
ELEMENTOS ROSQUEADOS

DIMENSIONAMENTO

Tipos de Roscas

Tipos de roscas (perfis) Perfil de filete	APLICAÇÃO				
triangular	Parafusos e porcas de fixação na união de peças. Ex.: Fixação da roda do carro.				
trapezoidal	Parafusos que transmitem movimento suave e uniforme. Ex.: Fusos de máquinas.				
redondo	Parafusos de grandes diâmetros sujeitos a grandes esforços. Ex.: Equipamentos ferroviários.				
quadrado	Parafusos que sofrem grandes esforços e choques. Ex.: Prensas e morsas.				
rosca dente-de-serra	Parafusos que exercem grande esforço num só sentido Ex.: Macacos de catraca				

Nomenclatura Básica

P = passo (em mm)

d = diâmetro externo

 d_1 = diâmetro interno

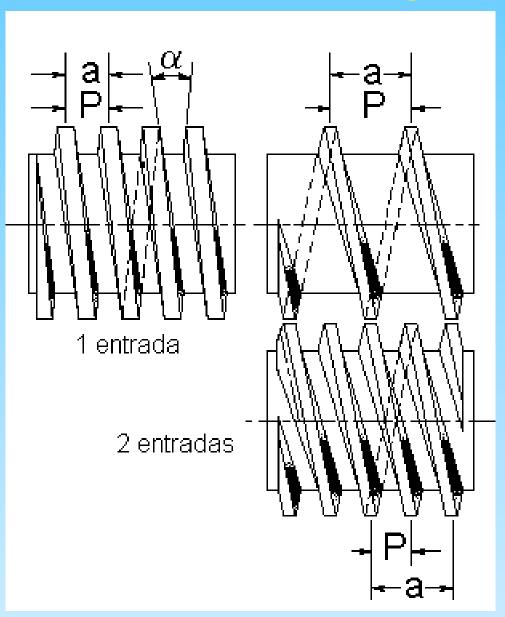
d₂ = diâmetro do flanco

 $\alpha = \hat{a}$ ngulo do filete

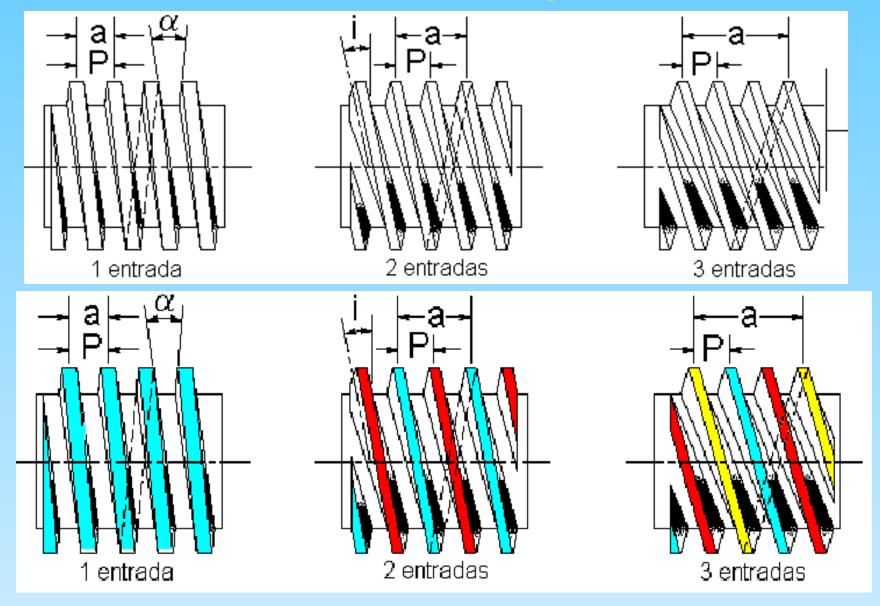
f = fundo do filete

i = ângulo da hélice

c = crista

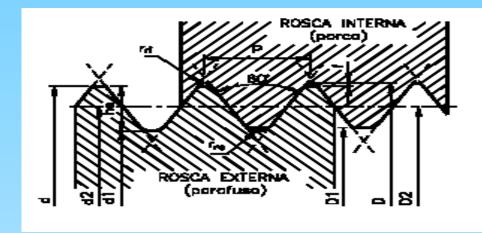

D = diâmetro do fundo da porca

D₁ = diâmetro do furo da porca


h₁ = altura do filete da porca

h = altura do filete do parafuso

Passo e Avanço



Passo e Avanço

Perfis de Roscas Triangulares

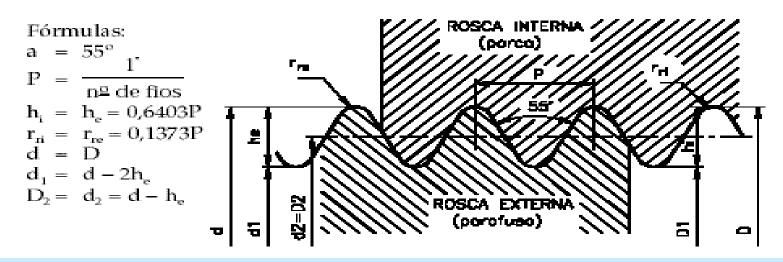
