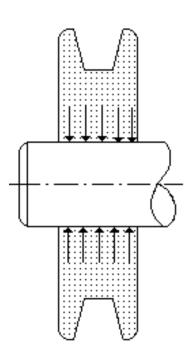
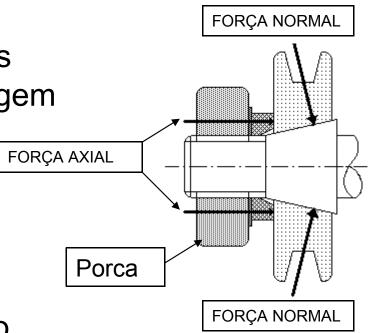

FIXAÇÕES CUBO-EIXO

Prof. Dr. Nicola Getschko

Fixações Cubo-Eixo

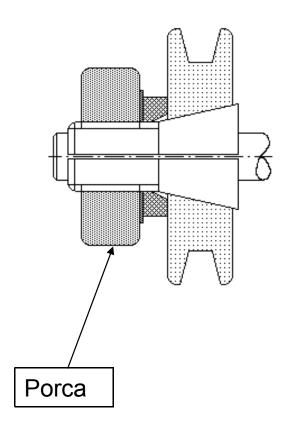

1. OBJETIVOS

 Uma fixação cubo-eixo tem como objetivo promover a vinculação entre peça qualquer e um eixo, geralmente para transmissão de potência (conjugado e rotação). Normalmente, esta vinculação não permite qualquer tipo de movimento relativo mas, em alguns casos, pode ocorrer translação entre as partes. CUBO – Define-se como CUBO de uma peça, a parte da peça cujo projeto tem como parâmetro fundamental sua fixação a uma eixo. O cubo pode ou não destacar-se da geometria básica da peça, como mostra a figura abaixo:


2. Fixação por Atrito

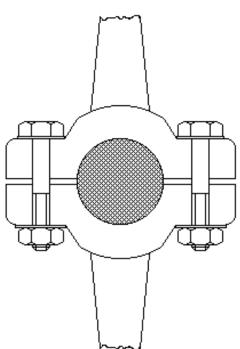
- 2.1 Interferência Ajuste Forçado
- Exemplo: H/p (P/h), H/r (R/h)
- CARACTERÍSTICAS:
- Limite Elástico dos Materiais
- Conjugados Leves a Moderados
- Pode causar danos na desmontagem
- Sem ajuste axial
- Não necessita de usinagem do eixo
- Sem concentradores de tensão
- Sem enfraquecimento eixo/cubo
- Baixo custo

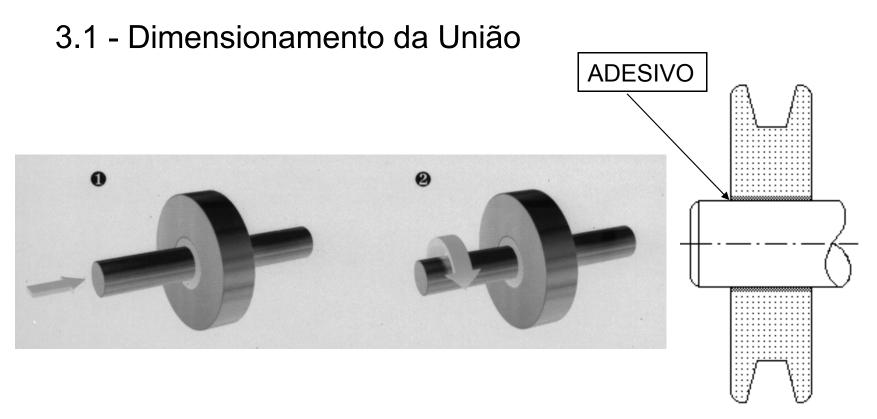
2.2 Assento Cônico


- CARACTERÍSTICAS:
- Limite Elástico dos Materiais
- Conjugados Leves a Moderados
- Não causa danos na desmontagem
- Sem ajuste axial
- Ajuste angular eixo-cubo
- Necessita de usinagem do eixo e do cubo
- Gera concentradores de tensão
- Sem enfraquecimento eixo/cubo
- Alto custo

