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I. Introduction 

The effects of blood flow on heat transfer in living tissue have been 
examined for more than a century, dating back to the experimental studies 
of Bernard in 1876 [8]. Since that time, mathematical modeling of the 
complex thermal interaction between the vasculature and tissue has been 
a topic of interest for numerous physiologists, physicians, and engineers. 
The first quantitative relationship that described heat transfer in human 
tissue and included the effects of blood flow on tissue temperature on a 
continuum basis was presented by Harry H. Pennes, a researcher at the 
College of Physicians and Surgeons of Columbia University [46]. His 
landmark paper, which appeared in the literature in 1948, is cited in nearly 
all of the research articles involving bioheat transfer. Appropriately, the 
equation derived in this paper is often referred to as the “traditional” or 
“classic” or “Pennes” bioheat equation. 

Over the past 40 years, hundreds of research articles have questioned, 
examined, and utilized the underlying assumptions of the Pennes theory 
[26,54]. Even though some aspects of Pennes’s work have been con- 
vincingly discredited, certain elements have stood up to this intense scrutiny 
over the years. His work remains essentially the quantitative foundation for 
the field of bioheat transfer. The objective of this survey is to first present 
the original work of Pennes, then to examine the subsequent research that 
questioned Pennes’s theory and provided alternate and more sophisticated 
analyses of bioheat transfer. One of the most important alternates, which 
will be discussed in depth in this review, was developed by Weinbaum 
and colleagues in a series of papers over the past decade [24, 34, 55, 56, 
59-63, 701. In a concluding section, the characteristics of the original 
Pennes theory that are still being used today in bioheat transfer research will 
be discussed, along with the current understanding and future prospects for 
advances in bioheat transfer via a bioheat transfer equation. 
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11. Models Prior to Pennes 

A. THERMAL CONDUCTANCES 

Prior to the work of Pennes, heat transfer from the body to surroundings 
was quantified by the product of a thermal conductance and a measured 
temperature gradient between the tissue and the surroundings. The early 
work of Gagge et al. [27], Hardy and co-workers [29, 301, Bazett and 
co-workers [5-71, Mendelson [44], and Burton [ l l ]  utilized this approach 
with measurements of temperature gradients between the body surface and 
the environment under various conditions of environmental and metabolic 
stress. The heat transfer from the body to the surroundings was modeled 
based on the radiative, convective, and evaporative conductances with 
the environment and the temperature difference between the skin and 
surroundings. The influence of clothing on body heat transfer was modeled 
by adding an additional conductance for this layer and measuring the 
clothing surface temperature. These conductances were simply constant 
physical properties of the particular experimental subject. 

B. EFFECTIVE CONDUCTANCE DUE TO BLOOD FLOW 

A more difficult problem was to quantify the contribution of blood flow 
to the thermal conductance of the tissue layer. While it was known from 
experiments that variations in tissue blood flow rate associated with 
vascular changes in the skin significantly affected the rate of heat loss from 
the tissue to the surroundings, the mathematical description of this process 
was quite simple. Heat transfer from the deep interior region of tissue to 
the skin surface was modeled by a linear addition of two conductances; 
one based on tissue blood flow rate and the other based on the inherent 
thermal conductivity of the tissue under conditions of zero blood flow. 
The relationship used, 

k 
4s = wPbcb6(Tb - + ;(& - = Keff(& - (2.1) 

states that the surface heat flux from the body to the environment depends 
on the tissue thermal conductivity, k, , the thickness of the tissue layer in 
which a temperature gradient is measured, 6,  the volume flow rate of blood 
to the tissue per unit volume tissue (also known as the blood perfusion rate), 
0, and the density and specific heat of the blood, Pb and c b ,  respectively. 
The temperature difference between the deep tissue, or body core, and the 
skin (Tb - z), and qs were usually measured experimentally and in this 
manner an “effective” tissue conductance, Keff , was determined according 
to the definition in Eq. (2.1). Rearranging Eq. (2.1), the influence of 
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blood perfusion in tissue on the heat transfer inside the tissue could be 
quantified as 

K f f  O C ,  6 2  

KO kt 
- 1 + -  

where KO is the tissue conductance in the absence of blood perfusion. 
Studies were presented which used some form of Eq. (2.1) to quantify the 
effect of blood flow on tissue heat transfer [5, 27, 29, 30,441. Variations in 
K,,, with (Tb - T,) were identified with the influence of vasomotor control 
in thermoregulation of body temperature. At large values of (& - T,) 
the effective conductance was relatively constant, which represented the 
maximum degree of vasoconstriction in the tissue. As the temperature 
difference (& - T,) decreased, the effective conductance was observed to 
rise due to the increased perfusion rate in the tissue at higher ambient 
temperatures. Numerous experiments seemed to at least qualitatively 
corroborate this simple mathematical model. 

The inadequacies of this formulation were considered by those who 
utilized it to be due mainly to the use of (& - T,) as the driving force for 
heat transfer. The temperature difference (Tb - T,) was usually calculated 
using the difference between the deep or body core blood (usually the rectal 
temperature) and the mean skin temperature. Gagge et al. [27] were aware 
that their calculated (& - T,) was a maximum temperature difference and 
thus the perfusion rate o in Eqs. (2.1) and (2.2) was the minimum blood 
perfusion rate required to transfer heat across the tissue layer to the 
surroundings [27]. As a result, the parameter o was considered an effective 
blood perfusion rate in the tissue. Another fundamental assumption of this 
effective conductance analysis that would be later challenged by Pennes 
was the existence of a temperature difference between the body and skin 
surface, (& - q), that extended only to a depth 6 within the tissue. 
Measurements by these early thermal physiology groups [5, 27, 29, 30, 441 
were used along with the mathematical model described by Eqs. (2.1) and 
(2.2) to estimate that the value of 6 was on the order of 2cm. Pennes’s 
measurements in human limbs, however, indicated the presence of tempera- 
ture gradients in much deeper regions in the tissue. The importance of 
Pennes’s work on the development of a mathematical model of bioheat 
transfer was to quantify the first continuous, analytical relationship 
between tissue temperature and position, or depth from the skin surface. 

Prior to 1948, research in bioheat transfer was performed on an 
experimental basis and the associated quantitative analysis was of the type 
described in Eqs. (2.1) and (2.2) which used an overall conductivity to 
describe the heat loss from tissue to the surroundings. The overall thermal 
gradients measured by these physiologists were related to  the overall heat 



22 CALEB K .  CHARNY 

transfer from the body to the surroundings. Pennes's contribution to the 
field was stimulated by the lack of rigorous analysis of the local thermal 
gradients inside the tissue and the effect of blood perfusion on the local 
heat transfer rate in deep tissue. Preliminary in vivo measurements of 
temperature gradients in human biceps muscle revealed to Pennes that these 
gradients were present from the surface to the deep region of the muscle 
layer. These experimental measurements were supported by simple conduc- 
tion heat transfer theory, which predicts that temperature gradients will 
exist from the surface down to the axis of a symmetrical body like the 
human limb, e.g., a cylinder, Recognizing that analytical differential heat 
transfer theory had not been previously applied to human tissue, Pennes 
initiated a combined experimental and rigorous theoretical study to examine 
the governing heat transfer principles in perfused tissue [46]. 

111. The Pennes Bioheat Equation [46] 

A. EXPERIMENTAL MEASUREMENTS 

1 .  Description 

Healthy males were used as experimental subjects. They lay on a bed with 
only a sheet covering their hips. The room and wall temperatures were 
identical, between 25-27"C, and typically rose during the 4 to 6 h  
experimental period by 1 "C. There was essentially no air motion in the 
laboratory, as measured by an anemometer. Temperature measurements 
were made on both the surface and deep muscle regions of the unanes- 
thetized pronated right forearm of all subjects. Skin temperatures were 
determined using both a radiometric device and copper-constantan thermo- 
couples. Deep muscle and brachial artery temperatures were monitored 
using a similar thermocouple inserted into a thin walled steel needle. The 
relative precision of the thermocouple measurements was f0.01 "C, while 
the radiometric temperatures were accurate to fO.l "C. 

Skin temperature distributions along the axis of the upper limb, as well as 
around the circumference of the forearm, were examined by Pennes in 17 
subjects. In addition, the effect of circulatory occlusion for 30-40 min 
at either the distal forearm or upper arm on proximal forearm and hand 
skin temperatures was quantified. These studies were used to qualitatively 
analyze the influence of cutaneous blood flow on skin temperature, which 
was generally a heating effect. The experimental results, however, were not 
in any way analyzed in a quantitative manner compared to the deep forearm 
and brachial artery temperature measurements that are described in the 
following paragraph. 
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The brachial artery temperature was measured at  the elbow while the 
forearm was in a completely supinated position. The brachial artery 
temperature was greater than the maximum deep forearm temperature by 
an average of 0.16"C for all 10 subjects involved in this part of the 
experiments. From this result, Pennes hypothesized that the arterial blood 
supplied to the forearm acts as a heating system for the muscle in this section 
of the arm. Furthermore, Pennes theorized that the brachial artery tempera- 
ture at the elbow could be considered equal to the temperature of the blood 
in the radial artery located 8cm distal to the elbow. Pennes based this 
assumption on the earlier observations of Bazett and McGlone [ 5 ] .  This 
assumption was critical in the derivation of the Pennes bioheat equation 
because it allowed the arterial blood supply to the arm to be treated as a heat 
source that was independent of axial location along the length of the limb. 

Steady state temperatures were measured across the muscle layer of nine 
subjects at an axial location 8.0 cm distal from the tip of the ulna olecranon 
(an elbow bone) and midway between the superior and inferior surfaces of 
the forearm. The thermocouple wire was moved in tension across the 
muscle layer by a mechanical wire-controller so that the position of the 
thermocouple junction relative to the skin surface was known to a high 
precision, on the order of a tenth of a millimeter. The number of measure- 
ments was greatest near the axis of the limb, where the temperature 
gradients were small, and temperatures were recorded roughly at 2-mm 
spacing intervals. Fewer temperatures were measured in the more peripheral 
region of the muscle layer, with spacing intervals on the order of 10 mm. 
The temperatures measured by Pennes are shown in Fig. 1. 

2. Basis for the Mathematical Model 

One of the most significant of Pennes's experimental results was that 
while there was some asymmetry in the temperature profiles, the maximum 
muscle temperature was located very close to or at the axis of the limb. 
The asymmetry was explained by Pennes to be due to the asymmetrical 
temperature distribution around the circumference of the forearm surface. 
Generally, the medial side of the limb was at a higher level than the lateral 
side of the limb, due mainly to the medial side's proximity to the warm core 
section of the human torso. 

In addition, the temperature profiles of the different subjects were 
similarly flat near the limb axis, indicating that in general the tissue tempera- 
ture was more uniform in this deep central region compared to the peripheral 
region, with its relatively large spatial gradients. Interestingly, one subject 
showed a temperature profile with two local maxima, which was accounted 
for by Pennes as a proximity effect with the radial artery, which would 
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FIG. 1 .  Tissue temperature profiles in the forearms of nine human subjects. Negative 
abscissa values represent the lateral side of the forearm, and positive values represent the 
medial side. The ambient temperatures range from 26.1 to 27.4 "C. (Reproduced from [46], 
with permission.) 

tend to locally heat tissue surrounding its wall. For this particular subject, 
the thermocouple wire clearly passed close by the wall of this artery. 
The extent of this local proximity heating, approximately 0.5 "C in this 
particular subject, is reasonable when compared to the results of bioheat 
transfer studies conducted much later during the 1980s in which local 
heating and cooling effects of arteries and veins embedded in muscle tissue 
were examined both experimentally and theoretically [41,60]. 
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B. THEORETICAL FORMULATION 

1. Governing Equations and Solution 

Using his experimental results as a basis, Pennes presented his 
quantitative analysis of heat transfer in the human forearm. For simplicity, 
a cylindrical geometry was assumed for the pronated forearm, even though 
its cross section is somewhat elliptical. The rate of metabolic heating in 
the tissue was assumed to be uniform throughout the forearm despite the 
observation that metabolic heat production would probably be lower near 
the forearm surface where temperature gradients are large. Also, the 
presence of the skin and fat layers, as well as the two forearm bones, was 
neglected by assuming that their heat production and thermal conductivity 
were the same as those in the muscle tissue. Pennes justified this latter 
assumption with his experimental data, which did not reveal any noticeable 
perturbation in the forearm temperature fields that could have been caused 
by the presence of the forearm bones. 

A more accurate portrayal of the limb geometry and composition was not 
justified because there were several other simplifications that were more 
significant, most importantly that the heat transferred from the blood to  the 
tissue was governed by what Pennes termed the “Fick principle.” Accord- 
ing to this behavior, the rate of mass transfer between the blood and tissue 
is proportional to the difference between the blood and tissue level of a 
substance multiplied by the rate of blood flow. Using this concept to  
describe the rate of heat transfer between blood and tissue, Pennes 
theorized that the net heat transferred from the blood to the tissue, Qp, was 
simply proportional to the temperature difference between the arterial 
blood entering the tissue and the venous blood leaving the tissue: 

(3.1) 

where o is the volumetric rate of blood perfusion to the tissue per unit 
volume of tissue and cb is the blood specific heat. Since the temperature of 
the venous blood leaving the tissue depends on the degree of thermal 
equilibration it undergoes with the surrounding tissue, Pennes introduced a 
thermal equilibration parameter, k ‘ ,  to account for this effect: 

For k’ = 0, i.e., complete thermal equilibration, the venous blood tempera- 
ture leaving the tissue is T ,  while for k‘ = 1 the venous blood leaves the 
tissue at a temperature equal to the entering arterial blood temperature. 
At this point, the Pennes derivation assumes that T, is uniform throughout 
the tissue at some KO, which Pennes set equal to  the mean brachial artery 
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temperature in his experimental subjects, and k’ is close to zero everywhere 
in the muscle layer, thus yielding the familiar Pennes perfusion heat source 
term 

Qp = opbcb(% - (3.3) 

The perfusion heat source in Eq. (3.3) essentially assumes that blood 
enters the smallest vessels of the microcirculation at temperature T,, , where 
all of the heat transfer between the blood and tissue takes place. The blood 
will act as a heat source or sink depending upon the algebraic sign of the 
temperature difference in Eq. (3.3). As blood leaves the capillary bed, it has 
undergone complete thermal equilibration with the surrounding tissue and 
enters the venous circulation at this temperature. The complete thermal 
equilibration is expected in the capillary bed since the blood velocity in these 
small diameter vessels is very low, corresponding to a Peclet number (the 
ratio of bulk convection heat transfer to conduction heat transfer) much 
less than unity. However, the venous blood temperature is assumed to 
remain at the tissue temperature as it flows from the capillary bed back to 
the main supply vein, regardless of flow rate or vessel size. Any heat 
exchange in this region of the microcirculation is neglected. Thus, in a 
manner analogous to the mass transfer of oxygen from blood to tissue, the 
Pennes perfusion term neglects all pre- and postcapillary heat exchange 
between the blood and tissue. 

This term has been the focus of attention since its inception over 40 years 
ago. While computationally simple, several objections have been raised 
against the assumptions that this term represents [2, 10, 18, 22, 60, 61, 691. 
The main argument against this formulation is that the thermal equilibra- 
tion lengths for precapillary arterioles and postcapillary venules are quite 
small and thus the blood reaches the capillary bed at the surrounding tissue 
temperature. All heat exchange between blood and tissue will occur in the 
larger vessels of the microcirculation before the arterial feed blood reaches 
the capillaries, and similarly, after blood leaves the capillary bed there can 
be some heat exchange with the surrounding tissue. These objections and 
the alternative representations of the effect of blood perfusion on tissue 
heat transfer will be discussed later in this review. 

Assuming angular symmetry and neglecting axial gradients in tissue 
temperature along the length of the limb, the Pennes equation is 

where Q, is the uniform rate of metabolic heat generation in the tissue layer 
and k is the thermal conductivity of the tissue, also assumed to be uniform. 
Under steady state conditions, the solution to this second order ordinary 
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differential equation for the tissue temperature as a function of radial 
position in the limb is found using a convective boundary condition at the 
skin surface, radial position R :  

(3 .5)  

where h is the combined convection/radiation heat transfer coefficient 
between the skin surface and the surroundings, which are at temperature T,. 
The solution of the Pennes bioheat equation in these radial coordinates is 

+ Go 7; = Al,(ra) + - Qm 

cb 
(3.6) 

where 

Because the perfusion rate, o, could not be directly measured, Pennes 
varied this parameter in his model to fit his experimental data to the 
solution above for a fixed, representative ambient temperature and meta- 
bolic heating rate. In addition, the uniform arterial blood temperature KO 
was taken to be 36.25 "C, which corresponded to a temperature 0.16 "C 
higher than the mean maximum temperature measured in the experiments 
described above. Pennes found that his theory best fit the experimental data 
for a perfusion rate of between 1.2 and 1.8ml blood/min/lOOg tissue, 
which is a typical range of values for resting human skeletal muscle. If the 
equilibration factor k' was not considered to be zero (complete thermal 
equilibration between the venous blood and surrounding tissue) but 0.25 
(partial equilibration), then the values of o needed to fit the experimental 
data were higher, in the range 2-3 ml blood/min/100 g tissue. A comparison 
between the predictions of the Pennes model using various perfusion rates 
with experimental measurements is shown in Fig. 2. 

The results of Pennes were the first predictions of a continuum mathe- 
matical model of bioheat transfer in humans. A fundamental conclusion 
from this study was that the rate of metabolic heat generation in the muscle 
was not sufficient to heat this tissue to the measured values. In order to 
qualitatively match experimental data to theory, the warming effect of 
blood flow in the perfused tissue layer had to be added to the metabolic 
heating. His model predicted that the maximum tissue temperatures would 
exceed the ambient tissue temperature by only 2-3 "C if the effects of 
perfusion were omitted from the bioheat equation. This parametric study 
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V~0.00030,h,*0.0001 

V.0.00025, h,.0.0001 

' V' 0.00020, h,.0.0001 

DEPTH IN CY. 

Rc. 2. Mean experimental temperature profile (solid) and theoretical temperature profiles 
(dashed) based on the Pennes bioheat equation. The parameter V represents perfusion rate in 
grams blood per cubed centimeter tissue per second, and h,  is the metabolic heat source in 
calories per second per cubed centimeter tissue. (Reproduced from [46], with permission.) 

was invaluable in delineating the heating effects of blood and metabolism. 
For typical steady state resting conditions, only 25% of the limb heat loss 
to the environment was produced by tissue metabolic heating. Pennes also 
observed the effect of blood flow on the shape of the temperature profile. 
He noted that as the perfusion rate to the tissue increased, the bioheat 
equation predicted that the temperature profiles across the forearm would 
become flatter and their level would approach the fixed arterial tempera- 
ture, Go.  In contrast, earlier calculations in 1938 by Gagge e ta / .  [27], which 
neglected the effects of blood perfusion, overestimated the magnitude of 
the temperature gradient in the periphery of the muscle layer. 

2. Analysis by Shitzer and Kleiner [53] 

A general analysis of the Pennes bioheat equation and the solution given 
above by Eq. (3.6) was performed by Shitzer and Kleiner in 1976 [53]. 
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Their computations showed that the steady state temperature profile in 
the deep regions of the tissue, i.e., radial positions smaller than one-half 
the radius of the limb, was relatively insensitive to variations in the 
physiological parameters that appear in the solution to the Pennes equation, 
namely the perfusion rate o and metabolic heating rate Q,, as long as 
these two parameters changed in the same proportion. These theoretical 
studies also revealed that the computed temperatures in the deep regions of 
the tissue were not strongly dependent upon the rate of heat transfer from 
the surface of the cylindrical limb as characterized by the heat transfer 
coefficient h.  As constructed, the Pennes model assumes that the arterial 
blood bathes the tissue at the same temperature everywhere in the limb cross 
section. In the deep region of the muscle layer, blood perfusion dominates 
the heat transfer because the surface boundary is relatively far away. The 
temperature difference between the blood and tissue in the deep region is 
relatively uniform, resulting in a temperature profile that is flat in the core 
of the limb. Shitzer and Kleiner also showed in their general analysis that 
the role of the perfusion term was that of a source in the cooler peripheral 
tissue and a sink in the warm core region of the cylindrical limb model. As 
the perfusion rate increases, the arterial blood acts like a heat source in a 
larger portion of the deep tissue. In the theoretical limit of infinite perfusion 
rate, the Pennes equation predicts that the entire cylindrical limb model will 
be at a uniform temperature equal to Go. 

3. Model Shortcomings 

Pennes acknowledged the inherent simplicity of his bioheat transfer 
model, for example, assuming uniform metabolic heating, perfusion rate, 
and thermal conductivity [46]. In addition, venous return from the distal 
part of the forearm could have an important effect on the tissue tempera- 
ture of the deep muscle in which these vessels were located. To observe this 
effect, he suggested that a series of experiments in which the distal venous 
return was occluded would be useful. However, the underlying assumption 
of the model regarding the isotropic perfusion heat source itself was not 
mentioned as a possible source of error. As explored by many researchers 
in subsequent studies, this assumption is critical to the formulation of 
Pennes’s equation. Without consideration of the vascular architecture, 
especially the countercurrent arrangement of the circulatory network and 
the gradually tapering characteristics of the vascular bed, the bioheat 
equation of Pennes neglected important anatomical features of the circu- 
latory system that can have a profound effect on tissue bioheat transfer. 

While the Pennes model has been applied with great success as an 
analytical tool with which blood perfusion rate can be determined from 
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experimentally measured local temperature gradients and heat flows, 
the basic formulation of the model is still questionable. The shortcomings 
of the Pennes model and improvements that have been proposed to  
overcome the deficiencies inherent to this model have been the subject of a 
large body of research over the past 40 years. An examination of these 
studies yields some very interesting observations, including not only the 
flaws and limitations of the Pennes model, but also the applicability of 
this relatively simple bioheat equation as an analytical tool for bioheat 
transfer, 

These successes include implementation of the Pennes model in 
mathematical simulations of procedures such as therapeutic hyperthermia 
for the treatment of cancer [15, 16, 23, 26, 33, 42, 49, 541, estimation of 
tissue perfusion by heat clearance methods [9, 14,21, 25, 35, 43,47,48], as 
well as in whole body thermal models of man under conditions of 
environmental stress [28, 31, 32, 57, 651. Many of these formulations have 
yielded realistic predictions, in some cases with experimental verification. In 
most of these theoretical studies, the temperature of the blood that perfuses 
the tissue is assumed to be uniform and fixed at the body core temperature. 
Some of the whole body thermal models mentioned above include a spatial 
variation in blood temperature between body segments [16, 651. However, 
within a body segment, the Pennes assumptions are usually applied. While 
many of these simulations were in good agreement with experimental data 
obtained clinically, the questionable assumptions upon which the Pennes 
equation are based continue to be examined. In many of these cases, the 
neglect of heat transfer in the prearteriole and postvenule blood vessels of 
the circulatory system can be used to explain the discrepancy between 
experimental measurements and Pennes bioheat equation-based theoretical 
calculations. 

IV. Wulff Continuum Model [69] 

A. CRITICISM OF THE PENNES MODEL 

In 1974 a paper by Wulff appeared which was one of the first papers that 
directly criticized the fundamental assumptions of the Pennes bioheat 
equation and provided an alternate analysis [as]. Three different aspects of 
the Pennes theory were faulted. Consider the unsteady version of the 
Pennes equation in its original form, before any assumptions are made 
regarding the thermal equilibration of blood in the microcirculation: 

C3T 
PC = V * (kv7;) + WCp(T,,in - T,,out) + Qm 

P at (4.1) 
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where &,in and T,,o,t represent the temperature of the blood upon entering 
and leaving the tissue region via the arteriole-venule network. Wulff states 
that one flaw in the Pennes equation is that it contains both local and global 
control systems. The capacitance term on the left-hand side of Eq. (4.1), 
along with the diffusion and metabolic heat generation terms on the right- 
hand side of Eq. (4. l), all represent local control volume heat sources, that 
is, net heat deposition at a specific location in the tissue at a given time. The 
perfusion term, as represented by the second term on the right-hand side 
of Eq. (4,1), however, is what Wulff terms a “global” heat source. The 
Pennes perfusion term in Eq. (4.1) models heat exchange between the blood 
and tissue on an overall, or global, basis, where the heat deposited in the 
tissue per unit volume tissue is proportional to the total, or global, change 
in the blood temperature accomplished during its travel through the tissue 
medium. Such a combination of local and global control volume terms is 
physically inconsistent. 

The second major criticism by Wulff is that the original form of the 
Pennes equation, as shown in Eq. (4,1), actually contains three unknown 
temperatures: the tissue temperature T ,  the entrance arterial temperature 
T,,in, and the exit venous temperature r,out. Based upon this equation, 
there are three different materials occupying the same space at any given 
location and time: the solid tissue as well as two flowing blood streams, 
arterial and venous. Therefore two more equations must be written and 
then solved simultaneously with Eq. (4.1) in order to completely define the 
system both mathematically and physically. 

Another faulty aspect of the Pennes equation according to Wulff is the 
representation of the heat transfer between the solid tissue and moving fluid 
blood streams. Since blood is moving through the tissue, it may convect 
heat in any direction, not just in the direction of the local tissue temperature 
gradient. In addition, the magnitude of the heat transfer between the 
solid tissue and flowing blood should be proportional to the temperature 
difference between these two media, rather than between the two blood 
stream temperatures, G,in and T,,o,t. Based upon this principle, the 
convective transport of energy by the flowing blood is 

where hb is the specific enthalpy of the blood, o‘ represents the solid 
angle across the control surface of the blood vessel, represents the entire 
solid angle, equal to 4n, and q, represents a local mean apparent blood 
velocity. This energy flux by the flowing blood will either augment or 
diminish the effect of the conductive energy flux on overall tissue heat 
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transfer. Wulff argues that the isotropic perfusion term that appears in the 
Pennes equation does not account for the convective heat transfer by the 
flowing blood described in Eq. (4.2). Another inconsistency in the Pennes 
theory, according to Wulff, is that the presence of arterial and venous 
blood streams within the solid tissue medium renders the existence of the 
continuous gradients in tissue temperature implied by the conduction term 
in Eq. (4.1) physically impossible. Wulff also points out that the actual 
tissue contains a microcirculatory network in which a single stream of 
arterial blood flows through capillaries and in this manner gradually 
becomes converted into a single stream of venous blood over a finite space. 
The Pennes perfusion term, however, essentially assumes that two different 
blood temperatures, the inlet arterial and outlet venous temperatures, 
coexist at the same spatial location within the tissue continuum. 

Wulff’s three areas of criticism are directed towards the inherent 
physical incongruities of the original form of the Pennes equation, before 
any assumptions are made regarding the thermal equilibration effects 
in the microcirculation. The approximations of thermal equilibration in the 
microcirculation are also shown to be faulty. Wulff contends that the 
simplification of the perfusion heat source term from its form in Eqs. (3.1) 
and (4.1) to Eq. (3.3) is arbitrary since the blood will be thermally 
equilibrated with the surrounding tissue before it reaches the capillary level. 
While it is reasonable to equate the blood and tissue temperatures, Wulff 
states that it is arbitrary to choose only the venous blood stream and not the 
arterial blood as the fluid stream that becomes equilibrated with the tissue. 
Of course, if both arterial and venous blood temperatures are equilibrated 
with the tissue only a very small distance from the main supply artery 
and drainage vein, the magnitude of the Pennes perfusion term in Eqs. (3.1) 
and (4.1) will be zero. Wulff concludes his physical arguments by stating 
the form of the Pennes perfusion term in Eq. (3.4), which had been used 
in previous studies of bioheat transfer, was the result of numerous 
deficiencies in its derivation. 

B. DERIVATION OF AN ALTERNATE BIOHEAT EQUATION 

1 .  Anisotropic Blood Flow Term 

In response, Wulff presents his own formulation which corrects the 
physical violations in the Pennes model described above. In conjunction 
with Eq. (4.2), the energy flux at any point in the tissue region is 
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The specific enthalpy of the blood h b  is formulated to account for both the 
sensible enthalpy plus the enthalpy of reaction that is represented by the Q, 
term in Eq. (4.1): 

r Tb D 

hb = cP(T2) dT2 + f_ + AHf(l - E )  
I To P b  

(4.4) 

where P is the system pressure, AH, is the specific enthalpy of the metabolic 
reaction, E is the extent of reaction, and and & are the reference and 
blood temperatures, respectively. Since the energy capacitance of the tissue 
in the control volume is equal to the negative gradient of the net energy flux 
into the control volume, the energy balance equation can be written as 

a7; 
P at 

pc - =  - v . q  (4.5) 

Substituting Eq. (4.4) into Eq. (4.5) 

Note that Eq. (4.6) neglects the fact that the heat capacity product pcp on 
the left-hand side should actually be taken as a volume average for the tissue 
and blood properties since both media comprise the control volume under 
consideration. However, the volume of blood relative to tissue in the 
control volume is considered small enough so that the contribution of the 
blood to the heat capacity of this mixture may be neglected. Using the 
continuity condition, Eq. (4.6) can be simplified for a system with no 
fluid accumulation. This is a reasonable assumption if the effect of lymph 
accumulation and drainage is neglected. By setting the divergence of the 
product ( P b V h )  to zero, neglecting the mechanical work term PIP,, and 
assuming constant physical properties within the control volume, Eq. (4.6) 
becomes 

(4.7) 
PC - = k V Z ? ; - p b V , ( c p V T , - A H , V E )  87; 

p at 

The metabolic reaction term can be substituted with its usual form since the 
last term on the right-hand side of Eq. (4.7) is equivalent to Q, . 

2. Complete Blood- Tissue Equilibration 

Wulff assumes that the gradient in blood temperature in Eq. (4.7) is equiv- 
alent to the gradient of the surrounding tissue temperature, an assumption 
that will be encountered later in this review as other mathematical models 
of bioheat transfer are introduced [61,63]. Actually, in his formulation 
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Wulff simply assumes that Tb is equivalent to I;  in the tissue control volume 
based upon the argument that blood in the microcirculation will be 
thermally equilibrated with the surrounding tissue not far from its exit from 
the main arterial supply blood streams. According to Wulff, this concept 
was overlooked in Pennes formulation, which he claimed arbitrarily chose 
the venous blood to be thermally equilibrated with the surrounding tissue, 
while a similar argument could be made for the arterial blood as it leaves the 
main supply vessel and enters the tissue via the microcirculatory network. 
The final form of the “correct” form of the bioheat equation as derived by 
Wulff is 

C. SOLUTION TO THE WULFF MODEL-PARAMETERIZATION AND 
COMPARISON WITH PENNES 

The main difficulty in solving this energy balance equation is in the 
evaluation of the local blood mass flux Pb o h .  This determination is more 
complicated than the evaluation of the volumetric perfusion bleed-off 
parameter, o, which appears in the Pennes equation. For a relatively simple 
geometry, however, this mass flux term may be reduced to an easily 
managed form. For a one-dimensional slab geometry, there is only one 
nonzero component of blood velocity, u,. At steady state with zero 
metabolic heating, this one-dimensional problem is easily solved. Wulff 
enforces a fixed temperature boundary condition at the two boundaries of 
the slab, and solves both Eq. (4.8) and the Pennes bioheat equation. In 
dimensionless form, the fundamental difference between the two equations 
is readily apparent. The Pennes bioheat equation reduces to 

cb L2 

k 
a0 = 0, a = 

a2e 
a2z 
-- 

The energy balance in Eq. (4.8) under these same conditions is 

P b  cb ux , b = -  -- b - = O  
a2e ae 
a2z az k 

(4.9) 

(4.10) 

where L is the length of the slab, z is a dimensionless position within the 
slab, and 6 is the dimensionless temperature (T (x )  - I;(O))/(T(L) - I ; (O) ) .  
Both Eqs. (4.9) and (4.10) are subject to the fixed temperature boundary 
conditions e(0) = 0 and e(1) = 1. Note that Eq. (4.9) was derived by setting 
the boundary value temperature T(0) equal to the value of T,, in the 
perfusion term of the Pennes bioheat equation. This dimensionalization 
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transforms the Pennes bioheat equation from a nonhomogeneous to  a 
homogeneous differential equation which can be solved independently of 
the arterial blood temperature T,, . 