ISO, UN e Withworth

Ângulo do perfil da rosca:

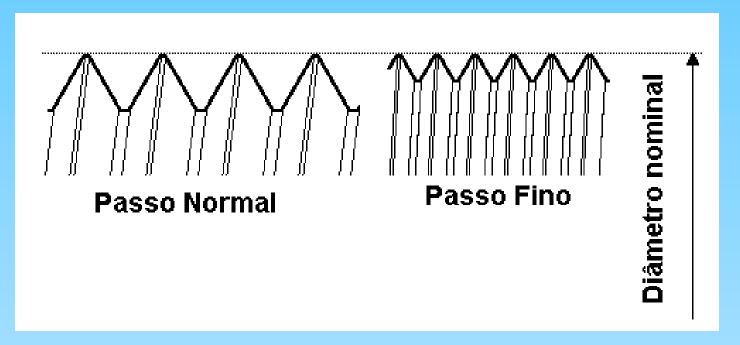
 $a = 60^{\circ}$.

Diâmetro menor do parafuso (Ø do núcleo):

 $d_1 = d - 1,2268P$.


Diâmetro efetivo do parafuso (Ø médio):

 $d_2 = D_2 = d - 0.6495P$.


Folga entre a raiz do filete da porca e a crista do filete do parafuso:

 $\hat{f} = 0.045P$.

Rosca Whitworth normal - BSW e rosca Whitworth fina - BSF

Rosca de Passo Normal e Fino

Aspectos Operacionais do Passo Fino:

- -Maior aperto entre as peças para o mesmo conjugado
- -Menor avanço (mais voltas até o aperto)
- -Menor ângulo de hélice
- -Maior "precisão" no ajuste

RELAÇÃO ENTRE O CONJUGADO DE APERTO E A CARGA AXIAL EM PARAFUSOS

 Consideremos um conjunto porca-parafuso que fixa as peças 3 e 4 e que será apertado com um conjugado C, mostrado na figura 1.

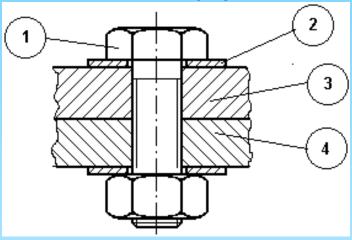
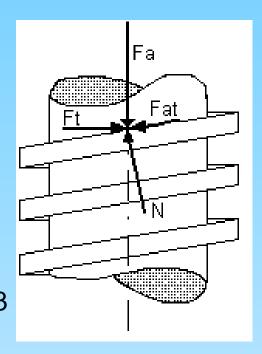
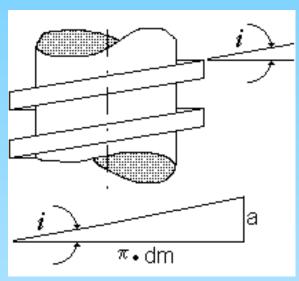



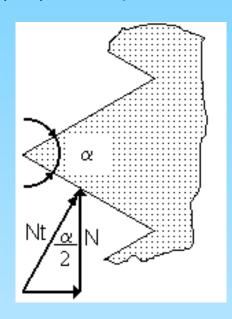
Figura 1

 Está ação provocará o surgimento de uma força axial (de compressão entre as peças fixadas e de tração no corpo do parafuso).


