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: Example 2.8-1 Heat Transfer in a Wire Consider the steady-state temperature in a cylindrical
! wire of radius R that is heated by passage of an electric current and cooled by convective heat
' transfer to the surrouiiding air. The local heating rate, Hy, is assumed to be independent of posi-
tion. This is equivalent to assuming a uniform current density and clectrical resistance. For steady
conduction in a solid with such a heat source, Eq. (2.4-3) reduces to

vir= —’i . (2.8-1)
Cylindrical coordinates (r 8 z) are the natural choice for this problem. The convection bon-ndary
condition at the surface of the wire is written as

aT A
E= - ;(T— T) at r=R, (2.8-2)

' where T, is the ambient temperature. For simplicity, we assume that h is independent of posmon
With Hy, k, and h all assumed to be constant, there is nothing to cause the temperature to depend
on the angle 8 Thus, we conclude that the temperature field is axisymmetric. It follows that Eq.
(2.5-15) is applicable and that the second boundary condition in r is

. )
ar-o atr=0. (2.8-3)
If the wire is very long, and ndhing is done to cause the temperature at the ends to differ, then
there is also no reason for the temperature to depend on z It is apparent now that all of the
physical conditions can be satisfied by,a temperature field which depends only on
Assuming now that T'=7{(r) only, Table 2-2 is used to rewrite Eq. (2.8-1) as

1)t

This second-order equation requires two boundary conditions in » which are given already by
Egs. (2.8-2) and (2.8-3). The t€mperature is determined by first integrating Eq. (2.8-4) to give

LAT_ _Hyr?
dr 2k

The symmetry condition [Eq,. (2.8-3)) indicates that the constant C, must be zero. A second inte-
gration yiclds

+C,. (2.8-5)

Hyr? _
T= —-:&—1— G, (2.8-6)

where C; is another constant. Substituting this resuit into the convective boundary condition at
the surface [Eq. (2.8-2)] gives °

HR hy H,R?
- i(reen) @D

Solving for C, the temperature is found to be
_ HHR’[ r =] HR
T-T.="5|1 (x) e 2.8-8)

Thus, the temperature at the surface of the wirc exceeds the ambient value by the amount
HyR/2h, and the temperature at the center of the wire is elevated further by an amount H R4k,
The behavior of the temperature is revealed more clearly by using dimensionless quantities

defined as
T-T. r . _hR
- - "™x B T @89

where 7, =T\(0) is the temperature at the center of the wire and Bi is the Bior number. By defini-
tion, ® ranges from unity at the center of the wire to zero in the bulk air. Equation (2.8-8) is
rewritten pow as )

_2+Bi(l - 4)

6 2+Bi

(2.8-10)
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Figure 2-5. Temperature profile in an clectrically heated wire, as a function of the Biot number. The plot is
based on Eq. (2.8-10).

Figure 2-5 shows the dimensionless temperature profile for several values of Bi. For Bi<<1, radial
heat conduction in the wire is so fast that the wire is nearly isothermal, and the main temperature
drop is in the air. For Bi>>1, convective heat transfer in the air is so rapid that the external
temperature drop is negligible, and the temperature at the wire surface is very close to the ambient
value. Thus, the Biot number represents the ratio of the heat transfer resistance within the wire to
that within the surrounding air. The significance of Biot numbers for heat or mass transfer is
discussed further in Chapter 3.

DEEN, M. Analysis of Transport Phenomena. Oxford University Press, New York, 1998.
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Example 2.8-2 Diffusion in a Binary Gas with a Heterogeneous Reaction This example illus-
trates the use of Fick’s law for a binary gas, and it also shows how the reaction rate can influence
the boundary condition used at a catalytic surface. The system to be considered is shown in Fig.
2-6. A stagnant gas film of thickness L is in contact with a surface which catalyzes the irreversible
reaction, A—mB. The reaction rate follows nth-order kinetics (n>0), as given by

Rey= —kaCh (2.8-11)

where k,, is a constant. It is assumed that C, depends on y only and that its value at y=0is fixed
at C,p. It is assumed also that the gas is isothermal and isobaric, so that the total molar concentra-

CA = CAO F!gun 2-6. Diffusion in 2 binary gas
with a heterogeneous reaction.
A B Gas

Catalytic
Surface

tion (C) is constant. Unless the molecular weights of A and B are identical (i.c., unless m= 1), the
total mass density (p) will not be constant under these conditions.

