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Equation 5 coincides with Equation 3 if v(r, ¢) is replaced by the local average velocity
(v(r, 1)). The volume element to be averaged is of the same size as the thermo sensor.®
The equation that accounts for a local dipole symmetry of the velocity field is:

a
AT(I’, I) — E T(I’, Z) = q(r, t), (6)

Equavtion 6 is identical to 'Equation 1. The heat diffusivity, however, is replaced by the
velocxty-dep.endcnt eﬂ“.ecnvc heat diffusivity x.q.” In this case the phenomenological
F-mddf r\z,?;}oiid earlier is confirmed. This result is also confirmed by the investiga-
ion o ick,” who treated the diffusion—convection probl

e problem by means of the Monte

A mathematical derivation of the bio-heat transfer equation from the present
theory has not yet been realized. Because of the fundamental importance of this
equation, this derivation should be carried out in order to give the theory of h
transfer in biological tissue a solid foundation. .

REFERENCES

PENNES, H. H. 1948. J. Appl. Physiol. 1: 93-122.
PERL, W., 1962. J. Theoret. Biol. 2: 201-235.
SHITZER, A. 1972. Israel J. Technol. 11: 169-177.
PRIEBE, L. & E. BETZ. 1969. Aerztl. Forsch. 23: 18-30.
KLINGER, H. G. 1974. Bull. Math. Biol. 36: 403-415.
KLINGER, H. G. 1978. Bull. Math. Biol. 40: 183-199.
{(VLOIPSIG;(R,]?. 1(3;75 II::/I GABRIEL. 1976. Arzneim. Forsch. 25: 91
« B - Méglichkeiten und Grenzen d i i
Hilfe der lokalen Wasserstoff-clearance. Steinerc;?rel;tglfn\;lillel;%a?ii:l Pl

XPNAN BN —

MICROVASCULAR CONTRIBUTIONS IN
TISSUE HEAT TRANSFER

Michael M. Chen

Department of Mechanical Engineering
and Bioengineering Faculty
University of Illinois
Urbana, Illinois 61801

Kenneth R. Holmes

Department of Veterinary Biosciences
and Bioengineering Faculty
University of Illinois
Urbana, Illinois 61801

INTRODUCTION

Many mathematical formulations of the heat transfer in living tissues'~ have been
for the purposes of studying thermal regulation, comfort, or other phenomenon where
significant localized (as opposed to whole-body or regional) variations in temperature
and heat flux were of little interest. The advent of intensified interest in hyperthermia
as a cancer therapy and the safety associated with ultrasound and microwave
radiation, as well as attempts at a quantitative interpretation of thermographic
measurements, however, have made it highly desirable to have formulations that are
valid also for small-scale temperature variations.

Living tissues differ from nonbiological materials primarily because of the
presence of the vasculature. The large number and the architectural and dimensional
variety of blood vessels clearly make it impractical to account for their individual
contribution to heat transfer processes in the tissue with the exception, of course, of
the larger arteries and veins. In the fields of heat transfer and fluid flow, when one
encounters problems with a large number of structures whose individual dimensions
are small relative to the macroscopic phenomenon under study, a common practice is
to adopt the so-called continuum description. In this description, only the collective
behavior of the small structures is taken into consideration in a certain statistical
manner. Usually the influence of the small structures are ultimately expressed in
terms of continuum properties of the medium, in our case, the thermal conductivity,
specific heat, and blood perfusion rate of the tissue. It is the purpose of this report to
explore the theoretical basis for the relationship between these properties and the
architecture and function of the vasculature.

