AULA 4 - [parte 2 de 2]

Camada Limite Laminar - Placa Plana

1.Breve Histórico

- Século 19 Hidrodinâmica (Matemática) X Hidráulica (Empírico)
- 1900 Interpretação da resistência de um corpo sólido devido ao movimento relativo a um fluido. Problema já discutido por : Newton - D'Alembert (paradoxo - 1752) - Stokes - Rayleigh
- Escoamento de fluido ideal velocidade normal relativa na interface sólido-fluido é nula.
- Escoamento viscoso (Navier , 1822; Poisson, 1829; Saint Venant, 1843; Stokes, 1845) aderência na parede.
- Atrito na parede/camada limite Rankine, 1864; Froude, 1874; Mendeleyev, 1880.
- Hipótese da aderência parcialmente aceita
- 1904 Prandtl (1875-1953) apresenta o artigo "Über Flüssigkeitsbewegung bei sehr kleiner Reibung" Proc. Third Internat. Math. Congress - Heidelberg - p. 484-491. Escoamento de fluidos com cisalhamento pequeno.

"O processo físico na camada limite entre um fluido e um corpo sólido pode ser calculado de maneira suficientemente satisfatória, assumindo-se que o fluido adere às paredes, de modo que a velocidade seja nula - ou igual à velocidade do corpo. Se a viscosidade for muito baixa e a trajetória do fluido ao longo da parede não for muito extensa, a velocidade terá o mesmo valor que muito próximo da parede. Numa fina camada de transição, a brusca variação de velocidade, apesar do pequeno coeficiente de viscosidade, produz efeitos notáveis".

- A apresentação de Prandtl passou desapercebida por alguns anos!!
- 1908 Blausius apresenta trabalho em publicação mais acessível - estudo detalhado das equações da camada limite para placa plana e posteriormente para cilindros.
- 1912 Zhukovskii Divulga a idéia de Prandtl.
- 1924 (5ª ed. Hydrodynamics Lamb) Pela primeira vez, cita Prandtl e Blausius.
- 1951 Publicação da 1ª edição do livro "Teoria da Camada Limite", de autoria de H. Schlichting

Bibliografia do histórico: Annual review of Fluid mechanics - Fluid mechanics in the first half of this century - Sydney Goldenstein - 1969 - pp 1 -28.

2.Hipóteses

3.Equacionamento

$$\rho \frac{D\vec{v}}{Dt} = \rho \frac{\partial \vec{v}}{\partial t} + \rho \vec{v}.gr\vec{a}d\vec{v} = \rho \vec{g} - gr\vec{a}dp + \mu lap\vec{v}$$
(1)

$$\frac{\partial \rho}{\partial t} = -\operatorname{div} \rho \,\vec{v} \tag{2}$$

$$\frac{\partial \rho}{\partial t} = 0 \qquad \implies \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} = 0 \qquad (3)$$

$$\rho\left(\mathbf{v}_{x}\frac{\partial \mathbf{v}_{x}}{\partial x}+\mathbf{v}_{y}\frac{\partial \mathbf{v}_{x}}{\partial y}\right)=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} \mathbf{v}_{x}}{\partial x^{2}}+\frac{\partial^{2} \mathbf{v}_{x}}{\partial y^{2}}\right)$$
(4)

$$\rho\left(\mathbf{v}_{x}\frac{\partial\mathbf{v}_{y}}{\partial x}+\mathbf{v}_{y}\frac{\partial\mathbf{v}_{y}}{\partial y}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2}\mathbf{v}_{y}}{\partial x^{2}}+\frac{\partial^{2}\mathbf{v}_{y}}{\partial y^{2}}\right)$$
(5)

Camada Limite Laminar Hidrodinâmica

Escalas de adimensionalização:

3.1 "Scaling"

Adimensinalizando-se as variáveis:

$$\hat{v}_{x} = \frac{v_{x}}{U}$$
$$\hat{x} = \frac{x}{L}$$

 δ << L (observação experimental)

$$\hat{\mathbf{y}} = \frac{\mathbf{y}}{\delta}$$
$$\hat{\mathbf{v}}_{\mathbf{y}} = \frac{\mathbf{v}_{\mathbf{y}}}{\mathbf{v}}$$

sendo δ é a espessura da camada limite hidrodinâmica.

