
TÓPICOS

Proteção digital das linhas de transmissão. Base matemática para a proteção digital.

- Introdução
- A detecção da falta.
- Uso de técnicas dos mínimos quadrados, Fourier, Walsh e Kalman.
- A classificação da falta.
- Sistema completo de proteção de distância para linhas de transmissão.
- A proteção baseada em ondas viajantes.
- A proteção diferencial de linhas com três terminais.

- Atrai maior interesse de pesquisa por possuir a maior possibilidade de melhora de desempenho.
- Muitos algoritmos se baseiam no cálculo da impedância (valendo-se dos processos de filtragem como a TDF ou mínimos quadrados).
- Um outro tipo de algoritmo é baseado no modelo R-L da linha.
- Proteção baseada em Ondas Viajantes- Proteção de Distância
- Abordagem alternativa : Proteção Diferencial de Linhas com Três Terminais

Janela de dados móvel

Janela de dados — 3 amostras (quando a nova amostra surge, a última é abandonada - movimento).

J2 e J3 – contém dados de pré e pós-falta Os dados tem pouco significado para os algoritmos de ajuste. Δt – tempo entre amostras

 $\downarrow \Delta t \Rightarrow \downarrow$ tempo que o microcomputador tem para completar os cálculos: processadores mais potentes ou algoritmos mais simples.

↓∆t ⇒ ↑precisão

Comprimento da janela de dados

1 janela de dados ⇒ 1 tempo para a janela passar o ponto de falta

⇒ 1 tempo de decisão

Por outro lado:

↑ janela de dados ⇒ ↑ habilidade do algoritmo em rejeitar componentes de alta freqüência.

Há, portanto, um compromisso ou relação inversa entre velocidade e precisão.

Fontes de erro

As ondas faltosas de corrente e tensão não são senoides de frequência fundamental, ou seja, elas são compostas por:

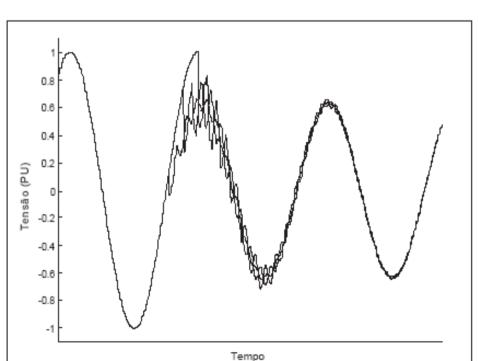
Termo exponencial (componente CC,) que decai exponencialmente com a constante de tempo da linha.

+

Sinais de alta frequência associados com a reflexão das formas de onda.

+

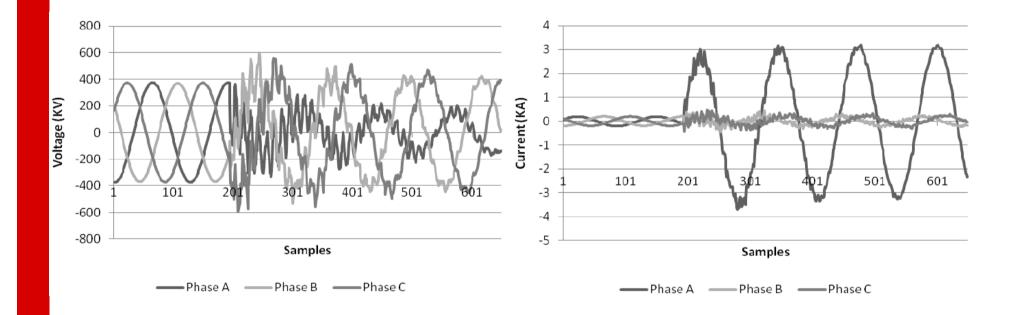
Erros nos TPs e TCs.


+

Erros na conversão A/D (quantização e amostras não espaçadas exatamente em Δt).

+

Filtros anti-aliasing que reduzem a componente de alta freqüência e introduzem defasagem de tempo.


Finalmente a própria linha de transmissão e as condições de falta são responsáveis pelo processo aleatório do ruído presente nas ondas:

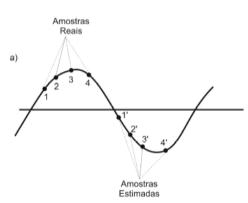
Pode portanto, ser criada uma família de curvas (forma de onda) alterando-se:

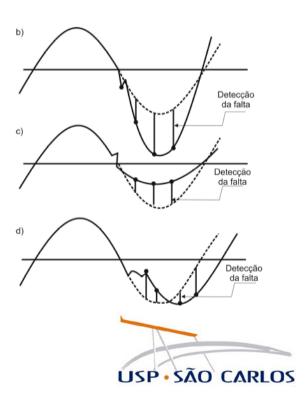
- ângulo de incidência da falta;
- estrutura da rede, tais como capacidade das fontes;
- tipo de falta;
- localização da falta ao longo da linha e
- resistência de falta.
- * Todos estes parâmetros devem ser levados em conta no processo de escolha do filtro digital a ser usado.

Ondas típicas de corrente e tensão para uma falta <u>fase-a-terra</u> com dados de dados pré e pós-falta.

Algoritmo completo de proteção de distância

Rotinas de um algoritmo completo de proteção de linhas- Passos Fundamentais.