- Para o perfil da rosca é quadrado, ou seja α = 0o .
- Impondo mostrado na figura 3,
- desprezando o atrito entre a porca e a arruela
- Fa = força axial
- Ft = força tangencial provocada
- pelo conjugado de aperto ("torque") C.
- Logo C= (Ft x dm)/2, onde
- dm é o diâmetro médio da rosca.
 - Figura 3
- N = força normal de contacto entre os filetes
- da rosca do parafuso e da porca (ou peça)
- Fat = força de atrito entre os filetes da rosca do parafuso e da porca(ou peça), onde Fat = μ x N

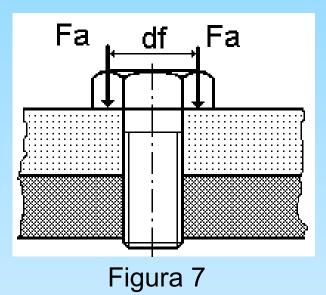
- As forças N e Fat tem componentes segundo a direção vertical e horizontal que são função do ângulo de hélice i.
- $i = arctg a/\pi dm$:
- As componentes verticais de N e Fat:
- Ncos i e µNsen i
- As componentes horizontais:
- Nseni e µNcosi

•


Figura 4

- Condição de equilíbrio:
- $\Sigma H = 0 => Ft \mu N \cos i N \sin i = 0 => N = Ft / (seni + \mu \cos i)$ (1)
- $\Sigma V = 0 => Fa N\cos i + \mu Nseni = 0 => N = Fa / (cosi \mu seni)$ (2)

- Igualando 1 e 2:
- Ft = Fa [(seni + μcosi) / (cosi μseni)]
 (3)
- Como o conjugado de aperto C vale: C = Ft.dm/2 (4)
- Substituindo 3 em 4 :
- C = (dm/2) x Fa [(seni + μcosi) / (cosi μseni)]
- dividindo o o numerador e o denominador por cosi, a equação 5 :
- $C = [(Fa.dm)/2] \times [(tgi + \mu) / (1 \mu tgi)]$ (6)
- $tgi = a / \pi.dm$:
- $C = [(Fa.dm)/2] \times [(a + \mu.\pi.dm) / (\pi.dm \mu.a)]$ (7)

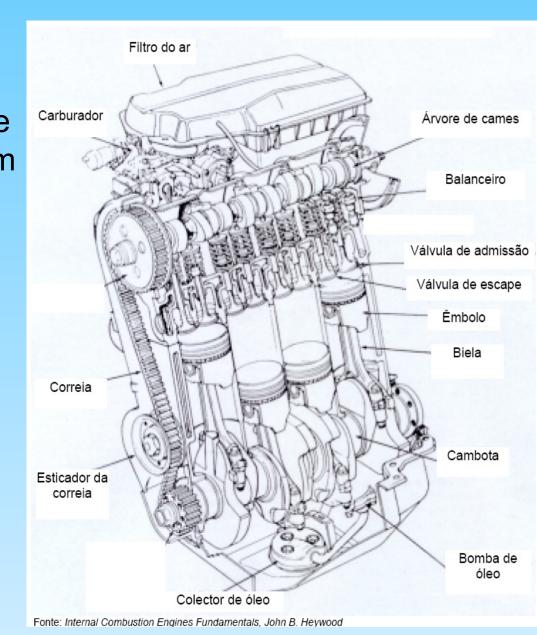

- Para rosca triangular ($\alpha = 60^{\circ}$), Nt = N / $\cos \alpha/2$
- Fat' = μ Nt = μ N / cos α /2, substuindo em 5
- Ct = (dm/2) x Fa [(seni + μcosi / cosα/2) / (cosi μseni/cosα/2)] (8)