Da continuidade (3):

$$\frac{U}{L}\frac{\partial \hat{v}_x}{\partial \hat{x}} + \frac{V}{\delta}\frac{\partial \hat{v}_y}{\partial \hat{y}} = 0 \quad \Longrightarrow \left(\frac{U\delta}{VL}\right)\frac{\partial \hat{v}_x}{\partial \hat{x}} + \frac{\partial \hat{v}_y}{\partial \hat{y}} = 0$$

A escala V é definida de modo a satisfazer as seguintes condições do "scaling":

 $\frac{\partial \hat{\mathbf{v}}_{\mathbf{x}}}{\partial \hat{\mathbf{x}}} \sim 1 \qquad ; \qquad \frac{\partial \hat{\mathbf{v}}_{\mathbf{y}}}{\partial \hat{\mathbf{y}}} \sim 1$

$$\frac{U\delta}{VL} = 1 \quad \Rightarrow V = \frac{U\delta}{L} \tag{6}$$

Logo: V << U

3.2 "Scaling" da Navier- Stokes - direção x

$$\frac{\rho U^{2}}{L} \left(\hat{v}_{x} \frac{\partial \hat{v}_{x}}{\partial \hat{x}} + \hat{v}_{y} \frac{\partial \hat{v}_{x}}{\partial \hat{y}} \right) = -\frac{P}{L} \frac{\partial \hat{p}}{\partial \hat{x}} + \frac{\mu U}{\delta^{2}} \left[\underbrace{\left(\frac{\delta}{L} \right)^{2}}_{\langle\langle 1} \frac{\partial^{2} \hat{v}_{x}}{\partial \hat{x}^{2}} + \underbrace{\frac{\partial^{2} \hat{v}_{x}}{\partial \hat{y}^{2}}}_{\langle\langle 1} \right] \right]$$

$$\left(\frac{\rho U \delta^{2}}{\mu L} \right) \left(\hat{v}_{x} \frac{\partial \hat{v}_{x}}{\partial \hat{x}} + \hat{v}_{y} \frac{\partial \hat{v}_{x}}{\partial \hat{y}} \right) = -\left(\frac{P \delta^{2}}{\mu U L} \right) \frac{\partial \hat{p}}{\partial \hat{x}} + \frac{\partial^{2} \hat{v}_{x}}{\partial \hat{y}^{2}}$$

$$(7a)$$

$$\operatorname{Re}\left(\frac{\delta}{L}\right)^{2}\left(\hat{v}_{x}\frac{\partial\hat{v}_{x}}{\partial\hat{x}}+\hat{v}_{y}\frac{\partial\hat{v}_{x}}{\partial\hat{y}}\right)=-\left(\frac{P\delta^{2}}{\mu UL}\right)\frac{\partial\hat{p}}{\partial\hat{x}}+\frac{\partial^{2}\hat{v}_{x}}{\partial\hat{y}^{2}}$$
(7)

sendo : $\hat{p} = \frac{p}{P}$ e $\operatorname{Re} = \frac{\rho UL}{\mu}$

3.3 "Scaling" da Navier- Stokes - direção y

$$\frac{\rho U^{2}}{L} \frac{\delta}{L} \left(\hat{v}_{x} \frac{\partial \hat{v}_{y}}{\partial \hat{x}} + \hat{v}_{y} \frac{\partial \hat{v}_{y}}{\partial \hat{y}} \right) = -\frac{P}{\delta} \frac{\partial \hat{p}}{\partial \hat{y}} + \frac{\mu V}{\delta^{2}} \left[\left(\frac{\delta}{L} \right)^{2} \frac{\partial^{2} \hat{v}_{y}}{\partial \hat{x}^{2}} + \frac{\partial^{2} \hat{v}_{y}}{\partial \hat{y}^{2}} \right]$$
$$\frac{\rho U^{2}}{L} \frac{\delta}{L} \left(\hat{v}_{x} \frac{\partial \hat{v}_{y}}{\partial \hat{x}} + \hat{v}_{y} \frac{\partial \hat{v}_{y}}{\partial \hat{y}} \right) = -\frac{P}{\delta} \frac{\partial \hat{p}}{\partial \hat{y}} + \frac{\mu U}{\delta^{2}} \frac{\delta}{L} \left[\left(\frac{\delta}{L} \right)^{2} \frac{\partial^{2} \hat{v}_{y}}{\partial \hat{x}^{2}} + \frac{\partial^{2} \hat{v}_{y}}{\partial \hat{y}^{2}} \right]$$
(8a)

