

Laboratório de Biomecatrônica Departamento de Engenharia Mecatrônica e Sistemas Mecânicos

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Kinematics and dynamics of manipulators

Prof. Dr. Arturo Forner Cordero PMR5005 Biomechatronics and Biorobotics

São Paulo, 2 de Outubro de 2020

Goals of the lecture

- Provide the most relevant concepts for the kinematic and dynamic modeling of manipulator robots
- Overview of the kinematic and dynamic modeling process oriented to robot design
- Study a bio-robotic application of the acquired knowledge

Contents

- Introduction:
 - Definitions and formulation of the problem
- Kinematic modeling
 - Direct kinematic problem
 - Kinematic description of a robot
 - Inverse kinematic problem
 - Jacobian Matrix
- Dynamic modeling
 - Direct and inverse dynamic problem
 - Newton-Euler formulation
 - Lagrange formulation
- Case study: bio-robotics and bipeds

Ç

Introduction

• Definitions

- Robot: programmable machine, capable of performing automatically complex series of actions
- Manipulator with several degrees of freedom, mobile or with fixed base
 - Kinematics: Movement description
 - Dynamics: Movement causes
- Why and what for?
 - Planning joint trajectories
 - Robot workspace

Examples: Manipulators. Widely used in industry.

Ç

Analysis of a biped robot

Determine the position of the foot in the air (effector) from the position of the foot on the ground (base)

Contents

- Introduction:
 - Definitions and formulation of the problem
- Kinematic modeling
 - Direct kinematic problem
 - Kinematic description of a robot
 - Inverse kinematic problem
 - Jacobian Matrix
- Dynamic modeling
 - Direct and inverse dynamic problem
 - Newton-Euler formulation
 - Lagrange formulation
- Case study: bio-robotics and bipeds

¢

Joints and segments

Degrees of freedom

- Minimum number of independent position variables that need to be specified to define the location of all parts of the mechanism (joints).
- Single axis articulation have one degree of freedom
- Movement along more than one axis: the joint has more degrees of freedom.
- Most robots have between 4 and 6 degrees of freedom.
- Human arm (shoulder to wrist), 7 d.o.f..

Ç

Degrees of freedom

Revolute

1

Prismatic

1

Spherical

Cylindrical

2

X 3

Joints and segments

- Reduce d.o.f.
 - 1 d.o.f.: Revolute (hinge), prismatic (deslizante)
 - More d.o.f.: Cylindrical, spherical
- N segments: 6N d.o.f. (each joint: 6 d.o.f.)
- N Joints with 1 d.o.f.: 5N constraints
- 6N-5N= N d.o.f. (fixed base)
- E.g. humanoid biped robot: N+6

- (6 unactuated d.o.f.)

Introduction to Robotics. Oussama Khatib. Stanford University

Ø

Direct kinematics

 Determine the position and orientation of the end-effector with respect to a coordinate system

Ç

Rotation matrix

• Unity-vector componentes of the new axis with respect to the reference.

Introduction to Robotics. Oussama Khatib. Stanford University

Position and orientation

Describes the rotation and translation of {B} with respect to {A}

Introduction to Robotics. Oussama Khatib. Stanford University

Ç

Homogenous Transformation

Ç

Rotation matrices

- Euler angles
 - Series of successive rotations
 - Axes orientation change
- Roll-Pitch-Yaw (RPY)
 - Fixed axes
- Quaternions
 - Euler parameters

Rotation matrices

Individual rotations about x axis

$$R_x(\psi) = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\psi & -\sin\psi\\ 0 & \sin\psi & \cos\psi \end{bmatrix}$$

Analogously, rotation about y axis

$$R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

Rotation matrices

 A general rotation matrices can be expressed as three rotations around individual axes:

$$R = R_{z}(\phi)R_{y}(\theta)R_{x}(\psi)$$

$$= \begin{bmatrix} \cos\theta\cos\phi & \sin\psi\sin\theta\cos\phi - \cos\psi\sin\phi & \cos\psi\sin\theta\cos\phi + \sin\psi\sin\phi\\ \cos\theta\sin\phi & \sin\psi\sin\theta\sin\phi + \cos\psi\cos\phi & \cos\psi\sin\theta\sin\phi - \sin\psi\cos\phi\\ -\sin\theta & \sin\psi\cos\theta & \cos\psi\cos\theta \end{bmatrix}$$

