2.3 Matrix Norms

The analysis of matrix algorithms requires use of matrix norms. For example, the quality of a linear system solution may be poor if the matrix of coefficients is "nearly singular." To quantify the notion of near-singularity, we need a measure of distance on the space of matrices. Matrix norms can be used to provide that measure.

2.3.1 Definitions

Since $\mathbb{R}^{m \times n}$ is isomorphic to \mathbb{R}^{mn} , the definition of a matrix norm should be equivalent to the definition of a vector norm. In particular, $f:\mathbb{R}^{m \times n} \to \mathbb{R}$ is a matrix norm if the following three properties hold:

$$f(A) \geq 0, \qquad A \in \mathbb{R}^{m \times n}, \qquad (f(A) = 0 \text{ iff } A = 0)$$

$$f(A+B) \leq f(A) + f(B), \quad A, B \in \mathbb{R}^{m \times n},$$

$$f(\alpha A) = |\alpha| f(A), \qquad \alpha \in \mathbb{R}, A \in \mathbb{R}^{m \times n}.$$

As with vector norms, we use a double bar notation with subscripts to designate matrix norms, i.e., ||A|| = f(A).

The most frequently used matrix norms in numerical linear algebra are the Frobenius norm

$$||A||_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}$$
 (2.3.1)

and the p-norms

$$\|A\|_{p} = \sup_{x \neq 0} \frac{\|Ax\|_{p}}{\|x\|_{p}}.$$
 (2.3.2)

Note that the matrix p-norms are defined in terms of the vector p-norms discussed in the previous section. The verification that (2.3.1) and (2.3.2) are matrix norms is left as an exercise. It is clear that $\|A\|_p$ is the p-norm of the largest vector obtained by applying A to a unit p-norm vector:

$$\left\|A\right\|_{p} = \sup_{x \neq 0} \left\|A\left(\frac{x}{\left\|x\right\|_{p}}\right)\right\|_{p} = \max_{\left\|x\right\|_{p}=1} \left\|Ax\right\|_{p}.$$

It is important to understand that (2.3.2) defines a family of norms—the 2-norm on $\mathbb{R}^{3\times2}$ is a different function from the 2-norm on $\mathbb{R}^{5\times6}$. Thus, the easily verified inequality

 $||AB||_{p} \le ||A||_{p} ||B||_{p}, \qquad A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times q}$ (2.3.3)

is really an observation about the relationship between three different norms. Formally, we say that norms f_1 , f_2 , and f_3 on $\mathbb{R}^{m \times q}$, $\mathbb{R}^{m \times n}$, and $\mathbb{R}^{n \times q}$ are mutually consistent if for all matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times q}$ we have $f_1(AB) \leq f_2(A)f_3(B)$, or, in subscript-free norm notation:

$$||AB|| \le ||A|| ||B||.$$

Not all matrix norms satisfy this property. For example, if $\|A\|_{\Delta} = \max |a_{ij}|$ and

$$A = B = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right] ,$$

then $||AB||_{\Delta} > ||A||_{\Delta} ||B||_{\Delta}$. For the most part, we work with norms that satisfy (2.3.4).

The p-norms have the important property that for every $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ we have

$$||Ax||_p \le ||A||_p ||x||_p.$$

More generally, for any vector norm $\|\cdot\|_{\alpha}$ on \mathbb{R}^n and $\|\cdot\|_{\beta}$ on \mathbb{R}^m we have $\|Ax\|_{\beta} \leq \|A\|_{\alpha,\beta} \|x\|_{\alpha}$ where $\|A\|_{\alpha,\beta}$ is a matrix norm defined by

$$||A||_{\alpha,\beta} = \sup_{x \neq 0} \frac{||Ax||_{\beta}}{||x||_{\alpha}}.$$
 (2.3.5)

We say that $\|\cdot\|_{\alpha,\beta}$ is *subordinate* to the vector norms $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$. Since the set $\{x\in\mathbb{R}^n:\|x\|_{\alpha}=1\}$ is compact and $\|\cdot\|_{\beta}$ is continuous, it follows that

$$||A||_{\alpha,\beta} = \max_{\|x\|_{\alpha}=1} ||Ax||_{\beta} = ||Ax_*||_{\beta}$$
 (2.3.6)

for some $x_* \in \mathbb{R}^n$ having unit α -norm.

2.3.2 Some Matrix Norm Properties

The Frobenius and p-norms (especially $p=1, 2, \infty$) satisfy certain inequalities that are frequently used in the analysis of a matrix computation. If $A \in \mathbb{R}^{m \times n}$ we have

$$||A||_2 \le ||A||_F \le \sqrt{\min\{m,n\}} ||A||_2,$$
 (2.3.7)

$$\max_{i,j} |a_{ij}| \le ||A||_2 \le \sqrt{mn} \max_{i,j} |a_{ij}|, \qquad (2.3.8)$$

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|,$$
 (2.3.9)

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}|,$$
 (2.3.10)

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_{2} \le \sqrt{m} \|A\|_{\infty}, \tag{2.3.11}$$

$$\frac{1}{\sqrt{m}} \|A\|_{1} \le \|A\|_{2} \le \sqrt{n} \|A\|_{1}. \tag{2.3.12}$$

If $A \in \mathbb{R}^{m \times n}$, $1 \le i_1 \le i_2 \le m$, and $1 \le j_1 \le j_2 \le n$, then

$$\|A(i_1:i_2,j_1:j_2)\|_p \le \|A\|_p.$$
 (2.3.13)

The proofs of these relationships are left as exercises. We mention that a sequence The production of the product

$$\lim_{k\to\infty} \|A^{(k)} - A\| = 0.$$

The choice of norm is immaterial since all norms on $\mathbb{R}^{m\times n}$ are equivalent.