Comparando-se as equações (7a) e (8a), observa-se que os termos da equação de quantidade de movimento na direção y são desprezíveis em relação aos da direção x (ordem δ /L em relação aos da x).

Multiplicando-se (8a) por $\delta/
ho U^2$,tem-se:

$$\frac{\delta^{2}}{L^{2}}\left(\underbrace{\hat{v}_{x}}_{\sim 1}\frac{\partial\hat{v}_{y}}{\partial\hat{x}} + \hat{v}_{y}}_{\sim 1}\frac{\partial\hat{v}_{y}}{\partial\hat{y}}\right) = -\frac{P}{\rho U^{2}}\underbrace{\frac{\partial\hat{p}}{\partial\hat{y}}}_{\langle\langle 1} + \frac{1}{Re}\left[\left(\frac{\delta}{L}\right)^{2}\frac{\partial^{2}\hat{v}_{y}}{\partial\hat{x}^{2}} + \underbrace{\frac{\partial^{2}\hat{v}_{y}}{\partial\hat{y}^{2}}}_{\sim 1}\right]$$
(8)

_

Observa-se da equação (8) que Re $_{\sim}(L/\delta)^2 >> 1$. Tem-se, também, da equação (8) $\frac{P}{\delta} \frac{\partial \hat{p}}{\partial \hat{y}} << \frac{P}{L} \frac{\partial \hat{p}}{\partial \hat{x}} \Rightarrow \frac{\partial p}{\partial y} << \frac{\partial p}{\partial x}$, a pressão praticamente

independe de y na camada limite. Assim, a pressão na camada limite é praticamente igual à pressão p(x), no escoamento livre.

4. Solução exata da equação aproximada

A partir da análise anterior, o sistema de equações pode ser simplificado para:

$$\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{y}} = 0 \tag{3}$$

$$p = p(x)$$

$$p\left(v_{x}\frac{\partial v_{x}}{\partial x} + v_{y}\frac{\partial v_{x}}{\partial y}\right) = -\frac{dp}{dx} + \mu\left(\frac{\partial^{2} v_{x}}{\partial y^{2}}\right)$$
(9)

Na borda da camada limite a velocidade é praticamente U, assim:

$$\rho \left(U \frac{\partial U}{\partial x} + v_y \frac{\partial U}{\partial y} \right) = -\frac{dp}{dx} + \mu \left(\frac{\partial^2 U}{\partial y^2} \right)$$
(10)

Como U é na direção x e não varia com y, o escoamento externo define a variação de pressão:

$$\rho U \frac{\partial U}{\partial x} = -\frac{dp}{dx}$$
(11)

Substituindo-se (11) em (9), tem-se:

$$\rho \left(\mathbf{v}_{\mathbf{x}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \mathbf{v}_{\mathbf{y}} \frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}} \right) = \rho \mathbf{U} \frac{d\mathbf{U}}{d\mathbf{x}} + \mu \left(\frac{\partial^{2} \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{y}^{2}} \right)$$
(12)

As velocidades na borda da camada e fora da mesma são iguais e, no caso de placa plana, independentes de x, assim, de (11):

$$\rho U \frac{\partial U}{\partial x} = 0 = -\frac{dp}{dx}$$

Assim as equações "aproximadas" são expressas por:

$$\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{0}$$
(3)

$$\mathbf{v}_{x}\frac{\partial \mathbf{v}_{x}}{\partial x} + \mathbf{v}_{y}\frac{\partial \mathbf{v}_{x}}{\partial y} = \frac{\mu}{\rho}\frac{\partial^{2}\mathbf{v}_{x}}{\partial y^{2}}$$
(13)

