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Objectives and references Engenhara Ci

® To introduce to basic aspects related to the dynamics of continuous systems;
® Focus of the classes: Vibrations of beams;

® Examples of references

0 Blevins, R., 2001. Formulas for natural frequency and mode shape.
Krieger Publishing Company.

@® Rao, S. 2009, Mechanical vibrations. Pearson Prentice Hall.

© Lanczos, C., 1986. The variational principles of mechanics. Dover
publications.

O Meirovitch, L., 2003. Methods of Analytical Dynamics. Dover
publications.

@ Thomson, W.T. & Dahleh, M.D., 2005. Theory of vibration with
application. Pearson education.
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Nomenclature and hypotheses

Nomenclature Hypotheses
® Transverse and longitudinal ® (;: Bernoulli-Euler beam model;
displacements of the centerline: ¢ H: Small displacements and

w = w(x,t) and u = u(x,t),

\ rotations;
respectively;

. ® Hs: Linear-elastic material behavior;
® Transverse and longitudinal loads:

Gz = qz(x, t) and gx = gx(x, t),
respectively;
5} V) _ .

* 50O=050=0);

® ()p: stands for a quantity calculated
at a point P pertaining to the
cross-section;

® ()= =()(L*, t), L* being a certain
point along the beam axis;

® H,: Planar vibrations
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Outline 2

© Vibration of beams
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Investigated problem

q.(x,t)=q,
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Kinematic hypothesis

X u=u(x,t);
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Infinitesimal element
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A simple example: Vibrations of a prismatic beam Engenharia Civi

The beam has mass per unit length p, bending stiffness El and is subjected to
transverse and longitudinal loads g, and gx. The second Newton’s law applied to the
differential element reads (see figure above):

> Fe = pdxii — =N + qedx + (N + N'dx) = pdxii <> pii — N' = gx (1)

D O F = pdx — —V + gedx + (V + V'dx) = pdsw <> piv — V' =q.  (2)

Differential equations of equilibrium and generalized constitutive equations:

N = EAc = EAY/ ©)
M = —Elx = —Elw" (4)
M =V (5)

Using Eqgs. 3 - 5in Egs. 1 and 2, one obtains the equations of longitudinal and
transverse motion of the prismatic beam (Egs. 6 and 7, respectively).

pii — EAU" = qx (6)
pw + Elw'"" = q, (7)
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Boundary conditions

® Vibrations of beams are governed by partial differential equations of second
order (longitudinal vibrations) or fourth order (transverse vibrations).

® In the investigated problem, the boundary conditions are:

W0:WL:U0:0 (8)
wi =w]' =0 (9)
up =0 (10)

Equation 8 indicates null displacements at x = 0 and null transverse
displacements at x = L. Equation 9 indicates null curvature (bending moment)
at the ends of the pinned-pinned beam. Finally, Eq. 10 is associated with the
null normal force at x = L. As it will be seen in this notes, the boundary
conditions define the natural frequencies of the beam.
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Extended Hamilton’s principle applied to beams Engenharia Civi

The equations of motion are now derived using the extended Hamilton's principle.
Using H1 and H>, the longitudinal and transverse displacements of a point P of the
cross-section are:

up =u—zsing =u—zw’ (11)
wp =w —z(1 —cos¢p) = w (12)

The longitudinal strain is ep = up = v’ — zw’’ and its variation is dep = du’ — zéw".
Using Hs, the normal stress is op = Ecp, E being the Young's modulus. Following,
the potential strain energy reads:

u:///v %UpapdV:///V%EE%,dV (13)
U = ///v EepdepdV =

L
= / // E(u'6u — z(u' 6w + w'5u") + 22w 5w )dAdx =
0o JJA

L
:/ (EAU'§U" + Elw" §w'")dx (14)
0
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Extended Hamilton’s principle applied to beams Engenharia Givi

By integrating twice Eq. 14 by parts, one obtains:
U = (EAU'Su) |§ + (Ew"sw’) |§ — (Elw""sw) |§—

L
7/ (EAU" §u — EW'"" §w)dx (15)
0

Notice that if the beam is not prismatic, the derivatives of E/ and EA must be
properly considered in the integration by parts. For the investigated problem, the
essential boundary conditions are dug = dwp = dw; = 0. Hence, Eq. 15 becomes:

U = EAui(SuL + Elwll_'dwz — Elwé'éwé—

L
—/0 (EAU"Su — Elw"" §w)dx (16)
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Extended Hamilton's principle applied to beams G

In this model, the rotary inertia is not considered in the kinetic energy 7, given by:

L
T:/ %u(uz + w?)dx (17)
0

From Eq. 17, we have:

L ta L t2 L t2
0T = / w(ada + wéw)dx — / 0T dt = {/ uL'lEudX:| + |:/ ,uv'véwdx} -
0 ts 0 0

t1 ta
t L
f/ / pu(idu + wow)dxdt (18)
t1 0
Provided du and dw vanish at t; and t>:
t2 t2 L
0T dt = —/ / pu(idu + wow)dxdt (19)
n Jo

t1
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Extended Hamilton’s principle applied to beams Engenharia Civi

For the virtual work of the non-conservative forces, we consider a linear structural
damping model and the external loads. Mathematically, we have:

L
O Whe :/ ((—ct+ gx)du + (—cw + gz)dw)dx (20)
0
The extended Hamilton's principle (EHP) reads:
t2
/ (6T — U + SWpe)dt =0 (21)

t1

Now, we substitute Egs. 15, 19 and 20 into Eq. 21. After some algebraic work, one
obtains:

ta L
/ / ((—pii + EAU" — cii+ qx)du + (—pw — cw — Ew"" + q,)dw)dxdt+
ty 0

t2
/ (—EAu;Su; — Elw]'sw| + Elwg'dwg)dt =0 (22)
ty
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Extended Hamilton’s principle applied to beams Engenharia Civi

As the EHP holds for arbitrary virtual displacements and tj, t», we obtain the
equations of longitudinal and transverse motions (Eqs. 23 and 24, respectively) and
the natural boundary conditions (Eqs. 25-27).

pii + ci — EAu” = qx (23)
pw + cw + Ew'"" = q, (24)
EAuj = N, =0 (25)

Elw}' = M, =0 (26)

Elwg = Mo = 0 (27)

It is clear the agreement between Eqgs. 23- 24 and 6 - 7. The use of Analytical
Mechanics easily allows including the structural damping into the model.
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A discussion regarding strain €r

® The exact displacements of the point P are given by:

up =u—zsing (28)
wp = w — z(1 — cos ¢) (29)

® Let M and N be two points at the centerline of the beam in the reference
configuration. M and N define the infinitesimal fiber of length d¢y = dx.

uy=u(x+dx)=u+u'dx
Wy=W(X+dx)=w+w'dx
M N

W Wy
M' Un
u \
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A discussion regarding strain Engenharia Civi

® From the above figure, the stretched length of this fiber is

dl = dx+/(1 + u’)2 + (w’)2. The stretch of this fiber is

)\:dd—;;:%: 1+ u)2+ (w)?%

® The same figure also reveals the following geometric quantities:
/ / /
w . w 1+ u

tang = ;SINY = —;COS P =
¢=7 n o @

; 30
u’ A A (30)

® The stretch of a longitudinal fiber passing through P is

Ap = /(L4 up)2 + (Wp)2 = /(1 + o' — z¢/ cos $)? + (W' — z¢' sin $)2.

Using Eqgs. 28 - 30 and after some manipulations, we obtain:

o= /(L up)2 + (wh)? = /(1 + u — 26/ cos §)? + (w' — 24/ sin )2 =
=\ — zd)l (31)
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A discussion regarding strain Engenhara Ci

® The above expressions are exact. Now, we see some simplifications;

® We expand the expression for A neglecting the terms of order equal or higher
than linear in the quadratic strain, which is a good approximation for small
strain conditions. This expansion leads to:

1 1
/\:«/1+25qz1+5q:1+ul+§(u')2+§(wl)2 (32)

® The linear strain is e = A — 1. On the other hand, the quadratic strain is
eq=32(\2—1) =u + L(v/)2 + 1(w)2. Using Eq. 32 it is possible to conclude
that for small strain, £ ~ g = v’ + 2 (v')? + (w')2.

® The procedure of expanding A in terms of ¢4 is necessary to avoid modelling
mistakes

POLIs PEF 6000 20/73
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A discussion regarding strain Engenhar

® The following graphics show the quality of the approximation € = ¢4 as function

of gq.
0s 010
005
0o
- — Exact v b0 — Exact
—0.5 — £=g _0.05 — &=£
—0.10
-10 .
YT 00 02 4 -0 “0.05 0.00 0.05 010
& B
20 ab
= 10 ®
P @ a2
2 o g
5 &
2 _ 5
£ g
T -20 = 2 )
H E f
® -3s0f : £E2
2 g
= _40 -1
_s0 .
04 D2 0.0 0z 0.4 ~0.10 —0.05 0.00 0.05 0.10
£ £
21/73