Before using species conservation or Fick’s law, we first see what can be leamed from the
continuity equation. For this steady, one-dimensional system with variable p, Eq. (2.3-1) becomes

d(pv.
5 0. (2.8-12)
Thus, pv, is independent of y. Because the catalytic surface is assumed to be impermeable (e,
v, =0 at y=L), we conclude that the mass-average velocity is zero throughout the gas film. The
main consequence of this is that J,,= N, for both species.
Most of the results in Section 2.6 cannot be used here because p is not constant. However,
we can apply Eq. (2.6-1) to both species. It follows from the stated assumptions that

dN, dN,
—A-0==2 2.8-13
dy dy (‘ )
There is no reaction term in Eq. (2.8-13) because there is no homogeneous reaction. This equation
indicates that both fluxes are independent of position, so that evaluating the flux ratio at any
location determines the ratio for all,y. Using Eq. (2.7-3) together with J;, =N, we obtain

Ng,= —mN,,. (28-14)

No further consideration of species B is necessary, because Ny, can be obtained from N,, and
because Cp was assumed to have no effect on the reaction kinetics.

In selecting a form of Fick’s law it is advantageous to employ an expression which involves
C rather than p, because it is C which is assumed to be constant. Thus, we adopt Eq. (D) of Table
1-3, which requires that we use the molar-average velocity as the reference frame. From Tables
1-2 and 1-3, the total flux of A is given by

Nuy=xp(Nyy +Np))— CDM%. (2.8-15)
Using Eq. (2.8-14) to eliminate Nj, from ﬁs expression, we obtain

Na,=xaNa (1 -m)—CDA,%. (2.8-16)
The convective flux of A in this reference frame is defined as C,v,™, so that Eq. (2.8-16) implies
that v, =N,,(1—m)/C. Thus, the molar-average velocity does not vanish unless m=1, even

though the mass-average velocity is zero for -all stoichiometries. This indicates that there is a
convective flux here when using the molar-average velocity, but not when using the mass-average

velocity!
Rearranging Eq. (2.8-16) to solve for N,, gives
CD, dx

Ny= -2 ——4 2.8-17
> T i=x0-m) by e

Taking advantage now of the assumed constancy of C, Eq. (2.8-17) becomes

d

Nay= Das Ca (2.8-18)

=€ O —m) dy

The flux of A at the catalytic surface is directly related to the reaction rate at the surface. From
Eq. (2.7-2), ;
,
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Because N,, has been shown to be independent of position, Egs. (2.8-18) and (2.8-19) can be
equated to give .

dcC, k C

s —(D—t)lq(t)r[l -a -m)]. Ca0)=Cyo. (2.820)

Before integrating Eq. (2.8-20) to determine the concentration profile, we introduce the
dimensionless guantities
n—1
pmSa,  pm)  pamfaCa’'lL L Ga] 2.8-21)
Cao AB Crolyer

The parameter Da is the Damkdohler number, which is seen to be the ratio of a reaction velocity
(k,Cao™ ") to a diffusion velocity (D,,/L). Thus, it is a measure of the intrinsic rate of reaction
relative to that of diffusion.' The reactant concentration at the catalytic surface, which is an un-
known constant, is denoted as ¢ The governing equation in dimensionless form is then

do

d—'-’a ~Dad’[1 —x,0(1 —m)8), 8(0)=1, (2.8-22)
where x,4 is the (known) mole fraction of A at n=0. .

Equation (2.8-22) is separable and can be integrated from =0 to n=1 to obtain implicit

expressions for ¢=0(1), the surface concentration of the reactant. The results, which depend on
the reaction stoichiometry, are

1 1 —x,0(1 —m)dp
D-¢'={ l=m " [t:f:?l-—m)_] m (28-23)
g | :

Inspection of Eq. (2.8-23) reveals that ¢—1 as Da— 0. In this case the reaction is slow relative
to diffusion, so that the reaction is the controlling step and the reactant concentration is nearly
uniform throughout the film. At the other extreme, as Da—>ee, the process is controlled entirely
by mass transfer and ¢— 0. That is, the concentration at the surface approaches zero.

Concentration profiles for an equimolar, second-order reaction (m =1, n=2) at several val-
ues of Da are shown in Fig. 2-7. The transition from kinetic to diffusion control as Da is increased
is evident. Also noteworthy is the qualitative similarity between this plot and Fig. 2-5. In both
situations the parameter can be interpreted as the ratio of two resistances in series, those for
internal and extemal heat transfer (Bi) or those for diffusion and reaction (Da).