Com as seguintes condições de contorno:

parede, $y = 0 \rightarrow v_x = 0$ e $v_y = 0$ borda, $y = \infty \rightarrow v_x = U$ $x = 0 \rightarrow v_x = U$

5. Solução de Blausius

Definindo-se:

$$\eta = y \sqrt{\frac{U}{v x}}$$
(14)

$$f(\eta) = \frac{\Psi}{\sqrt{x \, \nu \, U}} \tag{15}$$

onde v_x e $v_y\,$ são expressos a partir da função de corrente $\Psi,$ segundo as expressões:

$$\mathbf{v}_{x} = \frac{\partial \Psi}{\partial \mathbf{y}}$$
 $\mathbf{e} \quad \mathbf{v}_{y} = -\frac{\partial \Psi}{\partial \mathbf{x}}$

Substituindo-se as equações (14) e (15) em (13) e (3), tem-se:

$$f(\eta)\frac{d^2f(\eta)}{d\eta^2} + 2\frac{d^3f(\eta)}{d\eta^3} = 0$$
(16)

sendo:

$$v_{x} = U \frac{df(\eta)}{d\eta} = f'U$$

$$v_{y} = \frac{1}{2} \sqrt{\frac{vU}{x}} \left(\eta \frac{df(\eta)}{d\eta} - f(\eta) \right)$$
(17)
(18)

Com as seguintes condições de contorno:

parede, y = 0, $\eta = 0$ \rightarrow $v_x = 0 e v_y = 0$, f = 0 e f' = 0borda, $y = \infty$, $\eta = \infty$ \rightarrow $v_x = U$, f' = 1

A solução é obtida na forma de uma série infinita. A tabela e figuras anexas apresentam os valores calculados das funções f, f'e f'' e das velocidades v_x e v_y (Tabela e figuras anexas - Schlichting, 1979).

Adotando-se o critério de 99% da variação da velocidade para definir a espessura da camada limite, tem-se:

$$\frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{U}} = 0,99 = \frac{\mathrm{df}}{\mathrm{d\eta}} = 0,99 \implies \eta = 5 = \delta \sqrt{\frac{\mathrm{U}}{\mathrm{v}\,\mathrm{x}}} \tag{19}$$

$$\delta = 5\sqrt{\frac{vx}{U}} = \frac{5x}{\sqrt{Re_x}}$$
(20)

$\eta = y \sqrt{\frac{\overline{U_{\infty}}}{y x}}$	f	$f' = \frac{u}{U_{\infty}}$	f″
0	0	0	0.33206
0.2	0-00664	0.06641	0.33199
0.4	0.02656	0.13277	0.33147
0.6	0.05974	0.19894	0.33008
0-8	0.10611	0.26471	0.32739
1.0	0.16557	0.32979	0.32301
1.2	0.23795	0.39378	0.31659
1.4	0.32298	0.45627	0.30787
1.6	0.42032	0.51676	0.29667
1.8	0.52952	0.57477	0.28293
2.0	0.65003	0.62977	0.26675
2.2	0.78120	0.68132	0.24835
2.4	0.92230	0.72899	0.22809
2.6	1.07252	0.77246	0.20646
2.8	1.23099	0.81152	0.18401
3.0	1.39682	0.84605	0.16136
3.2	1.56911	0.87609	0.13913
3.4	1.74696	0.90177	0.11788
3.6	1.92954	0.92333	0.09809
3.8	2.11605	0.94112	0.08013
4-0	2.30576	0.95552	0.06424
4.2	2.49806	0.96696	0.05052
4.4	2.69238	0.97587	0.03897
4.6	2.88826	0.98269	0.02948
4.8	3.08534	0.98779	0.02187
5.0	3.28329	0.99155	0.01591
5.2	3.48189	0.99425	0.01134
5.4	3.68094	0.99616	0.00793
5.6	3.88031	0.99748	0.00543
5.8	4.07990	0.99838	0.00365
6.0	4.27964	0.99898	0.00240
6.2	4.47948	0.99937	0.00155
6.4	4.67938	0.99961	0.00098
6.6	4.87931	0.99977	0.00061
6.8	5.07928	0.99987	0.00037
7.0	5.27926	0.99992	0.00022
7.2	5.47925	0-99996	0.00013
7-4	5.67924	0-99998	0.00007
7.6	5.87924	0-99999	0.00004
7.8	6.07923	1.00000	0.00002
8.0	6.27923	1.00000	0.00001
8.2	6.47923	1.00000	0.00001
8.4	6-67923	1.00000	0.00000
8.6	6-87923	1.00000	0.00000
8.8	7.07923	1.00000	0.00000