Now we can calculate the individual rotations from R

Ç

Euler angles

Convention x

 $\mathbf{T}_{Euler}\left(\phi,\theta,\psi\right) = \mathbf{T}(z,\phi)\mathbf{T}(x,\theta)\mathbf{T}(z,\psi) =$

$c\phi$	$-s\phi$	0	0	1	0	0	0	$c\psi$	$-\mathrm{s}\psi$	0	0
$\mathbf{s}\phi$	$\mathbf{c}\phi$	0		0	$\mathbf{c}\boldsymbol{\theta}$	$-s\theta$		$_{ m s}\psi$	$\mathrm{c}\psi$	0	
0	0	1	0	0	$\mathbf{s}\theta$	$c\theta$	0	0	0	1	0
0	0	0	1	0	0	0	1	0	0	0	1

s seno; c coseno

RPY

$$\Gamma_{RPY}(\Psi, \nu, \Phi) = \mathbf{T}(z, \Psi)\mathbf{T}(y, \nu)\mathbf{T}(x, \Phi) =$$

$c\Phi$	$-s\Phi$	0	0	cν	0	$s\nu$	0	1	0	0	0
$s\Phi$	$c\Phi$	0		0	1	0		0	$c\Psi$	$-s\Psi$	
0	0	1	0	$-s\nu$	0	$c\nu$	0	0	$_{ m s}\Psi$	$c\Psi$	0
0	0	0	1	0	0	0	1	0	0	0	1

Kinematic description of a robot

- System joints and segments:
 - Joints with 1 d.o.f.
 - Joints with zero length.
- Description:
 - $-a_i, \alpha_i$ structure
 - d_i, θ_i relative position

Princípios de Mecatrônica – João Maurício Rosário – © 2005 Pearson Education, Inc.

Ç

Denavit-Hartenberg (D-H)

- Definition of the axes:
 - Base: system 0 ($X_0 Y_0 Z_0$)
 - Z_{i-1} , is the axis of the movement of joint i
 - X_i normal to Z_{i-1}
 - Y_i right-handed reference system

Ç

Denavit-Hartenberg (D-H)

- Definition of the parameters
 - $-a_i$ minimal distance (perpendicular) between Z_{i-1} and Z_i
 - α_i angle between $Z_{i-1} \in Z_i$ over X_i (right-handed)
 - d_i distance between the origin of system i-1 until intersection of

Princípios de Mecatrônica – João Maurício Rosário – \odot 2005 Pearson Education, Inc.

Homogeneous Transformation Matrix

The product of 4 matrices:

Traslation (d_i) Rotation (θ_i) Traslation (a_i) Rotation (α_i)

	$\cos \theta_i$	$-\cos \alpha_i \sin \theta_i$	$\sin \alpha_i \sin \theta_i$	$a_i \cos \theta_i$
Ti –	$\sin \theta_i$	$\cos\alpha_i\cos\theta_i$	$-\sin\alpha_i\cos\theta_i$	$a_i \sin \theta_i$
1 _{i-1} -	0	$\sin \alpha_i$	$\cos \alpha_i$	d_i
	0	0	0	1

Composition of rotations from base to end-effector

$$\Gamma_0^n = T_0^1 T_1^2 \cdots T_{n-1}^n$$

¢

Application example

 Obtain the D-H parameters of the human arm:

Chapter 3. Kinematics and dynamics of wearable robots. A. Forner–Cordero et al. In: Wearable Robots: Biomechatronic Exoskeletons. Editor: J. L. Pons (2008) John Wiley & Sons, Ltd.

Joint	eta_i	No.	α_i	a_i	d_i	$ heta_i$
base	0	$1_{(0\longrightarrow 1)}$	0	a_0	d_0	0
shoulder	(-90) medial rot. / lateral rot. (+90)	$2_{(1 \longrightarrow 2)}$	-90^{o}	0	0	$\beta_1 + 90^o$
shoulder	(-180) abduction / adduction (+50)	$3_{(2\longrightarrow 3)}$				
shoulder	(-180) flexion / extension(+80)	$4_{(3\longrightarrow 4)}$				
elbow	(-10) extension / flexion (+145)	$5_{(4 \longrightarrow 5)}$				
elbow	(-90) pronation / supination (+90)	$6_{(5 \longrightarrow 6)}$				
wrist	(-90) flexion / extension (+70)	7 _(6→7)				
wrist	(-15) abduction / adduction (+40)	$8_{(7\longrightarrow 8)}$				

Inverse kinematics

• Obtain the robot joint angles from the orientation and position of the end-effector

Princípios de Mecatrônica – João Maurício Rosário – © 2005 Pearson Education, Inc.