The solution to Eq. (4.9) for the conditions stated above is 

sinh(\/;fz) 
sinh(\j;;) ’ O r z s l  e =  

while the solution to  Eq. (4.10) under these same conditions is 

(4.11) 

(4.12) 

Solutions to both the Pennes and Wulff models are shown in Fig. 3. 
With zero blood flow, the temperature profile is linear according to  both 

the Pennes and Wulff models, since under these conditions o and u,, are 
both zero and thus the tissue slab is a one-dimensional pure conduction 
field. As the blood flow increases from zero, the temperature profiles 
become skewed away from a linear profile. It is important to  realize that 
for a constant value for v,, the ratio of the coefficient a and b has a 
magnitude of unity because the products op ,L  and Pb u, both represent the 
mass flux of blood flowing through the tissue. However, Wulff shows 
that while the Pennes bioheat equation is insensitive to the direction of 
blood flow (the isotropic perfusion parameter o is by definition always 
positive), the predictions of Eq. (4.12) will include the consequences of 
blood flow direction. Thus the coefficient a that appears in the Pennes 
bioheat equation is always positive, while the coefficient b in Eq. (4.12) 

L 

FIG. 3. Temperature profiles across a one-dimensional slab as predicted by the Wulff 
bioheat equation. The parameter b, defined in Eq. (4.10), corresponds to the perfusion velocity 
of blood in the tissue. (Reproduced from [as], with permission, 0 1974 IEEE.) 
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may be positive or negative, depending upon the direction of blood velocity. 
This directionality effect is missing from the Pennes bioheat equation and 
is clearly a major deficiency of this model. The degree of error introduced 
into the Pennes equation computations depends mainly on the magnitude of 
the perfusion bleed-off parameter, o. It is interesting to note that under 
resting conditions, the value of the coefficient a across a 5-cm-thick slab of 
skeletal muscle tissue is on the order of 5-10. For the case a = b = 10, 
the dimensionless temperatures predicted by the Pennes and Wulff models 
at the midpoint of the one-dimensional slab are 0.1974 and 0.0067, respec- 
tively. Also, with b = -10, the dimensionless temperature at this same 
midpoint location as predicted by the Wulff model is 0.9933, which is four 
times greater than the value predicted by the Pennes bioheat equation. 
Clearly, directionality of blood flow plays an important part in the heat 
transfer within the perfused tissue. 

The study by Wulff represented one of the earliest investigations of 
alternatives to the Pennes bioheat equation. One of the major criticisms of 
the Pennes model, the omission of blood flow directionality, was shown to  
be of great significance because the errors introduced by this omission were 
on the same order as the effect of blood flow itself. Wulff also concluded 
that blood flow could be properly modeled only if spatial variations in the 
local blood velocity where known. For the one-dimensional slab case 
described above, no variations were considered. For the in vivo case, 
however, these considerations of blood flow variations become very 
complicated. Finally, Wulff revealed that there were several physical 
inconsistencies inherent to the Pennes bioheat equation, including the 
combination of local and distributed heat source terms. The control volume 
approach to analyzing bioheat transfer between solid tissue and flowing 
blood within the solid tissue that was used by Wulff in 1974 was similarly 
implemented in series of studies by Klinger [37-391. 

V. Klinger Continuum Model [37-391 

In 1974, Klinger [37-391 presented an analytical model of heat diffusion 
with convection that did not use the Pennes assumptions and was concep- 
tually similar to that of Wulff. The formulation of Klinger was developed 
primarily to describe thermal clearance experiments in which tissue 
perfusion rate was related to the rate at which deep tissue temperature 
changed during point source heating [47,48]. Klinger argued that in utilizing 
the Pennes model to interpret these heat clearance experiments, the effects 
of nonunidirectional blood flow were being neglected and thus significant 
errors were being introduced into the computed results. In order to correct 
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this lack of directionality in the formulation, Klinger proposed that the 
convection field inside the tissue should be modeled based upon the in vivo 
vascular anatomy. A combination of “convection multipoles” could be 
used to represent the thermal influence of the blood vessels, based upon 
not only the magnitude of the blood flow, but also its direction. 

A. GOVERNING EQUATIONS 

convection, conduction, and heat source terms: 
The differential energy balance for this system contains capacitance, 

a T  
pc- + PCV * V T ,  = k, V 2 T ,  + Q 

at 
This model assumes that the tissue physical properties are constant and the 
flowing blood is incompressible so that (V * v) = 0. This equation is similar 
to that derived by Wulff [69], except it is written for the more general case 
of a spatially and possibly temporally nonuniform velocity field v and heat 
source Q .  This general heat transport equation can be written in terms of 
spatially dimensionless quantities as 

(5 .2 )  

where the v* is the fluid velocity relative to a characteristic velocity, Pe is 
the Peclet number for flow based upon the characteristic velocity, V2 is a 
dimensionless Laplacian operator based upon the characteristic length L ,  
and r is the time relative to a characteristic time, L2/a ,  where a is the tissue 
thermal diffusivity. Note that this time characterization is equivalent to a 
Fourier number of unity. Klinger introduces another dimensionless velocity 
V, which is the product of the Peclet number and v*. In this manner, the 
energy balance equation is written as 

QL2 l y T , + - = o  
kt 

(5.3) 

where ly is the dimensionless operator [V2 - (Pe v* * V) - a/&]. Assuming 
an instantaneous point source, the heat source term QL2/k, is replaced by a 
Dirac delta function that vanishes everywhere except at the location r ,  . 

B. GREEN’S FUNCTION SOLUTION 

equation above. The solution to Eq. (5.3) is given by the relationship 
Klinger uses a Green’s function formulation to solve the differential 

(5.4) lyG,(r, r l ,  r ,  TI)  = d(r - r 1 M r  - TI)  
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where the solution of G, is the Green’s function, which depends upon rl  , 
the nondimensional location of the point source (normalized by length L ) ,  
the general position r, which is a nondimensional radial position, and time 
7.  The time r1 represents the time when the point source is turned on. For 
a small heat source, the surrounding tissue can be considered an infinite 
medium, and the heat flux will therefore be zero as r approaches infinity. 
The value of rl , however, must be finite. The initial conditions are based 
upon a uniform temperature field inside the tissue before time ‘51. Equation 
(5.4) is solved according to the conditions 

Gv(r, r l ,  7 ,  rl) = 0 T < r1 ( 5 . 5 )  

(5.6) 
a 
- Gv(r, r l  , 7 ,  7J = 0 ar 

r -, co 

For the case of a noninfinite tissue medium, the boundary condition 
described by Eq. (5.6) can be modified to account for the heat flux at the 
tissue surface using a superposition method with the method of images. 
Klinger shows that the solution to the nonhomogeneous heat conduction 
aspect of this problem, with no convection effects, has the form 

U r ,  r) = - IQd3rl 1’ GV(r, r17 r ,  rl)Q*(rl , 71) d7l (5.7) 
0 

where Q* = QL2/k, .  The symbol C2 stands for the control volume of 
integration. Klinger calculates the Green’s function by treating the effect of 
convection near the point source as a small perturbation of the temperature 
field in the absence of convection. This can be justified by considering that 
the temperature gradient near the point source is very large during a 
time interval that is much smaller than the characteristic time for heat 
conduction, L 2 / a  During this period, the conduction heat flow is much 
more significant that the effect of convection and the Green’s function can 
be written 

where GvO is the Green’s function for heat transfer by pure conduction and 
Gvl is the perturbation due to heat transfer by convection. Substituting this 
expression for the Green’s function into the governing energy balance 
equation (5.4) and utilizing the condition that 

Gv = Gv0 + GV, ( 5 . 8 )  

V2 - - GvO = 6(r - rl)6(r - rl): [ -  aa,l 
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Neglecting the small convection term 0 VGVI, the solution for G,, is given 
by Eq. (5.7). Consequently, the convection term Gv2 = (0 * VGV1) can be 
considered a small perturbation term in the solution for G v l ,  and so on, 
implying that the exact solution to Eq. (5.4) is an infinite series of terms 

m 

GJr, rl , ‘5, T A  = c GV&, rl T ,  r l )  (5.10) 

Klinger uses similar perturbation methods to show that the series solution in 
Eq. (5.10) is appropriate not only for the time intervals much smaller than 
the characteristic time, but also for all times r. The expressions for Gvi are 

i = O  

(5.11) 

The solution to Eq. (5.11) with boundary conditions (5 .5)  and (5.6) is the 
Green’s function for pure conduction heat transfer with no convection. 

(5.13) 
exp[-(r - r1)’/4(r - r , )]  

[47r(r - r1)13’2 
Gvo(r - r l ,  r - r , )  = 

The i # 0 terms in Eq. (5.10) are computed successively using the (i - 1)th 
solution for each Green’s function. Klinger shows that the term on the 
right-hand side of Eq. (5.12) can be interpreted as a distributed heat source 
that influences the pure conduction field described by the Green’s function 
G,, . While each calculation of G is performed without including the effect 
of convection in the operator on the left-hand side of Eq. (5.12), the 
right-hand side acts as a higher order correction. In this manner, the effect 
of convective heat transfer due to the circulatory system is treated as a 
correction term in the perturbation solution, and the total convective heat 
transfer between tissue and flowing blood is modeled as an infinite number 
of successively smaller magnitude heat sources that may be both spatially 
and temporally variable. The terms in this infinite series are uniformly and 
absolutely convergent, as shown by Klinger [37]. 

The temperature field is thus determined by implementing Eq. (5.7) to 
solve for GVi, which represents the temperature distribution inside the 
nonhomogeneous conduction field 

G V I  . = - 1’ 1 Gvo(r - r2, r - ~’)0(r’, T ~ )  - VGv+1)(r2, r , ,  r l ,  r2) d3r2 dr2 

(5.14) < T I  , n  
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Klinger shows that by combining Eqs. (5.10) and (5.14), the Green’s 
function solution can be written as 

G, = Gvo(r - rt, T - ?@(r2, T ~ )  - 

(5.15) 

C. COMPUTATION OF MEAN TISSUE TEMPERATURE 

In order to relate the predictions of this analytical solution to experi- 
mental measurements, Klinger defines a macroscopic temperature based 
upon a spatial average of the microscopic temperatures predicted by his 
mathematical model over a finite volume. This averaging procedure is 
necessary because the experimental measurements are made with tempera- 
ture probes that have some finite dimension, and an associated spatial 
resolution, and thus measure temperatures over a macroscopic length scale. 
The spatial averaging procedure also reduces the amount of information 
regarding vascular geometry that is required to solve the analytical model. 
The details of the vascular architecture can be replaced by a repeating 
pattern of vessels in the tissue that are represented mathematically by a set 
of convection multipoles. 

1. Multipole Models of Blood Perfusion 

based on an average Green’s function [38] 
Klinger computes a mean temperature over a finite volume of tissue 

(G , )  = - 1 G,d3r 
vo v, 

(5.16) 

Substituting Eqs. (5.10) and (5.14) into the definition above 

1 “  

V, i = o  n 
(G , )  E- c lv0d3r1:,1 Gvo(r- ~ z , T -  ~ , ) q i ( r z , r , , r , , ~ z ) d ~ r z d ~ ~  

(5.17) 

where qi represents the heat source effect of perfusion based on the 
(i - 1)th Green’s function 

4; = -W2 rd . vGv(i-l)(rz r1 ~ 2 )  (5.18) 

The volume V, is chosen to be on the order of the volume resolution of the 
temperature probe. Outside the control volume V,, the contribution of 
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convection to the temperature field inside the volume &, can be written as 

where V J  represents the volume of the region outside 6 in which blood 
flow influences the temperature profile inside volume V,. 

Klinger uses the qi perfusion correction terms to account for variations in 
vascular geometry and their effect on the mean tissue temperature field. By 
introducing the vector (! to relate spatial positions inside each volume 6 to 
r, the Green’s function solutions for the temperature field inside the control 
volume Vo can be written in terms of a series of heat multipoles, whose 
moments represent the influence of the blood flow convection effect, The 
components of the resulting moment tensor depend upon the geometry of 
the flow field inside the volume elements 5 .  The mean temperature 
distribution predicted by this method is valid as long as the characteristic 
distance between adjacent blood vessels is smaller than the length scale of 
the control volume V, over which the mean temperature is determined, i.e., 
the temperature probe’s spatial resolution. Under this condition, the mean 
temperature distribution is given by the Green’s function solution 

m 

Gv(r, rl , 5, TI) = C 
i = O  

where ( = r2 - r2,0j with r2,0, representing the position of the center of the 
element j with volume 5 ,  the parameter v is one of the three primary 
spatial directions, and I is the order of the moment tensor described below. 

The tensor term on the right-hand side of Eq. (5.20) as derived by Klinger 
is a moment tensor representation of the blood flow velocity field in the 
tissue based upon the local perfusion field in the volume element 5. The 
moment, of order I ,  depends upon the blood velocity and geometry: 

/ 3  \ 

(5.21) 

When the moment order is zero, the effect of blood flow on tissue tempera- 
ture is one-dimensional, and the tensor specifies a monopole moment. With 
I = 1, the tensor yields the dipole moments in each of the three spatial 
dimensions. 
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2. Variations in Vascular Geometry 

patterns are determined by the relationship 
Klinger shows that the multipole moments of several different convection 

3 

u, n Cknkd3t (5.22) 
I = n ,  + n2 + n3 

n l I n 2 , n 3  k = l  

for the tissue element with volume 5 containing a repeating pattern of 
blood vessels. Klinger considers three different flow arrangements, one 
cocurrent, and two countercurrent, as shown in Fig. 4. In case 1 ,  flow is 
cocurrent and the monopole moment, from Eq. (5.22), is 

or 

(5.23) 

(5.24) 

where is the volume flow rate in all vessels that are embedded in the 
tissue element, A is the length of the side of the cube over which the average 
tissue temperature is determined, and L is the characteristic length of the 
macroscopic temperature field. The nondimensional volume of the cubic 
element 5 is (A/L)3. In this manner, Klinger illustrates that the monopole 
moment for this vascular arrangement is equivalent to an average flow 
velocity based upon the volume flow rate per unit area normal to flow. 
Similar evaluations are made for the multipole moments related to cases 2 
and 3. 

In all three vascular arrangements, Klinger observes that the multipole 
moment is directly proportional to the total volumetric flow rate in the 
blood vessels within a repeating tissue element. The influence of each of 
these multipole moments is influenced also by the ratio (ML.), which is less 
than unity, to some power between unity and 5 ,  depending on the moment 
order and the vascular geometry. The multipole moments for the cocurrent 
arrangement described by case 1 are on the order of magnitude of (AIL) or 
smaller, while for the countercurrent flows in cases 2 and 3 the multipole 
moments vary with or smaller. Thus Klinger concludes that the effect 
of countercurrent flow on tissue heat transfer is at most a second order 
effect. Klinger also points out that the monopole moment for all cases is 
independent of the number density of blood vessels in the tissue as well as 
the velocity profile inside the vessels and depends instead on a D'Arcy type 
mean blood flow velocity as described by Eq. (5.24). The higher order 
multipole moments, however, depend on the vessel density. The influence 
of blood flow on tissue heat transfer will decrease as the number density 
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FIG. 4. Three different vascular arrays considered by Klinger. The "x" signifies a vessel 
with flow countercurrent to a vessel with no X. (Reproduced from [39], with permission of the 
publisher, Plenum Publishing Corporation.) 

of blood vessels increases for a fixed total blood flow rate I? Klinger 
shows that, in the limit of an infinite vessel density, his mathematical model 
predicts that the countercurrent arrangement will have no effect on tissue 
heat transfer since the flow paths of all adjacent vessels will over overlap 
and cancel each other. 

Klinger derived the influence of the countercurrent flow arrangement on 
tissue temperature by considering case 2 in Fig. 4, in which the blood flow 
effect can be modeled as a dipole (i.e., I = 1 in Eq. (5.20)), neglecting the 
higher order effect of the octopole moment (Le., I = 3). Note that in this 
case the monopole and 24-pole moments are both zero due to symmetry. 
The tissue temperature profile can be written for this case as 
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where the dipole moment tensor in Eq. (5.25) is determined from Eq. (5.22): 

(5.26) 

By assuming that the integral in Eq. (5.26) is the same for each element j ,  
i.e., the dipole moment is independent of rz ,  Klinger derives a new expres- 
sion for the Green’s function solution for the tissue temperature profile: 

Gdr, r l ,  T, tJ  = - r l ,  T - r l )  - I;, cVo(r - r2, - tz) dt2 d3r2 

Klinger rewrites this equation as a differential equation for the Green’s 
function solution as a function of space and time using the governing 
equations (5.4) and (5.8): 

(7, V)vGv(r, r l ,  r,  rl)< d3< - - = 6(r - rl)6(t - t l )  

5 ‘ S  (5.28) 

aGV 
a t  

v2Gv + - 

3.  Calculation of an Effective Thermal Conductivity 

Equation (5.28), the energy balance equation for the tissue element 5 ,  
contains an integral term for the effect of convective perfusion on tissue 
heat transfer which contains a tensor of second derivatives of the Green’s 
function solution [39]. Klinger shows that these tensor terms may be 
combined with the first term on the left-hand side of Eq. (5.28)’ which 
represents the pure conduction heat transfer. By defining the tensor 
elements, 

a , .  = - (&Dj + i j j ~ i ) d 3 (  (5.29) 

Klinger introduces an anisotropic effective conductivity for the tissue into 
the energy balance equation (5.28)]: 

IJ 5 l I  

(5.30) aGV 
ar 
- = VkeffVGV - 6(r - r l )6( t  - t l )  

where 

(5.31) 
1 + a11 a12 

keff = a21 + a22 a23 ( a31 
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Based upon the definition of aii in Eq. (5.29), the effective conductivity 
tensor in Eq. (5.31) is symmetric about the diagonal, as required. The 
influence of blood flow on tissue heat transfer in this case depends on the 
magnitude of the dipole moments contained within Eq. (5.29). For the 
countercurrent flow configuration in Fig. 4, Klinger shows that the dipole 
moment is given by 

(5.32) 

(5.33) 

where N is the characteristic spacing between adjacent vessels. According to 
this mathematical model, the change in tissue conductivity due to counter- 
current blood flow will depend on the blood flow rate in the countercurrent 
vessels and the number density of the vessels. 

Klinger’s mathematical model was significant in that it introduced the 
concept of an enhancement of tissue thermal conductivity due to the 
presence of flowing blood in the tissue via a conduction tensor. Using the 
Green’s function solution, Klinger quantified the importance of vessel 
number density, blood perfusion rate, and vessel architecture on this 
enhancement of tissue conduction. His most important observations were 
( I )  the temperature field was most influenced by the geometric arrangement 
of the blood vessels, (2) a cocurrent flow structure results in a mean 
velocity analogous to the D’Arcy velocity that enhances conductivity in the 
flow direction, while the enhancement is independent of vessel density, 
and (3) a countercurrent system of blood vessels influences the tissue 
conductivity in an anisotropic manner and the magnitude of this effect is 
inversely proportional to the vessel density and proportional to the total 
volumetric flow rate of blood in the tissue. These results were important 
because they emphasized the importance of the geometry and flow direction 
of the microcirculation, which was not considered by the Pennes bioheat 
transfer model. The use of an enhanced conductivity tensor in the bioheat 
transfer model that Klinger introduced would be applied several years 
later by Weinbaum and Jiji in their mathematical model of bioheat 
transfer [34,61]. Prior to the work of Weinbaum and Jiji, however, Chen 
and Holmes [22] developed a bioheat transfer model that included the 
effects of blood flow direction and vessel orientation relative to the tissue 
and examined the anisotropic effect of blood flow on a “perfusion” 
conductivity that was similar in concept to the effective conductivity derived 
by Klinger [39]. 
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V1. Continuum Model of Chen and Holmes [22] 

The modeling work of Chen and Holmes [22] employs a continuum 
description of the tissue-blood control volume in a manner similar to that 
of Wulff [69] and Klinger [39]. This is justified by the presence of a large 
number of blood vessels in a tissue volume whose characteristic dimension 
is much larger than those of the individual blood vessels. The effect of these 
numerous small blood vessels on the heat transfer of the tissue is based 
upon a statistical grouping of the vessels and is incorporated into the 
physical parameters that govern the system heat transfer. The theoretical 
relationship between the microvascular network structure and tissue 
thermal properties and perfusion bleed-off rate into the tissue is examined 
in this study. Similar to the analysis of Wulff and Klinger, the bioheat 
transfer analysis of Chen and Holmes is a microvascular model, with the 
effects of large blood vessels with diameters on the order of 1 mm or greater 
omitted from the energy balance. The presence of these large vessels in this 
type of model would violate the continuum assumption that the length scale 
of the tissue temperature variations is much larger than the dimensions of 
the individual blood vessels. 

A. GOVERNING EQUATIONS 
Chen and Holmes divide the control volume occupied by the tissue and 

blood vessels into two separate volumes: one consisting of solid tissue only, 
with differential volume d K ,  the other, with differential volume d h ,  
comprised of only blood in the vascular space within the blood vessels. 
Although there is some mass transfer between the blood and the tissue 
control volumes, the fluid lost from the vascular space is assumed to be 
compensated for by the flow of lymph from the tissue to the vascular space. 
Since the flow rate of lymph is slow compared to the flow of blood in the 
vascular space, it is reasonable to assume that all lymph that remains in the 
tissue space has the same temperature as the tissue itself and is therefore 
indistinguishable from the tissue. 

For a relatively small vascular control volume d V, , and a total control 
volume dV that is small compared to the scale of macroscopic temperature 
gradients, yet large compared to the scale of microscopic temperature 
gradients, volume-averaged local temperatures can be defined for both the 
tissue (subscript “s” for solid tissue volume) and blood: 

T d v  
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Using these local mean temperatures, an energy balance equation can be 
written for both the tissue and vascular spaces. In the solid tissue space 

where dQk, is energy gain in the control volume by conduction, dQbs is 
energy gain in the control volume from the blood compartment, and dQ, 
is energy gain from metabolic heating. The energy balance equation for the 
vascular space is similar, but with an added term due to the bulk fluid flow 
in this space: 

(6.4) i a T J  
d b  P c  Cb ar = dQkb - dQbs + pcb Tv ds 

, s  

where dQkb is energy gain by conduction in the vascular space, and the 
integral term represents the convective energy gain due to blood flow at 
velocity v across the surface area S.  The addition of Eqs. (6.3) and (6.4) and 
division of the result by dV yields an energy balance for the continuum 
tissue mace: 

where p, c, and 7; represent the local mean density, specific heat, and 
temperature of the continuum tissue based upon a volume average 

Note that as the ratio of blood to total tissue volume dvb/dV approaches 
zero, the tissue temperature 7; approaches the solid medium temperature T, . 

1. Conduction and Metabolic Terms 

The thermal capacitance term on the left-hand side of Eq. (6.5) is 
balanced by three sources of heat in the total control volume: conduction, 
metabolic, and convective heat gain. The conduction gain can be written in 
terms of an effective thermal conductivity, kk, which represents the thermal 
transport associated with molecular energy diffusion of the combined tissue 
and vascular spaces: 

(6.9) 
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Note that this effective thermal conductivity is not associated with the bulk 
flow of blood in the vascular space, an effect that is considered later in the 
development of this model. Because the vascular volume is much smaller 
than the tissue volume, Chen and Holmes assume that the value of kk is 
equal to the thermal conductivity of the solid tissue medium, k,. 

While the metabolic heat deposition per unit volume term, &, is straight- 
forward in its significance, the perfusion, or bulk flow term, q ; ,  must be 
further examined. 

2. Blood Flow Terms 

The integral equation 

(6.10) 

is complicated by the condition that the temperature T within the integral 
is not simply equal to  G , as was assumed by the bioheat transfer model of 
Wulff [69]. In Wulff ’s formulation, complete thermal equilibration 
between blood and solid tissue medium was assumed at all locations within 
the control volume. Under these conditions, the ratio of the integral in 
Eq. (6.10) to the tissue volume reduced to the familiar convection term 
P b C b V  * VT. In this case, a single equation was derived by Wulff [69] to des- 
cribe solid tissue temperature variations with spatial position without 
including the effect of spatial variations in the blood temperature. 

In contrast, Chen and Holmes [22] consider the effect of blood flowing 
within the tissue matrix at a temperature different than the tissue tempera- 
ture. The convective heat flow across a differential surface area dS is 
written by Chen and Holmes as the sum of the contributions of individual 
blood vessels crossing this surface: 

P b  Cb T V  dS 3 P b  Cb C Gi V;A; Sin 6; (6.11) 

where A i  is the cross-sectional area of the ith vessel, 6; is the angle formed 
between the vessel axis and the surface area dS, vi is the mean velocity in 
the blood vessel, and Tbi is the flow-weighted, or “mixing cup” average 
temperature of blood inside the vessel: 

SdS i 

(6.12) 

(6.13) 
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a. Thermal Equilibration Effects in the Microcirculation. Evaluating the 
summation in Eq. (6.11) is difficult due to the unknown mean blood 
temperature in the blood vessel. At this point in their model formulation, 
Chen and Holmes examine the effect of thermal equilibration length on this 
mean blood temperature as blood passes through the circulatory system 
[22]. The thermal equilibration effect between flowing blood and the 
surrounding solid tissue medium will be used to evaluate the perfusion heat 
transfer term, qb, as described by Eqs. (6.10) and (6.11). 

Based upon a one-dimensional steady state analysis, where the time 
rate of change of the mean blood temperature is small compared to the 
convective effect, the governing energy balance equation for the blood 
temperature Tbi as a function of axial position x is 

(6.14) 

where Ui represents the overall heat transfer coefficient between the flowing 
blood and surroundings, and Pi is the perimeter of the blood vessel. The 
solution to  this first order equation is an exponential mean blood tempera- 
ture profile along the length of the vessel. 

Chen and Holmes define the thermal equilibration length of a blood 
vessel as the length of blood vessel over which the temperature difference 
between the blood and the solid tissue surroundings decreases by a factor e.  
Based upon the solution to Eq. (6.14), the thermal equilibration length is 

A i P b C b  ui 

Leq = #yipi (6.15) 

When L,, is small relative to the spatial scale of solid tissue temperature 
gradients, then the mean blood temperature can be considered equal to the 
solid tissue temperature T, . Conversely, when L,, is large compared to  the 
characteristic length of the solid tissue temperature gradients, the mean 
blood temperature will be independent of T,. This second condition was 
not considered in the bioheat transfer model of Wulff [69]. 

In order to calculate the values of the thermal equilibration lengths in 
various regions of the circulatory system, it is necessary to  estimate the 
overall heat transfer coefficient Ui . The thermal resistance represented by 
the inverse of Ui is comprised of two components: conduction resistance 
through the tissue and convective resistance in the blood. Using a cylindrical 
geometry, the former depends upon the logarithmic ratio of the charac- 
teristic distance of the tissue from the blood vessel wall to the radius of 
the blood vessel itself. Chen and Holmes suggest that this characteristic 
distance is half the distance between adjacent vessels. The convective 
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resistance is inversely proportional to the Nusselt number, Nu. Therefore 
the overall resistance is 

1 ri ln(/i/rj) rj +- ui kS kb NU 
_ -  - (6.16) 

where l i  is the distance midway between adjacent vessel walls. Chen and 
Holmes argue that because the Nusselt number for fully developed tube 
flow is on the order of 4, and because the ratio l i / r i  is typically on the order 
of 10 in the microcirculation, it is reasonable to assume that the overall 
thermal resistance is dominated by the conduction term since the ratio 
of the thermal conductivities of the blood and solid tissue is near unity. 
Subsequently, Chen and Holmes combine the effect of these two resistances 
into a parameter A which represents the combined effects of blood and 
solid tissue thermal conductivities, vascular geometry, and blood velocity 
on the overall blood-tissue resistance. 

kS ui = k, where A = ln(li/ri) + - 
Ari k b  NU 

(6.17) 

Assuming the ratio l j / r i  is 10 and the Nusselt number is 4, the value of A 
will be approximately 3. The expression for thermal equilibrium length in 
Eq. (6.15) is transformed for a circular blood vessel to 

(6.18) 

Using the vascular data from a 13-kg dog shown in Table I [13,64], 
Chen and Holmes utilized Eq. (6.18) to compute the thermal equilibration 
lengths of various blood vessels in the circulatory system. Because the blood 
velocity in the circulatory system is roughly proportional to the vessel radius 
[64], the thermal equilibration length depends on approximately the third 
power of the radius, which is a very high sensitivity. For the larger vessels 
such as the aorta and large arteries and veins, the thermal equilibration 
length is on the order of meters, implying that blood in these large vessels 
can be at a mixing cup temperature that is much different than the sur- 
rounding tissue temperature. Conversely, the thermal equilibration lengths 
of the blood vessels that comprise the microcirculation, i.e., the arterioles, 
venules, and capillaries, are on the order of microns, which implies that 
blood flowing in these small vessels will be completely equilibrated with the 
surrounding tissue. These equilibrium effects are shown schematically in 
Fig. 5 .  

