
Chapter 2

Equations and Unconstrained
Optimization

In this chapter, we start our discussion of Newton-type methods, which are
based on the fundamental principle of linear/quadratic approximation of the
problem data (or of some part of the problem data). The underlying idea
of Newtonian methods is extremely important, as it serves as a founda-
tion for numerous computationally efficient algorithms for optimization and
variational problems.

We start with discussing the basic Newton method for nonlinear equations
and unconstrained optimization. High rate of convergence of this scheme
is due to using information about the derivatives of the problem data
(first derivatives of the operator in the case of nonlinear equations, second
derivatives of the objective function in the case of optimization). Thus, each
iteration of this basic process should be regarded as relatively expensive.
However, one of the main messages of this chapter is that various kinds of
inexactness, introduced intentionally into the basic Newton scheme, can serve
to reduce the cost of the iteration while keeping the convergence rate still high
enough. Combined with globalization techniques, such modifications lead to
truly practical Newtonian methods for unconstrained optimization problems,
the most important of which belong to the quasi-Newton class.

As much of the material covered in this chapter can be considered
nowadays quite standard (e.g., linesearch quasi-Newton methods, trust-region
methods, etc.), we sometimes mention only the main principles behind certain
techniques without going into full details. On the other hand, the general
perturbed Newton framework is analyzed very thoroughly, as its natural
generalization for optimization and variational problems would be one of
the main tools for treating various algorithms throughout the book.
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62 2 Equations and Unconstrained Optimization

2.1 Newton Method

For historical comments regarding the Newton method, we address the reader
to [62].

2.1.1 Newton Method for Equations

The classical Newton method is introduced for the equation

Φ(x) = 0, (2.1)

where Φ : Rn → Rn is a smooth mapping. Let xk ∈ Rn be the current
approximation to a solution of (2.1). Then it is natural to approximate the
equation (2.1) near the point xk by its linearization:

Φ(xk) + Φ′(xk)(x − xk) = 0. (2.2)

The linearized equation (2.2) gives the iteration system of the classical
Newton method. The idea is transparent — the nonlinear equation (2.1) is
replaced by the (computationally much simpler) linear equation (2.2). Iter-
ations of the Newton method for the case when n = 1 are illustrated in
Fig. 2.1.

xkxk+1xk+2

x̄

Φ(xk) + Φ (xk)(x−xk)

Φ(x)

Fig. 2.1 Iterations of the Newton method

Formally, the algorithm is stated as follows.
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Algorithm 2.1 Choose x0 ∈ Rn and set k = 0.

1. If Φ(xk) = 0, stop.
2. Compute xk+1 ∈ Rn as a solution of (2.2).
3. Increase k by 1 and go to step 1.

Assuming that the Jacobian Φ′(xk) is nonsingular, the Newton method is
often presented in the form of the explicit iterative scheme

xk+1 = xk − (Φ′(xk))−1Φ(xk), k = 0, 1, . . . , (2.3)

with the understanding that an actual implementation of the method need
not require computing the complete inverse of the matrix Φ′(xk); of interest
is only the product (Φ′(xk))−1Φ(xk).

Under appropriate assumptions, the Newton method is very efficient,
which is reflected in the following convergence statements. At the same time,
it is clear that in its pure form the method may not converge from points that
are not close enough to a solution, even if the latter satisfies all the needed
assumptions; see Fig. 2.2 and also Example 2.16 below.

x0 = x2k

x2k+1  = x1

Φ(x)

Fig. 2.2 Non-convergence of the Newton method from points far from a solution

The following describes the essential convergence properties of the Newton
method.

Theorem 2.2. Let Φ : Rn → Rn be differentiable in a neighborhood of a
point x̄ ∈ Rn, with its derivative being continuous at x̄. Let x̄ be a solution
of the equation (2.1), and assume that Φ′(x̄) is a nonsingular matrix.

Then the following assertions are valid:

(a) There exists a neighborhood U of x̄ and a function q(·) : U → R such that
Φ′(x) is nonsingular for all x ∈ U ,

‖x− (Φ′(x))−1Φ(x) − x̄‖ ≤ q(x)‖x − x̄‖ ∀x ∈ U, (2.4)
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and
q(x) → 0 as x → x̄. (2.5)

(b) Any starting point x0 ∈ Rn close enough to x̄ uniquely defines a particular
iterative sequence of Algorithm 2.1; this sequence converges to x̄, and the
rate of convergence is superlinear.

(c) If the derivative of Φ is locally Lipschitz-continuous with respect to x̄, then
q(·) can be chosen in such a way that

q(x) = O(‖x− x̄‖) (2.6)

as x → x̄, and the rate of convergence is quadratic.

Assertion (a) means that the Newton step from a point close enough to
x̄ provides a “superlinear decrease” of the distance to x̄, while assertion (c)
gives conditions guaranteeing “quadratic decrease” of this distance.

Regarding formal definitions of convergence rates (in particular, superlinear
and quadratic), see Sect. A.2.

Proof. According to Lemma A.6, there exist a neighborhood U of x̄ and
M > 0 such that

Φ′(x) is nonsingular, ‖(Φ′(x))−1‖ ≤ M ∀x ∈ U. (2.7)

Employing the mean-value theorem (see Theorem A.10, (a)), we can choose
U in such a way that the inclusion x ∈ U implies

‖x− (Φ′(x))−1Φ(x) − x̄‖ ≤ ‖(Φ′(xk))−1‖‖Φ(x)− Φ(x̄)− Φ′(x)(x − x̄)‖
≤ q(x)‖x− x̄‖, (2.8)

where

q(x) = M sup{‖Φ′(tx+ (1 − t)x̄)− Φ′(x)‖ | t ∈ [0, 1]}. (2.9)

It is clear that this q(·) satisfies (2.5), while (2.8) gives (2.4). This completes
the proof of assertion (a).

In particular, for xk ∈ U , the equation (2.2) has the unique solution xk+1

given by (2.3). Moreover, from (2.4) and (2.5) it follows that for any q ∈ (0, 1)
there exists δ > 0 such that B(x̄, δ) ⊂ U , and the inclusion xk ∈ B(x̄, δ)
implies

‖xk+1 − x̄‖ ≤ q‖xk − x̄‖.

In particular, xk+1 ∈ B(x̄, δ). It follows that any starting point x0 ∈
B(x̄, δ) uniquely defines a specific iterative sequence {xk} of Algorithm 2.1;
this sequence is contained in B(x̄, δ) and converges to x̄. Moreover, again
employing (2.4), we obtain the estimate

‖xk+1 − x̄‖ ≤ q(xk)‖xk − x̄‖ ∀ k = 0, 1, . . . , (2.10)
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which, according to (2.5), implies the superlinear rate of convergence. This
completes the proof of assertion (b).

Finally, if the derivative of Φ is locally Lipschitz-continuous with respect
to x̄ with a constant L > 0, then, after reducing U if necessary, from (2.9) it
follows that the inclusion x ∈ U implies

q(x) ≤ M(sup{‖Φ′(x̄+ t(x− x̄))− Φ′(x̄)‖ | t ∈ [0, 1]}+ ‖Φ′(x)− Φ′(x̄)‖)
≤ 2ML‖x− x̄‖,

which proves (2.6). The quadratic convergence rate now follows from (2.6)
and (2.10). This proves (c). ()

The main message of the subsequent discussion in this section is that
various kinds of inexactness introduced intentionally in the basic Newton
scheme may lead to more practical Newton-type methods, with lower com-
putational costs per iteration but convergence rate still high enough. To that
end, we consider the following general scheme, which we refer to as the per-
turbed Newton method. For a given xk ∈ Rn, the next iterate xk+1 ∈ Rn

satisfies the perturbed version of the iteration system (2.2):

Φ(xk) + Φ′(xk)(x− xk) + ωk = 0. (2.11)

Here, ωk ∈ Rn is a perturbation term, which may have various forms
and meanings, may play various roles, and may conform to different sets
of assumptions depending on the particular algorithms at hand and on the
particular purposes of the analysis. At the moment, we are interested in the
following general but simple question: under which assumptions regarding ωk

the local convergence and/or the superlinear rate of convergence of the pure
Newton method (2.2) is preserved?

We start with some basic (essentially technical) statements, which do not
impose any restrictions on the structure of ωk. Note that this is an a posteriori
kind of analysis: the iterative sequence {xk} is given, and the correspond-
ing sequence {ωk} is then explicitly defined by (2.11). Thus, in this setting
the role of {ωk} is secondary with respect to {xk}. Those technical results
would be useful later on for analyzing iterative sequences generated by specific
Newton-type schemes.

Lemma 2.3. Under the assumptions of Theorem 2.2, there exist a neighbor-
hood U of x̄ and M > 0 such that for any xk ∈ U and any xk+1 ∈ Rn and
ωk ∈ Rn satisfying

ωk = −Φ(xk)− Φ′(xk)(xk+1 − xk), (2.12)

it holds that

‖xk+1 − x̄‖ ≤ Mωk + o(‖xk − x̄‖) (2.13)

as xk → x̄. Moreover, if the derivative of Φ is locally Lipschitz-continuous
with respect to x̄, then the estimate (2.13) can be sharpened as follows:
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‖xk+1 − x̄‖ ≤ Mωk +O(‖xk − x̄‖2). (2.14)

Proof. By assertion (a) of Theorem 2.2 and by Lemma A.6, there exist a
neighborhood U of x̄ and M > 0 such that (2.7) holds, and

xk − (Φ′(xk))−1Φ(xk)− x̄ = o(‖xk − x̄‖) (2.15)

as xk ∈ U tends to x̄. Furthermore, by (2.12),

xk+1 = xk − (Φ′(xk))−1(Φ(xk) + ωk).

Hence, employing (2.7) and (2.15), we obtain that

‖xk+1 − x̄‖ = ‖xk − (Φ′(xk))−1(Φ(xk) + ωk)− x̄‖
≤ ‖(Φ′(xk))−1‖‖ωk‖+ ‖xk − (Φ′(xk))−1Φ(xk)− x̄‖
≤ Mωk + o(‖xk − x̄‖),

which establishes (2.13).
Finally, if the derivative of Φ is locally Lipschitz-continuous with respect

to x̄, estimate (2.14) follows by the same argument, but invoking assertion
(c) of Theorem 2.2. ()

The next result states a necessary and sufficient condition on the perturba-
tion sequence {ωk} under which superlinear convergence of {xk} is preserved.
Note that convergence itself is not established but assumed here.

Proposition 2.4. Let Φ : Rn → Rn be differentiable in a neighborhood of
x̄ ∈ Rn, with its derivative being continuous at x̄. Let x̄ be a solution of the
equation (2.1). Let a sequence {xk} ⊂ Rn be convergent to x̄, and define ωk

according to (2.12) for each k = 0, 1, . . ..
If the rate of convergence of {xk} is superlinear, then

ωk = o(‖xk+1 − xk‖+ ‖xk − x̄‖) (2.16)

as k → ∞.
Conversely, if Φ′(x̄) is a nonsingular matrix, and (2.16) holds, then the

rate of convergence of {xk} is superlinear. Moreover, the rate of convergence
is quadratic, provided the derivative of Φ is locally Lipschitz-continuous with
respect to x̄ and

ωk = O(‖xk+1 − xk‖2 + ‖xk − x̄‖2) (2.17)

as k → ∞.

Proof. By (2.12) and the mean-value theorem (see Theorem A.10), we obtain
that for all k large enough
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‖ωk‖ = ‖Φ(xk) + Φ′(xk)(xk+1 − xk)‖
≤ ‖Φ(xk)− Φ(x̄)− Φ′(xk)(xk − x̄)‖ + ‖Φ′(xk)‖‖xk+1 − x̄‖
≤ sup{‖Φ′(txk + (1− t)x̄)− Φ′(xk)‖ | t ∈ [0, 1]}‖xk − x̄‖

+O(‖xk+1 − x̄‖)
= o(‖xk − x̄‖) +O(‖xk+1 − x̄‖)

as k → ∞. If the sequence {xk} converges to x̄ superlinearly, the above
implies that ωk = o(‖xk − x̄‖), which in turn implies (2.16).

Suppose now that (2.16) holds. From Lemma 2.3 it then follows that

xk+1 − x̄ = o(‖xk+1 − xk‖+ ‖xk − x̄‖) = o(‖xk+1 − x̄‖+ ‖xk − x̄‖),

i.e., there exists a sequence {tk} ⊂ R such that tk → 0 and

‖xk+1 − x̄‖ ≤ tk(‖xk+1 − x̄‖+ ‖xk − x̄‖).

for all k large enough. This implies that

(1− tk)‖xk+1 − x̄‖ ≤ tk‖xk − x̄‖.

Hence, for all k large enough

‖xk+1 − x̄‖ ≤ tk
1− tk

‖xk − x̄‖,

i.e.,
xk+1 − x̄ = o(‖xk − x̄‖)

as k → ∞, which gives the superlinear convergence rate.
Finally, if the derivative of Φ is locally Lipschitz-continuous with respect

to x̄, from Lemma 2.3 it follows that (2.17) implies the estimate

xk+1 − x̄ = O(‖xk+1 − xk‖2 + ‖xk − x̄‖2) = O(‖xk+1 − x̄‖2 + ‖xk − x̄‖2)

as k → ∞, which means that there exists M > 0 such that

‖xk+1 − x̄‖ ≤ M(‖xk+1 − x̄‖2 + ‖xk − x̄‖2) (2.18)

for all k large enough. Since {xk} converges to x̄, for any fixed ε ∈ (0, 1) it
holds that M‖xk+1 − x̄‖ ≤ 1− ε for all k large enough. Then from (2.18) we
derive

(1−M‖xk+1 − x̄‖)‖xk+1 − x̄‖ ≤ M‖xk − x̄‖2,

and hence, for all k large enough

‖xk+1 − x̄‖ ≤ M

1−M‖xk+1 − x̄‖‖x
k − x̄‖2 ≤ M

ε
‖xk − x̄‖2,

which gives the quadratic convergence rate. ()
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Remark 2.5. If {xk} converges to x̄ superlinearly, the estimate (2.16) is, in
fact, equivalent to either of the following two (generally stronger) estimates:

ωk = o(‖xk+1 − xk‖), (2.19)

or

ωk = o(‖xk − x̄‖). (2.20)

Indeed, by (2.16) and the superlinear convergence rate of {xk} to x̄, there
exist sequences {tk} ⊂ R and {τk} ⊂ R such that tk → 0, τk → 0, and

‖ωk‖ ≤ tk(‖xk+1 − xk‖+ ‖xk − x̄‖), (2.21)

‖xk+1 − x̄‖ ≤ τk‖xk − x̄‖ (2.22)

for all k. Then

‖xk − x̄‖ ≤ ‖xk+1 − xk‖+ ‖xk+1 − x̄‖ ≤ ‖xk+1 − xk‖+ τk‖xk − x̄‖,

implying that

‖xk − x̄‖ ≤ 1

1− τk
‖xk+1 − xk‖

for all k large enough. Combining this with (2.21) we then obtain that

‖ωk‖ ≤ tk

(
1 +

1

1− τk

)
‖xk+1 − xk‖ = tk

2− τk
1− τk

‖xk+1 − xk‖

for all k large enough, which gives (2.19). Furthermore, from (2.21) and (2.22)
we directly derive that

‖ωk‖ ≤ tk(2‖xk − x̄‖+ ‖xk+1 − x̄‖)
≤ tk(2‖xk − x̄‖+ τk‖xk − x̄‖)
≤ tk(2 + τk)‖xk − x̄‖

for all k, which gives (2.20).