Table 7.1. The function $f(\eta)$ for the boundary layer along a flat plate at zero incidence, after L. Howarth [16]

Fig. 7.9. Velocity distribution in the laminar boundary layer on a flat plate at zero incidence, as measured by Nikuradse [20]

Fig. 7.8. The transverse velocity component in the boundary layer along a flat plate

6. Fator de atrito

Define-se o coeficiente de arraste (fator de atrito) na placa por:

$$C_{D} = \frac{\tau_{yx}}{\frac{1}{2}\rho U^{2}} = \frac{\mu}{\frac{1}{2}\rho U^{2}} \left(\frac{\partial v_{x}}{\partial y} + \frac{\partial v_{y}}{\frac{\partial x}{\partial y}} \right)_{x,y=0} = \frac{\mu}{\frac{1}{2}\rho U^{2}} \left(\frac{\partial v_{x}}{\partial y} \right)_{y=0}$$
(21)

Substituindo-se o perfil de velocidades expresso pela equação (17), tem-se:

$$C_{\rm D} = \frac{\mu}{\frac{1}{2}\rho U^2} \left(\frac{\partial v_{\rm x}}{\partial y} \right)_{y=0} = \frac{\mu}{\frac{1}{2}\rho U^2} U \sqrt{\frac{U}{x\nu}} \frac{d^2 f}{d\eta^2}(0)$$
(22)

Para y = 0 (
$$\eta$$
=0) \Rightarrow f"(0) = 0,332, resultando:
 $C_D = 0,664 \sqrt{\frac{v}{Ux}}$
 $C_D = 0,664 \operatorname{Re}^{-1/2}$
(23)

Adota-se o Reynolds crítico (limite do regime laminar) de 5.10⁵.

7. Camada Limite Laminar Térmica e Mássica

Neste caso a propriedade ϕ (temperatura e/ou concentração) na parede é fixa (= ϕ_{w}) e no fluido, longe da placa, a propriedade é fixa (= ϕ_{0}).

A equação adimensionalizada é dada por:

$$\frac{1}{\mathrm{Sr}}\frac{\partial\hat{\rho}\hat{\phi}}{\partial\hat{t}} + \mathrm{div}\,\hat{\rho}\left(\hat{\vec{v}}\hat{\phi} - \frac{1}{\mathrm{Pe}}\mathrm{gr}\hat{a}\mathrm{d}\,\hat{\phi}\right) = \frac{\dot{\sigma}_{\forall_{\phi}}L}{\rho_{0}\,\Delta\phi\,v_{0}} \tag{24}$$

Além das hipótese adotadas no caso da camada limite hidrodinâmica, consideram-se as propriedades constantes e a ausência do termo de produção, resultando:

$$\hat{\mathbf{v}}.\mathrm{gr}\hat{\mathbf{a}}\mathbf{d}\ \hat{\boldsymbol{\varphi}} - \frac{1}{\mathrm{Pe}} \mathrm{l}\hat{\mathbf{a}}\mathbf{p}\ \hat{\boldsymbol{\varphi}} = 0$$
 (25)

A equação acima sintetiza o problema conceitual da camada limite, que pode ser abordado como a "ponderação" entre o processo difusivo e o processo convectivo.

Multiplicando-se a equação (25) por Re, resulta:

Re
$$\hat{\vec{v}}$$
.grâd $\hat{\phi} - \frac{\Gamma_{\phi}}{V} l\hat{a}p \ \hat{\phi} = 0$ (26)

Retornando-se à forma dimensional, tem-se:

$$\left(\mathbf{v}_{x}\frac{\partial \boldsymbol{\varphi}}{\partial x} + \mathbf{v}_{y}\frac{\partial \boldsymbol{\varphi}}{\partial y}\right) = \Gamma_{\boldsymbol{\varphi}}\left(\frac{\partial^{2}\boldsymbol{\varphi}}{\partial x^{2}} + \frac{\partial^{2}\boldsymbol{\varphi}}{\partial y^{2}}\right)$$
(27)