•

- Da equação 7:
- Ct = [(Fa.dm)/2] x [(a + μ . π .dm / cos α /2) / (π .dm μ .a / cos α /2)] (9)

- Considerando o atrito com as faces:
- Cf = (Fa x μ f x df) / 2 (10)
- onde: Fa x μ f = Força de atrito nas faces
- df = diâmetro médio da face
- Parafusos normalizados => df = 1,25 d, onde d = diâmetro nominal, logo:
- Cf = (Fa x μ f x 1,25 d) / 2 = 0,625. Fa. μ f.d (11)

•


•

- O conjugado total de aperto será:
- C_T = Ct + Cf, ou a soma das equações 9 e 11:
- $C_T = [(Fa.dm)/2] \times [(a + \mu.\pi.dm / cos\alpha/2) / (\pi.dm \mu.a / cos\alpha/2)] + 0,625. Fa.\muf.d$
- ou

$$C_{\tau} = F_{a} \left(\frac{d_{m}}{2} \times \frac{a + \frac{\mu \pi . d_{m}}{\cos \alpha / 2}}{\pi . d_{m} - \frac{\mu . a}{\cos \alpha / 2}} + 0,625 \,\mu_{\tau} d \right)$$
(12)

Exemplo

- Exemple 1
- Os parafusos de fixam o cabeçote de um motor de combustão interna devem ser apertados com um conjugado de 90 Nm. Qual a força de compressão que cada parafuso provoca na união bloco-cabeçote? São utilizados parafusos de cabeça sextavada interna, M12, passo normal.

Exemplo

- RESOLUÇÃO:
- Das tabelas de dimensões para parafusos padrão Métrico, para M12 passo normal => p = 1,75 mm. Como para fixação utilizamos parafusos de 1 entrada o passo é igual ao avanço. Logo:
- a = 1,75 mm
- dm = 10,8 mm , d = 12 mm e $\alpha/2 = 30^{\circ}$
- e adotaremos $\mu = \mu f = 0.15$
- Como tg i = a / π dm => i = 2,950
- Como C_T = 90Nm = 90 kNmm, substituindo os valores na equação 12, temos:

$$C_{\tau} = F_{a} \left(\frac{d_{m}}{2} \times \frac{a + \frac{\mu \pi . d_{m}}{\cos \alpha / 2}}{\pi . d_{m} - \frac{\mu . a}{\cos \alpha / 2}} + 0,625 \,\mu_{\tau} d \right)$$

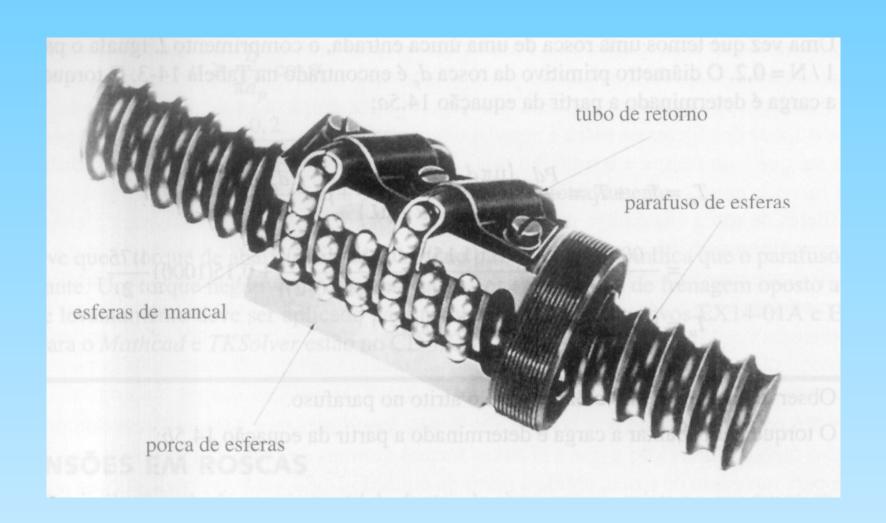
• 90.000 = Fa{(10,8/2) x [(1,75 + 0,15. π .10,8 / 0,87) / (π .10,8 – 0,15.1,75 / 0,87)] + 0,625.0,15.12}