POLIpPE PEF 6000



Programa de Pés-Graduacgéo em

A discussion regarding strain Engenharia Ci

® Aiming at exemplifying the difference of expanding A in terms of
displacements rather than strain, consider the expansion correct up
to second order in the displacements:

1
/\%1+u’+5(w’)2 (33)

® For a rigid body rotation of the structure, as in the figure, one
obtains:

u =cosf —1

w' =sinf

POLIE= PEF 6000 22/73
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A discussion regarding strain Engenharia Civl

* Equation 32 leads to A = 1 while Eq. 33 leads to A =1+ (cos® — 1 + 1 sin20),
the latter containing an inherent mistake since for a rigid body motion A =1
and ¢ = 0.

0.0 : ]

— "Exact™ £

— =i
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A discussion regarding strain

® The expressions of Eqs. 32 and 33 can be taken as equivalent when and only
when H, holds. This is because small strain can occur even in the presence of
large displacements.

® Attaining to the example at hand, where (u’)? may be taken out as a term of
higher order, the condition for non-extensible beam reads:

e=u'+1(W)? =04 u=— [ 3(w)%dx. In terms of variation, the
inextensibility condition reads ju’ = —w/dw’.

® For problems were the displacements are large, e = v’ + %(u’)2 + %(W’)2 =0.
In this case, the following expressions can be obtained:

14 =4/1—(W)2 |, u>—x
1+u =—y/1—-(W)? |, u<-—-x

POLIE PEF 6000 24/73
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Example: Tensioned straight cable A | ngennara il

gz(x,t)=q5

BREREAR

é\ X,u QX(Xt) dx ' '&\

Z,W

Y

POLIs= PEF 6000 25/73



Programa de Pés-Graduacgéo em

Example: Tensioned straight cable Engenharia Civi

® We will obtain the equation for the vibrations of an extensible and tensioned
straight cable of mass per unit length © and axial stiffness EA;

® Hypotheses: Ha, H3 and Hj. It is also considered that there is no static term in
qz,

® Asides the axial loading, it is considered that a pretension T exists. The strain
: 0 10\2 T.
measurement is then ¢ = v’ + 5 (w')* + £;

L
T:/ %u(derv'vz)dxa 5T dt = / / (G6u + wow) dxdt
0 t1

(34)
Ec2
u:/// v
v 2
ou = /L // E(du + 1(W')2 + i (6" + w'sw’) dAdx =
0 A 2 EA
L
= / (EAesu’ + EAew'sw') dx (35)
0
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Example: Tensioned straight cable Engenharia Givi

® Applying integration by parts in the equation for U and recalling the essential
boundary conditions dwp = dw; = dug = du; = 0:

U /L EA ’+1( ’)2+T /(5udx
= - u —(w —
0 2 EA

/L EAW' ’+1( ’)2+T ,(Sd (36)
— w u —(w e wax
0 2 EA
® Virtual work of the non-conservative forces:
L
SWie = / (Gx8u + qzow)dx (37)
0

POLIE= PEF 6000 27/73
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Example: Tensioned straight cable Engenharia Givi

® Extended Hamilton's principle

t2
/(6T—6L{+6Wnc)dt=0—>
t1
N 1 T
P EA ! - AV .
; /0 < pi (”*2("”) +EA)

2 rb 1 T
I EAW’ / = 7\2 o
+-/t;/0<ﬂw+ W<”+2(W)+EA

® Equations of motion

!
+ qx> dudxdt

/
+ qz) dwdxdt =0 (38)

pii — EAu" — EAW'w"” — g, =0 (39)
_ EA
piv — Tw' — EA (w'u') — 3T (W)W’ —g: =0 (40)

POLIE PEF 6000 28/73
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Example: Tensioned straight cable Engenharia Ci

® There may be terms in gx, here called gx,s, that are independent of time, such
as the self weight of a vertical string. Those terms contribute to the linear
geometrical stiffness of the transversal vibrations. In order to account for it, let
us consider u(x,t) = us(x) + ug(x, t). The static equilibrium requires:

—EAu! —gxs=0 (41)
® While the equation for transversal motion reads:

i~ T — EA(w'))' — EA(w') — 22 (W)W’ —q. =0 (82

® Notice now that T + EAu, = N = N(x) is the static normal force and
Tw' = (Tw')’. Then the equation for transversal motion may be written as

i — (Nw')" = EA (w'u)" = == (w)* w" — . = 0 (43)