Inverse kinematics

- Solution procedures:
 - Geometric: for robots with low d.o.f. number
 - Analytic:
 - Given: $T = \begin{bmatrix} R & p \\ 0 & 1' \end{bmatrix}$ position/orientation of end-effector solve the system of trigonometric equations:

 $T = T_0^n(q_1, q_2, \dots, q_n)$ COM $\mathbf{T_0^n} = \mathbf{T_0^1 T_1^2} \cdots \mathbf{T_{n-1}^n}$

- Method of the inverse transformation (Paul, 1981)
- Numerical (iterative):
 - Convergence to a possible solution
 - Real-time viability

Inverse kinematics

- Problem
 - Known the orientation of the end of the manipulator:

$$T = \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}$$

Determine the Euler angles that represent this orientation

Jacobian matrix

- Relationship between effector speed and joint speeds is a multidimensional form of derivative $\dot{x} = J(q)\dot{q}$ can be expressed as: $\Delta \underline{x} = J \Delta \underline{\theta}$
- Singularities:
 - q configurations that reduce the rank of J
 - Unreachable points
 - Unreachable directions from setup
 - There is no solution to the inverse kinematic problem
 - Small speeds of the effector => high articular speeds

http://ijr.sagepub.com/content/3/4/66.abstract

Jacobian matrix

Given the joint angles θ_i and the velocity (x, y, z) and orientation (γ, β, α) of a certain point of the manipulator

$$J = \begin{bmatrix} \frac{\partial \theta_1}{\partial x} & \frac{\partial \theta_2}{\partial x} & \cdots & \frac{\partial \theta_n}{\partial x} \\ \frac{\partial \theta_1}{\partial y} & \frac{\partial \theta_2}{\partial y} & \cdots & \frac{\partial \theta_n}{\partial y} \\ \frac{\partial \theta_1}{\partial z} & \frac{\partial \theta_2}{\partial z} & \cdots & \frac{\partial \theta_n}{\partial z} \\ \frac{\partial \theta_1}{\partial \gamma} & \frac{\partial \theta_2}{\partial \gamma} & \cdots & \frac{\partial \theta_n}{\partial \gamma} \\ \frac{\partial \theta_1}{\partial \beta} & \frac{\partial \theta_2}{\partial \beta} & \cdots & \frac{\partial \theta_n}{\partial \beta} \\ \frac{\partial \theta_1}{\partial \alpha} & \frac{\partial \theta_2}{\partial \alpha} & \cdots & \frac{\partial \theta_n}{\partial \alpha} \end{bmatrix}$$

Ø

Matriz Jacobiana

• If there exists the inverse of J

$$\dot{q} = J(q)^{-1} \dot{x}$$
$$\ddot{q} = J(q)^{-1} (\ddot{x} - \left(\frac{d}{dt}J(q)\right)\dot{q})$$

• Inverse jacobian:

$$\ddot{x} = J(q)\ddot{q} + (\frac{d}{dt}J(q))\dot{q}$$

Jacobian Matrix

 If the inverse of J does not exist: Pseudoinverse

$$\dot{q} = J^+ \dot{x} + (I - J^+ J) \dot{z}$$

- Term affecting the end-effector
- Term of joint motions that do not affect the position/orientation of the effector
 - Redundancies (more d.o.f.)
 - Uncontrolled manifold

Contents

- Introduction:
 - Definitions and formulation of the problem
- Kinematic modeling
 - Direct kinematic problem
 - Kinematic description of a robot
 - Inverse kinematic problem
 - Jacobian Matrix
- Dynamic modeling
 - Direct and inverse dynamic problem
 - Newton-Euler formulation
 - Lagrange formulation
- Case study: bio-robotics and bipeds