The next result provides a sufficient condition on the perturbation sequence
{ωk} for preserving local convergence of {xk}.

Proposition 2.6. Under the assumptions of Theorem 2.2, fix any norm ‖ ·‖∗
in Rn, any q1, q2 ≥ 0 such that 2q1 + q2 < 1, and any ε ∈ (0, 1− 2q1 − q2).

Then there exists δ > 0 such that for any sequence {xk} ⊂ Rn the following
assertions are valid:

(a) If for some k = 0, 1, . . ., it holds that xk ∈ B(x̄, δ), and ωk defined
according to (2.12) satisfies the condition

‖(Φ′(x̄))−1ωk‖∗ ≤ q1‖xk+1 − xk‖∗ + q2‖xk − x̄‖∗ ∀ k = 0, 1, . . . , (2.23)
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then

‖xk+1 − x̄‖∗ ≤ q1 + q2 + ε

1− q1
‖xk − x̄‖∗ (2.24)

and, in particular, xk+1 ∈ B(x̄, δ).
(b) If x0 ∈ B(x̄, δ) and (2.23) is satisfied for all k = 0, 1, . . ., then {xk}

converges to x̄, and the rate of convergence is (at least) linear. More
precisely, either xk = x̄ for all k large enough, or

lim sup
k→∞

‖xk+1 − x̄‖∗
‖xk − x̄‖∗

≤ q1 + q2
1− q1

. (2.25)

Proof. By (2.12) and (2.23), employing assertion (a) of Theorem 2.2 and the
equivalence of norms in Rn, we obtain that for any ε ∈ (0, 1−2q1− q2) there
exists δ > 0 such that for any xk ∈ B(x̄, δ) it holds that

‖xk+1 − x̄‖∗ = ‖xk − (Φ′(xk))−1(Φ(xk) + ωk)− x̄‖∗
≤ ‖(Φ′(xk))−1ωk‖∗ + ‖xk − (Φ′(xk))−1Φ(xk)− x̄‖∗
≤ q1‖xk+1 − xk‖∗ + q2‖xk − x̄‖∗ + o(‖xk − x̄‖∗)
≤ q1(‖xk+1 − x̄‖∗ + ‖xk − x̄‖∗) + q2‖xk − x̄‖∗ + ε‖xk − x̄‖∗
≤ q1‖xk+1 − x̄‖∗ + (q1 + q2 + ε)‖xk − x̄‖∗.

This implies (2.24). Since (q1 + q2 + ε)/(1− q1) ∈ (0, 1), (2.24) implies that
xk+1 ∈ B(x̄, δ). This proves assertion (a).

Furthermore, the inclusion x0 ∈ B(x̄, δ) and assertion (a) imply that the
entire sequence {xk} is contained in B(x̄, δ), and (2.24) shows convergence of
this sequence to x̄ at a linear rate. Moreover, since ε can be taken arbitrarily
small at a price of reducing δ, and since {xk} converges to x̄ (hence, the tail
of {xk} is contained in B(x̄, δ) no matter how small δ is), relation (2.24)
implies that either xk = x̄ for all k large enough, or (2.25) holds. This proves
assertion (b). ()

Conditions (2.16) and/or (2.23) are not “practical,” because they involve
the unknown solution x̄ and/or the next iterate xk+1, which is usually com-
puted after the perturbation term is settled. Propositions 2.4 and 2.6 are
merely technical tools intended for the analysis of some specific algorithms
fitting the perturbed Newton method framework.

We start with the class of the so-called truncated Newton methods, which
were first systematically studied in [55], and which are particular instances
of perturbed Newton methods with the perturbation terms satisfying the
condition

‖ωk‖ ≤ θk‖Φ(xk)‖, k = 0, 1, . . . . (2.26)

Here, {θk} is a sequence of nonnegative numbers, called forcing sequence,
which can be either pre-fixed or computed in the course of iterations. The idea
of truncated Newton methods consists of solving the iteration system (2.2)
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not exactly, but up to the accuracy defined by the right-hand side of the
inequality in (2.26). Note that (2.26) is totally practical as an approximation
criterion for solving the Newton method iteration system (2.2), as it does not
involve any unknown objects (such as the solution x̄ and/or xk+1, as in the
technical conditions (2.16) and (2.23)). Thus, (2.26) can be easily checked in
the course of solving (2.2). The most popular strategy is to apply to the linear
equation (2.2) some iterative method (e.g., the conjugate gradient method for
minimizing its squared residual), and to stop this inner process when (2.26)
will be satisfied for ωk defined in (2.11) with x being the current iterate of
the inner process. Once (2.26) is satisfied, x in (2.11) is declared to be the
next iterate xk+1. Supplied with a rule for computing the forcing sequence
{θk} and a choice of an inner iterative scheme, this algorithmic framework
results in a specific truncated Newton method.

Employing Propositions 2.4 and 2.6, we obtain the following properties.

Theorem 2.7. Let Φ : Rn → Rn be differentiable in a neighborhood of a
point x̄ ∈ Rn, with its derivative being continuous at x̄. Let x̄ be a solution
the equation (2.1). Let {xk} ⊂ Rn be a sequence convergent to x̄, and let ωk

be defined according to (2.12) for each k = 0, 1, . . ..
If the rate of convergence of {xk} is superlinear, then there exists a se-

quence {θk} ⊂ R satisfying condition (2.26), and such that θk → 0.
Conversely, if Φ′(x̄) is a nonsingular matrix and there exists a sequence

{θk} ⊂ R satisfying condition (2.26) and such that θk → 0, then the rate
of convergence of {xk} is superlinear. Moreover, the rate of convergence is
quadratic, provided the derivative of Φ is locally Lipschitz-continuous with
respect to x̄ and

θk = O(‖xk+1 − xk‖+ ‖xk − x̄‖) (2.27)

as k → ∞.

Proof. To prove the first assertion, observe that by the error bound presented
in Proposition 1.32, it holds that

xk − x̄ = O(‖Φ(xk)‖) (2.28)

as k → ∞. By Proposition 2.4 and Remark 2.5, superlinear convergence rate
of {xk} implies (2.20). Thus, by (2.28), we have that

ωk = o(‖xk − x̄‖) = o(‖Φ(xk)‖),

which means precisely the existence of a sequence {θk} with the needed
properties.

The second assertion follows from Proposition 2.4. Indeed,

Φ(xk) = Φ(x̄) + Φ′(x̄)(xk − x̄) + o(‖xk − x̄‖) = O(‖xk − x̄‖) (2.29)

as k → ∞, and therefore, (2.26) with θk → 0 evidently implies (2.20) (and,
hence, (2.16)).
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Finally, if the derivative of Φ is locally Lipschitz-continuous with respect
to x̄, and (2.27) holds, quadratic convergence follows by the last assertion of
Proposition 2.4, because in this case, taking into account (2.29), we derive
that

ωk = O((‖xk+1 − xk‖+ ‖xk − x̄‖)‖Φ(xk)‖)
= O((‖xk+1 − xk‖+ ‖xk − x̄‖)‖xk − x̄‖)
= O(‖xk+1 − xk‖2 + ‖xk − x̄‖2)

as k → ∞. ()

In the previous result, convergence of {xk} was assumed. But to pass to a
constructive result, also establishing convergence, is now easy.

Theorem 2.8. Suppose that the assumptions of Theorem 2.2 hold, and let
θ ∈ (0, 1) be arbitrary.

Then for any x0 ∈ Rn close enough to x̄ and any sequences {xk} ⊂ Rn,
{ωk} ⊂ Rn and {θk} ⊂ [0, θ] satisfying (2.12) and (2.26) for all k = 0, 1, . . .,
it holds that {xk} converges to x̄ and the rate of convergence is (at least)
linear. Moreover, the rate of convergence is superlinear provided θk → 0.
The rate of convergence is quadratic, provided the derivative of Φ is locally
Lipschitz-continuous with respect to x̄ and

θk = O(‖Φ(xk)‖) (2.30)

as k → ∞.

Proof. Define the following norm in Rn: ‖x‖∗ = ‖Φ′(x̄)x‖, x ∈ Rn (as
Φ′(x̄) is nonsingular, this is indeed a norm). Then, employing (2.26) and
the equivalence of norms in Rn, we obtain that for any ε ∈ (0, 1 − θ) there
exists δ > 0 such that for any xk ∈ B(x̄, δ) it holds that

‖(Φ′(x̄))−1ωk‖∗ = ‖ωk‖
≤ θ‖Φ(xk)‖
= θ‖Φ(x̄) + Φ′(x̄)(xk − x̄)‖+ o(‖xk − x̄‖)
= θ‖xk − x̄‖∗ + o(‖xk − x̄‖∗)
≤ (θ + ε)‖xk − x̄‖∗,

which is (2.23) with q = θ+ε. By assertion (a) of Proposition 2.6, this implies
the inclusion xk+1 ∈ B(x̄, δ), provided δ is chosen small enough. Thus, the
inclusion x0 ∈ B(x̄, δ) implies that the entire sequence {xk} is contained
in B(x̄, δ), and that (2.23) holds for all k = 0, 1, . . .. It remains to apply
assertion (b) of Proposition 2.6. Superlinear rate of convergence when θk → 0,
and quadratic rate when the derivative of Φ is locally Lipschitz-continuous
with respect to x̄ and (2.30) holds, follow from Theorem 2.7, taking into
account (2.29). ()
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Some specific implementations of truncated Newton methods and related
results can be found, e.g., in [208, Chap. 11].

It is interesting to note that the class of quasi-Newton methods, which
is of great practical importance, can be (theoretically) related to truncated
Newton methods, even though the principles behind the two approaches are
completely different. Close enough to a solution, a step of any quasi-Newton
method is supposed to take the form

xk+1 = xk − J−1
k Φ(xk), (2.31)

where {Jk} ⊂ Rn×n is a sequence of nonsingular matrices satisfying the
so-called Dennis–Moré condition (see [57, 58]):

(Jk − Φ′(xk))(xk+1 − xk) = o(‖xk+1 − xk‖) (2.32)

as k → ∞. (As usual, (2.31) does not mean that a matrix is inverted in actual
computation.)

Evidently, xk+1 is a solution of (2.11) with

ωk = (Jk − Φ′(xk))(xk+1 − xk).

Note that (2.32) is merely an asymptotic condition of an a posteriori kind,
not relating the properties of two subsequent iterates in any constructive way.
Thus, one should certainly not expect any complete convergence results, and
even less so, any a priori results (i.e., proving convergence itself) under an
assumption so weak. What can be expected, at best, is the superlinear rate
of convergence assuming convergence of {xk} to a solution x̄ of (2.1) with
nonsingular Φ′(x̄). And this is indeed valid, according to Proposition 2.4 and
Remark 2.5.

Theorem 2.9. Let Φ : Rn → Rn be differentiable in a neighborhood of a
point x̄ ∈ Rn, with its derivative being continuous at x̄. Let x̄ be a solution of
the equation (2.1). Let {Jk} ⊂ Rn×n be a sequence of nonsingular matrices,
and let a sequence {xk} ⊂ Rn be convergent to x̄, with (2.31) holding for all
k large enough.

If the rate of convergence of {xk} is superlinear, then condition (2.32)
holds.

Conversely, if Φ′(x̄) is a nonsingular matrix and condition (2.32) holds,
then the rate of convergence of {xk} is superlinear.

For the basic Newton method (2.3), the Dennis–Moré condition (2.32)
is, of course, automatic. The idea of practical quasi-Newton methods is to
avoid computation of the exact Jacobian Φ′(xk) altogether (since this is often
too costly and sometimes simply impossible). The task is to approximate
Φ′(xk) in some sense, employing information about the values of Φ only. It
is important to emphasize that this approximation does not subsume that
‖Jk − Φ′(xk)‖ → 0 as k → ∞ and, in fact, this relation indeed does not hold
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for specific quasi-Newton methods (in general). The needed approximations
must be computed according to some recursive formulas, and without using
any information about the derivatives of Φ.

For each k, define

sk = xk+1 − xk, rk = Φ(xk+1)− Φ(xk).

Note that these two vectors are already known by the time when Jk+1 has
to be computed. The goal to satisfy (2.32) can be modeled as the equality

rk = Jk+1s
k, (2.33)

which is usually referred to as the quasi-Newton (or secant) equation. Indeed,
from (2.32) it follows that Jk+1 should be chosen in such a way that the
vector Jk+1sk approximates Φ′(xk+1)sk. At the same time,

rk =

∫ 1

0
Φ′(xk + tsk)sk dt,

and implicitly assuming that the matrix Φ′(xk + tsk) in the right-hand side
of the last equality approximates Φ′(xk+1) (which is automatic provided
the sequence {xk} converges), the idea to impose the equality (2.33) comes
naturally.

Therefore, having at hand a nonsingular matrix Jk and vectors sk and
rk, it is suggested to choose a matrix Jk+1 satisfying the quasi-Newton
equation (2.33). However, such a choice would clearly be not unique. Having
in mind stability considerations, it is natural to additionally require the
matrix change Jk+1−Jk to be “minimal” in some sense: from one iteration to
another, the variation of Jk should not be too large. Different understandings
of “minimal” lead to different specific quasi-Newton methods. For instance,
consider the case when the correction Jk+1 − Jk is minimal in the Frobenius
norm. Taking into account that linearity of constraints is a CQ, by applying
the Lagrange principle (Theorem 1.11), we immediately obtain the following.

Proposition 2.10. For any elements sk ∈ Rn \ {0} and rk ∈ Rn, and for
any matrix Jk ∈ Rn×n, the unique (global) solution of the problem

minimize ‖J − Jk‖2F
subject to Jsk = rk

is given by

Jk+1 = Jk +
(rk − Jksk)sTk

‖sk‖2 . (2.34)

Proposition 2.10 motivates Broyden’s method, which is one of the popular
quasi-Newton methods for systems of equations: J0 is an arbitrary nonsingular
matrix (e.g., J0 = I), and for each k, the matrix Jk+1 is computed according
to (2.34).
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If n = 1, formula (2.34) reduces to the following:

Jk+1 =
Φ(xk+1)− Φ(xk)

xk+1 − xk
= Jk

(
1− Φ(xk+1)

Φ(xk)

)
, (2.35)

which corresponds to the classical secant method.
For an excellent survey of practical quasi-Newton methods for nonlinear

equations, see [191].
We proceed to an a priori analysis for the cases when the perturbation term

has certain structure. The sequence {xk} is not regarded as given anymore,
and the role of the perturbation terms {ωk} is now primary with respect
to {xk}.

In many practical algorithms based on (2.11), ωk depends linearly on x,
which is only natural: it is highly desirable to preserve linearity of the iteration
system of the pure Newton method in its modifications (so that it remains
relatively easy to solve). Let ωk = ωk(x) = Ωk(x − xk), x ∈ Rn, where
Ωk ∈ Rn×n for each k. Thus, we consider now the process with the iteration
system of the form

Φ(xk) + (Φ′(xk) +Ωk)(x− xk) = 0. (2.36)

Note that quasi-Newton methods formally fit this instance of perturbed
Newton method by setting Ωk = Jk−Φ′(xk) (It should be remarked, however,
that in what follows we assume that the sequence {Ωk} is at least bounded,
a property which is not automatic for quasi-Newton methods).