It will be shown that because of the vasculature, and the large rate of blood
perfusion, living biological tissues are fundamentally different from inert materials.
Consequently, the familiar thermal properties can no longer be assumed to be
independent of the parameters of the temperature field. In other words, these
properties may vary, depending on the nature of the application. In view of the fact
that existing formulations of the bio-heat transfer problem have been found to be more
or less satisfactory for the description of heat transfer involving large-scale tempera-
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ture variations (i.e., length scales of the temperature nonuniformity of the order of 100
mm or more), the attention here has been focused on small-scale (length scale of the
order of 10 mm) temperature variations. In this light the contribution of the larger
vessels should clearly be treated individually, rather than collectively. Therefore,
although the theoretical approach presented here is essentially general, the results are
most applicable to microvascular contributions.

While the present paper is concerned with the theoretical basis of the contribution
of the heat transfer by the microvasculature, current data on the structural and
functional parameters of the vasculature are inadequate to allow an evaluation of the
thermal parameters involved. Thus the theory developed herein is intended to act as a
guide to experimental evaluation of the actual thermal properties. Such experimental
evaluation is currently in progress in our laboratory and will be described in a separate
communication.

b Vb

Solid Blood
Tissue (vascular space)

FIGURE 1. Two-dimensional schematic representation of the total tissue control volume V,as
comprised of the solid tissue subvolume V, and the blood subvolume V.

SYSTEM DESCRIPTION

Consider a differential control volume 6V, shown schematically in a two-
dimensional representation in FIGURE 1. To avoid certain confusion occasionally
encountered in the literature, we shall distinguish the vascular space occupied by
blood §¥, and the space occupied by the solid tissue oV;. Thus

8V = oV, + oV, 1)

It should be noted that mass is not conserved in either subvolume, since there is a
small but finite fluid exchange between the vessel and the solid tissue as shown in
FIGURE 1. To reconcile this with a minimum of theoretical complication, we shall 4
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adopt the artifice of including enough (and only enough) of the lymph fluid volume in
the vascular volume ¥, to account for the fluid exchange between the vascular and
lymph circulations. The remaining part of the lymph fluid shall be considered part of
the solid tissue subvolume 6¥,. This can be Justified by the fact that lymph flow is
usually quite slow, and that the lymph fluid can be expected to be fully equilibrated
with the local solid tissue temperature.
It will be assumed that
_ oV, oV,

b <

=20 1, 2
&V o, @

b

and that the dimension of ¥ (of the order of 6V'7) is small relative to the scale of
macroscopic temperature variations in the tissue, but large relative to the scale of the
microscopic temperature variations due to the presence of the microvasculature. This
permits us to define the “local mean temperatures” for solid tissue and blood.
Respectively, they are

1
T, s—f 3
5, J,, Tdv. Q)

1
T,=— “
b bem Tdv. )

For simplicity of discussion it shall also be assumed that the solid medium in 8V,
has uniform thermal properties.
Conservation of energy for the solid tissue is expressed as

aT,
(WIPJCJE =00k + 004, + 5Q,, ©)

where p, and C, are the solid tissue density and specific heat, respectively. 6Q,, is the
conductive heat gain, 6Q,_, is the heat gain from the blood subvolume, and 60, is
metabolic heating. A similar equation can be written for the blood subvolume:

aT,
6prbcb? =00k — 0Q,_, ./; pycy Tu - ds, (6)

where p, and ¢, are the blood density and specific heat, respectively; 6Q,, is the
conductive contribution; the integral over the surface area S is the convective
contribution due to blood (and lymph) flow; and u is the velocity (boldface denoting a
vector quantity).

Addition of Equation 5 to Equation 6, and dividing by 6V results in

aT,
— =g+ g+ q, 7
peor =4kt q 95 (7)

where p and ¢ are

p =1 = ¢)p; + dypy, 3)
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1
€ = ; [(r- ®s) pec; + DsPsCs], 9)

and T, is the local mean tissue temperature expressed as

1
To= 101 = )pT, + 4o, Ty a0

Clearly T, is approximately equal to 7, for by < 1.
The quantity g} denotes the conductive heat gain per unit volume. We shall
assume the usual constitutive equation for heat conduction:

’ i T
q, = Qk ka

s~V kYT, (1

where k; is the §ﬂfeclive conductivity. The subscript k indicates that this is the true
thermal conductivity, asspmated with molecular transport processes, as distinguished
from apparent conductivity, which will include perfusion contributions (to be

FflGURE 2. Schematic representation of blood vessels crossing an element of the control volume
surface.

discussed later)‘. Because ¢, « 1, it will be assumed that k, is independent of blood
flow and cssen‘ua]ly equal to the conductivity of the solid tissue.
The quantity g;, denotes the metabolic heating per unit volume. This has been

discussed by numerous investigators and will not be considered further within the
scope of the present investigation.

