RELAÇÕES DE EQUIVALÊNCIA

Definição 1: Seja R uma relação em um conjunto A. Dizemos que:

- (a) $R \in reflexiva$ se xRx para todo $x \in A$;
- (b) $R \in sim \acute{e}trica$ se xRy implica yRx para todo $x, y \in A$;
- (c) R é transitiva se xRy e yRz implicam xRz para todo $x, y, z \in A$.

Exercício 1. Verifique quais das propriedades acima a relação $R = \{(x, y) \in \mathbb{N}^* \times \mathbb{N}^* : x | y\}$ satisfaz.

Definição 2. Uma relação R em um conjunto A é uma relação de equivalência em A se R é reflexiva, simétrica e transitiva.

A terminologia usada é aquela que vocês já devem ter visto antes:

Definição 3. Seja E uma relação de equivalência em um conjunto A.

- (i) Se aEb dizemos que a é equivalente a b (m'odulo E).
- (ii) Se $a \in A$, o conjunto $[a]_E = \{x \in A : aEx\}$ é chamado de classe de equivalência de a (módulo E).

Exercício 2. No conjunto dos números inteiros \mathbb{Z} defina

xEy se e somente se $x \equiv y \pmod{5}$ se e somente se 5|x-y|.

- (a) Mostre que E é uma relação de equivalência em \mathbb{Z} .
- (b) Ache as classes de equivalência de E.

Exercício 3. Seja E uma relação de equivalência em A. Mostre que, para quaisquer a e b em A, são equivalentes as seguintes afirmações:

- (a) aEb;
- (b) $[a]_E = [b]_E$;
- (c) $[a]_E \cap [b]_E \neq \emptyset$.

Voltando ao exercício 2, note que a relação de equivalência divide \mathbb{Z} em "pedaços" não-vazios dois a dois disjuntos. Isso acontece sempre que se tem uma relação de equivalência:

Exercício 4. Seja E uma relação de equivalência em um conjunto A. Mostre que:

- (a) $[x]_E \neq \emptyset$ para todo $x \in A$;
- (b) $[x]_E \neq [y]_E$ implica $[x]_E \cap [y]_E = \emptyset$ para todo $x, y \in A$;
- (c) $\bigcup \{ [x]_E : x \in A \} = A.$

As propriedades (a), (b) e (c) do exercício acima motivam a seguinte definição:

Definição 4. Uma coleção \mathcal{P} de subconjuntos de um conjunto A é uma partição de A se satisfaz as seguintes propriedades:

- (a) $X \neq \emptyset$ para todo $X \in \mathcal{P}$;
- (b) para todo $X, Y \in \mathcal{P}$ se $X \neq Y$, então $X \cap Y = \emptyset$;
- (c) $\mathcal{P} = A$.

Segue então do exercício anterior que se E é uma relação de equivalência, o conjunto das classes de equivalência determinadas por E

$$A/E = \{ [x]_E : x \in A \}$$

é uma partição de A. O conjunto A/E será chamado de conjunto quociente de A por E .

Temos então que toda relação de equivalência em A determina uma partição de A. Mas será que podemos fazer o caminho inverso? O exercício seguinte mostra que sim: dada uma partição de um conjunto A, podemos definir uma relação de equivalência que "corresponde" a essa partição.

5. Seja \mathcal{P} uma partição de um conjunto A. Defina a seguinte relação em A:

$$aE_{\mathcal{P}}b$$
 se e somente se $\exists C \in \mathcal{P}$ tal que $a \in C$ e $b \in C$.

- (a) Mostre que $E_{\mathcal{P}}$ é uma relação de equivalência em A.
- (b) Mostre que para todo $a \in A$, $[a]_{E_{\mathcal{P}}} = X$, onde $X \in \mathcal{P}$ é tal que $a \in X$.
- (c) Conclua que $A/E_{\mathcal{P}} = \mathcal{P}$.
- **6.** Seja $\mathcal{P} = \{\{-z, z\} : z \in \mathbb{Z}\}$. Mostre que \mathcal{P} é uma partição de \mathbb{Z} e defina $E_{\mathcal{P}}$.
- 7. Particione \mathbb{N} em conjuntos da forma $\{2k, 2k+1\}$, $k \in \mathbb{N}$. Ache a relação de equivalência correspondente.