Theorem 2.11. Under the assumptions of Theorem 2.2, it holds that for any
fixed θ ∈ (0, ‖(Φ′(x̄))−1‖−1/2) there exists δ > 0 such that for any sequence
of matrices {Ωk} ⊂ Rn×n satisfying

‖Ωk‖ ≤ θ ∀ k = 0, 1, . . . , (2.37)

any x0 ∈ B(x̄, δ) uniquely defines the iterative sequence {xk} ⊂ B(x̄, δ)
such that for each k = 0, 1, . . ., the point xk+1 satisfies the relation (2.11)
with ωk = Ωk(xk+1 − xk); this sequence converges to x̄, and the rate of
convergence is (at least) linear. Specifically, there exists q(θ) ∈ (0, 1) such
that q(θ) = O(θ) as θ → 0, and either xk = x̄ for all k large enough, or

lim sup
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ ≤ q(θ). (2.38)

Moreover, the rate of convergence is superlinear if {Ωk} → 0 as k → ∞.
The rate of convergence is quadratic, provided the derivative of Φ is locally
Lipschitz-continuous with respect to x̄ and Ωk = O(‖xk+1 − xk‖+ ‖xk − x̄‖)
as k → ∞.

Proof. Employing Lemma A.6, by (2.37) and the restriction on θ we obtain
that there exists δ > 0 such that for all x ∈ B(x̄, δ) and all k = 0, 1, . . ., it
holds that
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Φ′(x) +Ωk is nonsingular,

‖(Φ′(x) +Ωk)
−1‖ ≤ ‖(Φ′(x̄))−1‖

1− (θ + ‖Φ′(x)− Φ′(x̄)‖)‖(Φ′(x̄))−1‖ .

Thus, for any k = 0, 1, . . ., if xk ∈ B(x̄, δ), then the equation (2.36) has the
unique solution xk+1, and

‖ωk‖ = ‖Ωk(x
k+1 − xk)‖

≤ ‖Ωk‖‖(Φ′(xk) +Ωk)
−1Φ(xk)‖

≤ ‖Ωk‖‖(Φ′(xk) +Ωk)
−1(Φ(x̄) + Φ′(xk)(xk − x̄)‖ + o(‖xk − x̄‖)

≤ ‖Ωk‖‖xk − x̄− (Φ′(xk) +Ωk)
−1Ωk(x

k − x̄)‖ + o(‖xk − x̄‖)

≤ ‖Ωk‖
(
1 +

θ‖(Φ′(x̄))−1‖
1− θ‖(Φ′(x̄))−1‖

)
‖xk − x̄‖+ o(‖xk − x̄‖)

≤ θ

1− θ‖(Φ′(x̄))−1‖‖x
k − x̄‖+ o(‖xk − x̄‖) (2.39)

as xk → x̄, where (2.37) was again taken into account. It follows that

‖(Φ′(x̄))−1ωk‖ ≤ ‖(Φ′(x̄))−1‖‖ωk‖ ≤ q(θ)‖xk − x̄‖+ o(‖xk − x̄‖),

where q(θ) = θ‖(Φ′(x̄))−1‖/(1 − θ‖(Φ′(x̄))−1‖). Note that by the restriction
on θ, it holds that q(θ) < 1, and for any ε ∈ (0, 1− q(θ)) the inequality

‖(Φ′(x̄))−1ωk‖ ≤ (q(θ) + ε)‖xk − x̄‖

is valid provided δ is small enough. By assertion (a) of Proposition 2.6, this
implies the inclusion xk+1 ∈ B(x̄, δ), perhaps for a smaller δ. It follows that
any starting point x0 ∈ B(x̄, δ) uniquely defines the iterative sequence {xk}
such that for each k = 0, 1, . . ., the point xk+1 satisfies (2.11), and this
sequence is contained in B(x̄, δ) and converges to x̄. Moreover, by assertion
(b) of Proposition 2.6, the rate of convergence is at least linear; more precisely,
either xk = x̄ for all k large enough, or

lim sup
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ ≤ q(θ) + ε.

Since ε can be taken arbitrarily small at the price of reducing δ, and since
{xk} converges to x̄ (and hence, the tail of {xk} is contained in B(x̄, δ) no
matter how small δ is), the latter implies (2.38).

Finally, by the next to last inequality in (2.39), we obtain that if it holds
that {Ωk} → 0, then (2.20) (and, hence, (2.16)) are valid, and the superlinear
convergence rate follows from Proposition 2.4.

Similarly, if Ωk = O(‖xk+1−xk‖+‖xk− x̄‖) as k → ∞, then (2.17) holds,
and Proposition 2.4 gives the quadratic convergence rate. ()
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The simplest case of a linear perturbation term is when Ωk is just constant,
i.e., Ωk = Ω for all k = 0, 1, . . ., with some fixed Ω ∈ Rn×n. Having in mind
faster convergence, it is natural to choose Ωk in such a way that Φ′(xk)+Ωk is
some approximation of Φ′(x̄). One of the possibilities is Ωk = Φ′(x0)−Φ′(xk)
for a given starting point x0 ∈ Rn. Assuming that Φ′(x0) is nonsingular, this
iterative scheme can be written in the form

xk+1 = xk − (Φ′(x0))−1Φ(xk), k = 0, 1, . . . . (2.40)

The iteration cost of the basic Newton method is thus reduced, since the
derivative of Φ is computed only once (at x0) and all the iteration linear
systems have the same matrix Φ′(x0), which has to be factorized also only
once (if factorization is used). From Theorem 2.11, it readily follows that the
scheme (2.40) possesses local convergence to a solution with a nonsingular
Jacobian. The rate of convergence is only linear, though the closer x0 is to
x̄ the higher is the rate of convergence, becoming superlinear in the limit.
In practice, one can use a modification of this scheme, with Φ′(xk) being
computed not only for k = 0 but on some subsequence of iterations (but not
on all iterations). Such compromise between the basic Newton method and
method (2.40) is intended for reducing the iteration costs of the former while
increasing the rate of convergence of the latter.

It is also sometimes useful to take Ωk = Ω(xk), k = 0, 1, . . ., where
the mapping Ω : Rn → Rn×n is such that Ω(x) → 0 as x → x̄.
According to Theorem 2.11, any method of this kind possesses local super-
linear convergence to a solution x̄ whenever Φ′(x̄) is nonsingular.

A particular construction of Ω(·) in the case when the explicit expression
for Φ′(·) is available can be based on the following observation: if some terms
in the expression for Φ′(·) are known to vanish at a solution, such terms can
be dropped (set to zero) in a Newton-type method from the very beginning.

Consider, for example, an over-determined system

Ψ(x) = 0,

where Ψ : Rn → Rm is twice differentiable near a solution x̄, with its second
derivative continuous at x̄, and with m generally bigger than n. This problem
can be reduced to the standard form (2.1), with the number of equations equal
to the number of the unknowns, by setting Φ(x) = (Ψ ′(x))TΨ(x), x ∈ Rn.
Moreover, if x̄ satisfies the condition kerΨ ′(x̄) = {0} (sufficient for x̄ to be
an isolated solution; see Proposition 1.32), then Φ′(x̄) = (Ψ ′(x̄))TΨ ′(x̄) is
nonsingular. At points that are not solutions, the derivative of Ψ depends
not only on the first but also on the second derivative of Φ:

Φ′(x)ξ = (Ψ ′(x))TΨ ′(x)ξ + (Ψ ′′(x)[ξ])TΨ(x), x, ξ ∈ Rn,

which makes the use of the basic Newton method even more costly in this
setting. Fortunately, the last term in the expression for Φ′(·) vanishes at a
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solution. Dropping this term, we obtain the Gauss–Newton method: for a
given xk ∈ Rn, the next iterate xk+1 ∈ Rn is computed as a solution of the
iteration system

(Ψ ′(xk))TΨ(xk) + (Ψ ′(xk))TΨ ′(xk)(x− xk) = 0, (2.41)

which corresponds to (2.36) with the linear perturbation term Ωk = Ω(xk)
defined by

Ω(x)ξ = −(Ψ ′′(x)[ξ])TΨ(x), x, ξ ∈ Rn.

Note that if n = m, then this iterative process generates the same iterative
sequence as the basic Newton method. Note also that the expression in
the left-hand side of (2.41) is precisely the gradient of the quadratic objective
function of the following linear least-squares problem:

minimize
1

2
‖Ψ(xk) + Ψ ′(xk)(x − xk)‖2

subject to x ∈ Rn.

The latter can be solved by special algorithms for linear least-squares
problems [208, Sect. 10.2], or by conjugate gradient methods [208, Sect. 5.1],
without explicitly computing the product (Ψ ′(xk))TΨ ′(xk), which could be
too expensive.

Local superlinear convergence of the Gauss–Newton method under the
assumption kerΨ ′(x̄) = {0} is ensured by Theorem 2.11, according to the
discussion above.

Even though keeping the iteration system linear is certainly a reasonable
approach, it will be seen below that there exist some practical algorithms (for
constrained optimization) fitting the perturbed Newton method framework
for which the dependence of the perturbation term on the variables is not
necessarily linear. Instead, it satisfies some smoothness-like assumptions, still
allowing an a priori analysis via the use of the implicit function theorem. One
such example is the linearly constrained augmented Lagrangian method for
optimization, discussed in Sect. 4.1.2. This motivates the following results,
dealing with nonlinear dependence of perturbations on the problem variables.

Theorem 2.12. Under the hypotheses of Theorem 2.2, let ω : Rn×Rn → Rn

satisfy the following assumptions:

ω(x, ξ1)− ω(x, ξ2) = o(‖ξ1 − ξ2‖) (2.42)

as ξ1, ξ2 ∈ Rn tend to 0, uniformly in x ∈ Rn close enough to x̄, and there
exists θ ∈ (0, ‖(Φ′(x̄))−1‖−1) such that the inequality

‖ω(x, 0)‖ ≤ θ‖x− x̄‖ (2.43)

holds for all x ∈ Rn close enough to x̄.
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Then there exists δ > 0 such that any starting point x0 ∈ Rn close
enough to x̄ uniquely defines the iterative sequence {xk} ⊂ Rn such that
xk+1 satisfies (2.11) with ωk = ω(xk, xk+1 − xk) for each k = 0, 1, . . ., and
‖xk+1 −xk‖ ≤ δ; this sequence converges to x̄, and the rate of convergence is
(at least) linear. Specifically, there exists q(θ) ∈ (0, 1) such that (2.38) holds,
and q(θ) = O(θ) as θ → 0.

Moreover, the rate of convergence is superlinear if

ω(x, 0) = o(‖x− x̄‖) (2.44)

as x → x̄. The rate of convergence is quadratic provided the derivative of Φ
is locally Lipschitz-continuous with respect to x̄ and

ω(x, ξ) = O(‖ξ‖2 + ‖x− x̄‖2) (2.45)

as x → x̄ and ξ → 0.

Proof. Define the mapping Ψ : Rn ×Rn → Rn,

Ψ(x, ξ) = Φ(x) + Φ′(x)ξ + ω(x, ξ).

By the assumptions (2.42) and (2.43), the implicit function theorem (Theo-
rem 1.22) is applicable to this mapping at (x, ξ) = (x̄, 0) (here, x is regarded
as a parameter). Hence, there exist δ > 0 and δ̃ > 0 such that for each
x ∈ B(x̄, δ̃) the equation

Ψ(x, ξ) = 0

has the unique solution ξ(x) ∈ B(0, δ), and this solution satisfies the estimate

‖ξ(x)‖ = O(‖Ψ(x, 0)‖) = O(‖Φ(x)‖) +O(‖ω(x, 0)‖) = O(‖x− x̄‖) (2.46)

as x → x̄. Then for any xk ∈ B(x̄, δ̃), the point xk+1 = xk+ ξ(xk) is the only
one in B(xk, δ) satisfying (2.11) with ωk = ω(xk, xk+1 − xk). Furthermore,

‖ωk‖ = ‖ω(xk, ξ(xk))‖
≤ ‖ω(xk, ξ(xk))− ω(xk, 0)‖+ ‖ω(xk, 0)‖
= ‖ω(xk, 0)‖+ o(‖ξ(xk)‖)
= ‖ω(xk, 0)‖+ o(‖xk − x̄‖)
≤ θ‖xk − x̄‖+ o(‖xk − x̄‖) (2.47)

as xk → x̄, where (2.42) and (2.43) were employed again. It follows that

‖(Φ′(x̄))−1ωk‖ ≤ ‖(Φ′(x̄))−1‖‖ωk‖ ≤ q(θ)‖xk − x̄‖+ o(‖xk − x̄‖),

where q(θ) = θ‖(Φ′(x̄))−1‖. Note that by the restriction on θ, it holds that
q(θ) < 1.
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The rest of the proof almost literally repeats the corresponding part of the
proof of Theorem 2.11. In particular, convergence follows from Proposition 2.6.

The superlinear convergence rate under the assumption (2.44) follows
by the third equality in (2.47), and by Proposition 2.4. Moreover, assum-
ing (2.45), the estimate (2.47) can be sharpened as follows:

ωk = ω(xk, ξ(xk)) = O(‖ξ(xk)‖2 + ‖xk − x̄‖2) = O(‖xk − x̄‖2)

as xk → x̄, where the last equality is by (2.46). Proposition 2.4 now gives
quadratic convergence rate, provided the derivative of Φ is locally Lipschitz-
continuous with respect to x̄. ()

Note that the case discussed above when ωk = ωk(x) = Ω(xk)(x − xk),
k = 0, 1, . . ., with some mapping Ω : Rn → Rn×n such that Ω(x) → 0 as
x → x̄ (in particular, the Gauss–Newton method), can be treated both by
Theorem 2.11 or 2.12. More interesting examples of the use of Theorem 2.12
will be provided below (see Sects. 4.1, 4.2).

The next result is, in a sense, intermediate between a priori and a posteriori
characterizations of perturbed Newton method. We present it here mainly
because of the conceptual importance of this kind of analysis for Newton-
type methods in the setting of variational problems, where the existence of
solutions of subproblems can be guaranteed in general only under rather
strong assumptions; see Sect. 3.1. In such cases, it may be useful just to
assume solvability of subproblems, having in mind that this can be verifiable
separately, for more specific algorithms and/or problem classes.

For this analysis, it is natural to replace (2.11) by the generalized equation
(GE)

Φ(xk) + Φ′(xk)(x − xk) +Ω(xk, x− xk) - 0, (2.48)

with a multifunction Ω from Rn ×Rn to the subsets of Rn.

Theorem 2.13. Under the assumptions of Theorem 2.2, let Ω be a multi-
function from Rn×Rn to the subsets of Rn, satisfying the following assump-
tions: for each x ∈ Rn close enough to x̄, the GE

Φ(x) + Φ′(x)ξ +Ω(x, ξ) - 0 (2.49)

has a solution ξ(x) such that ξ(x) → 0 as x → x̄, and there exist θ1, θ2 ≥ 0
such that 2θ1 + θ2 ≤ ‖(Φ′(x̄))−1‖−1 and the inequality

‖Φ(x) + Φ′(x)ξ‖ ≤ θ1‖ξ‖+ θ2‖x− x̄‖ (2.50)

holds for all x ∈ Rn close enough to x̄ and all ξ ∈ Rn close enough to zero,
satisfying (2.49).

Then there exists δ > 0 such that for any starting point x0 ∈ Rn close
enough to x̄, there exists a sequence {xk} ⊂ Rn such that xk+1 is a solution
of the GE (2.48) for each k = 0, 1, . . ., satisfying
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‖xk+1 − xk‖ ≤ δ; (2.51)

any such sequence converges to x̄, and the rate of convergence is (at least)
linear. Specifically, there exists q(θ) ∈ (0, 1), θ = θ1 + θ2, such that (2.38)
holds, and q(θ) = O(θ) as θ → 0.