For the term g7, we have

1
/=
9 = 5V./_; pscy Tu - ds. (12)

Clos'e examination of Equation 12 will show that if T were equal to T, and u were a
continuous funcllgn .of space, g, would be in the usual convective transport form
peu - VT. That this is not the case is, of course, the unique characteristic of living
tissue heat transfer.

Ina liv.ing tissue, contributions to the integral in Equation 12 are due mainly to
blood flow in vessels crossing the surface 6S, as shown in FIGURE 2. Accordingly, the

¢ s

convective heat flow through 4S can be written as a sum of the contribution of each
vessel crossing the surface:
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L meaTu - ds = pye, & Toluidysing, a3)
U S
where 4, is the flow area of the ith vessel and §; its inclination with respect-téfbs; u;
and T, are the mean velocity and mean blood temperature defined as oy

w= [, wda, Z o MAL 199709

1
1= [, Tuda a5

Note that 7,° is the flow-weighted average temperature of the ith vessel, often
called the cup-mixing temperature in heat transfer literature. This is unrelated to the
local mean blood temperature T, defined in Equation 4.

The evaluation of the integral in Equation 12, making use of Equation 13, is the
primary objective of this report. This will be pursued below in the section on
microvascular contributions, following an examination of the rate of blood tempera-
ture (7,°) equilibriation with the solid tissue temperature.

EQUILIBRATION OF BLOOD TEMPERATURE WITH TISSUE TEMPERATURE

We shall examine the manner by which the flowing blood equilibrates with the
local solid tissue temperatures. Assuming that the time rate of change of 7, is small
relative to u,;/ L, where L is the characteristic length of axial variation of temperature
(equal to x,, to be derived later), the blood temperature is governed by the
equation

a7,
Aipychu; Ebl =UP(T, — Ty), (16)

where U, is the overall heat transfer coefficient and P; is the circumference of the blood
vessel. The length x is measured along the axis of the blood vessel, in the direction of
flow. For purpose of analysis here, the origin of x is of no consequence; T, shall be
considered a known function of x.

Equation 16 can be written more compactly in the form

Xei —- T, - Ty, (16a)
dx

where x,; is the exponential equilibration length, signifying the length over which the
temperature difference will be reduced by a factor e, and defined as

Ai i
X, = PpCpl ] 17
UIPA

In general, if x,; is small relative to the length scale of T,(x) variation, then the
blood temperature will be essentially equal to 7. If x,; is large, T, will essentially be
independent of T;.
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SOLID
TISSUE

FleRE 3. An illustration of the temperature variations in the blood and in the surrounding
solid tissue.

A semi-quantitative estimate of x, for vessels of various sizes will now be made.
The first step will be to estimate the overall heat transfer coefficient U,. This can be
fjone by referring to FIGURE 3, a schematic illustration of the temperature distribution
in and near a blood vessel, caused by an elevated blood temperature. It is seen that
there is substantial temperature drop in the solid tissue as well as in blood. Thus the

lt)(l)tal heat transfer resistance 1/U; is the sum of the resistance in the solid tissue and in
ood:

1/U; = RES, + RES,. (18)

.Solutior}s of heat conduction problems in cylindrical geometry* suggest that the
resmtance' 1s proportional to r,/k, and the logarithm of D,/r,, where D, is the
characteristic length representing the heat transfer path length, in the presént case
equal to about half the distance between vessels. Hence

o In (D;/r;)

