MAC 414 Autômatos, Computabilidade e Complexidade aula 8 — 7/10/2020

Tomatinhos — 2° sem 2020 1/59

Uma congruência num semiatômato $\mathcal{A} = (K, \Sigma, \delta, s)$ é uma relação de equivalência \sim em K tal que para toda palavra $x \in \Sigma^*$, $p \sim q \Rightarrow px \sim qx$.

Uma congruência num semiatômato $\mathcal{A} = (K, \Sigma, \delta, s)$ é uma relação de equivalência \sim em K tal que para toda palavra $x \in \Sigma^*$, $p \sim q \Rightarrow px \sim qx$.

Uma congruência num semiatômato $\mathscr{A} = (K, \Sigma, \delta, s)$ é uma relação de equivalência \sim em K tal que para toda palavra $x \in \Sigma^*$, $p \sim q \Rightarrow px \sim qx$.

$$\mathcal{A}/\sim = (K/\sim, \Sigma, \bar{\delta}, [s])$$

onde $\bar{\delta}([q], \sigma) = [\delta(q, \sigma)]$, ou seja, $[q]\sigma = [q\sigma]$.

Uma congruência num semiatômato $\mathscr{A} = (K, \Sigma, \delta, s)$ é uma relação de equivalência \sim em K tal que para toda palavra $x \in \Sigma^*$, $p \sim q \Rightarrow px \sim qx$.

$$\mathcal{A}/\sim = (K/\sim, \Sigma, \bar{\delta}, [s])$$

onde $\bar{\delta}([q], \sigma) = [\delta(q, \sigma)]$, ou seja, $[q]\sigma = [q\sigma]$. Para toda $x \in \Sigma^*$, [q]x = [qx].

Uma congruência num AD é uma congruência do respectivo semiautômato que satisfaz se $p \sim q$, então ambos são finais ou ambos são não-finais.

Uma congruência num AD é uma congruência do respectivo semiautômato que satisfaz se $p \sim q$, então ambos são finais ou ambos são não-finais.

Dada uma congruência, podemos definir o autômato quociente, tomando como estados finais as classes dos estados finais originais.

Um homomorfismo
$$\varphi: (K, \Sigma, \delta, s, F) \to (K', \Sigma, \delta', s', F')$$
 é um homomorfismo de semiautômatos tal que: $p \in F \Rightarrow \varphi(p) \in F'$ e $p \in K \setminus F \Rightarrow \varphi(p) \in K' \setminus F'$.

Um homomorfismo
$$\varphi: (K, \Sigma, \delta, s, F) \to (K', \Sigma, \delta', s', F')$$
 é um homomorfismo de semiautômatos tal que: $p \in F \Rightarrow \varphi(p) \in F'$ e $p \in K \setminus F \Rightarrow \varphi(p) \in K' \setminus F'$.

Equivalentement: $p \in F \Leftrightarrow \varphi(p) \in F'$.

Um homomorfismo $\varphi: (K, \Sigma, \delta, s, F) \to (K', \Sigma, \delta', s', F')$ é um homomorfismo de semiautômatos tal que: $p \in F \Rightarrow \varphi(p) \in F'$ e $p \in K \setminus F \Rightarrow \varphi(p) \in K' \setminus F'$.

Equivalentement: $p \in F \Leftrightarrow \varphi(p) \in F'$.

Proposição

Se existe homomorfismo de um autômato em outro, então eles reconhecem a mesma linguagem.

Dado $\mathcal{A} = (K, \Sigma, \delta, s, F)$, vamos definir em K a relação binária

 $p \sim_{\mathcal{A}} q$ se para toda palavra x, $px \in F \Leftrightarrow qx \in F$.

Dado $\mathcal{A} = (K, \Sigma, \delta, s, F)$, vamos definir em K a relação binária

 $p \sim_{\mathcal{A}} q$ se para toda palavra x, $px \in F \Leftrightarrow qx \in F$.

Prop: $\sim_{\mathscr{A}}$ é uma congruência em \mathscr{A} .

Dado $\mathcal{A} = (K, \Sigma, \delta, s, F)$, vamos definir em K a relação binária

 $p \sim_{\mathcal{A}} q$ se para toda palavra x, $px \in F \Leftrightarrow qx \in F$.