Moreover, the rate of convergence is superlinear if (2.50) can be replaced
by the stronger condition

Φ(x) + Φ′(x)ξ = o(‖ξ‖+ ‖x− x̄‖) (2.52)

as x → x̄ and ξ → 0. The rate of convergence is quadratic provided the deriva-
tive of Φ is locally Lipschitz-continuous with respect to x̄, and provided (2.50)
can be replaced by the even stronger condition

Φ(x) + Φ′(x)ξ = O(‖ξ‖2 + ‖x− x̄‖2). (2.53)

Proof. Under the assumptions of the theorem, there exist δ > 0 and δ̃ > 0
such that for any xk ∈ B(x̄, δ̃), there exists xk+1 ∈ B(xk, δ) (specifically,
xk+1 = xk+ξ(xk)) satisfying (2.48). Assuming that δ and δ̃ are small enough,
for any such xk+1, by setting ωk = −Φ(xk) − Φ′(xk)(xk+1 − xk), we obtain
that (2.11) holds with x = xk+1, and

‖ωk‖ ≤ θ1‖xk+1 − xk‖+ θ2‖xk − x̄‖,

where (2.50) was employed. It follows that

‖(Φ′(x̄))−1ωk‖ ≤ ‖(Φ′(x̄))−1‖‖ωk‖
≤ q1(θ1)‖xk+1 − xk‖+ q2(θ2)‖xk − x̄‖,

where qj(θj) = θj‖(Φ′(x̄))−1‖, j = 1, 2, satisfy 2q1(θ1) + q2(θ2) < 1.
The rest of the proof again almost literally repeats the corresponding

part of the proof of Theorem 2.11. Convergence follows by Proposition 2.6,
and (2.38) holds with q(θ) = (q1(θ1) + q2(θ2))/(1 − q1(θ1)). The superlin-
ear/quadratic convergence rate under the corresponding additional assump-
tions follows by Proposition 2.4. ()

We complete this section with a brief discussion of the case when Φ′(x̄)
is not necessarily nonsingular. Such cases will be treated in detail later in
this book for (generalized) equations possessing some special (primal-dual)
structure, arising from optimization and variational problems. For general
equations without any special structure, the behavior of Newton-type meth-
ods near solutions with singular Jacobians, as well as various modifications of
these methods intended for preserving the efficiency despite singularity, was
studied in [151, 152]. Here, we limit the discussion to some comments which
may give an initial understanding of the effect of singularity.
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Consider the scalar equation

xs = 0,

where s ≥ 2 is an integer parameter. The Newton method iterations for this
equation are given by xk+1 = (1−1/s)xk, and the sequence {xk} converges to
the unique solution x̄ = 0 from any starting point, but the rate of convergence
is only linear. This happens because x̄ is a singular solution: the derivative at
x̄ is zero. At the same time, if we modify the Newton method by introducing
the stepsize parameter equal to s, the method hits the exact solution in one
step, for any starting point x0.

More generally, the following fact was established in [242]. Let a function
Φ : R → R be s times differentiable at x̄ ∈ R, s ≥ 2, where x̄ is a root of
multiplicity s of the equation (2.1), i.e.,

Φ(x̄) = Φ′(x̄) = . . . = Φ(s−1)(x̄) = 0, Φ(s)(x̄) .= 0.

Then the Newton method iterates locally converge to x̄ at a linear rate,
while the method modified by introducing the stepsize parameter equal to s
gives the superlinear convergence rate.

2.1.2 Newton Method for Unconstrained Optimization

Consider now the unconstrained optimization problem

minimize f(x)
subject to x ∈ Rn,

(2.54)

with a twice differentiable objective function f : Rn → R. Stationary points
of this problem are characterized by the equation (2.1) with Φ : Rn → Rn

being the gradient mapping of f :

Φ(x) = f ′(x).

Thus, one strategy to compute stationary points of the optimization prob-
lem (2.54) is to apply some Newton-type method to the equation (2.1) with
Φ being the gradient of f .

In the case of the basic Newton method for (2.54), given xk ∈ Rn, the
next iterate xk+1 is computed as a solution of the linear system

f ′(xk) + f ′′(xk)(x− xk) = 0. (2.55)

Assuming that the Hessian f ′′(xk) is nonsingular, the Newton method can
be written in the form of the explicit iterative scheme
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xk+1 = xk − (f ′′(xk))−1f ′(xk), k = 0, 1, . . . .

This iteration allows for the following interpretation that puts to the
foreground the optimization nature of the original problem. Near the current
iterate xk, the objective function f is naturally approximated by its second-
order expansion or, in other words, the original problem (2.54) is approxi-
mated by the following subproblem:

minimize f(xk) + 〈f ′(xk), x− xk〉+ 1

2
〈f ′′(xk)(x− xk), x− xk〉

subject to x ∈ Rn.
(2.56)

Since (2.55) is precisely the equation defining stationary points of (2.56),
the basic Newton method for unconstrained optimization can be presented as
follows.

Algorithm 2.14 Choose x0 ∈ Rn and set k = 0.

1. If f ′(xk) = 0, stop.
2. Compute xk+1 ∈ Rn as a stationary point of problem (2.56).
3. Increase k by 1 and go to step 1.

Local convergence result for Newton method for unconstrained optimiza-
tion follows immediately from Theorem 2.2 on local convergence of Newton
method for equations.

Theorem 2.15. Let a function f : Rn → R be twice differentiable in a
neighborhood of x̄ ∈ Rn, with its Hessian being continuous at x̄. Let x̄ be a
stationary point of problem (2.54), and assume that this point satisfies the
SOSC

〈f ′′(x̄)ξ, ξ〉 > 0 ∀ ξ ∈ Rn \ {0} (2.57)

(thus, according to Theorem 1.9, x̄ is a strict local solution of problem (2.54)).
Then any starting point x0 ∈ Rn close enough to x̄ uniquely defines the it-

erative sequence of Algorithm 2.14; this sequence converges to x̄, and the rate
of convergence is superlinear. Moreover, the rate of convergence is quadratic
provided the Hessian of f is locally Lipschitz-continuous with respect to x̄.

As one specificity of Newton method for optimization, let us mention that
a Hessian of a twice differentiable function is a symmetric matrix. Under
the assumptions of Theorem 2.15, perhaps the most natural general strategy
for solving the iteration system (2.55) appears to be the so-called Cholesky
factorization, which provides the LLT-decomposition of a positive definite
symmetric matrix (L is a lower triangular matrix with positive diagonal ele-
ments) at a price of n3/6 multiplications and the same amount of additions
(see, e.g., [100], [261, Lecture 23], [103, Sect. 4.2]). More details on special
tools of numerical linear algebra for iteration systems arising in optimization
can be found, e.g., in [29, 208].
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Note also that the assertion of Theorem 2.15 remains valid if the SOSC
(2.57) is replaced by the weaker assumption that f ′′(x̄) is nonsingular. In this
respect, Newton method does not distinguish local minimizers from other
stationary points of the problem (including the maximizers).

The main advantage of Newton method is its high convergence rate
(superlinear, under natural assumptions). However, the basic Newton method
has also serious drawbacks, which we discuss next.

First, each step of the Newton method requires computing the Hessian and
solving the corresponding linear system, which can be too costly, or simply
impossible in some applications. Regarding this issue, we note that perturbed
Newton methods for equations discussed in Sect. 2.1.1 can be directly adapted
for unconstrained optimization. Indeed, all these methods can be applied
to the equation defined by the gradient of f . This may help to reduce the
iteration costs significantly. One important example is the class of quasi-
Newton methods for unconstrained optimization, discussed in Sect. 2.2.

The second inevitable drawback of pure Newton-type methods is that
they possess only local convergence: in all results presented above, a starting
point close enough to a solution is required. An iterative sequence of Newton
method defined by an inappropriate starting point may not have stationary
points of the problem among its accumulations points. In fact, this may hap-
pen even in the case of a strongly convex objective function (so that its
stationary point is unique, and it is the unique global minimizer).

Example 2.16. Consider the function f : R → R,

f(x) =






− x4

4σ3
+

(
1 +

3

σ

)
x2

2
if |x| ≤ σ,

x2

2
+ 2|x|− 3σ

4
if |x| > σ,

where σ > 0 is a parameter. It can be easily checked that for any such σ,
the function f is twice continuously differentiable and strongly convex on R,
and problem (2.54) with this objective function has the unique stationary
point x̄ = 0. In particular, f ′′(x̄) = 1 + 3/σ > 0, and all the assumptions
of Theorem 2.15 are satisfied. Take x0 = σ. The corresponding iterative
sequence {xk} of Algorithm 2.14 is then given by xk = 2(−1)k, k = 1, 2, . . .,
and x̄ is not an accumulation point of {xk}, no matter how small σ is.

Strategies for globalization of convergence of Newton-type methods for
unconstrained optimization is the subject of the rest of this chapter. In
particular, linesearch quasi-Newton methods (to be discussed in Sect. 2.2)
serve not only for reducing the iteration costs but also for enforcing global
convergence of Newton-type methods. (This is the main reason why we
present quasi-Newton methods for unconstrained optimization in the context
of linesearch methods.)
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2.2 Linesearch Methods, Quasi-Newton Methods

In this section, we consider the unconstrained optimization problem

minimize f(x)
subject to x ∈ Rn,

(2.58)

with a differentiable objective function f : Rn → R. One of the most natural
approaches to solving (2.58) is the following. For the given iterate, compute
a descent direction for f at this point, and make a step of some length along
this direction so that the value of f is (sufficiently) reduced. Repeat the
procedure for the obtained new iterate, etc. We refer to methods of this kind
as descent methods. Evidently, efficiency of any such method depends on two
choices: that of the descent direction, and that of the stepsize. Perhaps the
most practically important example of good choices for both is the class of
linesearch quasi-Newton methods.

2.2.1 Descent Methods

We start with a formal definition of descent directions.

Definition 2.17. A vector p ∈ Rn is said to be a descent direction for the
function f : Rn → R at x ∈ Rn if for all t > 0 small enough it holds that
f(x+ tp) < f(x).

The set of all descent directions for f at x ∈ Rn is a cone, which will be
denoted by Df (x). Therefore, p ∈ Df (x) if and only if any sufficiently small
displacement of x in the direction p results in a reduction of the function
value with respect to f(x). The next statement is elementary.

Lemma 2.18. Let f : Rn → R be differentiable at x ∈ Rn.
Then the following assertions are valid:

(a) For any p ∈ Df (x) it holds that 〈f ′(x), p〉 ≤ 0.
(b) If for p ∈ Rn it holds that 〈f ′(x), p〉 < 0, then p ∈ Df (x).

The class of descent methods is then given by iterative schemes of the form

xk+1 = xk + αkp
k, pk ∈ Df (x

k), αk > 0, k = 0, 1, . . . , (2.59)

where the stepsize parameters αk > 0 are chosen in such a way that, at least,

f(xk+1) < f(xk). (2.60)

That is, the sequence {f(xk)}must be monotonically decreasing. (IfDf (xk) =
∅ or if an element of Df (xk) cannot be computed by the prescribed tools,
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the process is terminated.) Note that the inclusion pk ∈ Df (xk) implies that
the inequality (2.60) holds for all αk > 0 small enough. However, (2.60) is
obviously not enough to guarantee convergence: the reduction property must
be appropriately quantified.

As mentioned above, a specific descent method is characterized by a
specific rule for choosing descent directions, and a specific procedure for
computing the appropriate values of the stepsize parameter. Procedures for
choosing a stepsize are based on exploring the restriction of the objective
function f to the ray spanned by pk, with its origin at xk. For this reason,
such procedures are usually called linesearch. It is interesting to point out
the following common feature of optimization algorithms: a choice of search
directions pk is typically based on some approximate model of the objective
function f (see below), while linesearch procedures are normally performed
for f itself.

By Lemma 2.18, if f ′(xk) .= 0, then one can always take the descent
direction pk = −f ′(xk). The corresponding descent methods (sometimes
called steepest descent methods) are easy to implement, and their convergence
and rate of convergence properties can be fully characterized theoretically.
However, such methods are completely impractical: this choice of descent
directions usually turns out to be extremely inefficient.

Much more practical descent methods are obtained within the following
more general framework. Given xk ∈ Rn take pk = −Qkf ′(xk), where
Qk ∈ Rn×n is a symmetric positive definite matrix. The matrices, of course,
must be chosen in some clever way. Good choices of Qk will be discussed in
Sect. 2.2.2. Right now, we note only that by Lemma 2.18, if f ′(xk) .= 0, then
pk = −Qkf ′(xk) with a positive definite Qk is clearly a descent direction for
f at xk, since

〈f ′(xk), pk〉 = −〈Qkf
′(xk), f ′(xk)〉 < 0. (2.61)

The “limiting,” in some sense, choices for Qk are Qk = (f ′′(xk))−1 corre-
sponding to the (expensive) Newton direction (see Sect. 2.1.2) and Qk = I
corresponding to the (cheap) steepest descent direction. We note that the
latter can still be useful sometimes, but only as a “last resort,” in those cases
when for some reasons more sophisticated options fail.

We next discuss the most important linesearch procedures, assuming that
for a given iterate xk a direction pk ∈ Df (xk) is already chosen and fixed. It
may seem natural to take the stepsize parameter αk > 0 as a global minimizer
of f(xk + αpk) over all α ≥ 0. This exact linesearch rule is, formally, ideal:
it provides the maximal possible progress in decreasing f along the given
direction. If f is a quadratic function with a positive definite Hessian, then
such αk is given by an explicit formula. But beyond the quadratic case,
exact linesearch is too expensive and usually impossible anyway. Moreover,
even searching for a local minimizer of f(xk + αpk) (or, e.g., for the local
minimizer closest to zero) is usually not worthwhile—afterall, the eventual
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goal is to minimize f on the entire space rather than on the given ray. For this
reason, much cheaper inexact linesearch rules are used in practice. These rules
ensure sufficient decrease of the objective function value, instead of searching
for (local or global) minimizers of f along the given descent direction.

Armijo rule. Choose the parameters C > 0, σ ∈ (0, 1) and θ ∈ (0, 1). Set
α = C.

1. Check the inequality

f(xk + αpk) ≤ f(xk) + σα〈f ′(xk), pk〉. (2.62)

2. If (2.62) does not hold, replace α by θα and go to step 1. Otherwise, set
αk = α.

Thus, αk is the first α of the form Cθj , j = 0, 1, . . ., satisfying (2.62)
(the needed value is computed by a backtracking procedure starting with
the initial trial value C). The quantity α〈f ′(xk), pk〉 in the right-hand side
of (2.62) plays the role of “predicted” (by the linear model of f) reduction
of the objective function value for the step of length α in the direction pk.
Therefore, inequality (2.62) means that the actual reduction must be no less
than a given fraction (defined by the choice of σ ∈ (0, 1)) of the “predicted”
reduction. Armijo linesearch is illustrated in Fig. 2.3.

αáf ′(xk), pkñ

σαáf ′(xk), pkñ
f(xk + αpk) −f(xk)

CθCαk = θ2C

acceptable values rejected values

0

α

Fig. 2.3 Armijo rule

The next lemma demonstrates that if pk satisfies the sufficient condition
for a descent direction stated in Lemma 2.18, i.e., if

〈f ′(xk), pk〉 < 0, (2.63)

then the backtracking procedure in the Armijo rule is finite.
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Lemma 2.19. Let f : Rn → R be differentiable at xk ∈ Rn.
Then for any pk ∈ Rn satisfying (2.63), inequality (2.62) holds for all

α > 0 small enough.