POLIs PEF 6000 29/73



Programa de Pés-Graduacgéo em

Example: Tensioned straight cable Engenharia Givi

® Now the linear equation for transversal vibrations may be properly written as
uw — (NWI)/ =qz (44)

® For a vertical cable, gx = —v (v is the weight per unit length) and
N = N(x) = T—i—'y(x—é)—) N =~

i — (T4 4(x = 2))w” 9w’ =0 (45)

® For a horizontal cable, N = N(x) = T

pww — Tw” =0 (46)

POLIE PEF 6000 30/73



Example: Tensioned non-extensible beam

q.(x,t)=q,

il
Axr“ ax(x,t)=0, é
Z{W L

-

Y
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Example: Tensioned non-extensible beam Engenharia Civi

® \We will obtain the equation for the transverse vibration of an non-nextensible
and tensioned prismatic beam of mass per unit length u and bending stiffness
El;

® Hypotheses: Hy, Hp, H3 and Hy. Strain measurement
ep=u+31(W)? —zw" =ec—zw" (¢ = v + L(w')? is the strain of the beam
axis);

® Inextensiblity condition: u’ = —%(w’)2 =i =—wW —»i=— [fw'ds

® Kinetic energy: T = fOL %([12 + Ww?)dx. For a linear mathematical model, 7°
must not contain non-linearities of order higher than quadratic. Hence

T = /f,uw dx — 5Tdt / /,uwéwdxdt (47)
t1

U= /// EPdV—>
V
0 A

L
= / (EAesu’ + EAsw'sw’ + Elw" w'")dx (48)
0

POLIE PEF 6000 32/73
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Example: Tensioned non-extensible beam Engenharia Civi

® Inextensibility condition du’ = —w’dw’. Using this result in the above equation
for U and recalling the essential boundary conditions dwp = dw; = 0:

L L
U = / Elw"sw" dx = [Elw" §w']5 — [Ew"' sw] + / Eiw""Swdx  (49)
0 — 0

0

® Virtual work of the non-conservative forces:
L -
SWhpe = / (gxdu+ g-0w)dx + Téu (50)
0

® “Static normal force”: N = N(x) = To — [5 gxds = T+ fOL gxds — [o gxds.
Notice also that fOL Su'dx = duy.

® Using the above result and the integration by parts

L L L L x
/ Néu' dx = / {7_'—5—/ qxdxi| Su’dx —/ |:/ qxdsi| Su'dx =
0 0 0 0 0
_ L x L L B L
= {T—I—/ qxdx} du; — ([/ qxds:| 5u) +/ gxoudx = Tdup +/ gxoudx
0 0 0 0 0

(51)
POLIE PEF 6000 33/73
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Example: Tensioned non-extensible beam Engenharia Civi

® By comparing Eqs. 50 and 51 and using the inextensibility condition
Su’ = —w/Sw’, we have:

L L L L
6W,,C:/ qz6wdx+/ N5u'dx:/ qzéwdx—/ Nw'sw’dx =
0 0 0 0
L
= (Nw'8w)§ +/ (g2 + (Nw"))dwdx (52)
— 0
0

® Extended Hamilton’ principle

t2 ta L
/ (6T — U + 6 Whe)dt =0 — / (—pwr — EW"" + (Nw') + q)Swdxdt+
t1 0

t1

t2
/ (Elwg' dwg — Elw[' dw[)dt =0 (53)

t1
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Example: Tensioned non-extensible beam Engenharia Civi

® Since the virtual displacement field is arbitrary, Eq. 54 governs the transverse
dynamics of the inextensible prismatic beam and Eqs. 55 and 56 give the
essential boundary conditions (null curvature at the supports).

pw + Ew'" — (Nw') = q, (54)

wy =0 (55)

w/ =0 (56)
® For a vertical beam, g« = —v (7 is the weight per unit length) and

N=Nx)=T+y(x—-L)—= N =x

pi + Ew'" — (T +~v(x — L))w" —yw’ =0 (57)

POLIE PEF 6000 35/73



Example: Beam on elastic (Winkler) foundation

d.(x,t)=4q;
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Example: Beam on elastic (Winkler) foundation Engenharia Givil

Transverse vibration of a pinned-pinned beam on elastic (Winkler) foundation.
Prismatic beam of mass per unit length © and bending stiffness El;

® Essential boundary conditions: dwy = dw; = 0;

® Terms associated with kinetic energy:
Ly
T:/ ~puw?dx (58)
0 2

t2 ta L
0T dt = —/ / pwéwdxdt (59)
ty 0

ty

® Terms associated with potential energy:

1 Lq
u:/// fEaf;dV—i-/ ~ kw?dx (60)
v 2 0 2
L L L
6M:/// Espéepdv+/ kW§WdX:/ EIW"&W”dX—i—/ kwdwdx =
v 0 0 0

L
= (EwW"5w')§ — (E""5w)§ +/ (EW'"" + kw)Swdx (61)
—_——— 0

0,5wp=56w; =0

POLIE PEF 6000 37/73
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Example: Beam on elastic (Winkler) foundation Engenharia Givil

® Virtual work of the non-conservative force:
L
IWhe = / gqz0wdx (62)
0

® Using extended Hamilton’s principle:

uw + kw + ElwW'"" = g, (63)
o = wf! =0 (64)

® Equation 63 is the equation of motion and Eq. 64 indicates the natural
boundary conditions at x =0 and x = L.

POLIE PEF 6000 38/73
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Example: Beam with a lumped-mass at midspan Engenharia Civi
® Focus on transverse vibrations of a prismatic beam with p and El known;
® Essential boundary conditions: wy, = wa , = 0; w1, = W2, and
wy = wj_. In terms of virtual displacements:
L/2 o
dwip = 6wz, = 0;0wy, , = dway; (5W{L/2 =dwy;

® Terms associated with kinetic energy:

L/2 1 o L/2 1 . 1 My R
T= /0 Euwl dxy +A E[.LWz dxs + 5 WlL/z (65)
t2 ta pL/2 ta rL/2
6T dt = —/ / l“/'{/lL/zlSWlXm dt — / / /.u}f/gL/zcstddet—
51 ta 0 tp JO
t2
,/ Miin, 5w, , dt (66)
t1

® Terms associated with potential energy:

1
u://VEEe%,dv (67)

L2 L2
U = /// EcpdepdV :/ Elwy' $wy dxq +/ Elws' swy dxa (68)
v 0 0

POLIpPE PEF 6000
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Example: Beam with a lumped-mass at midspan Engenharia Givi

® Integrating by parts twice and using the essential boundary conditions:

U = (Elwy'swy)§ + (Elws swy)s — Elwd”

11, 11
1L/2§W1L/2 + Elwy dway+

L/2 L/2
+/ Elwy"" §wy dxy +/ Elws" Swadxy =
0 0

= (EIW{/L/2 — Elwg, )(SW{L/2 — Elwy, 6wy, + ElWél,_/z‘SWéL/z*

L2 L/2
— (Elwy" . — Elwz”')(SWlL/2 +/ Elwy"" §wr dxq +/ Elwg" swadxa
0 0

1/
(69)
® Wy =0;
® Using EHP, we have the following equations of motion:
uwn + Elwy” =0 (70)
v + Elwy" =0 (71)

POLIE PEF 6000 41/73
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Example: Beam with a lumped-mass at midspan Engenharia Ci

® The use of EHP also leads to the natural boundary conditions:

Wy, = Wi, (72)
wih =0 (73)
W2 =0 (74)
My, — Elwy], + Elwsg =0 (75)

® Equation 72: Curvature is continuous at midspan;
® Equations 73 and 74: Curvature is null at the supports;

® Second Newton’s law applied to the mass:

My, ,, = V¥ = V™ = —Elwg] — (fElw{’L’/z) (76)

POLIE PEF 6000 42/73
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OUtI | ne Engenharia il

O Modal analysis
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Modal ana|ySiS Engenharia Ci

® Now, we determine the natural modes and frequencies associated with the
transverse direction of the pinned-pinned prismatic beam:

® Homogeneous equation of motion w + %w””

= 0. The boundary conditions
are wop = w| = 0 and W(/)/ = WZI = O;

® Separation of variables: w = A(t)y(x) = At. Substituting into the equation of
motion:

.. El A Ely"
A¢+—A¢””:O<—>7+—w =0 (77)
M A w9

® Equation 77 holds if there is a real constant w? that leads to:

A El ¢//N
Z:_; " =—w? (78)

® From Eq. 78, we have A+ w?A =0 — A(t) = pcos(wt — 0), p and 6 depending
on the initial conditions. w is a natural frequency of the transverse vibration of
the beam.
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Modal ana|ySiS Engenharia il

® Also from Eq. 78 and defining 5% = % we have """ = %),

® The above EDO has solution of form v(x) = e**. Using this definition, we have
MM = prer 5 X = £8; £iB.
® The general solution of the “spatial” ODE is:

P(x) = a1 4 aye™ B 4 azeP* 4 a4e7P% (79)

with aj, ap, a3 and a, possibly complex constants.