The foregoing results indicate that if we were interested only in diffusion-controlled condi-
tions (Da—>e=), then we could replace Eq. (2.8-19) by C, =0 at y=L, or (in dimensionless form)

a(1)=0. (2.8-24)

This type of fast-reaction boundary condition holds for any irreversible, diffusion-controlled, het-
erogencous reaction. When this simple condition applies, the reaction rate law does not enter into
the problem. The accuracy of Eq. (2.8-24) for the present problem is judged most easily for an
equimolar reaction (m= 1), in which case Eq. (2.8-23) indicates that

"There are no fewer than five dimensionless groups named after Damkohler, two of which involve reaction
rates. The one which compares rates of reaction and diffusion is sometimes called “Damkéhler group 11.”
Becsuse it is the only type of Damkohler number used in this book, no other identifier is added to the symbol
Da. An exiensive tabulation of named dimensionless groups pertinent to chemical engineering is given in
Catchpole and Fulford (1966).
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Figure 2-7. Concentration profiles for diffusion through a gas film with a heterogencous reaction, showing
the effect of the Damkthler number. The curves were obtained by solving Eq. (2.8-22) with m=1 and n=2.

8(1)—>Da™' (Da—eo, m=1), (2.8-25)

For first-order kinetics (2= 1) and Da>10?, this implies that 8(1)<0.01. Because the reactant flux
(and therefore the reaction rate) varies-as 1'— 8(1), the simplified boundary condition will lead to
an error of <1% under these conditions. For second-order kinetics (n=2), Da>10* is needed to
maintain this small level of emror.

Example 2.8-3 Diffusion in a Dilute Liquid Solution with a Heterogeneous Reaction We
reconsider the situation of Example 2.8-2, but with a dilute liquid solution in place of the gas.
One consequence of having a liquid is that we can assume constant p. Another key feature of the
dilute liquid solution is that it is pseudobinary from a diffusional standpoint. Thus, the product B
will have negligible influence on the diffusion of the reactant A for any stoichiometry. Because
species B is assumed not to affect the reaction kinetics either, it need not be considered at all.

The previous conclusion that v, =0 remains valid for the liquid. Using this information and
Eg. (2.6-4), the flux of A is given by

dc,
Npy=Jp=—-D, 7’4 (2.8-26)

This may be contrasted with Egs. (2.8-16) or (2.8-18) for the gas-phase problem; there is no
convection now. From Table 2-3, the conservation equation for specics A is

2
d—d;cid=0- (2.8-27)

Accordingly, C, is linear in y for all values of m. Converting to the dimensionless variables
defined by Eq. (2.8-21) and proceeding much as before, it is found that the concentration of A at
the catalytic surface is governed by .

D.’ =]- ¢. (2.8'28)

For the gas; this result held only for m= 1, corresponding to equimolar counterdiffusion [see Eq.
(2.8-23)). For the liquid, it is valid for all stoichiometries.
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Example 6.2-3 Flow of Two Immiscible Fluids in a Parallel-Plate Channel A simple type of'

two-phase flow occurs when immiscible Auids occupy distinct layers in a parallel-plate channel,
as depicted in Fig. 6-3. The density and viscosity of fluid | (p, and p,) may differ from those of
fluid 2 (p, and p,). It is desired to determine the steady. fully developed velocities of the two
fluids. which are denoted as v!(y) and 17(7), respectively.

The Navier-Stokes equation for each phase reduces to

’-’-\"—'=:-; ‘13‘: (6.2-24)
Integrating this twice gives
\',"(\)=i-‘%f+a,\ +b,, 16.2-25)
where a; and b, are constants. These four constants are determined by the conditions
vH,)=0. (6.2-26
W ~H.=0. 16.2-27)
: VoY= w0y, (6.2-28)
" '
M (0)= p. —— = (0). (6.2-29)

Equations {6.2-26) and (6.2-27) are the usual no-slip conditions at the solid surfaces, whereas Eqs.
16.2-28) and (6.2-29) express the matching of the tangential components of velocity and stress at
the fluid-fluid interface. It is convenient to introduce the constants

u, - (6.2-30)

K-() ) T 623

where u, has units of velocity [compare with Eq. (6.2-9)) and X is dimensionless. The velocities
in the two fluids are written as

-+

Fluid 2 — H,
x | -
Fluid t — H,
y i Figure 6-3. Flow of twvo immuiscible Huids in a parallel-plate

channel.

T e ) N
) ) S

, where u, and K are assumed to be known.