2.3 Bucha Cônica

Funcionamento similar ao de assento cônico

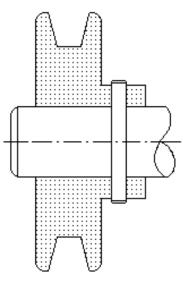

- CARACTERÍSTICAS:
- Limite Elástico dos Materiais
- Conjugados Leves a Moderados
- Não causa danos na desmontagem
- Com ajuste axial e angular eixo-cubo
- Não necessita de usinagem do eixo
- Necessita de usinagem do cubo
- Não gera concentradores de tensão
- Sem enfraquecimento eixo/cubo
- Alto custo

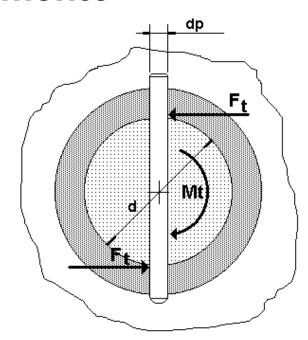

2.4 Cubo Bipartido

Funcionamento similar à fixação por Interferência, porém as tensões normas entre o cubo e o eixo podem ser ajustadas pelo aperto dos parafusos.

- CARACTERÍSTICAS:
- Limite Elástico dos Materiais
- Conjugados Leves a Moderados
- Não causa danos na desmontagem
- Com ajuste axial e angular entre o cubo e o eixo
- Não necessita de usinagem do eixo
- Sem concentradores de tensão
- Sem enfraquecimento eixo/cubo
- Cuidados na usinagem do cubo: balanceamen...
- Alto custo

3. Por Adesão




 HIPÓTESE: RUPTURA POR CISALHAMENTO DO ADESIVO

- Dados:
- Conjugado no eixo: Mt
- Diâmetro do eixo: d
- Tensão admissível ao cisalhamento do adesivo : ta
- Incógnita: Comprimento axial da união: la
- Área da união: Sa= la x π x d
- Força de Cisalhamento na União: Ft = 2.Mt / d
- Assumindo que a distribuição de tensões de cisalhamento no adesivo é uniforme:
- Tensão de Cisalhamento: ta = Ft / Sa
 => ta ≤ (2.Mt / d) / (la x π x d)
- Logo $la \geq 2.Mt / (d2 \cdot ta \cdot \pi)$

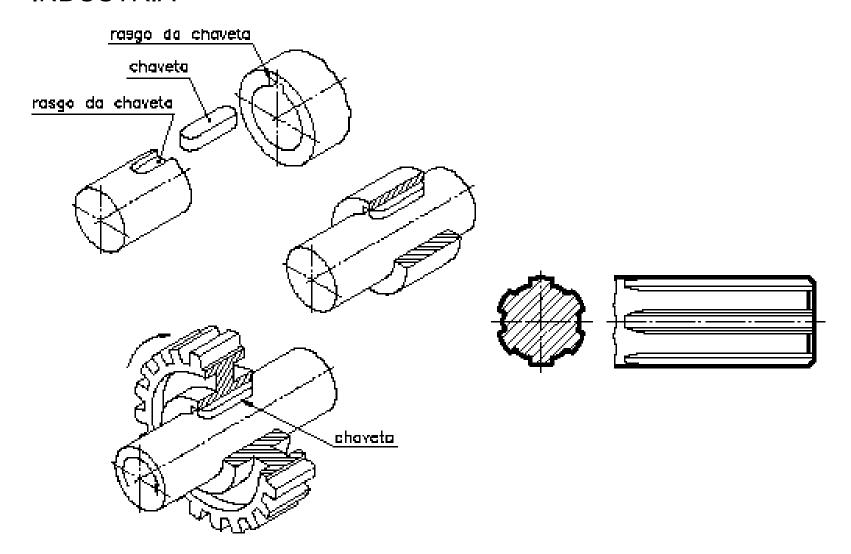
4. Por Travamento

4.1 – Pino Transversal

- 4.1.1 Dimensionamento da União
- HIPÓTESE: RUPTURA POR CISALHAMENTO DO PINO
- Dados:
- Conjugado no eixo: Mt
- Diâmetro do eixo: d
- Tensão admissível ao cisalhamento do material do pino : ta
- Incógnita: Diâmetro do pino: dp

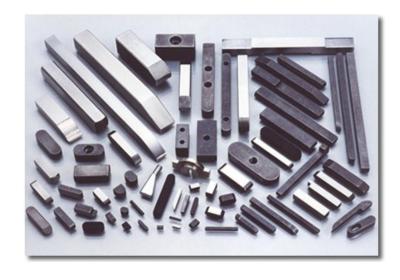
- Área da união (secção transversal do pino): Sp= (π x dp2) / 4
- Força de Cisalhamento na União: Ft = Mt / d
- Como (tensão uniforme) ta = Ft / Sp
- => $ta \le 4 \times (Mt / d) / (\pi \times dp2)$