Proof. It holds that

f(xk + αpk)− f(xk) = 〈f ′(xk), αpk〉+ o(α)

= σα〈f ′(xk), pk〉+ (1− σ)α〈f ′(xk), pk〉+ o(α)

= σα〈f ′(xk), pk〉+ α

(
(1− σ)〈f ′(xk), pk〉+ o(α)

α

)

≤ σα〈f ′(xk), pk〉,

because (1− σ)〈f ′(xk), pk〉+ o(α)/α < 0 for any α > 0 small enough. ()

Evidently, if (2.63) holds, then choosing αk according to the Armijo rule
guarantees the descent property (2.60). Moreover, the inequality (2.62) with
α = αk gives a quantitative estimate of by how much f(xk+1) is smaller
than f(xk), and this estimate (unlike (2.60)) is sufficient for establishing
convergence under natural assumptions. However, convergence proof is signif-
icantly simplified when one can show that the backtracking is finite uniformly
with respect to k, i.e., when αk is separated from zero by some threshold
independent of k.

Lemma 2.20. Let f : Rn → R be differentiable on Rn, and suppose that its
gradient is Lipschitz-continuous on Rn with constant L > 0.

Then for any xk ∈ Rn and pk ∈ Rn satisfying (2.63), the inequality (2.62)
holds for all α ∈ (0, ᾱk], where

ᾱk =
2(σ − 1)〈f ′(xk), pk〉

L‖pk‖2 > 0. (2.64)

Proof. By Lemma A.11, for all α > 0 it holds that

f(xk + αpk)− f(xk)− 〈f ′(xk), αpk〉 ≤ L

2
α2‖pk‖2.

Hence, for all α ∈ (0, ᾱk] we have that

f(xk + αpk)− f(xk) ≤ 〈f ′(xk), αpk〉+ L

2
α2‖pk‖2

= α

(
〈f ′(xk), pk〉+ L

2
α‖pk‖2

)

≤ σα〈f ′(xk), pk〉,

where the last inequality follows from (2.64). ()
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Lemma 2.21. Under the assumptions of Lemma 2.20, let {Qk} ⊂ Rn×n be
a sequence of symmetric matrices satisfying

〈Qkξ, ξ〉 ≥ γ‖ξ‖2 ∀ ξ ∈ Rn, ‖Qk‖ ≤ Γ ∀ k, (2.65)

with some γ > 0 and Γ > 0.
Then there exists a constant c > 0 such that for any point xk ∈ Rn and

for pk = −Qkf ′(xk), the value αk obtained by the Armijo rule satisfies

αk ≥ c. (2.66)

Proof. By (2.65), we obtain that

〈f ′(xk), pk〉
‖pk‖2 = −〈f ′(xk), Qkf ′(xk)〉

‖Qkf ′(xk)‖2 ≤ − γ

Γ 2
.

Hence, according to (2.64),

ᾱk ≥ 2(1− σ)γ

LΓ 2
> 0.

The needed assertion now follows from Lemma 2.20. ()

The Armijo rule is simple, clear, and easy to implement. Convergence
results presented below refer to this rule. However, more sophisticated
linesearch techniques, with better theoretical and practical properties, are
often used in practice.

Goldstein rule consists of choosing the stepsize parameter satisfying the
inequalities

σ1 ≤ f(xk + αpk)− f(xk)

α〈f ′(xk), pk〉 ≤ σ2, (2.67)

with fixed 0 < σ1 < σ2 < 1.
The first inequality in (2.67) is just the Armijo inequality (2.62) with

σ = σ1; it guarantees sufficient decrease of the objective function. Recall that
according to Lemma 2.19, this inequality holds for all α > 0 small enough.
By contrast, the second inequality in (2.67) is evidently violated for all α > 0
close to zero. The reason for introducing the second inequality is precisely
to avoid stepsize parameters that are too small. The idea is to take larger
steps, i.e., prevent the method from slowing down. Goldstein linesearch is
illustrated in Fig. 2.4.

Wolfe rule is another realization of the same idea, but instead of (2.67) it
employs the inequalities

f(xk + αpk) ≤ f(xk) + σ1α〈f ′(xk), pk〉, (2.68)

〈f ′(xk + αpk), pk〉 ≥ σ2〈f ′(xk), pk〉. (2.69)
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αáf ′(xk), pkñ

σ1αáf ′(xk), pkñ

σ2αáf ′(xk), pkñ

acceptable values

0

α

f(xk + αpk) − f(xk)

Fig. 2.4 Goldstein rule

Again, (2.68) is the Armijo inequality (2.62) with σ = σ1. Evidently,
analogously to (2.67), the second inequality in (2.69) also does not allow
stepsize values that are too small. Note that it involves the gradient of f
not only at xk but also at the trial points xk + αpk, which entails some
additional computational cost. However, when computation of the gradient
is not too expensive, the Wolfe rule is often regarded as the most efficient
among currently known linesearch options. One important property of this
rule is related to quasi-Newton methods; see Sect. 2.2.2. Wolfe linesearch is
illustrated in Fig. 2.5.

We next give a simple algorithmic implementation of the Wolfe rule. (The
Goldstein rule can be implemented along the same lines.) Let 0 < σ1 < σ2 < 1
be fixed. Set c = C = 0, and choose an initial trial value α > 0.

1. Check the inequalities (2.68) and (2.69). If both do hold, go to step 6.
2. If (2.68) does not hold, set C = α, and go to step 5.
3. If (2.69) does not hold, set c = α.
4. If C = 0, choose a new trial value α > c (“extrapolation”), and go to

step 1.
5. Choose a new trial value α ∈ (c, C) (“interpolation”), and go to step 1.
6. Set αk = α.

Violation of (2.68) basically means that the current trial value α is “too
large,” while violation of (2.69) means that it is “too small.” The procedure
just described works as follows. Extrapolation steps are performed first, until
C becomes positive. Once this happened, interpolation steps are performed.
In the course of interpolation C may only decrease, remaining positive, while
c may only increase, staying smaller than C.
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slope equal to σ2áf ′(xk), pkñ

σ1αáf ′(xk), pkñ

f(xk + αpk) −f(xk)

acceptable values

0

α

αáf ′(xk), pkñ

Fig. 2.5 Wolfe rule

Extrapolation and interpolation in the presented procedure can be orga-
nized in many ways. For example, one can fix θ1 > 1, θ2 ∈ (0, 1), and replace
α by θ1α in the case of extrapolation, and set α = (1−θ2)c+θ2C in the case of
interpolation. More sophisticated options are discussed, e.g., in [29, Chap. 3].
From the theoretical viewpoint, it is important to guarantee the following
property: in the case of infinite number of extrapolation steps c must be
increasing to infinity, while in the case of infinite number of interpolation
steps (C − c) must be tending to zero.

Lemma 2.22. Let f : Rn → R be continuously differentiable and bounded
below on Rn.

Then for any xk ∈ Rn and pk ∈ Rn satisfying (2.63), the procedure
implementing the Wolfe rule such that c → +∞ in the case of infinite number
of extrapolation steps and (C − c) → 0 in the case of infinite number of
interpolation steps, is finite.

Proof. Suppose first that there is an infinite number of extrapolation steps.
Then the procedure generates an increasing to infinity sequence of values of
c, and for each of these values it holds that

f(xk + cpk) ≤ f(xk) + σ1c〈f ′(xk), pk〉. (2.70)

But according to inequality (2.63), the latter contradicts the assumption that
f is bounded below. Therefore, the number of extrapolation steps is finite.

Suppose now that the number of interpolation steps is infinite. Then the
monotone sequences of values of c and of C converge to a common limit ᾱ.
The elements of the first sequence satisfy (2.70) and
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〈f ′(xk + cpk), pk〉 < σ2〈f ′(xk), pk〉, (2.71)

while the elements of the second sequence satisfy

f(xk + Cpk) > f(xk) + σ1C〈f ′(xk), pk〉. (2.72)

By passing onto the limit in (2.70) and (2.72), we obtain the equality

f(xk + ᾱpk) = f(xk) + σ1ᾱ〈f ′(xk), pk〉. (2.73)

Taking into account (2.72) and monotone decrease of the values of C, it
follows that these values always remain bigger than ᾱ. Employing (2.73), we
can rewrite inequality (2.72) in the form

f(xk + Cpk) > f(xk) + σ1ᾱ〈f ′(xk), pk〉+ (C − ᾱ)〈f ′(xk), pk〉
= f(xk + ᾱpk) + σ1(C − ᾱ)〈f ′(xk), pk〉.

Taking into account the inequality C − ᾱ > 0, the latter implies

f(xk + Cpk)− f(xk + ᾱpk)

C − ᾱ
> σ1〈f ′(xk), pk〉.

Passing onto the limit, and employing the inequalities σ1 < σ2 and (2.63),
we obtain that

〈f ′(xk + ᾱpk), pk〉 ≥ σ1〈f ′(xk), pk〉 > σ2〈f ′(xk), pk〉. (2.74)

On the other hand, passing onto the limit in (2.71) results in the inequality

〈f ′(xk + ᾱpk), pk〉 ≤ σ2〈f ′(xk), pk〉,

which is in a contradiction with (2.74). ()

We conclude this section by mentioning the so-called nonmonotone line-
search methods; see [110]. Allowing an increase of the objective function value
on some iterations, these methods tend to produce longer steps. Roughly
speaking, the choice of αk in nonmonotone methods is based on comparison
of f(xk + αpk) not with f(xk) but rather with the maximum (or average)
value of f along some fixed number of previous iterations. There is computa-
tional evidence that such methods may be more efficient in some applications
than the usual descent methods.

2.2.2 Quasi-Newton Methods

From now on, we consider descent methods of the specific form

xk+1 = xk − αkQkf
′(xk), αk > 0, k = 0, 1, . . . , (2.75)
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where for each k, Qk ∈ Rn×n is a symmetric positive definite matrix, and
the stepsize parameter αk is chosen by linesearch.

Algorithm 2.23 Choose the parameters C > 0, σ ∈ (0, 1) and θ ∈ (0, 1).
Choose x0 ∈ Rn and set k = 0.

1. If f ′(xk) = 0, stop.
2. Choose a symmetric positive definite matrix Qk ∈ Rn×n, and compute αk

according to the Armijo rule, employing the direction pk = −Qkf ′(xk).
3. Set xk+1 = xk − αkQkf ′(xk).
4. Increase k by 1 and go to step 1.

We first show that the algorithm possesses global convergence (in a certain
sense) to stationary points of problem (2.58).

Theorem 2.24. Let f : Rn → R be differentiable on Rn, and suppose
that its gradient is Lipschitz-continuous on Rn. Assume further that there
exist γ > 0 and Γ > 0 such that the matrices Qk in Algorithm 2.23 satisfy
condition (2.65).

Then for any starting point x0 ∈ Rn, Algorithm 2.23 generates an iterative
sequence {xk} such that each of its accumulation points is a stationary
point of problem (2.58). Moreover, if an accumulation point exists, or if f
is bounded below on Rn, then

{f ′(xk)} → 0. (2.76)

Proof. The fact that Algorithm 2.23 is well defined follows from Lemma 2.19.
Moreover (under the standing assumption that f ′(xk) .= 0 ∀ k), the sequence
{f(xk)} is monotonically decreasing.

If the sequence {xk} has an accumulation point x̄ ∈ Rn, then f(x̄) is an
accumulation point of {f(xk)}, by the continuity of f . In this case, monotonic-
ity of {f(xk)} implies that the whole sequence {f(xk)} converges to f(x̄). If f
is bounded below, then the monotone sequence {f(xk)} is bounded below. In
this case, {f(xk)} converges even when {xk} does not have any accumulation
points.

Since pk = −Qkf ′(xk), by the Armijo rule, taking into account Lemma 2.21
and the first inequality in (2.65), we obtain that for all k it holds that

f(xk)− f(xk+1) ≥ σαk〈Qkf
′(xk), f ′(xk)〉 ≥ σcγ‖f ′(xk)‖2, (2.77)

where c > 0 is the constant in the right-hand side of (2.66). Since the left-hand
side in the relation above tends to zero as k → ∞, we conclude that (2.76)
holds. The assertion follows. ()

Somewhat more subtle analysis allows to replace Lipschitz-continuity of
the gradient of f on the entire Rn (which is rather restrictive) by simple
continuity. The difficulty here is, of course, that under this weaker assumption
one cannot guarantee that the values of the stepsize parameter are bounded
away from zero.
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Theorem 2.25. Let f : Rn → R be continuously differentiable on Rn.
Assume further that there exist γ > 0 and Γ > 0 such that the matrices
Qk in Algorithm 2.23 satisfy condition (2.65).

Then for any starting point x0 ∈ Rn Algorithm 2.23 generates an iterative
sequence {xk} such that each of its accumulation points is a stationary point
of problem (2.58). Moreover, if the sequence {xk} is bounded, then (2.76)
holds.

Proof. The fact that Algorithm 2.23 is well defined follows from Lemma 2.19,
as before. Suppose that the sequence {xk} has an accumulation point x̄ ∈ Rn,
and let a subsequence {xkj} be convergent to x̄ as j → ∞. The case when
the corresponding subsequence {αkj} is bounded away from zero is dealt
with the same way as in Theorem 2.24 (the only difference is that {xk} in
the argument should be replaced by {xkj}). Therefore, we consider the case
when {αkj} → 0 as j → ∞.

In the latter case, for each j large enough, in the process of backtracking
when computing αkj the initial trial value C was reduced at least once, which
means that the value α = αkj/θ had been tried and found not to satisfy the
Armijo inequality (2.62), i.e.,

f
(
xkj −

αkj

θ
Qkjf

′(xkj )
)
> f(xkj )− σ

αkj

θ
〈Qkjf

′(xkj ), f ′(xkj )〉.

Denoting α̃kj = αkj‖Qkjf
′(xkj )‖/θ and p̃kj = −Qkjf

′(xkj )/‖Qkjf
′(xkj )‖,

the last inequality can be written in the form

f
(
xkj + α̃kj p̃

kj
)
> f(xkj ) + σα̃kj 〈f ′(xkj ), p̃kj 〉. (2.78)

Recalling the second inequality in (2.65), we conclude that {α̃kj} → 0 as
j → ∞. Extracting further subsequences if necessary, we may assume that
{p̃kj} converges to some p̃ ∈ Rn\{0}. With these observations, employing the
mean-value theorem (see Theorem A.10, (a)), dividing both sides of (2.78)
by α̃kj and passing onto the limit as j → ∞, we obtain the inequality

〈f ′(x̄), p̃〉 ≥ σ〈f ′(x̄), p̃〉,

which implies that 〈f ′(x̄), p̃〉 ≥ 0. Then, by (2.65),

0 ≥ −〈f ′(x̄), p̃〉
= lim

j→∞
〈f ′(xkj ), −p̃kj 〉

= lim
j→∞

〈Qkjf
′(xkj ), f ′(xkj )〉

‖Qkjf ′(xkj )‖

≥ lim
j→∞

γ‖f ′(xkj )‖2

Γ‖f ′(xkj )‖

=
γ

Γ
‖f ′(x̄)‖,
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which is possible only when f ′(x̄) = 0.
The last assertion of the theorem can be easily derived from the assertion

proven above. ()

We note that for Algorithm 2.23 with the Armijo linesearch rule replaced
by Goldstein or Wolfe rules, global convergence statements analogous to
Theorem 2.25 can be obtained.