6/11
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What remains is to relate the pressures in the two fluids. In Examples 6.2-1 and 6.2-2 it
was seen that for fully developed flow of a single, incompressible fluid in a channel of known
dimensions, specifying the mean velocity was the same as setting the axial gradient of the dy-
namic pressure [see Egs. (6.2-10), (6.2-19), and (6.2-22)]. Extra care is needed in the present
problem, because d®"/dx, while constant within cach fluid, is generally not the same in the two
phases. The constraints on the two-phase flow are revealed by considering the actual pressure, P.
For the general case of a channel inclined at an arbitrary angle, PP=P)x, y z) even in the
absence of flow, because of static pressure variations. However, from the definition of the’ dynnmc
pressure, Eq. (5.8-1), it follows that for this flow'

—_——=—+p;8,. (62-34)

Thus, the constancy of d®/dx implies that 3P/"/ax too is constant within each phase. The final
piece of information needed comes from the normal stress balance at the fluid-fluid interface,
based on Eq. (5.7-9). Given that the interface is flat and that there are no normal viscous stresses
(i.e., 7,,=0), the values of P there must match. We conclude that 3P/0x has the same constant
value thmughout both fluids. To emphasize that there is only one independent pressure gradient,
Eq. (6.2-30) is rewritten as

H} (3P
= —;‘:( o -p,g,) (6.2-35)

The need to consider actual pressure, and not just dynamic pressure, is typical of problems involv-
ing fluid-fluid interfaces.
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Example 6.2-4 Flow of a Liquid Film Down an Inclined Surface With reference to Fig. 6-4,
the objective is to determine the velocity of a liquid film flowing down a surface which is oriented
at an angle B relative to vertical. The film thickness (H) is assumed to be constant, making. it
possible to have steady, fully developed flow. Thus, it is assumed that v,=v,(y) only and
v,=v, =0, from which it follows (as before) that @ =%P(x) only and that d®/dx is constant.

The falling liquid film can be viewed as a special case of the two-fluid problem in Example
6.2-3, in which fuid 1 is now the liquid and fluid 2 the gas. Assuming that the gas occupies a

Figure 6-4. Flow of a liquid film down an inclined sur-
face. G%
+
»

space at least as thick as the liquid film, and recalling that a typical ratio of liquid to gas viscosit.
ies is ~10? (Chapter 1), the parameter K defined by Eq. (6.2-31) will be extremely large. Assum-
ing also that the gas pressure is uniform, the reasoning leading to Eq. (6.2-35) indicates that 3p/
ax=0 in the liquid. Noting that g, =g cos B, it follows from Eqgs. (6.2-32) and (6.2-35) that the
liquid velocity is

%
v.(y)=J"{Tf'iE[l —(5)’] (6.2:36)

where the subscript L denotes liquid properties. The velocity profile can be rewritten in lerms)of
the mean velocity (U) as

=3l -2}

v, 2u[l (H) ] (6237)

yHlogcos B (6.2-38)
3p,

Notice that Eq. (6.2-37) is exactly the same as the result obtained in Example 6.2-1 for flow in a
parallel-plate channel of half-width H.

Assuming that K—» e, as done in deriving Eq. (6.2-36), is the same as neglecting the shear
stress exerted by the gas on the liquid. As discussed in-Section 5.7, this is a common approxima-
tion at gas-liquid interfaces, and it has the effect of making the liquid velocity independent of the
gas properties. It is readily confirmed that Eq. (6.2-36) is obtained also by solving

dv, 1 4% c
- — _ P& cos B 3
with the boundary conditions

dv,

—£(0)=0, v (H)=0. (6.2-40)

This is clearly the preferred approach if one is interested only in the liquid, in that it avoids
having to determine the velocity field in the gas.

DEEN, M. Analysis of Transport Phenomena. Oxford University Press, New York, 1998.
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TABLE 1-2
Flux of Species { in Varlous Reference Frames and Units for a Mixture
of n Components
DIM,M velocity ’ Molar units Mass mits
° N, o
v 'J} .'J
vian J'(') jlm
Flux relationships: . 5
= 00 0
N,-C,v-l-.'." C"(M’J'M' ‘§|N' le EJ‘
=Y +11’PIYM+J'(.",' i.‘spy' .ilj‘=°
I= -
TABLE 1-3
Fick’s Law for Binary Mixtures of A and B
Reference velocity Mass units Molar units
v Ja=—pDasVu, (A) =~ %'V“A ®)
A
v 10 =~ CM Dy V%, © 1,40 = - CD,yVx, (1)
TABLE 2-3

Species Conservation Equations for a Binary or Pseudobinary Mixture in
Rectangular, Cylindrical, and Spherical Coordingtes®

Rectangular: C;=Cy(x, y, 2 1)

9C,, aC, aC, .  dC #C, , P, , PC
;‘+v,;;‘+v,?y‘+v,;1-0, ;,Ha—y-,u‘—k-{ +Ry,

.