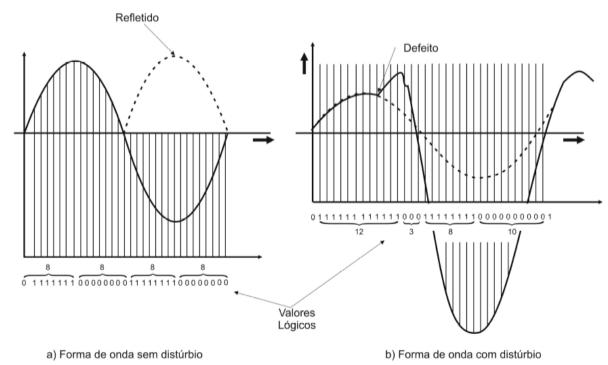



3.2 A detecção da falta

- Primeira Etapa: detecção do defeito, seguida da confirmação do mesmo, verificação da zona de proteção, etc.
- O defeito pode ser detectado de várias formas e é geralmente associado a mudanças no sinal da tensão e ou corrente.

1º Método:

- 1. Amostra-se a corrente nos instantes 1, 2, 3, 4 em (a).
- 2. Faz-se a estimação (predição: algoritmo) de 1', 2', 3', 4'.
- 3. Compara-se os valores estimados com os reais: havendo mudança substancial, **detecta-se** a falta.

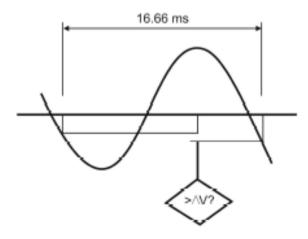

3.2 A detecção da falta

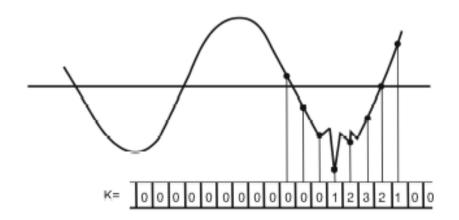
2º Método:

Os sinais de tensão e corrente são retificados: 1 – para variação positiva

0 – para variação negativa

- ⇒ Condição normal: senóides os períodos das variações positivas e das negativas são iguais.
- ⇒ Condição de defeito: a variação positiva é diferente da negativa e isto é refletido.


3.2 A detecção da falta


3º Método:

As mudanças podem também ser detectadas pela comparação das formas de onda da V e I com o ciclo anterior correspondente.

 ${f k}$ – inicialmente é zero e é incrementado a cada variação significativa da tensão.

Detecta-se o defeito quando k atingir um certo valor.

3. Proteção digital de linhas

3.2.1 Exercício

Considerando-se formas de onda de tensão e corrente amostradas a 1.2 kHz e uma janela de dados de um ciclo apresentar um fluxograma funcional para cada uma das técnicas de detecção de faltas apresentadas anteriormente.

3.3 Técnica baseada nos mínimos quadrados

Admite-se uma forma de onda com os componentes descritos anteriormente:

$$k_1 e^{-\lambda t} + \sum_{m=1}^{N} [k_{2m} sen(m\omega t) + k_{2m+1} cos(m\omega t)](*)$$

$$E = \int_{0}^{T} \{I - k_{1}e^{-\lambda t} + \sum_{m=1}^{N} [k_{2m}sen(m\omega t) + K_{2m+1}cos(m\omega t)]\}^{2}$$

Onde:

I =forma de onda a ser considerada

T = período amostral

Onde:

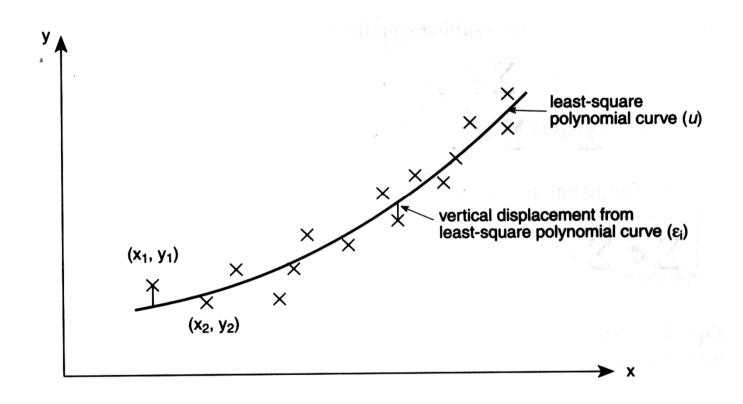
 $k_1, k_2, ..., k_{n+1}$ são os parâmetros incógnitos

N =número de componentes de

harmônicos

 λ = constante de decaimento

 $\omega = \mathsf{freq}\ddot{\mathsf{u}}$ ência angular



3.3 Técnica baseada nos mínimos quadrados

- As soluções do procedimento de minimização são os parâmetros incógnitos k: Os parâmetros k do componente de freqüência fundamental são utilizados para calcular a impedância aparente vista na locação do relé.
- O modelo básico (*) pode ser simplificado eliminando-se os harmônicos e considerando componentes CC constante.
- A precisão depende do período de amostragem e do número de amostras por ciclo = janela e taxa amostral.

3.3 Técnica baseada nos mínimos quadrados

Esta técnica se fundamenta na teoria de transformadas ortogonais: um par ortogonal de funções bases são correlacionadas com os dados amostrais para extrair os componentes da função base da forma de onda de entrada.