The main assumption of the Pennes formulation, that all tissue-blood 
heat transfer occurs in the capillary bed, is clearly contradicted by this 
result. Chen and Holmes also estimated that the terminal arteries, with a 
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TABLE I 
VASCULAR PARAMETERS [22] 

% Vascular rj xej kd  /k, " 
,,/XCj" ( I / B S  10) j Vessel volume (flm) (m) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 

Aorta 
Large artery 
Arterial branch 
Terminal branch 

Arteriole 
Capillary 
Venules 
Terminal veins 
Venous branch 
Large veins 
Vena cava 

3.30 
6.59 
5.49 
0.55 
I .oo 
2.15 
6.59 

12.09 
3.30 

29.67 
24.18 
5.49 

5000 
1500 
500 
300 
175 
10 
4 

15 
750 

1200 
3000 
6250 

190 
4 
0.3 
0.08 
0.009 
5 x 10-6 
2 x lo-' 
2 x 10-6 
0. I 
0.3 
5 

190 

0.002 
0.05 
0.3 
0. I 
1 

400 
6000 
800 

0.1 
0.3 
0.04 
0.002 

0.1 
2 

15 
4 

10 
0.04 
0.00008 
0.002 
4 

14 
2 
0.09 

'Symbols: 070 vascular volume: compartment percent of total vascular volume. 
xej: equilibrium length. 
b / x e j :  vessel length/equilibration length. 
k,/k, : perfusion thermal conductivity/solid tissue thermal conductivity. 

_---- Ts ) To 

Ts, - .-=(--- Mixing 
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/AORTA\ L R M i A L  cApiLuw E w N A L  'YENA 
\ 

ARTERIAl VEIN CAVA 
BRANCH 

FIG. 5.  A schematic view of the blood temperature throughout the systemic circulation. 
Blood at arterial temperature T, is distributed to solid tissue that is either warmer (q.,) or 
cooler (Kb) than T,. Thermal equilibration occurs after the terminal arterial branches ( j  = 5). 
Past the venules ( j  = 8). blood temperature changes are due to mixing effects in venous 
drainage branches. The vena cava blood returns to the heart at T, . (Reproduced from [22], 
with permission of the Publisher, the Annals of the New York Academy of Sciences.) 
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diameter of approximately 0.2-0.5 mm, would have a thermal equilibration 
length equal to their own length, and on the venous side, terminal veins with 
a diameter of 0.3-0.8mm would similarly be as long as their thermal 
equilibration length. 

Using a length scale analysis, Chen and Holmes illustrated an important 
new concept in bioheat transfer modeling: all of the tissue-arterial blood 
heat exchange must occur along the circulatory network after the blood 
flows through the terminal arteries and before it reaches the level of the 
arterioles, and consequently there can be no significant heat transfer 
between tissue and capillary blood. Downstream from the arterioles, the 
blood temperature will be equal to the surrounding tissue temperature until 
the blood reaches the terminal veins. Here the thermal equilibration length 
of the veins is significant compared to their length, and there will be little 
heat transfer between the solid tissue and venule blood. Mixing effects, 
however, will be important as cool blood from the cutaneous regions drains 
into the veins. Chen and Holmes also show that the thermal equilibration 
constant k', used by Pennes to account for any incomplete thermal 
equilibration between tissue and blood in the capillaries (see Eq. (3.2)), 
must be zero, since the thermal equilibration length of these vessels is 
several orders of magnitude smaller than their actual length. 

b. Subdivision of Perfusion Term. Applying these results, Chen and 
Holmes were able to determine the microvascular contributions to tissue 
heat transfer as represented by the term in Eq. (6.11). Following the flow of 
blood along a vessel axis position x ,  the differential energy balance equation 
is given by Eq. (6.14). Substituting the expression for vessel thermal 
equilibration length: 

Tb (6.19) 

Equation (6.19) is solved by setting the mean blood temperature at the 
entrance to the circulatory network, i.e., x = 0, equal to the core arterial 
temperature, To, typically 37 " C .  Note that L,, and T,  are both functions 
of x, the location along the circulatory network. In order to solve the 
problem, Chen and Holmes introduce a Fourier integral representation for 
the solid tissue temperature T,: 

T,(x) = T,(xo) + j C(rl) sin rl(X0 - x)  drl (6.20) 

where xo represents the location downstream from position x where the 
vessel crosses the control surface dS, q is the spatial wavenumber, and the 
coefficient C(q) is determined according to the given solid tissue tempera- 
ture distribution T,(x). The sinusoidal variation in T,(x) is justified by the 

a0 

0 
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structural periodicity of the blood vessels embedded in the tissue. The blood 
vessels can be depicted as an array of identical repeating units crossing the 
control surface at the position x,. Based upon the linear property of both 
the governing energy balance equation (6.19) and its boundary condition 
at x = 0, Chen and Holmes separate the solution to the energy balance 
equation (6.19) into three independent parts: 

&(x) = TI + T, + & (6.21) 

where three “subproblems” are defined: 

Leq- dT, = -TI 
dx 

(6.22) 

T,(xo) = T2 (6.23) 

where 

subject to the following boundary conditions 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

The T, subproblem represents the thermal equilibration of the blood with a 
uniform solid temperature, while the subproblem is just the contribution 
of the solid tissue temperature to the blood temperature, and the T3 
subproblem models the thermal equilibration of the blood with the spatial 
variations in the solid tissue temperature. Note that if the solid tissue 
temperature is assumed independent of x ,  i.e., a constant, the solution for 
Tb is just (T, + G), as the coefficient C will be zero, and subsequently the 
temperature & will be zero. 

The solution for temperature T, is the exponential relationship 

T, = [KO - T,(xo)] exp - - dx (6.28) 

The integral in Eq. (6.28) can be estimated by considering the thermal 
equilibration length of the various blood vessels in the circulatory system. As 
blood passes through the major arteries into the large arteries, the thermal 
equilibration lengths are so large that the integral remains essentially at 

( !’::eq ) 
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zero. In this part of the circulation, TI will be equivalent to the temperature 
difference [T,, - T(x,)]. Past the terminal arteries, however, the 
magnitude of this integral will increase substantially, so that TI will 
approach zero in this region of the microcirculation between the terminal 
arteries and arterioles. 

At this point Chen and Holmes show that the perfusion heat source term 
in the blood-tissue composite energy balance equation (6.5), q;, can be 
interpreted based upon the above results for the first subproblem. For a 
control volume dV much smaller than the scale of macroscopic temperature 
gradients in the tissue, the large arteries and veins will have little influence 
on the value of 41,. The effect of blood flow on tissue temperature around 
these large vessels can be accounted for by examining heat transfer between 
the tissue and blood in the vessels on an individual basis. At some genera- 
tion of branching within the vascular network, however, this procedure 
becomes too complex for an individual analysis. At this location, the j*th 
generation of branching, the blood temperature is defined as TZ. Note 
that T,* will not be equal to Go,  the blood temperature as it enters the 
circulatory system in the aorta. The difference between T,* and T,, will 
depend upon the blood flow rate, vessel wall heat transfer coefficient, and 
vessel-tissue geometry and architecture. 

Chen and Holmes next argue that if the control volume dV is large 
enough that it contains the portion of vascular network that includes all 
vessels between the terminal arteries and arterioles, then for the first sub- 
problem the blood that leaves this control volume will be at the solid tissue 
temperature. Under these conditions, the summation of (vjAj sin d j )  in 
Eq. (6.11) is equivalent to the total volume of blood that flows through 
the tissue per unit time. Consequently, the integral in Eqs. (6.10) and (6.1 1) 
can be simplified so that qJ, for this subproblem looks quite similar to the 
Pennes perfusion heat source: 

4;(1) = mfPbCb(Ta* - c)  (6.29) 

Chen and Holmes emphasize the differences between the perfusion heat 
source term in Eq. (6.29) and that of Pennes in Eq. (3.3). First, the term 
wj* is the total perfusion bleed-off to the tissue only from the micro- 
vessels past the j*th generation of branching. The Pennes term o includes 
bleed-off from all generations of the vasculature. Second, the perfusion 
heat source term derived by Chen and Holmes is proportional to the 
temperature difference (7': - T,),  which, as stated above, is not the same as 
(To - T,). According to their calculations, the difference between these 
two temperature differences can be on the order of 10-50%, based upon the 
thermal equilibration lengths of these large vessels compared to their actual 
lengths. 
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The second subproblem simply states that the blood temperature is equal 
to the solid tissue temperature everywhere in the control volume. This was 
the assumption made by Wulff [69] in his derivation of the bioheat 
equation, as discussed above. In this case, Chen and Holmes show that the 
perfusion term described by Eqs. (6.10) and (6.11) can be reduced to the 
familiar convective heat transfer term 

where &Vp is the mass flux of blood flowing through the tissue. This 
expression for the tissue-blood heat transfer and its derivation from 
Eq. (6.10) is identical to that described by Wulff and described in 
Eq. (4.8). 

The third subproblem involves variations in 5 due to a temperature 
difference between the blood and the various components of T,(x). The 
solution to Eq. (6.25) when combined with the periodicity prescribed by 
Eq. (6.27) is 

(6.31) 

Since q(0 )  represents the net temperature difference between the blood 
and the solid tissue at x = x,, there is added heat transfer between the 
blood and tissue due to the contribution of this temperature component 
with wavenumber q. This extra contribution is included in the integral 
in Eq. (6.10) which quantifies the total heat transfer between blood and 
tissue due to bulk flow. Chen and Holmes also show that the amplitude 
of this wave component, C(q), is related to the temperature gradient at  
x = x,, so that the effect of the term TJO) on 41, is analogous to that 
of a heat conduction term. In this manner, the effect of blood flow can 
be characterized by a perfusion or effective thermal conductivity, k,  . 
c. Effective (Perfusion) Conductivity. The analysis of kp is simplified by 
assuming that the differential surface area is normal to the temperature 
gradient and that the tissue is isotropic. In this case k, can be considered 
a scalar quantity. Under these conditions, Chen and Holmes derive the 
relationship between the perfusion conductivity and the vessel thermal 
equilibration length, wavenumber, blood velocity, and vascular geometry. 
Using the definition 

q;,t)i = -Vkp.viVT (6.32) 

and the definitions of C(q), q ,  L,, , along with Eqs. (6.10) and (6.1 l), Chen 
and Holmes show that the value of the effective or perfusion conductivity 
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for the wavenumber q in blood vessel i is 

(6.33) 

where Ai is the area fraction of the ith blood vessel. 
Chen and Holmes note several important characteristics of their derived 

perfusion conductivity parameter, k, , First, for the smaller vessels of the 
microcirculation the quantity L&q2 in the denominator of Eq. (6.33) is 
negligible and the value of kp,i  is independent of wavenumber. Second, the 
perfusion conductivity depends significantly on the vessel inclination angle, 
but not on the direction of flow (positive or negative) in the vessel, as the 
velocity term ui is squared. However, the contribution of the blood vessel to 
the perfusion heat transfer does depend on the direction of the temperature 
gradient. As a result, tissue with an isotropic array of blood vessels will 
yield an isotropic increase in conduction due to the blood flow. Using the 
superposition principle to sum the influence of all the individual vessels 
and wavenumbers, Chen and Holmes define an overall perfusion thermal 
conductivity k, by the expression 

qL(3) = -Vkp VT (6.34) 

While the value of k, is necessarily a complicated function of vessel 
geometry and architecture, estimates can be made of the individual vessel 
kPi values by approximating the wavenumber as the inverse of the vessel 
length, and using vessel number density measurements to compute Ai.  In 
addition, the inclination angles ei can be approximated from vascular 
anatomical studies. For example, a terminal branch artery with a radius of 
0.03 cm and velocity of 7.4 cm/s will have a thermal equilibration length 
of approximately 8.0cm, assuming a value of 3 for A. Since the number 
density of a 600-pm terminal branch artery in the systemic circulation is 
approximately 1 vessel/cm2 tissue, the area fraction A is 2.8 x Using 
Eq. (6.33) with an inclination angle of 90" (Le., vessel axis normal to the 
control surface), and a wavenumber of 1 cm-' (Le., the inverse length of a 
terminal branch artery), the resulting value of the perfusion conductivity is 
1.5 W/m-"C, which is three times the thermal conductivity of solid tissue. 

Based on Eq. (6.33), the effect of perfusion on tissue heat transfer will 
be important in blood vessels larger than the terminal artery branches and 
terminal venous branches, where thermal equilibration lengths are much 
larger than the lengths of the vessels themselves. In the small vessels of 
the microcirculation, the thermal equilibration lengths of the arterioles, 
venules, and capillaries are so small that the contribution to tissue conduc- 
tivity by perfusion is negligible. Chen and Holmes emphasize, however, 
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that despite the large ratio of perfusion conductivity to tissue conductivity 
in the larger vessels of the circulation, it is preferable to analyze the heat 
transfer around these large vessels on an individual basis rather than in a 
continuum model. The low number density of these large vessels is not 
compatible with the assumptions of a continuum model where the size of 
the individual blood vessels is assumed to be much smaller than the length 
scale of the macroscopic temperature gradients. 

B. FINAL BIOHEAT EQUATION 

Substituting the three components of perfusion heat transfer derived in 
the three subproblems and described by Eqs. (6.29), (6.30), and (6.34) into 
Eq. (6.5), Chen and Holmes derive a “new” bioheat equation: 

_. 
(6.35) 

where T,  , the temperature of the solid tissue component of the tissue-blood 
continuum model, is replaced by 7;, the volume-weighted continuum 
temperature (see Eq. (6.6)).  This replacement is reasonable as long as the 
ratio of vascular volume to total (tissue plus blood) volume is small, 
i.e., dVb/dV Q 1. Similarly, since the vascular volume is much smaller than 
the tissue volume, Chen and Holmes assume that the thermal conductivity 
of the total control volume is equal to that of the solid tissue medium. 
Equations (6.7) and (6.8) can be used to determine the values of p and c, 
which are also volume-weighted quantities. 

Several new terms appear in this energy balance equation for a tissue 
control volume perfused by flowing blood. The second term on the right- 
hand side of Eq. (6.35) models the enhancement of thermal conductivity in 
the tissue due to the flow of blood within blood vessels with thermal 
equilibration lengths of the same order of magnitude as the lengths of the 
blood vessels themselves. Chen and Holmes show that this term acts like an 
“eddy” conduction due to the random flow of blood through the tissue. 
The third term on the right-hand side of Eq. (6.35) looks very much like the 
familiar Pennes perfusion heat source term, but, as mentioned above, T,* is 
the temperature of the arterial blood in the first generation that can be 
legitimately represented in the continuum model, the j*th generation. 
Similarly, uj’ is the blood perfusion rate only from blood vessels beyond the 
j*th generation. In order to model bioheat transfer from the larger vessels 
upstream from the j*th generation, Chen and Holmes propose that these 
arteries and veins should be examined on an individual basis as macroscopic 
entities. The fourth term on the right-hand side of Eq. (6.35) is the usual 
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convection transport term that accounts for the effect of the direction of 
blood flow within the tissue on tissue heat transfer. This concept was 
included in the earlier model of Wulff [69]. 

In the absence of the anatomical data that are needed to determine kp, 
COT, and vp, the bioheat equation of Chen and Holmes can be reduced to 
the familiar Pennes bioheat equation. Neglecting the second and fourth 
terms on the right-hand side of Eq. (6.35), and assuming that the equation 
applies to all vessels in the circulatory network, i.e., T,* = T,, and o? = w ,  
the Chen and Holmes bioheat equation simplifies to the Pennes bioheat 
equation. When applied to a lumped parameter model, where conduction is 
neglected inside the control volume and consequently there are no spatial 
variations in temperature within a tissue region, the governing bioheat 
transfer equation simplifies further to a balance between thermal capaci- 
tance and the two heat source terms: perfusion and metabolic heating. 

The model of Chen and Holmes [22] offered a new perspective on bioheat 
transfer in several manners. While the bioheat transfer model of Wulff [69] 
introduced the concept of bulk convective transport into bioheat transfer 
analysis, Chen and Holmes [22], as well as Klinger [39], generalized this 
effect to a much greater extent. Rather than simply assuming complete 
thermal equilibration in all vessels of the circulation as Wulff had done, 
Chen and Holmes implemented the concept of thermal equilibration length 
into their analysis to account for bulk flow convection heat transfer. As a 
result, their model defined an effective thermal conductivity in order to 
quantify the enhancement of thermal conductivity in the tissue by the 
convection transport associated with blood flow. Similarly, Klinger [39] 
derived an effective thermal conductivity that was dependent on the blood 
vessel spatial arrangement. 

Another important aspect of the bioheat transfer model of Chen and 
Holmes [22] was the observation that thermal equilibration between blood 
and tissue takes place in the terminal branches of the arteries and the 
arterioles. Chen and Holmes demonstrated that the main assumption of 
Pennes’s bioheat equation, no precapillary heat transfer, was not possible 
due to this equilibration effect in the microcirculation. While their bioheat 
transfer equation contains a term similar to that of the Pennes bioheat 
equation, T,* and oJ are defined differently, so that the microcirculatory 
perfusion heat transfer in Eq. (6.35) accounts for heat exchange only within 
the region defined by the continuum model. 

An aspect of bioheat transfer that was not examined by Chen and Holmes 
was the effect of countercurrent heat transfer between closely spaced, 
paired arteries and veins. The bioheat transfer model of Chen and Holmes 
considered the heat transfer between essentially isolated vessels and the sur- 
rounding tissue, without accounting for countercurrent exchange between 
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adjacent vessels in the microcirculation. Klinger [39] included the effects 
of countercurrent flow in his continuum model in order to quantify the 
importance of flow direction on the perfusion multipole solution. This 
continuum model, however, did not investigate the variation of blood 
temperature within the blood vessels as a function of vessel geometry and 
the heat transfer between blood flowing in vessels and the tissue that 
surrounds these vessels. These phenomena have been considered in mathe- 
matical models of bioheat transfer that may be categorized as vascular, as 
opposed to continuum, models [3]. In vascular models, the heat transfer 
between tissue and blood is examined by deriving the governing energy 
balance equations between individual blood vessels and the surrounding 
tissue [3]. The next section of this review will present several important 
vascular models, which provided a theoretical basis for the interpretation of 
bioheat transfer in countercurrent flow systems. 

The thermal significance of countercurrent flow of closely spaced arteries 
and veins positioned alongside each other was first observed over 100 years 
ago by Claude Bernard [8]. This structure has been observed in many parts 
of the circulatory system, including retia in the limbs of many animals and 
paired artery-vein networks in the fins of whales. In addition, the deep- 
seated arteries and veins that supply blood to and drain blood from the 
extremities of many animals, including humans (e.g., the femoral artery 
and vein in the upper leg), are similarly arranged in a countercurrent 
manner. The countercurrent arrangement is a mechanism by which heat 
losses from the body to the environment are reduced. As warm arterial 
blood flows towards an extremity such as a limb or tail, it exchanges heat 
with cooler venous blood which flows in the opposite direction, back 
towards the body core. In this manner, arterial blood can be supplied to the 
extremity without significant heat loss to the surroundings [45]. 

Another view of the countercurrent heat exchange mechanism involves 
the mean tissue temperature of the extremity. As heat is shunted from the 
artery to the countercurrent vein via this mechanism, the arterial and mean 
tissue temperatures in the limb or tail are reduced since some of this heat 
would be otherwise transferred to the surrounding tissue. In this manner, 
the temperature difference between the extremity and the environment, 
which is the driving force for heat loss from the extremity, is reduced. This 
heat conserving property of the countercurrent mechanism can be bypassed 
during periods of thermal stress such as exercise by shunting blood from the 
deep veins to the cutaneous venous system. Without significant blood flow 
in the deep veins, the countercurrent heat exchange is reduced and, as a 
result, heat can be shed from the body. Control of venous blood flow is 
accomplished by the thermoregulatory system according to the thermal 
state of the whole body [45]. 
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VII. Countercurrent Bioheat Transfer 

A. EARLY STUDIES 

1. Bazett [5-71 

One of the earliest examinations of countercurrent heat exchange in the 
circulatory system was performed by Bazett and co-workers [5-71 in a series 
of experimental studies. Longitudinal temperature gradients were measured 
in the large arteries and veins of the limbs of humans. Under conditions of 
very low ambient temperature, the axial gradient in the limb artery was 
shown to be an order of magnitude greater than under normal ambient 
conditions. When venous return in the limbs was interrupted by occlusion 
the temperature of the artery increased significantly, indicating that a 
portion of the arterial temperature gradient was due to heat transfer with 
the parallel vein. Bazett and colleagues proposed the concept of venous 
shunting to the periphery, whereby heat could be readily shed from the 
body by reducing countercurrent exchange in the deep vasculature and 
at the same time directing venous blood to the cutaneous circulation 
where the venous blood is in close proximity to the surroundings. These 
qualitative examinations of thermal physiology by Bazett and colleagues 
were significant in bringing attention to the role of countercurrent heat 
exchange in bioheat transfer. These studies by Bazett did not attempt to 
mathematically model the effects of countercurrent heat exchange, but 
within several years these concepts were incorporated by other physiologists 
in their research. 

2. Scholander [SO-521 

The work of Scholander and colleagues [50-521 was an early example of 
mathematical modeling of biotransport phenomena in countercurrent 
systems. In 1954, Scholander and van Dam [50,51] presented a quantitative 
study of gas diffusion in the swim bladder of fishes in which the mass 
transfer of oxygen in countercurrent systems was examined theoretically. 
These theoretical studies were useful in providing the basis for a subsequent 
report by Scholander and Krog [52] which applied the same concepts of 
transport in countercurrent systems to an investigation of heat transfer 
between paired arteries and veins in the vascular bundles of sloths. 

The theoretical countercurrent heat transfer model of Scholander and 
Krog [52] assumed that the axial temperature profiles in both the paired 
artery and vein were linear, with a constant temperature difference between 
the artery and vein along their axes. This is the “perfect” countercurrent 
heat exchange assumption, whereby all heat that leaves the warm fluid 
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enters the cool fluid with no heat exchange with the surroundings. Under 
these conditions, Scholander and Krog showed that the heat transfer from 
the warm fluid to cool fluid per unit length tube, Q’, is simply proportional 
to the product of the tube flow rate and the slope of the temperature profile. 
This relationship can be written as 

where m is the fluid mass flow rate, (qn - Tout) is the total fluid tempera- 
ture change along the length of the tube with length L (the same for both the 
warm and cool fluids according to the perfect countercurrent assumption), 
A T  is the constant temperature difference between the warm and cool fluid, 
and UA‘ is the overall heat transfer coefficient per unit length for the 
countercurrent system. 

In order to verify this simple analysis, Scholander and Krog built an 
experimental apparatus which attempted to physically model the counter- 
current heat exchange system. Two 1-cm-diameter thin-walled copper tubes 
were used to simulate an artery-vein pair. Warm water passed through one 
tube and after a 10-cm distance passed through a copper spiral which was 
immersed in a cold water bath. The cooled water emerged from the spiral 
and flowed through the second tube in a countercurrent direction along- 
side the tube containing the flowing warm water. The two tubes were 
bundled together and insulated from the surroundings. Temperature 
profiles along the axes of both tubes were measured at various flow rates 
and the results seemed to corroborate the theoretical analysis shown in 
Eq. (7.1). Scholander and Krog subsequently used their model to evaluate 
the experimental measurements of temperatures taken in the vascular 
bundles in sloth extremities. 

A linear temperature gradient was measured in an isolated sloth rete that 
was much greater in magnitude than the temperature gradient measured by 
Bazett et al. in the human brachial artery [6]. This result supported 
Scholander and Krog’s hypothesis that an efficient countercurrent heat 
exchange system would yield a steep temperature gradient in the blood 
vessel, thus reducing heat transfer from the limb to the surroundings. This 
concept was further supported by experimental measurements of the rete 
temperature gradient when the venous flow was occluded. In this case, 
the temperature gradient along the length of the rete was significantly 
decreased, demonstrating the importance of countercurrent heat exchange 
in these vascular bundles. Additional experiments by Scholander and Krog 
showed that the rate of rewarming an ice-chilled sloth limb was significantly 
slower than that of other animals which did not have retia in their limbs 
[52]. This effect was explained by the rete countercurrent system which 
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supplies arterial blood to the extremities that are substantially cooler than 
the core body temperature. Other measurements revealed that the flow rate 
in the rete was reduced during extremity cooling which resulted in a large 
temperature gradient along the length of the limb due to the increased 
efficiency of the countercurrent heat exchange mechanism under conditions 
of low blood flow rate. 

B. ANALYSIS OF MITCHELL AND MYERS [45] 

These combined theoretical and experimental studies by Scholander and 
Krog were valuable in demonstrating the importance of countercurrent heat 
exchange in bioheat transfer. While their model was simple, it provided a 
reasonable guide to the factors governing this heat-conserving phenom- 
enon. Their theoretical model was substantially improved, however, in a 
study by Mitchell and Myers [45] that appeared 10 years later in 1968. 
Mitchell and Myers criticized the model of Scholander and Krog on several 
grounds. First, the assumption of perfect countercurrent exchange is not the 
general case for all artery-vein pairs and represents an idealization of their 
heat exchange. Second, the use of copper tubes by Scholander and Krog 
to physically model the artery and vein added a significant conductive 
heat transfer component along the length of the tube walls that does not 
exist in vivo. 

1. Governing Equations 

The analysis of countercurrent heat exchange in animals by Mitchell 
and Myers mathematically modeled this important bioheat transfer 
phenomenon in a more general manner than that presented by Scholander 
and Krog. The steady state model of Mitchell and Myers, shown schemat- 
ically in Fig. 6, was derived under the following conditions. First, a 
one-dimensional vessel was assumed so that artery and vein temperatures 
depended only upon the axial location of blood in the vessel. Radial 
variations within the vessel were neglected. Second, heat conductance 
between the artery and vein, as well as the individual vessels and the 
environment, were considered constant with axial position in the blood 
vessels. Another assumption of this model was that there was no significant 
vessel branching or perfusion bleed-off from the artery or to the vein. 
Thus the mass flows of blood in the artery and vein were considered equal 
and independent of axial position. Finally, the effect of metabolic heat 
generation in the tissue was neglected compared to the countercurrent heat 
transfer terms. For convenience, all tissue and blood physical properties 
were considered constant. 
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FIG. 6 .  A schematic view of countercurrent heat exchange between vessels and the 
surroundings used in the mathematical model of Mitchell and Myers. (Reproduced from [45], 
the Biophysical Journal 8, 897-91 1, by copyright permission of the Biophysical Society.) 

Separate energy balance equations are written for the differential control 
volumes of both the artery and vein. The differential energy balance for a 
segment of the artery of length dx is 

mhu = mha(x+dx) + [(uA')a(T, - L) + (uA'),(T, - 731 (7.2) 

where ha is the enthalpy of the arterial blood, m is the mass flow rate 
(assumed constant with x-location), and (UA'), and (UA'), are the overall 
heat transfer coefficient-surface area per unit length products for total 
heat transfer between the countercurrent artery and vein, and artery and 
surroundings, respectively. Assuming that the enthalpy of the arterial blood 
is the product of the blood specific heat and temperature, i.e., no pressure 
variations, Eq. (7.2) can be written as 

dT, mcb- = (LIA'),(T, - T,) + (UA'),(T, - T,) dx (7.3) 

The differential energy balance for the venous fluid is similarly 

(7.4) 

Note that the left-hand side of Eq. (7.4) is written with a negative sign 
because flow is countercurrent and the venous flow is defined to be in the 
negative x-direction. The two boundary conditions used to solve Eqs. (7.3) 
and (7.4) are 

dT, 
dx -mc,- = (UA'),(T, - T,) + (UA'),(T, - T,) 

T , ( O )  = T,, and T,(L) = T,(L) (7.5) 
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The position x = L physically represents the “turnaround” point for the 
artery and may be viewed schematically as the region of the microcircula- 
tion where the arteriole, venule, capillary, and tissue temperatures are all 
completely equilibrated. 

Mitchell and Myers nondimensionalize the problem using the definitions 

and z = x / L .  Note that the parameters N,,  N, ,  and Nt are equivalent to the 
number of “heat transfer units” that characterize countercurrent heat 
exchangers. Based upon these definitions, the governing equations and 
boundary conditions for the countercurrent flow system are 

(7.9) 
do, 

-- = Nc(B, - 0,) - Nv8, dx 

O,(O) = 1 and @,(I) = &(I) (7.10) 

These two first order ordinary differential equations are easily solved 
analytically by using Eq. (7.8) to write 0, as a function of ea and its 
derivative and substituting this expression into Eq. (7.9). The result is a 
second order equation for 0, as a function of x. The final solution is 
obtained by using the boundary conditions in Eq. (7.10) to  solve for the 
dimensionless artery and vein temperature profiles 

z C, cosh C1(l - z)  + sinh Cl(l - z)  
0, = exp(N, - Na)-  

2 C, cosh C,  + sinh C,  

z C, cosh C1(l - z)  - sinh C1(l - z )  
8, = exp(N, - Na)-  

2 C, cosh C ,  + sinh C,  

(7.1 1) 

(7.12) 

where 

and 
C ,  = + d ( N ,  + N, + 4Nc)(N, +N,) 

(7.13) 

C, = d(Na + N, + 4Nc)/(N,  + N,) 
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2 .  Model Solutions 

Mitchell and Myers present the solutions to this model under two 
different conditions that each resemble anatomical in vivo conditions. In 
the first case, the artery and vein are considered to be paired within a tissue 
cylinder such that there is symetry with respect to the cylinder axis and 
therefore the thermal conductance between the artery and environment 
(UA’), is equal to the thermal conductance between the vein and the 
environment (UA’) , .  This structure resembles the major supply artery and 
vein pair that are embedded in the core of an extremity (e.g., the paired 
femoral artery and vein in the upper leg). This situation is also approxi- 
mated by the rete structure observed in the sloth extremity by Scholander 
and Krog in which a bundle of arteries and veins are grouped together in the 
core of the limb. Under these conditions, the dimensionless temperature 
profiles depend only upon two parameters N, and N,. 

C2 cosh C1(l - z )  + sinh C,(1 - z)  
C2 cosh C ,  + sinh C ,  

8, = (7.14) 

C, cosh C1(l - z)  - sinh C,(1 - z )  
C2 cosh C ,  + sinh C,  

9, = (7.15) 

where 
C1 = N,d1 + 2(N,/NV) and C2 = dl + 2(Nc/(Nv) (7.16) 

Figure 7 shows the profiles for countercurrent systems for various ratios of 
N,/N, with N, equal to zero, 0.1, and unity. Note that N, = 0 represents 
the limiting case of mc,/L %+ (UA’), ,  in which there is no temperature 
change along the length of the artery or vein and thus no countercurrent 
heat transfer between the adjacent vessels. As N, increases from zero to 
0.1, temperature gradients along the length of the vessels can be seen, but 
there is still relatively little heat lost to  the surroundings and thus only a 
small degree of blood temperature change. For large values of N, the 
temperature change in the artery can be significant, which provides a large 
driving force for heat transfer between the artery and countercurrent vein. 
Whether or not adequate reheating of the blood occurs depends on the ratio 
N,/N,. For values of N,/N, greater than 10, this rewarming is significant. 
Mitchell and Myers also point out that for the cases where N,/N, is low 
(i.e., less than unity), there is still some heat transfer between the artery and 
vein which acts to  increase the return temperature of the venous blood 
relative to the case where there is no countercurrent heat transfer at all 
(N, = 0). Because the total heat loss from the extremity is proportional to 
the difference between inlet artery temperature Go and the return venous 
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FIG. 7. Normalized arterial and venous blood temperature profiles along the length of a 
limb or rete with a symmetrical vascular arrangement of type 1 that implies N, = N,, 
as modeled by Mitchell and Myers. The parameters No and N, correspond to N, and N , ,  
respectively. (Reproduced from [45], the Biophysical Journal 8, 897-91 1, by copyright 
permission of the Biophysical Society.) 

temperature T,(O),  the Mitchell and Myers model successfully demonstrates 
that any finite amount of countercurrent heat exchange will reduce heat loss 
from the extremity to the surroundings [45].  

