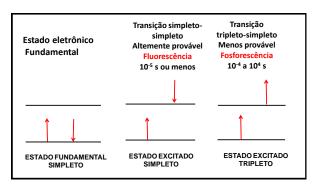
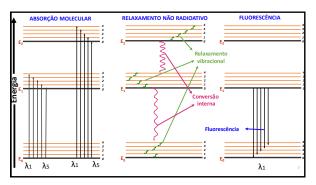
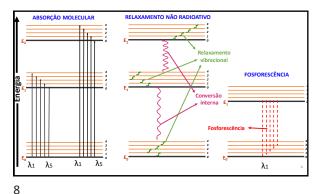
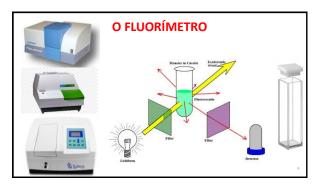

2


4

6




FLUORÓFOROS Fluoróforo é um componente de uma molécula que faz com que esta seja fluorescente. É um grupo funcional da molécula que absorverá energia de um comprimento de onda específica e posteriormente a emitirá em outro determinado comprimento de onda maior.



5

Configuração típica

Angulo reto → minimiza as contribuições do espalhamento e da radiação intensa da fonte.

Fonte

Monocromador excitação

Fendas

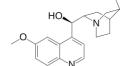
Fansmite a radiação que excita a fluorescência, mas exclui ou limita a radiação do λ de emissão fluorescente.

Leitura sinal

Detector

9 10

VANTAGENS


- Elevada sensibilidade (faixa de ppb)
- Elevada seletividade (raramente outra espécie tem espectro de excitação e de emissão coincidentes)

DESVANTAGENS

- Requer baixas concentrações para dar respostas lineares
- Requerem cuidados especiais: (evaporação, adsorção, instabilidade do analito, reação com traços de impurezas, com O2 dissolvido, etc)
- Elevadas concentrações produzem desvio de linearidade
- Espécies podem causar supressão da fluorescência
 Substâncias coloridas podem também atuar como supressores

Quinina

Sulfato de quinina

- A quinina, pó branco, inodoro
- > Alcalóide de gosto amargo
- Tem funções antitérmicas, antimaláricas e analgésicas
- > Tratamento de arritimias cardíacas
- Além de ser um fármaco é utilizada como flavorizante da água tônica

11 12

DETERMINAÇÃO DE SULFATO DE QUININO NA "ÁGUA TÔNICA"

OBJETIVO

Familizarizar-se com as medidas por fluorescência e determinar a concentração de quinino em água tônica por fluorimetria.

TÓPICOS IMPORTANTES:

- Esquema fundamental dos fotômetros e espectrofotômetros
- 2. Escolha de comprimentos de onda de excitação e emissão em fluorímetro
- 3. Uso de soluções de referência e brancos analíticos
- 4. Avaliar interferências em fluorimetria

13 14

Instruções Gerais:

- Ligar o fluorímetro Turner e a lâmpada, deixando aquecer por quinze minutos
- 2. Preparar por diluição da solução estoque de sulfato de quinino soluções de referência nas seguintes concentrações

OLLICÃO ESTOOL

15

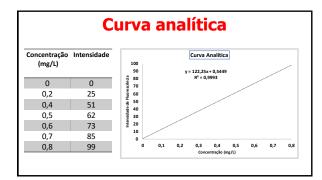
Instruções Gerais: 2.1 Preparar também duas soluções. SOLUÇÃO ESTOQUE SOLUÇÃO 1 SOLUÇÃO 2 Jo ml O,8 mg L¹ de sulfato de quinino, 0,8 mg L¹ de sulfato de quinino, 15

K₃[Fe(CN)₆] 2 x 10⁻⁴ mol L⁻¹ (em H₂SO₄ 0,2 mol L⁻¹).

