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Objectives and references

• To introduce to basic aspects related to the dynamics of continuous systems;

• Focus of the classes: Vibrations of beams;

• Examples of references

1 Blevins, R., 2001. Formulas for natural frequency and mode shape.
Krieger Publishing Company.

2 Rao, S. 2009, Mechanical vibrations. Pearson Prentice Hall.
3 Lanczos, C., 1986. The variational principles of mechanics. Dover

publications.
4 Meirovitch, L., 2003. Methods of Analytical Dynamics. Dover

publications.
5 Thomson, W.T. & Dahleh, M.D., 2005. Theory of vibration with

application. Pearson education.
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Nomenclature and hypotheses

Nomenclature

• Transverse and longitudinal
displacements of the centerline:
w = w(x , t) and u = u(x , t),
respectively;

• Transverse and longitudinal loads:
qz = qz (x , t) and qx = qx (x , t),
respectively;

• ∂
∂t

( ) = ˙( ); ∂
∂x

( ) = ( )′;

• ( )P : stands for a quantity calculated
at a point P pertaining to the
cross-section;

• ( )L∗ = ( )(L∗, t), L∗ being a certain
point along the beam axis;

Hypotheses

• H1: Bernoulli-Euler beam model;

• H2: Small displacements and
rotations;

• H3: Linear-elastic material behavior;

• H4: Planar vibrations
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Investigated problem

z,w

x,u

qz(x,t)=qz

qx(x,t)=qx

L
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Kinematic hypothesis

x

Pz

z x

u=u(x,t)

w=w(x,t)

�P
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In�nitesimal element

z

x
dx

M M+M'dx

N+N'dx
V+V'dx

V

N

qz

qx
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A simple example: Vibrations of a prismatic beam

The beam has mass per unit length µ, bending sti�ness EI and is subjected to
transverse and longitudinal loads qz and qx . The second Newton's law applied to the
di�erential element reads (see �gure above):

∑
Fx = µdxü → −N + qxdx +

(
N + N′dx

)
= µdxü ↔ µü − N′ = qx (1)∑

Fz = µdxẅ → −V + qzdx +
(
V + V ′dx

)
= µdxẅ ↔ µẅ − V ′ = qz (2)

Di�erential equations of equilibrium and generalized constitutive equations:

N = EAε = EAu′ (3)

M = −EIκ = −EIw ′′ (4)

M′ = V (5)

Using Eqs. 3 - 5 in Eqs. 1 and 2, one obtains the equations of longitudinal and
transverse motion of the prismatic beam (Eqs. 6 and 7, respectively).

µü − EAu′′ = qx (6)

µẅ + EIw ′′′′ = qz (7)
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Boundary conditions

• Vibrations of beams are governed by partial di�erential equations of second
order (longitudinal vibrations) or fourth order (transverse vibrations).

• In the investigated problem, the boundary conditions are:

w0 = wL = u0 = 0 (8)

w ′′0 = w ′′L = 0 (9)

u′L = 0 (10)

Equation 8 indicates null displacements at x = 0 and null transverse
displacements at x = L. Equation 9 indicates null curvature (bending moment)
at the ends of the pinned-pinned beam. Finally, Eq. 10 is associated with the
null normal force at x = L. As it will be seen in this notes, the boundary
conditions de�ne the natural frequencies of the beam.
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Extended Hamilton's principle applied to beams

The equations of motion are now derived using the extended Hamilton's principle.
Using H1 and H2, the longitudinal and transverse displacements of a point P of the
cross-section are:

uP = u − z sinφ = u − zw ′ (11)

wP = w − z(1− cosφ) = w (12)

The longitudinal strain is εP = u′P = u′ − zw ′′ and its variation is δεP = δu′ − zδw ′′.
Using H3, the normal stress is σP = EεP , E being the Young's modulus. Following,
the potential strain energy reads:

U =

∫∫∫
∀

1

2
σPεPd∀ =

∫∫∫
∀

1

2
Eε2Pd∀ (13)

δU =

∫∫∫
∀
EεPδεPd∀ =

=

∫ L

0

∫∫
A
E(u′δu′ − z(u′δw ′′ + w ′′δu′) + z2w ′′δw ′′)dAdx =

=

∫ L

0

(EAu′δu′ + EIw ′′δw ′′)dx (14)
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Extended Hamilton's principle applied to beams

By integrating twice Eq. 14 by parts, one obtains:

δU =
(
EAu′δu

)
|L0 +

(
EIw ′′δw ′

)
|L0 −

(
EIw ′′′δw

)
|L0−

−
∫ L

0

(EAu′′δu − EIw ′′′′δw)dx (15)

Notice that if the beam is not prismatic, the derivatives of EI and EA must be
properly considered in the integration by parts. For the investigated problem, the
essential boundary conditions are δu0 = δw0 = δwL = 0. Hence, Eq. 15 becomes:

δU = EAu′LδuL + EIw ′′L δw
′
L − EIw ′′0 δw

′
0−

−
∫ L

0

(EAu′′δu − EIw ′′′′δw)dx (16)
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Extended Hamilton's principle applied to beams

In this model, the rotary inertia is not considered in the kinetic energy T , given by:

T =

∫ L

0

1

2
µ(u̇2 + ẇ2)dx (17)

From Eq. 17, we have:

δT =

∫ L

0

µ(u̇δu̇ + ẇδẇ)dx →
∫ t2

t1

δT dt =

[∫ L

0

µu̇δudx

]t2
t1

+

[∫ L

0

µẇδwdx

]t2
t1

−

−
∫ t2

t1

∫ L

0

µ(üδu + ẅδw)dxdt (18)

Provided δu and δw vanish at t1 and t2:∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

µ(üδu + ẅδw)dxdt (19)
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Extended Hamilton's principle applied to beams

For the virtual work of the non-conservative forces, we consider a linear structural
damping model and the external loads. Mathematically, we have:

δWnc =

∫ L

0

((−cu̇ + qx )δu + (−cẇ + qz )δw)dx (20)

The extended Hamilton's principle (EHP) reads:

∫ t2

t1

(δT − δU + δWnc )dt = 0 (21)

Now, we substitute Eqs. 15, 19 and 20 into Eq. 21. After some algebraic work, one
obtains:

∫ t2

t1

∫ L

0

((−µü + EAu′′ − cu̇ + qx )δu + (−µẅ − cẇ − EIw ′′′′ + qz )δw)dxdt+∫ t2

t1

(−EAu′LδuL − EIw ′′L δw
′
L + EIw ′′0 δw

′
0)dt = 0 (22)
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Extended Hamilton's principle applied to beams

As the EHP holds for arbitrary virtual displacements and t1, t2, we obtain the
equations of longitudinal and transverse motions (Eqs. 23 and 24, respectively) and
the natural boundary conditions (Eqs. 25-27).

µü + cu̇ − EAu′′ = qx (23)

µẅ + cẇ + EIw ′′′′ = qz (24)

EAu′L = NL = 0 (25)

EIw ′′L = ML = 0 (26)

EIw ′′0 = M0 = 0 (27)

It is clear the agreement between Eqs. 23- 24 and 6 - 7. The use of Analytical
Mechanics easily allows including the structural damping into the model.
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A discussion regarding strain

• The exact displacements of the point P are given by:

uP = u − z sinφ (28)

wP = w − z(1− cosφ) (29)

• Let M and N be two points at the centerline of the beam in the reference
con�guration. M and N de�ne the in�nitesimal �ber of length d`0 = dx .

M N

M'

N'

w

u
uN

uN=u(x+dx)=u+u'dx
wN=w(x+dx)=w+w'dx

wN

�
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A discussion regarding strain

• From the above �gure, the stretched length of this �ber is
d` = dx

√
(1 + u′)2 + (w ′)2. The stretch of this �ber is

λ = d`
d`0

= d`
dx

=
√

(1 + u′)2 + (w ′)2;

• The same �gure also reveals the following geometric quantities:

tanφ =
w ′

1 + u′
; sinφ =

w ′

λ
; cosφ =

1 + u′

λ
(30)

• The stretch of a longitudinal �ber passing through P is

λP =
√

(1 + u′P)2 + (w ′P)2 =
√

(1 + u′ − zφ′ cosφ)2 + (w ′ − zφ′ sinφ)2.

Using Eqs. 28 - 30 and after some manipulations, we obtain:

λP =
√

(1 + u′P)2 + (w ′P)2 =
√

(1 + u′ − zφ′ cosφ)2 + (w ′ − zφ′ sinφ)2 =

= λ− zφ′ (31)
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A discussion regarding strain

• The above expressions are exact. Now, we see some simpli�cations;

• We expand the expression for λ neglecting the terms of order equal or higher
than linear in the quadratic strain, which is a good approximation for small
strain conditions. This expansion leads to:

λ =
√
1 + 2εq ≈ 1 + εq = 1 + u′ +

1

2
(u′)2 +

1

2
(w ′)2 (32)

• The linear strain is ε = λ− 1. On the other hand, the quadratic strain is
εq = 1

2
(λ2 − 1) = u′ + 1

2
(u′)2 + 1

2
(w ′)2. Using Eq. 32 it is possible to conclude

that for small strain, ε ≈ εq = u′ + 1
2

(u′)2 + 1
2

(w ′)2.

• The procedure of expanding λ in terms of εq is necessary to avoid modelling
mistakes
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A discussion regarding strain

• The following graphics show the quality of the approximation ε = εq as function
of εq .
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A discussion regarding strain

• Aiming at exemplifying the di�erence of expanding λ in terms of
displacements rather than strain, consider the expansion correct up
to second order in the displacements:

λ ≈ 1 + u′ +
1

2
(w ′)2 (33)

• For a rigid body rotation of the structure, as in the �gure, one
obtains:

u′ = cos θ − 1

w ′ = sin θ
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A discussion regarding strain

• Equation 32 leads to λ = 1 while Eq. 33 leads to λ = 1 + (cos θ − 1 + 1
2

sin2 θ),
the latter containing an inherent mistake since for a rigid body motion λ = 1
and ε = 0.
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A discussion regarding strain

• The expressions of Eqs. 32 and 33 can be taken as equivalent when and only
when H2 holds. This is because small strain can occur even in the presence of
large displacements.

• Attaining to the example at hand, where (u′)2 may be taken out as a term of
higher order, the condition for non-extensible beam reads:
ε = u′ + 1

2
(w ′)2 = 0↔ u = −

∫ x
0

1
2

(w ′)2dx . In terms of variation, the
inextensibility condition reads δu′ = −w ′δw ′.