® Since 1(x) is a real function, we must have a» = aj and a3 and a4 real-valued
constants. In addition, we recall that

iBx —iBx | . iBx_ —ifx Bx, —Bx
cos Bx = %,/smﬁx = &————,coshBx = et~ and
. Bx _g—Bx P .. f
sinh Bx = &——— — e'Px = cos Bx + isin Bx, e Px =

cos Bx — isin Bx, eP* = cosh Bx + sinh Bx, e~ A* = cosh Bx — sinh Bx

® The above definitions lead to:

Y(x) = (a1 + a2) cos Bx + i(a1 — a2) sin Bx + (a3 + aa) cosh Bx + (a3 — aa) sinh Sx
(80)
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® Since a; = a; and a3 and a4 are real constants, we rewrite 1)(x) in terms of real
constants ci1, c2,c3 and ¢4 as

P(x) = 1 cos Bx + ¢ sin Bx + ¢3 cosh Bx + ca sinh Bx (81)
® Constants c1, c2, c3 and ¢ are determined by imposing the boundary conditions;

® For a pinned-pinned beam: wp = w; =0 — ¢(0) = ¢(L) =0,
w =w/ =0 — ¢”(0) =" (L) = 0. In matrix form, these equations read:

1 0 1 0 ca 0

cos BL sinBL  coshBL sinhBL c . 0 (82)
-1 0 1 0 c3 0

—cosfBL —sinBL coshfBL sinhBL [ 0
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® Non-trivial solutions of Eq. 82 are obtained if

1 0 1 0
cos BL sinBL  coshBL sinhfL |
-1 0 1 0 -
—cosBL —sinBL coshBL sinh L
= 4sinh(BL)sin(BL) =0 — BoL =nm,n=1,2,3... (83)

® Recalling that 8% = E, , the undamped natural frequencies are

=42/ ("L’;) Bn=123,..

®* By substltutmg the values of 3, into Eq. 82, we find that ¢; = c3 = ¢4 = 0 and
c # 0. Taking ¢ = 1, the natural modes of the pinned-pinned beam are

Un(x) = sin (75x) (84)
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Y
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® Now, we will find the natural frequency of the beam fitted with a mass at
midspan;

® For each part of the beam, the modal functions are given by (0 < x; < L/2 and
0<x2 <LJ2):

w(l)(Xl) = (1 COS ,B(l)xl + ¢ sin 5(1)X1 + c3 cosh B(I)Xl + ¢4 sinh ﬁ(l)Xl (85)
’Ll)(z)(Xz) = dj cos ﬂ(z)Xz + da sin ﬂ(z)Xz + d3 cosh 6(2)X2 + dj sinh ﬂ(z)X2 (86)

2 2
o ’8611) = % and ,86‘2) = # Since for a given natural frequency, the parts at
left and at right of midpsan oscillate with the same frequency, 8 = B1) = B(2).
2
: 4 _ pw?,
with 8% = B
® \We determine cj,...,cq4 and di,...,ds from eight boundary conditions.
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® The boundary conditions are (already obtained):

P)(0) =0 (87)
P)(L/2) =0 (88)
Yy (L/2) —P2)(0) =0 (89)
Y1) (L/2) = ¥()(0) =0 (90)
$y(©) =0 (91)
Yy (L/2) =0 (92)
Y1) (L/2) — ¥ (0) =0 (93)
M2y (L/2) + ElY(3)(0) — El(1)(0) = 0 (94)

® The above boundary conditions can be written in the form of a matrix equation

c1 0
A : = : (95)
dy 0
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® The existence of non-trivial solutions implies that det(A) = 0 (transcedental
equation). This equation leads to the different values of 3, each of them
associated with the corresponding natural frequencies wy,ws .. ..

® “Manually” solving this determinant is a cumbersome task.
Symbolic/computational algebra are of value;

® A numerical example: Square cross-section of side 100 mm; Young's modulus
E = 200 GPa; specific mass p = 8000 kg/m3; length: L =4 m, lumped-mass
M =500 kg — ;1 = 80 kg/m and Ef = 5x19° Nm2,
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0 2 4 6 8 10

® From the above figure, 81 = 0.549944 1/m and, consequently,
w1 = B2, /%’ = 43.65 rad/s;

® For the case without the mass: w; = TLF—:,/% =89.03 rad/s
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® We saw that 9n(x)""” = Btn(x), n integer and Bf = £2p
® Consider two different modes n and k.