Do "scaling", tem-se:

$$\hat{\phi} = \frac{\phi - \phi_{w}}{\phi_{0} - \phi_{w}}$$
$$\hat{y} = \frac{y}{\delta_{\phi}}$$

onde δ_{φ} é a espessura da camada limite da propriedade φ . Substituindo-se em (27), resulta: $\left(\frac{U(\varphi_{0}-\varphi_{w})}{L}\hat{v}_{x}\frac{\partial\hat{\varphi}}{\partial\hat{x}} + \frac{V(\varphi_{0}-\varphi_{w})}{\delta_{\varphi}}\hat{v}_{y}\frac{\partial\hat{\varphi}}{\partial\hat{y}}\right) = \frac{\Gamma_{\varphi}}{\delta_{\varphi}^{-2}}(\varphi_{0}-\varphi_{w})\left(\frac{\delta_{\varphi}^{2}}{L^{2}}\frac{\partial^{2}\hat{\varphi}}{\partial\hat{x}^{2}} + \frac{\partial^{2}\hat{\varphi}}{\partial\hat{y}^{2}}\right)$

Substituindo-se (6)
$$\Rightarrow V = \frac{U\delta_{\phi}}{L}$$
 :

$$\frac{U\delta_{\phi}^{2}}{\Gamma_{\phi}L} \left(\hat{v}_{x} \frac{\partial \hat{\phi}}{\partial \hat{x}} + \hat{v}_{y} \frac{\partial \hat{\phi}}{\partial \hat{y}} \right) = \left(\underbrace{\frac{\delta_{\phi}^{2}}{L^{2}} \frac{\partial^{2} \hat{\phi}}{\partial \hat{x}^{2}}}_{\langle\langle 1|} + \underbrace{\frac{\partial^{2} \hat{\phi}}{\partial \hat{y}}^{2}}_{\langle\langle 1|} \right)$$

$$\frac{U\delta_{\phi}^{2}}{\Gamma_{\phi}L} \left(\hat{v}_{x} \frac{\partial \hat{\phi}}{\partial \hat{x}} + \hat{v}_{y} \frac{\partial \hat{\phi}}{\partial \hat{y}} \right) = \frac{\partial^{2} \hat{\phi}}{\partial \hat{y}^{2}}$$
(28)

Assim, a equação de conservação de ϕ é simplificado para:

$$\mathbf{v}_{x}\frac{\partial \boldsymbol{\varphi}}{\partial x} + \mathbf{v}_{y}\frac{\partial \boldsymbol{\varphi}}{\partial y} = \Gamma_{\boldsymbol{\varphi}}\frac{\partial^{2}\boldsymbol{\varphi}}{\partial y^{2}}$$
(30)

Portanto, o sistema de equações a ser considerado é expresso pelas equações (3), (13) e (30):

$$\frac{\partial \mathbf{v}_{\mathbf{x}}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}_{\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{0}$$
(3)

$$\mathbf{v}_{x} \frac{\partial \mathbf{v}_{x}}{\partial x} + \mathbf{v}_{y} \frac{\partial \mathbf{v}_{x}}{\partial y} = \frac{\mu}{\rho} \frac{\partial^{2} \mathbf{v}_{x}}{\partial y^{2}}$$
(13)

$$\mathbf{v}_{x}\frac{\partial \boldsymbol{\varphi}}{\partial x} + \mathbf{v}_{y}\frac{\partial \boldsymbol{\varphi}}{\partial y} = \Gamma_{\boldsymbol{\varphi}}\frac{\partial^{2}\boldsymbol{\varphi}}{\partial y^{2}}$$
(30)

Camada Limite Laminar da propriedade ϕ

Empregando-se a mudança de variável expressa pelas equações (14) e (15) e substituindo-se na equação acima, resulta:

$$\frac{d^2\hat{\phi}}{d\eta^2} + \frac{v}{\Gamma_{\phi}} \frac{f(\eta)}{2} \frac{d\hat{\phi}}{d\eta} = 0$$
(31)