RES, (19)

s

On the other hand, RES, can be expressed in terms of the Nusselt number
(Nu):

1 r
RES, = No k—b (20)

Studies in convective heat transfer’ indicate that Nu based on tube radius is about
2 for fully dcveloped laminar flows, and generally higher than 2 for entrance flows and
turbulent flows. Since in typical vascular beds D, = 0(10r;) and k, = 0(k,), comparison

]
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of Equations 19 and 20 suggests that as a rule, RES, will dominate or at least be
comparable to RES,. Thus it is convenient to express U; in terms of k, and r,, as

1k

= : 21
A ek

where A is a coefficient that can be determined by solutions of the detailed heat
conduction equation and is dependent on k,, ,, u,, and the geometrical configuration
of the vascular bed. Because of the great variations of the latter, such a detailed
analysis is not justified at this point. However, examinations of Equations 19 and 20
on the basis of typical values of D,/r, and k,/k, suggest that A ~ 3, with an uncertainty
of perhaps a factor of two. Substituting Equation 21 into Equation 17, and evaluating
A; = nr? and P; = 27r;, one obtains

(22)

Xei =

A,Dbcbui"i2
2 ko

s

Although vessels have been assumed to be circular, this result should be applicable
to veins of noncircular cross section as well, in the context of a semiquantitative
estimate. Typical value estimates of x, for different generations of vessels based on
tabulated vascular parameters®’ are shown in TABLE 1. Note that in general the blood
velocity in vessels is roughly proportional to radius. Therefore Equation 22 indicates
that the equilibration length x,; is very sensitive to vessel radius. This is evident in
estimates of x,; (TABLE 1). It is seen that the equilibration length for the larger arteries
and veins are in the range of meters, indicating that, in general, the blood in these
large vessels is not equilibrated with the solid tissues. On the other hand, the
equilibration lengths for precapillary arterioles, capillaries, and venules are generally
of the order of micrometers, indicating that in these vessels the blood temperature is
essentially equal to the solid tissue temperature.

TABLE 1|
PROPERTIES OF VASCULAR COMPARTMENTS (j = 1, 12)*

% Vasc. r X kil ks
i Vessel Vol. (um) (m) L/ xy 1/8 = 10 mm
1 Aorta 3.30 5000 190 0.002 0.1
2 Lg. art. 6.59 1500 4 0.05 2
3 Art. br. 5.49 500 0.3 0.3 15
4 Term. br. 0.55 300 0.08 0.1 4
5 - 1.00 175 0.009 71 10
6 Arteriole 2.75 10 SE-6 400 0.004
7 Capillary 6.59 4 2E-7 6000 0.00008
8 Venules 12.09 1S5 2E-6 800 0.002
9 Term. veins 3.30 750 0.1 0.1 4
10 Venous br. 29.67 1200 0.3 0.3 14
11 Lg. veins 24.18 3000 5 0.04 2
12 Vena cava 5.49 6250 190 0.002 0.09

*Compartment fraction of total vascular volume, % Vasc. Vol.; typical vessel radius, r
(micrometers); equilibration length, x,; (meters); ratio of typical vessel length to the equilibra-
tion length, /;/x,;; ratio of the estimated perfusion thermal conductivity to solid tissue thermal
conductivity, k,;/k,, evaluated for temperature variation length scales of the order of 10 mm.
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FIGURE 4. Schematic representation of the blood temperature as the blood traverses the
systemic circulation (j = 1, 12). Blood at arterial temperature (7,) is distribute'd_ to solid tissues
that are warmer (7,,) and cooler (7,;) than 7,. Blood temperature rapidly equilibrates with T,
and T, after leaving the terminal arterial branches, attaining the soli.d tissue terpperature ()
prior to entering the arterioles (j = 6). Beyond the venules (j = 8), major changes.m temperature
are the result of mixing at venous confluences. Mixed vena cava (j = 12) blood will return to the
heart at essentially the arterial temperature.