® |t is possible to write the following identities:

w2 L
710 = Eeun) > [ God = (e (x)dx (96)

2 L 2 b
w;(///(x) = %’Lﬁk(x) 4)/0 wn(X)wL”/(X)dX = %A wk(x)d}ﬂ(x)dx (97)

® Integrating by parts twice, we have:

wet]s - [oketle+ [ v NCd (99)
o1~ T+ [ ot e = / U0 (99)

® At a free-end: ¢/ =/ = 0; At a support: ¥, = ¢/ = 0; At a clamp
Yn =1, =0
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® The application of the above conditions to Egs. 98 and 99 yields:
W2 — w2 L
Hen ) [ (o =0 (100)
El o
® Since k # n, wi # wp. In this scenario, Eq. 100 holds if:

L
/0 U (x)n(x)dx = 0 (101)

® Equation 101 indicates the ortogonality of the vibration modes.
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® The Dirac delta function satisfies dp(x — xp) = 0 for x # xo and the following
identify:

/jo So(x — x0)dx = 1 (102)

* Example: f(x) =limc_02,x — € < x < xg + € and f(x) = 0 outside this
interval.

1/2¢

X0-¢  XQ Xote X
® The above figure helps understanding the important property (filtering property):

/OO g(x)dp(x — x0)dx = g(xo) (103)

—o0
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® The Dirac delta function is usefull for representing lumped properties such as,

for example, a point mass m placed at the tip of a beam of length L and mass
per unit length ;

® In this case, the equivalent mass per unit length is peq = p + mép(x — L);

® Notice that foL fegdX = foL pdx + mfoL+ Sp(x — L)dx = foL pudx 4+ m,
corresponding to the total mass of the system.
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® |t is easy to note the following relations:

AH(X-Xg) .
Sp(x = x0) = ——H(x — xo) (105)
1 dx
/ 0p(s — x0)ds = H(x — x0) (106)
b = [ H(s = xo)e(s) =
Xo X - "
= H(x — Xo)/ g(s)ds (107)
X0
0 ,x<xp
H(x — x0) = 1 x> x ® The Heaviside function can be used for stepped

beams (i.e., the properties of the beam are

(104) constant during certain intervals).
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@ Reduced-order models (ROMs)
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Galerkin's method - a simple example

® This approach follows the enlightening discussions made with MSc Vitor Maciel
and supported by his notes;

® Firstly, we consider the very simple linear algebra problem: What is the best
approximation for the vector v pertaining to the plane generated by the
orthonormal vectors v; and vz;

® \We define v = byvi + bava + bsvz and the desired approximation vector
V = a1vi + axva. We also define the error between the real vector and the
desired approximation as € = v — v.

® From the above figure, it is clear that the error has minimum norm if it is
orthogonal to the plane generated by v; and v;

® Mathematically:
evi=0—>(v—V)wvi=0< vivy —V.vy =0+ b1 — a1 =0 > a1 = by;

® Analogously: a; = bs.
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® Now, we will see how the Galerkin's method can be applied to the vibration of
beams. Here, we consider the transverse dynamics of a pinned-pinned prismatic
beam, governed by uw + Elw"" — q, = 0;

® \We consider N, modes in the expansion (approximation):

W= (0 t) = 3% (A > i = 5% pi()Ai(2) and
k=1 k=1

Nm

‘;'V/N/ — Z Qp;(/”(X)Ak(t).

k=1
® The inner product between two functions f(x) and g(x) is foL f(x)g(x)dx. If we
use w in the equation of motion, the RHS is no longer zero, but a certain error €.

® Minimum error is achieved if ¢ is orthogonal to the subspace spanned by
P1(x), Y2(x), - - ., Yi(x).

® Using the approximation W and the definition of inner product, we have:

Nm
' > (b ()A(t) + ElpY () Ak(t)) — a2 | ¥m(x)dx =0,m=1,2,..., Nm
0
k=1

(108)
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® For the pinned-pinned prismatic beam, the orthogonality condition implies that
S5 bk(x)m(x)dx = 0 and [ " (x)m(x)dx = 0 for k # m;
® In this scenario, we have:

| —
my k ke k Py k(t)

(f : i) A+ ( [ ' 1V ()0 ) Aule) = [ " et ()dx
Mo )

(109)

® The PDE has been transformed into a set of uncoupled ODEs with the general
form my kAi(t) 4+ ky kAk(t) = Py k(t), Ax(t) is the modal-amplitude
time-history associated with the k-th mode. Modal oscillator, which can be
solved with techniques already saw for 1-dof systems;