Logo


$$dp \geqslant 2 \cdot \sqrt{\frac{Mt}{\pi \cdot d \cdot ta}}$$

- CUIDADO: com o aumento de dp, a secção resistente do eixo diminui
- => PODE HAVER RUPTURA DO EIXO POR TORÇÃO/CISALHAMENTO
- Em geral dp ≤ 0,2 d

4.1.2 CARACTERÍSTICAS:


- Conjugados Leves a Moderados
- Desmontável facilmente
- Sem ajuste axial e angular entre o cubo e o eixo
- Necessita de usinagem simples do eixo e do cubo
- Gera concentradores de tensão
- Causa enfraquecimento eixo/cubo
- Utilizado como "fusível" mecânico de baixo custo
- Baixo custo

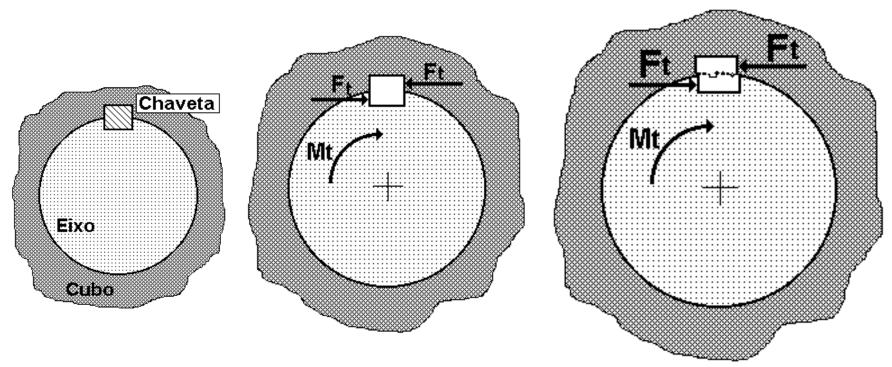
- 4.2 Chavetas e Entalhados
- SÃO AS FIXAÇÕES CUBO-EIXO MAIS UTILIZADAS NA INDUSTRIA

4.2.1 – Prinicipais Tipos de Chavetas

PLANAS

COM CABEÇA

MEIA – LUA OU "WOODRUF"



4.2.2 - Norma Técnica - DIN 6885

Eixo		Chaveta				Rasgo							
Diâmetro d		Seção b x h				Largura						Profundidade	
de	até	b	h 9	h	h 11	Valor	Eixo h9	Cubo D10	Eixo n9	Cubo JS9	Eixo / cubo p9P9	Eixo t1	Cubo t2
6	8	2	0	2	0	2	0	0,06	-0	0,01	-0,006	1,2	1
8	10	3	-0,03	3	-0,03	3	0	0,02	-0	-0,01	-0,031	1,8	1,4
10	12	4	0	4	0	4	0	0,078	0	0,02	-0,012	2,5	1,8
12	17	5	-0,03	5	-0,03	5	0	0,03	-0	-0,02	-0,042	3	2,3
17	22	6		6		6						3,5	2,8
22	30	8	0	7	0	8	0	0,098	0	0,02	-0,015	4	3,3
30	38	10	-0,04	8	-0,09	10	0	0,04	-0	-0,02	-0,051	5	3,3

4.2.3 – Dimensionamento ao Cisalhamento de Chavetas

- HIPÓTESE: RUPTURA POR CISALHAMENTO DA CHAVETA
- Dados:
- Conjugado no eixo: Mt
- Diâmetro do eixo: d
- Tensão admissível ao cisalhamento do material do chaveta: ta

- Dados:
- Conjugado no eixo: Mt
- Diâmetro do eixo: d
- Tensão admissível ao cisalhamento do material do chaveta: ta
- Incógnita: Comprimento da chaveta {b e h são normalizados = f(d)}: Lt
- Área da união: St= b x Lt
- Força de Cisalhamento na União: Ft = 2. Mt / d
- Como (tensão uniforme) ta = Ft / St
- => $ta \le 2 x (Mt / d) / b x Lt$

Logo Lt
$$\geqslant \frac{2.Mt}{d.ta.b}$$

4.2.4 – Verificação quanto à Compressão de Chavetas

PODE OCORRER ESMAGAMENTO POR COMPRESSÃO DAS LATERAIS DO RASGO/CHAVETA.