2.3.3 The Matrix 2-Norm

A nice feature of the matrix 1-norm and the matrix ∞ -norm is that they are easy, $O(n^2)$ computations. (See (2.3.9) and (2.3.10).) The calculation of the 2-norm is considerably more complicated.

Theorem 2.3.1. If $A \in \mathbb{R}^{m \times n}$, then there exists a unit 2-norm n-vector z such that $A^{T}Az = \mu^{2}z \text{ where } \mu = ||A||_{2}.$

Proof. Suppose $z \in \mathbb{R}^n$ is a unit vector such that $||Az||_2 = ||A||_2$. Since z maximizes the function

$$g(x) = \frac{1}{2} \frac{\parallel Ax \parallel_2^2}{\parallel x \parallel_2^2} = \frac{1}{2} \frac{x^T A^T Ax}{x^T x}$$

it follows that it satisfies $\nabla g(z) = 0$ where ∇g is the gradient of g. A tedious differentiation shows that for i = 1:n

$$\frac{\partial g(z)}{\partial z_i} = \left[(z^T z) \sum_{j=1}^n (A^T A)_{ij} z_j - (z^T A^T A z) z_i \right] / (z^T z)^2.$$

In vector notation this says that $A^TAz = (z^TA^TAz)z$. The theorem follows by setting $\mu = ||Az||_2.$

The theorem implies that $||A||_2^2$ is a zero of $p(\lambda) = \det(A^T A - \lambda I)$. In particular,

$$\parallel A\parallel_2 \ = \ \sqrt{\lambda_{\max}(A^TA)}$$

We have much more to say about eigenvalues in Chapters 7 and 8. For now, we merely observe that 2-norm computation is iterative and a more involved calculation than those of the matrix 1-norm or ∞-norm. Fortunately, if the object is to obtain an order-of-magnitude estimate of $||A||_2$, then (2.3.7), (2.3.8), (2.3.11), or (2.3.12) can be used.

As another example of norm analysis, here is a handy result for 2-norm estimation.

Corollary 2.3.2. If
$$A \in \mathbb{R}^{m \times n}$$
, then $||A||_2 \le \sqrt{||A||_1 ||A||_{\infty}}$.

Corollary 2.3.2. If
$$A \in \mathbb{R}^{m \times n}$$
, then $||A||_2 \le \sqrt{||A||_2}$ with $\mu = ||A||_2$, then $\mu^2 ||z||_1 = Proof$. If $z \ne 0$ is such that $A^T A z = \mu^2 z$ with $\mu = ||A||_2$, then $\mu^2 ||z||_1 = ||A^T A z||_1 \le ||A^T ||_1 ||A||_1 ||z||_1 = ||A||_{\infty} ||A||_1 ||z||_1$.

2.3.4 Perturbations and the Inverse

We frequently use norms to quantify the effect of perturbations or to prove that a sequence of matrices converges to a specified limit. As an illustration of these norm applications, let us quantify the change in A^{-1} as a function of change in A.

Lemma 2.3.3. If $F \in \mathbb{R}^{n \times n}$ and $||F||_p < 1$, then I - F is nonsingular and

$$(I-F)^{-1} = \sum_{k=0}^{\infty} F^k$$

with

$$\|(I-F)^{-1}\|_{p} \leq \frac{1}{1-\|F\|_{p}}.$$

Proof. Suppose I-F is singular. It follows that (I-F)x=0 for some nonzero x. But then $\|x\|_p=\|Fx\|_p$ implies $\|F\|_p\geq 1$, a contradiction. Thus, I-F is nonsingular. To obtain an expression for its inverse consider the identity

$$\left(\sum_{k=0}^{N} F^k\right) (I - F) = I - F^{N+1}.$$

Since $\|F\|_p < 1$ it follows that $\lim_{k \to \infty} F^k = 0$ because $\|F^k\|_p \le \|F\|_p^k$. Thus,

$$\left(\lim_{N\to\infty}\sum_{k=0}^N F^k\right)(I-F) = I.$$

It follows that $(I-F)^{-1} = \lim_{N \to \infty} \sum_{k=0}^{N} F^k$. From this it is easy to show that

$$\| (I - F)^{-1} \|_{p} \le \sum_{k=0}^{\infty} \| F \|_{p}^{k} = \frac{1}{1 - \| F \|_{p}}$$

completing the proof of the theorem. \Box

Note that $\|(I-F)^{-1}-I\|_p \leq \|F\|_p/(1-\|F\|_p)$ is a consequence of the lemma. Thus, if $\epsilon \ll 1$, then $O(\epsilon)$ perturbations to the identity matrix induce $O(\epsilon)$ perturbations in the inverse. In general, we have

Theorem 2.3.4. If A is nonsingular and $r \equiv \|A^{-1}E\|_p < 1$, then A+E is nonsingular and

$$\|(A+E)^{-1}-A^{-1}\|_{p} \leq \frac{\|E\|_{p}\|A^{-1}\|_{p}^{2}}{1-r}.$$

Proof. Note that A + E = (I + F)A where $F = -EA^{-1}$. Since $||F||_p = r < 1$, it follows from Lemma 2.3.3 that I + F is nonsingular and $||(I + F)^{-1}||_p \le 1/(1 - r)$.

Thus, $(A+E)^{-1} = A^{-1}(I+F)^{-1}$ is nonsingular and

$$(A+E)^{-1} - A^{-1} = A^{-1}(A-(A+E))(A+E)^{-1} = -A^{-1}EA^{-1}(I+F)^{-1}$$
.

The theorem follows by taking norms. \Box