TDF ⇒ par ortogonal (funções seno e co-seno)

• Para expressões dadas na forma retangular, para um ciclo de dados a amostra k:

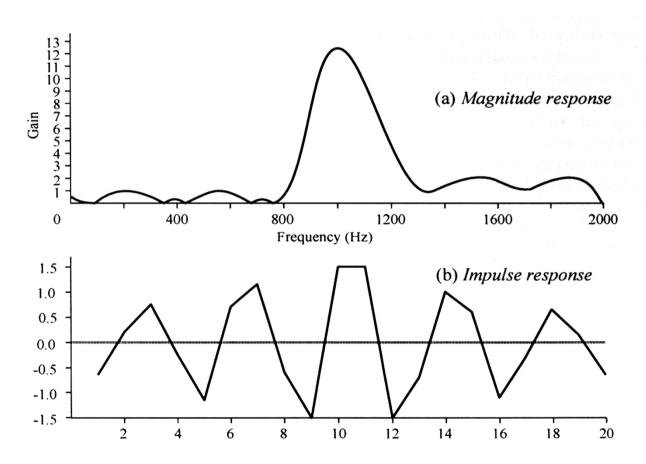
$$\begin{split} V_c &= 2/N\{\sum_{T=1}^N V_T \cos[(2\pi/N)T]\} \\ V_i &= \text{amostra de tensão} \\ V_s &= 2/N\{\sum_{T=1}^N V_T sen[(2\pi/N)T]\} \end{split}$$

$$N = \text{número de amostras por ciclo}$$

Assim, as expressões podem ser convertidas a forma polar, sendo a expressão para a tensão:

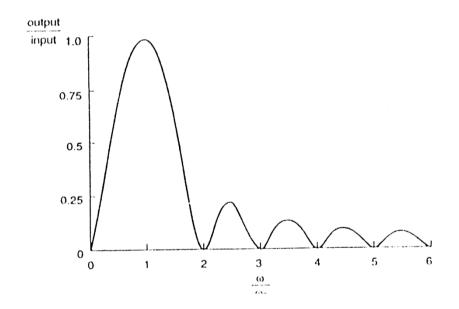
$$V = (V_s^2 + V_c^2)^{\frac{1}{2}}$$

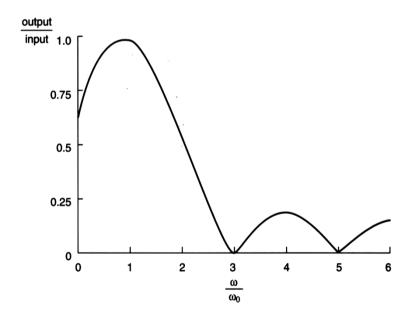
$$|Z| = \{(V_s^2 + V_c^2) / (I_s^2 + I_c^2) \}^{\frac{1}{2}}$$


$$\Theta_z = \tan^{-1}(V_s/V_c)$$

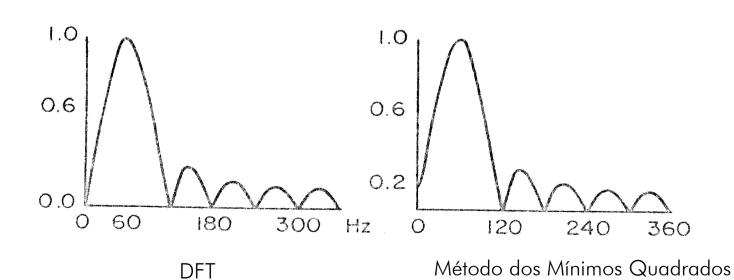
$$\Theta_z = \tan^{-1}(V/I)$$

- Está implícito na análise de Fourier a <u>filtragem dos dados</u>:
 melhor precisão porque se utiliza dos componentes fundamentais (ciclo completo).
- Com o intuito de melhorar o tempo de resposta do algoritmo, foram desenvolvidos dois outros métodos baseados na TDF:
 - ✓ TDF de meio ciclo: alguns erros foram introduzidos devido a componente
 CC e altas freqüências.
 - ✓ FFT (Fast Fourier Transform): versão otimizada da TDF no que diz respeito a eficiência computacional.




Domínio do tempo e da freqüência.

Resposta em freqüência de uma TDF de um ciclo completo e de meio ciclo.



No. de Amostras	No. de operações pata a TDF	No. de operações pata a FFT
16	256	64
32	1024	160
64	4096	384
128	16 384	896
256	65 536	2048
512	262 144	4608

Resposta em freqüência de um algoritmo de um ciclo completo e 12 amostras por ciclo.

3.3 Técnica baseada na função Walsh

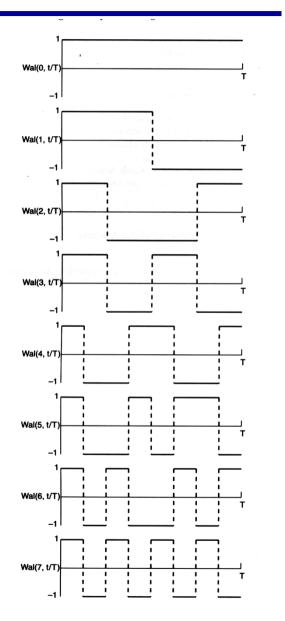
Intimamente relacionada com a Transformada de Fourier de um ciclo completo. Porém, as funções ortogonais são ondas quadradas (par e impar).

O cálculo é simplificado: ondas quadradas $\Rightarrow \pm 1$ somente:

$$Y_n = 1/2 \left[\sum_{k=1}^{2n} Y_k \ W_n \ (k\Theta) \right]$$

3.3 Técnica baseada na função Walsh

Ex: 4 primeiras funções Walsh.


$$Y_{1} = \frac{1}{4}(Y_{1} + Y_{2} + Y_{3} + Y_{4})$$

$$Y_{2} = \frac{1}{4}(-Y_{1} + Y_{2} - Y_{3} + Y_{4})$$

$$Y_{3} = \frac{1}{4}(Y_{1} - Y_{2} - Y_{3} + Y_{4})$$

$$Y_{4} = \frac{1}{4}(Y_{1} - Y_{2} + Y_{3} - Y_{4})$$

- Um grande número de termos devem ser incluídos para se obter uma boa estimativa.
- A simplicidade deve ser contrabalançada por grande número de termos: problema para proteção digital (tempo excessivo).