As condições de contorno são expressas por:

parede, $y = 0 \rightarrow \phi = \phi_w$, $v_x = 0$ e $v_y = 0$ borda, $y = \infty \rightarrow \phi = \phi_0$ e $v_x = U$

que podem ser expressas por:

parede, $\eta = 0 \rightarrow \hat{\phi} = 0$ borda, $\eta = \infty \rightarrow \hat{\phi} = 1$

A solução obtida para a equação (31), por Schlichting, para a propriedade $\phi,$ é expressa por:

$$\hat{\varphi} = \frac{\int_{\zeta=0}^{\zeta=\eta} \exp\left[-\frac{1}{2} \frac{\nu}{\Gamma_{\varphi}} \int_{\epsilon=0}^{\epsilon=\zeta} f(\epsilon) d\epsilon\right] d\zeta}{\int_{\zeta=0}^{\zeta=\infty} \exp\left[-\frac{1}{2} \frac{\nu}{\Gamma_{\varphi}} \int_{\epsilon=0}^{\epsilon=\zeta} f(\epsilon) d\epsilon\right] d\zeta}$$
(32)

A solução é válida para a camada limite laminar para a propriedade $\phi.$

No caso de transporte de calor ϕ = T e $\frac{v}{\Gamma} = \frac{v}{\alpha} = Pr$,

e no caso de transporte de massa ϕ = ω_{A} e $\frac{\nu}{\Gamma} = \frac{\nu}{D_{\text{AB}}} = Sc$.

Da equação (32) é possível obter as seguintes relações aproximadas para as espessuras das camadas:

Fig. 12.8. Comparison between the temperature and velocity fields for boundary layers with very small and with very large values of Prandtl number

8. Coeficientes convectivos de transferência de calor e de massa

Na parede, pela hipótese da aderência, $\mathbf{v} = 0$. Conseqüentemente, o fluxo de transporte é essencialmente difusivo.

Da equação (32), para
$$0.6 \le \frac{\nu}{\Gamma_{\phi}} < 50$$
, tem-se:

$$\frac{d\hat{\phi}}{d\eta}\Big|_{\eta=0} = 0.332 \left(\frac{\nu}{\Gamma_{\phi}}\right)^{1/3}$$
(35)

O gradiente adimensionalizado de φ , na posição x, é dado por:

$$\left. gr\vec{\hat{a}}d\,\hat{\phi} \right|_{\hat{r}=0} = \frac{\partial\hat{\phi}}{\partial\hat{y}} \right|_{\hat{y}=0} = \frac{d\hat{\phi}}{d\eta} \frac{d\eta}{d\hat{y}} \right|_{\hat{y}=0} = x \frac{d\eta}{dy} \frac{d\hat{\phi}}{d\eta} \right|_{\hat{y}=0} = x \sqrt{\frac{U}{v}} \frac{d\hat{\phi}}{d\eta} \right|_{\eta=0} = \sqrt{\frac{U}{v}} \frac{d\hat{\phi}}{d\eta} \left|_{\eta=0} = \sqrt{\frac{U}{v}} \frac{d\hat{\phi}}{d\eta} \right|_{\eta=0}$$

sendo $\hat{y} = y/x$.

Substituindo-se a equação (35), resulta:

$$\left. gr\hat{\vec{a}}d\,\hat{\varphi} \right|_{\hat{r}=0} = 0.332 \sqrt{\frac{U\,x}{\nu}} \left(\frac{\nu}{\Gamma_{\varphi}}\right)^{1/3} = 0.332 \operatorname{Re}_{x}^{1/2} \left(\frac{\nu}{\Gamma_{\varphi}}\right)^{1/3}$$
(36)

No caso de transporte de calor, tem-se:

$$\varphi = T , \quad \frac{\nu}{\Gamma} = \frac{\nu}{\alpha} = Pr , \quad Nu = \left(gr\hat{\vec{ad}} \hat{T}\right)_{\hat{r}=0},$$

$$Nu = 0,332 \operatorname{Re}_{x}^{1/2} Pr^{1/3}$$
(37)