Observe that neither Theorem 2.24 nor Theorem 2.25 claims the existence
of accumulation points for iterative sequences of Algorithm 2.23. However,
the latter is evidently guaranteed when f is coercive, since any sequence
{xk} ⊂ Rn generated by any descent method for problem (2.58) is contained
in the level set {x ∈ Rn | f(x) ≤ f(x0)}.

The results presented above suggest to try to combine, within a single
algorithm, the attractive global convergence properties of descent methods
with high convergence rate of Newton-type methods. For that purpose, the
Newton-type method should be modified by introducing a stepsize parameter
αk computed by an appropriate linesearch rule. If this rule allows for the full
Newton-type step near a qualified solution (i.e., the value αk = 1 is accepted
for all k large enough), one can expect that high convergence rate of the
Newton-type method would be inherited by the globalized algorithm. At the
same time, far from solutions, full Newton-type steps can be too long to
ensure monotone decrease of the sequence of the objective function values
(and, as a consequence, convergence may not be guaranteed). Far from a
solution, the step should therefore be shortened when necessary (i.e., αk = 1
should be reduced). The rest of this section is devoted to formal development
of this idea.

Generally, Algorithm 2.23 is referred to as a quasi-Newton method for
problem (2.58) if, assuming convergence of its iterative sequence to a solution
x̄, the directions Qkf ′(xk) approximate Newton directions (f ′′(xk))−1f ′(xk)
in the sense of the Dennis–Moré [57, 58] condition (2.80) (or (2.81); cf. (2.32))
stated below. We remark that it is quite natural to discuss quasi-Newton
methods for unconstrained optimization in the context of linesearch methods,
as it is possible to ensure positive definiteness of Hessian approximations
when using some specific quasi-Newton update formulas and the Wolfe rule
for computing the stepsize. The resulting algorithms thus fall within the class
of descent methods.

The following version of the Dennis–Moré Theorem deals with a line-
search quasi-Newton method, for which the acceptance of full stepsize can be
established rather than assumed (see also Theorem 2.29 below).

Theorem 2.26. Let f : Rn → R be twice differentiable in a neighborhood of
x̄ ∈ Rn, with its second derivative being continuous at x̄. Let x̄ be a stationary
point of problem (2.58). Let {xk} be an iterative sequence of Algorithm 2.23,
where C = 1 and σ ∈ (0, 1/2), and assume that {xk} converges to x̄.

If the rate of convergence of {xk} is superlinear, then the condition
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(αkQk − (f ′′(xk))−1)f ′(xk) = o(‖f ′(xk)‖)

holds as k → ∞.
Conversely, if x̄ satisfies the SOSC

〈f ′′(x̄)ξ, ξ〉 > 0 ∀ ξ ∈ Rn \ {0}, (2.79)

and the condition

(Qk − (f ′′(xk))−1)f ′(xk) = o(‖f ′(xk)‖) (2.80)

holds as k → ∞, then αk = 1 for all k large enough, and the rate of
convergence of {xk} to x̄ is superlinear.

Remark 2.27. It can be easily checked that under the assumptions of Theo-
rem 2.26, condition (2.80) is equivalent to

(Q−1
k − f ′′(xk))(xk+1 − xk) = o(‖xk+1 − xk‖). (2.81)

Proof. According to Theorem 2.9 and the fact stated in Remark 2.27, we only
need to prove that αk = 1 for all k large enough provided (2.79) and (2.80)
hold.

From (2.80) and from the convergence of {xk} to x̄, it evidently follows
that

Qkf
′(xk) = O(‖f ′(xk)‖) (2.82)

as k → ∞.
By the mean-value theorem for scalar-valued functions (see Theorem A.10,

(a)), for each k there exists t̃k ∈ (0, 1) such that

f(xk −Qkf
′(xk)) = f(xk)− 〈f ′(xk), Qkf

′(xk)〉

+
1

2
〈f ′′(x̃k)Qkf

′(xk), Qkf
′(xk)〉,

where x̃k = xk − t̃kQkf ′(xk). It suffices to show that for all k large enough

〈f ′(xk), Qkf
′(xk)〉 − 1

2
〈f ′′(x̃k)Qkf

′(xk), Qkf
′(xk)〉 ≥ σ〈f ′(xk), Qkf

′(xk)〉,

that is,

(1 − σ)〈f ′(xk), Qkf
′(xk)〉 − 1

2
〈f ′′(x̃k)Qkf

′(xk), Qkf
′(xk)〉 ≥ 0. (2.83)

Note that {x̃k} → x̄, because {xk} → x̄ and {Qkf ′(xk)} → 0 (the latter
relation is an immediate consequence of (2.82) and of {xk} → x̄). According
to (2.80) and (2.82), we then derive that
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〈f ′(xk), Qkf
′(xk)〉 = 〈f ′(xk), (f ′′(xk))−1f ′(xk)〉+ o(‖f ′(xk)‖2)

= 〈f ′(xk), (f ′′(x̄))−1f ′(xk)〉+ o(‖f ′(xk)‖2),

and

〈f ′′(x̃k)Qkf
′(xk), Qkf

′(xk)〉 = 〈f ′′(xk)Qkf
′(xk), Qkf

′(xk)〉
+o(‖f ′(xk)‖2)

= 〈f ′(xk), Qkf
′(xk)〉+ o(‖f ′(xk)‖2)

= 〈f ′(xk), (f ′′(xk))−1f ′(xk)〉+ o(‖f ′(xk)‖2)
= 〈f ′(xk), (f ′′(x̄))−1f ′(xk)〉+ o(‖f ′(xk)‖2),

where the nonsingularity of f ′′(x̄) was taken into account. Hence,

(1− σ)〈f ′(xk), Qkf
′(xk)〉 − 1

2
〈f ′′(xk)Qkf

′(xk), Qkf
′(xk)〉

=

(
1

2
− σ

)
〈(f ′′(x̄))−1f ′(xk), f ′(xk)〉+ o(‖f ′(xk)‖2).

The latter implies that (2.83) holds for all k large enough, as σ ∈ (0, 1/2)
and (f ′′(x̄))−1 is positive definite (by positive definiteness of f ′′(x̄)). ()

We note that for Algorithm 2.23 with the Armijo linesearch rule replaced
by the Goldstein rule (with 0 < σ1 < 1/2 < σ2 < 1) or the Wolfe rule
(with 0 < σ1 < 1/2, σ1 < σ2 < 1) with the initial trial value of the stepsize
parameter α = 1, results analogous to Theorem 2.26 can be established.

In Theorem 2.26, convergence of the iterates is assumed. To obtain
a complete result affirming global and locally superlinear convergence, it
remains to show that under the assumptions of Theorem 2.24 on global
convergence, if the iterates enter a neighborhood of a solution satisfying the
SOSC (2.79), then they converge to this solution. Then, if the sequence of
matrices {Qk} satisfies the Dennis–Moré condition, Theorem 2.26 guarantees
that the rate of convergence is superlinear.

Before stating the needed result, we prove the following local growth
property for the norm of the gradient of the objective function, complementing
the quadratic growth property in Theorem 1.9.

Lemma 2.28. Let f : Rn → R be differentiable near x̄ ∈ Rn and twice
differentiable at x̄. Let x̄ be a stationary point of problem (1.10) satisfying
the SOSC (1.14) or, equivalently, satisfying

f(x)− f(x̄) ≥ ρ‖x− x̄‖2 ∀x ∈ U (2.84)

for some neighborhood U of x̄ and some ρ > 0.
Then for any ν ∈ (0, 4), there exists a neighborhood V ⊂ U of x̄ such that

‖f ′(x)‖2 ≥ νρ(f(x) − f(x̄)) ∀x ∈ V. (2.85)
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Proof. Indeed, for x ∈ Rn we have that

f ′(x) = f ′(x)− f ′(x̄) = f ′′(x̄)(x− x̄) + o(‖x− x̄‖)

as x → x̄, so that

f(x)− f(x̄) =
1

2
〈f ′′(x̄)(x− x̄), x− x̄〉+ o(‖x− x̄‖2)

=
1

2
〈f ′(x), x− x̄〉+ o(‖x− x̄‖2),

i.e.,
〈f ′(x), x− x̄〉 = 2(f(x)− f(x̄)) + o(‖x− x̄‖2).

Using (2.84) from Theorem 1.9, we then obtain that for all x ∈ U close
enough to x̄ it holds that

〈f ′(x), x− x̄〉 −
√
ν(f(x)− f(x̄)) = (2 −

√
ν)(f(x) − f(x̄)) + o(‖x− x̄‖2)

≥ (2 −
√
ν)ρ‖x− x̄‖2 + o(‖x− x̄‖2)

≥ 0,

and therefore,

〈f ′(x), x− x̄〉 ≥
√
ν(f(x)− f(x̄)). (2.86)

Combining the latter inequality again with (2.84), we obtain that

‖f ′(x)‖‖x− x̄‖ ≥ 〈f ′(x), x− x̄〉 ≥
√
ν(f(x)− f(x̄)) ≥

√
νρ‖x− x̄‖2,

i.e.,

‖f ′(x)‖ ≥
√
νρ‖x− x̄‖.

Hence, using (2.86),

‖f ′(x)‖2 ≥
√
νρ‖x− x̄‖‖f ′(x)‖ ≥

√
νρ〈f ′(x), x− x̄〉 ≥ νρ(f(x)− f(x̄)),

which completes the proof. ()

Theorem 2.29. Suppose that the assumptions of Theorem 2.24 are satisfied.
Assume, in addition, that f : Rn → R is twice differentiable at x̄ ∈ Rn, which
is a stationary point of problem (2.58) satisfying the SOSC (2.79).

Then if on some iteration k Algorithm 2.23 generates an iterate xk close
enough to x̄, it holds that the whole sequence {xk} converges to x̄, and the
rate of convergence is (at least) geometric.

Moreover, if f is twice differentiable in a neighborhood of x̄, with its second
derivative being continuous at x̄, and if in Algorithm 2.23 we take C = 1,
σ ∈ (0, 1/2), and {Qk} satisfying the Dennis–Moré condition (2.80), then
the convergence rate is superlinear.
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Proof. By Theorem 1.9 and Lemma 2.28, there exists a neighborhood U of
x̄ such that the growth conditions

f(x)− f(x̄) ≥ ρ‖x− x̄‖2 ∀x ∈ U (2.87)

and

‖f ′(x)‖2 ≥ νρ(f(x) − f(x̄)) ∀x ∈ U (2.88)

hold with some ρ > 0 and ν ∈ (0, 4). Note also that, by (2.87), it holds that

‖f ′(x)‖ = ‖f ′(x)− f ′(x̄)‖ ≤ L‖x− x̄‖

≤ L

√
f(x)− f(x̄)

ρ
∀x ∈ U, (2.89)

where L > 0 is a Lipschitz constant of the gradient of f .
From Lemma 2.21, it follows that (2.77) holds, where c > 0 is the constant

in the right-hand side of (2.66). Suppose that xk ∈ U for some k. Then by
(2.77) and (2.88), we have that

f(xk+1)− f(x̄) ≤ f(xk)− f(x̄)− σcγ‖f ′(xk)‖2

≤ (1− σcγνρ)(f(xk)− f(x̄))

= q(f(xk)− f(x̄)), (2.90)

where q = 1− σcγνρ < 1.
We next show that if xk is close enough to x̄, then all the subsequent

iterates do not leave the neighborhood U of x̄. Fix r > 0 such that B(x̄, r) ⊂
U , and define δ > 0 satisfying

δ +
LC
√
(f(x)− f(x̄))/ρ

1−
√
|q|

≤ r ∀x ∈ B(x̄, δ), (2.91)

where C > 0 is the first trial stepsize value in the Armijo rule. Note that
αk ≤ C and δ ≤ r. Let xk ∈ B(x̄, δ). In this case, by (2.89) and (2.91),

‖xk+1 − x̄‖ ≤ ‖xk − x̄‖+ ‖xk+1 − xk‖
≤ δ + C‖f ′(xk)‖

≤ δ + LC

√
f(xk)− f(x̄)

ρ

≤ r,

i.e., xk+1 ∈ B(x̄, r). From this, using also (2.87), it follows that q ≥ 0 (as
otherwise, (2.90) would not hold).

Suppose that xj ∈ B(x̄, r) ∀ j = k, . . . , s, for some integer s ≥ k. Then,
by (2.90), we have that
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f(xj)− f(x̄) ≤ q(f(xj−1)− f(x̄))

...

≤ qj−k(f(xk)− f(x̄)) ∀ j = k, . . . , s.

Therefore, using also (2.89), we have that

‖xj+1 − xj‖ ≤ C‖f ′(xj)‖

≤ LC

√
f(xj)− f(x̄)

ρ

≤ (
√
q)j−kLC

√
f(xk)− f(x̄)

ρ
∀ j = k, . . . , s.

From the latter and (2.91), it follows that

‖xs+1 − x̄‖ ≤ ‖xs − x̄‖+ ‖xs+1 − xs‖
...

≤ ‖xk − x̄‖+
s∑

l=k

‖xj+1 − xj‖

≤ δ + LC

√
f(xk)− f(x̄)

ρ

s∑

l=k

(
√
q)j−k

≤ δ +
LC
√
(f(xk)− f(x̄))/ρ

1−√
q

≤ r,

i.e., xs+1 ∈ B(x̄, r).
We have thus established that xj ∈ U for all j = k, k + 1, . . .. In

particular, (2.90) holds for all k (large enough), which shows that {f(xk)}
converges to f(x̄) at a linear rate. Then (2.87) implies that {xk} converges
to x̄ geometrically.

Superlinear convergence rate under the Dennis–Moré condition (2.80) now
follows from Theorem 2.26. ()

As a direct consequence of Theorem 2.29, we obtain that the usual Newton
method with linesearch (for which the Dennis–Moré condition is automatic)
is superlinearly convergent whenever its sequence enters a neighborhood of a
minimizer satisfying SOSC.

The crucial conclusion from the Dennis–Moré Theorem is that in order
to construct a fast optimization method, it is indispensable to employ
the “second-order information” about the problem either explicitly, or to
construct objects describing second-order behavior using first-order infor-
mation. For the basic Newton method (see Sect. 2.1.2), condition (2.80) is
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automatic provided the sequence {xk} converges. However, beyond the case of
a strongly convex f , there are no reasons to expect f ′′(xk) (and hence,
Qk = (f ′′(xk))−1) to be positive definite for all k. It will indeed be pos-
itive definite for xk close to a solution satisfying the SOSC (2.79) but, in
general, not when xk is far from such a solution. Moreover, even if f ′′(xk)
is positive definite for all k but the Hessian of f is singular at some (other)
points, there is still no guarantee that the iterative sequence would not get
stuck near a point of degeneracy, which by no means has to be a station-
ary point of f . The question concerning the possibility of such behavior was
posed in [89] and answered in the affirmative in [196], where an example of
nonconvergence of the basic Newton method with the Wolfe linesearch rule
is constructed.

The observations above indicate that the basic Newtonian choice of Qk

may be inadequate from the point of view of global convergence, even when
exact Hessians are available. Perhaps even more importantly, it turns out that
the needed “second-order information” can be constructed without direct
computation of Hessians. The main idea of quasi-Newton methods is to
completely avoid computing f ′′(xk) and solving the corresponding linear
system, and instead to approximate the Newton step itself in the sense of
the Dennis–Moré condition (2.80). It is important that this approximation
does not subsume that ‖Qk − (f ′′(xk))−1‖ → 0 as k → ∞ and, in fact,
this relation indeed does not hold for quasi-Newton methods (in general).
The needed approximations must be computed according to some recursive
formulas, without using any information about the second derivative of f .
Fortunately, such construction can be accomplished, and in many ways.