The second case examined by Mitchell and Myers models the vascular 
arrangement in the fins of porpoises and tails of some animals. The artery 
is completely surrounded by smaller veins so that the heat transfer between 
the artery and the surroundings is negligible relative to the heat exchange 
between the artery and vein. Interestingly, this arrangement is similar to 
that in the human digits, where cutaneous veins surround the main supply 
artery. Setting the parameter N, to zero, the Mitchell and Myers model 
depends again in the two parameters N, and N,: 

z C2 cosh Cl(l  - z )  + sinh C1(l - z )  
C, cosh C1 + sinh C1 

(7.17) 0, = eXP(Nv5) 

z CzcoshCl( l  - z )  - sinhCl(l  - z)  
C, cosh C1 + sinh CI 

(7.18) 0, = ex,(Nv5) 

where 

0.2 

NV 
C ,  = ~ d 1  + 4(Nc/Nv)  and C2 = d l  + 4(Nc/Nv)  (7.19) 
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FIG. 8.  Normalized arterial and venous blood temperature profiles along the length of 
a fin with the vascular arrangement of type 11 that implies N ,  P 0, as modeled by Mitchell 
and Myers. The parameters No and Ni correspond to N, and N , ,  respectively. (Reproduced 
from [45], the Biophysical Journal 8, 897-91 1 ,  by copyright permission of the Biophysical 
Society.) 

The results for this second anatomical case are shown in Fig. 8. As in 
the first anatomical case, when N, is low there is little heat lost to the 
environment and therefore little change in the blood temperature with 
axial position. When both N, and N, are large, there will be significant 
countercurrent exchange due to large gradients in the artery and vein 
temperatures. Similar to the first case, venous rewarming may or may 
not occur, depending on the ratio N, /N, , but countercurrent heat 
exchange will always act to increase the temperature of the vein at x = 0 
relative to the case of zero countercurrent heat transfer, thereby reducing 
heat loss from the extremity to the surroundings. Mitchell and Myers 
show that for a given set of values for N, and N,,  the second anatomical 
case is more effective in reducing the extremity heat loss than the first 
anatomical case. This difference is caused by the lack of heat transfer 
allowed between the artery and surroundings in the second anatomical 
model. Again, it is interesting to note that this second configuration is 
observed in the digits of humans, which presumably are most vulnerable 
to heat loss due to their large surface area to volume ratio. In this manner, 
the veins protect the arterial blood from excessive heat loss as blood flows 
towards the tip of the extremity. In contrast, the anatomical configuration 
of the main supply artery and vein in the limbs more closely resembles the 
first case of Mitchell and Myers [45]. 
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3. Parameter Estimation 

Using a resistance analysis similar to that employed by Holmes and 
Chen, Mitchell and Myers estimate the numerical values of N, and N, 
for a human extremity, sloth rete, and porpoise fin. The total thermal 
resistance [( UA'), 3-' depends on three resistances: the convective resistance 
from the arterial blood to the artery wall, the conduction resistance through 
the tissue, and the convective resistance from the venous wall to the venous 
blood. For this geometry, the conduction resistance per unit length vessel, 
Rk,  , derived analytically for equal size vessels using a source-sink super- 
position in a cylindrical conduction field, is 

C O S ~ - ' [ ~ ( S / ~ ) ~  - 11 
2ak, R k l  = (7.20) 

where d is the diameter of the vessels and s is the center-to-center spacing 
between the paired artery and vein. The convective resistance per unit length, 
R, , depends on the Nusselt number and blood thermal conductivity 

1 
2nk, Nu 

R,  = - (7.21) 

Mitchell and Myers model the human arm as a cylinder with an 
8-cm diameter embedded with a 0.5-cm diameter artery and vein spaced 
1 cm apart. Assuming a minimum Nusselt number of 4.0 and kb z k, = 

0.67 W/m-"C, the conduction and convective resistances per unit length 
vessel are 0.63 and 0.06 "C-m/W, respectively. Under these conditions, 
the total resistance is 0.75 "C-m/W, corresponding to a (UA'), value of 
1.33 W/m-"C. Mitchell and Myers neglect the convection resistances, 
essentially assuming an infinite Nusselt number. In this case (UA'), is 
1.59 W/m-"C. For a blood mass flow rate of 2g/s and specific heat 
3.5 J/g-"C, the value of N, for a 75-cm-long human arm according to 
Mitchell and Myers is 0.17. By including the maximum resistance provided 
by the convection effect, N, will be slightly reduced to 0.14. 

The total resistance [(UA')J-' between the vessel and the environment 
can be estimated by treating the vessel as an isolated tube surrounded by a 
tissue cylinder. This resistance is the sum of three resistances: convective 
resistance between the venous blood and the vein wall, conduction resist- 
ance through the tissue, and convective resistance from the cylinder surface 
to the surroundings. The conduction resistance per unit length vessel in this 
case is 

ln(do/d) 
2K Rk2 = (7.22) 
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where do is the cylinder diameter and d is the vessel diameter. The convec- 
tive resistance inside the vessel is given by Eq. (7.21), while the convective 
resistance between the cylinder surface and the environment is 

1 
2rk, Bi 

R ,  = - (7.23) 

where Bi is the combined radiation/convection Biot number. For the 
geometry described above and assuming a combined Biot number of 2.0, 
the values of the three resistances per unit length listed above are 0.06, 0.66, 
and 0.12 "C-m/W, respectively. The total resistance per unit length vessel is 
0.84 "C-m/W, corresponding to a (UA'), value of 1.19 W/m-"C. Using the 
physical constants listed above for the human extremity, the value of N, in 
this case is 0.13. As in the evaluation of N,, Mitchell and Myers neglect all 
but the conduction resistance through the tissue and calculate a slightly 
higher value of 0.16 for N, . 

According to these calculations, the ratio N,/N, in the human extremity 
is approximately unity. Considering the possible range of values for N, and 
N,, Mitchell and Myers show that this ratio is within the range 0.5 to 2 for 
the various mass flow rates possible in the human arm. Using the same 
range of mass flow rates, the range of the N, values will be 0.08 to 0.4. 

With N, /N,  equal to unity and N, ranging from 0.08 to 0.4, the model of 
Mitchell and Myers predicts that there is little countercurrent effect between 
the major artery and vein that supply the human arm. Under these con- 
ditions, the countercurrent heat transfer reduces heat loss from the arm 
only by about 5% compared to the case of zero countercurrent exchange. 
According to this model, essentially all the heat loss from the limb is con- 
trolled by the heat conductance between the vessels and the surroundings, 
and there is little conductance between the countercurrent artery and vein. 

4. Comparison with Experimental Data 

As a corroboration of their theory, Mitchell and Myers compare the 
predictions of their model to the experimental measurements of artery and 
vein temperatures in the human arm collected by Bazett et al. [6] with fair 
agreement. While the omission of metabolic heating from the model of 
Mitchell and Myers is not important relative to the heating effects of blood 
perfusion (only about 5 % ) ,  their model is clearly insufficient in accounting 
for heat loss from the hand to the surroundings. Other features, such as the 
tapered geometry of the arm and the local heat transfer in the separate 
microcirculatory networks of the muscle and cutaneous layers of the limb, 
were ignored. These important heat transfer effects would eventually be 
incorporated into the much more detailed bioheat transfer model of the 
human arm by Song et al. about 20 years later [56]. 
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Mitchell and Myers also estimate the N, and N, parameters for the sloth 
rete that was studied experimentally by Scholander and Krog [52]. In this 
case, N, is quite high, on the order of 60, while N, is on the order of unity. 
As with the human arm, Mitchell and Myers use these values in their first 
anatomical model (N, = N,). Due to the high value of N,/N, ,  this model 
predicts significant countercurrent rewarming of venous blood in the sloth 
rete, and the predictions are in fair agreement with the experimental tempera- 
ture gradients measured by Scholander and Krog [52]. A third simulation of 
the countercurrent heat exchange in the porpoise fin, which is modeled by the 
second anatomical case (N, P 0), predicts that there is not much counter- 
current rewarming of the venous blood, but demonstrates the increased 
efficiency of the second anatomical configuration compared to the first 
arrangement. These results were not compared to any experimental data. 

Despite the absence of several important heat transfer phenomena in their 
limb model, the theoretical study of Mitchell and Myers was significant as 
one of the first mathematical models which quantified the effect of counter- 
current heat exchange in the circulation. By identifying the dimensionless 
heat transfer units N, and N, , the earlier experimental observations by 
Bazett et al. [a] and Scholander and colleagues [50-521 were explained 
analytically. For example, the inverse relationship between N, and mass 
flow rate predicts that the countercurrent exchange mechanism will increase 
with decreasing flow rate. Under conditions of cold ambient temperature, 
Scholander and Krog observed this effect in their temperature measure- 
ments in the sloth rete. Thus by reducing blood flow to the extremity, less 
heat is lost to the environment not only due to the reduced time rate of 
thermal energy carried by the blood, but also by the more efficient 
rewarming of venous blood by the countercurrent exchange mechanism. 
The model of Mitchell and Myers was successful in explaining and 
predicting many of the earlier observations of experimental physiologists 
and represented a starting point for more sophisticated mathematical 
models of countercurrent heat exchange in the circulation. 

c. MODEL OF KELLER AND SEILER [36] 

Three years after the publication of Mitchell and Myers’s bioheat transfer 
model, Keller and Seiler presented a model of peripheral heat transfer that 
included the effect of countercurrent heat exchange as well as conduction, 
bulk convection with perfusion bleed-off, and metabolic heat production 
[36]. Keller and Seiler hypothesized that a countercurrent heat exchange 
mechanism would be important in the peripheral circulation near the body 
surface where the smaller arteries and veins were often positioned near each 
other. By combining the various heat transfer phenomena described 
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above, Keller and Seiler presented one of the earliest mathematical models 
of bioheat transfer in the microcirculation that considered heat transfer 
between separate tissue, artery, and vein compartments. This approach 
became the standard procedure in later formulations of more geometrically 
complex vascular bioheat transfer models by Weinbaum and colleagues 
[34, 55, 56, 59-63, 701, as well as Wissler [66,68], Baish and colleagues 
[2,4], and Charny and colleagues [ 18, 191. 

Keller and Seiler [36] modeled bioheat transfer in the microcirculation of 
peripheral tissue according to the idealized one-dimensional schematic view 
shown in Fig. 9. The location x = 0 represents the boundary between the 
peripheral tissue and the core, which Keller and Seiler assume to be iso- 
thermal, while the location x,= 6 represents the boundary between the 
peripheral tissue and the ambient environment. According to the authors’ 
interpretation, the value of 6 depends on the heat transfer rate in the 
peripheral region as determined mainly by the rate of blood flow in the 
vessels and the thermal conductivity of the tissue. The single artery and 
vein shown in Fig. 10 are used to represent the system of many terminal 
arteries and veins that supply blood to and drain blood from the peripheral 
tissue, while capillaries are assumed to provide a continuous connection 
between the countercurrent terminal artery and vein. Using a continuity or 
mass balance relationship, the flow rates in the artery and vein shown in 
Fig. 10 can be determined as a function of x and the perfusion bleed-off rate 
per unit volume tissue. Similarly, energy balance equations can be utilized to 
compute the arterial, venous, and mean tissue temperatures as functions of 
x ,  the distance from the isothermal core hypothesized by Keller and Seiler. 
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FIG. 9. A schematic view of the subcutaneous tissue region considered by Keller and Seiler. 
(Reproduced from [36], with permission.) 
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X . 0  

FIG. 10. A schematic diagram of an element, thickness dx, in the subcutaneous tissue region 
with heat flows indicated by dashed arrows and blood flow directions indicated with outlined 
arrows. The one-dimensional model of Keller and Seiler is derived from an energy balance 
across the vertical dashed lines. (Reproduced from [36] ,  with permission.) 

1. Governing Equations 

The steady state energy balance equations are derived using a differential 
element of length dx, shown in Fig. 10. Assuming that 6 was small relative 
to the curvature of the peripheral tissue region, Keller and Seiler model 
the peripheral tissue region as a one-dimensional slab, so that the cross- 
sectional area normal to the direction of heat flow, A , ,  is considered 
constant. The energy balance for the artery element consists of four terms: 

(macbz)x = (maCb<)x+dx + C b W P b K A x k  + (uA')adx(G - T )  (7.24) 

where ma and T, are the arterial mass flow rate and temperature, respectively, 
o is the spatially uniform perfusion bleed-off rate from the artery expressed 
as volume blood leaving the artery per time per volume tissue, (UA'), is the 
overall heat transfer coefficient-surface area product per unit length from 
the artery to the tissue, and I;  is the mean tissue temperature at position x.  
The temperature of the blood that leaves the artery as a result of bleed-off 
is clearly T,, the local artery blood temperature. Note also that the Keller 
and Seiler neglect the effects of axial conduction along the length of the 
artery, which is reasonable for tube flow such as this with a significant 
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component of bulk convection heat transfer. Rearranging and solving for 
vanishing dx, Eq. (7.24) may be written as 

Similarly for the countercurrent flowing venous blood 

(mvcbK)x+dx + CbwPbKOAxdX = (mvcbK)x + (uA’)vdx(K - T )  (7-26) 

where Go represents the temperature of the venous blood as it drains from 
the capillary in Fig. 10 into the terminal vein, and all other symbols are 
analogous to those that appear in Eq. (7.24). Note that for both the artery 
and vein, the mass flow rate m is considered a positive number regardless of 
the flow direction. The venous blood energy balance is thus 

The left-hand sides of Eqs. (7.25) and (7.27) both contain the derivative 
with respect to x of the product of blood mass flow rate and temperature. 
The relationship between the mass flow rate and x depending on the 
bleed-off rate from the vessel is 

ma = ma, - WpbA,dX (7.28) 5: 
where ma, is the arterial mass flow rate at x = 0. In addition, 

(7.29) 

where mV, is the venous mass flow rate at x = 0. By essentially neglecting 
the effects of lymphatic circulation on the venous blood flow rate, Keller 
and Seiler also assume that 

mv, = ma, (7.30) 

Based upon Eqs. (7.28)-(7.30), the magnitudes of the mass flow rates in the 
artery and vein must be equal at all x-locations. From Eqs. (7.28) and (7.29) 
it is also apparent that 

(7.31) 

Keller and Seiler also simplify the convective heat transfer terms that 
appear on the right-hand sides of Eqs. (7.25) and (7.27) by assuming that 
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the surface area of the artery and vein is the same. This is reasonable in 
the peripheral region, where the paired terminal arteries and veins are 
equal-sized, and their number densities are also more or less the same. 
Under these conditions, the products (UA’) ,  and (CIA’), are equal to (UA’) .  
Implementing the above simplifications, the artery and vein energy balance 
equations are reduced to 

(7.32) 

where m is the magnitude of the mass flow rate in the artery or vein. 
Using the argument that blood in the capillaries will be in complete 

thermal equilibration with the tissue due to the large surface-to-area ratio in 
the capillary bed and the Iong residence time of blood in the capillaries, 
Keller and Seiler assume that To is equal to T .  This assumption, as was 
later demonstrated by the work of Chen and Holmes, is reasonable in the 
peripheral tissue, where the bleed-off vessels from the paired artery and vein 
are relatively small and consequently have a short thermal equilibration 
length relative to their own length. Therefore the energy balance equation 
for the vein becomes 

For deeper tissue, the assumption T,, = ‘T; is no longer valid since the 
bleed-off vessels are thermally significant due to their relatively large 
thermal equilibration lengths. It should be noted that the complete thermal 
equilibration between blood, the capillaries and the surrounding tissue that 
was assumed by Keller and Seiler is similar to the Pennes assumption 
(i-e., k’ = 0 in the Pennes model). However, the Keller and Seiler model is 
otherwise quite different as it makes no assumptions regarding the arterial 
blood temperature, which varies in the x-direction. The effect of these 
differences can be seen in Keller and Seiler’s derivation of the tissue energy 
balance equation below. 

The effect of perfusion bleed-off on tissue temperature is assumed to be 
proportional to the product of o and the local artery-tissue temperature 
difference. Note that Keller and Seiler use the local artery temperature 
rather than a central or core artery temperature that was employed in the 
Pennes formulation. This heat source is balanced by metabolic heating, 
conduction, and heat transfer with the adjacent artery and vein. Across the 
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differential tissue element of length dx: 

( -&4xS)x + (UA’)dx[(T, - 7;) + (T, - T ) ]  + wpbcb(T, - T)A,dx  

+ Q,A, dx = ( -k tAx $) 
x+dx 

(7.35) 

where Q, is the spatially uniform metabolic heat source per volume tissue. 
For constant thermal conductivity k, and vanishing dx, Eq. (7.35) may be 
written as 

In the tissue equation derived by Keller and Seiler, heat conduction is 
balanced by convective heat transfer with the artery and vein, a pefusion 
heat source whose strength is proportional to the local artery-tissue 
temperature, and the constant metabolic heat source. For the case where 
convective heat exchange with the artery and vein is neglected and 
(UA’) = 0, Eq. (7.32) states that the arterial temperature is independent of 
x,  and, as a result, the tissue energy balance reduces to the Pennes equation. 
For the case (CIA’) # 0, T, varies with x, and the perfusion source term 
depends on the local artery temperature. Due to this dependence, the tissue 
equation (7.36) cannot be solved alone, but must be solved simultaneously 
with the artery and vein energy balances, Eqs. (7.32) and (7.34). 

Keller and Seiler solve these coupled differential equations by assuming 
that the arterial blood enters the peripheral region at the isothermal core 
temperature 

and that as a result of zero mass flow across the surface at x = 6, the venous 
blood is completely equilibrated with the tissue at this location: 

T(6 )  = T(6) = r, (7.38) 

T(0) = T , ( O )  = & (7.37) 

where and T,  are specified temperatures. 

2. Analytical Solution 

As mentioned above, the solution to Eqs. (7.32), (7.34), and (7.36)- 
(7.38) are easily obtained when artery-tissue and vein-tissue interactions 
are neglected. With (UA’) equal to zero, the artery temperature profile is 
simply 

T,(x) = Tb (7.39) 



76 CALEB K. CHARNY 

Implementing this uniform artery temperature profile, the tissue energy 
balance equation reduces to the Pennes bioheat equation. The solution to  
this second order ordinary differential equation is 

+ T b  T, = C, cosh Ax + C, sinh Ax + - Qm 

cb 
(7.40) 

where 
I 

The integration constants are evaluated using the fixed temperature bound- 
ary conditions in Eqs. (7.37) and (7.38). Note that this mathematical system 
is similar to that derived by Wulff in Eq. (4.9), except that Keller and Seiler 
do not neglect the metabolic heating source Q, in the tissue heat balance 
equation. The boundary conditions, however, are identical. The dimen- 
sionless temperature profile can be written 

(7.41) 
where 

Qm 

apbcb(Tb - q) 
@ =  

Note that for zero metabolic heating (a = 0) this result reduces to Wulff’s 
solution to the Pennes bioheat equation for these fixed temperature bound- 
ary conditions as represented by Eq. (4.11). 

3. Derivation of Effective Thermal Conductivity 

In order to quantify the effect of blood flow on tissue heat transfer, 
Keller and Seiler introduce an effective thermal conductivity to describe the 
rate of heat transfer from the surface of this peripheral layer of tissue. 
According to their definition, for a thin flat slab of tissue with negligible 
curvature, the steady state surface heat flux, qs,  is the product of the 
effective thermal conductivity and the temperature gradient across the 
thickness of the entire slab; i.e., from x = 0 to x = 6: 

(7.42) 

Based upon Fourier’s Law, the surface heat flux is also equal to the product 
of the negative value of the local tissue temperature gradient at the surface 
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and the tissue thermal conductivity. Therefore 

keff - -6  dT, 
k, (G - T,) - I  dx x = 8  

- _  (7.43) 

For the case of no artery-tissue and vein-tissue interactions, the effective 
thermal conductivity is determined from Eq. (7.41): 

] (7.44) 
1 + @(l - cash Ad) 

tanh A6 

Keller and Seiler rewrite Eq. (7.44) in a manner that better illustrates 
the importance of the metabolic heat source on the effective thermal 
conductivity: 

The maximum value of the parametric group that appears as a coefficient 
for the second term on the right-hand side of Eq. (7.45) is estimated by 
Keller and Seiler by analyzing the maximum value of 6, the peripheral 
region thickness, for a given value of Q, . As Q, increases above zero, the 
temperature inside the peripheral layer increases and eventually surpasses 
the isothermal core temperature G, in which case a maximum exists inside 
the tissue layer. In this case, the heat flux from the tissue to the surround- 
ings is proportional to the effective thermal conductivity and the difference 
between the maximum and surface temperatures. The region of interest, 
where the flow of heat is from the tissue to the surroundings, is between 
positions x = x, and x = 6, where x, is the location of the maximum 
temperature T, inside the peripheral tissue layer. Defining the thickness of 
the tissue layer in which heat flows outwards towards the surroundings as 
6, = (6 - x,), the heat flux from the tissue to the surroundings is 

(7.46) 

For a given metabolic heat source, the heat flow from the tissue to the 
surroundings is equal to the heat deposited in the tissue by the metabolic 
heat source under conditions of zero perfusion bleed-off. However, as the 
rate of bleed-off increases from zero, i.e., w # 0, the value of qs is greater 
than the heat deposited in the tissue solely by the metabolic heat source due 
to the heating effect of warm blood perfusion on the tissue. Therefore 

(7.47) 
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Substituting the condition in Eq. (7.47) into the definition in Eq. (7.46): 

(7.48) 

By deriving the value of the minimum effective thermal conductivity, Keller 
and Seiler are able to define the maximum value of the parametric group on 
the right-hand side of Eq. (7.48), which also appears in Eq. (7.45). This 
situation occurs for the case of zero blood perfusion. In this case, it is easily 
shown that the effective conductivity is 

k,,(o = 0) = 2k, (7.49) 

Thus Keller and Seiler conclude that the maximum value of the parametric 
group that appears in Eq. (7.45) is 2k,; i.e., 

(7.50) 

Using a tissue conductivity of 0.5 W/m-"C, the estimated maximum 
value of the parametric group is 1 .O W/m-"C, while the minimum value is 
zero. Figure 11 shows the values of /re, relative to k, as a function of (As) 
for this range of values. This product, 16, can be physically interpreted as 
the ratio of perfusion bleed-off heat transfer to conduction heat transfer in 
the tissue. Keller and Seiler note that metabolic heating affects the effective 
conductivity most significantly at low values of (Ad), while at higher 16 
values, metabolic heating has a negligible influence on keff. Keller and Seiler 
compare these predictions qualitatively to experimental measurements by 
others that demonstrated a difference between the tissue effective conduc- 
tivity under conditions of rest and exercise. This difference between exercise 
and resting conditions was reduced significantly, however, as the peripheral 
layer blood flow was increased by vasodilation, thereby reducing the 
influence of metabolic heating as compared to perfusion bleed-off rate in 
the tissue. 

When the metabolic heating rate is negligible compared to the bleed-off 
rate, the ratio keff/k, approaches the product (16) for large values of A ,  i.e., 
large perfusion rates. In this case, the heat flux from the tissue to the sur- 
roundings from the nonisothermal peripheral layer is independent of the 
value of 6 and the thickness of the peripheral layer approaches the length 
1/1. As perfusion rates decrease, the ratio keff/kt approaches unity. 

Keller and Seiler also derive the tissue and blood temperature profiles for 
the case of significant blood vessel-tissue interactions, i.e., (UA') # 0. If 
the metabolic heat source term is neglected, the analytical solution to the 
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FIG. 11. Tissue effective thermal conductivity relative to the solid tissue conductivity as a 
function of the dimensionless product 16, under conditions of zero blood-tissue convection 
heat transfer (CIA’ = 0). Each curve is based on a different value for the metabolic heat 
generation term Qmd2/(& - T,) .  Based on the bioheat transfer model of Keller and Seiler. 
(Reproduced from [36], with permission.) 

tissue energy balance equation is 

where the function f is defined by the integral equation 

(7.51) 

(7.52) 

(7.53) 

(7.54) 

(7.55) 
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FIG. 12. Normalized tissue temperature profiles in the subcutaneous tissue region using 
a range of (UA’)/A, values. The perfusion bleed-off rate is fixed at wp, = 2.16 x 
lo-’ g blood/s-ml tissue. (Adapted from [36], with permission.) 

and A is an integration constant. Keller and Seiler use the solution above 
along with Eq. (7.43) to solve for the effective conductivity in the tissue: 

(7.56) 

Figure 12 shows the dimensionless tissue temperature profiles for the 
limiting cases of zero and infinite (UA’IA,), as well as a representative 
intermediate value, using a constant bleed-off perfusion rate. As the heat 
transfer coefficient increases towards infinity, the enhancement of heat 
transfer by the perfusion bleed-off is canceled out by the convective heat 
transfer between the large vessels and the tissue. This results in an effective 
thermal conductivity equal to the tissue conductivity and the resulting 
temperature profile is linear, as expected for a pure conduction field. The 
dimensionless parameter p represents ratio of the heat transfer between the 
large vessels and tissue to the heat transfer due to perfusion bleed-off. 
Figure 13 shows the relationship between the effective conductivity and p. 
As p increases and the large vessel interaction becomes more significant 
relative to the perfusion bleed-offy the effective conductivity approaches the 
tissue conductivity, a phenomenon Keller and Seiler describe as “arterial 
precooling.” When the vessel-tissue conductance (UA‘) is significant 
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mean blood temperature Tb(x) is 

2he (Tb - To) - dTb + 

dx PbucbRl 

Defining a dimensionless temperature 0 and axial location R: 

(8.4) 

where L is the length of the blood vessel, the solution to this first order 
differential equation is readily obtained in terms of the dimensionless 
parameter A ,  defined by Chato as 4Nu,/Pe. This term depends on the 
x-location as Nu, will vary with axial position in the blood vessel. 

2. Solution-Effectiveness and Thermal Equilibrium Length 

The solution 
6 = exp(-AX) 

can be used to  determine the dimensionless mean blood temperature at the 
blood vessel exit for the two limiting cases described above by substituting 
either Eq. (8.1) into Eq. (8.6) in the first case, or substituting Nu, = 0.32 
for the second case. The concept of heat transfer effectiveness, E ,  is 
implemented according to  the definition 

&,in - &,out 
E =  

Tb,in - 
(8.7) 

where Tb,in and TbVout represent the blood temperatures at the blood vessel 
inlet and outlet, respectively. The values of heat transfer effectiveness are 
shown in Fig. 15 for the two limiting cases of vessel-tissue heat transfer. In 
addition, Chato computes a thermal equilibration length, similar in concept 
to that defined by Chen and Holmes. Chato determines the distance from 
the blood vessel inlet at which the mean blood temperature is 95% thermally 
equilibrated, i.e., where 6 = 0.05. For the case with R2 = R , ,  the thermal 
equilibration length according to this definition and the solution above is 
0.34R, ,  while the case with Nu, = 0.32, the thermal equilibration length is 
4.36R,.  

Chato uses anatomical data from a dog to relate these theoretical results 
to heat transfer in the circulation. For the largest vessels, the heat transfer 
effectiveness is small due to the large Graetz numbers in these vessels 
(greater than 1OOO). Thus there is little heat transfer between these large 
blood vessels and the surrounding tissue. Conversely, in the smallest vessels, 
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FIG. 14. Predictions of the Keller and Seiler model, represented by Eq. (7.45) (with Q, = 0), 
compared with experimental data from the literature as compiled by Keller and Seiler. The 
dashed line indicates the predictions of a simple perfusion conductance model in Eq. (7.57). 
(Reproduced from [36], with permission.) 

conductivity computed by the Keller and Seiler model was in good agree- 
ment with the experimental measurements [12]. A comparison between the 
measured and predicted effective conductivities is shown in Fig. 14. 

In addition, Keller and Seiler show that earlier attempts to quantify the 
effect of perfusion on tissue conductivity as a linear addition to the thermal 
conductance resulted in a significant overestimation of the enhancement of 
tissue conductivity by blood perfusion. Substituting the definition of rZ into 
Eq. (2.2): 

(7.57) k,, = 1 f (nay 
k, 

This relationship was used in much of the earlier thermal physiological 
modeling work by Gagge and others [5, 11,27,30] and is plotted in Fig. 14. 

Keller and Seiler also utilize their mathematical model to demonstrate that 
the effect of vasoconstriction on effective conductivity will be small at the 
low perfusion rates since k,, cannot be less than k, . At high perfusion rates, 



MATHEMATICAL MODELS OF BIOHEAT TRANSFER 83 

the effect of added vasodilation on effective conductivity is also limited, in 
this case by the tissue thermal conductivity and the inlet arterial mass flow 
rate. Keller and Seiler conclude that while perfusion bleed-off can vary by 
two orders of magnitude, the effective conductivity, as predicted by their 
model and measured in the experiments of others, will vary by less than one 
order of magnitude in human peripheral tissue. The added effect of arterial 
precooling, based on this model, is to  decrease the effective conductivity. 
An increase in the bleed-off perfusion rate, however, will tend to counteract 
arterial precooling and thus increase the effective conductivity. 

4 .  Parameter Estimation-Conductance Model 

Keller and Seiler also attempted to estimate the values of (UA’) in 
peripheral tissue by modeling the supply artery and vein as cylinders with 
radius ro, a total number density n ,  and a tortuosity T (length of vessel per 
length of tissue). Assuming that the artery and vein are parallel and spaced 
a distance 2R apart from each other and that there are n/2 of each vessel, 
the conduction resistance between blood vessels is 

kt U =  
r, ln(R/ro) 

(7.58) 

Note that in this formulation Keller and Seiler neglect the effect of any 
convection heat transfer resistance inside the two paired blood vessels. The 
total surface area of arteries or veins per unit length, A’, depends on the 
number density-tissue cross-sectional area product and the surface area of 
the individual vessel: 

(7 .59)  

The total vessel density n can be approximated by considering four adjacent 
blood vessels in a periodic square arrangement of vessels. Because the total 
tissue area is (2R)2,  and the total number of blood vessels in this tissue space 
is 4 x 4, Keller and Seiler approximate n as $?’. Under these conditions, 
the parameter (UA’)  can be written as 

(7.60) 

where the left-hand side of Eq. (7.60) represents the conductance between 
the artery or vein and adjacent tissue per unit volume of tissue. Substituting 
characteristic values of R = 0.5 cm and r, = 0.05 cm, Keller and Seiler use 
their model to demonstrate that under resting conditions arterial precooling 
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will result in a reduction in the effective conductivity from its maximum 
value (i.e., when there is no arterial precooling) by approximately 50%. 