For a more precise comparison, it is perhaps more meaningful to examine the ratio
of the vessel length and x, for different generations of the vessel divergence and
confluence, as shown in TABLE 1. This ratio is a direct measure of the ability of blood
to equilibrate its temperature with the solid tissue before it flows into a vessel of the
next generation. Available data reporting vessel parameters show a large gap between
the terminal arterial branches and the precapillary arterioles, where the vessel radius
decreases by a factor of thirty between these vessel categories. A similarly large gap
exists between venules and terminal veins. Unfortunately, our analysis shows that
vessels with /;/x,; equal to unity fall within these two gaps. To indicate the
approximate size of such vessels, an entry was made in TABLE 1 (j = 5) between the
terminal branch arteries and the arterioles. It is seen that a vessel with /;/x,; equal to
unity would have a diameter of perhaps 0.2-0.5 mm. A corresponding diameter on the
venous side would be about 0.3-0.8 mm, although this vessel has not been shown in
TABLE 1.

To further clarify the effect of these findings on the heat exchange between blood
and solid tissue, it is useful to follow the blood temperature variations as the blood
traverses the systemic vasculature, as shown schematically in FIGURE 4. As blood
leaves the heart and travels in the large arteries, its temperature remains essentially
constant at the major artery temperature (7,) with little equilibration taking place.
Some temperature equilibration will occur between blood and tissue as blood is
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distributed to warmer (T, > T,) or cooler (T, < T,) structures via arterial and
terminal arterial branches. However, most of the temperature equilibration occurs
with passage through vessels whose diameter is between that of the terminal arterial
branch and that of the arteriole. As blood reaches the latter, T,° will essentially be at
the solid tissue temperature (T, or T,,; FIGURE 4). Beyond this point, 7, faithfully
follows T, through its spatial and temporal variations until the blood reaches the
terminal veins. At this point the blood ceases to equilibrate with the tissue, and
remains virtually constant, except as it mixes with other blood of different tempera-
ture at venous confluences. Finally the cooler blood from peripheral structures and
warmer blood from internal organs mix within the vena cavi and the heart, attaining
the same temperature it had at the start of the loop.

Our suggestion that most of the heat exchange between blocd and the solid tissue
takes place after blood leaves the terminal arterial branches but before it enters the
arterioles, is in sharp contrast to the common assumption that such heat exchange
takes place in the capillary bed.®® It is interesting to note, however, that when Pennes'®
first formulated the bioheat equation, he included an *“equilibration constant,” which
accounted for the imperfect equilibration of the blood temperature as it traverses the
capillary vessel. In light of the present results, it is clear that the coefficient should be
unity, with a considerable margin of safety.

FIGURE 4 and TABLE 1 further show that the only parts of the vasculature that may
have blood temperatures substantially different from the solid tissue temperatures are
the major arteries. Typically these constitute less than 20% of the vascular space,
which in turn is considerably less than the solid tissue volume. Accordingly, although
the temperature difference between the blood in a given vessel and the surrounding
solid tissue may play important roles in heat transfer, such a temperature difference
would have negligible influence on the mean tissue temperature 7,. For all practical
purposes T, can be considered equal to T}, as long as ¢, < 1. This would be especially
true if the largest vessels were treated individually and not considered part of the total
tissue volume.

EVALUATING THE MICROVASCULAR CONTRIBUTIONS

We shall now proceed to evaluate the vascular contributions to tissue heat transfer
by evaluating the integral in Equation 12, making use of Equation 13 and some of the
insight gained in the previous section. For this, we shall adopt the coordinate system
shown in FIGURE 5, where x is measured along the axis of the vessel, following the
blood through its course of bifurcations and confluences. All along the path, the
temperature of the solid tissue T,(x) shall be considered known. So will the value Koy

FIGURE 5. The coordinate system x and x'.
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The differential equation and initial condition are

arterial temperature or simply blood temperature in bio-heat literature.