- Note-se que o atrito entre as faces e as arruelas provoca uma diminuição de 48% no valor de Fa. Caso não houvesse este atrito o valor de Fa seria:
- 1,22 Fa' = 90.000 => Fa' = 73,8 kN.
- Foram realizados 20 testes* com parafusos similares a estes, com os seguintes resultados para o valor de Fa (em kN):

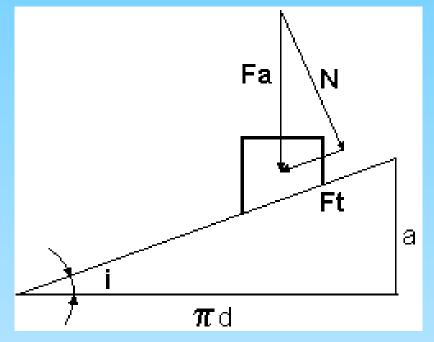

23,6	27,6	28,0	29,4	30,3	30,7	32,9	33,8	33,8	33,8
34,7	35,6	35,6	37,4	37,8	37,8	39,2	40,0	40,5	42,7

*Cf. Blake and Kurtz – Shigley, J. E.

RENDIMENTO DE PARAFUSOS PARA TRANSMISSÃO DE POTÊNCIA


- Para um parafuso de rosca quadrada:
- Eentrada = $C \times \theta$, onde θ é o ângulo de giro do parafuso/porca.
- Esaída = Fa x a , onde a é o avanço da rosca.
- O rendimento será: $r = (Fa \times a) / (C \times \theta)$, com $\theta = 2\pi$
- Com de C da equação 5 e a = π dm x tgi:
- $r = (1 \mu tgi) / (1 + \mu coti) (13)$
- Para um ângulo de filete diferente de 0:
- $r\alpha = (\cos \alpha/2 \mu tgi) / (\cos \alpha/2 + \mu coti)$ (14)

- Rosca Quadrada => pouco frequente
- Rosca Trapezoidal => Mais utilizada para aplicações de "força"


• r = f(i), rosca ACME, com $\alpha/2$ = 14.5°, α n = $\alpha/2$, f = μ e λ = i

fuso de esferas recirculantes

CONDIÇÃO DE TRAVAMENTO PARA PARAFUSOS DE FIXAÇÃO

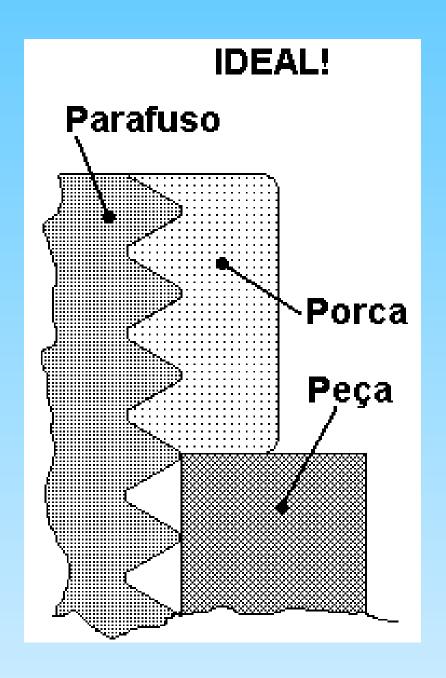
- FIXAÇÃO X REVERSIBILIDADE (Fa => C)
- N = Fa.cos i μ
- Ft = Fa.sen i
- Fat = μ.N = μ.Fa.cos i
- Travamento => Fat > Ft

- Logo: μ.Fa.cos i > Fa.sen i => μ > tg i (15)
- Rosca triangular => μ > tg i .x cos $\alpha/2$ (16)