By applying separate energy balance equations to the separate artery, 
vein, and tissue components of perfused tissue, Keller and Seiler were 
able to analytically quantify several of the more important phenomena 
that affect bioheat transfer in tissue. These features include the presence 
of artery and venous supply vessels that are thermally significant, i.e., 
contain blood flowing at a significantly different temperature than the 
surroundings, the countercurrent blood flow arrangement, and the bleed- 
off of arterial blood at the local artery temperature (not a constant central 
or core temperature) into the tissue through vessels that eventually 
equilibrate with the surrounding tissue. While their model lacked detail 
concerning the different tissues of the peripheral layer, i.e., skin and fat as 
well as muscle tissue, this formulation was one of the first to implement a 
“three equation” approach to bioheat transfer modeling. This model also 
neglected the effect of the vascular architecture, which is actually a network 
of branching, tapered vessels, on the tissue heat transfer. The anatomical 
complexity of the microvascular network in both normal tissue and cancer 
tumors was known to be an important factor in bioheat transfer according 
to the observations of several experimental groups [33], but due to the 
computational difficulties associated with this type of geometry, only 
simplified models such as that of Keller and Seiler were derived. 

VIII. Chato Vascular Heat Transfer Models [20] 

A study by Chato [20] in 1980 examined heat transfer between tissue 
and blood vessels using the same basic approach as Keller and Seiler, i.e., 
a consideration of the governing differential energy balance equations for 
the separate blood and tissue media. Chato examined heat transfer between 
tissue and blood vessels for three different arrangements: a single vessel 
surrounded by tissue, a countercurrent pair of vessels surrounded by tissue, 
and a single vessel close to an isothermal surface such as the skin. In all 
three cases, the heat transfer effectiveness of the vascular configuration was 
considered. 

A. ISOLATED VESSEL 

The case of steady state heat transfer between a Casson fluid, e.g., 
blood, flowing in a round tube, e.g., blood vessel, with constant wall tem- 
perature was examined by Victor and Shah [SS]. Under these conditions, 
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the tissue-blood heat transfer, as defined by a mean Nusselt number 
hD/k,,, is 

(8.1) 

which is valid for Gz,, the local Graetz number, Re PrD/x < 1OOO. As 
shown, in the region of thermally fully developed flow, the mean Nusselt 
number is 4, which is close to the value of 3.66 for a Newtonian fluid. 

- 
NuD = 4 + 0.155exp(1.58logGzX) 

1. Governing Equations 

Chato considers the heat transfer between the bIood vessel, with radius 
R ,  and bulk temperature Tb, and the surface of a tissue cylinder with 
radius R2 that surrounds the blood vessel at temperature T,. Under these 
conditions, the effective heat transfer between the single vessel and the 
cylinder surface is determined by summing the two heat transfer resistances 
from the blood to the cylinder surface in a manner that was employed by 
Chen and Holmes 1221 as well as Keller and Seiler [36]. This results in a 
relationship 

where the first and second terms on the right-hand side of Eq. (8.2) 
represent the convective and conduction resistances, respectively, while the 
left-hand side represents the overall resistance. Tissue metabolic heating 
and the effects of perfusion bleed-off are ignored in this formulation. If the 
layer of tissue around the blood vessel is thin compared to the vessel radius 
then the effective Nusselt number Nu, is equivalent to the local Nusselt 
number, NuD. Equation (8.1) can thus be used in this case to  predict the 
local heat transfer coefficient. The other limiting case for this isolated 
vessel occurs when the tissue cylinder is much larger than the blood 
vessel. Chato assumes that the ratio R 2 / R ,  is less than 10 and the ratio kb/k,  
is between unity and 2.5. Using the thermally fully developed flow NuD 
value of 4, Chato shows that the minimum effective Nusselt number in this 
region is 

(8.3) 

Using a differential energy balance analysis, the temperature profile 
along the length of the blood vessel can be determined under these limiting 
conditions. Chato writes an energy balance equation for blood flowing 
at a constant velocity, U, with an effective wall convection coefficient he 
based upon the effective Nusselt number Nu,. If axial conduction along 
the length of the blood vessel is neglected, the governing equation for the 

 NU,,,,^, = ($ + 2.5lnf iO)- '  = 0.32 
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mean blood temperature Tb(x) is 

2he (Tb - To) - dTb + 

dx PbucbRl 

Defining a dimensionless temperature 0 and axial location R: 

(8.4) 

where L is the length of the blood vessel, the solution to this first order 
differential equation is readily obtained in terms of the dimensionless 
parameter A ,  defined by Chato as 4Nu,/Pe. This term depends on the 
x-location as Nu, will vary with axial position in the blood vessel. 

2. Solution-Effectiveness and Thermal Equilibrium Length 

The solution 
6 = exp(-AX) 

can be used to  determine the dimensionless mean blood temperature at the 
blood vessel exit for the two limiting cases described above by substituting 
either Eq. (8.1) into Eq. (8.6) in the first case, or substituting Nu, = 0.32 
for the second case. The concept of heat transfer effectiveness, E ,  is 
implemented according to  the definition 

&,in - &,out 
E =  

Tb,in - 
(8.7) 

where Tb,in and TbVout represent the blood temperatures at the blood vessel 
inlet and outlet, respectively. The values of heat transfer effectiveness are 
shown in Fig. 15 for the two limiting cases of vessel-tissue heat transfer. In 
addition, Chato computes a thermal equilibration length, similar in concept 
to that defined by Chen and Holmes. Chato determines the distance from 
the blood vessel inlet at which the mean blood temperature is 95% thermally 
equilibrated, i.e., where 6 = 0.05. For the case with R2 = R , ,  the thermal 
equilibration length according to this definition and the solution above is 
0.34R, ,  while the case with Nu, = 0.32, the thermal equilibration length is 
4.36R,.  

Chato uses anatomical data from a dog to relate these theoretical results 
to heat transfer in the circulation. For the largest vessels, the heat transfer 
effectiveness is small due to the large Graetz numbers in these vessels 
(greater than 1OOO). Thus there is little heat transfer between these large 
blood vessels and the surrounding tissue. Conversely, in the smallest vessels, 
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FIG. 15.  Heat exchanger effectiveness of a single blood vessel based on the model of Chato. 
(Reproduced from 1201, with permission from the American Society of Mechanical Engineers.) 

i.e., in the microcirculation with vessels of diameter 300pm or smaller, the 
Graetz numbers are small (less than 0.01) and there is complete thermal 
equilibrium between the vessels and surroundings over a very short 
distance, on the order of one vessel diameter. Finally, between the great 
vessels and the microcirculation lies a vascular region where the heat 
transfer effectiveness between the vessels and tissue varies from unity to 
zero. As observed in the analysis of Chen and Holmes, these vessels contain 
blood that is at a different temperature than the surroundings but becomes 
increasingly thermally equilibrated as the microcirculation is approached. 
Chato shows that the curve labeled “E, ,~” is more representative of in vivo 
conditions since metabolic heating was neglected. 

This same entrance problem was also analyzed numerically by Lagendijk 
[40], who determined the heat flow from the large vessel to the surrounding 
tissue during a simulation of hyperthermia. While Lagendij k neglected axial 
conduction in the blood vessel and assumed a uniform temperature profile 
and constant mass flow rate within the vessel, as did Chato, his results 
were useful in correlating large vessel blood flow with the efficacy of 
therapeutic hyperthermia treatments. As shown by Chato, blood inside 
vessels with large Peclet numbers will not be significantly heated relative to 
those with small Peclet numbers, thereby keeping the tissue near the vessel 
wall relatively cool. This is detrimental to the success of a hyperthermia 
treatment, which requires that all of the tissue is heated to a therapeutic 
level. The dimensionless temperature profile along the length of the vessel, 
where the tumor temperature is represented by T,, is shown in Fig.16. 
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FIG. 16. Blood temperature profiles along the length of a vessel as computed by Lagendijk. 
The vessel characteristics are ( 1 )  ii = 1 cm/s, R = 500jim; (2) ii = I .5 crn/s, R = 1000pm; 
(3) ti = 2crn/s, R = 1500pm. (Reproduced from [40], with permission.) 

B. COUNTERCURRENT VESSEL PAIR 

1. Superposition Model 

The second blood vessel configuration examined by Chato was the 
countercurrent artery-vein pair. Using the superposition of a paired source 
and sink in an infinite tissue medium, the temperature difference between 
the isothermal walls of an artery with radius R,  and vein with radius R, 
may be written as 

T,  - T, = Q' In [ (b ,  + m ) ( b v  + -11 
2 ~ k ,  

Q' = -1nB 
2nk, 

where Q' is the heat transfer between blood vessels per unit length, b, 
and b, are vessel geometry parameters; (;y - (2)2 + 1 

b, = 
n (8.9) 

(8.10) 
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and s is the vessel spacing (center-to-center). In this formulation, as in 
the case of the isolated vessel, Chato neglects the effects of tissue heat 
metabolism and perfusion bleed-off on the tissue-blood heat transfer. If the 
paired artery and vein are assumed to have the same diameter, D, the 
temperature difference simplifies to 

(8.11) 

Chato shows that because the logarithmic term in Eq. (8.11) approaches the 
value ln[2b] for b values greater than 2.0, the artery-vein wall temperature 
difference may be written as 

Q' T, - T, = - 1n[4bab,] 
2xk, 

Q' z -1nB 
2nkt 

(8.12) 

as long as 6, and b, are both greater than two. 
Heat transfer between the paired artery and vein is quantified by Chato 

using the known solution for a countercurrent heat exchanger and the 
relationship in either Eq. (8.8) or (8.12). The overall heat transfer coeffi- 
cient per unit length between the arterial and venous blood (UA') can be 
written in terms of three resistances in series: convective resistance between 
the arterial blood and arterial wall, conduction resistance from the arterial 
to  venous wall, and convective resistance from the venous wall to the 
venous blood. Thus 

- = - (- + - In B + - 1 1 2 kb 
UA' 2Xkb NU, kt 

(8.13) 

Chato uses the definitions of heat transfer units, N, and effectiveness, E ,  to 
describe the heat transfer between the paired artery and vein. Defining 

UA' N = -  
mmin cb 

(8.14) 

and assuming that both the artery and vein Nusselt numbers are four, the 
number of heat transfer units in this case is 

(8.15) 
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The heat transfer effectiveness for this countercurrent arrangement is 
defined as 

and the relationship between N and E for a countercurrent flow system has 
been shown to be 

& =  (8.17) 

where C = mmin/mmax. The total heat transfer between the artery and 
vein is 

Q = mminCbE(Ta.in - &,in) (8.18) 

As in the bioheat transfer model of Mitchell and Myers [45], these 
countercurrent heat transfer equations are based on a constant mass flow 
rate in the artery and vein, i.e., m is independent of axial position x. This 
condition neglects the decrease in blood flow rate due to perfusion bleed-off 
from the arterial blood vessel to the surrounding tissue. In addition, while 
the model of Mitchell and Myers accounted for heat transfer between the 
blood vessels themselves and the blood vessels and the surroundings, the 
countercurrent model presented by Chato does not include the latter effect. 
The paired artery and vein are assumed to be in close enough proximity that 
the two vessels can be considered a “perfect” countercurrent heat exchange 
system. The differential energy balance equation for the arterial blood is 

1 - exp[ -N(1 - C ) ]  
1 - Cexp[-N(l - C)] 

dm d 
dx dz 

(8.19) - (T,macb) + (UA’)(T, - T,) - 3 CbG = 0 

while the venous blood energy balance is 

(8.20) 

where (UA’)  is defined by Eq. (8.13). Equations (8.19) and (8.20) are similar 
to the energy balance equations (7.25) and (7.27) from the countercurrent 
model of Keller and Seiler [36], with the simplifying assumption that 
(UAf)a and the heat transfer coefficients between the vessels and the 
surrounding tissue, are both zero, and instead there is direct countercurrent 
heat transfer between the two vessels. Note that the axial gradient of ma, 
the mass flow rate, is directly proportional to o, the perfusion bleed-off 
rate utilized in the model of Keller and Seiler, which also considered the 
effects of perfusion bleed-off, while Mitchell and Myers did not. Chato’s 
countercurrent model differs from that of Keller and Seiler in its neglect of 
heat transfer between the blood and surrounding tissue. In this manner, 
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only two energy balance equations must be solved simultaneously by the 
Chato model, as opposed to three in the model of Keller and Seiler. Finally, 
Chato also assumes that the overall heat transfer coefficient (UA') is not 
altered by the presence of bleed-off blood inside the solid tissue layer. 

2. Effect of Variable Vessel Flow Rate 

Variable mass flow rate due to perfusion bleed-off is modeled by Chato 
as a simple linear relationship. The arterial mass flow rate is assumed to 
decrease linearly with x-position, and all of the bleed-off fluid that leaves 
the artery at position x reenters the vein at  the same position x. Thus the 
mass flow rates in the paired artery and vein are equal in magnitude at any 
x-location and in opposite directions. For the dimensionless axial position 
3 = x/L, where L is the length of the blood vessel (Le., the axial location 
where T, = <,out and T, = T,,in), the expression for blood mass flow rate is 

ma = m, = mo(l - EX) (8.21) 

where E,  with a value between zero and unity, is the constant of propor- 
tionality between the mass flow rate and axial position in the blood vessel. 
Using the linear relationship in Eq. (8.21), the coupled equations (8.19) and 
(8.20) can be written 

T, T,=-  dT, No NO +- 
dX 1 - EX 1 - EX 

and 
dT, N o +  E -No - E 
dX 1 - EX 1 - E.t T,=  T,  

(8.22) 

(8.23) 

where No is the reference number of heat transfer units based upon the inlet 
mass flow rate m, and overall heat transfer coefficient (UA'). Equations 
(8.22) and (8.23) are solved together with the boundary conditions 
q ( 0 )  = T,,in and T,(1) = G,in. The solutions are 

- 
X 

T, = <,in + so- (8.24) 
l - EX 

and 

T, = K,in + - 
where So is defined 

(8.25) 

(8.26) 
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FIG. 17. Arterial and venous blood temperature profiles along the vessel axes according to 
the countercurrent model of Chato for a physiological range of E and No values. (Reproduced 
from [20], with permission from the American Society of Mechanical Engineers.) 

The total heat transfer between the paired artery and vein is 

(8.27) 

The arterial and venous temperature profiles along the length of the 
vessels with various E and No values are shown in Fig. 17. Note that if 
E = 0, the mass flow rate is constant with x-position and the arterial and 
venous temperature profiles are linear and have the same slope. Using 
representative in vivo values of E, No,  m0, and other parameters in the 
bioheat model, Chato demonstrates that the effect of perfusion bleed-off is 
to increase the heat transfer between blood vessels relative to the case where 
the mass flow rates are constant on the order of 50-100%, depending on the 
chosen parameter values. 

C. VESSEL NEAR SKIN SURFACE 

1. Superposition Model 

The third vessel geometry considered by Chato involves a blood vessel 
parallel to the surface of the skin. The environment, which is at a constant 
temperature &, exchanges heat convectively with the skin surface. The 
solution to this heat transfer problem can be found by representing the 
blood vessel as a line source, located at position y = -a (where y = 0 is the 
location of the skin surface), superimposed on a pure conduction field. 
This is a form of the buried cable problem. The resulting temperature field 
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inside the tissue layer is 

- --ln T -  Q’ 1 X’ + (y  - a)’ -- 
Q’/nk, lck, 4 x 2  + (y + a)2 - H  U 

(8.28) 

where 

H = -  1 - -  i) and u = -(.y + f ) ( l  - i) (8.29) 
k, 

and h is the convective heat transfer coefficient between the environment 
and the tissue. The position x = 0 represents the inlet position of the blood 
vessel. At this axial position the temperature profile is 

Chato shows that the integral term in Eq. (8.30) can be written as 

(8.31) 

- 1nH - 0.57716 
- H  

for H values smaller than 0.5. At the surface of the skin, y = 0, the 
function H has a value ah/k, which is equivalent to ( R l h / k , ) m ,  
where R ,  is the vessel radius and b is the ratio d l / R , .  Note that d, , the 
distance from the center of the vessel to the skin surface, is not the same as 
a, the distance from the line source to the skin surface, due to the nature of 
the line source superposition solution. The temperature of the blood at the 
blood vessel entrance is 

- ”  
(8.32) 

where H, is the constant (R1h/k , ) (b  - 1 + db’ - 1 ) .  Using Eqs. (8.30) 
through (8.32), the surface and blood vessel temperatures at x = 0 depend 
on the dimensionless parameters R1 h/k,  (the Biot number) and b (the ratio 
of vessel depth from the surface to vessel radius). Typical Biot numbers 
range from lo-’ to lo-’, resulting in a range of ratios of the skin and blood 
temperatures. Chato demonstrates that as either dimensionless parameter 
increases, the significance of the blood vessel as a source of heat flow 
towards the skin decreases and the temperature difference between the skin 
and the ambient air will decrease. 
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2. Solution with Metabolic Heating 

Chato derives a similar model in which a uniform, constant metabolic heat 
generation term is included in the superposition solution. In addition, this 
model allows for a specified, uniform heat flux from the skin surface, G ,  
which is due to all body heat dissipation not associated with the line source 
represented by the blood vessel. The governing energy balance equation is 
similar to that used in the surface model described above, except for the 
nonzero term on the right-hand side. 

(8.33) 

As with the other surface heat transfer model, a convective heat transfer 
coefficient h is used to characterize heat transfer between the skin surface 
and the ambient air at temperature To. The superposition solution for this 
problem is 

--m exp(u) cos(yx) du 
-H U 

T -  &=“(!In( x2  + ( y  - a)’ 
ak, 4 x2 + ( y  + a)2 

G Q 2 G  
h 2k, kt 

+ - - - - Y  - - - Y  (8.34) 

Note that Eq. (8.34) is similar to Eq. (8.28), with three additional terms due 
to the surface flux and internal heat generation. Chato notes that G is not 
independent of Q since at steady state the surface heat flux G must account 
for all heat generated by the tissue due to Q as well as the extra heat flux 
from the core of the body. While Q can be zero with a nonzero G,  the 
converse is not true. G ,  surface flux due to tissue heating, cannot be zero if 
Q is nonzero. The heat flux G will be equivalent to the product QY, where 
Y is the thickness of the peripheral tissue layer which contains the blood 
vessel. In this manner, the parameter Q can be eliminated from the tempera- 
ture profile in Eq. (8.34). Using this substitution, Chato shows that the skin 
surface temperature at (x = 0,y = 0) is 

where H, is the value of H at y = 0, discussed previously. The blood 
temperature at x = 0 can be shown to be 

T(0, RI - d,) - & - - GR (< k + b - !!f) 
- 

Q‘/nk,  Q ‘ / n  hR 2Y 

1 --m exp(u) du + ~ l n ( b  + m) + exp(H,) 

(8.36) 
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Chato estimates the parameter G by dividing the whole body metabolic heat 
rate by the whole body surface area under conditions of rest and intense 
exercise. Thus 

G .  =- go = 40 W/m2 
2 m2 m1n 

G,,, = - 'Oo0 - - 500 W/m2 
2 m2 

(8.37) 

(8.38) 

The parameter Q' is estimated by assuming a value for the axial temperature 
gradient in a peripheral blood vessel and using the relationship 

(8.39) 

For a capillary and main venous branch with aTb/az = 0.1 "C/mm, the 
minimum and maximum values of Q', respectively, are 

QLin = 1.5 x W/m and QAax = 30 W/m (8.40) 

Using these values, Chato shows that 

= 133 = Gma, and (%) = 0.001 = Gmin (8.41) 
max max 

Chato calculates the ratio of the surface and blood temperatures at x = 0 
under conditions of negligible heat flux from the line source that represents 
the blood vessel in the superposition solution. In this case 

1 

Equation (8.42) is valid if the integral terms in Eqs. (8.35) and (8.36), as 
well as the logarithmic term in Eq. (8.36), are small compared to  the 
other heat transfer terms in these equations. Parametrically, this condition 
implies that the ratio of G to the Biot number is much greater than unity. 
The influence of the internal heat generation Q and the added heat from the 
core tissues included in parameter G on the skin surface temperature is to 
decrease the effect of the blood vessel line source. 

Chato also demonstrates that the blood vessel has the greatest effect 
on skin temperature when it is of large diameter and positioned close to 
the skin surface. The influence of the blood on the skin temperature is 
independent of the linear metabolic heat generation and deep tissue 
heat flux terms. Evaluating Eq. (8.34) at position y = 0, the maximum 
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temperature increase on the skin surface imposed by the nearby blood 
vessel is 

(8.43) 
--m exp(u) cos(yx) du 

U 
T,,max - Z,rnin = -ex~(Hs) 

nkt Q' s, 
For a capillary with an axial temperature gradient of 0.1 "C/mm, this 
temperature difference is very small, on the order of "C, while for a 
terminal vein with an axial temperature gradient of lo-' "C/mm, the 
maximum increase in skin temperature due to  the presence of the vessel is 
0.33 'C .  

The work of Chato was significant in isolating several of the important 
dimensionless parameters that influence heat transfer between vessels and 
tissue. The impact the Graetz, Nusselt, and Biot numbers along with 
countercurrent heat transfer units, heat exchanger effectiveness, and various 
dimensionless distances on tissue heat transfer was quantified for a variety 
of vascular arrangements. These vascular models can be readily adapted to 
model a wide range of bioheat transfer problems, especially those involved 
in the analysis of bioheat transfer during therapeutic hyperthermia. 

At the same time that the bioheat transfer models of Chato were 
published, Weinbaum and Jiji presented a two phase mathematical model 
of vascular bioheat transfer that represented a different approach to 
analyzing the tissue-blood thermal interaction. A subsequent series of 
papers several years later expanded upon this initial formulation in order to 
model the effects of complex vascular structure on tissue heat transfer. 
Their development implements several phenomena that were previously 
studied by others whose work has been described above. The countercurrent 
phenomena first modeled by Mitchell and Myers, and later by Keller and 
Seiler and Chato; the thermal equilibration length characteristics of 
microvessels first quantified by Chen and Holmes, and later by Chato; the 
bulk convection term examined by Wulff and Klinger, in addition to Chen 
and Holmes; the three equation modeling approach of Keller and Seiler; the 
superposition solution in a conduction field between adjacent vessels 
utilized by Chato; an effective thermal conductivity due to blood flow; and 
finally the perfusion bleed-off originally presented by Pennes are all 
employed by Weinbaum and Jiji in their development of a "new" bioheat 
equation for perfused tissue. 

IX. Weinbaum-Jiji Bioheat Transfer Models 

Weinbaum and Jiji, along with several colleagues [34, 55, 56, 59-63,701, 
have developed a mathematical model of bioheat transfer as an alternative 
to the Pennes bioheat equation. Their objections to the Pennes model 
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include the lack of directionality in the isotropic perfusion term and the 
neglect of the influence of larger blood vessels embedded in the perfused 
tissue on the tissue-blood heat transfer. In addition, Weinbaum and 
colleagues criticize the Pennes model for not accounting for the character- 
istic geometry of the blood vessel arrangement, i.e., the branching, tapered 
diameter ultrastructure of the paired, countercurrent arteries and veins as 
they gradually branch into arterioles, venules, and capillary beds. An early 
model of the heat transfer associated with this vascular architecture was 
presented by Weinbaum and Jiji in 1979 [59]. 

A. EARLY Two PHASE FORMULATION 

In this study, Weinbaum and Jiji [59] used a schematic view of the 
circulation, shown in Fig. 18, to analyze bioheat transfer between a paired 
countercurrent terminal artery and vein. Note that each artery-vein pair is 

FIG. 18. Schematic view of the peripheral circulation used by Weinbaum and Jiji in 1979 
[59]. (Reproduced from [591. with permission from the American Society of Mechanical 
Engineers.) 
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considered part of a periodic array of blood vessels in the tissue circulation. 
As blood flows along the length of the terminal artery towards the skin 
surface, the artery undergoes several, up to 10, generations of branching. 
Along with the continuous decrease in artery diameter from the deep tissue 
region to skin surface due to the tapered characteristics of the vessels, there 
is also a decrease in blood velocity due to the continuous flow of blood from 
the artery into capillary beds located in the plane normal to the paired 
artery-vein axes. Note that the circulation of blood in this plane, which 
Weinbaum and Jiji describe as “collateral” circulation, is not through a 
countercurrent system but can be considered unidirectional, from the artery 
to the paired vein in the radial direction. After the arterial blood passes 
through the capillary bed, it drains into the venous system, which is 
similarly tapered, and the blood velocity increases as the deep supply vein is 
approached due to the continuous drainage of blood from the capillary beds 
into the venous system. 

1. Blood Phase 

Weinbaum and Jiji argue that this vascular structure requires a 
mathematical model that can account for variations in vessel number 
density of roughly six orders of magnitude, velocity and vessel diameter 
variations of two orders of magnitude, and vessel Reynolds numbers that 
decrease by four orders of magnitude from the entrance of the flow system 
to the end of the vascular tree at the skin surface. The early two phase 
model of Weinbaum and Jiji considered an average artery and vein radius 
a, and a,, which both vary continuously in the direction normal to the skin 
surface, x. The periodicity of the vascular array yields a parameter I , ,  
which represents the distance between the paired countercurrent artery 
and vein and is also a function of x. Weinbaum and Jiji also define a radius 
of influence for each vessel pair, R, that decreases continuously from the 
deep tissue towards the skin surface. As shown in Fig. 19, the value of R 
depends on the amount of collateral circulation between the paired artery 
and vein. 

Weinbaum and Jiji use a scaling law to describe the variation of R 
with x :  

n ( x ) ~ ( x ) ~  = constant (9.1) 

where n is the number of arteries or veins crossing the plane normal to the 
vessel axes per unit area. If the function n(x) is known from anatomical 
data, the radius of influence of the artery-vein pair can be determined. 
Another physical law that must be obeyed is mass conservation in the paired 
arteries and veins. For a constant, uniform capillary bleed-off rate g, the 



MATHEMATICAL MODELS OF BIOHEAT TRANSFER 99 

I 
I 
Q 
I 
I 
I 

/ 
I 
I 
I 

/ 

/ 
I 1- 
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n = l  
a = 0.3mm 
ij = 6cmlsec 
Re = 12 
R = l c m  
W/a = 33.3 

ARTERIOLES 
n = 2.2 x lo4 
a = 0.01 mm 
CI = 0.3cmlsec 
Re = 0.02 
R = 6.7 x 10-3cm 
Rla = 6.7 

CAPILLARIES 
n = 6.7 x lo5 
a = 0.004 mm 
ij = 0.07cmlsec 
Re = 0.002 

dla = 3 
R = 1.2 x 10-3cm 

FIG. 19. Vascular parameters in the circulation as compiled from the literature [64] by 
Weinbaum and Jiji. (Reproduced from 1591, with permission from the American Society of 
Mechanical Engineers.) 
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continuity relationship requires that 

d 
dx - (n(x)u,(x)2iiv(x)) = +2navg (9.3) 

where ii is the mean velocity in either the artery or vein and g is perfusion 
bleed-off (or collateral circulation rate) in volume blood per time per vessel 
surface area. These continuity relationships are similar to those used in the 
model of Keller and Seiler (see Eqs. (7.28)-(7.31)). Weinbaum and Jiji show 
that the energy balance equations for the artery and vein temperatures as a 
function of r,  the radial distance from the vessel axis, are 

where the second term on the right-hand sides represents the heat transfer 
associated with viscous dissipation in the blood vessels. Note that the 
algebraic sign of u, is positive, while u, is negative due to the countercurrent 
arrangement. These velocities may be assumed to have a parabolic profile 
inside the blood vessel since the Reynolds numbers in terminal arteries are 
on the order of unity or less. Thus 

The mean velocities iia and ii, are determined from the continuity relation- 
ships. It is important to note that neglecting fluid loss in the lymphatic 
system, the magnitudes of ii, and iiv are equal at any position x ,  but in 
opposite directions. This argument was also used in the model of Keller and 
Seiler [36].  By combining Eqs. (9.2) through (9.7), the energy balance 
equations for the arterial and venous blood streams are completely defined. 

2. Tissue Phase 

The second phase of Weinbaum and Jiji’s two phase model involves the 
tissue medium that surrounds the artery-vein pair. As stated above, this 
earlier model of Weinbaum and Jiji proposed that collateral blood flow in 



MATHEMATICAL MODELS OF BIOHEAT TRANSFER 101 

the plane normal to the artery-vein pair was unidirectional from the artery 
to the vein in the radial direction. In addition, these vessels are of small 
diameter and blood velocity so that their thermal equilibration lengths are 
very short. In this manner, the heat transfer characteristics of the collateral 
circulation can be modeled as fluid flow through a porous tissue medium, 
as was proposed earlier by Wulff. The form of the energy balance equation 
for the tissue medium is thus 

pcPupVT= k V 2 T +  Q (9.8) 

where up is the perfusion velocity in the porous tissue medium and Q 
represents any heat sources in the solid tissue. Weinbaum and Jiji subdivide 
the tissue space into two regions which are represented by two temperatures 
19, and 0, , as shown in Fig. 20. The energy balance equations for these two 
tissue regions are written based upon Eq. (9.8), where the perfusion velocity 
is inversely proportional to r-position in order to conserve mass in the 
collateral circulation: 

FIG. 20. Schematic view of a countercurrent vessel pair in the peripheral circulation and the 
collateral, or transverse, perfusion bleed-off circulation, as modeled by Weinbaum and Jiji. 
(Reproduced from [59], with permission from the American Society of Mechanical Engineers.) 
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Note that the minus sign on the left-hand side of Eq. (9.10) is necessary to 
account for the flow of venous blood in the terminal vein in the negative 
x-direction. The two tissue temperatures 8, and 8, proposed by Weinbaum 
and Jiji in this early model can be interpreted as the mean tissue tempera- 
tures within the radius of influence R from the paired countercurrent 
artery and vein, respectively. 

3 .  Skin Layer 

A model of heat transfer in the cutaneous circulation was also presented 
in this study. The tissue temperature in the thin skin layer was determined 
by considering the vascular architecture in this region. Based on anatomical 
observations, Weinbaum and Jiji argued that blood passes directly from 
arterioles to venules in the skin, as shown in Fig. 18, as part of the thermo- 
regulatory control system. For example, under conditions of vasodilation, 
most of the arterial blood is directed into the superficial veins, which 
results in a highly perfused layer of tissue near the skin. In a later study by 
Weinbaum et al. [60], this view of the cutaneous circulation was modified 
based on experimental observations in the rabbit (see Section 1X.B. 1 .c). In 
the 1979 study, however, Weinbaum and Jiji modeled the effect of blood 
flow in the skin tissue layer as one-dimensional heat transfer through a 
Dorous medium: 

(9.11) 

where wb is the blood perfusion flux in the tissue layer beneath the 
skin, defined in the region L I x I (L + E ) .  In this early study, Weinbaum 
and Jiji assumed the Wb(X) would decrease linearly to zero from position 
x = L to the skin surface at x = L + E .  Based upon continuity of flow, 
the value of wb at x = L was set equal to the value of [aa2nii] evaluated 
at x = L .  