It would be found convenient to use a Fourier integral representation for the 4

unknown function T,(x):

Ty(x) = Tu(x) + fo " B(B) sin fx'dB, (25 §

where x, is the value of x as it crosses the control surface 6S. Note that x, serves as the
origin of x’, which is measured backwards from x,:

’

X

The coefficiert B(8) can be determined from T,(x) using standard techniques. |

These will not be discussed here.
Because of the linearity of Equations 23 and 24, it is now possible to separate the
problem into three linearly independent ones, with the following initial conditions:

dT !
(A) x,(x) d—x” - -7, 273) |
T40) =T, — Ti(xo), (27h)
(B) Ty = Ti(xo), (28)
(9] Te= fo " T,dB, (292) |
x, % = T, — Bsin ¥, (29b)
Ty(x') = Ty(x' + 27/B). (29¢) |
The general solution is then ‘
Tox) = Ty + Ts + Te. (30) ¢

Subproblems (A), (B), and (C) will be discussed separately below.

Subproblem (A): This problem corresponds to the equilibration of blood temper- i
ature, from an initial temperature T,, with a uniform solid tissue temperature. The

solution to Equations 27a and 27b is clearly

To= [T, - T,(x)] cxp(A f ‘x;x) dx). (1)

] which depends on vessel radius and blood velocity and hence is also a function of x. ]

0 4
%) S - 7,00 - 7, 2
7,(0) = T,, 24 §

where T, is the temperature of blood in the major arteries, frequently called the |

—— 26) |
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The integration in Equation 31 is carried out through different generations of
bifurcation, j = 1, 2, 3, etc. Referring to the estimates in TABLE 1, one sees that there
is practically no contribution to the integral by the major arteries and only moderate
contribution by the arterial branches and terminal arterial branches. After the latter,
the integral’s value will grow quickly, with 7, rapidly approaching zero.

Turning to the evaluation of g, from the integral in Equation 12, it is evident that
for a meaningfully small differential control volume 0V, larger arteries or veins are
simply too few in number to require an evaluation of their contributions to q,, which
represent a distributed heat source intensity. Therefore, for the first two or three
generations of the arteries, their contribution to tissue heating should be treated
individually rather than collectively. It will be assumed that this procedure is practical
up to and including j*th generation. The temperature reached by 7, at this point shall
be designated T*.

Since all heat exchange that took place before blood reached T'¥ has already been
accounted for, the evaluation of 4, in Equation 12 should include only vessels of U* +
)th generation or higher, to avoid double counting. Similarly, the initial blood
temperature should be considered to be T¥, and not T,. If 6V is sufficiently large so
that essentially all further bifurcations from J* + 1 to precapillary arterioles take
place within it, then it can be assumed that blood would leave the control volume
essentially at the solid tissue temperature: Hence

‘I,’;A - W/‘.Pbcb(T: - T, (32)

where W} is the total perfusion rate per unit tissue volume, delivered through the j*th
generation of vessels.
This result is reminiscent of the widely used perfusion heating term, originated by

. Pennes.'® However, there are two important differences. Firstly, the perfusion rate w¥

. includes only the contribution of vessels beyond the j*th generation. Secondly, the
. arterial temperature employed is in 7* and not the major arterial temperatures. This
. distinction is necessary because otherwise the contribution of the major arteries may

- be doubly counted. Estimates of 1;/x,; shown in TABLE 1 suggest that (T¥ — T,) may
 differ from (7, — T,) by tens of percent depending on the location of the major
. arteries.