• For problems were the displacements are large, ε = u′ + 1
2

(u′)2 + 1
2

(w ′)2 = 0.
In this case, the following expressions can be obtained:

1 + u′ =
√
1− (w ′)2 , u > −x

1 + u′ = −
√
1− (w ′)2 , u < −x
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Example: Tensioned straight cable

x,u

z,w

qz(x,t)=qz

qx(x,t)=qx

L
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Example: Tensioned straight cable

• We will obtain the equation for the vibrations of an extensible and tensioned
straight cable of mass per unit length µ and axial sti�ness EA;

• Hypotheses: H2, H3 and H4. It is also considered that there is no static term in
qz ;

• Asides the axial loading, it is considered that a pretension T exists. The strain

measurement is then ε = u′ + 1
2

(w ′)2 + T
EA

;

T =

∫ L

0

1

2
µ
(
u̇2 + ẇ2

)
dx →

∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

µ (üδu + ẅδw) dxdt

(34)

U =

∫∫∫
∀

Eε2

2
d∀ →

δU =

∫ L

0

∫∫
A
E

(
u′ +

1

2
(w ′)2 +

T

EA

)(
δu′ + w ′δw ′

)
dAdx =

=

∫ L

0

(
EAεδu′ + EAεw ′δw ′

)
dx (35)
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Example: Tensioned straight cable

• Applying integration by parts in the equation for U and recalling the essential
boundary conditions δw0 = δwL = δu0 = δuL = 0:

δU = −
∫ L

0

[
EA

(
u′ +

1

2
(w ′)2 +

T

EA

)]′
δudx

−
∫ L

0

[
EAw ′

(
u′ +

1

2
(w ′)2 +

T

EA

)]′
δwdx (36)

• Virtual work of the non-conservative forces:

δWnc =

∫ L

0

(qxδu + qzδw)dx (37)
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Example: Tensioned straight cable

• Extended Hamilton's principle∫ t2

t1

(δT − δU + δWnc )dt = 0→

∫ t2

t1

∫ L

0

(
−µü +

[
EA

(
u′ +

1

2
(w ′)2 +

T

EA

)]′
+ qx

)
δudxdt

+

∫ t2

t1

∫ L

0

(
−µẅ +

[
EAw ′

(
u′ +

1

2
(w ′)2 +

T

EA

)]′
+ qz

)
δwdxdt = 0 (38)

• Equations of motion

µü − EAu′′ − EAw ′w ′′ − qx = 0 (39)

µẅ − Tw ′′ − EA
(
w ′u′

)′ − 3EA

2

(
w ′
)2

w ′′ − qz = 0 (40)
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Example: Tensioned straight cable

• There may be terms in qx , here called qx,s , that are independent of time, such
as the self weight of a vertical string. Those terms contribute to the linear
geometrical sti�ness of the transversal vibrations. In order to account for it, let
us consider u(x , t) = us(x) + ud (x , t). The static equilibrium requires:

−EAu′′s − qx,s = 0 (41)

• While the equation for transversal motion reads:

µẅ − Tw ′′ − EA
(
w ′u′s

)′ − EA
(
w ′u′d

)′ − 3EA

2

(
w ′
)2

w ′′ − qz = 0 (42)

• Notice now that T + EAu′s = N = N(x) is the static normal force and
Tw ′′ = (Tw ′)′. Then the equation for transversal motion may be written as

µẅ −
(
Nw ′

)′ − EA
(
w ′u′d

)′ − 3EA

2

(
w ′
)2

w ′′ − qz = 0 (43)
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Example: Tensioned straight cable

• Now the linear equation for transversal vibrations may be properly written as

µẅ −
(
Nw ′

)′
= qz (44)

• For a vertical cable, qx = −γ (γ is the weight per unit length) and
N = N(x) = T̄ + γ(x − L

2
)→ N′ = γ

µẅ − (T̄ + γ(x −
L

2
))w ′′ − γw ′ = 0 (45)

• For a horizontal cable, N = N(x) = T̄

µẅ − T̄w ′′ = 0 (46)
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Example: Tensioned non-extensible beam

z,w

x,u

qz(x,t)=qz

qx(x,t)=qx

L

T
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Example: Tensioned non-extensible beam

• We will obtain the equation for the transverse vibration of an non-nextensible
and tensioned prismatic beam of mass per unit length µ and bending sti�ness
EI ;

• Hypotheses: H1, H2, H3 and H4. Strain measurement
εP = u′ + 1

2
(w ′)2 − zw ′′ = ε− zw ′′ (ε = u′ + 1

2
(w ′)2 is the strain of the beam

axis);

• Inextensiblity condition: u′ = − 1
2

(w ′)2 → u̇′ = −w ′ẇ ′ → u̇ = −
∫ x
0 w ′ẇ ′ds

• Kinetic energy: T =
∫ L
0

1
2

(u̇2 + ẇ2)dx . For a linear mathematical model, T
must not contain non-linearities of order higher than quadratic. Hence

T =

∫ L

0

1

2
µẇ2dx →

∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

µẅδwdxdt (47)