USP · SÃO CARLOS

3.3 Técnica baseada no filtro de Kalman

- ullet O filtro de *Kalman* é um **estimador ótimo recursivo** dos componentes de freqüência fundamental de $oldsymbol{V}$ e $oldsymbol{I}$.
- É necessário um conhecimento estatístico das condições iniciais e o modelo do processo.
- É necessário uma precisão do sinal de ruído:
 - ✓ Função de auto-correlação e variância do sinal de ruído baseada na freqüência e ocorrência de diferentes tipos de faltas.
 - ✓A probabilidade de distribuição da localização da falta.
- Muito bem aplicado em processamento digital on-line. Os dados de entrada ruidosos (medidos) são processados recursivamente: quando cada amostra se torna disponível em tempo real, ela é utilizada para atualizar a estimativa prévia. Isto é repetido até o estado-estável, onde nenhuma melhoria é alcançada.
- O resultado possui rápida convergência para 60 Hz e baixo esforço computacional.
- O filtro de Kalman é inicializado com uma estimativa do sinal e sua covariância com uma do erro.

3.3 Técnica baseada no filtro de Kalman

• O sinal de tensão é modelado segundo as equações:

$$H_k = [\cos(k\Theta) \quad \sin(k\Theta)]$$

• O sinal da corrente é modelado segundo as equações:

$$H_k = [\cos(k\Theta) \quad \sin(k\Theta) \quad 1]$$

É utilizado um modelo de dois estados para tensão e tres estados para a corrente. O modelo de três estados leva em consideração o componente CC.

3.3 Técnica baseada no filtro de Kalman

$$X_{k} = \begin{bmatrix} Y_{c} \\ Y_{s} \end{bmatrix}$$

$$\Theta_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$X_{k} = \begin{bmatrix} Y_{c} \\ Y_{s} \\ Y_{0} \end{bmatrix}$$

$$\Theta_k = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & e^{-\beta \Delta t} \end{bmatrix}$$

Onde:

 X_k = vetor de estado do processo (nx1) no tempo t_K .

 Θ_k = matriz de transição de estado (n x N)

 H_k = matriz que relaciona as medidas e os estados.

■ Em ambos os casos a covariância do sinal de ruído é:

$$Rk = Ke^{-K\Delta t/T}$$

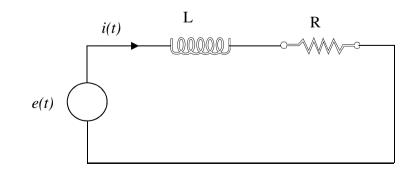
Proteção digital de linhas

3.3.1 Exercício

Considere uma onda de tensão senoidal representada por v(t) = 10 sen(ωt + 60°) [V], sendo submetida a um processo de digitalização. Se as amostras são obtidas através de um conversor A/D de 4 bits e uma taxa amostral de 360 Hz, qual é o erro introduzido pelo processo de digitalização (quantização, etc) e refletido na amplitude e ângulo de fase desta onda, se a mesma for reconstituída pela <u>Transformada Discreta de Fourier</u> para posterior utilização na rotina de proteção?

- A técnica assume a representação do modelo da linha de transmissão com seus **parâmetros concentrados**.
- Considera o componente CC como parte válida da solução.
- Baseada na solução da equação diferencial, modelando o sistema e não o sinal.

$$V(t) = Ri(t) + L\frac{di(t)}{dt}$$


É então proposta a integração da equação em dois intervalos de tempo distintos para obtenção de R e L.

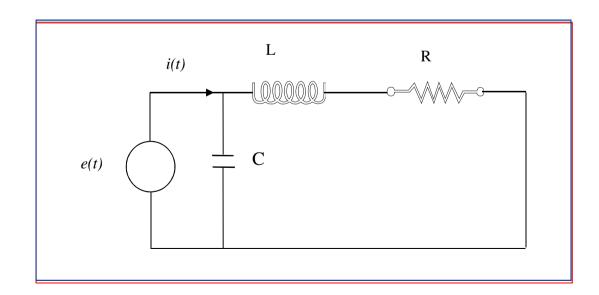
$$\int_{t_0}^{t_1} V(t)dt = R \int_{t_0}^{t_1} i(t)dt + L\{i(t_1) - i(t_0)\}$$

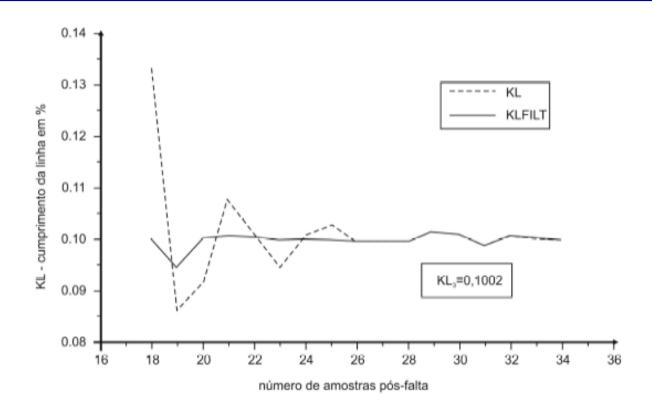
$$\int_{t_1}^{t_2} V(t)dt = R \int_{t_1}^{t_2} i(t)dt + L\{i(t_2) - i(t_1)\}$$

