Problems

In each of Problems 1 through 13, either solve the given boundary value problem or else show that it has no solution. (Problems 11 through 13 involve Euler equations; see Section 5.4.)

1. $y^{\prime \prime}+y=0, \quad y(0)=0, \quad y^{\prime}(\pi)=1$
2. $y^{\prime \prime}+2 y=0, \quad y^{\prime}(0)=1, \quad y^{\prime}(\pi)=0$
3. $y^{\prime \prime}+y=0, \quad y(0)=0, \quad y(L)=0$
4. $y^{\prime \prime}+y=0, \quad y^{\prime}(0)=1, \quad y(L)=0$
5. $y^{\prime \prime}+y=x, \quad y(0)=0, \quad y(\pi)=0$
6. $y^{\prime \prime}+2 y=x, \quad y(0)=0, \quad y(\pi)=0$
7. $y^{\prime \prime}+4 y=\cos x, \quad y(0)=0, \quad y(\pi)=0$
8. $y^{\prime \prime}+4 y=\sin x, \quad y(0)=0, \quad y(\pi)=0$
9. $y^{\prime \prime}+4 y=\cos x, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$
10. $y^{\prime \prime}+3 y=\cos x, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$
11. $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0, \quad y(1)=-1, \quad y(2)=1$
12. $x^{2} y^{\prime \prime}+3 x y^{\prime}+y=x^{2}, \quad y(1)=0, \quad y(e)=0$
13. $x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(4+\pi^{2}\right) y=\ln x, \quad y(1)=0, \quad y(e)=0$

In each of Problems 14 through 20, find the eigenvalues and eigenfunctions of the given boundary value problem. Assume that all eigenvalues are real.
14. $y^{\prime \prime}+\lambda y=0, \quad y(0)=0, \quad y^{\prime}(\pi)=0$
15. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(\pi)=0$
16. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(\pi)=0$
17. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y(L)=0$
18. $y^{\prime \prime}+\lambda y=0, \quad y^{\prime}(0)=0, \quad y^{\prime}(L)=0$
19. $y^{\prime \prime}-\lambda y=0, \quad y(0)=0, \quad y^{\prime}(L)=0$
20. $x^{2} y^{\prime \prime}-x y^{\prime}+\lambda y=0, \quad y(1)=0, \quad y(L)=0, L>1$