U =

∫∫∫
∀

Eε2P
2

d∀ →

δU =

∫ L

0

∫∫
A
E

(
u′ +

1

2
(w ′)2 − zw ′′

)
(δu′ + w ′δw ′ − zδw ′′)dAdx =

=

∫ L

0

(EAεδu′ + EAεw ′δw ′ + EIw ′′δw ′′)dx (48)
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Example: Tensioned non-extensible beam

• Inextensibility condition δu′ = −w ′δw ′. Using this result in the above equation
for U and recalling the essential boundary conditions δw0 = δwL = 0:

δU =

∫ L

0

EIw ′′δw ′′dx = [EIw ′′δw ′]L0 − [EIw ′′′δw ]L0︸ ︷︷ ︸
0

+

∫ L

0

EIw ′′′′δwdx (49)

• Virtual work of the non-conservative forces:

δWnc =

∫ L

0

(qxδu + qzδw)dx + T̄δuL (50)

• �Static normal force�: N = N(x) = T0 −
∫ x
0 qxds = T̄ +

∫ L
0 qxds −

∫ x
0 qxds.

Notice also that
∫ L
0 δu

′dx = δuL.

• Using the above result and the integration by parts

∫ L

0

Nδu′dx =

∫ L

0

[
T̄ +

∫ L

0

qxdx

]
δu′dx −

∫ L

0

[∫ x

0

qxds

]
δu′dx =

=

[
T̄ +

∫ L

0

qxdx

]
δuL −

([∫ x

0

qxds

]
δu

)L

0

+

∫ L

0

qxδudx = T̄δuL +

∫ L

0

qxδudx

(51)
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Example: Tensioned non-extensible beam

• By comparing Eqs. 50 and 51 and using the inextensibility condition
δu′ = −w ′δw ′, we have:

δWnc =

∫ L

0

qzδwdx +

∫ L

0

Nδu′dx =

∫ L

0

qzδwdx −
∫ L

0

Nw ′δw ′dx =

= (Nw ′δw)L0︸ ︷︷ ︸
0

+

∫ L

0

(qz + (Nw ′)′)δwdx (52)

• Extended Hamilton' principle

∫ t2

t1

(δT − δU + δWnc )dt = 0→
∫ t2

t1

∫ L

0

(−µẅ − EIw ′′′′ + (Nw ′)′ + qz )δwdxdt+∫ t2

t1

(EIw ′′0 δw
′
0 − EIw ′′L δw

′
L)dt = 0 (53)
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Example: Tensioned non-extensible beam

• Since the virtual displacement �eld is arbitrary, Eq. 54 governs the transverse
dynamics of the inextensible prismatic beam and Eqs. 55 and 56 give the
essential boundary conditions (null curvature at the supports).

µẅ + EIw ′′′′ − (Nw ′)′ = qz (54)

w ′′0 = 0 (55)

w ′′L = 0 (56)

• For a vertical beam, qx = −γ (γ is the weight per unit length) and
N = N(x) = T̄ + γ(x − L)→ N′ = γ

µẅ + EIw ′′′′ − (T̄ + γ(x − L))w ′′ − γw ′ = 0 (57)
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Example: Beam on elastic (Winkler) foundation

z,w

x

qz(x,t)=qz

L

k
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Example: Beam on elastic (Winkler) foundation

Transverse vibration of a pinned-pinned beam on elastic (Winkler) foundation.
Prismatic beam of mass per unit length µ and bending sti�ness EI ;

• Essential boundary conditions: δw0 = δwL = 0;

• Terms associated with kinetic energy:

T =

∫ L

0

1

2
µẇ2dx (58)∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

µẅδwdxdt (59)

• Terms associated with potential energy:

U =

∫∫∫
∀

1

2
Eε2Pd∀+

∫ L

0

1

2
kw2dx (60)

δU =

∫∫∫
∀
EεPδεPd∀+

∫ L

0

kwδwdx =

∫ L

0

EIw ′′δw ′′dx +

∫ L

0

kwδwdx =

= (EIw ′′δw ′)L0 − (EIw ′′′δw)L0︸ ︷︷ ︸
0,δw0=δwL=0

+

∫ L

0

(EIw ′′′′ + kw)δwdx (61)
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Example: Beam on elastic (Winkler) foundation

• Virtual work of the non-conservative force:

δWnc =

∫ L

0

qzδwdx (62)

• Using extended Hamilton's principle:

µẅ + kw + EIw ′′′′ = qz (63)

w ′′0 = w ′′L = 0 (64)

• Equation 63 is the equation of motion and Eq. 64 indicates the natural
boundary conditions at x = 0 and x = L.
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Example: Beam with a lumped-mass at midspan

z1,w1

x1

L

M

L/2

x2

z2,w2
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Example: Beam with a lumped-mass at midspan

• Focus on transverse vibrations of a prismatic beam with µ and EI known;

• Essential boundary conditions: w10 = w2L/2 = 0;w1L/2 = w20 and

w ′1L/2
= w ′20 . In terms of virtual displacements:

δw10 = δw2L/2 = 0; δw1L/2 = δw20 ; δw
′
1L/2

= δw ′20 ;

• Terms associated with kinetic energy:

T =

∫ L/2

0

1

2
µẇ1

2dx1 +

∫ L/2

0

1

2
µẇ2

2dx2 +
1

2
Mẇ2

1L/2
(65)∫ t2

t1

δT dt = −
∫ t2

t1

∫ L/2

0

µẅ1L/2δw1dx1dt −
∫ t2

t1

∫ L/2

0

µẅ2L/2δw2dx2dt−

−
∫ t2

t1

Mẅ1L/2δw1L/2dt (66)