$$\mathbf{R} = \frac{\left(i_{l_n} - i_{l_{n-1}}\right)\left(v_{n-1} + v_{n-2}\right) - \left(i_{l_{n-1}} - i_{l_{n-2}}\right)\left(v_n + v_{n-1}\right)}{\left(i_{r_{n-1}} + i_{r_{n-2}}\right)\left(i_{l_n} - i_{l_{n-1}}\right) - \left(i_{r_n} + i_{r_{n-1}}\right)\left(i_{l_{n-1}} - i_{l_{n-2}}\right)}$$

$$\mathbf{L} = \frac{h}{2} \frac{-(i_{r_n} - i_{r_{n-1}})(v_{n-1} + v_{n-2}) + (i_{r_{n-1}} + i_{r_{n-2}})(v_n + v_{n-1})}{(i_{r_{n-1}} + i_{r_{n-2}})(i_{l_n} - i_{l_{n-1}}) - (i_{r_n} + i_{r_{n-1}})(i_{l_{n-1}} - i_{l_{n-2}})}$$

Considerando-se 3 amostras de corrente e tensão suficientes para computar as estimativas, temos (k, k+1 e k+2). A solução é obtida através da regra trapezoidal.


- Através dos valores de R e L calcula-se $Z = R + i\alpha L$ e tem-se o procedimento idêntico aos outros.
- No entanto, deve ser dito que o modelo anterior não considera capacitância em paralelo (ou série) associada as linhas de transmissão.


Assim, um novo modelo proposto acomodará tanto o componente CC como componentes de alta freqüência. A equação básica será:

Assim, um novo modelo proposto acomodará tanto o componente CC como componentes de alta freqüência. A equação básica será:

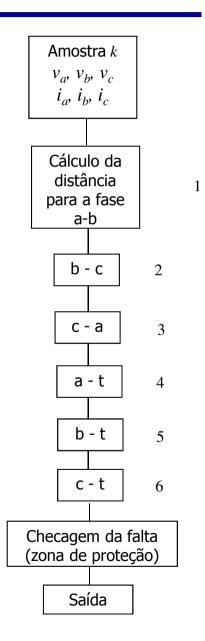
$$V(t) = R(i) + L\frac{di(t)}{dt} - LC\frac{d^{2}V(t)}{dt^{2}}$$

- No entanto, o esforço computacional é aumentado consideravelmente.
- Outros modelos de linhas foram propostos, incluindo filtros para compensar o efeito capacitivo das linhas.

(a) Estimativa de KL para uma falta a-terra a 0.1 de P.

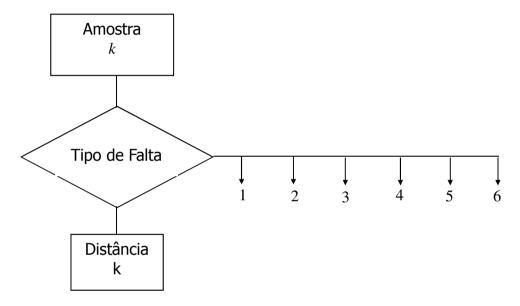
Processo de estimação implementado para uma falta fase a-terra a 10% do comprimento da linha acrescido de um filtro de mediana.

3.4 A classificação da falta

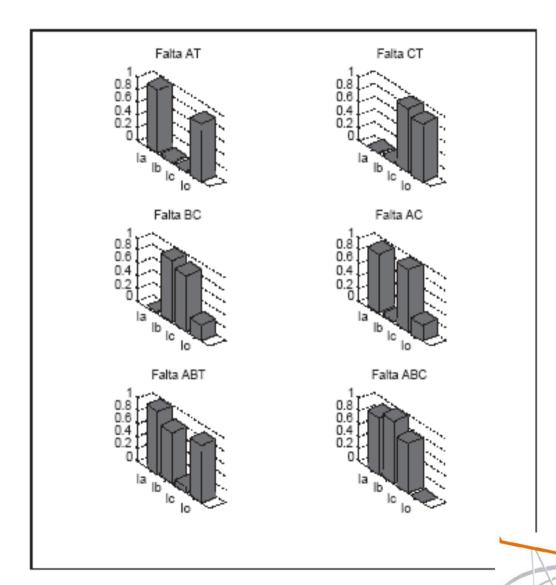

- Uma vez que o tipo de falta não é a priori conhecido, pode-se calcular a distância supondo 6 diferentes tipos de falta.
- Somente alguns dos cálculos apresentará resposta dentro da zona de proteção do relé, ou outros estarão fora, dependendo do caso:

$$a - b = bloco 1$$

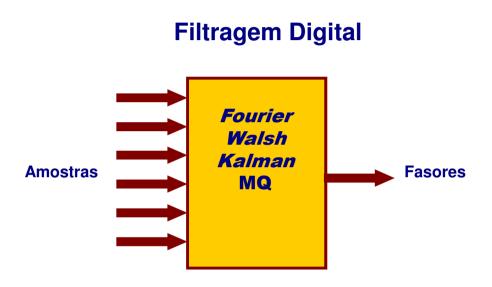
$$a - b - terra = blocos 1, 4, 5$$


$$a - b - c = todos os 6 blocos$$

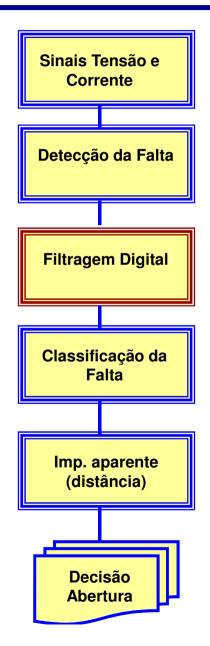
* Haverá uma considerável diminuição do tempo computacional se houver determinação inicial do tipo de falta.