Dynamic modeling

- Direct dynamics:
 - Evolution of joint angles as a function of forces and torques: $\ddot{\vec{r}} = f(F,T)$

$$\dot{ec{r}} = \int \ddot{ec{r}} dt$$

 $ec{r} = \int \dot{ec{r}} dt$

- Inverse dynamics:
 - Determine forces and torques as a function of joint angles:

$$F = g\left(\vec{r}, \dot{\vec{r}}, \ddot{\vec{r}}\right)$$

Newton-Euler formulation

- Free-body
- Recursive

$$\mathbf{f}_{i-1,i} - \mathbf{f}_{i,i+1} + m_i \mathbf{g} - m_i \dot{\mathbf{v}}_{ci} = \mathbf{0}, \qquad i = 1, \cdots, n$$

 $\mathbf{N}_{i-1,i} - \mathbf{N}_{i,i+1} - (\mathbf{r}_{i-1,i} + \mathbf{r}_{i,Ci}) \times \mathbf{f}_{i-1,i} + (-\mathbf{r}_{i,Ci}) \times (-\mathbf{f}_{i,i+1}) - \mathbf{I}_i \dot{\boldsymbol{\omega}}_i - \boldsymbol{\omega}_i \times (\mathbf{I}_i \boldsymbol{\omega}_i) = \mathbf{0}, \quad i = 1, \cdots, n$

$$\mathbf{I} = \begin{pmatrix} \int_{body} \{(y - y_c)^2 + (z - z_c)^2\} \rho \, dV & -\int_{body} (x - x_c)(y - y_c) \rho \, dV & -\int_{body} (z - z_c)(x - x_c) \rho \, dV \\ -\int_{body} (x - x_c)(y - y_c) \rho \, dV & \int_{body} \{(z - z_c)^2 + (x - x_c)^2\} \rho \, dV & -\int_{body} (y - y_c)(z - z_c) \rho \, dV \\ -\int_{body} (z - z_c)(x - x_c) \rho \, dV & -\int_{body} (y - y_c)(z - z_c) \rho \, dV & \int_{body} \{(x - x_c)^2 + (y - y_c)^2\} \rho \, dV \end{pmatrix}$$

$$\tau_{i} = \sum_{j=1}^{n} H_{ij} \ddot{q}_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} h_{ijk} \dot{q}_{j} \dot{q}_{k} + G_{i}, \qquad i = 1, \cdots, n$$

Asada H. Introduction to robotics. MIT Lecture Notes

Ø

Lagrange formulattion

- Multibody holonomous systems – Joint constraints $f(r_1, r_2, \dots, r_n, t) = 0$
- Coordenates \vec{q} and generalized forces τ_i
- Defines the Lagrangian
 - L= T-V, with T and V kinetic and potential energies
- It can be shown $\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} \frac{\partial L}{\partial q_i} = \tau_i \quad \forall i = 1, \cdots, n$

 $\vec{\tau}_{d}$

Lagrange formulation

• For n segments in matrix form: $\mathbf{M}(\vec{q})\ddot{\vec{q}} + \mathbf{C}\left(\vec{q},\dot{\vec{q}}\right) + \mathbf{K}(\vec{q}) = \vec{\tau}$

– M mass matrix (square and invertible)

- C Centrifugal and Coriolis forces vector
- K gravity force vectors
- Improve the model:
 - Friction: $\mathbf{F}(\vec{q}) = \mathbf{F}_{\mathbf{u}}\vec{q} + F_d$
 - Generalized perturbation forces:

Ç

Lagrange formulation

• We have:

 $\mathbf{M}(\vec{q})\ddot{\vec{q}} + \mathbf{C}(\vec{q},\dot{\vec{q}}) + \mathbf{F}(\dot{\vec{q}}) + \mathbf{K}(\vec{q}) + \vec{\tau_d} = \vec{\tau}$

- That can be expressed as: $\mathbf{M}(\vec{q})\ddot{\vec{q}} + \mathbf{N}(\vec{q},\dot{\vec{q}}) + \vec{\tau_d} = \vec{\tau}$
- Matrix N contains the non-linearities: $N(\vec{q}, \dot{\vec{q}}) = C(\vec{q}, \dot{\vec{q}}) + F(\dot{\vec{q}}) + K(\vec{q})$

Evidence for Adaptive Shoulder-Elbow Control in Cyclical Movements With Different Amplitudes, Frequencies, and Orientations

Oron Levin¹, Arturo Forner-Cordero^{1,2}, Yong Li¹, Mourad Ouamer¹, Stephan P. Swinnen¹ ¹Department of Biomedical Kinesiology, Katholieke Universiteit Leuven, Leuven, Belgium. ²Instituto de Automática Industrial, Madrid, Spain.