• Terms associated with potential energy:

U =

∫∫
∀

1

2
Eε2Pd∀ (67)

δU =

∫∫∫
∀
EεPδεPd∀ =

∫ L/2

0

EIw ′′1 δw
′′
1 dx1 +

∫ L/2

0

EIw ′′2 δw
′′
2 dx2 (68)
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Example: Beam with a lumped-mass at midspan

• Integrating by parts twice and using the essential boundary conditions:

δU = (EIw ′′1 δw
′
1)L0 + (EIw ′′2 δw

′
2)L0 − EIw ′′′1L/2δw1L/2 + EIw ′′′2 δw20+

+

∫ L/2

0

EIw ′′′′1 δw1dx1 +

∫ L/2

0

EIw ′′′′2 δw2dx2 =

= (EIw ′′1L/2 − EIw ′′20 )δw ′1L/2 − EIw ′′10δw
′
10

+ EIw ′′2L/2δw
′
2L/2
−

− (EIw ′′′1L/2 − EIw ′′′2 )δw1L/2 +

∫ L/2

0

EIw ′′′′1 δw1dx1 +

∫ L/2

0

EIw ′′′′2 δw2dx2

(69)

• δWnc = 0;

• Using EHP, we have the following equations of motion:

µẅ1 + EIw ′′′′1 = 0 (70)

µẅ2 + EIw ′′′′2 = 0 (71)
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Example: Beam with a lumped-mass at midspan

• The use of EHP also leads to the natural boundary conditions:

w ′′1L/2 = w ′′20 (72)

w ′′10 = 0 (73)

w ′′2L/2 = 0 (74)

Mẅ1L/2 − EIw ′′′1L/2 + EIw ′′′20 = 0 (75)

• Equation 72: Curvature is continuous at midspan;

• Equations 73 and 74: Curvature is null at the supports;

• Second Newton's law applied to the mass:

Mẅ1L/2 = V+ − V− = −EIw ′′′20 − (−EIw ′′′1L/2 ) (76)
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Example: Beam with a lumped-mass at midspan

z1,w1

x1
M x2

z2,w2
V-

V- V+

V+
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Modal analysis

• Now, we determine the natural modes and frequencies associated with the
transverse direction of the pinned-pinned prismatic beam:

• Homogeneous equation of motion ẅ + EI
µ
w ′′′′ = 0. The boundary conditions

are w0 = wL = 0 and w ′′0 = w ′′L = 0;

• Separation of variables: w = A(t)ψ(x) = Aψ. Substituting into the equation of
motion:

Äψ +
EI

µ
Aψ′′′′ = 0↔

Ä

A
+

EI

µ

ψ′′′′

ψ
= 0 (77)

• Equation 77 holds if there is a real constant ω2 that leads to:

Ä

A
= −

EI

µ

ψ′′′′

ψ
= −ω2 (78)

• From Eq. 78, we have Ä + ω2A = 0→ A(t) = ρ cos(ωt − θ), ρ and θ depending
on the initial conditions. ω is a natural frequency of the transverse vibration of
the beam.
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Modal analysis

• Also from Eq. 78 and de�ning β4 = µω2

EI
, we have ψ′′′′ = β4ψ.

• The above EDO has solution of form ψ(x) = eλx . Using this de�nition, we have
λ4eλx = β4eλx → λ = ±β;±iβ.

• The general solution of the �spatial� ODE is:

ψ(x) = a1e
iβx + a2e

−iβx + a3e
βx + a4e

−βx (79)

with a1, a2, a3 and a4 possibly complex constants.

• Since ψ(x) is a real function, we must have a2 = a∗1 and a3 and a4 real-valued
constants. In addition, we recall that

cosβx = e iβx+e−iβx

2
, i sinβx = e iβx−e−iβx

2
, coshβx = eβx+e−βx

2
and

sinhβx = eβx−e−βx

2
→ e iβx = cosβx + i sinβx , e−iβx =

cosβx − i sinβx , eβx = coshβx + sinhβx , e−βx = coshβx − sinhβx

• The above de�nitions lead to:

ψ(x) = (a1 + a2) cosβx + i(a1 − a2) sinβx + (a3 + a4) coshβx + (a3 − a4) sinhβx
(80)
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Modal analysis

• Since a2 = a∗1 and a3 and a4 are real constants, we rewrite ψ(x) in terms of real
constants c1, c2, c3 and c4 as

ψ(x) = c1 cosβx + c2 sinβx + c3 coshβx + c4 sinhβx (81)

• Constants c1, c2, c3 and c4 are determined by imposing the boundary conditions;

• For a pinned-pinned beam: w0 = wL = 0→ ψ(0) = ψ(L) = 0,
w ′′0 = w ′′L = 0→ ψ′′(0) = ψ′′(L) = 0. In matrix form, these equations read:


1 0 1 0

cosβL sinβL coshβL sinhβL
−1 0 1 0

− cosβL − sinβL coshβL sinhβL




c1
c2
c3
c4

 =


0
0
0
0

 (82)
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Modal analysis

• Non-trivial solutions of Eq. 82 are obtained if

∣∣∣∣∣∣∣∣
1 0 1 0

cosβL sinβL coshβL sinhβL
−1 0 1 0

− cosβL −sinβL coshβL sinhβL

∣∣∣∣∣∣∣∣ =

= 4 sinh(βL) sin(βL) = 0→ βnL = nπ, n = 1, 2, 3... (83)

• Recalling that β4 = µω2

EI
, the undamped natural frequencies are

ωn = β2n

√
EI
µ

= (nπ)2

L2

√
EI
µ
, n = 1, 2, 3, ...