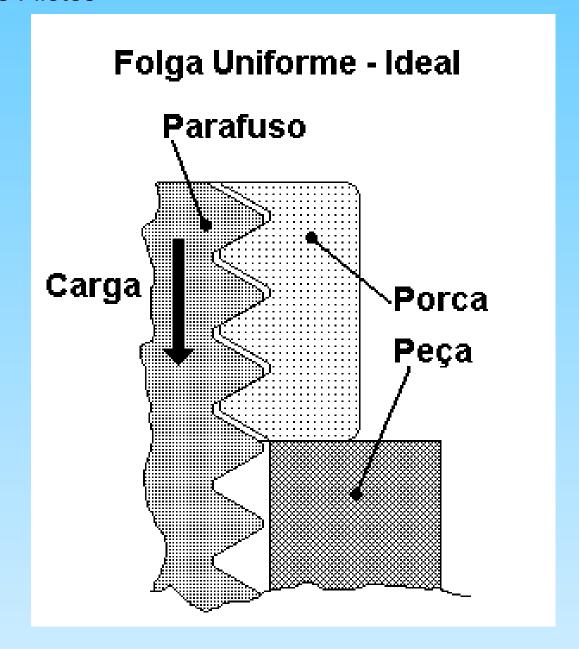
- Exemplo 2
- Parafuso M4, em aço, com passo normal, 1 entrada.
- μ mínimo para travamento?
- 1 entrada => passo = avanço = 0,7 mm (passo normal –tabelas)
- dm = (4 + 3,1) / 2 = 3,6 mm
- $tg i = 0.7 / (3.14 \times 3.6) => tg i = 0.06$
- rosca métrica, $\alpha/2 = 300$ e cós $\alpha/2 = 0.87$,
- da equação 16 => μ > 0,06 x 0,87 => μ > 0,052
- Aplicações Práticas

TABELAS DE ROSCAS

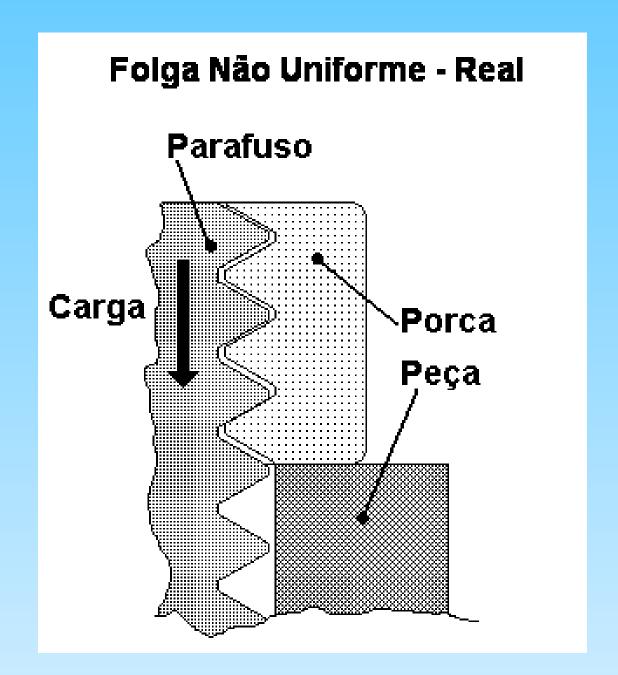
ROSCA MÉTRICA DE PERFIL TRIANGULAR SÉRIE NORMAL


