Exercícios de Cálculo.

Última semana de setembro

- 1. Determine a **equação da reta** que passa pelo ponto (1, 2) e que seja paralela á direção do vetor $\vec{v} = (-1, 1)$.
- 2. Determine a **equação vetorial da reta** que passa pelo ponto (1, -1) e que é perpendicular á reta 2x + y = 1.
- 3. Determine um vetor cuja direção seja paralela á reta 3x + 2y = 2.
- 4. Determine a equação vetorial de uma reta que passa pelo ponto $\left(\frac{1}{2},1\right)$ e que seja paralela á reta 3x+2y=2.
- 5. Determine um vetor cuja direção seja paralela á reta dada
 - a) x-2y=3
 - b) x+y=1
- 6. Determine um vetor cuja direção seja perpendicular á reta dada
 - (a) 2x + y = 1
 - (b) 3x y = 3
- 7. Determine a equação vetorial de uma reta que passa pelo ponto (2,5) e que seja paralela á reta x-y=1.
- 8. Determine a equação vetorial da reta que passa pelo ponto (1,2) e que é perpendicular á reta 2x + y = 3.
- 9. Determine a equação vetorial da reta que passa pelo ponto (1, 1, 1) e que seja perpendicular á direção do vetor $\vec{n} = (2, 1, 3)$.
- 10. Determine a equação vetorial da reta qui passa pelo ponto (0, 1, -1) dado e que seja perpendicular ao plano x + 2y z = 3.
- 11. \star Sejam $\vec{u} = (a_1, b_1, c_1)$ e $\vec{v} = (a_2, b_2, c_2)$ dois vetores de \mathbb{R}^3 . Definimos o produto vetorial $de \ \vec{u}$ por \vec{v} , que se indica $\vec{u} \wedge \vec{v}$, por

$$\vec{u} \wedge \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = (b_1c_2 - c_1b_2)\vec{i} + (a_2c_1 - a_1c_2)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

em que $\vec{i}=(1,0,0),\,\vec{j}=(0,1,0)$ e $\vec{k}=(0,0,1).$ Verifique que

- (a) $\vec{u} \wedge \vec{v} = -\vec{v} \wedge \vec{u}$.
- (b) $\vec{u} \wedge \vec{v}$ é ortogonal a \vec{u} e a \vec{v} .
- (c) $\vec{u} \wedge (\vec{v} + \vec{w}) = \vec{u} \wedge \vec{v} + \vec{u} \wedge \vec{w}$, em que $\vec{w} = (a_3, b_3, c_3)$
- (d) $(\vec{u} + \vec{v}) \wedge \vec{w} = \vec{u} \wedge \vec{w} + \vec{v} \wedge \vec{w}$.
- 12. Calcule a norma do vetor dado

- a) $\vec{u} = (1, 2)$
- b) $\vec{v} = (2, 1, 3)$
- 13. Seja $\vec{u} = (u_1, u_2, u_3)$ um vetor qualquer em \mathbb{R}^3 . Mostre que $||\vec{u}|| \ge |u_i|$, i = 1, 2, 3.
- 14. Seja $\vec{u}=(u_1,u_2,u_3,\ldots,u_n)$ um vetor do $\mathbb{R}^n(n\geq 2)$. Mostre que $\|\vec{u}\|\geq |u_i|,\ i=1,2,3,\ldots,n$.
- 15. Sejam \vec{u} , \vec{v} dois vetores quaisquer do \mathbb{R}^n . Verifique que
 - a) $\|\vec{u} \vec{v}\| \ge \|\vec{u}\| \|\vec{v}\|$.
 - b) $\|\vec{u} \vec{v}\| \ge \|\vec{v}\| \|\vec{u}\|$.
 - c) $\|\vec{u} \vec{v}\| \ge \|\vec{u}\| \|\vec{v}\|\|$.
- 16. Sejam $\vec{u} = (u_1, u_2, u_3, \dots, u_n)$ e $\vec{v} = (v_1, v_2, v_3, \dots, v_n)$ vetores quaisquer do \mathbb{R}^n . Mostre que

$$\|\vec{u} - \vec{v}\| \ge |u_i - v_i|, i = 1, 2, 3, \dots, n.$$

17. Sejam \vec{u} e \vec{v} vetores quaisquer do \mathbb{R}^n . Prove

$$\vec{u} \perp \vec{v} \iff ||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2.$$