• By substituting the values of βn into Eq. 82, we �nd that c1 = c3 = c4 = 0 and
c2 6= 0. Taking c2 = 1, the natural modes of the pinned-pinned beam are

ψn(x) = sin
(nπ

L
x
)

(84)
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Example: Beam with a lumped-mass at midspan

z1,w1

x1

L

M

L/2

x2

z2,w2
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Example: Beam with a lumped-mass at midspan

• Now, we will �nd the natural frequency of the beam �tted with a mass at
midspan;

• For each part of the beam, the modal functions are given by (0 ≤ x1 ≤ L/2 and
0 ≤ x2 ≤ L/2):

ψ(1)(x1) = c1 cosβ(1)x1 + c2 sinβ(1)x1 + c3 coshβ(1)x1 + c4 sinhβ(1)x1 (85)

ψ(2)(x2) = d1 cosβ(2)x2 + d2 sinβ(2)x2 + d3 coshβ(2)x2 + d4 sinhβ(2)x2 (86)

• β4
(1)

=
µω2(1)

EI
and β4

(2)
=

µω2(2)

EI
. Since for a given natural frequency, the parts at

left and at right of midpsan oscillate with the same frequency, β = β(1) = β(2),

with β4 = µω2

EI
;

• We determine c1, . . . , c4 and d1, . . . , d4 from eight boundary conditions.
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Example: Beam with a lumped-mass at midspan

• The boundary conditions are (already obtained):

ψ(1)(0) = 0 (87)

ψ(2)(L/2) = 0 (88)

ψ(1)(L/2)− ψ(2)(0) = 0 (89)

ψ′(1)(L/2)− ψ′(2)(0) = 0 (90)

ψ′′(1)(0) = 0 (91)

ψ′′(2)(L/2) = 0 (92)

ψ′′(1)(L/2)− ψ′′(2)(0) = 0 (93)

Mω2ψ(1)(L/2) + EIψ′′′(2)(0)− EIψ′′′(1)(0) = 0 (94)

• The above boundary conditions can be written in the form of a matrix equation

A


c1
...
d4

 =


0
...
0

 (95)
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Example: Beam with a lumped-mass at midspan

• The existence of non-trivial solutions implies that det(A) = 0 (transcedental
equation). This equation leads to the di�erent values of β, each of them
associated with the corresponding natural frequencies ω1, ω2 . . ..

• �Manually� solving this determinant is a cumbersome task.
Symbolic/computational algebra are of value;

• A numerical example: Square cross-section of side 100 mm; Young's modulus
E = 200 GPa; speci�c mass ρ = 8000 kg/m3; length: L = 4 m, lumped-mass

M = 500 kg → µ = 80 kg/m and EI = 5×106
3

Nm2.
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Example: Beam with a lumped-mass at midspan

0 2 4 6 8 10

-5

0

5

β

• From the above �gure, β1 = 0.549944 1/m and, consequently,

ω1 = β21

√
EI
µ

= 43.65 rad/s;

• For the case without the mass: ω1 = π2

L2

√
EI
µ

= 89.03 rad/s
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Orthogonality condition

• We saw that ψn(x)′′′′ = β4nψn(x), n integer and β4n =
µω2n
EI

• Consider two di�erent modes n and k.

• It is possible to write the following identities:

ψ′′′′n (x) =
µω2n
EI

ψn(x)→
∫ L

0

ψk (x)ψ′′′′n (x)dx =
µω2n
EI

∫ L

0

ψn(x)ψk (x)dx (96)

ψ′′′′k (x) =
µω2k
EI

ψk (x)→
∫ L

0

ψn(x)ψ′′′′k (x)dx =
µω2k
EI

∫ L

0

ψk (x)ψn(x)dx (97)

• Integrating by parts twice, we have:

[
ψkψ

′′′
n

]L
0
−
[
ψ′kψ

′′
n

]L
0

+

∫ L

0

ψ′′n (x)ψ′′k (x)dx =
µω2n
EI

∫ L

0

ψn(x)ψk (x)dx (98)

[
ψnψ

′′′
k

]L
0
−
[
ψ′nψ

′′
k

]L
0

+

∫ L

0

ψ′′k (x)ψ′′n (x)dx =
µω2k
EI

∫ L

0

ψk (x)ψn(x)dx (99)

• At a free-end: ψ′′′n = ψ′′n = 0; At a support: ψn = ψ′′n = 0; At a clamp
ψn = ψ′n = 0
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Orthogonality condition

• The application of the above conditions to Eqs. 98 and 99 yields:

µ(ω2n − ω2k )

EI

∫ L

0

ψk (x)ψn(x)dx = 0 (100)

• Since k 6= n, ωk 6= ωn. In this scenario, Eq. 100 holds if:

∫ L

0

ψk (x)ψn(x)dx = 0 (101)