For each k, define

sk = xk+1 − xk, rk = f ′(xk+1)− f ′(xk). (2.92)

Note that these two vectors are already known by the time when Qk+1 should
be computed, and the goal to achieve (2.81) (which is equivalent to (2.80))
can be modeled as the quasi-Newton equation

Qk+1r
k = sk. (2.93)

Taking into account that sk = −Qkf ′(xk) (by (2.75)), the motivation
behind (2.93) is the same as behind the quasi-Newton equation (2.33) for
systems of equations; see Sect. 2.1.1.

Therefore, having at hand a symmetric positive definite matrix Qk and
vectors rk and sk, it is suggested to choose a symmetric positive definite
matrix Qk+1 satisfying the quasi-Newton equation (2.93). However, such a
choice would be clearly not unique. As in the case of systems of equations,
it is natural to additionally require the difference between Qk and Qk+1 to
be “minimal” in some sense: from one iteration to another, the variation of
Qk should not be too large. Similarly to quasi-Newton methods for systems
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of equations, a natural approach is to define Qk+1 as a symmetric matrix
minimizing some matrix norm of Qk+1 −Qk or Q−1

k+1 −Q−1
k . Different norms

lead to different specific quasi-Newton methods.
Historically, the first quasi-Newton method is the Davidon–Fletcher–

Powell (DFP) method, in which Q0 is an arbitrary symmetric positive definite
matrix (e.g., Q0 = I), and for each k

Qk+1 = Qk +
sk(sk)T

〈rk, sk〉 −
(Qkrk)(Qkrk)T

〈Qkrk, rk〉
. (2.94)

Note that the matrices generated this way remain symmetric and satisfy the
quasi-Newton equation (2.93):

Qk+1r
k = Qkr

k + sk
〈rk, sk〉
〈rk, sk〉 −Qkr

k 〈Qkrk, rk〉
〈Qkrk, rk〉

= Qkr
k + sk −Qkr

k = sk.

Moreover, the corresponding Q−1
k+1 minimizes the weighted Frobenius norm

of the correction Q−1
k+1 −Q−1

k over all the symmetric matrices Qk+1 ∈ Rn×n

satisfying the quasi-Newton equation (2.93); see, e.g., [208, Sect. 11.1] for
details. Furthermore, the correctionQk+1−Qk is a matrix whose rank cannot
be greater than 2 (since ker(Qk+1 − Qk) contains all vectors orthogonal to
both rk and Qksk), so the correction is “small” in this sense as well.

Regarding positive definiteness of Qk+1, this depends not only on the
quasi-Newton formula used for computing this matrix but also on the choice
of the stepsize parameter in (2.75). Specifically, we have the following.

Proposition 2.30. Let Qk ∈ Rn×n be a symmetric positive definite matrix,
and let sk, rk ∈ Rn.

Then formula (2.94) is well defined and the matrix Qk+1 is positive definite
if and only if the following inequality holds:

〈rk, sk〉 > 0. (2.95)

Proof. The necessity follows immediately from the quasi-Newton equation
(2.93), according to which

〈rk, sk〉 = 〈Qk+1r
k, rk〉.

Note also that formula (2.94) is not well defined when rk = 0.
We proceed with sufficiency. From (2.95) it follows that rk .= 0, and hence,

positive definiteness of Qk implies the inequality 〈Qkrk, rk〉 > 0. Combining
the latter with (2.95), we obtain that the matrix Qk+1 is well defined.

Furthermore, for an arbitrary ξ ∈ Rn, by (2.94) we derive
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〈Qk+1ξ, ξ〉 = 〈Qkξ, ξ〉+
〈sk, ξ〉2

〈rk, sk〉 −
〈Qkrk, ξ〉2

〈Qkrk, rk〉

=
〈sk, ξ〉2

〈rk, sk〉 +
‖Q1/2

k ξ‖2‖Q1/2
k sk‖2 − 〈Q1/2

k ξ, Q1/2
k rk〉2

‖Q1/2
k rk‖2

,

where both terms in the right-hand side are nonnegative, according to (2.95)
and the Cauchy–Schwarz inequality. Moreover, the equality 〈Qk+1ξ, ξ〉 = 0
may hold only when both terms above are equal to zero, i.e., when

〈sk, ξ〉 = 0, (2.96)

and

‖Q1/2
k ξ‖‖Q1/2

k rk‖ = |〈Q1/2
k ξ, Q1/2

k rk〉|.

The second equality means that Q1/2
k ξ = tQ1/2

k rk with some t ∈ R, and

since Q1/2
k is nonsingular, this leads to the equality ξ = trk. Then, by (2.96),

t〈rk, sk〉 = 〈ξ, sk〉 = 0, and according to (2.95), the latter is possible only
when t = 0, i.e., when ξ = 0. ()

In particular, the inequality (2.95) is always valid if the stepsize parameter
in (2.75) is chosen according to the Wolfe rule, while the Armijo rule and the
Goldstein rule do not possess this property. This is one of the reasons why
the Wolfe rule is recommended for quasi-Newton methods.

Currently, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is re-
garded as the most efficient general purpose quasi-Newton method. For each
k, it defines

Qk+1 = Qk +
(rk −Qksk)(rk)T + rk(rk −Qksk)T

〈rk, sk〉

−〈rk −Qksk, sk〉rk(rk)T

〈rk, sk〉2 . (2.97)

It can be immediately verified that (as for the DFP method) the matrices
generated according to this formula remain symmetric and satisfy the quasi-
Newton equation (2.93), and the rank of corrections Qk+1 − Qk cannot be
greater than 2. Moreover, it can be shown that this Qk+1 minimizes the
weighted Frobenius norm of the correction Qk+1 − Qk over all symmetric
matrices Qk+1 ∈ Rn×n satisfying quasi-Newton equation (2.93); see [208,
Sect. 11.1]. For a recent survey of variational origins of the DFP and the
BFGS updates, see [111].

Remark 2.31. It can be easily checked that the DFP and BFGS methods can
be regarded as “dual” with respect to each other in the following sense. For
any symmetric positive definite matrix Qk ∈ Rn×n, set Hk = Q−1

k . Let Qk+1

be generated according to (2.97), let Hk+1 be generated according to the
formula
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Hk+1 = Hk +
sk(sk)T

〈rk, sk〉 −
(Hkrk)(Hkrk)T

〈Hkrk, rk〉
(cf. (2.94)), and suppose that the matrix Hk+1 is nonsingular. Then the
matrix Qk+1 is also nonsingular, and Hk+1 = Q−1

k+1. From this fact it
immediately follows that a counterpart of Proposition 2.30 is valid for the
BFGS method as well.

It can be shown that for a quadratic function f with a positive definite
Hessian, if αk is chosen according to the exact linesearch rule, then the DFP
and BFGS methods find the unique critical point of f (which is the global
solution of problem (2.58), by necessity) from any starting point after no more
than k ≤ n iterations. Moreover, Qk would coincide with the inverse of the
Hessian of f ; see, e.g., [18, 19] for details. Recall that for quadratic functions,
the exact linesearch rule reduces to an explicit formula. In the non-quadratic
case, convergence and rate of convergence results for the DFP and BFGS
methods can be found, e.g., in [29, 89, 208]. This analysis is highly nontrivial
and is concerned with overcoming serious technical difficulties. In particular,
the condition (2.65) is not automatic for the DFP and BFGS methods, and
in order to apply Theorems 2.24 or 2.25 one has to verify (2.65), which
normally requires some additional assumptions. Here, we present only some
general comments.

Known (full) global convergence results for the DFP and BFGS methods
are concerned with the case of convex f . The theory of quasi-Newton methods
for nonconvex problems is far from being complete, though rich numeri-
cal practice puts in evidence that these methods are highly efficient in the
nonconvex case as well (especially the BFGS).

Of course, in the non-quadratic case, one cannot expect finite termination
of quasi-Newton methods at a solution. However, the rate of convergence
usually remains very high. Proving superlinear convergence of a specific quasi-
Newton method reduces to the (usually highly nontrivial) verification of the
Dennis–Moré condition (2.80), and application of Theorem 2.26.

Quasi-Newton methods are very popular among the users of optimization
methods, because they combine high convergence rate with low computational
cost per iteration. It is difficult to overestimate the practical value of these
methods. For general principles of constructing and analyzing quasi-Newton
methods, see [19, 89, 208].

2.2.3 Other Linesearch Methods

Let us briefly mention some other ideas for developing linesearch Newton-type
methods, different from the quasi-Newton class. One possibility is to take
Qk as the inverse matrix of a positive definite modification of the Hessian
f ′′(xk), when the latter is not (sufficiently) positive definite. Specifically, in
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Miscellaneous Material

A.1 Linear Algebra and Linear Inequalities

The following statement can be regarded as a variant of the celebrated Farkas
Lemma (e.g., [27, Theorem 2.201]).

Lemma A.1. For any A ∈ Rl×n and B ∈ Rm×n, for the cone

C = {x ∈ Rn | Ax = 0, Bx ≤ 0}
it holds that

C◦ = {x ∈ Rn | x = ATy +BTz, y ∈ Rl, z ∈ Rm
+}.

Lemma A.1 can be derived as a corollary of the Motzkin Theorem of the
Alternatives [186, p. 28], stated next.

Lemma A.2. For any A ∈ Rl×n, B ∈ Rm×n, B0 ∈ Rm0×n, one and only
one of the following statements holds: either there exists x ∈ Rn such that

Ax = 0, Bx ≤ 0, B0x < 0,

or there exists (y, z, z0) ∈ Rl ×Rm ×Rm0 such that

ATy +BTz +BT
0 z

0 = 0, z ≥ 0, z0 ≥ 0, z0 %= 0.

The following simplified version of Lemma A.2, convenient in some
applications, is known as the Gordan Theorem of the Alternatives.

Lemma A.3. For any B ∈ Rm0×n, one and only one of the following two
alternatives is valid: either there exists x ∈ Rn such that

B0x < 0,

or there exists z0 ∈ Rm such that

BT
0 z

0 = 0, z0 ≥ 0, z0 %= 0.

A.F. Izmailov and M.V. Solodov, Newton-Type Methods for Optimization and
Variational Problems, Springer Series in Operations Research and Financial
Engineering, DOI 10.1007/978-3-319-04247-3,
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The following is Hoffman’s lemma giving a (global) error bound for linear
systems (e.g., [27, Theorem 2.200]).

Lemma A.4. For any A ∈ Rl×n, a ∈ Rl, and B ∈ Rm×n, b ∈ Rm, assume
that the set

S = {x ∈ Rn | Ax = a, Bx ≤ b}

is nonempty.
Then there exists c > 0 such that

dist(x, S) ≤ c(‖Ax− a‖+ ‖max{0, Bx − b}‖) ∀x ∈ Rn.

The following is the finite-dimensional version of the classical Banach Open
Mapping Theorem.

Lemma A.5. For any A ∈ Rl×n, if rankA = l, then there exists c > 0 such
that for any B ∈ Rl×n close enough to A, and any y ∈ Rl, the equation

Bx = y

has a solution x(y) such that

‖x(y)‖ ≤ c‖y‖.

This result is complemented by the more exact characterization of
invertibility of small perturbations of a nonsingular matrix; see, e.g.,
[103, Theorem 2.3.4].

Lemma A.6. Let A ∈ Rn×n be a nonsingular matrix.
Then any matrix B ∈ Rn×n satisfying the inequality ‖B −A‖ < 1/‖A−1‖

is nonsingular, and

‖B−1 −A−1‖ ≤ ‖A−1‖2‖B −A‖
1− ‖A−1‖‖B −A‖ .

Lemma A.7 below is well known; it is sometimes called the Finsler Lemma
[81], or the Debreu Lemma [54]. The similar in spirit Lemma A.8, on the
other hand, is not standard, so we have to give its proof (from [150]). As
the proofs of Lemmas A.7 and A.8 are somehow related, it makes sense to
provide both.

Lemma A.7. Let H ∈ Rn×n be any symmetric matrix and A ∈ Rl×n any
matrix such that

〈Hξ, ξ〉 > 0 ∀ ξ ∈ kerA \ {0}. (A.1)

Then the matrix H + cATA is positive definite for all c ≥ 0 large enough.
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Proof. We argue by contradiction. Suppose that there exist {ck} ⊂ R and
{ξk} ⊂ Rn such that ck → +∞ as k → ∞, and for all k it holds that ‖ξk‖ = 1
and

〈(H + ckA
TA)ξk, ξk〉 ≤ 0. (A.2)

Without loss of generality, we may assume that {ξk} → ξ, with some
ξ ∈ Rn \ {0}. Dividing (A.2) by ck and passing onto the limit as k → ∞, we
obtain that

0 ≥ 〈ATAξ, ξ〉 = ‖Aξ‖2,

i.e., ξ ∈ kerA.
On the other hand, since for each k it holds that

〈ATAξk, ξk〉 = ‖Aξk‖2 ≥ 0,

the inequality (A.2) implies that 〈Hξk, ξk〉 ≤ 0. Passing onto the limit as
k → ∞, we obtain that 〈Hξ, ξ〉 ≤ 0, in contradiction with (A.1). ./

Another result, as already commented somewhat similar in nature to the
Debreu–Finsler Lemma, is stated next.

Lemma A.8. Let H ∈ Rn×n and A ∈ Rl×n be such that

Hξ %∈ imAT ∀ ξ ∈ kerA \ {0}. (A.3)

Then for any C > 0, any H̃ ∈ Rn×n close enough to H, and any Ã ∈ Rl×n

close enough to A, the matrix H̃ + c(A+Ω)TÃ is nonsingular for all c ∈ R
such that |c| is large enough, and for all Ω ∈ Rl×n satisfying ‖Ω‖ ≤ C/|c|.

Proof. Suppose the contrary, i.e., that there exist sequences {Hk} ⊂ Rn×n,
{Ak} ⊂ Rl×n, {Ωk} ⊂ Rl×n, {ck} ⊂ R and {ξk} ⊂ Rn \ {0}, such that
{Hk} → H , {Ak} → A, |ck| → ∞ as k → ∞, and for all k it holds that
‖Ωk‖ ≤ C/|ck| and

Hkξ
k + ck(A+Ωk)

TAkξ
k = 0. (A.4)

We can assume, without loss of generality, that ‖ξk‖ = 1 for all k, and
{ξk} → ξ, with some ξ ∈ Rn \ {0}. Then since the right-hand side in

ATAkξ
k = − 1

ck
Hkξ

k −ΩT
k Akξ

k,

tends to zero as k → ∞, it must hold that ATAξ = 0.
It is thus established that Aξ ∈ kerAT, and since Aξ ∈ imA = (kerAT)⊥,

this shows that Aξ = 0. Thus, ξ ∈ kerA \ {0}.
On the other hand, (A.4) implies that the inclusion

Hkξ
k + ckΩ

T
k Akξ

k = −ckA
TAkξ

k ∈ imAT
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holds for all k, where the second term in the left-hand side tends to zero
as k → ∞ because {ckΩk} is bounded and {Akξk} → Aξ = 0. Hence,
Hξ ∈ imAT by the closedness of imAT. This gives a contradiction with
(A.3). ./

We complete this section by the following fact concerned with the existence
of the inverse of a block matrix; see [243, Proposition 3.9].