No caso de transporte de massa, tem-se:

$$\varphi = \omega_{A} , \qquad \frac{\nu}{\Gamma} = \frac{\nu}{D_{AB}} = Sc , \quad Sh = \left(gr\hat{\vec{ad}} \,\hat{w}_{i}\right)_{\hat{r}=0},$$

$$Sh = 0.332 Re_{x}^{1/2} Sc^{1/3}$$
(38)

Os coeficientes convectivos de transferência de calor e de massa são definidos na interface/parede. Por exemplo, na interface o fluxo de calor é dado por:

$$q'' = h(T_w - T_0) = q''_{na \, parede}$$
 (39)

Na parede, pela hipótese da aderência, $\mathbf{v} = 0$, assim tem-se apenas condução de calor:

$$q''_{na parede} = -k \operatorname{gr}\vec{a} dT \Big|_{y=0} = -k \left(\frac{\partial T}{\partial y} \right)_{y=0}$$
 (40)

Define-se h, a partir das equações (39) e (40), resultando:

$$\mathbf{h} = \frac{-\mathbf{k}(\partial \mathbf{T}/\partial \mathbf{y})_{\mathbf{y}=0}}{\left(\mathbf{T}_{\mathbf{w}} - \mathbf{T}_{0}\right)}$$
(41)

Adimensionalizando-se, para $\hat{y}_T = y/x$:

$$\mathbf{h} = -\frac{\left(\mathbf{T}_{0} - \mathbf{T}_{w}\right)}{x} \frac{\mathbf{k} \left(\partial \hat{\mathbf{T}} / \partial \hat{\mathbf{y}}_{T}\right)_{y=0}}{\left(\mathbf{T}_{w} - \mathbf{T}_{0}\right)} = \frac{\mathbf{k}}{x} \left(\partial \hat{\mathbf{T}} / \partial \hat{\mathbf{y}}_{T}\right)_{y=0} = \frac{\mathbf{k}}{x} \operatorname{Nu}$$
(42)

Assim, tem-se a definição do número de Nusselt:

$$Nu = \frac{hx}{k}$$
(43)

No caso do transporte de massa, analogamente, tem-se para o coeficiente de transferência de massa, $k_{\textrm{P}}$:

$$\mathbf{n}_{\mathrm{A}} = \mathbf{k}_{\mathrm{\rho}} \rho \left(\omega_{\mathrm{Aw}} - \omega_{\mathrm{A0}} \right) = \mathbf{j}_{\mathrm{A}\,\mathrm{y}=0} \tag{44}$$

sendo:

$$\hat{\omega} = \frac{\omega - \omega_{w}}{\omega_{0} - \omega_{w}} \qquad \qquad \hat{y}_{M} = \frac{y}{x}$$

Na parede tem-se apenas difusão, expressa por:

$$\dot{\mathbf{j}}_{A} = -\rho \mathbf{D}_{AB} \operatorname{gr}{\vec{a}} d\omega_{A} \Big|_{y=0} = -\rho \mathbf{D}_{AB} \frac{d\omega_{A}}{dy} \Big|_{y=0}$$
(45)

Substituindo-se (44) em (45) para $\hat{y}_M = y/x$:

$$k_{\rho} = \frac{-\rho D_{AB} (\partial \omega_{A} / \partial y)_{y=0}}{\rho (\omega_{Aw} - \omega_{A0})} = \frac{D_{AB}}{x} (\partial \hat{w}_{A} / \partial \hat{y}_{M})_{y=0} = \frac{D_{AB}}{x} Sh$$
(45)

Assim, tem-se a definição do número de Sherwood:

$$\mathbf{Sh} = \frac{\mathbf{k}_{\rho} \mathbf{X}}{\mathbf{D}_{AB}} \tag{46}$$

No caso do transporte de massa, deve-se considerar condição de <u>baixo transporte de massa</u> (?!). Pois, na parede a condição de contorno considerada é a de velocidade nula! O que, obviamente, não se observa no caso de transporte de massa intenso na parede.

BIBLIOGRAFIA:

- Bird, R.B., Stewart, W.E., Lighfoot, E.N., <u>Transport Phenomena</u>, 2 ed, Wiley, 2002. ITENS 4.4 E 12.4
- Schlichting, H., Boundary-Layer Theory, Seventh edition, McGraw-Hill Book Company, 1979.