• Equation 101 indicates the ortogonality of the vibration modes.
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Dirac delta δD

• The Dirac delta function satis�es δD(x − x0) = 0 for x 6= x0 and the following
identify: ∫ ∞

−∞
δD(x − x0)dx = 1 (102)

• Example: f (x) = limε→0
1
2ε
, x0 − ε ≤ x ≤ x0 + ε and f (x) = 0 outside this

interval.

xx0x0-� x0+�

1/2�

• The above �gure helps understanding the important property (�ltering property):∫ ∞
−∞

g(x)δD(x − x0)dx = g(x0) (103)
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Dirac delta δD

• The Dirac delta function is usefull for representing lumped properties such as,
for example, a point mass m placed at the tip of a beam of length L and mass
per unit length µ;

• In this case, the equivalent mass per unit length is µeq = µ+ mδD(x − L);

• Notice that
∫ L
0 µeqdx =

∫ L
0 µdx + m

∫ L+

0 δD(x − L)dx =
∫ L
0 µdx + m,

corresponding to the total mass of the system.
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Heaviside function

1

x

H(x-x0)

x0

H(x − x0) =

{
0 , x < x0

1 , x > x0
(104)

• It is easy to note the following relations:

δD(x − x0) =
d

dx
H(x − x0) (105)∫ x

−∞
δD(s − x0)ds = H(x − x0) (106)

h(x) =

∫ x

−∞
H(s − x0)g(s) =

= H(x − x0)

∫ x

x0

g(s)ds (107)

• The Heaviside function can be used for stepped
beams (i.e., the properties of the beam are
constant during certain intervals).
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Galerkin's method - a simple example

v1
v2

v3

v~

�
v
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Galerkin's method - a simple example

• This approach follows the enlightening discussions made with MSc Vítor Maciel
and supported by his notes;

• Firstly, we consider the very simple linear algebra problem: What is the best
approximation for the vector v pertaining to the plane generated by the
orthonormal vectors v1 and v2;

• We de�ne v = b1v1 + b2v2 + b3v3 and the desired approximation vector
ṽ = a1v1 + a2v2. We also de�ne the error between the real vector and the
desired approximation as ε = v − ṽ .

• From the above �gure, it is clear that the error has minimum norm if it is
orthogonal to the plane generated by v1 and v2;

• Mathematically:
ε.v1 = 0→ (v − ṽ).v1 = 0↔ v .v1 − ṽ .v1 = 0↔ b1 − a1 = 0↔ a1 = b1;

• Analogously: a2 = b2.
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Galerkin's method & reduced-order models (ROMs)

• Now, we will see how the Galerkin's method can be applied to the vibration of
beams. Here, we consider the transverse dynamics of a pinned-pinned prismatic
beam, governed by µẅ + EIw ′′′′ − qz = 0;

• We consider Nm modes in the expansion (approximation):

w̃ = w̃(x , t) =
Nm∑
k=1

ψk (x)Ak (t)→ ¨̃w =
Nm∑
k=1

ψk (x)Äk (t) and

w̃ ′′′′ =
Nm∑
k=1

ψ′′′′k (x)Ak (t).

• The inner product between two functions f (x) and g(x) is
∫ L
0 f (x)g(x)dx . If we

use w̃ in the equation of motion, the RHS is no longer zero, but a certain error ε.

• Minimum error is achieved if ε is orthogonal to the subspace spanned by
ψ1(x), ψ2(x), . . . , ψk (x).

• Using the approximation w̃ and the de�nition of inner product, we have:

∫ L

0

 Nm∑
k=1

(
µψk (x)Äk (t) + EIψ′′′′k (x)Ak (t)

)
− qz

ψm(x)dx = 0,m = 1, 2, . . . ,Nm

(108)
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Galerkin's method & reduced-order models (ROMs)

• For the pinned-pinned prismatic beam, the orthogonality condition implies that∫ L
0 ψk (x)ψm(x)dx = 0 and

∫ L
0 ψ
′′′′
k (x)ψm(x)dx = 0 for k 6= m;

• In this scenario, we have:(∫ L

0

µψ2
k (x)dx

)
︸ ︷︷ ︸

mψ,k

Äk (t) +

(∫ L

0

EIψ′′′′k (x)ψk (x)dx

)
︸ ︷︷ ︸

kψ,k

Ak (t) =

∫ L

0

qzψk (x)dx︸ ︷︷ ︸
pψ,k (t)

(109)

• The PDE has been transformed into a set of uncoupled ODEs with the general
form mψ,k Äk (t) + kψ,kAk (t) = pψ,k (t), Ak (t) is the modal-amplitude
time-history associated with the k-th mode. Modal oscillator, which can be
solved with techniques already saw for 1-dof systems;

• mψ,k is the modal mass, kψ,k is the modal sti�ness and pψ,k (t) is the modal

force. The associated natural frequency is ωk =
√

kψ,k/mψ,k .
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Galerkin's method & reduced-order models (ROMs)

• Once the time-histories Ak (t) are numerically or analytically obtained,

approximate displacement is w̃(x , t) =
Nm∑
k=1

ψk (x)Ak (t);

• The time-history of bending moment can be obtained as

M(x , t) = −EI w̃ ′′ = −EI
Nm∑
k=1

ψ′′k (x)Ak (t);