- Dados:
- Conjugado no eixo: Mt
- Diâmetro do eixo: d
- Tensão admissível à compressão do material do chaveta: σa
- Incógnita: Comprimento da chaveta {b e h são normalizados = f(d)}: Lc
- Área da união: Sc= (h/2) x Lc (aproximando t1 = t2)
- Força de Compressão na União: Fc = 2. Mt / d
- Como (tensão uniforme) σa = Fc / Sc
- => $\sigma a \le [2 \times (Mt / d)] / [(h/2) \times Lc]$
- Logo

$$Lc \geqslant \frac{4.Mt}{d.\sigma a.h}$$

ADOTA-SE O MAIOR ENTRE Lt e Lc

- QUANDO O Lchaveta FOR MAIOR QUE O Lcubo DISPONÍVEL, PODEM-SE COLOCAR ATÉ DUAS CHAVETAS OPOSTAS.
- Admite-se até um máximo de 03 chavetas, montadas a 120 graus.
 PROBLEMA COM CHAVETAS "MULTIPLAS" CARGA NÃO UNIFORME
- CAUSA: ERROS DE FABRICAÇÃO / MONTAGEM
- QUANDO FOR NECESSÁRIO UM COMPRIMENTO MAIOR, UTILIZA-SE O ENTALHADO ou ESTRIADO, QUE EQUIVALE AO USO DE CHAVETAS "MULTIPLAS".

4.2.5 Dimensionamento de Entalhados

- SIMILAR AO DIMENSIONAMENTO DE CHAVETAS
- ASSOCIA-SE UM FATOR DE CORREÇÃO DA UNIFORMIDADE DA CARGA EM CADA DENTE DO ENTALHADO
- LOGO PARA CISALHAMENTO:

Let
$$\geqslant \frac{2.\text{Mt. }\eta}{\text{d.ta.b.N}}$$

- ONDE: N = NÚMERO DE DENTES DO ENTALHADO
- η = COEFICIENTE DE CORREÇÃO DA CARGA. EM GERAL ADOTA-SE η = 1,25
- PARA A COMPRESSÃO:

Lec
$$\geqslant \frac{2.\text{Mt.}\eta}{\text{d.}\sigma\text{a.he.}N}$$

ADOTA-SE O MAIOR COMPRIMENTO ENTRE Let e Lec

4.2.5 Dimensionamento de Entalhados

- SIMILAR AO DIMENSIONAMENTO DE CHAVETAS
- ASSOCIA-SE UM FATOR DE CORREÇÃO DA UNIFORMIDADE DA CARGA EM CADA DENTE DO ENTALHADO
- LOGO PARA CISALHAMENTO:

Let
$$\geqslant \frac{2.\text{Mt. }\eta}{\text{d.ta.b.N}}$$

- ONDE: N = NÚMERO DE DENTES DO ENTALHADO
- η = COEFICIENTE DE CORREÇÃO DA CARGA. EM GERAL ADOTA-SE η = 1,25
- PARA A COMPRESSÃO:

Lec
$$\geqslant \frac{2.\text{Mt.}\eta}{\text{d.}\sigma\text{a.he.}N}$$

ADOTA-SE O MAIOR COMPRIMENTO ENTRE Let e Lec

CARACTERÍSTICAS:

- Conjugados Moderados a Elevados
- Desmontável facilmente
- Sem ajuste axial e angular entre o cubo e o eixo
- Necessita de usinagem media /alta complexidade do eixo e do cubo
- Gera concentradores de tensão
- Causa pouco enfraquecimento eixo/cubo
- Pode permitir deslocamento axial entre cubo e eixo
- Custo médio a elevado

5. CONSIDERAÇÃO FINAL

• A RUPTURA DE UMA UNIÃO CUBO-EIXO, QUANDO E SE OCORRER, DEVE LOCALIZAR-SE SEMPRE NO ELEMENTO DE FIXAÇÃO E NÃO NO EIXO OU NO CUBO.

5.1 EXERCÍCIO

- Pesquisar e escolher uma fixação cubo-eixo de um equipamento real, tendo como dados os parâmetros reais de projeto e operação e dimensionar a fixação por meio de pino radial e por chaveta plana.
 - O exercício deverá ser feito em duplas e enviado para o endereço getnic@gmail.com, até do dia 01/10/20, sob o título "pmr3307ex1NGnome dos dois integrantes"

OBRIGADO!