The coupled energy balance equations written above can be utilized to  
solve for blood temperatures T, and T, as functions of r and x,  and tissue 
temperatures 6,, 6,, and 6, as functions of r and x. A symmetry boundary 
condition must be enforced at r = 0, while a continuous temperature and 
heat flux is required at r = a, and r = a,. In addition, the periodicity of the 
vascular array implies that there is no heat flux past the tissue cylinder 
surface at r = R .  In tcrms of the axial x-direction, boundary values must be 
specified at x = 0 and x = L + E ,  in addition to temperature and heat 
flux matching conditions at x = L .  Weinbaum and Jiji did not present the 
results of these simulations, but illustrated the range of input parameters 
for their two phase model, which are shown in Fig. 19. 
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B. THREE LAYER MODEL OF PERIPHERAL TISSUE 

1. Physical Description 

The 1979 model by Weinbaum and Jiji represented one of the first 
attempts to model the effects of the circulation on tissue heat transfer on 
a vascular, rather than continuum basis, accounting for the complex 
geometry of the countercurrent artery-vein network. A more thorough 
investigation of this problem was presented in two companion papers 
published by Weinbaum, Jiji, and Lemons in 1984 [34,60]. The first of 
these two papers presented the anatomical foundation for the Weinbaum- 
Jiji bioheat equation. In this aspect of their study, three different vascular 
structures were identified in rabbit limbs. Schematic views of these three 
layers are shown in Figs. 21 and 22. In the deep tissue layer the arteries and 
veins are paired, countercurrent, and are oriented oblique to the skin 
surface. Their number density, radii, inclination angle, center-to-center 
spacing, and radius of influence all vary along the length of the counter- 
current network. The vessels branch as they approach the more peripheral 
tissue region and remain in a countercurrent arrangement for the first five 

FIG. 21. A schematic view of the peripheral circulation with three tissue layers as modeled 
by Weinbaum ef al. in 1984 [60]. The cutaneous layer is perfused with blood through a plexus 
which receives blood from vessels that are physically separate from muscle circulation 
(in contrast to that shown in Fig. 18). The intermediate layer contains thermally insignificant 
countercurrent vessels with transverse perfusion in the plane normal to the countercurrent 
vessel axes, as shown in Fig. 20. The deep tissue layer contains a branching network of 
thermally significant countercurrent blood vessels. (Reproduced from [60], with permission 
from the American Society of Mechanical Engineers.) 
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FIG. 22. A simplified view of the three layer model shown in Fig. 21. 

or six branching generations. In addition to countercurrent heat transfer, 
there is heat exchange between the vessel pair in this layer by conduction 
into the tissue as well as by capillary bleed-off, since the arterial blood that 
perfuses the tissue via the collateral microcirculation is usually warmer 
than the local venous blood return temperature. As will be shown below, 
perfusion bleed-off has a significant effect on the artery-vein temperature 
difference (T,  - T,) along the length of the countercurrent network. These 
complex effects are considered by Weinbaum and colleagues in the deriva- 
tion of their bioheat equation. 

As described in the initial 1979 study by Weinbaum and Jiji [59], after 
five or six generations of branching in the deep layer, an intermediate layer 
of tissue is approached, in which the vessel pairs are no longer as closely 
spaced as in the deep layer but rather are part of a periodic array of terminal 
vessels separated by a transverse, or collateral, microcirculation. This 
intermediate layer is discussed below after a presentation of the preliminary 
analysis used by Weinbaum et al. [60] to characterize the deep tissue layer 
countercurrent heat transfer. 

a. Deep Tissue Layer and Thermal Equilibration Lengths. Based upon a 
thermal equilibration length model by Weinbaum et al. [60] that is similar 
to those proposed earlier by Chen and Holmes [22], as well as Chato [20], 
the deep tissue layer blood vessels are thermally significant; i.e., the blood 
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is at a temperature different than that of the surrounding tissue. Weinbaum 
et al. use a superposition technique similar to that employed by Chato [20] 
to model heat transfer between the paired artery and vein in the plane 
normal to their axes: 

V27;(X, y ,  2)  = 0 (9.12) 

with the boundary conditions 

T(x, y ,  z) = &(x) along the artery surface (9.13) 

T ( x ,  y ,  z )  = TJx) along the vein surface (9.14) 

where x is the direction normal to the skin surface and the y-z plane is the 
location of what Weinbaum and Jiji labeled the collateral circulation 
between the paired artery and vein due to perfusion bleed-off in the 
earlier 1979 paper [59]. The solution to this two-dimensional superposition 
problem is discussed in Section VII1.B. 1 .  

This two-dimensional heat transfer solution is combined with the energy 
balance equations that describe heat transfer along the axes of the artery 
and vein (i.e., in the x-direction): 

(9.15) 

(9.16) 

where r is the radial position from either the center of the artery or vein. 
Thus the right-hand sides of Eqs. (9.15) and (9.16) represent the total heat 
flow into the artery and vein by conduction from the surrounding tissue. 
Note that a minus sign is needed in Eq. (9.16) to account for the counter- 
current flow arrangement. This approach was also utilized by Chato [20] in 
his model of the heat transfer between parallel blood vessels described 
previously. In a simple preliminary formulation, Weinbaum et al. [60] 
assume that there is no net heat transfer into the tissue, and thus the system 
acts as a perfect countercurrent exchange system, where all of the heat lost 
from the artery to the tissue flows back into the vein. Under the conditions 
of zero perfusion bleed-off, the velocity is constant and of equal magnitude 
in both vessels, resulting in a constant (T, - T,,) difference along the vessel 
axes and a linear arterial, venous, and mean blood temperature profile 
T, = ((T, + T, ) /2 )  in the x-direction. As Weinbaum et al. [60] point out, 
these results are not to be expected in vivo, as they neglect the effects of 
variable vessel geometry in the x-direction, branching, capillary bleed-off, 
and heat loss to the tissue. These complicating phenomena are considered 
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in the derivation of the Weinbaum-Jiji bioheat transfer model described 
below. However, the predictions of the simple preliminary model in Eqs. 
(9.12)-(9.16) are convenient for defining a thermal equilibration length for 
a countercurrent vessel pair in the deep tissue layer. 

The thermal equilibration length of the paired vessels is defined by 
Weinbaum et al. [60] as the distance required for the artery, vein, and mean 
blood temperatures to decrease by [ T , ( O )  - T,(O)], the artery-vein tempera- 
ture difference at the entrance to the countercurrent network (x = 0). Using 
the solution to Eqs. (9.12) through (9.16), this length is 

Leq,cc = - a - kb Pe cosh-'(!) 
2 kt 

(9.17) 

where I, represents the center-to-center spacing between the paired artery 
and vein and Pe is the flow Peclet number. According to the isolated 
vessel model presented by Chato [20], Chen and Holmes [22], as well as 
Weinbaum et al. in their 1984 paper [60], the thermal equilibration length 
of a single vessel (neglecting entrance effects) is 

(9.18) 

Using anatomical data from vascular casts in rabbit thigh muscle to 
evaluate the parameters in Eqs. (9.17) and (9.18), Weinbaum ef  al. calculate 
that under resting blood flow conditions all paired vessels larger than 50 pm 
in diameter have thermal equilibration lengths approximately three times 
shorter than the thermal equilibration length of the same single, isolated 
vessel. They conclude that countercurrent heat transfer is the dominant 
mechanism for blood-tissue interaction in this deep region that contains 
thermally significant countercurrent vessel pairs. The deep tissue layer ends 
at the x-location where the countercurrent vessels are no longer thermally 
significant. Under resting blood flow conditions, this corresponds to the 
50-pm vessels in the fifth or sixth generation of branching. 

The thermal equilibration analysis presented above is also used by 
Weinbaum et al. [60] to illustrate that vessels smaller than 50pm are com- 
pletely thermally equilibrated with the surroundings and thus a single 
temperature can be used to describe the blood and tissue that surrounds the 
blood vessel. Weinbaum et al. conclude that the basic assumption of the 
Pennes bioheat equation perfusion heat source term is physically impossible 
because arterial blood is thermally equilibrated with the surrounding tissue 
before it reaches the capillary beds. The temperature difference ( I ;  - T,) 
that appears in the Pennes perfusion heat source term is therefore zero due 
to this phenomenon of arterial precooling. 
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b. Intermediate Tissue Layer. In the intermediate tissue layer, the paired 
arterial and venous blood temperatures are slightly different, less than 
0.2 "C based upon experimental measurements [41], due to their relatively 
larger spacing on the order of 0.5-1 mm. However, the vessels themselves 
are small enough so that there is nearly complete thermal equilibration 
between the blood and surrounding tissue near the vessel wall. As shown in 
Fig. 20, the tissue temperature associated with tissue near the artery, O,, will 
be different than the tissue temperature associated with tissue near the vein, 
0,. While the blood temperatures T, and T, will be equal to these two tissue 
temperatures 8, and 0, , respectively, there will be some heat transfer in the 
plane containing the transverse bleed-off vessels in the intermediate tissue 
layer. The two phase porous medium model presented in the 1979 study by 
Weinbaum and Jiji [59] can be applied in this region, since the unidirectional 
capillary bleed-off between periodically spaced vessel pairs acts to convect 
heat in the direction normal to the countercurrent vessel axes. Weinbaum 
et al. [60] describe the boundary region between the deep and intermediate 
tissue layers as a plane where small lateral (normal to the countercurrent 
vessel axes) temperature gradients coexist with large gradients normal to the 
skin surface. The intermediate tissue layer can be interpreted as a thin 
region, several millimeters thick, where temperature gradients due to the 
presence of thermally significant vessels in the deep and cutaneous layers 
are attenuated. 

c. Cutaneous Layer. The outermost cutaneous layer is dominated by 
conduction heat transfer normal to the skin surface. Based upon experi- 
mental observations, Weinbaum et al. [60] report that arterial blood is 
supplied to the skin via a circulatory system that is physically separate from 
the muscle tissue blood supply. This is in contrast to the earlier model [59], 
which presumed that arterial blood was supplied to the skin via the last 
generation of branching in the muscle layer and that venous blood was 
drained from the skin either through the venous network in the muscle layer 
or through the superficial venous plexus. In the 1984 study, Weinbaum 
et al. [60] observe that arterial blood is supplied to  the skin layer from 
major arteries that branch from the deep arteries and rise up to the skin 
surface where they bend and run parallel to the skin surface. Only a small 
fraction of the arterial feed blood is actually directed towards the cutaneous 
layer cells to provide nutrients and oxygen to the cells. Most of the blood in 
these thermally significant vessels flows directly from the large artery to the 
large vein through 20-40pm anastomoses in the cutaneous plexus. Based 
upon this vascular structure, Weinbaum et al. [60] model the effect of blood 
flow in the cutaneous plexus as a distributed volumetric heat source. They 
note that the arterial supply vessels are quite large (200-500 pm in diameter) 
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and therefore have long thermal equilibration lengths. Under these condi- 
tions, the arterial blood will arrive in the cutaneous layer at a temperature 
that is different than the surroundings. Weinbaum et al. [60] propose that 
this effect can be mathematically modeled as a uniformly distributed heat 
source, similar in form to the Pennes perfusion heat source term, in the 
lower portion of the cutaneous layer. In the upper part of the cutaneous 
layer there is a small blood vessel plexus which perfuses blood to the skin 
cells via 20-40 prn vessels. Based on the arguments presented above, blood 
flow in this region is neglected, and Weinbaum et al. [60] model this most 
superficial portion of the skin layer as a pure conduction layer. 

2. Governing Equations 

a. Deep Tissue Layer. A mathematical description of each of these three 
tissue layers was presented by Jiji et al. [34] in the second part of their two- 
part paper. The governing equations for the deep tissue layer were derived 
by considering the vessel geometry and capillary bleed-off phenomena on a 
continuous basis. The continuity relationship that provides for mass 
conservation in the paired blood vessels is 

(9.19) 
d 
-(na2ii)  = - h a g  
ds 

where s is the location along the length of the countercurrent network 
(different than x in the earlier 1979 study due to the inclination angle of the 
vessel pairs made with the axis normal to the skin surface), ii is the bulk 
mean velocity in the blood vessel, and g is the perfusion bleed-off per unit 
vessel surface area. Note that Eq. (9.19) is similar to Eqs. (9.2) and (9.3). In 
their 1984 formulation, Jiji et al. [34] assume that the paired vessels are the 
same size and that there is no fluid loss to the lymphatic circulation. Under 
these conditions, the velocities ii, and ii, that appear in Eqs. (9.2) and (9.3) 
are identical in magnitude but opposite in direction due to the counter- 
current flow arrangement. 

As first applied by Keller and Seiler [36], three energy balance equations 
are used to describe the arterial, venous, and tissue temperatures in the 
deep tissue layer where the vessels are thermally significant. The governing 
equations for the countercurrent arterial and venous blood elements in the 
deep tissue layer are 

(9.20) 

(9.21) 
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where qa is the heat loss from the artery by conduction through its wall 
per unit length and qv is the heat gained by conduction through the vein 
wall into the vein per unit length. Note that the arterial blood flows in the 
positive s-direction, while the venous blood flows in the negative s-direction. 
The second terms on the right-hand sides of Eqs. (9.20) and (9.21) represent 
heat loss from the artery and heat gained by the vein due to capillary 
perfusion, respectively. The blood temperatures T, and T, are bulk mean 
temperatures inside the blood vessels. Note that Eqs. (9.20) and (9.21) are 
similar to the artery and vein energy balance equations in the models of 
Chato [20] and Keller and Seiler 1361. Using the continuity equation, the 
terms associated with heat loss from the arterial blood due to perfusion 
bleed-off and the heat gained by the venous blood from perfusion drainage 
can be eliminated, yielding the two energy balance equations 

(9.22) 

(9.23) 

A third equation is required to solve for the temperature of the tissue that 
surrounds the countercurrent artery-vein pair. Assuming that each vessel 
pair is part of a periodic array of vessels at the location s, there will be no 
heat flow into the tissue cylinder of radius R(s) (the radius of influence of 
the countercurrent vessel pair) that surrounds each vessel pair. In addition, 
there will be some energy deposited into the tissue due to the perfusion 
bleed-off as well as the conductive heat loss from the paired artery and vein. 
The corresponding tissue energy balance equation is 

where the first term on the left-hand side is the net heat transfer by conduc- 
tion from the tissue into the paired vessels, the second term on the left-hand 
side is the net heat deposited in the tissue due to perfusion bleed-off, and the 
last term is the net conduction gain in a tissue element of differential length 
ds. Note that qv and qa are not equal for an “imperfect” countercurrent 
heat exchange system, and T, and T, are not equal in the deep tissue 
layer proposed by Jili et af. [34] to describe heat transfer in the thermally 
significant vessels. 

Combining Eqs. (9.22)-(9.24), the tissue energy balance equation is 
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Equation (9.25) is a single equation with three unknown temperatures z, 
T,, and T, . In order to solve this equation, some approximations must be 
made. Based upon temperature measurements in the deep muscle layer of a 
rabbit reported by Weinbaum et al. [60], the tissue temperature T, can be 
approximated by the mean value of the artery and vein temperatures, 
(T, + T,)/2. As shown in Fig. 23, the typical temperature profile in the 
vicinity of a countercurrent vessel pair is described by Jili et af .  [34] as a 
perturbation on a mean tissue temperature profile over the length scale I,, 
which is small relative to the macroscopic temperature measurement length 
scale. The tissue equation can thus be written 

(9.26) 
Adding Eqs. (9.22) and (9.23) yields 

(9.27) 

At this point in their derivation, Jiji et af. [34] argue that the local tissue 
temperature gradient is large relative to the undisturbed temperature 
gradient and thus heat conduction normal to the countercurrent vessel pair 
is more significant than heat conduction in the tissue along the direction of 
the vessel axes. Based on this argument, the magnitudes of qa and qv are 
much larger than the difference (qa - qv) and the value of (qa + qv) can be 
approximated by the two-dimensional superposition of a line sink and 
source in a pure conduction field. This approach to solving the conduction 

FIG. 23. The typical tissue temperature profile measured near a countercurrent vessel pair as 
measured in the rabbit thigh 1601. This observation served as a physical justification for the 
original form of the closure condition of the Weinbaum-Jiji bioheat equation. (Reproduced 
from [34], with permission from the American Society of Mechanical Engineers.) 
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problem between parallel vessels was described earlier in the presentation of 
Chato's bioheat transfer model [20]. Using this method, Jiji et af. [34] solve 
for the sum 

( 4 a  + 4") 2qo (9.28) 
where 

(9.29) 

from the superposition solution. Substituting Eqs. (9.28) and (9.29) into 
Eq. (9.27) 

(9.30) d 4MT, - T,) - p b c b a 2 a - - ( ~  + T,) = 
ds cosh-'(/i/2a2 - 1) 

By applying the two-dimensional superposition solution, Jiji et af. [34] were 
able to eliminate the tissue temperature as an unknown in the system of 
energy balance equations and therefore Eqs. (9.30) and (9.26) can be used 
to solve for T,  and T, as a function of s-position. The first order ordinary 
differential equations are solved with the two boundary conditions 

(9.31) 

(9.32) 

where T,, is the unknown venous return temperature at the entrance of the 
countercurrent network (s = 0), which is determined by a global heat 
balance across the three layer tissue model, described in Section IX.B.3. 

Based upon a scaling law first proposed in the 1979 study, Jiji et al. [34] 
assume that the product nR2 is constant with s-position. Since n(0) is unity, 
the value of R(s) can be determined based on n(s) and R(0). Jiji et a/ .  [34] 
nondimensionalize the two governing equations in the deep tissue layer 
based on S o ,  the total length of the countercurrent network in the deep 
layer, and Pe*(s), the flow Peclet number in the vessel at each s-location: 

d 
ds 

dPe*;(< - c) = 4v(Fa - c) + 

d - 8 ( z  - z) 
GPe*--(C + z) = 

ds' cosh-'(/2/2 - 1) (9.34) 

where the dimensionless distances a', f, &, and R are the parameters a, s, 
/s, and R normalized by the distance So, respectively. The dimensionless 
temperatures and T, 
and T, (the skin surface temperature) relative to the difference (& - T), 
respectively. The dimensionless perfusion parameter v is equal to pbCbag/k, 
and Pe* is the flow Peclet number times the ratio k , /k , .  Note that Pe* 

and z are ratios of the difference between 
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varies with s-position along the deep layer vascular network. The dimen- 
sionless boundary conditions are E(0) = 1 and z(0) = ?;, the dimension- 
less venous return temperature at the entrance of the countercurrent 
network. 

b . Intermediate Tissue Layer 

The mathematical model in the intermediate tissue layer is based on the 
schematic view of the transverse terminal vessels shown in Fig. 22. The 
spacing lo between the paired artery and vein in this layer is assumed to be 
constant with s-position and equal to the diameter of the tissue cylinder that 
surrounds the artery-vein pair at position s = So, the location of the 
deep-intermediate tissue layer boundary. Applying the condition that the 
product nR2 is constant with s-position, the length I,, which is the diameter 
of influence around either the artery or the paired vein in this intermediate 
layer, is 

(9.35) 

since the combined area of influence of the artery and vein, 2((n/4)/& must 
be equal to the cross-sectional area of the tissue cylinder surrounding the 
deep layer vessel pair at the layer interface, nr(So)2. 

Based upon the physical intepretation of the intermediate transverse 
bleed-off vessels that connect the paired artery and vein as unidirectional 
conduits in a porous tissue medium, the two phase model developed in the 
1979 study by Weinbaum and Jiji is applied to describe the heat transfer 
in the intermediate layer. Equations (9.9) and (9.10) are nondimension- 
alized using 2 = x/xo, where xo is the thickness of the intermediate layer, 
F = 2r/I0, and & and gv are the dimensionless temperatures of the tissue 
surrounding the paired artery and vein in this layer and are defined in 
the same manner as Fa and f ,  in the deep tissue layer. The radial position 
r indicates the distance from the axis of either the artery or the vein, 
depending on the equation. The dimensioness forms of Eqs. (9.9) and 
(9.10) are . ,  

a2ga a2ga 1 a& 
r‘ a? pzs + aJ2 + (1  - v)- - = - I  

a2gv a2& 1 a& 
r‘ a? + 3 + (1 + v)- - = -A 

(9.36) 

(9.37) 

where f l  is the ratio /,/2x0 and A is the dimensionless metabolic heat 
source Q,/t/(4kt(& - z)). Equations (9.36) and (9.37) are subject to the 
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following boundary conditions: 

a t J = O  (9.38) 

& = F(?) and gV = G(?), at f = 0 (9.39) 
- - -  
e a  = 0, = $ 0 ,  a t 2 =  1 (9.40) 

e, = e,, a t ? =  1 (9.41) 

ag, a& 
a? a ? ’  
_ -  --  a t ? =  1 (9.42) 

The first boundary condition accounts for symmetry inside the artery and 
vein, the second and third boundary conditions describe the temperatures at 
the upper and lower boundary of the intermediate layer, while the last two 
boundary conditions are needed to match the temperature and heat flux at 
the boundary between the two tissue cylinders that surround the artery and 
vein. As with the venous return temperature Td in the deep tissue layer, the 
functions F(?), G(?),  and 5, are unknown and are determined by matching 
solutions with the other two layers of this three-layer model. 

c. Cutaneous Layer. Based on the physical description of the cutaneous 
layer, this superficial region is divided into two sections, an inner layer 
where the large cutaneous vessels are located, and an outer layer where the 
thermally insignificant bleed-off vessels supply blood to the skin cells. In 
the inner region, the effect of blood flow in the cutaneous plexus is modeled 
by Jiji et al. [34] as an isotropic heat source. Arterial blood arrives in this 
region at a temperature &, which is between T,  , the temperature of arterial 
blood at the entrance to the deep tissue layer countercurrent network, and 
q+(y), the local tissue temperature in the inner region of the cutaneous 
layer, due to heat transfer with surrounding tissue along the route to the 
surface layer. As blood flows through the small (20-40pm) anastomoses 
that connect the large superficial artery and vein, there is complete thermal 
equilibration between the arterial blood and the surrounding tissue, based 
upon the very short thermal equilibration lengths associated with these 
small vessels. In this case, blood perfusion can be modeled by a perfusion 
heat source that is similar in form to the Pennes perfusion term 

(9.43) 

where a,, nc, and g, are the radius, number density, and perfusion bleed-off 
rate associated with the small bleed-off vessels in this region, respectively. 
Jiji et al. [34] nondimensionalize the distance from the intermediate layer 
interface y by the thickness of the cutaneous layer yo. As before, the 

Qc = 2nPbCbacncgc($b - $1) 
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temperatures 41(y) and 4 b  are normalized by the ratio of their difference 
with temperature T,  relative to the maximum temperature difference across 
the three tissue layers, & - T, . The dimensionless energy balance equation 
in the inner region of the cutaneous layer is 

(9.44) 

where Wt is a dimensionless cutaneous perfusion parameter 

2 v b C b a c n c  gcYo2/kc 

and y 1  is the thickness of the inner region of the cutaneous tissue layer. Jiji 
ef al. [34] point out that the governing equation for heat transfer in this 
region has exactly the same form as the Pennes bioheat equation, with the 
temperature &, and perfusion rate wb analogous to the temperature T, and 
perfusion rate w in the Pennes equation, respectively. 

The outer region of the cutaneous layer is simply a one-dimensional 
conduction layer so that 

(9.45) 

Note that the governing equations in both regions of the cutaneous layer 
neglect any metabolic heating in the tissue. The two equations are subject to 
the boundary conditions 

4 d O )  = 6 0  (9.46) 

(9.47) 

4, = &, at 9 = f l  (9.48) 

at 9 = p1 (9.49) _ -  a& aJ2 
a9 a j  ’ 

- -  

The first two boundary conditions enforce a continuous temperature 
and heat flux across the interface between the intermediate and cutaneous 
layers, while the third and fourth boundary conditions similarly satisfy 
continuity relationships at the interface between the inner and outer 
cutaneous regions. The fifth boundary condition is a result of the nondimen- 
sionalization of the temperatures based on the skin surface temperature K .  

3. Analytical Solution 

The solution to this three layer tissue model involves the determination 
of c ,  z, ga, &, &, and 42 as functions of position along the vascular 
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network. In the deep tissue layer, the solution for the local temperature 
difference is 

- = (1 - z)fexp[I,(s") - 1 ~ ( ~ 1 j  (9.51) 

where the functions I ,  and Z2 are the integral functions 

v di 3 

" g f i g 2  
0 + ape* 

Pe* cosh-'(G2/2 - 1) 

) ds" 
al? '/so 

(Pe* cosh-'(C2/2 - 1) 

Pe*cosh-'(C2/2 - 1) 8 

a Pe* +- 0 fik 

(9.52) 

(9.53) 

and 5; is the unknown venous return temperature in tax Ldep tissue layer, 
which is determined using the global energy balance requirement described 
below. The function Z, represents heat transfer due to capillary bleed-off 
from the warm artery to the surrounding tissue. Since capillary bleed-off 
increases tissue temperature near the artery and decreases tissue tempera- 
ture near the vein, the net effect of function I ,  is to increase the deep tissue 
countercurrent artery-vein temperature difference. The I ,  function is 
associated with the direct conduction between the vessels and surrounding 
tissue and is related to the local geometry of the countercurrent pair. As 
shown in Eq. (9.51), this integral term acts to decrease the local artery-vein 
temperature difference. A third integral function is derived by Jiji et al. to 
describe the mean blood temperature ((c + z)/2): 

The blood temperatures g, and 8, in the intermediate tissue layer are 
solved by a superposition method. The solution is decomposed into homo- 
geneous and particular parts. Two sets of homogeneous solutions must be 
utilized for both & and gv in order to yield a continuous temperature and 
heat flux at P = 1, the boundary between the two adjacent tissue cylinders: 

- -  - 1.f2 
8, = 8,' + 8,z - - 

2P 
(9.56) 

- -  - ;Iff2 ev = evl + ev2 - - 
2P 

(9.57) 
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FIG. 24. The boundary value problem for the intermediate tissue layer. (Reproduced from 
[34], with permission from the American Society of Mechanical Engineers.) 

where the first two terms on the right-hand sides of Eqs. (9.56) and (9.57) 
are the homogeneous solutions, while the last terms are the particular 
solutions associated with metabolic heating in the tissue. The superposition 
problem, with all necessary temperature and heat flux boundary conditions, 
is shown schematically in Fig. 24. 

Jiji et al. [34] obtain the solution to this boundary value problem by 
assuming that v, the perfusion term, is spatially uniform. Under these 
conditions, the solution to the superposition problem is 

0 

Y n  -f gal = C sin- 
n = l  P 

(9.58) 

where the eigenvalues are 

yn = nnp, n = 1,2,3,  ... (9.62) 

(9.63) 

(9.64) 
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The coefficients A,, B k ,  C; ,  b,,, b , ,  c,,, and c1 are found via matching 
conditions at the boundaries. The difference between functions g(2) and 
f(2), the artery-vein temperature difference at position J = 1, is evaluated 
using the solutions above for the differences 6,, - and &, - gv2. 
Matching conditions at the boundary between the intermediate and deep 
tissue layers are used to evaluate the functions F(P) and G(J) in Fig. 24. Jiji 
et al. [34] assume that these two functions are linear and that their value at 
P = 1 is equal to the mean of the arterial and venous blood temperatures at 

F(P) = Q1) - +[Z(l) - E ( l ) ] J  (9.65) 

G(J) = f , ( l )  + 3J[z(l) - E ( l ) ] J  (9.66) 

where the boundary values z(1) and z(1) are evaluated using the artery 
and vein temperature solutions in the deep tissue layer shown previously. 

The tissue temperature profiles in the two cutaneous layers are found by 
integrating Eqs. (9.44) and (9.45) twice with respect to spatial coordinate 7, 
respectively, to yield 

61 = cl sinh why + cz cash why -k &, (9.67) 

J2 = c,j + c, (9.68) 

Note that the shape of the temperature profile in the inner cutaneous layer 
is a Pennes-like hyperbolic function of the blood perfusion rate-spatial 
location product. Temperature and heat flux matching conditions at the 
intermediate-inner cutaneous and inner-outer cutaneous tissue boundaries 
are utilized to evaluate the four integration constants in Eqns. (9.67) and 
(9.68). 

In the determination of these integration constants, the parameter 6, , 
the temperature at the intermediate-inner cutaneous tissue interface, is 
introduced into the solution (see Eq. (9.46)). The complete solution to the 
three layer model thus contains two unknown temperatures 6, and c,  the 
temperature of the venous blood at the position s = 0 in the deep tissue 
layer. The flux continuity condition in Eq. (9.47) and a global energy 
balance are subsequently used by Jiji et al. [34] to relate J0 to . The 
global heat balance across the entire three layer model, from s = 0 in the 
deep tissue layer to the skin surface at y = 0, requires that the temperature 
difference (z - f,) at s = 0 in the deep tissue layer, which represents the 
heat lost from the blood to the tissue, is equal to net heat lost from the tissue 
layer to the surroundings. Jiji et al. assume that the inner surface at s = 0 
is insulated. Thus the total energy lost from the blood during its flow 
through the vascular network shown in Fig. 22, proportional to the product 
[Pe*(O)(c(O) - 51(0))], is equal to the heat conduction loss from the outer 

s = So. Thus 
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cutaneous layer to the surroundings at y = 0. Combining the appropriate 
terms, the resulting relationship between 6, and that satisfies the global 
energy balance is 

The integration constant C, is readily available from the cutaneous layer 
solution: 

- 
&(I - cash WbjI) - 40 

(1 - yl) cash wbJl + (l/wb) sinh why, w b  COSh wby1 

(9.70) 

Equations (9.69) and (9.70) provide the necessary relationship between the 
unknowns and 6,. The three layer mathematical model presented by Jiji 
et al. is now complete and can be solved without a trial-and-error guessing 
procedure. 

c, = 1 [  

1 - ($0 - &)Wb sinh wbjj l  

4. Parameter Evaluation 

Solutions to the Weinbaum-Jiji three layer tissue model involve the 
evaluation of numerous parameter values. For convenience, variations in 
the vessel number density, vessel radius, and the vessel spacing with position 
along the vascular network are all modeled using a continuous function, 
even though the in vivo variations are discrete. In addition, the inclination 
angle between the countercurrent vessels and the axis parallel to the skin 
surface is chosen to be a constant 22", which represents a simplification 
since this angle should increase monotonically to 90" at the deep-inter- 
mediate tissue interface. The vessel spacing function is chosen to be 

n(5) = (1 - kq-b  (9.71) 

Using b = 2, Jiji et al. [34] compute k such that the number density is 32 at 
S = 1 , corresponding to a total of six branching generations of vessels in the 
deep tissue layer with a single artery-vein pair at f = 0. In this case, 
k = 0.823, Jiji et al. [34] point out that the functional form of Eq. (9.71), 
along with b = 2 and k = 0.823, yields several physiologically realistic 
results: (1) the first two vessel generations penetrate over half of the deep 
tissue layer, (2) the length of each vessel generation is shorter than the 
previous one, and (3) the final vessel generation has a length on the same 
order as the transverse vessels in the intermediate tissue layer. 