Lemma A.9. If A ∈ Rn×n is a nonsingular matrix, B ∈ Rn×m, C ∈ Rm×n,
D ∈ Rm×m, then for the matrix

M =

(
A B
C D

)

it holds that
detM = detAdet(D − CA−1B).

Under the assumptions of Lemma A.9, the matrix D−CA−1B is referred
to as the Schur complement of A in M .

A.2 Analysis

Our use of the big-O and little-o notation employs the following conventions.
For a mapping F : Rn → Rm and a function ϕ : Rn → R+, and for a given
x̄ ∈ Rn, we write F (x) = O(ϕ(x)) as x → x̄ if there exists c > 0 such that
‖F (x)‖ ≤ cϕ(x) for all x ∈ Rn close enough to x̄. We write F (x) = o(ϕ(x)) as
x → x̄ if for every ε > 0 no matter how small, it holds that ‖F (x)‖ ≤ εϕ(x)
for all x ∈ Rn close enough to x̄. For sequences {xk} ⊂ Rn and {tk} ⊂ R+, by
xk = O(tk) as k → ∞ we mean that there exists c > 0 such that ‖xk‖ ≤ ctk
for all k large enough. Accordingly, xk = o(tk) as k → ∞ if for every ε > 0
no matter how small, it holds that ‖xk‖ ≤ εtk for all k large enough. For a
sequence {τk} ⊂ R, we write τk ≤ o(tk) as k → ∞ if for any ε > 0 no matter
how small it holds that τk ≤ εtk for all k large enough.

Concerning convergence rate estimates, the terminology is as follows. Let
a sequence {xk} ⊂ Rn be convergent to some x̄ ∈ Rn. If there exist q ∈ (0, 1)
and c > 0 such that

‖xk − x̄‖ ≤ cqk

for all k large enough (or, in other words, ‖xk − x̄‖ = O(qk) as k → ∞), then
we say that {xk} has geometric convergence rate. If there exists q ∈ (0, 1)
such that

‖xk+1 − x̄‖ ≤ q‖xk − x̄‖ (A.5)

for all k large enough, then we say that {xk} has linear convergence rate.
Linear rate implies geometric rate, but the converse is not true. If for every
q ∈ (0, 1), no matter how small, the inequality (A.5) holds for all k large
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enough, then we say that {xk} has superlinear convergence rate. To put it in
other words, superlinear convergence means that

‖xk+1 − x̄‖ = o(‖xk − x̄‖)

as k → ∞. A particular case of the superlinear rate is quadratic convergence
rate, meaning that there exists c > 0 such that

‖xk+1 − x̄‖ ≤ c‖xk − x̄‖2

for all k large enough or, in other words,

‖xk+1 − x̄‖ = O(‖xk − x̄‖2)

as k → ∞. Unlike superlinear or quadratic rate, linear convergence rate
depends on the norm: linear convergence rate in some norm in Rn does not
necessarily imply linear convergence rate in a different norm.

We next state some facts and notions of differential calculus for mappings
(generally vector-valued and with vector variable). It is assumed that the
reader is familiar with differential calculus for scalar-valued functions in a
scalar variable.

The mapping F : Rn → Rm is said to be differentiable at x ∈ Rn if there
exists a matrix J ∈ Rm×n such that for ξ ∈ Rn is holds that

F (x+ ξ) = F (x) + Jξ + o(‖ξ‖)

as ξ → 0. The matrix J with this property is necessarily unique; it coin-
cides with the Jacobian F ′(x) (the matrix of first partial derivatives of the
components of F at x with respect to all the variables), and it is also called
the first derivative of F at x. The rows of the Jacobian are the gradients
F ′
1(x), . . . , F

′
m(x) (vectors of first partial derivatives with respect to all vari-

ables) of the components of F at x.
The mapping F : Rn → Rm is (continuously) differentiable on a set

S ⊂ Rn if it is differentiable at every point of some open set O ⊂ Rn such
that S ⊂ O (and the mapping F ′(·) defined on O is continuous at every point
of S).

The mapping F : Rn → Rm is said to be twice differentiable at x ∈ Rn if
it is differentiable in a neighborhood of x, and the mapping F ′(·) defined on
this neighborhood is differentiable at x. The derivative (F ′)′(x) of F ′(·) at x
can be regarded as a linear operator from Rn to Rm×n, or alternatively, as
a bilinear mapping F ′′(x) : Rn ×Rn → Rm defined by

F ′′(x)[ξ1, ξ2] = ((F ′)′(x)ξ1)ξ2, ξ1, ξ2 ∈ Rn.

This bilinear mapping is necessarily symmetric, that is,

F ′′(x)[ξ1, ξ2] = F ′′(x)[ξ2, ξ1] ∀ ξ1, ξ2 ∈ Rn.
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The mapping in question is called the second derivative of F at x, and it is
comprised by the Hessians F ′′

1 (x), . . . , F
′′
m(x) (the matrices of second partial

derivatives) of the components of F at x:

F ′′(x)[ξ1, ξ2] = (〈F ′′
1 (x)ξ

1, ξ2〉, . . . , 〈F ′′
m(x)ξ1, ξ2〉) ∀ ξ1, ξ2 ∈ Rn.

Note that the symmetry of the bilinear mapping F ′′(x) is equivalent to the
symmetry of the Hessians of the components of F .

If F is twice differentiable at x̄, then for ξ ∈ Rn it holds that

F (x+ ξ) = F (x) + F ′(x)ξ +
1

2
F ′(x)[ξ, ξ] + o(‖ξ‖2)

as ξ → 0. This fact can be regarded as a particular case of the Taylor formula.
The mapping F is twice (continuously) differentiable on a set S ⊂ Rn if

it is twice differentiable at every point of some open set O ⊂ Rn such that
S ⊂ O (and the mapping F ′′(·) defined on the set O is continuous at every
point of S).

Furthermore, the mapping F : Rn ×Rl → Rm is said to be differentiable
at (x, y) ∈ Rn ×Rl with respect to x if the mapping F (·, y) is differentiable
at x. The derivative of the latter mapping at x is called the partial derivative
of F with respect to x at (x, y), and it is denoted by ∂F

∂x (x, y).
Similarly, the mapping F : Rn × Rl → Rm is said to be twice differen-

tiable at (x, y) ∈ Rn × Rl with respect to x if the mapping F (·, y) is twice
differentiable at x. The second derivative of the latter mapping at x is called
the second partial derivative of F with respect to x at (x, y), and it is denoted

by ∂2F
∂x2 (x, y).
In this book, any of the itemized assertions in the next statement is referred

to as a mean-value theorem. The first part of item (a) is a rather subtle and
not widely known result; it was established in [198]. The other statements
are fairly standard.

Theorem A.10. For any F : Rn → Rm and any x1, x2 ∈ Rn, the following
assertions are valid:

(a) If F is continuous on [x1, x2] = {tx1 + (1 − t)x2 | t ∈ [0, 1]} and dif-
ferentiable on (x1, x2) = {tx1 + (1 − t)x2 | t ∈ (0, 1)}, then there exist
ti ∈ (0, 1) and θi ≥ 0, i = 1, . . . , m, such that

∑m
i=1 θi = 1 and

F (x1)− F (x2) =
m∑

i=1

θiF
′(tix

1 + (1 − ti)x
2)(x1 − x2),

and in particular,

‖F (x1)− F (x2)‖ ≤ sup
t∈(0, 1)

‖F ′(tx1 + (1− t)x2)‖‖x1 − x2‖.
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(b) If F is continuously differentiable on the line segment [x1, x2], then

F (x1)− F (x2) =

∫ 1

0
F ′(tx1 + (1− t)x2)(x1 − x2) dt.

The next fact is an immediate corollary of assertion (b) of Theorem A.10.

Lemma A.11. For any F : Rn → Rm and any x1, x2 ∈ Rn, if F is
differentiable on the line segment [x1, x2], with its derivative being Lipschitz-
continuous on this segment with a constant L > 0, then

‖F (x1)− F (x2)− F ′(x2)(x1 − x2)‖ ≤ L

2
‖x1 − x2‖2.

A.3 Convexity and Monotonicity

For a detailed exposition of finite-dimensional convex analysis, we refer to
[235]. In this section we only recall some basic definitions and facts used in
this book. For details on (maximal) monotone mappings and related issues,
we refer to [17, 30] and [239, Chap. 12].

For a finite number of points x1, . . . , xm ∈ Rn, their convex combinations
are points of the form

∑m
i=1 tix

i with some ti ≥ 0, i = 1, . . . , m, such that∑m
i=1 ti = 1. In particular, convex combinations of two points x1, x2 ∈ Rn

are points of the form tx1+(1− t)x2, t ∈ [0, 1], and they form a line segment
connecting x1 and x2.

A set S ⊂ Rn is said to be convex if for each pair of points x1, x2 ∈ S all
convex combinations of these points belong to S (equivalently, for any points
x1, . . . , xm ∈ S, where m ≥ 2, all convex combinations of these points belong
to S).

The convex hull of a set S ⊂ Rn, denoted by convS, is the smallest convex
set in Rn that contains S (equivalently, the set of all convex combinations of
points in S).

By a (Euclidean) projection of a point x ∈ Rn onto a given set S ⊂ Rn we
mean a point closest to x among all the points in S, i.e., any global solution
of the optimization problem

minimize ‖y − x‖
subject to y ∈ S.

(A.6)

As the objective function in (A.6) is coercive, projection of any point onto
any nonempty closed set in Rn exists. If, in addition, the set is convex, then
the following holds.
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Lemma A.12. Let S ⊂ Rn be any nonempty closed convex set.
Then the projection operator onto S, πS : Rn → S, is well defined and

single valued: for any point x ∈ Rn its projection πS(x) onto S exists and is
unique. Moreover, x̄ = πS(x) if and only if

x̄ ∈ S, 〈x− x̄, y − x̄〉 ≤ 0 ∀ y ∈ S.

In addition, the projection operator is nonexpansive:

‖πS(x1)− πS(x
2)‖ ≤ ‖x1 − x2‖ ∀x1, x2 ∈ Rn.

A set C ⊂ Rn is called a cone if for each x ∈ C it contains all points of
the form tx, t ≥ 0. The polar cone to C is defined by

C◦ = {ξ ∈ Rn | 〈ξ, x〉 ≤ 0 ∀x ∈ C}.

Lemma A.13. For any nonempty closed convex cone C ⊂ Rn it holds that

x = πC(x) + πC◦(x) ∀x ∈ Rn,

and in particular,
C◦ = {x ∈ Rn | πC(x) = 0},

πC(x− πC(x)) = 0 ∀x ∈ Rn.

An important property concerns separation of (convex) sets by hyper-
planes. The following separation theorem can be found in [235, Corol-
lary 11.4.2].

Theorem A.14. Let S1, S2 ⊂ Rn be nonempty closed convex sets, with at
least one of them being also bounded (hence, compact).

Then S1 ∩ S2 = ∅ if and only if there exist ξ ∈ Rn \ {0} and t ∈ R such
that

〈ξ, x1〉 < t < 〈ξ, x2〉 ∀x1 ∈ S1, x
2 ∈ S2.

Given a convex set S ⊂ Rn, a function f : S → R is said to be convex (on
the set S) if

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1− t)f(x2) ∀x1, x2 ∈ S, ∀ t ∈ [0, 1].

Equivalently, f is convex if its epigraph {(x, t) ∈ S × R | f(x) ≤ t} is a
convex set. It is immediate that a linear combination of convex functions
with nonnegative coefficients is a convex function, and the maximum over a
finite family of convex functions is a convex function.

Furthermore, f is said to be strongly convex (on S) if there exists γ > 0
such that

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)− γt(1− t)‖x1 − x2‖2
∀x1, x2 ∈ S, ∀ t ∈ [0, 1].
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The sum of a convex function and a strongly convex function is evidently
strongly convex. The following are characterizations of convexity for smooth
functions.

Proposition A.15. Let O ⊂ Rn be a nonempty open convex set, and let
f : O → R be differentiable in O.

Then the following items are equivalent:

(a) The function f is convex on O.
(b) f(x1) ≥ f(x2) + 〈f ′(x2), x1 − x2〉 for all x1, x2 ∈ O.
(c) 〈f ′(x1)− f ′(x2), x1 − x2〉 ≥ 0 for all x1, x2 ∈ O.

If f is twice differentiable in O, then the properties above are further equiv-
alent to

(d) The Hessian f ′′(x) is positive semidefinite for all x ∈ O.

It is clear that a quadratic function is convex if and only if its (constant)
Hessian is a positive semidefinite matrix (see item (d) in Proposition A.15).
Moreover, a quadratic function is strongly convex if and only if its Hessian
is positive definite.

Given a convex function f : Rn → R, an element a ∈ Rn is called a
subgradient of f at a point x ∈ Rn if

f(y) ≥ f(x) + 〈a, y − x〉 ∀ y ∈ Rn.

The set of all the elements a ∈ Rn with this property is called the
subdifferential of f at x, denoted by ∂f(x).

Proposition A.16. Let f : Rn → R be convex on Rn.
Then for each x ∈ Rn the subdifferential ∂f(x) is a nonempty compact

convex set. Moreover, f is continuous and directionally differentiable at every
x ∈ Rn in every direction ξ ∈ Rn, and it holds that

f ′(x; ξ) = max
y∈∂f(x)

〈y, ξ〉.

For some further calculus rules for subdifferentials see Sect. 1.4.1, where
they are presented in a more general (not necessarily convex) setting. Sec-
tion 1.4.1 provides all the necessary material for the convex calculus in this
book.

We complete this section by some definitions and facts concerned with
the notion of monotonicity for (multi)functions. For a (generally) set-valued
mapping Ψ from Rn to the subsets of Rn, define its domain

domΨ = {x ∈ Rn | Ψ(x) %= ∅}.

Then Ψ is said to be monotone if

〈y1 − y2, x1 − x2〉 ≥ 0 ∀ y1 ∈ Ψ(x1), ∀ y2 ∈ Ψ(x2), ∀x1, x2 ∈ domΨ,
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and maximal monotone if, in addition, its graph {(x, y) ∈ Rn × Rn | y ∈
Ψ(x)} is not contained in the graph of any other monotone set-valued map-
ping.

Some examples of maximal monotone mappings are: a continuous mono-
tone function F : R → R, the subdifferential multifunction ∂f(·) of a convex
function f : Rn → R, and the normal cone multifunction NS(·) for a closed
convex set S ⊂ Rn.

The sum of two monotone mappings is monotone, and the sum of two
maximal monotone mappings is maximal monotone if the domain of one
intersects the interior of the domain of the other.

Furthermore, Ψ is said to be strongly monotone if there exists γ > 0 such
that Ψ − γI is monotone, which is equivalent to the property

〈y1−y2, x1−x2〉≥γ‖x1−x2‖2 ∀ y1 ∈ Ψ(x1), ∀ y2 ∈ Ψ(x2), ∀x1, x2 ∈ domΨ.

In particular, the identity mapping I is strongly monotone, and the sum of a
monotone mapping and a strongly monotone mapping is strongly monotone.

The following characterization of monotonicity for smooth mappings can
be found, e.g., in [239, Proposition 12.3].

Proposition A.17. Let F : Rn → Rn be differentiable on Rn.
Then F is monotone if and only if F ′(x) is positive semidefinite for all

x ∈ Rn.

We refer to [17, 30] and [239, Chap. 12] for other details on (maximal)
monotone mappings and related issues.


