0,68
B/d	2,68

Podemos observar que estão dentro dos intervalos propostos para nosso tipo de navio.

Coeficientes:

Coeficiente de bloco (C_B)	0,8
Coeficiente de seção mestra (C_M)	0,99
Coeficiente prismático longitudinal (\mathcal{C}_P)	0,81
Coeficiente prismático vertical (C_{PV})	0,92
Coeficiente de linha d'água (C_{WP})	0,87

Coeficiente de inércia transversal (C_I)	0,07
Coeficiente de inércia longitudinal (C_{IL})	0,06
Inércia transversal (I_T) $[m^4]$	388373,59
Inércia longitudinal (I_L) $[m^4]$	10016028,55
Posição do metacentro transversal (BM_T) $[m]$	7,21
Posição do metacentro longitudinal (BM_L) $[m]$	186,06
Posição transversal do CG (KG) $[m]$	12,21

Segunda Estimativa

Novas dimensões e coeficientes:

186,06
12,21
6,33
89,31

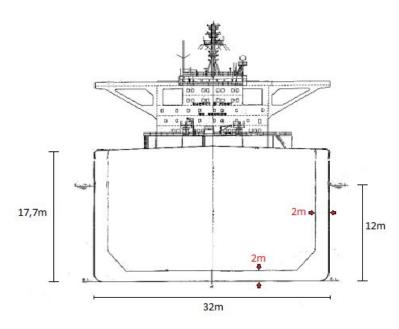
Desta forma:

$$GM_T = KB + BM_T - 1,03KG = 0,96 m$$
 (estável).

Segunda Estimativa

$W_{aço}$ [tons]	5301,44
W_{maq} [tons]	743,39
W _{resto} [tons]	364,84
W_{outfit} [tons]	1682,22
$W_{comb+OL}$ [tons]	1099,52
W_{gerais} [tons]	84,00
DWT _{carga} [tons]	
2004-200 1-1 00-2000-200-200-200-200-200-200-200-200	45100,00
W _{total} [tons]	54375,39

Watson & Gilfillan:


Margem de peso: 3%~5%

Requisitos e Regulamentações

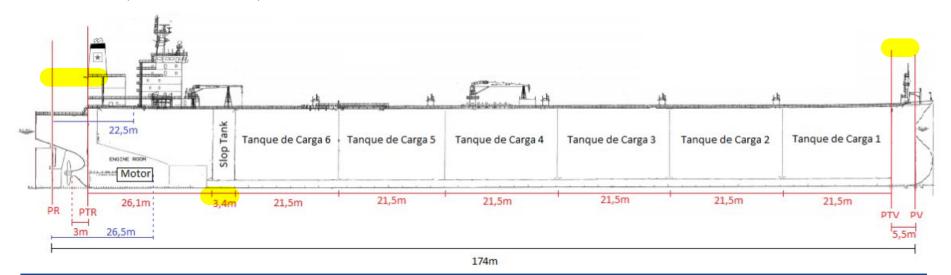
Pela regra MARPOL 73 temos:

- -Duplo fundo, no mínimo h = 2 m
- -Duplo costado, no mínimo w = 2 m
- -Tanques de carga de comprimento máximo Lt=28,8 m (com anteparas longitudinais)
- -Slop tank, possui comprimento de 2% do comprimento dos tanques de carga, com o mesmo perfil transversal.

Com base em navios semelhantes do Significant Ships.

-Espaço para praça de máquinas + casa de bombas, foi adotado como 15% do LBP; 26,1m

Dimensionamento das Anteparas



Pelo AMERICAN BUREAU OF SHIPPING - heavy oil tanker temos que:

-Pique tanque a vante: 5,5 m a partir da perpendicular a vante.

Com base em navios semelhantes do Significant Ships.

-Pique tanque de ré a três ou quatro espaçamentos de cavernas a partir de onde o eixo sai do casco, valor entre 2,3 m e 3 m.

Trim

Dado que os valores obtidos nos arranjos foram:

LCGmáq=26,5m

LCGoutfit=47,69m calculado por:

LCGcasco=89,16m

$$LCG_o = (25\% W_o \text{ at } LCG_M, 37.5\% \text{ at } LCG_{dh},$$

and 37.5% at amidships)

Considerando a distribuição dos pesos, temos que LCGtotal=87,02m

E com os dados do LCB=89m e GML=180,07m podemos calcular o trim por:

$$trim = T_A - T_F = (LCG - LCB)L/GM_L$$

Assim obtemos um **trim= 1,9m** pela popa; aproximadamente 1,25° pela popa

Dúvidas?