- Motor control study
- Star-drawing task

Example: star-drawing

Shoulder (proximal joint):

$$\begin{split} \text{NT}_{\text{shoulder}} &= (I_p + m_p r_p^2) \,\Theta \\ \text{IT}_{\text{shoulder}} &= -(I_d + m_d [l_p^2 + r_d^2 + 2l_p r_d \cos \Theta]) \ddot{\psi} - (I_d + m_d r_d l_p \cos \Theta) \,\Theta + (m_d r_d l_p \sin \Theta) \Theta + (2m_d r_d l_p \sin \Theta) \Theta \dot{\psi} \\ \text{MT}_{\text{shoulder}} &= \text{NT}_{\text{shoulder}} - \text{IT}_{\text{shoulder}} \end{split}$$

Contents

- Introduction:
 - Definitions and formulation of the problem
- Kinematic modeling
 - Direct kinematic problem
 - Kinematic description of a robot
 - Inverse kinematic problem
 - Jacobian Matrix
- Dynamic modeling
 - Direct and inverse dynamic problem
 - Newton-Euler formulation
 - Lagrange formulation
- Case study: bio-robotics and bipeds

Manipulators biorobot structures

- Redundant robots:
 - Snake robot (Miller)
- Flexible robots:
 - Univ. Kyoto:
- Hands
 - Biomimetism
 - UTAH/MIT hand

Human vs robotic hand

Biomechatronic mechanisms: Homework

Calculate D-H parameters of a human leg

Chapter 3. Kinematics and dynamics of wearable robots. A. Forner–Cordero et al. In: Wearable Robots: Biomechatronic Exoskeletons. Editor: J. L. Pons (2008) John Wiley & Sons, Ltd.

Zero Moment Point

Resulting normal force under the foot (FRN) and ceter of pressure (CoP) under static conditions

Zero Moment Point

 F_A, M_A biped forces are compensated by ground reaction forces: F_P, M_P

 $\mathbf{F}_{\mathsf{P}} + \mathbf{F}_{\mathsf{A}} = 0$ $\mathbf{p}_{\mathsf{OP}} \mathbf{x} \ \mathbf{F}_{\mathsf{P}} + \mathbf{M}_{\mathsf{A}} + \mathbf{p}_{\mathsf{OA}} \mathbf{x} \ \mathbf{F}_{\mathsf{A}} + \mathbf{M}_{\mathsf{P}} = 0$

- Point P inside of the support polygon of the feet.
- Relation with the CoP:
 - Force balance: CoP and ZMP are on the same point
 - Necessary and sufficient stability criterion.

ZMP calculation

Aplications

- Stability analysis of a biped robot:
 - Similar to a manipulator:
 - Supporting foot as base and swing foot as end-effector
 - Determine the points on the ground such that the ZMP will be inside of the support polygon.

Simulation

ESBiRRoBot model with ADAMS and perturbation tests

ISP

Five-segments model

ISF

 $\mathbf{M}(\theta)\ddot{\theta} + \mathbf{N}(\theta,\dot{\theta})\dot{\theta} + \mathbf{G}(\theta) = \mathbf{B}\mathbf{u}$

	M_{11}	M_{12}	M_{13}	M_{14}	M_{15}
	<i>M</i> ₂₁	<i>M</i> ₂₂	M_{23}	M_{24}	M_{25}
$\mathbf{M}(\theta) =$	<i>M</i> ₃₁	M_{32}	M_{33}	M_{34}	M_{35}
	M_{41}	M_{42}	M_{43}	M_{44}	M_{45}
	M_{51}	M_{52}	M_{53}	M_{54}	M_{55}

