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23.1 Definitions

mXmn iq 1 ] mn
gince R fi tl'solrf(g?zrgélé:oto R™", the definition of 5 Matri
to the definit! r norm. In particular, f.gmxn X norm should pe equivalent

three properties hold: is & matrix norm if
I the

following
f(4) = 0, mxn
) < AER™™  (fa) =01 4=
f(A+B) < f(A)+ f(B), A,BecRmxn =0)
f(ad) = lalf(4), @€ R, A c grxn

As with vector norms, we use a double bar notat;j :
; i on wit g ;
vorms, ie., [| A || = F(A). h subscripts to designate matrix

The most frequently used matrix norms in numerica] linear algebra are the Frob
re the Probe-

pius norm
| e
Al = 12
£ ZZ Ia‘lJl (231)

and the p-norms
Az ||
14l = sup 122)s
Pk Nz, 23:2)

1l;\liote thaft the ma.ttrix p-norms are defined in terms of the vector p-norms discussed in

¢ previous secthn. The verification that (2.3.1) and (2.3.2) are matrix norms is left
3 an exercise. It is clear that | A, is the p-norm of the largest vector obtained by
applying A to a unit p-norm vector:

(57)

It is important to understand that (2.3.2)

on R3x2 . .
) R is o different function from the 2-nor
Hlequality

= max | Az],.
lzllp=1

IA]l, = sup
z#0

p

defines a family of norms—the 2-norm
m on IR°*6. Thus, the easily verified

Ae IR,mxn, Be }Ran (233)

| AB I, < | Al,ll Bll,
ece different norms. Formally,

I8 e

We ally an observation about the relationship between thr :
%%y that norms f;, f,, and f3 on R™** R™*", and R™? are mutually consistent

L Rmxn an : (AB) < fa(A)fs(B), or i

if f
°F all matrices 4 € R™*™ and B € R**? we have fi

Subgop:
"Hipt-free norm notation:
(2.34)

1AB| < | AlIIEBI
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Not all matrix norms satisfy this property. For example, if || A ||, = max | a5 mag
1 1
A=B=141 1|
then || AB || > || Allall B l|la- For the most part, we work with norms that satisfy

2.3.4). x
( ')I‘he p-norms have the important property that for every A € R™ ™ and € R»

we have

Az l, < [ Al

n m
More generally, for any vector norm || - ||, on R™ and || - [|; on R™ we have || Az Iy <
| All,gllzll, where || A|l, 5 is a matrix norm defined by

Aly= sup 22l (235
1A lle,s = z#0 |l 39)
We say that || - ||, 5 is subordinate to the vector norms || - ||, and | - ll5- Since the

set {z € R": ||z |, =1} is compact and || - || 5 is continuous, it follows that

I Alla,s = 2] Az |lg = || Az, |4 (2.3.6)

T||a=
for some z, € R™ having unit a-norm.

2.3.2 Some Matrix Norm Properties

The Frobenius and p-norms (especially p = 1, 2, 00) satisfy certain inequalities that
are frequently used in the analysis of a matrix computation. If A € IR™*™ we have

I4llz < 1Al < v/min{m,n} || A, (2.3.7)

max o] < Al < vimn max  ay), (2.3.8)
4], = L ilai_jl, (2.3.9)
Al = lsmé):n j;laijl, (2.3.10)

1

Tl Al < 14 < vm| A, (2.3.11)
1

v 4l <Al < vayay,. (2.3.12)

I Ai1:d5, 5y :5,) l, <4 I, (2.3.13)
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The proofs of these relationships are left

s as exerci
{A(k)} e R™*" converges if there exists g ses. We men

; tion that a sequenc
matrix A € R™ " such that e
li (k) _
am | AR — 4| = o
e choice of norm is immaterial since
s all norms on R™*™ gpe equivalent.