Prop: $\sim_{\mathscr{A}}$ é uma congruência em \mathscr{A} .

Um AD \mathscr{A} é reduzido se ele é acessível e $\sim_{\mathscr{A}}$ é a identidade.

Dado $\mathcal{A} = (K, \Sigma, \delta, s, F)$, vamos definir em K a relação binária

 $p \sim_{\mathcal{A}} q$ se para toda palavra x, $px \in F \Leftrightarrow qx \in F$.

Prop: $\sim_{\mathscr{A}}$ é uma congruência em \mathscr{A} .

Um AD \mathscr{A} é reduzido se ele é acessível e \sim é a identidade.

Prop: Para todo AD \mathcal{A} , $\mathcal{A}/_{\sim}$ é reduzido.

 Σ^* como semiautômato:

$$\Sigma^*$$
 como semiautômato:

.

$$K = \Sigma^*$$
, $s = \lambda$, $\delta(x, \sigma) = x\sigma$.

$$\Sigma^*$$
 como semiautômato: $K = \Sigma^*$, $s = \lambda$, $\delta(x, y) = xy$.

 Σ^* como semiautômato: $K = \Sigma^*$, $s = \lambda$, $\delta(x, y) = xy$.

Dada
$$L \subseteq \Sigma^*$$
, definimos A_L colocando $F = L$: $A_L = (\Sigma^*, \Sigma, \delta, \lambda, L)$.

$$\Sigma^*$$
 como semiautômato:
 $K = \Sigma^*, s = \lambda, \delta(x, y) = xy.$

Dada
$$L \subseteq \Sigma^*$$
, definimos A_L colocando $F = L$: $A_L = (\Sigma^*, \Sigma, \delta, \lambda, L)$.

Prop: A_L reconhece L.

 Σ^* como semiautômato: $K = \Sigma^*$, $s = \lambda$, $\delta(x, y) = xy$.

Dada
$$L \subseteq \Sigma^*$$
, definimos A_L colocando $F = L$: $A_L = (\Sigma^*, \Sigma, \delta, \lambda, L)$.

Prop: A_L reconhece L.

Prop: Se \mathcal{A} reconhece L, então existe um

homomorfismo $A_L \to \mathcal{A}$.

A relação \sim_{A_L} pode ser denotada mais simplesmente por \sim_L , e é uma relação em Σ^* , dada por:

 $x \sim_L y$ sse para toda palavra $z, xz \in L \Leftrightarrow yz \in L$.

A relação \sim_{A_L} pode ser denotada mais simplesmente por \sim_L , e é uma relação em Σ^* , dada por:

 $x \sim_L y$ sse para toda palavra $z, xz \in L \Leftrightarrow yz \in L$.

O autômato reduzido correspondente é:

$$\mathscr{A}_{L} = (\Sigma^{*}/\sim_{L}, \Sigma, \delta, [\lambda], \pi(L))$$

onde $\delta([x], \sigma) = [x\sigma]$ e π é a projeção canônica.

A relação \sim_{A_L} pode ser denotada mais simplesmente por \sim_L , e é uma relação em Σ^* , dada por:

 $x \sim_L y$ sse para toda palavra $z, xz \in L \Leftrightarrow yz \in L$.

O autômato reduzido correspondente é:

$$\mathscr{A}_{L} = (\Sigma^{*}/\sim_{L}, \Sigma, \delta, [\lambda], \pi(L))$$

onde $\delta([x], \sigma) = [x\sigma]$ e π é a projeção canônica. Este autômato é muuuuuuuuuito especial.

\mathcal{A}_l é o autômato minimal

Teorema

Se \mathscr{A} é um AD que reconhece L, então existe um homomorfismo $\mathscr{A} \to \mathscr{A}_{l}$.

\mathcal{A}_l é o autômato minimal

Teorema

Se \mathscr{A} é um AD que reconhece L, então existe um homomorfismo $\mathscr{A} \to \mathscr{A}_L$.

\mathscr{A}_l é o autômato minimal

Teorema

Se \mathscr{A} é um AD que reconhece L, então existe um homomorfismo $\mathscr{A} \to \mathscr{A}_1$.

Corolário

Se \mathcal{A}_L é finito, ele minimiza o número de estados entre ADs reconhecendo L e é único a menos de isomorfismo.