3.4 A classificação da falta

• Assim, considerando uma sub-rotina para classificação de falta:


- ullet Os métodos de classificação de faltas normalmente são implementados através da comparação entre os componentes superpostos dos fasores de $llooldown_a$, $llooldown_b$, $llooldown_c$ e $llooldown_a$. Esses valores são comparados a valores limites e a classificação da corrente pode ser obtida.
- Se a classificação for incerta, a situação deve ser reconhecida pelo processador e as seis quantidades anteriores devem ser calculadas.

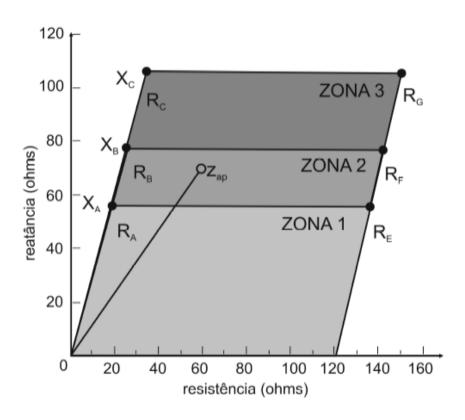
3.4 A classificação da falta



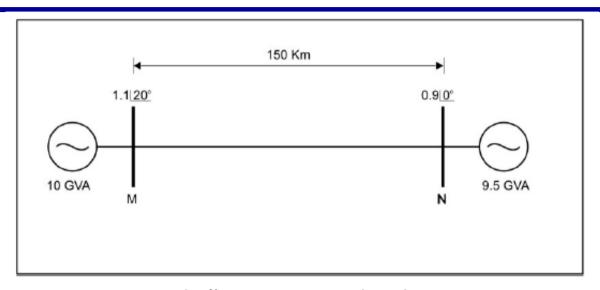
Processo de classificação de diferentes tipos de faltas em uma linha de transmissão.

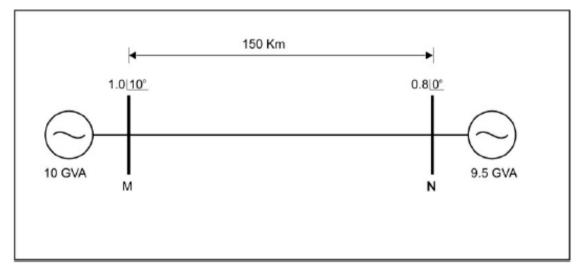
3.5 Algoritmo completo de proteção em Sistemas de Energia Elétrica de distância

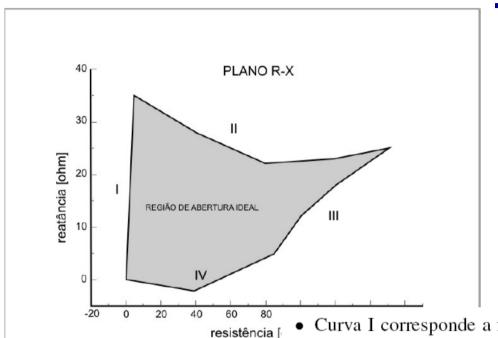
Os dados **ruidosos** são processados para determinar as quantidades (**fasores**) requeridas pelo relé.

