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The most important elementary applications of the Laplace transform are in the study of
mechanical vibrations and in the analysis of electric circuits; the governing equations were
derived in Section 3.7. A vibrating spring-mass system has the equation of motion

m
d2u
dt2

+ γ
du
dt

+ ku = F( t) , (33)

where m is the mass, γ the damping coefficient, k the spring constant, and F( t) the applied
external force. The equation that describes an electric circuit containing an inductance L , a
resistance R, and a capacitance C (an LRC circuit) is

L
d2Q
dt2

+ R
dQ
dt

+ 1
C
Q = E( t) , (34)

where Q( t) is the charge on the capacitor and E( t) is the applied voltage. In terms of the
current I ( t) = dQ( t)/dt , we can differentiate equation (34) and write

L
d2 I
dt2

+ R
d I
dt

+ 1
C
I = dE

dt
( t) . (35)

Suitable initial conditions on u, Q, or I must also be prescribed.
We have noted previously, in Section 3.7, that equation (33) for the spring-mass system

and equations (34) or (35) for the electric circuit are identical mathematically, differing only
in the interpretation of the constants and variables appearing in them. There are other physical
problems that also lead to the same differential equation. Thus, once the mathematical problem
is solved, its solution can be interpreted in terms of whichever corresponding physical problem
is of immediate interest.
In the problem lists following this and other sections in this chapter are numerous initial-

value problems for second-order linear differential equations with constant coefficients. Many
can be interpreted as models of particular physical systems, but usually we do not point this
out explicitly.

Problems
In each of Problems 1 through 7, find the inverse Laplace transform
of the given function.

1. F(s) = 3
s2 + 4

2. F(s) = 4
(s − 1)3

3. F(s) = 2
s2 + 3s − 4

4. F(s) = 2s + 2
s2 + 2s + 5

5. F(s) = 2s − 3
s2 − 4

6. F(s) = 8s
2 − 4s + 12
s(s2 + 4)

7. F(s) = 1− 2s
s2 + 4s + 5

In each of Problems 8 through 16, use the Laplace transform to solve
the given initial value problem.
8. y′′ − y′ − 6y = 0; y(0) = 1, y′(0) = −1
9. y′′ + 3y′ + 2y = 0; y(0) = 1, y′(0) = 0

10. y′′ − 2y′ + 2y = 0; y(0) = 0, y′(0) = 1
11. y′′ − 2y′ + 4y = 0; y(0) = 2, y′(0) = 0
12. y′′ + 2y′ + 5y = 0; y(0) = 2, y′(0) = −1
13. y(4) − 4y′′′ + 6y′′ − 4y′ + y = 0; y(0) = 0,
y′(0) = 1, y′′(0) = 0, y′′′(0) = 1
14. y(4) − y = 0; y(0) = 1, y′(0) = 0, y′′(0) = 1,
y′′′(0) = 0
15. y′′ + ω 2y = cos(2t) , ω 2 #= 4; y(0) = 1, y′(0) = 0
16. y′′ − 2y′ + 2y = e−t ; y(0) = 0, y′(0) = 1
In each of Problems 17 through 19, find the Laplace transform Y (s) =
L{y} of the solution of the given initial value problem. A method of
determining the inverse transform is developed in Section 6.3. You
may wish to refer to Problems 16 through 18 in Section 6.1.

17. y′′ + 4y =
{
1, 0 ≤ t < π ,
0, π ≤ t < ∞;

y(0) = 1, y′(0) = 0

18. y′′ + 4y =
{
t , 0 ≤ t < 1,
1, 1 ≤ t < ∞;

y(0) = 0, y′(0) = 0

19. y′′ + y =






t , 0 ≤ t < 1,
2− t , 1 ≤ t < 2,
0, 2 ≤ t < ∞;

y(0) = 0, y′(0) = 0
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! Hence, by Theorem 6.3.1, we have

y( t) = L−1{Y (s) } = 2√
15

u5( t)e−( t−5)/4 sin
(√

15
4 ( t − 5)

)
(21)

which is the formal solution of the given problem. It is also possible to write y( t) in the form

y =






0, t < 5,

2√
15

e−( t−5)/4 sin
(√

15
4 ( t − 5)

)
, t ≥ 5.

(22)

The graph of equation (22) is shown in Figure 6.5.3. Since the initial conditions at t = 0 are
homogeneous and there is no external excitation until t = 5, there is no response in the interval
0 < t < 5. The impulse at t = 5 produces a decaying oscillation that persists indefinitely. The
response is continuous at t = 5 despite the singularity in the forcing function at that point. However,
the first derivative of the solution has a jump discontinuity at t = 5, and the second derivative has
an infinite discontinuity there. This is required by the differential equation (17), since a singularity
on one side of the equation must be balanced by a corresponding singularity on the other side.
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FIGURE 6.5.3 Solution of the initial value problem (17), (18):
2y′′ + y′ + 2y = δ ( t − 5) , y(0) = 0, y′(0) = 0.

In dealing with problems that involve impulsive forcing, the use of the delta function
usually simplifies the mathematical calculations, often quite significantly. However, if the
actual excitation extends over a short, but nonzero, time interval, then an error will be
introduced by modeling the excitation as taking place instantaneously. This error may be
negligible, but in a practical problem it should not be dismissed without consideration. In
Problem 12 you are asked to investigate this issue for a simple harmonic oscillator.

Problems
In each of Problems 1 through 8:

a. Find the solution of the given initial value problem.
G b. Plot a graph of the solution.

1. y′′ + 2y′ + 2y = δ ( t − π ) ; y(0) = 1, y′(0) = 0
2. y′′ + 4y = δ ( t − π ) − δ ( t − 2π ) ; y(0) = 0, y′(0) = 0
3. y′′ +3y′ +2y = δ ( t −5) +u10( t) ; y(0) = 0, y′(0) = 1/2

4. y′′ + 2y′ + 3y = sin t + δ ( t − 3π ) ; y(0) = 0, y′(0) = 0
5. y′′ + y = δ ( t − 2π ) cos t; y(0) = 0, y′(0) = 1
6. y′′ + 4y = 2δ ( t − π/4) ; y(0) = 0, y′(0) = 0
7. y′′ + 2y′ + 2y = cos t + δ ( t − π/2) ; y(0) = 0, y′(0) = 0
8. y(4) − y = δ ( t − 1) ; y(0) = 0, y′(0) = 0,
y′′(0) = 0, y′′′(0) = 0