• If the orthogonality condition is not satis�ed, the ROM will be given by a set of
coupled ODEs.
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Galerkin's method & reduced-order models (ROMs)

• A note: If the mathematical model is given by a set of ODEs, as the case of the
dynamic response of a discrete system, the equation of motion is given by

MÜ + CU̇ +KU = P(t) (110)

• Suppose that we are interested in obtaining a two dof approximation for Eq.
110. In this case, we assume

U = {φm φk}
{

ak (t)
am(t)

}
= φ̃ã(t) (111)

• Substituting Eq. 111 into Eq. 110, we have:

Mφ̃¨̃a+ C φ̃ ˙̃a+K φ̃ã − P(t) = ε (112)

• The error ε is minimum if

(φ̃
T
Mφ̃)¨̃a+ (φ̃

T
C φ̃) ˙̃a+ (φ̃

T
K φ̃)ã = φ̃

T
P(t) (113)
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Galerkin's method & reduced-order models (ROMs)

• For linear systems, φk and φm can be taken as two vibration modes.

• For non-linear systems φk and φm can be, for example, two modes of the
linearized problem.

• In the case of vibrations of beams with a lumped mass or spring, we can obtain
a ROM by applying the Galerkin's method to the equation of motion written
with the singularity functions and considering a projection set composed of
functions that satisfy the essential boundary conditions.
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Beam with lumped mass and spring at midspan

z,w

x

L

M

L/2k

• The beam is prismatic with mass per unit length µ and bending sti�ness EI .
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Beam with lumped mass and spring at midspan

• The lumped mass and spring can be considered by using Dirac delta function in
the form of equivalent mass per unit length and foundation sti�ness (also per

unit length) as:

µeq = µ+ MδD(x − L/2) (114)

keq = kδD(x − L/2) (115)

(116)

• Terms associated with kinetic energy:

T =

∫ L

0

µeqẇ
2dx (117)∫ t2

t1

δT dt = −
∫ t2

t1

∫ L

0

µeqẅδwdxdt (118)

• Terms associated with potential energy:

U =

∫∫∫
∀

1

2
EεPd∀+

∫ L

0

1

2
keqw

2dx (119)
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Beam with lumped mass and spring at midspan

• After integrating by parts twice:

δU = (EIw ′′δw ′)L0 +

∫ L

0

(EIw ′′′′ + keqw)δwdx (120)

• The use of EHP lead to the equation of motion (Eq. 121) and the natural
boundary conditions (Eq. 122):

µeqẅ + EIw ′′′′ + keqw = 0 (121)

w ′′0 = w ′′L = 0 (122)

• Assume that we are interested in obtaining a ROM for the dynamics of the
system in the �rst vibration mode (w(x , t) = A1(t)ψ1(x) = Aψ). In this case,
we can use as a projection function in the Galerkin's method the vibration mode
of a pinned-pinned beam without lumped mass and spring (ψ(x) = sin(πx/L)).

∫ L

0

µeqψ(x)2dxÄ +

∫ L

0

(EIψ(x)′′′′ + keqψ(x))ψ(x)dxA = 0 (123)
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Beam with lumped mass and spring at midspan

• It is possible to prove that:

∫ L

0

ψ2(x)dx =
L

2
(124)∫ L

0

ψ(x)ψ′′′′(x)dx =
π4

2L3
(125)

• Using the above integrals, we have:

∫ L

0

µeqψ
2(x)dx = mψ =

µL

2
+ M

∫ L

0

ψ2(x)δD(x − L/2)dx =

= M

(
1 +

µL

2M

)
(126)∫ L

0

(EIψ′′′′(x) + keqψ(x))ψ(x)dx = kψ =
EIπ4

2L3
+

∫ L

0

keqψ(x)2dx =

= 48.7
EI

L3
+ k (127)
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Beam with lumped mass and spring at midspan

• An approximate expression for the �rst natural frequency is

ω1 =

√
kψ

mψ
=

√√√√√ 48.7 EI
L3

+ k

M
(
1 + µL

2M

) (128)

• Physical interpretation: From strength of the materials, the vertical
displacement of the midspan due to a concentrated load P is ∆ = PL3/48EI .

• The contribution of the pinned-pinned beam to the equivalent sti�ness is
kbeam = P/∆ = 48 EI

L3
;

• As the spring is at the midspan and is parallel association, an analysis based on
strength of materials leads to keq = kbeam + k = 48 EI

L3
+ k;

• If the mass of the beam is negligible when compared to the lumped mass,
mψ ≈ M and the natural frequency, if computed with the sti�ness obtained
from a static analysis reads the value already discussed in PEF5916

ω1 =

√
48 EI

L3
+ k

M
(129)

• The modal mass is a way to consider the distributed mass of the beam in the
1-dof oscillator;
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Beam with lumped mass and spring at midspan

• Using the same numerical values employed in the example of the modal analysis
of the beam with a lumped mass at midspan, we have, for k = 0,

ω1 =

√
kψ

mψ
=

√√√√√ 48.7 EI
L3

+ k

M
(
1 + µL

2M

) = 43.52 rad/s (130)

• This approximated result is close to the analytical one ω1 = 43.65 rad/s.
Notice, however, that the ROM does not allow obtaining the vibration modes.

• The books written by Rao (2009) and Blevins (2001) bring expressions for the
natural modes of beams with di�erent boundary conditions.
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