MATHEMATICAL MODELS OF BIOHEAT TRANSFER 119 

Jiji et al. [34] model the tapering size of the countercurrent vessels in a 
similar manner. A function is chosen so that a fictitious velocity, which 
would exist under conditions of zero perfusion bleed-off from the artery, 
will decrease according to the relationship 

u*(f) = u(O)(1 - Cs”)d (9.72) 

where u*(S) is the blood velocity in the absence of perfusion bleed-off and 
c and d are constants. Under conditions of zero bleed-off, continuity of 
mass requires that 

Thus 
n(o)a2(o)u(o) = na2u* (9.73) 

(9.74) 

The constants c and d are chosen so that u* decreases from 10 cm/s at the 
entrance to  the countercurrent network (# = 0) to 5 cm/s at the exit (.f = 1). 
Under these conditions, d = 3 and c = 0.206. 

Experimental observations reported by Weinbaum et al. [60] reveal that 
the countercurrent vessel spacing is very small in the first two generations, 
then increases rapidly towards the intermediate tissue layer. The counter- 
current vessel spacing in the deep tissue layer, &, is therefore chosen by 
Jiji et al. [34] to fit the function 

(9.75) 

where constants e and f are evaluated such that matches the spacing 
of the transverse vessels in the intermediate tissue layer. For f = 16, the 
constant e is 9.618, corresponding to a 0.47-mm separation at the deep- 
intermediate tissue interface when L(0) = 2.1 and a(0) = 160pm. 

The perfusion parameter v could not be matched with any experimental 
data, as none were available to Jiji et al. [34]. Consequently, a range of 
values for g, the perfusion velocity, was used in the solution of the three 
layer model. Values of 6.2 x 3.1 x and 4.6 x 10-3cm/s 
correspond to a total perfusion bleed-off in the deep tissue layer equal to 10, 
50, and 75% of the blood entering the countercurrent network at S = 0, 
respectively, assuming a value of 4cm for So and a constant inclination 
angle of 22”. The blood that remains in the countercurrent vessels at S = 1 
enters the transverse vessels of the intermediate tissue layer. In this manner 
a bleed-off fraction G ,  the ratio of blood perfused into the deep tissue layer 
to the total blood that enters the countercurrent network at 3 = 0, can be 
defined as 

a@) = a(0)(1 - kS)b/2(I - Cf)-d/2 

L = &(o) + eSf 

n(l)u*(l)a2(1) 
u*(0)a2(O) 

G = l -  (9.76) 
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In the other two tissue layers, several more parameters had to be 
specified. Jiji et al. [34] assumed a value of 0.5 for r # ~ ~ .  The thermal 
conductivities k, and k, were assumed to be equal at 0.5 W/m-"C. The 
metabolic heating parameter, A ,  was set to zero so that the effect of perfu- 
sion, characterized by v in the deep and intermediate tissue layers and W, in 
the cutaneous layer, could be easily observed. The results of the simulations 
for a range of G and W, values are shown in Figs. 25 through 27. 

5 .  Simulation Results 

Figure 25 shows the mean tissue temperature, assumed equal to ((z + c)/2) in the development of this model, as a function of position in 
the three tissue layers for G fixed at 0.33 and a range of W, values for the 
cutaneous blood perfusion rate. As the cutaneous perfusion rate increases, 
the warm blood tends to increase the tissue temperature in all three tissue 
layers. As with models that utilize the Pennes bioheat equation, the 
temperature gradient at the surface of the skin increases with increasing 
perfusion rate due to the increased magnitude of the source term that repre- 
sents perfusion heating. Figure 27 illustrates this effect at different values 
of bleed-off fraction G. Note that at high skin perfusion rates, the surface 
heat flux is independent of G since blood perfusion in the deep tissue layer 
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FIG. 25. Mean artery-vein blood temperature profiles, equivalent to the mean tissue 
temperature profiles, across the three layer model of Jiji et al. for a range of cutaneous blood 
perfusion rates. (Reproduced from [34]. with permission from the American Society of 
Mechanical Engineers.) 
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has relatively little influence on surface heat transfer. According to these 
results, surface heat transfer can be increased by a factor of 3 during 
vasodilation, which facilitates heat removal from the body during periods 
of thermal stress. 

The artery-vein temperature difference as a function of spatial position 
in the tissue is shown in Fig. 26 for a range of G values with W, = 5 and 
W, = 0.01. These results indicate that the local artery-vein temperature 
difference is fairly uniform within the first two-thirds of the deep tissue 
layer, despite order of magnitude changes in vessel diameter and velocity. 
While this dimensionless temperature difference is quite small, on the order 
of 0.01-0.02, it is sensitive to variations in the perfusion rate g in the deep 
tissue layer 0 < s < 15 mm, but not in the intermediate layer (not shown). 
In terms of dimensional quantities, for a range of 5-10 "C temperature 
difference between the arterial blood entering the deep tissue and the skin, 
this corresponds to a local artery-vein temperature difference in the range 
of only 0.1-0.2 "C between these thermally significant countercurrent 
vessels. This temperature difference is almost negligible, yet its effect on the 
tissue temperature is significant. This prediction agrees closely to the experi- 
mental measurements made by Lemons et al. [41] in their experimental 
study of blood and tissue temperatures in the rabbit thigh. It is important 
to note that if the countercurrent exchange is perfect, there is no net heat 
transfer between the paired vessels and the surrounding tissue, resulting in 
a constant T, - T, temperature difference along the vascular network as 
long as the mass flows are equal at any given spatial location inside the 
vessels. This result was seen earlier in the countercurrent model of Chato 
[20], as well as in the simplified thermal equilibration length studies of 
Weinbaum et al. [60] described previously in this chapter (see Eqs. (9.12) 
through (9.17). 

Another feature of this model is its prediction of a significant change 
in the slope of the temperature profile at the interface of the deep and 
intermediate tissue layers. In addition, at high cutaneous perfusion rates, 
there is a region with a flat temperature profile in the inner cutaneous 
layer. Both of these characteristics were also observed in the experimental 
measurements of Lemons et al. [41]. The three layer model therefore is 
successful in characterizing several important aspects of tissue-blood heat 
transfer. While blood perfusion has some effect on the local arterial-venous 
blood temperature difference, arterial bleed-off does not substantially 
increase the tissue temperature due to the complete thermal equilibration 
that occurs between the bleed-off blood and the surrounding tissue in these 
microcirculatory beds. 

A follow-up paper by Dagan et al. [24] examined the tissue and blood 
temperatures predicted by this three layer model using a range of values for 
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the Reynolds number at the inlet to the countercurrent network, the fraction 
of blood supplied to the cutaneous layer, the number of countercurrent 
branching generations, and the intensity of the metabolic heat source. 
As before, the difference between the arterial and venous blood in the 
deep tissue layer was calculated to be uniformly small under the range of 
parameter values examined. 

The main conclusion from these important combined experimental and 
theoretical studies by Weinbaum and colleagues [34,41,59,60] was that the 
main component of heat transfer between tissue and blood in the deep tissue 
layer is the imperfect countercurrent heat exchange between paired arteries 
and veins. Temperature differences on the order of (T, - To) used to model 
the effects of blood flow on tissue heat transfer in the Pennes bioheat 
formulation are essentially nonexistent. Using both a simple preliminary 
model that ignored perfusion bleed-off and only examined thermal 
equilibration lengths, and the complex three layer model described above, 
Weinbaum and colleagues showed that heat flow between the counter- 
current pairs and the tissue that surrounds these vessels will dominate the 
heat transfer in vascularized tissue of the type modeled previously in this 
chapter, typically skeletal muscle. The influence of countercurrent blood 
flow on tissue temperature was next investigated by Weinbaum and Jiji [61] 
in a paper published 1 year later that presented the derivation of a “new” 
bioheat equation. 

C. NEW SIMPLIFIED BIOHEAT EQUATION 

The mathematical and practical advantage of the new bioheat equation 
of Weinbaum and Jiji [61] is that it includes the imperfect countercurrent 
heat exchange phenomenon in a single equation, derived from the initial 
three heat transfer equations for the artery, vein, and tissue, that contains 
only the tissue temperature and its spatial derivatives. Predictions of local 
artery and venous temperatures along the countercurrent network cannot 
be determined from this one equation model. A more complicated three 
equation model, such as that presented in the 1984 study [34,60], is 
necessary for this determination. Weinbaum and Jiji use what is essentially 
a simplified version of their three layer model to derive their bioheat 
equation, which contains an effective thermal conductivity that takes into 
account the effect of imperfect countercurrent heat exchange between 
arteries and veins on tissue-blood heat transfer. This effective thermal 
conductivity is a function solely of the vascular geometry and blood flow 
rate. The main advantage of this one-equation model is its relative ease 
of implementation compared to the three layer, three equation model 
presented in 1984 [34,60]. 
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As shown in the 1984 study [34,60], the imperfect countercurrent heat 
transfer between paired arteries and veins yields a net energy transfer to the 
tissue when there is a temperature gradient in the same direction as the 
blood flow. Under these conditions, the arterial and venous blood flow 
from tissue regions with different temperatures, thus delivering or removing 
some energy to or from the tissue. Weinbaum and Jiji [611 argue that the 
countercurrent effect acts like a source or sink of heat in the tissue, which 
will subsequently appear in the new bioheat equation. In addition to the 
countercurrent heat source, the effect of unidirectional capillary bleed-off 
normal to the axes of the paired countercurrent vessels is also included in 
the tissue energy balance equation. 

1. Preliminary Calculations of Perfusion Bleed-off 

As part of a preliminary study, Weinbaum and Jiji [61] show that while 
the heat transfer associated with capillary blood perfusion is negligible 
when modeled as a volumetric heat source, as is done in the Pennes bioheat 
equation, it is important relative to conduction in the same direction when 
modeled as a unidirectional convective term. Conduction and directed 
capillary perfusion heat transfer normal to the countercurrent vessel axes 
can be characterized by two terms, k , ( d 2 ~ / d x 2 )  and PbCbAbUp(dq/dX), 
respectively, where Ab is the area of the bleed-off vessels relative to the 
total cross-sectional area normal to conductive heat flow and up is the 
velocity of blood in the perfusion bleed-off vessels. Note that the blood 
temperature is equivalent to the tissue temperature in these thermally 
insignificant vessels that comprise the microcirculation. Weinbaum and Jiji 
[61] estimate these two heat transfer terms using a range of Ab values of 
0.02-0.1, and up values from 1-2 mm/s, and a tissue thermal conductivity 
value of 0.54 W/m-"C. Using these parameters, directed perfusion heat 
transfer relative to conduction heat flow ranges from 0.04 to 0.60. 
Weinbaum and Jiji [61] conclude that directed perfusion cannot be 
neglected when considering heat transfer normal to paired countercurrent 
vessels and therefore must be included in a bioheat transfer model, as was 
the case in their earlier three layer, three equation model. 

2. Derivation of the Weinbaum-Jiji Bioheat Equation 

a. Energy Balance Equations. Starting from the three equation model 
that describes the deep tissue layer of the three layer model, Weinbaum 
and Jiji [61] derive the one bioheat equation that includes an effective 
thermal conductivity tensor. A tissue control volume is chosen that includes 
the capillary beds, which are thermally insignificant and contain blood 
fully equilibrated with the surrounding tissue, while countercurrent blood 
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vessels are omitted from the tissue control volume. The orientation of the 
control volume relative to the vessel axes is arbitrary and characterized by 
an inclination angle a. Thermally significant countercurrent vessels with 
number density n, radius a, center-to-center spacing /, , and blood velocity 
u cross the tissue control volume. As shown in the earlier studies by 
Weinbaum and colleagues [34, 59,601, continuity requires that ma, the 
mass flow rate in the artery, is equal to m,, the mass flow rate in the 
countercurrent vein, when lymphatic fluid losses are neglected. The 
velocities u, and uv are therefore equal in magnitude and opposite in sign. 

The tissue and blood energy balances are derived by modeling the effects 
of imperfect countercurrent heat exchange on tissue heat transfer as was 
done in the earlier 1984 formulation [34,60]. The artery and vein energy 
balances above, Eqs. (9.20) and (9.21), must be modified in order to 
account for variations in the countercurrent vessel number density with 
s-position. This modification yields 

(9.77) 
d 
ds 

&Cb-(nff2naG) = -n4, - Pbcb[2nffng]K 

(9.78) 

for an equal size artery-vein pair. Subtracting Eq. (9.78) from (9.77) yields 

= -n(4zi - 4") - PbCb[2nangl(c - T) (9.79) 

Weinbaum and Jiji [61] use an integrated tissue control volume analysis to 
show that the term on the left-hand side of Eq. (9.79) is the total heat 
exchange between blood in the countercurrent vessels and the surrounding 
tissue. It can be viewed as a heat source or sink per unit volume tissue due 
to the opposite flow of two blood vessels, both with a nonzero thermal 
equilibration length, along the same axis as one component of the tissue 
temperature gradient. This term is balanced by conduction losses and 
metabolic heating within the tissue control volume 

(9.80) 

where Q, is the metabolic heat source per unit volume tissue. Combining 
Eqs. (9.79) and (9.80) 

-n(q, - 4v) - 2nPbCbang(K - T,) = Vk, V T ,  -I- Q, (9.81) 
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The first term on the right-hand side of Eq. (9.81) is the imperfect 
countercurrent exchange heat source term, while the second term is the 
perfusion bleed-off heat source term. Equation (9.81), the tissue energy 
balance equation, is essentially a more general version of Eq. (9.24), where 
the effect of vessel number density is included in the blood flow source 
terms on the left-hand side, and a metabolic heat source term is added. 
It is interesting to note that the tissue heat balance equation derived by 
Weinbaum and Jiji [61] does indeed contain a perfusion bleed-off term that 
superficially resembles the Pennes isotropic perfusion term. However, this 
perfusion term is proportional to a (G - T,) temperature difference, rather 
than (& - K ) .  In addition, of course, the countercurrent heat source term 
in Eq. (9.81) is completely absent from the Pennes formulation. 

Equations (9.22) and (9.23) can be used to quantify the rate of energy 
entering and leaving the tissue control volume per unit length of blood 
vessel-tissue control due to imperfect countercurrent exchange: 

q a  - q v  = npbcba 2 d  u& [T - G1 (9.82) 

Implementing the vessel number density parameter, the total strength of the 
countercurrent heat source per unit volume tissue is 

(9.83) 

Equation (9.81) can now be written as 

d 
ds 

ZpbCba*nu-"T, - K ]  - 2npbcbang(G - q) = Vk, V T  + Q, (9.84) 

b. Closure Condition. Equation (9.84), as written, cannot be solved for K ,  
since both T, and T, are unknowns that vary with s-position. In the 1984 
study [34,60], the two energy balances for the artery and vein were solved 
simultaneously along with the tissue energy balance in the deep tissue layer 
after several simplifying assumptions were made based on physical argu- 
ments. The objective of the 1985 study by Weinbaum and Jiji [61] was to 
derive a simplified, single equation model to describe tissue temperature 
variations with spatial position that accounted for the important heat 
transfer effects associated with blood flow: perfusion bleed-off and 
imperfect countercurrent exchange. Based upon physical arguments 
presented in the 1984 study [34,60], Weinbaum and Jiji propose that the 
mean tissue temperature around an artery-vein pair can be approximated as 

(9.85) T = -  G + T ,  
2 t -  
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and that the magnitude of the difference (qa - qv) is much smaller than the 
magnitude of either qa or qv.  As discussed above, the second condition 
implies that qa and qv can be obtained from the superposition of a paired 
line source and line sink within a pure conduction field. By assuming that 
the tissue field around the vessel pair is a pure conduction region, Weinbaum 
and Jiji essentially neglected the effects of capillary bleed-off on the 
temperature distribution around a countercurrent vessel pair. The validity 
of this assumption was examined several years later in an experimental 
study presented in Zhu et al. [70], which is described in Section IX.C.5.c. In 
addition, a numerical study by Charny and Levin [17] indicated that the 
neglect of perfusion in the two-dimensional tissue region between the paired 
vessels was reasonable for a range of blood flow conditions and that the 
superposition solution was a very good approximation of the two- 
dimensional heat transfer between the paired vessels. 

The result of the symmetric boundary value problem for heat transfer 
normal to a pair of tubes with equal radii and uniform wall temperatures is 

q a  E q v  = akt(T, - T,) (9.86) 

where r7 is a geometrical factor 
n 

I S =  cosh-'(lS /2a) 
(9.87) 

produced from the superposition solution. The ratio 4 / 2 a  indicates the 
ratio of the vessel spacing to vessel diameter. Note that Eq. (9.86) is 
identical to Eq. (9.29) since 

cash-'($ - 1) = 2cosh-'(lS/2a) (9.88) 

Equations (9.22), (9.23), (9.85), and (9.86) are combined to yield the 
needed relationship between the artery-vein temperature difference and the 
tissue temperature gradient: 

np,cba2u d7; T - T = -  - 
ak, ds a v  (9.89) 

Substituting Eq. (9.89) into the tissue energy balance Eq. (9.84) results 
in a single equation that contains only the tissue temperature, its spatial 
gradients, and vascular parameters: 

2n2p~c~a3ung d7; _ -  - -Vk,VT, - Q, 
ak, ds 

(9.90) 
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Some of the constants in Eq. (9.90) can be grouped together in Pe, the flow 
Peclet number, equal to 2ap,cbu/k,: 

= -VktVT, - Q, (9.91) 

Equation (9.91), the new bioheat equation proposed by Weinbaum and Jiji 
[61], can be rewritten in terms of an effective thermal conductivity that 
symbolizes the effect of blood flow on tissue heat transfer. 

c. Effective Thermal Conductivity. Based on Fourier’s Law of Conduc- 
tion, q k  , the total conductive energy transport in a three-dimensional 
medium is 

(9.92) 

where kij is a thermal conductivity tensor with i as the direction of the heat 
flux a n d j  as the direction of the temperature gradient. Note that according 
to this general expression, temperature gradients in all three principal 
directions influence the heat flux in any one principal direction. For the 
bioheat problem examined by Weinbaum and Jiji [61], derivatives in the 
s-direction can be related to those in xj: 

where 0, is the angle between coordinate axes s and xi. Similarly 

(9.93) 

(9.94) 

where l j  is equivalent to cos 13,. Rearranging Eq. (9.94) results in the 
expression 

d2T d 
(9.95) 

Equations (9.93) and (9.95) are used by Weinbaum and Jiji to rewrite the 
tissue energy balance Eq. (9.91) and isolate an effective thermal conduc- 
tivity tensor: 

(9.96) 
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Note that the term k,dij is used to represent the solid tissue thermal conduc- 
tivity as an isotropic medium. The first terms on the left- and right-hand 
sides of Eq. (9.96) can be combined into one effective conductivity term: 

d ) :: dxi 
(nali Pe) + - ng Pe li - = - - 

U 

(9.97) 
where 

2 2  

(9.98) 

The left-hand side of Eq. (9.97) contains two convective terms that both 
utilize a blood velocity-temperature gradient product. The first term 
characterizes the heat transfer effect of the tapered geometry of the counter- 
current network, while the second term accounts for the convective effect 
of perfusion bleed-off from the countercurrent artery to its paired vein. 
For convenience, the continuity relationship, Eq. (9.19), is substituted into 
Eq. (9.97), resulting in the relationship 

n2k; dli d7; d 
4k, Q ’ dx, dxj dxi -na Pe I . -  - = - ( k .  i j , e . Z )  + Q~ (9.99) 

If the inclination angle of the vessels is assumed constant with spatial 
position, as was done in the earlier 1984 study of Weinbaum and colleagues 
[34,60), the left-hand side of Eq. (9.99) is zero. 

The effective thermal conductivity described by Eq. (9.98) can be more 
easily interpreted for the case where the vessels are in the same direction as 
the temperature gradient. Under these conditions, the direction cosines li 
and are both unity and 

(9. loo) 

This equation can be written in terms of the thermal equilibration length of 
the blood vessel, derived above and shown in Eq. (9.17). This substitution, 
along with the definition of a in Eq. (9.87), yields 

k,ff = k,(l + aL2,nj (9.101) 

for a thermal equilibration length defined as 

na Pe k, 
20 k, 

L,, = - - (9.102) 
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Based on vascular geometrical data in the literature, Eqn. (9,100) indicates 
that the ratio keff/k, is 3.5, 1.7, 1.2, and 1.05 in blood vessels with 300-, 
200-, loo-, and 50-pm diameters, respectively, assuming that blood and 
tissue thermal conductivities are equivalent. It is important to note that 
these calculations were made by assuming resting blood flow conditions. 
During intense exercise, blood velocity can increase by several orders of 
magnitude, resulting in much larger values of keff/k,. The importance of 
this effect is discussed in Section IX.C.5.a. The resting calculations indicate 
that the countercurrent heat transfer between the blood and the tissue 
dominates heat transfer in vessels larger than 200pm in diameter, while for 
vessels smaller than 50 pm in diameter the countercurrent mechanism does 
not significantly heat the tissue. In the latter case, there is a small, almost 
negligible, enhancement of tissue conductivity due to the directed perfusion 
of blood from the artery to the paired vein. For vessels with diameters 
between 50 and 200 pm, directed perfusion and countercurrent heat transfer 
are of comparable, but small, importance in the enhancement of the tissue 
heat conductivity. 

3. Experimental Observations 

Experimental measurements made in the rabbit thigh by Lemons et al. 
[41] validate several features of the Weinbaum-Jiji bioheat equation. First, 
the temperature distribution in the plane normal to paired countercurrent 
artery and vein is observed to be essentially a pure conduction field. The 
convective effect of the thermally insignificant perfusion bleed-off vessels 
on tissue temperature is not noticeable in the tissue surrounding the 
thermally significant countercurrent vessels. This acts to support the imple- 
mentation by Weinbaum et al. [34,60] of the solution to the superposition 
of a line source and sink in a pure conduction field to model the counter- 
current heat transfer between the artery-vein pair. Lemons et al. [41] also 
confirm that the tissue temperature gradient along the axes of the counter- 
current vessels is essentially the same as the mean tissue temperature 
gradient away from the countercurrent vessels, in the far field. Based on 
these measurements, the application of the superposition theory to quantify 
heat transfer near a pair of countercurrent vessels appears reasonable. 

4. Implementation in the Three Layer Tissue Model 

The new bioheat equation of Weinbaum and Jiji [61], Eq. (9.99), is a 
mathematically simple single equation description of the effects of blood 
flow on peripheral tissue heat transfer. Given a known vascular architec- 
ture, the parameters n, a,  I ,  and u can be estimated or measured in order to 
evaluate the spatially varying effective thermal conductivity of the tissue. 
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In a study by Song et al. [S] ,  the Weinbaum-Jiji bioheat equation was 
solved in peripheral tissue. As with the three layer model developed by 
Weinbaum et at. [34,60] and subsequently examined numerically by Dagan 
et al. [24], the peripheral tissue layer was subdivided into three separate 
regions: deep, intermediate, and cutaneous layers. Radial curvature was 
neglected so that the expression for the one-dimensional effective thermal 
conductivity shown in Eq. (9.101) could be applied. A schematic view of the 
three layer, one-dimensional model is shown in Fig. 28. 

The bioheat equation of Weinbaum and Jiji, Eq. (9.99), can be expressed 
in a one-dimensional Cartesian coordinate system as 

-na Pe I--=- (keffz) + Qml 
n2kt dl dT, 

(9.103) 
4k, 0 d.l dzl d.1 

where z1 is the deep tissue layer coordinate axis measured from the 
entrance to the artery-vein countercurrent network and k,,, , the effective 
thermal conductivity, is described by Eq. (9.101). This equation can be 
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FIG. 28. A schematic view of the three layer model of Song ef al. Note that only thermally 
significant vessels are shown. All capillary beds are omitted. (Reproduced from [ 5 5 ] ,  with 
permission from the American Society of Mechanical Engineers.) 
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nondimensionalized using the transformations 

- T - T ,  and Tl = - z1 f I  = - 
L1 & -  T,’ 

where T, and T, are the arterial inlet and skin surface temperatures, 
respectively. For tissue with a uniform capillary bleed-off rate per unit 
volume tissue, the product 2nag in the continuity equation is constant with 
zl-position, and the resulting dimensionless version of the one-dimensional 
Weinbaum-Jiji equation is 

where 

(9.105) 

(9.106) 

2aOpb cb uO 

kb 
Peo = (9.108) 

The “0” subscripts indicate parameters evaluated at the entrance to the 
countercurrent network at il = 0; s is the distance in the countercurrent 
network relative to the entrance (not equal to z1 due to variable inclination 
angles along the countercurrent network), and S, is the combined length of 
the vascular network in the three tissue layers. 

a. Deep Tissue Layer. The functions A and B were evaluated by Song 
et al. [ 5 5 ]  for the deep tissue layer based on vascular anatomical data 
presented in earlier experimental and theoretical studies by Weinbaum and 
colleagues [34,41,60]. Continuous variations in vessel density n and radius 
a with spatial position z1 were given from functions presented in Jiji and 
colleagues [34] and Dagan et al. [24] (see Eqs. (9.71) and (9.74)). The 
conduction coupling factor 0 was evaluated based on Eq. (9.87), where the 
spacing to diameter ratio 4 /2a  was assumed to fit the function 

/,/2a = C*(1 + C&3) (9.109) 

Similarly, the cosine of the inclination angle between the deep layer vessel 
and the axis normal to the skin surface, I1, was assumed to vary with Zl 
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according to the function 

I ,  = cos[C,(l - &)I (9.110) 

The values of the constants contained within these four functions are 
presented in Song et al. [55]. As expected, evaluation of the function A with 
these four functions indicates that the ratio keff/k, decreases towards unity 
along the countercurrent network in the deep tissue layer, with the most 
significant augmentation of tissue conductivity in vessels between 300-pm 
diameter (at the entrance) and 100-pm diameter (approximately the fourth 
branching generation). It is important to realize that these calculations were 
made assuming a range of arterial inflow Peclet numbers at z1 = 0 from 60 
to 240, which represents the resting state and moderate exercise. 

b. Intermediate Tissue Layer. In the intermediate tissue layer, the counter- 
current vessels are oriented normal to the skin surface throughout, implying 
that the derivative d/i/dZ2 is zero throughout this layer. Consequently, the 
vascular geometrical function B is zero in the intermediate layer. In 
addition, these countercurrent vessels are very small, with diameters on the 
order of 50pm. Under these conditions the function A is essentially zero 
throughout the layer for the range of inflow Peclet numbers considered 
in this numerical study. For functions A and B equal to zero everywhere in 
the intermediate layer, the energy balance equation is 

(9.1 11) 

c. Cutaneous layer. The governing energy balance equation in the inner 
and outer portions of the cutaneous layer of the three layer model is also 
simplified. Based on the 1984 study by Jiji et al. (341, Song et al. [55]  model 
the effect of blood flow in the inner cutaneous layer as a distributed heat 
source whose strength is proportional to  the local tissue-arterial blood 
temperature difference and the perfusion rate (see Eqs. (9.43) and (9.44)). 
The outer cutaneous layer is a pure conduction layer with no thermally 
significant blood vessels (see Eq. (9.45)). Assuming there is no significant 
metabolic heating in the absence of muscle cells, the nondimensional heat 
equations in these tissue layers are 

and 

(T,  - E,) = 0 nn0a0L3 kb + PeoR 
d2% z 2 4  

(9.1 12) 

(9.113) 
d 2 z  
d$ - 
-- 
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where R is the ratio of blood supplied to the inner cutaneous layer relative 
to the intermediate and deep tissue layers. This parameter is physiologically 
significant as it represents the degree to which blood is shunted from the 
core to the cutaneous region by the body’s thermoregulatory system during 
periods of thermal stress. While this vasomodulatory effect is not included 
in the study by Song et al. [55], it has been examined mathematically in the 
whole body thermal models of Wissler [65], Jain [33], Huckaba et al. 
[31,32], Stolwijk and Hardy [57], and Charny and Levin [16]. 

In the three layer model of peripheral heat transfer developed by 
Weinbaum and colleagues [34,60], blood from the core is fed to the inner 
cutaneous layer through a circulatory system that is physically separate 
from the countercurrent system that supplies and drains blood from the two 
muscle layers. The temperature of the blood as it arrives in the cutaneous 
layer is nondimensionalized as zc. Song et al. [55]  argue that this tempera- 
ture depends on the volume flow rate of blood into the cutaneous layer. 
When the cutaneous blood flow rate is very low, e.g., under low tempera- 
ture ambient conditions, blood will be thermally equilibrated with the inner 
cutaneous tissue at  position z3 = 0, and therefore fbc = G(0). On the other 
hand, if the body is under high thermal stress, the flow rate of blood in the 
skin is high and there is little thermal equilibration between the vessels that 
supply the cutaneous layer and the surrounding tissue. In this case gC = 1 
(i.e., Tbc = T,, the inlet arterial temperature). Based upon the linear 
relationship between the integrated heat loss from a tube with constant 
cross section and the Peclet number, Song et al. [55] propose that zc can be 
approximated by a linear function of the product PeoR, the cutaneous 
blood flow rate. 

The metabolic heating terms that appear in Eqs. (9.103) and (9.11 1)  are 
also assumed to be functions of the flow Peclet number. The metabolic rate 
is proportional to the rate at which oxygen is consumed by tissue, which 
Song et al. assume depends on the rate at  which blood flows through the 
tissue. Song et al. [55] choose a linear relationship between both Q,, and 
Peo, and Qm2 and Peo. The constants associated with variations in zc, 
Qml, and Qm2 with Pe, are given in Song et al. [55 ] .  

d. Three Layer Model Results. The three layer model of Song et al. [55]  
which implements the Weinbaum-Jiji bioheat equation to solve for the 
mean temperature in peripheral tissue as a function of depth is solved 
analytically for a range of parameter values. The boundary conditions 
needed to solve are the same as those used to solve for the blood tempera- 
tures in the 1984 study by Weinbaum and colleagues 134,601, namely, 
matching temperature and heat flux at each tissue layer interface. Inflow 
Peclet numbers range from 60, the resting state, to 240, moderate exercise. 
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The cutaneous blood flow fraction R varies from a basal, vasoconstricted 
value of 0.01 to a maximum vasodilation value of 3.0. During the moderate 
exercise conditions simulated in this study, an intermediate value of 1.0 is 
used to account for the simultaneous increase in cutaneous and muscle 
blood flow rates. Figures 29 through 31 show the effect of arterial inflow 
Peclet number and blood flow fraction on the dimensionless tissue tempera- 
ture profile across the three layer model and heat loss from the surface of 
the peripheral tissue. 