Subproblem (B): This corresponds to the situation where the blood temperature is

i cqual to the solid tissue temperature everywhere. Accordingly, from Equations 13 and

28

/;g pscy Tu - ds = p,c, T, Y u, A, sin 6,. (33)

It may be found convenient to define a mean perfusion velocity, u,, whose

¢ component in the direction of any unit vector k is

u k=Y uai -k, (34)

¢ where i is the unit vector in the direction of flow for the ith vessel, and ¢ is the area
 fraction for the ith vessel:

o = A;/8S. (35)

SRR S S S
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@; is a vascular bed parameter and independent of §S. Clearly u,, is the mass flux of
blood permeating through the tissue (in mass per unit area per unit time) divided by
blood density. It follows that

L naTu . ds - peta, . s, (36)

After Equation 36 is substituted into Equation 12 and simplified with the use of
the divergence theorem and conservation of mass, we get

q, = pCyu, + VT, 37

Equation 37 is reminiscent of a typical convective transport term. Its potential
importance in living tissue heat transfer has been previously pointed out by Wulff,"
among others.

Subproblem (C): This problem is concerned with the equilibration of T, with the
sinusoidally varying components of T,(x). The solution with the periodicity condition
of Equation 29c¢ yields

T5(0) = —Bx.B/(B*x.? + 1). (38)

From definitions, it can be seen that T(0) is the temperature difference between
the blood and the solid tissue at x — X as contributed by the spectral component with
wavenumber . Because of this temperature difference, there is a net contribution of
heat flux to the integral of Equation 12. We shall next show that the amplitude
coefficient B is associated with the temperature gradient at x = x,. Thus the
contribution of T,(0) to g, has the basic characteristic of heat conduction, and gives
rise to a perfusion conductivity k,.

Space does not permit a more general and detailed development of the theory,
which will be set forth in another communication. For the following discussion it is
assumed that (1) 4.5 is so chosen as to be perpendicular to the temperature gradient,
and (2) the tissue is isotropic. Assumption (1) is for mathematical convenience and
involves no loss of generality. Assumption (2) implies that the heat flux associated
with k, is parallel to the temperature gradient and hence k, is a scalar quantity.
Furthermore, it also implies that the perfusion velocity u, vanishes. Note that one of
the contributions of u, has already been discussed in Subproblem (B) above. The
removal of Assumption (2) would lead to nonscalar contributions to k, as well as a
contribution to heat flux that is proportional to both u, and V7,. These can be viewed
as higher order effects to be explored after the lower order effects are clarified. It is
clear from assumptions and from the definitions of B and 8 that

fo “BBAS = (VT) sin 6. (39)

In other words for any value of 8, Bg is proportional to (VT) sin 6. For simplicity
and without loss of generality we shall consider only the contribution of the ith vessel
and, assuming there is only one single spectral component with wavenumber (3, set

BB = (VT) sin 4, (40)

where the coefficient B now has units of temperature. From Equation 13, the
contribution of 7} to the integral of Equation 12 in the surface element 6S is
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xe,Eﬁ
/;s psCsTg(0)u - ds = p,c, m u;A; sin 6; “
(41)

—PCh u; sin® [6,e,(6S)VT].

X,
X8+ 1

Substituting Equation 41 into Equation 12 and simplifying, we can express the
contribution of the 8 wavenumber component for the ith vessel in the form:

Gpai = =V - k5 VT, (42)
where k4 is given by the expression

2 _zr_z
kysi = 4A_IQ pycy ﬁfﬁ sin® (0,e), (43)
In obtaining Equation 43, Equation 22 has been employed to evaluate x, in the
numerator, in order to display the dependence of k, on the different paramaters; x, is
retained in the denominator since, for small vessels, x,’8? is expected to be small.
Note that k4 is proportional to sinf,. This indicates that a vessel’s contribution to
k, depends on the relative angle between the vessel and the direction of the
temperature gradient, though it does not depend on the direction of flow in the
vessel—a reverse flow would have the same contribution. In a tissue with an isotropic
arrangement of microvasculature, the collective contribution of all vessels would lead
to an isotropic conduction effect. Because of the principle of superposition, it is
possible to superimpose the contribution of all vessels and wavenumbers, leading to a
combined perfusion thermal conductivity k,:
g, = -V - k,VT. (44)
Current data, however, are insufficient to permit the direct evaluation of k, from
structural and functional parameters of the microvasculature. In order to gain some
insight into the order of magnitude of this effect, the total contribution of each
generation of vessels is estimated on the basis of Equation 43, using available vascular
data and some estimated values of a;; sing; is assumed to be unity and /s are taken to
the 1/1;. Tt is seen that potentially large contributions to k, are possible from vessels
situated between the terminal arterial branches and the therminal veins. Even though
similarly large contributions can also be expected from the arterial and venous
branches, these vessels are probably best considered individually, since they are too
few in number to be considered collectively in a continuum formulation. The values
shown in TABLE 1, however, are meaningful for comparative purposes only, since
precise data on many parameters are not currently available.