Corolário

Se \mathcal{A}_L é finito, ele minimiza o número de estados entre ADs reconhecendo L e é único a menos de isomorfismo.

Corolário

Se \mathcal{A}_L é finito, ele minimiza o número de estados entre ADs reconhecendo L e é único a menos de isomorfismo.

Dem. do corolário: O homomorfismo do Teorema é sobrejetor, logo $|\mathscr{A}_L| \leq |\mathscr{A}|$. Se \mathscr{A}' é outro autômato mínimo para L, existe homomorfismo sobrejetor $\mathscr{A}' \to \mathscr{A}$. Como o número de estados é igual e finito, esse homomorfismo é bijetor, logo isomorfismo.

Teorema

Se \mathscr{A} é um AD que reconhece L, então existe um homomorfismo $\mathscr{A} \to \mathscr{A}_L$.

Teorema

Se \mathscr{A} é um AD que reconhece L, então existe um homomorfismo $\mathscr{A} \to \mathscr{A}_{\mathsf{L}}.$

Dem: Vamos primeiro definir em Σ^* a relação \equiv por $x \equiv y$ sse sx = sy (em \mathscr{A}). É fácil ver que \equiv é uma congruência. Além disso, se $x \equiv y$, então $x \sim_L y$.

Teorema

Se \mathscr{A} é um AD que reconhece L, então existe um homomorfismo $\mathscr{A} \to \mathscr{A}_L$.

Dem: Vamos primeiro definir em Σ^* a relação \equiv por $x \equiv y$ sse sx = sy (em \mathscr{A}). É fácil ver que \equiv é uma congruência. Além disso, se $x \equiv y$, então $x \sim_L y$. Vamos agora definir φ . Se $p \in K$, escolha x tal que sx = p e defina $\varphi(p) = [x]$. Isso não depende da escolha de x: se sy = p, então $y \equiv x$, logo [y] = [x].

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

Dem: Se \sim_L tem índice finito, \mathcal{A}_L é um autômato finito; como ele reconhece L, L é regular.

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

Dem: Se \sim_L tem índice finito, \mathscr{A}_L é um autômato finito; como ele reconhece L, L é regular. Se L é regular, seja \mathscr{A} um AD reconhecendo L. Então,

 $|\sim_L|$

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

$$|\sim_L|=|\mathscr{A}_L|$$

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

$$|\sim_L|=|\mathscr{A}_L|\leq |\mathscr{A}|$$

Teorema

(Myhill-Nerode) Uma linguagem L é regular se e somente se \sim_1 tem índice finito.

$$|\sim_L|=|\mathscr{A}_L|\leq |\mathscr{A}|<\infty$$
.

Dado: Autômato determinístico acessível \mathcal{A} ,

reconhecendo a linguagem L.

Devolve: \mathscr{A}_L e o homomorfismo $\mathscr{A} \to \mathscr{A}_L$.

Dado: Autômato determinístico acessível \mathscr{A} ,

reconhecendo a linguagem L.

Devolve: \mathscr{A}_L e o homomorfismo $\mathscr{A} \to \mathscr{A}_L$.

Dois algoritmos conhecidos:

• Algoritmo de Moore (1956): Mais conceitual. $\mathcal{O}(|\Sigma|n^2)$, onde $n = |\mathcal{A}|$.

Dado: Autômato determinístico acessível ${\mathscr A}$,

reconhecendo a linguagem L.

Devolve: \mathscr{A}_L e o homomorfismo $\mathscr{A} \to \mathscr{A}_L$.

Dois algoritmos conhecidos:

- Algoritmo de Moore (1956): Mais conceitual. $\mathcal{O}(|\Sigma|n^2)$, onde $n = |\mathcal{A}|$.
- ② Algoritmo de Hopcroft (1960): Mais esperto, $\mathcal{O}(|\Sigma| n \lg n)$.

Dado: Autômato determinístico acessível ∅,

reconhecendo a linguagem L.

Devolve: \mathcal{A}_L e o homomorfismo $\mathcal{A} \to \mathcal{A}_L$.