The results of these calculations by Song et al. [55]  reveal that blood flow 
in the regions of the deep tissue layer that contain vessels smaller than 
approximately 200 pm in diameter does not significantly enhance tissue 
conductivity. At low Peclet numbers the temperature profile is basically 
linear in all three tissue layers. As the inflow Peclet number increases, the 
heating effect of the thermally significant countercurrent vessels in the deep 
tissue layer increases. At the same time, there is greater metabolic heating in 
the muscle layers due to the linear relationship prescribed by Song et al. [55 ]  
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FIG. 29. Tissue temperature profiles across the three layer model of Song ef al. for a range 
of inflow Peclet numbers Pe,. (Reproduced from [ 5 5 ] ,  with permission from the American 
Society of Mechanical Engineers.) 
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FIG. 30. Tissue temperature profiles across the three layer model of Song et al. for a range 
of values of R, the ratio of blood flow to the cutaneous to blood flow to the muscle layers. 
(Reproduced from [55], with permission from the American Society of Mechanical Engineers.) 
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FIG. 31. Surface heat flux according to the three layer model of Song et a/. for a range of 
R values and inflow Peclet numbers. (Reproduced from 1551, with permission from the 
American Society of Mechanical Engineers.) 
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between the metabolic rate and the Peclet number. This combination yields 
a heating of the tissue above the level of the linear profile. In the region of 
the deep tissue layer that contains the thermally insignificant vessels, this 
temperature rise is due solely to the increased metabolic heat deposition. 
The effect of increased blood flow to the cutaneous layer is to increase the 
amount of heat delivered to the skin due to the increase in both the blood 
temperature Tbc as well as the flow fraction F, These increases act to 
intensify the magnitude of the perfusion heat source in the inner cutaneous 
layer, and consequently the temperatures in the cutaneous layer and the 
heat flux from the surface are greater than the case of resting flow rate and 
vasoconstriction. 

The parametric study by Song et al. [55]  was useful in demonstrating the 
applicability of the Weinbaum-Jiji bioheat equation to the analysis of 
peripheral tissue heat transfer and relating the predictions to several aspects 
of thermal physiology. The countercurrent arrangement of blood vessels 
in the deep muscle tissue layer was demonstrated to be a very efficient 
mechanism for heat conservation, while the transverse orientation of the 
thermally insignificant countercurrent vessels in the intermediate layer was 
shown to conduct heat towards the surface during periods of heavy 
metabolic activity, such as exercise. Finally, the cutaneous circulation was 
capable of removing a large amount of the metabolic heat generated during 
exercise from the body as long as the blood that was supplied to the 
cutaneous plexus from the core did not undergo significant precooling 
before it arrived in the skin layer. 

5 .  Applicability of the Weinbaum-Jiji Bioheat equation 

A very important characteristic of the Weinbaum-Jiji bioheat equation is 
that it was derived to describe heat transfer in peripheral tissue only, where 
its fundamental assumptions are most applicable. One of these assump- 
tions, that the mean tissue temperature surrounding a countercurrent vessel 
pair is approximately equal to the mean blood temperature, (T, + T,)/2, 
was questioned in a series of papers by Wissler [66,67]. In response, 
Weinbaum and colleagues published several studies [62,63] that examined 
the basic assumptions of the Weinbaum-Jiji bioheat equation in greater 
detail. 

a. First Order Analysis with E .  In the first response, published in 1987, 
Weinbaum and J:ji [62] used the superposition model of Baish et al. [2] to 
demonstrate the validity of their model. As shown in Fig. 32, the Baish et al. 
[2] superposition problem involves the separation of imperfect counter- 
current heat transfer into two separate radial conduction problems. The first 
problem involves heat loss from a countercurrent vessel pair to the tissue 
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0 

FIG. 32. Superposition of two boundary value problems in the plane normal to the counter- 
current vessel pair axes. Problem 1 represents heat loss to the tissue from the countercurrent 
pair with no heat transfer between the vessels themselves. Problem 2 describes heat exchange 
between the vessels with no heat loss to the far field. (Adapted from [20], with permission from 
the American Society of Mechanical Engineers.) 

with no heat exchange between the two vessels, while the second describes 
so-called perfect countercurrent heat exchange between the paired vessels 
with no energy transfer to  the surrounding tissue. Variations in the artery and 
vein blood temperatures with axial position, neglecting perfusion bleed-off 
from the artery to the vein, can be modeled by the following two equations: 

where T, is the mean artery-vein temperature, (T, - T,)/2, and 6, and 6, 
are two conduction coupling parameters, defined by Baish ef af. in their 
1986 paper [2]. In this study, analytical expressions for these two factors as 
functions of vessel size, spacing, and Nusselt number are derived [2]. 

Equations (9.114) and (9.11 5 )  are similar to those in the simple counter- 
current model of Mitchell and Myers [45], where the rate at which energy 
convected away by blood is balanced by the rate at which energy enters 
the blood from the surrounding tissue. The first terms on the right-hand 
sides of Eqs. (9.114) and (9.115) represent heat transfer described by the 
second superposition problem presented by Baish [2], where there is 
perfect countercurrent exchange, while the second terms describe heat 
transfer from the artery-vein pair to the surrounding tissue. Note that the 
total heat flow from the vessel pair to the surrounding tissue in the first 
problem is assumed to come equally from the artery and vein, resulting in 
the factor of $. This assumption is relaxed in a later study by Zhu et al. [70] 
(see Section IX.C.5.b). 
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Equations (9.114) and (9.11 5)  can be manipulated into the following two 
equations by first taking their difference, then their sum, and finally 
substituting the differenced equation into the first derivative of the summed 
equation. Similarly, the summed equation can be substituted into the first 
derivative of the differenced equation to yield a second independent 
equation. In this derivation, as in all others described above, the arterial 
blood mass flow rate ma is assumed equal to the venous mass flow rate m, 
at any position x :  

(9.116) 

(9.117) 
k, dx 

Weinbaum and Jiji [62] nondimensionalize these two energy balance 
equations with the spatial coordinate q = x/L, where L is the character- 
istic length of the macroscopic temperature gradient, an approach also 
utilized in the model of Chen and Holmes [22]. In this manner, Eqs. (9.116) 
and (9.117) are transformed to 

(9.118) 

where 

(9.120) 

using the definition of thermal equilibrium length in Eq. (9.102) and 
assuming the ratio kb/kt is equal to unity. 

As shown by Baish et al. [2], the ratio of the two conduction coupling 
factors at/oc is of the order unity, while the values of these two parameters 
are in the range 2-5. The dimensionless parameter E ,  however, is quite 
different from unity in many cases. Under normal physiological conditions 
of resting blood flow rate, Weinbaum et a!. [60], as well as Chato [20] and 
Chen and Holmes [22], demonstrate that the thermal equilibration length of 
vessels smaller than 300pm in diameter is much smaller than the length 
scale of macroscopic temperature gradients. Under resting conditions E 

is 0.112, 0.024, and 0.003 in a 300-, 200-, and 100-pm-diameter vessel, 
respectively, assuming a value of 5 cm for L in the arm. Therefore E is 
a parameter that is much smaller than unity and can be used in a perturba- 
tion analysis to evaluate the solutions to Eqs. (9.118) and (9.119). Under 
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conditions of elevated blood flow, however, it is important to realize that E 

will increase in proportion to the mass flow rate, which can be evaluated by 
up to two orders of magnitude during intense exercise. In this case, clearly, 
even the 100-pm-diameter vessel may be thermally significant, and the 
values of E are no longer small compared to unity in these microvessels. An 
analogous situation exists during local hyperthermia, where the character- 
istic length L may be significantly reduced relative to the normothermic 
value. 

Weinbaum and Jiji [62] use an asymptotic expansion with the parameter 
E to evaluate the solution to Eqs. (9.118) and (9.119). For the first order 
solution, the terms on the left-hand side of both of these equations are zero, 
yielding 

T, = (9.121) 

(9.122) 

Equation (9.121) states that the tissue temperature, to order E ,  is equal to 
the mean of the artery-vein temperatures, while Eq. (9.122) predicts that 
the tissue temperature gradient is proportional to the local artery-vein 
temperature difference and that the artery-vein temperature difference is 
zero in the absence of a tissue temperature gradient. Both of these results 
were used in the derivation of the Weinbaum-Jiji bioheat equation in 
1985 [61]. Weinbaum and Jiji [62] point out that there will be regions 
of thickness on the order E ,  analogous to boundary layers, where large 
differences between T, and will exist. However, they argue, these 
deviations will be eliminated over a short distance from the boundary, 

Again, it should be emphasized that this normalized distance E depends 
not only on the size and spacing of the paired vessels but also on the blood 
flow rate. During the elevated blood flow conditions associated with intense 
exercise, E can be on the order of 10 in a 300-pm-diameter vessel. Under 
resting conditions, this same blood vessel may have a normalized thermal 
equilibration length of 0.1. Hence, both Wissler [67] and Weinbaum and 
Jiji [62] have convincingly demonstrated that the Weinbaum-Jiji bioheat 
equation cannot be universally applied to describe heat transfer in all 
vascular networks. Originally intended for use in peripheral tissue where 
the countercurrent vessels are smaller than 300,um in diameter, the 
Weinbaum-Jiji formulation must be carefully applied so that its funda- 
mental assumptions are not violated by the physical circumstances. 

b. Countercurrent Pairs with Different Radii. The Weinbaum-Jiji bioheat 
equation was extended to describe countercurrent heat transfer in a vascular 
network with paired arteries and veins of different size in a 1988 paper 
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by Zhu et al. [70]. Lemons et al. [41] had observed experimentally that 
the countercurrent arteries, which are typically one-half to one-third the 
diameter of the veins with which they are paired, produced significantly 
more measurable temperature fluctuations than their paired vein. Similarly, 
the countercurrent veins had to be at least 300 pm in diameter in order to be 
thermally significant under resting conditions, while arteries as small as 
100pm in diameter caused perturbations in the tissue temperature field. In 
order to account for the in vivo condition of paired arteries and veins of 
unequal size, the two-dimensional superposition solution used to describe 
heat transfer in the plane normal to the countercurrent vessel axes in the 
original Weinbaum-Jiji formulation was modified by Zhu et al. [70]. In the 
same study, an asymptotic analysis of the equations used to derive the 
Weinbaum-Jiji bioheat equation was performed in order to rigorously 
derive a relationship between the mean temperature of the unequal size 
artery-vein pair, (T, + T,,)/2, and the mean tissue temperature of the tissue 
surrounding the vessel pair. 

The governing energy balance equations for the paired artery and vein 
surrounded by tissue are shown in Eqs. (9.77)-(9.79), where the net heat 
flow from the paired artery and vein to the surrounding tissue per unit 
length vessel, the so-called imperfect countercurrent heat transfer, is 

(9.123) 

Note that qa is the heat loss from the artery to the surrounding tissue per 
unit length, and qv is the heat transfer from the surrounding tissue to the 
venous blood per unit length vessel. The original version of the Weinbaum- 
Jiji bioheat equation assumed, for mathematical convenience, that the 
paired artery and vein were of equal size. In this case, the two-dimensional 
heat transfer problem of determining the magnitudes of qa and qv (assumed 
approximately equal) was solved by the superposition of two heat transfer 
problems shown in Fig. 32. The resulting Eqs. (9.86) and (9.87) were used 
to describe the net heat transfer from the vessel pair to the surrounding 
tissue due to imperfect countercurrent exchange. 

Equations (9.114) and (9.115) can be modified in order to relate these 
heat flow terms qa and qv to the tissue and blood temperatures for equal or 
unequal size vessels: 

(9.124) 
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Note that the spatial coordinate s represents the location along the length 
of the countercurrent network, while the parameter p indicates the fraction 
of heat loss from the countercurrent artery to the far field in the tissue, 
with the remainder lost from the countercurrent vein. As shown by Zhu 
et al. [70], p is a function solely of the vessel geometry, i.e., spacing and 
diameter. For countercurrent paired vessels of equal size, p is exactly one- 
half, yielding Eqs. (9.1 14) and (9.1 15). Summing and differencing these 

d Tm qa -I- 4, =.2ktOc(G - &) -k (2p - l)k,at(Tm - T )  = -2mCb- 
ds 
(9. 

In the derivation of the original Weinbaum-Jiji equation [61], 

27) 

the 
imperfect heat loss from the equal size vessel pair to the surrounding tissue, 
q, - q,, was assumed to be much smaller than the countercurrent exchange 
between the vessels themselves, q, + q,, based upon physical arguments. It 
is important to note, however, that although qa - qv is small, it is not 
exactly zero. Clearly, tissue is not thermally affected by countercurrent 
vessels if all of the heat conducted from the artery to  the surrounding 
tissue is transported from the tissue back into the vein. The first order 
asymptotic analysis presented above in Section IX.C.5.a demonstrated 
that for vessel pairs of equal size, the assumption that qa - q, is small is 
correct to order E ,  the normalized thermal equilibration length of the 
countercurrent vessel. 

Equations (9.126) and (9.127) can be manipulated in the same manner 
that Eqs. (9.114) and (9.115) in the previous section were transformed into 
Eqs. (9.1 18) and (9.1 19) in order to isolate the parameter E in the governing 
equations for heat transfer normal to the unequal countercurrent vessel 
pairs. The final expressions are based on the normalized spatial coordinate 
q = s / L :  

(9.128) 

where E ,  the normalized thermal equilibration length, is defined by Eq. 
(9.120) and P is a vascular geometrical function that depends on the 
unequal size countercurrent artery and vein radii a, and a, and their 
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center-to-center spacing I, : 

p=-- l + Y  
2 

In b p = -- 
In R,  

(9.130) 

(9.131) 

(9.132) 
1,' + a,' - a,' - J[(/, + a , ) 2  - a,2][(/, - a , ) 2  - a 3  

2 4  1s 
b =  

2 2  2 2  

(9.133) 
I,' - a,' - a,? - v'[(/, + a,) - a, ] [ ( / ,  - a,) - a,] 

R ,  = 
2Qa ~v 

cosh-'(B,) - cosh-'(B,) 
cosh-'(B,) + cosh-'(B,) Y =  

271 
cosh-' B, + cosh-' B, 

ac = 

(9.134) 

(9.135) 

(9.136) 

(9.137) 

The relationships in Eqs. (9.130) through (9.137) were derived by Zhu et al. 
using a superposition technique to solve the asymmetric boundary value 
problem described by the two-dimensional heat transfer between two 
unequal size tubes with different wall temperatures. For an equal size artery- 
vein pair, R,  = l/b2, p = 1/2, and y = 0. The superposition solution by 
Zhu et al. utilizes the parameter y in the definition 

(9.138) 

Equations (9.128) and (9.129) reduce to Eqs. (9.11 8) and (9.1 19) for the 
case of vessel pairs with equal radii, since P = 0. Under these conditions the 
mean tissue temperature is equal to the artery-vein mean temperature to 
order E as long as the parameter E is small. Under normal resting conditions, 
E is less than 0.1 in vessels smaller than 300pm in diameter, but E increases 
significantly under conditions of heavy exercise due to order of magnitude 
changes in blood flow rate. The parameter E may also increase under con- 
ditions of local hyperthermia, where the length scale of the tissue tempera- 
ture gradients is significantly reduced due to intense local heating. 
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For countercurrent vessels with unequal radii, P is not zero, and con- 
sequently the asymptotic analysis must be modified due to the presence of 
the third term on the right-hand-side of Eq. (9.129). Equation (9.128) can 
be integrated to solve for the local T, - T temperature difference as a 
function of E and P: 

exp( -q/&P) dq (9.139) 

Zhu et al. [70] apply the mean value theorem in order to interpret the 
integral term in Eq. (9.139): 

1:' $ exp( -q/&P) dq = dzTm 1 q* exp(-<q*/&P) (9.140) 
dv q=.Ev* 

where ( is a dimensionless parameter between zero and unity. 
The first term on the right-hand side of Eq. (9.139) represents the 

difference between the average blood and tissue temperatures due to a 
temperature difference at the entrance location. Based on the form of this 
exponential term, any difference between T ,  and K at the entrance to the 
vessel pair will be eliminated over a distance EPL. The second term relates 
differences in the average blood and tissue temperatures caused by any 
gradient in the mean blood temperature along the vessel axis. Based upon 
this model, for vessels of unequal radii with small E ,  Eqs. (9.128) and 
(9.129) reduce to 

(9.141) ~ , ( q )  = ~ ; ( q )  + O(e--A'EP) 

(9.142) 

A very important result of this analysis is that Eqs. (9.141) and (9.142) are 
identical to those for an equal size vessel pair with the exception that 0, in 
the definition of E is based on the superposition solution for an unequal size 
vessel pair as described by Eq. (9.135). Therefore the effective thermal 
conductivity defined by the Weinbaum-Jiji bioheat equation (see Eq. 
(9.99)) is affected by the presence of countercurrent pairs of different size 
only in the evaluation of oC. A later study by Weinbaum and Jiji [63], 
published in 1989, performed the same perturbation analysis to a higher 
order in order to evaluate the differences between T, and 7; to greater 
accuracy. The results and implications of this analysis are discussed in 
Section IX.C.5.d. 
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c. Experimental Verification. The 1988 paper by Zhu et al. [70] also 
presents the results of a significant experiment in which the applicability 
of the superposition solution to describe heat transfer normal to the axes 
of an unequal size countercurrent artery-vein vessel pair was examined. 
The temperature distribution around an experimental apparatus that 
modeled the perfect countercurrent heat transfer between two tubes with 
approximately constant, but different, wall temperatures and different 
radii was compared to the predictions of the theory derived by Zhu et al. 
[70] to describe this two-dimensional heat transfer. This comparison, 
shown in Fig. 33, reveals that the solution to one part of the superposition 
theory utilized in the derivation of the Weinbaum-Jiji equation for unequal 
size vessels-the perfect countercurrent exchange boundary value problem 
(see Fig. 32- second circle on right-hand side)-was in excellent agree- 
ment with experimental measurements. Differences betwen the predictions 
of the theory and the experimental measurements were explained by 
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Fro. 33. Temperature profile for a thermocouple passed transverse through a gelatin block 
in which two tubes with different size and flowing water temperature are embedded. The 
centerline temperatures of the two tubes are 20.8 and 16 "C. The solid curve is experimentally 
measured, while the dashed curve is theoretical and based on the solution to superposition 
Problem 2 shown in Fig. 32. The outer surface of the gelatin block is insulated so that there 
is little heat exchange between the vessels and the surroundings. (Reproduced from 1701, with 
permission from the American Society of Mechanical Engineers.) 
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FIG. 34. Temperature profile for a thermocouple passed transverse to a countercurrent 

artery-vein pair in vivo. (Reproduced from [70], with permission from the American Society 
of Mechanical Engineers.) 

Zhu et al. [70] to be due to actual nonuniformities in wall temperatures of 
the tubes in the experimental apparatus. In addition, there was most likely 
some heat transfer between the apparatus and the ambient surroundings, 
which was not accounted for by the part of the theory examined in this 
comparative study. 

The predictions of the superposition theory derived by Zhu et al. [70] 
were also compared to in vivo measurements of temperatures near an 
artery-vein pair of unequal size in the rabbit thigh. These data, shown in 
Fig. 34, are in good qualitative agreement with the theoretical predictions in 
Fig. 33. Zhu et al. [70] conclude that it is valid to apply their superposition 
theory to the two-dimensional heat transfer between countercurrent vessels 
of different size. Consequently it is reasonable to neglect the heat transfer 
effect of the small, thermally insignificant microvessels that perfuse the 
tissue in this two-dimensional plane on the heat transfer normal to counter- 
current artery-vein pairs. 

d. Second Order Analysis with E .  A recent study by Weinbaum and Jiji 
[63] considers the relationship between T, and to a greater accuracy than 
earlier studies. The two steady state artery and vein energy balances that 
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define the effect of blood flow on tissue heat transfer are 

d 0 

dcl 5, 
E - ( T ,  - T,) = - L ( T ,  - 7;) (9.143) 

Equations (9.143) and (9.144) are simply nondimensional versions of Eqs. 
(9.126) and (9.127), the combined artery and venous blood equations for 
unequal size artery-vein pairs. These two equations can be combined into 
the following single equation for the temperature difference between the 
tissue and the artery-vein pair by differentiating Eq. (9.144) and sub- 
stituting Eq. (9.143) and its derivative: 

Equation (9.145), as Weinbaum and Jiji [63] point out, is a demonstration 
that the temperature difference T, - 7; is of the order e2,  even when the 
artery-vein temperature difference T, - T, is significant, e.g., of order unity. 

The steady state tissue energy balance, Eq. (9.81), can be written for the 
case of zero perfusion bleed-off as 

(9.146) nrncb- (T, - T,) = Vk, V K  + Q, 

where qa - qv, the net heat transfer from the countercurrent vessels to the 
tissue, has been replaced by substitution with Eq. (9.126). Weinbaum and 
Jiji [63] choose to neglect the perfusion bleed-off term that appears in 
Eq. (9.81) in order to  focus their analysis on the relationship between 
the perturbation parameter E ,  the temperature gradients, and the counter- 
current heat transfer term. Equation (9.146) is similarly nondimension- 
alized in terms of the spatial coordinate s: 

d 
ds 

(9.147) 

Weinbaum and Jiji [63] write asymptotic expansions for 7; , T, , and T, - T, 
based on the perturbation parameter E ,  the normalized vessel thermal 
equilibration length: 

7; = + E 7 ; ; t  + E 2 T 2  + a * .  (9.148) 

T, = Tmo + E T , ~  + e2Tm2 + - - *  (9.149) 

T, - T, = ( T ,  - G)o + E(T,  - T,), + E’(T, - T , ) 2  + * * .  (9.150) 
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The three governing equations (9.143), (9.144), and (9.147) are next 
examined for each order of the asymptotic expansion. The order unity 
equations are 

Qt 

QC 

0 = --(T,O - To) 

(9.15 1) 

(9.152) 

(9.153) 

Thus to the lowest order of the expansion, T, ,  = To and (T, - TIo = 0. 
Based on this solution, the next order E equations are simplified to 

0 = d q ; ,  (9.154) 

(9.155) 

The order E solution also indicates that T, and I; are equal. Equation 
(9.156) can be combined with Eq. (9.142) to relate tissue and blood 
temperature gradients: 

(9.157) 

Equation (9.157), which states that to order E ,  the gradient of the mean 
tissue temperature is equal to the gradient of the mean blood temperature, 
can be viewed as the actual closure condition used in the derivation of the 
Weinbaum-Jiji bioheat equation. This substitution facilitates the reduction 
of the system of three coupled energy balance equations into a single energy 
balance equation that contains only the mean tissue temperature and its 
gradients. The resulting equation, the Weinbaum-Jiji bioheat equation 
shown in Eq. (9.99), is a linear, ordinary differential equation that is easily 
solved once the appropriate boundary conditions are specified. 

Earlier derivations of the new bioheat equation by Weinbaum and 
colleagues relied on physical arguments to justify that = T,, and 
(qa - qv) d qa ,  while the asymptotic analyses presented here and in 
Section IX.C.5.a show rigorously that the actual closure condition for 
the Weinbaum-Jiji equation is that dT,/dq = dT,/dq. The equality between 

and T, is essentially a result of this closure condition. It is important 
to note again that these relationships are valid only for cases where E ,  
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the normalized thermal equilibration length of the blood vessels, is much 
smaller than unity. Tissue regions heated by localized hyperthermia will 
have a characteristic temperature gradient length that is much smaller than 
the normothermic case, thereby increasing E by orders of magnitude. 
Another exceptional case is that of heavy exercise, during which the blood 
flow rates in all vessels of the countercurrent network can increase by 
several orders of magnitude. These two examples dramatically illustrate 
that the applicability of the Weinbaum-Jiji bioheat heat equation depends 
not only on the vessel size but also on the blood flow rate as well as on the 
physical conditions that are being simulated. 

An interesting new bioheat transfer model by Baish [4] has been devel- 
oped which does not require that the mean blood temperature gradient 
be oriented in the same direction as the mean tissue temperature gradient. 
Baish shows that the enhancement in tissue thermal conductivity by 
convection in the vasculature can be modeled using highly conductive 
fibers with characteristic radii and thermal conductivities [4]. Baish also 
demonstrates that the effects of blood flow on tissue heat transfer in this 
composite model can be quantified with an effective conductance based 
on the number density of these conductive vessel fibers only under the 
condition that the mean blood temperature gradient is proportional to  the 
mean tissue temperature gradient. This condition is the closure condition 
of the Weinbaum-Jiji bioheat equation. 

The order E’ equations are 

(9.158) d 
na,L2-(C - K ) ,  = V2q2 

drl 

(9.159) 

Equations (9.158)-(9.160) can be combined with Eqs. (9.150), (9.155), 
and (9.157): 

(9.161) 

(r, - TJ = -&- dT0 + & 2p - 1 d2T0 + O(c3) (9.162) 
drl 

(9.163) 
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Equations (9.151), (9.154), and (9.161), the first three tissue energy 
balance equations that describe the asymptotic expansion for K , demon- 
strate that the thermal effect of the countercurrent vascular network on 
the tissue does not enter the solution until the order c2 term. Based on 
Eq. (9.161), the magnitude of tissue temperature Kt is of order nacL2, 
which corresponds to a correction in the expansion for tissue temperature 
of c2nacL2 or nacLfq. Weinbaum and Jiji [63] note that this is exactly 
the correction term that appears in their definition of effective thermal 
conductivity for the case of kb = k, in a one-dimensional geometry (see 
Eq. (9.102)). The authors also emphasize that depending upon the vessel 
generation, this correction term may be significant. For example, under 
resting conditions in muscle tissue with a characteristic length L = 5 cm, the 
product n c ~ , L : ~  is approximately 1.25 in the 300-pm vessels that are located 
in the third generation of network branching, while the parameter c2 is on 
the order of 0.01 in these same thermally insignificant vessels. For these 
vessel pairs the (T, - 7;) temperature difference is negligible but the net 
heat transfer between the vessel pair and the tissue, the so-called imperfect 
countercurrent exchange, is quite significant due to a large vessel density in 
this region. 

The blood temperature equation (9.162) shows that for equal size vessels, 
where p = i, the closure approximation used to derive the Weinbaum-Jiji 
bioheat equation, represented by Eq. (9.157), is valid to  order c2. For 
unequal vessel pairs, in vivo measurements of vessel spacing and radii 
indicate that the parameter p is nearly one-half when the ratio of the vein to 
artery radii is less than two. Thus the closure condition appears to be 
applicable to unequal size countercurrent vessel pairs as well. As noted 
previously in this chapter and presented in Eq. (9.163), the (T, - 7;) 
temperature difference is of order c2. Note that if the vessel pair is 
embedded in tissue with a linear temperature gradient, the correction term 
on the right-hand side of Eq. (9.163) is zero and consequently (T, - 7;) is 
zero, which corresponds to a perfect countercurrent exchange system where 
the artery, vein, and tissue temperature profiles are linear and parallel. 

X. Concluding Remarks 

Despite its inherent inconsistencies, certain characteristics of the original 
Pennes theory are considered valid in the study and application of bioheat 
transfer. The concept of a perfusion heat source can be a reasonable 
approximation of the thermal effect of blood flow on tissue under some 
conditions, e.g., where blood flow in large vessels is perpendicular to the 
tissue temperature gradient, as suggested by Wissler [67]. Regions of tissue 
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that contain the thermally significant blood vessels appear, in some cases, 
to be well described by the traditional Pennes bioheat equation. Baish et ul. 
[l] measured temperatures in a laboratory model of tissue that contained 
an array of thermally significant tubes with high fluid flow rates. At these 
flow rates, there was little thermal equilibration between the tubes and the 
tissue matrix. Under conditions of externally applied hyperthermia, the 
temperatures measured in the tissue matrix were in excellent agreement 
with the predictions of the Pennes equation. Baish et ul. [l] suggested 
that the thermally significant vessels that were examined in their laboratory 
behaved like line sources or sinks in the tissue, regardless of orientation, 
thereby corresponding to the isotropic Pennes perfusion heat source-sink 
formulation. A theoretical study by Charny et al. [19] also reported that 
in tissue regions that contained the thermally significant vessels, there was 
good agreement between the predictions of the Pennes model and a 
more complex vascular model that accounted for countercurrent exchange. 
The effect of capillary bleed-off from the large vessels in these tissue 
regions appeared to result in a heat source type of behavior that matched 
the Pennes equation. The fundamental mechanisms that explain agreement 
between the Pennes model and experimental measurements in these tissue 
regions need to be investigated on both a theoretical and experimental 
basis. 

Since its first complete presentation in 1984, the Weinbaum-Jiji thermal 
model has been a major topic of analysis and discussion among members 
of the bioheat transfer community. Similar to the work of Wulff, Chen 
and Holmes, and others presented in this review, several fundamental 
inconsistencies of the Pennes formulation served as a motivation for the 
derivation of this new bioheat equation. This energy balance equation has 
been implemented in several peripheral tissue [24,55] and a whole organ, 
macroscopic tissue model [56] to serve as a predictor of tissue temperatures 
during thermal stress. In their derivation and subsequent asymptotic 
examination of the behavior of their heat transfer model, Weinbaum and 
Jiji have quantified several important phenomena that have been observed 
in vivo, namely countercurrent heat transfer and perfusion bleed-off from 
this vascular network. 

There are significant limitations to the Weinbaum-Jiji bioheat equation, 
however, that must be understood in order to apply the equation to a 
given bioheat transfer problem. The main condition for applicability is 
that the thermal equilibrium lengths of the blood vessels in the counter- 
current network are small compared to the length scale of the macroscopic 
temperature gradients in the tissue. Recent comparative theoretical studies 
by Charny et al. [19] indicate that under normothermic conditions the 
assumptions and subsequent predictions of the Weinbaum-Jiji equation 
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in the tissue regions where the parameter E is much less than unity are 
reasonable compared to more exact theory that solves the three blood and 
tissue energy balances simultaneously. More theoretical and experimental 
studies of the Weinbaum-Jiji equation, especially in relation to the clinical 
applications such as therapeutic hyperthermia and surgical rewarming, are 
needed to evaluate its applicability. 

As suggested by Wissler [67], no single equation can be used to model 
bioheat transfer with a wide range of vessel sizes, and perhaps a combina- 
tion of governing equations is most appropriate. The recent study by 
Charny et al. [19], which proposes a hybrid model of both the Pennes 
and Weinbaum-Jiji equations to be applied in different tissue regions, 
seems to support this suggestion. The effectiveness of these hybrid models 
in describing bioheat transfer in tissue is another topic for future study. 

Finally, the anatomical observations and measurements of temperature 
fields around paired vessels by Lemons et al. [41] have been very useful in 
terms of understanding the geometry of the system being modeled and 
subsequently testing the predictions of the model. More of these detailed 
anatomical studies are needed in a variety of tissues, for instance tumors 
being treated with hyperthermia, so that the mathematical models of 
bioheat transfer will represent the actual in vivo physiological situations. 
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