Cylindrical: C,;=C(r, 8 z. 1) )

3C,. 9C,, vgdC,, o, 1 3/ 3C)\, 1 #C, &C,
9y, , 9% vedy, & 9 [._.(_._l) 96,96
PR TRA it s ey R By agrw BT

Spherical: C,;=C{(r, 6 & 0

aC,, 3C; vg dC;, vg dC, 1 3¢ ,0C, 1 3 aC, 1 #C,
|, 9C v oG, ve 3C_, _(2.__1 1 a8y
T 0t ran 0 a9 N a\” o +r1shaoo("“° aa)*ﬂm’oi}'{]”"

"llilanMpmdD,mcmMD,ilhbimwauydﬂﬁuivky.

DEEN, M. Analysis of Transport Phenomena. Oxford University Press, New York, 1998.
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PQI-5776 Fendmenos de Transporte I
Lista de Exercicios 3

Em relacdo ao Exemplo 2.8-1 (Deen, 1998):

(1) Quais sdo as palavras-chave no enunciado do
problema para se poder admitir que o perfil de temperatura é
unidimensional T = T(r) ?

(2) Deduzir a expressdo para a constante C, da equacao
(2.8-6) a partir da condicdo de contorno dada por (2.8-2).

(3) Qual a temperatura na superficie externa do fio
para h - o ? E para h - 0 ? Justificar as respostas e
explicar os seus significados fisicos.

(4) Deduzir a equacdo (2.8-10).

(5) Dar o significado fisico do nimero de Biot. Qual o
significado para Bi - 0 ?

(6) Para um fio de cobre exposto a um ambiente sem

vento, qual dos perfis de temperatura da figura 2.5
representa melhor a situacgdo ?

Em relacdo ao Exemplo 2.8-2 (Deen, 1998):

(7) A relacdo entre os fluxos molares dos componentes A
e B depende: (a) s6 da cinética da reagcdo ? (b) sbé da
estequiometria da reacdo *? (c) 86 dos fendmenos de
transporte ? (d) da combinacdo dos itens acima (dizer quais)
? Justificar a resposta.

(8) O transporte convectivo do A é& provocado: (a) sd
pela velocidade do A ? (b) sbé pela velocidade do B ? (c)
pelo fluxo dos dois ? Justificar a resposta.

(9) Determinar o fluxo méssico da mistura ao longo do
filme de gés.

(10) Deduzir a equagdo (2.8-23).

(11) Deduzir a equacdo do perfil de concentracdo do A
(Cp) em funcdo da posigdo y para o caso dem =1 e n = 2.

(12) Se a reacgdo fosse reversivel, qual parte do
equacionamento do problema seria alterada ? E se a reacdo
fosse irreversivel instantédnea ? #

(13) Dar o significado fisico do numero de Damkdhler.
Quais os significados fisicos para Da - 0 e para Da - ® ?

Em qual das duas situac¢des, a concentracdo do componente A é
uniforme ao longo do filme de géas ?

Em relacdo ao Exemplo 2.8-3 (Deen, 1998):

(14) Quais sd@o as palavras-chave para se poder admitir
que a densidade méassica da mistura é constante em relacdo a
posicdo y ?

(15) Justificar por que se pode aplicar a "lei" de Fick
neste exemplo.
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(16) Na equacdo (2.8-26), a difusividade "Dp" & "Dag" ?
Jjustificar a resposta.

(17) Explicar o motivo de ndo aparecer o termo
convectivo na equacdo (2.8-26).

Em relacdo ao Exemplo 6.2-3 (Deen, 1998):

(18) De acordo com a solucdo apresentada, os dois
fluidos precisam ser newtonianos ? Justificar a resposta.

(19) O termo da pressdao que aparece no balanco de
quantidade de movimento é: pressdo estatica, pressao
dinamica, pressd3o de estagnacao, pressdo termodinamica,
presssdo "modificada", pressdo de impacto, pressdo de
Bernoulli, press3o piezométrica ?

(20) Esbogcar os perfis de velocidade nos dois fluidos
do exemplo 6.2-3 para OS Casos de: (a) o fluido 2 ser
inviscido; (b) o fluido 1 ser inviscido; (c) os dois fluidos
serem inviscidos. Justificar sucintamente as respostas.

(21) Responder a questao proposta por Bird; Stewart;
Lightfoot, 1960:

Two immiscible liquids A and B are flowing in laminar flow between two parallel

plates. Wouldthaemhuhopodbmtythn!hwhdlypmﬂhmuhonhrolm-
ing form? akﬂdnbﬂdyﬂulunmnknymnuuqu

— e

Liquid A

Liquid B
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