Dois algoritmos conhecidos:

- Algoritmo de Moore (1956): Mais conceitual. $\mathcal{O}(|\Sigma|n^2)$, onde $n = |\mathcal{A}|$.
- Algoritmo de Hopcroft (1960): Mais esperto, $\mathcal{O}(|\Sigma|n\lg n)$.

Vamos ver o de Moore.

 $p \sim_{\mathscr{A}} q$ se para toda $x \in \Sigma^*$, $px \in F \Leftrightarrow qx \in F$.

 $p \sim_{\mathscr{A}} q$ se para toda $x \in \Sigma^*$, $px \in F \Leftrightarrow qx \in F$. Para $k \geq 0$, definimos $p \sim_k q$ se para toda $x \in \Sigma^{\leq k}$, $px \in F \Leftrightarrow qx \in F$. Todas essas relações são de equivalência.

 $p \sim_{\mathscr{A}} q$ se para toda $x \in \Sigma^*$, $px \in F \Leftrightarrow qx \in F$.

Para $k \ge 0$, definimos

 $p \sim q$ se para toda $x \in \Sigma^{\leq k}$, $px \in F \Leftrightarrow qx \in F$.

Todas essas relações são de equivalência.

Em particular, \sim tem duas classes, F e $K \setminus F$.

 $p \sim_{\mathscr{A}} q$ se para toda $x \in \Sigma^*$, $px \in F \Leftrightarrow qx \in F$.

Para $k \ge 0$, definimos

 $p \sim_k q$ se para toda $x \in \Sigma^{\leq k}$, $px \in F \Leftrightarrow qx \in F$.

Todas essas relações são de equivalência.

Em particular, \sim tem duas classes, F e $K \setminus F$.

Lema: Para k > 0, $p \sim_k q$ sse

- ② para todo σ ∈ Σ, $ρσ ∼_{k-1} qσ$.

 $p \sim_{\mathscr{A}} q$ se para toda $x \in \Sigma^*$, $px \in F \Leftrightarrow qx \in F$.

Para $k \ge 0$, definimos

 $p \sim q$ se para toda $x \in \Sigma^{\leq k}$, $px \in F \Leftrightarrow qx \in F$.

Todas essas relações são de equivalência.

Em particular, \sim tem duas classes, F e $K \setminus F$.

Lema: Para k > 0, $p \sim q$ sse

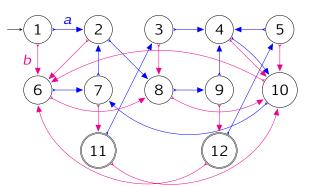
- **2** para todo $\sigma \in \Sigma$, $p\sigma \sim_{k-1} q\sigma$.

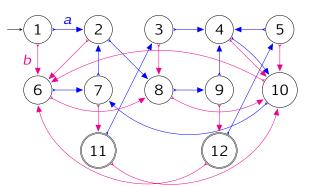
Lema: Se $\sim = \sim_{k+1}$, então $\sim = \sim_{\mathcal{A}}$.

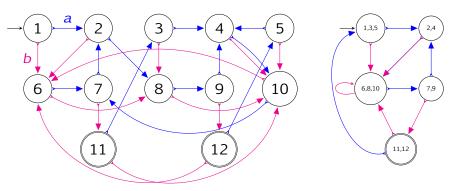
Provas

O Algoritmo

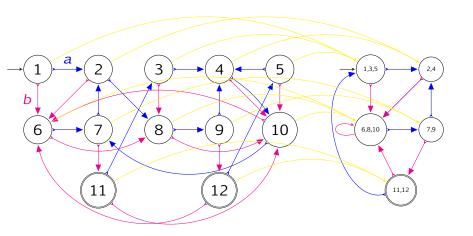
- Mantém uma partição Til de K. Inicialmente Til tem blocos F e $K \setminus F$.
- Para cada estado p, compute $([p\sigma])_{\sigma \in \Sigma}$
- Compute NovoTil quebrando os blocos de Til
- Se NovoTil≠Til, faça NovoTil←Til e volte para(2)
- Devolva Til







Tomatinhos — 2° sem 2020



Tomatinhos — 2° sem 2020 58/59

Mais sobre o autômato minimal

Temos exemplos de ANDs para os quais a construção dos subconjuntos é exponencial. www.ime.usp.br/~am/414-10/automatos-ruins.pdf