SUMMARY

Major conclusions of this study are the following:

(1) The equilibration of blood temperature with solid tissue takes place between
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the terminal arterial branches and the precapillary arterioles, not in the capillaries as
has previously been assumed.

(2) The heat transfer from the larger vessels should be calculated individually,
and not collectively in a continuum formulation. To avoid double counting, the
perfusion heating term in the continuum formulation should be based on the flow rate
and blood temperature leaving the last individually computed generation of arter-
ies.

(3) In addition to the perfusion heating term, which is proportional to the blood
flow per unit volume of tissue, the blood flow in the microvasculature may have at
least two other contributions to heat transfer: a contribution proportional to local
blood perfusion velocity and a contribution to the effective thermal conductivity. The
bio-heat equation including all these terms is

aT
pCE =V -kVT, + WX(T¥-T) - poCol, - VT + V.« kYT + ¢, (45)

where the subscripts ¢ and s for temperature have been neglected because T,~T,as
discussed in the text.

It is hoped that these results will stimulate experimental studies to further clarify
the heat transfer processes in living tissue. Such investigations are currently in
progress in our laboratory.
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DISCUSSION PAPER:
ALTERNATIVES TO THE BIO-HEAT
TRANSFER EQUATION

W. Wulff

Brookhaven National Laboratory
Upton, New York 11973

The Bio-Heat Transfer Equation,

p.rcx% -V. (kaT:) - 4w — Wbcb(Ta - Ts) = Oa (1)
is widely used to predict detailed local temperature distributions and thermal energy
transport in living tissue, a heterogeneous, deformable structure of solids, and of
liquids passing through capillaries. The four terms in Equation 1 are intended to
represent thermal energy storage, thermal energy diffusion, metabolic heat genera-
tion, and perfusion of solids by liquids, primarily by blood, in that order.

Alternative forms of the bio-heat transfer equation are needed to meet at least
three requirements:

1. The derivation of the transport equations (for heat and fluids) must be
consistent with the principles of rational mechanics and with the complete
definition of the system model.

2. All the hypotheses implied in the model and in the derivation of the transport
equations must be identified.

3. The new forms of the transport equations must be practical, must have a stable
solution, and should accommodate future efforts on modeling of thermophysio-
logical processes.

CURRENT STATUS

Equation 1 has been obtained by inserting'™ the scalar source term for blood
perfusion, wyc,(T, — T;), into the heat conduction equation, which is valid only for
points in an open domain D, lying entirely within a homogeneous solid. This heat
conduction equation, i.e., Equation 1 without the fourth term for blood perfusion, is a
local, instantantaneous energy balance for an infinitesimal control volume in D, and
is derived for the condition that the heat flux ¢ = —&V7, the thermophysical
properties p,, c,, and k,, and the heat generation term q. have continuous, first-order
spatial derivatives at every interior point of the domain 2. This condition clearly is not
met if hetereogeneous tissue structures occupy the domain D.

The fourth term in Equation 1, which represents the blood perfusion of tissue,
implies that arterial blood reaches any two points within the domain of tissue, with one
and the same arterial blood temperature T, regardless of the difference in distances
which separate the two points from the arterial supply vessel. No physically realistic
transport mechanism has been identified to accomplish this. Moreover, the blood
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