- Instruções Gerais:
 3. Escolha dos filtros:
- > Filtros primários são: NB 360, 440, 490 e 540
- > Filtros secundários são: SC 415, 430, 515, 535, 585 e 665
- Escolha um filtro primário e dois secundários para a análise de sulfato de quinino.

NB 360

SC 430


Instruções Gerais:

2,0 mg L⁻¹

16

- 4. CALIBRAÇÃO DO FLUORÍMETRO;
- > Posicionar no aparelho o filtro primário e um dos filtros secundários escolhidos
- > Ajustar o zero com a solução branco (H₂SO₄ 0,2 mol L⁻¹) e, com a solução de sulfato de quinino mais concentrada (0,8 mg L⁻¹) na cela de medida, acertar a escala em aproximadamente 100
- ≻ Medir a fluorescência das soluções 0,2; 0,4 e 0,6 mg L-1
- > Repetir essas medidas após trocar o filtro secundário
- Escolha o conjunto de filtros mais adequado para a determinação de quinino

17 18

Instruções Gerais:

- 5. Avaliação da influência do pH na fluorescência do quinino, assim como da absorção de energia por outra espécie (supressão):
- >Com o aparelho equipado com os filtros mais adequados, acertar o zero usando a solução do branco (H₂SO₄) e o 100 com a solução mais concentrada de quinino.
- ≻Em seguida, medir a intensidade de fluorescência das demais soluções de referência em H₂SO₄ e das soluções preparadas em HCl, NaOH e em meio contendo K₃[Fe(CN)₆] 2 x 10-⁴ mol L⁻¹.

20

19

6. Com os dados obtidos, construir a curva analítica com as unidades arbitrárias de fluorescência

7. Quantificação de sulfato de quinino em água tônica

22

Instruções Gerais:

8. Fazer as análises de fluorescência, em triplicata, usando o mesmo par de filtros utilizado para construir a curva analítica

Calcular a concentração de sulfato de quinino na "água tônica" em g L-1

y = 122,25x + 0,5449

Análise	Intensidade	Conc. (mg/L)	Média	Desvio P.
1	44,54	0,36		
2	42,09	0,34	0,35	0,01
3	43.31	0.35		

Concentração no balão volumétrico 0,35 mg/L Concentração no balão volumétrico 35 mg/L

21

Instruções Gerais:

- 9. Para avaliar uma possível interferência de matriz, faça um teste de adição e recuperação.
- Siga o mesmo procedimento adotado no ítem 7, porém adicionando 0.2 mg l·1 de quipino
- Meça a intensidade de fluorescência da solução de referência de 0,2 mg L⁻¹, da amostra e da amostra adicionada com quinino.
- > Calcule a porcentagem de recuperação de quinino.

Conc. calculada para a amostra 0,35 mg/L Conc. calculada para a amostra com adição de sulfato de quinino 0,54 mg/L

 Exercício

1- A partir dos dados que seguem construa uma curva analítica, obtenha a equação da reta, o valor de R² e calcule a concentração de sulfato de quinino em duas marcas A e B de água tônica utilizando os valores de intensidade obtidos para as amostras.

Concentração (mg/L)	Intensidade				
		Amostra	Intensidade	Média	Desv. P
0	0	A	55		
0,2	20	A	57		
0,3	34	A	56		
0,4	48	В	33		
0,5	60	В	37		
0,6	73	В	34		
0,7	86				
0,8	100				

2- Em cada uma de 4 soluções de sulfato de quinino preparadas com água, foram adicionados individualmente cloreto de litio, hidróxido de potássio, ferricianeto de potássio, ácido sulfúrico e na solução 5 de sulfato de quinino foi borbulhado ar comprimido (mesma composição do ar atmosférico). Supondo que essas soluções fossem analisadas em um fluorimetro, qual delas teria a maior intensidade? Por quê? Justifique o fato das despois coluções apresentamente manores intensidades.

Bibliografia consultada

- 1. Princípios da Análise Instrumental, D. A. Skoog
- 2. Análise Química Quantitativa, D. C. Harris