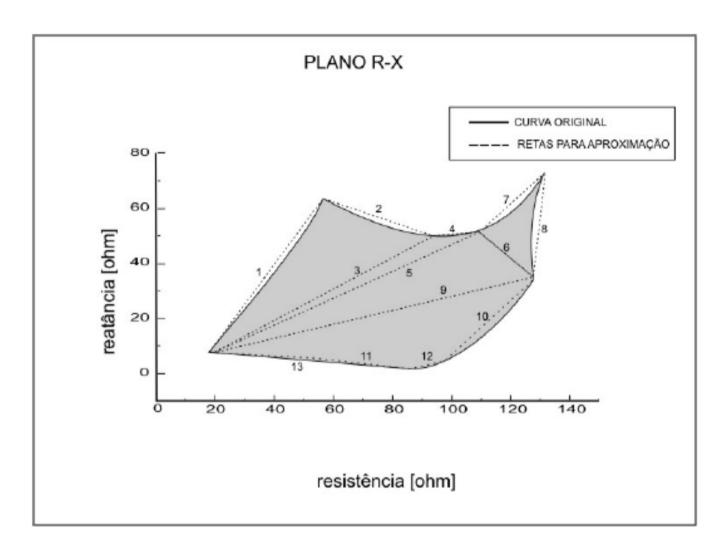

Proteção digital de linhas

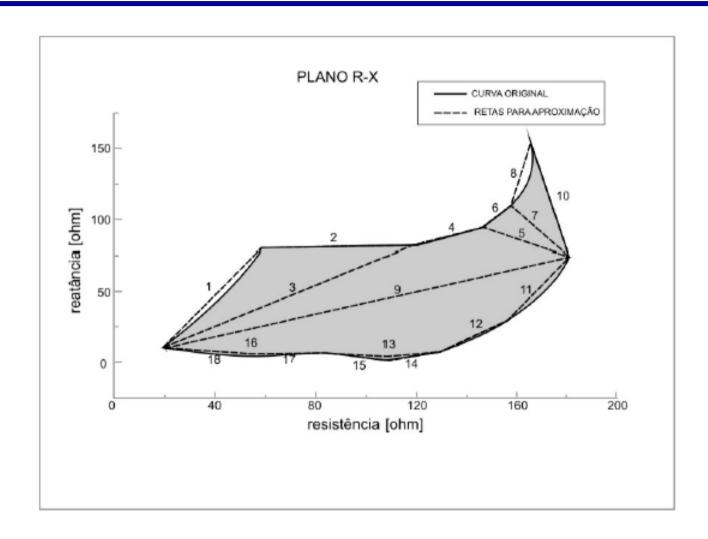
3.5.1 Exercício


Considerando-se formas de onda de tensão e corrente amostradas a 1.2 kHz e uma janela de dados de um ciclo apresentar um fluxograma funcional para a técnicas de classificação de faltas apresentada anteriormente.

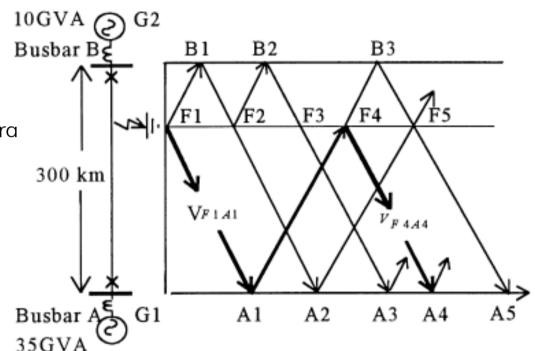

3.5 Característica Quadrilateral


Característica Quadrilateral com 3 Zonas de Proteção


Condição Operacional 1 do Sistema


Condição Operacional 2 do Sistema

- Curva I corresponde a faltas sólidas em diferentes localizações ao longo da linha.
- Curva II corresponde a distância remota (95% do comprimento da linha) com diferentes resistências de falta.
- Curva III corresponde a faltas em diferentes pontos ao longo da linha com resistência de falta de 200Ω.
- Curva IV corresponde a falta próxima ao relé com resistência de falta de até 200Ω.


Condição Operacional 1 do Sistema

3.6 A proteção baseada em ondas viajantes

 Possibilita uma extinção extremamente rápida da falta.

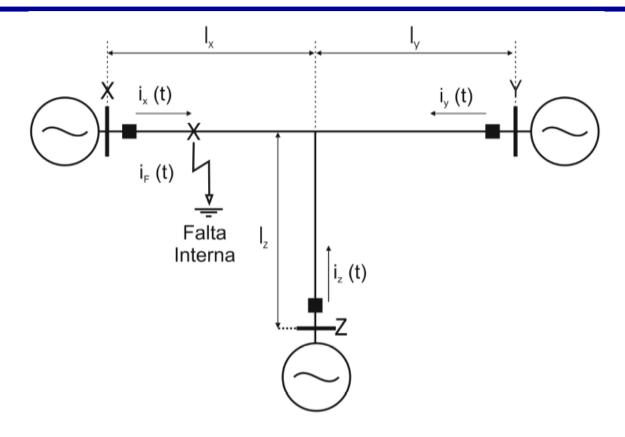
• Freqüências amostrais mais elevadas se fazem necessárias para perfeita representação do fenômeno transitório.

• Faz a estimação da localização da falta através do intervalo de tempo entre a chegada de uma onda incidente e a correspondente onda refletida pela falta.

3.6 A proteção baseada em ondas viajantes

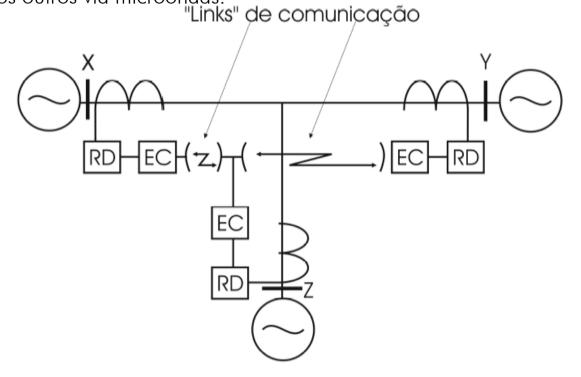
Os componentes injetados Vf e If podem ser expressos em termos de uma onda viajante direta (f1) e uma onda viajante reversa (f2) representadas por:

$$f_1\left(t - \frac{x}{v}\right) = V_f(x, t) + Z_0I_f(x, t) = S_F(t)$$
 (1)


$$f_2\left(t + \frac{x}{v}\right) = V_f(x, t) - Z_0I_f(x, t) = S_B(t)$$
 (2)

Onde $v \in Z_0$ são a velocidade de propagação e a impedância característica da linha. x é a distância que a onda viaja do ponto de falta até o relé.

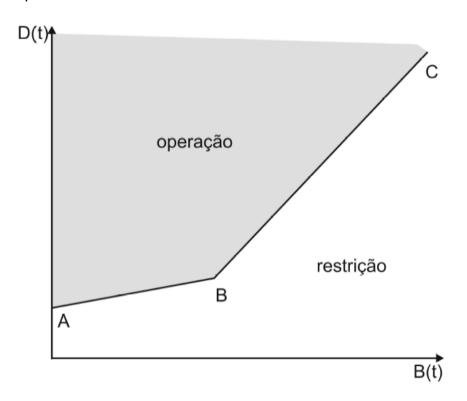
Na prática, a seguinte função de correlação discreta de valor médio é usada:


$$\phi(\tau) = \frac{1}{N} \sum_{k=1}^{N} \left[S_1(k\Delta t + \tau) - \bar{S}_1 \right] \left[S_2(k\Delta t) - \bar{S}_2 \right]$$
 (5)

 $[\]overline{S_1}$ e $\overline{S_2}$ são os seus valores médios e T é o tempo entre as ondas (indica a distância da falta).