® my i is the modal mass, ky, x is the modal stiffness and py, «(t) is the modal

force. The associated natural frequency is wx = /ky k /My k-
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® Once the time-histories A, (t) are numerically or analytically obtained,
approximate displacement is w(x, t) = :Izml Vi (x)Ak(t);

® The time-history of bending moment can be obtained as
M(x,t) = —EIW" = —El :Izml Py (x)Ak(t);

® |f the orthogonality condition is not satisfied, the ROM will be given by a set of
coupled ODEs.
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® A note: If the mathematical model is given by a set of ODEs, as the case of the
dynamic response of a discrete system, the equation of motion is given by

MU+ CU+ KU = P(t) (110)

® Suppose that we are interested in obtaining a two dof approximation for Eq.
110. In this case, we assume

U= {6m m}{ ak(£) }:éa(r) (111)

am(t)
® Substituting Eq. 111 into Eq. 110, we have:
M5+ Cos- Kpa— P(t) = ¢ (112)
® The error & is minimum if

(6" M@ (&' CH)sr (' KP)a= ' P(t) (113)
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® For linear systems, ¢x and ¢m can be taken as two vibration modes.

® For non-linear systems ¢, and ¢m can be, for example, two modes of the
linearized problem.

® In the case of vibrations of beams with a lumped mass or spring, we can obtain
a ROM by applying the Galerkin’s method to the equation of motion written
with the singularity functions and considering a projection set composed of
functions that satisfy the essential boundary conditions.
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k> L/2 S

<
<

L

® The beam is prismatic with mass per unit length p and bending stiffness El.
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® The lumped mass and spring can be considered by using Dirac delta function in
the form of equivalent mass per unit length and foundation stiffness (also per
unit length) as:

teqg = p+ Mép(x — L/2) (114)
keqg = kdp(x — L/2) (115)
(116)

® Terms associated with kinetic energy:

L
T:/ feq W2 dx (117)
éTdt / /,ueqwéwdxdt (118)
t1

® Terms associated with potential energy:

1 L1
u:/// 7E<-:pdv+/ ~ keqw?dx (119)
v 2 0o 2
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® After integrating by parts twice:
L
U = (Ew"sw')5 + / (EW"" + keqw)dwdx (120)
0

® The use of EHP lead to the equation of motion (Eq. 121) and the natural
boundary conditions (Eq. 122):

PegW + EW"" + keqw = 0 (121)
W(;, = W[’ =0 (122)

® Assume that we are interested in obtaining a ROM for the dynamics of the
system in the first vibration mode (w(x, t) = A1(t)¥1(x) = Ae). In this case,
we can use as a projection function in the Galerkin's method the vibration mode
of a pinned-pinned beam without lumped mass and spring (¢(x) = sin(7wx/L)).

L L
/0 egtb(x)2dxA + /0 (EI()" + keqh(:))U(x)A =0 (123)
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® |t is possible to prove that:

t L
/ W2 (x)dx = = (124)
o 2
t 1 ™
/0 O () = (125)
® Using the above integrals, we have:
L :U'L L
/ peqh? (x)dx = my = — + M/ P2 (x)dp(x — L/2)dx =
0 2 0
(it
_M<1+2M) (126)
L 1m EI7T4 L 2
@170+ kel = by = S+ [ kg0 =
El
=487 5 +k (127)
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® An approximate expression for the first natural frequency is

4875 1k
M(1+W>

® Physical interpretation: From strength of the materials, the vertical
displacement of the midspan due to a concentrated load P is A = PL3/48E].

(128)

® The contribution of the pinned-pinned beam to the equivalent stiffness is
kbeam: P/A_48L.4r
® As the spring is at the midspan and is parallel association an analysis based on

strength of materials leads to keq = kpeam + k = 48 s

® [f the mass of the beam is negligible when compared to the lumped mass,
my, =~ M and the natural frequency, if computed with the stiffness obtained
from a static analysis reads the value already discussed in PEF5916

485 + k 129
wy =1/ v (129)

® The modal mass is a way to consider the distributed mass of the beam in the
1-dof oscillator;
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® Using the same numerical values employed in the example of the modal analysis
of the beam with a lumped mass at midspan, we have, for kK = 0,

48.75 +k

— B~ 4352 rad /s (130)
M (1 + ;‘—M)

® This approximated result is close to the analytical one wy = 43.65 rad/s.
Notice, however, that the ROM does not allow obtaining the vibration modes.

® The books written by Rao (2009) and Blevins (2001) bring expressions for the
natural modes of beams with different boundary conditions.
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