SERIE NORMAL									
	EXTE	RNA			INTERNA	externa e interna			
	(PARA	.FUSO)			(PORCA)	(PARAFUSO E PORCA)			
Maior (nominal)	Menor	Altura do filete	Raio da raiz da rosca externa	Maior	Menor	Raio da raiz da rosca interna	Passo	Efetivo	
d (mm)	d ₁ (mm)	h _e (mm)	r _{re} (mm)	D (mm)	D ₁ (mm)	r _{ri} (mm)	P (mm)	d ₂ D ₂ (mm)	
1	0,693	0,153	0,036	1,011	0,729	0,018	0,25	0,837	
1,2	0,893	0,153	0,036	1,211	0,929	0,018	0,25	1,038	
1,4	1,032	0,184	0,043	1,413	1,075	0,022	0,3	1,205	
1,6	1,171	0,215	0,051	1,616	1,221	0,022	0,35	1,373	
1,8	1,371	0,215	0,051	1,816	1,421	0,022	0,35	1,573	
2	1,509	0,245	0,058	2,018	1,567	0,025	0,4	1,740	
2,2	1,648	0,276	0,065	2,220	1,713	0,028	0,45	1,908	
2,5	1,948	0,276	0,065	2,520	2,013	0,028	0,45	2,208	
3	2,387	0,307	0,072	3,022	2,459	0,031	0,5	2,675	
3,5	2,764	0,368	0,087	3,527	2,850	0,038	0,6	3,110	
4	3,141	0,429	0,101	4,031	3,242	0,044	0,7	3,545	
4,5	3,680	0,460	0,108	4,534	3,690	0,047	0,75	4,013	
5	4,019	0,491	0,115	5,036	4,134	0,051	0,8	4,480	
6	4,773	0,613	0,144	6,045	4,917	0,06	1	5,350	
7	5,773	0,613	0,144	7,045	5,917	0,06	1	6,350	
8	6,466	0,767	0,180	8,056	6,647	0,08	1,25	7,188	
9	7,466	0,767	0,180	9,056	7,647	0,08	1,25	8,188	
10	8,160	0,920	0,217	10,067	8,376	0,09	1,5	9,026	
11	9,160	0,920	0,217	11,067	9,376	0,09	1,5	10,026	
12	9,833	1,074	0,253	12,079	10,106	0,11	1,75	10,863	

TENSÕES EM ELEMENTOS ROSQUEADOS

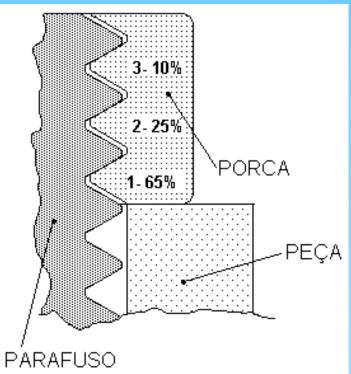

- Torção
- tensão máxima:
- $\forall \tau = 16.C / \pi \cdot d_{1}^{3}, (17)$
- C = conjugado (torque) d1 = diâmetro mínimo da rosca
- Tração e Compressão
- Hipótese: tensão uniforme $\sigma = P / A$, (18)
- P = carga axial A = área da secção resistente (tabelas) ou
- $A = \pi.d1^2/4$ (19) (área aproximada)
- Ensaios de tração => área resistente > área da secção mínima,
- Área Resistente de Parafusos Métricos Passo Normal

øNominal	3	4	6	8	10	12	16	20	24
Área res. mm²	5,0	8,8	20,1	36,6	58,0	84,3	156,7	244,8	352,5


• 3. Cisalhamento dos Filetes

• 3. Cisalhamento dos Filetes

• 3. Cisalhamento


- 3. Cisalhamento
- Cargas não uniformes nos filetes

$$\forall \tau f = P/A = P/(\pi.d1.p.k).kf$$
, (20)

- k = porcentual de área ocupada
 pelo filete real (com chanfro no fundo)
 em relação ao filete teórico (sem chanfro)
- kf = coeficiente que indica o número de filetes necessário para igualar-se a resistência ao cisalhamento com a de tração

- Logo: $\tau f = P/ \pi.d1.p.0,8.kf$
- Lembrando de σ esc = 0,577. τ esc (Von Mises)

- \forall σ esc = 0,577. τ esc (Von Mises)
- Igualando a resistência à tração do parafuso (18) com a resistência ao cisalhamento dos filetes (20), temos:
- $[P / (\pi.d1.p.0.,8.kf)] = (0,577).[4.P / \pi.d1^2] (21)$
- Simplificando a equação 21 temos:
- d1 = 1,85.p.kf. (22)
- roscas métricas => d1 ~ 0,8 d,
- e da altura da porca t = p.kf
- d1 = 1,85 t => $t \ge 0,54$ d1 => $t \ge 0,43$ d
- Dado prático t ~ 0,8 d => Resist. à Tração ~ Resit. ao Cisalhamento