 \blacksquare A corrente diferencial e de bias são formadas por: $D(t)=i_{x}(t)+i_{y}(t)+i_{z}(t)$ $B(t)=i_{x}(t)-i_{y}(t)-i_{z}(t)$

• Os valores instantâneos das correntes em cada terminal são modulados em freqüência e transmitidos aos outros via microondas.



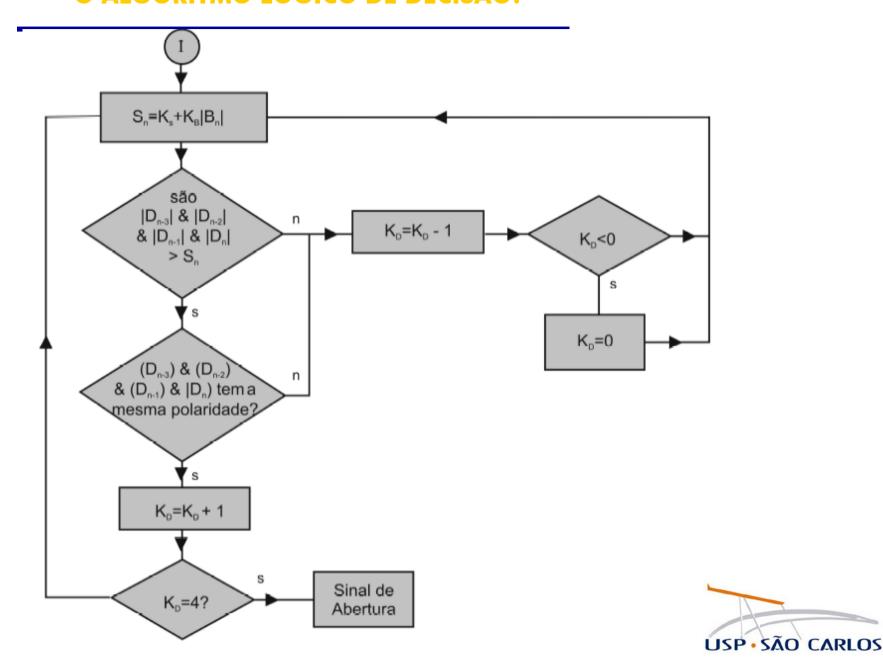
RD = Relé Diferencial EC = Equipamento de Comunicação

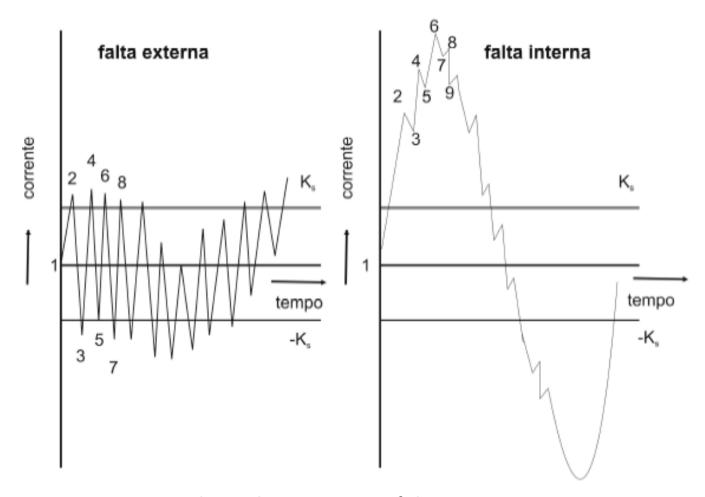
Construção básica de um sistema FM de relé.

• A figura abaixo mostra a característica básica de um relé diferencial percentual FM típico.

$$\begin{aligned} & |D(t)| - K_B |B(t)| \ge K_S \\ & |D(t)| \ge S(t) = K_S + K_B |B(t)| \end{aligned} \qquad K_S = valor \ threshold$$

- As **quantidades modais diferenciais** e bias podem ser definidas por:


$$D_{1}(t) = [i_{ax}(t) - i_{cx}(t)] + [i_{ay}(t) - i_{cy}(t)] + [i_{az}(t) - i_{cz}(t)]$$


$$B_{1}(t) = [i_{ax}(t) - i_{cx}(t)] - [i_{ay}(t) - i_{cy}(t)] - [i_{az}(t) - i_{cz}(t)]$$

$$D_{2}(t) = [i_{ax}(t) - i_{bx}(t)] + [i_{ay}(t) - i_{by}(t)] + [i_{az}(t) - i_{bz}(t)]$$

$$B_{2}(t) = [i_{ax}(t) - i_{bx}(t)] - [i_{ay}(t) - i_{by}(t)] - [i_{az}(t) - i_{bz}(t)]$$

SEL354- Proteção em Sistemas de Energia Elétrica O ALGORITMO LÓGICO DE DECISÃO:

- (a) Forma de onda típica para falta externa.
- (b) Forma de onda típica para falta interna.

3. Proteção digital diferencial de linhas

3.8 Exercício

Considerando-se que a lógica anterior de proteção diferencial de linhas fosse dada através dos valores fasoriais ao invés da comparação amostra a amostra, como ficaria o seu algoritmo lógico de decisão?