Rossi, L, 2017, PhD Thesis

Five-segments model

USP

$$\begin{split} M_{11} &= -l_1 - m_1(c_1\cos(\theta_1) - l_1\cos(\theta_1))^2 - m_1(c_1\sin(\theta_1) - l_1\sin(\theta_1))^2 \\ &- l_1m_3\sin(\theta_1)(-c_3\sin(\theta_3) + l_1\sin(\theta_1) + l_2\sin(\theta_2) + l_3\sin(\theta_3)) \\ &+ l_1m_5\sin(\theta_1)(c_5\sin(\theta_5) - l_1\sin(\theta_1) - l_2\sin(\theta_2) + l_4\sin(\theta_4)) \\ &- l_1m_2\cos(\theta_1)(-c_2\cos(\theta_2) + l_1\cos(\theta_1) + l_2\cos(\theta_2)) \\ &- l_1m_4\cos(\theta_1)(-c_4\cos(\theta_4) + l_1\cos(\theta_1) + l_2\sin(\theta_2)) \\ &- l_1m_2\sin(\theta_1)(-c_4\sin(\theta_4) + l_1\sin(\theta_1) + l_2\sin(\theta_2)) \\ &- l_1m_4\sin(\theta_1)(-c_4\sin(\theta_4) + l_1\sin(\theta_1) + l_2\sin(\theta_2)) \\ &- l_1m_3\cos(\theta_1)(-c_3\cos(\theta_3) + l_1\cos(\theta_1) + l_2\cos(\theta_2) + l_3\cos(\theta_3)) \\ &+ l_1m_5\cos(\theta_1)(c_5\cos(\theta_5) - l_1\cos(\theta_1) - l_2\cos(\theta_2) + l_4\cos(\theta_4)) \end{split}$$

Rossi, L, 2017, PhD Thesis

Five-segments model

$$\mathbf{f}(\theta, \dot{\theta}) = \mathbf{B}\mathbf{u} - (\mathbf{N}(\theta, \dot{\theta})\dot{\theta} + \mathbf{G}(\theta))$$

USP

$$\mathbf{f}(\theta, \dot{\theta}) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{bmatrix}$$

Rossi, L, 2017, PhD Thesis

()

Model to analyze gait

ISP

Rossi et al. BioRob 2014

USP

Rossi et al. BioRob 2014

Model to analyze gait

ISP

Rossi et al. BioRob 2014

Bibliography

- Robot Dynamics and Control. M. W. Spong and M. Vidyasagar
- Introduction to Robotics: Mechanics and Control. J.J. Craig.
- Introduction to Robotics: H. Asada. MIT OCW.
- Robot Manipulators: Mathematics, Programming and Control.
 Paul R.P. Mass., MIT Press, 1981
- Video Lectures from O. Khatib: Introduction to Robotics. Stanford University.
- Wearable Robots: Biomechatronic Exoskeletons. Editor: J. L. Pons (2008) John Wiley & Sons, Ltd.
- Princípios de Mecatrônica. J.M. Rosário
- Robótica Industrial. Ed. Vitor Ferreira Romano
- Robótica. Manipuladores y robots móviles. A. Ollero.

Bibliography

- FU, K.S. et al Robotics : Control, Sensing, Vision and Intelligence. New York, McGraw-Hill, 1987.
- McKERROW, P. J. Introduction to Robotics. Sidney, Addison-Wesley, 1991.
- SCIAVICCO, L. & SICILIANO, B. Modeling and Control of Robot Manipulators. New York, McGraw-Hill, 1996.
- ASADA, H. & SLOTINE, J.-J.E. Robot Analysis and Control. New York, Wiley, 1986..
- ANDEEN G.B. (Ed.) Robot Design Handbook. New York, McGraw-Hill, 1988.
- SHABANA, A.A. Dynamics of Multibody Systems. NY, Wiley, 1989.
- HOLZBOCK, W.G. Robotic Technology, Principles and Practice. New York, Van Nostrand Reinhold, 1986.

Take home message!

- Description of the kinematic model:
 Analysis methodology
- Dynamic model
- Importance and usefulness:
 - Diagrama de Blocos
 - Explicar
- Inspiração biológica em robôtica

• Thanks

• See you next week

A

Solução D-H perna

Joint	β_i	No.	α_i	a_i	d_i	θ_i
base	0	$1_{(0 \longrightarrow 1)}$	0	a_0	d_0	0
hip	(-50) medial rot. /lateral rot.(+40)					
hip	(-20) abduction / adduction(+45)					
hip	(-30) extension / flexion(+120)					
knee	0 extension / flexion (+150)					
ankle	(-40) plantarflex. / dorsiflex. (+20)					
ankle	(-35) inversion / eversion (+20)	x				

Table 3.3 D-H parameters for leg segments.