233 The Matrix 2-Norm

A nice feature of the matrix 1-norm and the matrix oo-nor
computations. (See (2.3.9) and (2.3.10)
more complicated.

lorm is that they are easy, O(n?)
.) The calculation of the 2-norm is considerably

Theorem 2.3.1. If A€ R™*", then there exists a unit 2-norm n-vector z such that
AT Az = p%z where p= || A 2.

Proof. Suppose z € IR™ is a unit vector such that || Az |2 = || A ||2. Since z maximizes
the function
_ 1Az 13 _1_$TATA9;

2 z3 2 a7z

g(z)

it follows that it satisfies Vg(z) = 0 where Vg is the gradient of g. A tedious differen-
tiation shows that for i = Lin

agij) = (ZTZ) ;(ATA)?:J.ZJ' — (ZTATAz)zz. /(ZTZ)2 -

In vector notation this says that AT Az = (2T AT Az)z. The theorem follows by setting

p=| Azl O

T _ .
The theorem implies that || A |13 is a zero of p(A) = det(A"A ). In particular,

| All, = y/Amax(474)

nvalues in Chapters 7 and 8. For now, we mex}'lely
i tive and a more involved calculatlon_t an
e if the object is to obtain an
. (2.3.11), or (2.3.12) can be

We have much more to say about eige

observe that 2-norm computation 18

those of the matrix 1-norm or OO-NOIM.
2.3.8)

order-of-magnitude estimate of | A ll2, then (2.3.7), (

used.

As another example of norm analysis; here

Al -
Corollary 2.3.2. If A € R™", then || 4 Il < /1A 111 Al

o= [ Al then wlzlh =

is a handy result for 2-norm estimation.

_ 2y with
Pmr"f. If 2 # 0 is such that A*A2 #H“AZH Tllzﬂl'
nA Az”1 S ” AT ||1||A||1||z||1=”A”°° 1



2.3.4 Perturbations and the Inverse

We frequently use norms to quantify the effect of perturbations or to prove that g
sequence of matrices converges to a specified limit. As an illustration of these norm

applications, let us quantify the change in A~! as a function of change in A.

Lemma 2.3.3. If F € R™*" and || F ||, < 1, then I — F is nonsingular and

(I_F)—l - iFk
k=0

with 1

IT=F)y < TyFr

Proof. Suppose I — F is singular. It follows that (I — F')z = 0 for some nonzero z. But
then ||z ||, = || Fz ||, implies || F' ||, > 1, a contradiction. Thus, I — F' is nonsingular.

To obtain an expression for its inverse consider the identity
N
(Zpk) (I-F) = I-FN+,
k=0

Since || ' ||, < 1 it follows that lim F* =0 because || F¥ || < || F |15, Thus,
k—oo p p

N
(Jgi_r)anFk) (I-F) = 1.
k=0

N
It follows that (I — F)~! = N!I—IPOQ Z F*. From this it is easy to show that

la-m1 ), < SPPF = — L
b S 0PI = = yr

completing the proof of the theorem. [J -
_ -1 :
Note that || (I — F)~! —T l, < |F l,/1—| F ll,) is a consequence of the lemma.

Thus, if € < 1, then O(e) perturbations to the idert: -
o ; e identity matrix i 1
tions in the inverse. In general, we have ) X induce O(e) perturba

Theorem 2.3.4. IfA ; ; - =
and /A is nonsingular and r = | A~'E “p <1, then A+E is nonsingular

lA+B)1 g1y < IEL A7)
p = L—5 '

P L
foﬂzsvjs’ f;NoteLthat A+E = (I4+F)A where F = —EA~L Since |F|, =r <1, it
om Lemma 2.3.3 that I + F is nonsingular and | (I +F)-1 < 1/(1 1)
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E)"' =AY I+ F)-1 44 nonsingular ang
Thus, s

(A+E))4 4 E)—1

theorem follows by taking norms,
The

-1
g gy = —A"BAS 74y,
(A—I-E) 1_,A (



