

NITIUTO INFRADOR TECNICO	Tabular Freeboard (ILLC)	
 The tabucurve representation Conventing Ships 	ılar freeboard can be approximated by a parabolic gression of the tabular values from the Load Lines on as follows of Type A :	_
FB	$= -0.027415 \times Lfb^{2} + 21.007881 \times Lfb - 562.067149$	[mm]
- Ships	of Type B:	
FB	$= -0.016944 \times Lfb^2 + 22.803499 \times Lfb - 691.269920$	[mm]
where L	.fb = ship length according to the rules [m]	
M.Ventura	Estimation Methods	28

	Gross	s Tonr	nage	
• The Nur	Gross Tonnage can be estin ther (CN = Lpp × B × D), by T $GT = k \cdot C$	nated as the follow CN	a function of the Cu ving expression:	bic
Г	Type of Ship		К	
	Tanker, Bulk Carrier		0.26 - 0.30	
	Product Tanker, Chemical Tank	er	0.25 - 0.35	
-	Multi-Purpose		0.25 - 0.40	
	Fast Container Carrier		0.25 - 0.33	
M.Ventur	a Estimatic	on Methods		30

From statistical analysis regression (d'Almeida, 2009):					
$W_H = k1 \cdot L_S^{k2} \cdot B^{k3} \cdot D^{k4}$					
	k1	k2	k3	k4	
Oil Tankers	0.0361	1.600	1.000	0.220	
Bulk Carriers	0.0328	1.600	1.000	0.220	
Container Carriers	0.0293	1.760	0.712	0.374	
Conoral Cargo	0.0313	1 675	0 850	0.280	

Hull Weight Correction

The hull weight estimate can be improved by considering some particular aspects such as the usage of special steels, the need of structural reinforcements for high density cargos or the existence of ice belts.

	Correction [%]
HTS (about 60% of total)	-12.0
HTS (about 35% of total)	-8.0
Systems for corrosion control (tankers)	-4.0
Corrugated bulkheads	-1.7
Reinforcements for Ore Carriers	+4.0
Reinforcements for heavy cargo in alt. holds	+5.5
Reinforcements of holds (general cargo)	+1.5
Reinforcements of decks (general cargo)	+0.5
Ice Class I	+8.0
Ice Class II	+6.0
Ice Class III	+4.0

UTUTO KAIOR NICO	Machine	ery Weig	ht (2)	
From st	atistical analysis regre	ession (d'Alr	neida, 200)9):
	$W_M = k1 \cdot F$	k2 MCR		
he coef	ficients k1 and k2 are	characteri	stic of the	e type of
he coef ropulsiv	ficients k1 and k2 are e plant:	characteri	stic of the	e type of
The coef ropulsiv	ficients k1 and k2 are e plant: Diesel (2 stroke)	kl 2.41	stic of the k2 0.62	e type of
he coef ropulsiv	ficients k1 and k2 are e plant: Diesel (2 stroke) Diesel (4 stroke)	k1 2.41 1.88	k2 0.62 0.60	e type of
he coef ropulsiv	ficients k1 and k2 are e plant: Diesel (2 stroke) Diesel (4 stroke) 2 x Diesel (2 stroke)	k1 2.41 1.88 2.35	k2 0.62 0.60 0.60	e type of
he coef ropulsiv	ficients k1 and k2 are e plant: Diesel (2 stroke) Diesel (4 stroke) 2 x Diesel (2 stroke) Steam Turbine	k1 2.41 1.88 2.35 5.00	k2 0.62 0.60 0.60 0.54	e type of

Material	Specific Weight [t/m³]
Bronze Manganese	8.30
Bronze Nickel/Manganese	8.44
Bronze Nickel/Aluminum	7.70
Bronze Copper/Nickel/Aluminum	
Bronze Manganese/Nickel/Aluminum	
Cast steel	7.85
Stainless steel	7.48 ~ 8.00
Cast iron	7.21

NATITUTO I VERNICO I VERNICO	Equipment Weight					
• From s	statistical analysis reg	gression (d'	Almeida, 200)9):		
	$W_E = k 1 \cdot (L \cdot E)$	$(B \cdot D)^{K2}$				
		k1	k2			
	Oil Tankers	10.820	0.41			
	Bulk Carriers	6.1790	0.48			
	Container Carriers 0.1156 0.85					
	General Cargo 0.5166 0.75					
M.Ventura	Estimati	on Methods		55		

Specific Gravity [t/m3]Heavy Fuel Oil (HFO)0.935 ~ 0.996
Heavy Fuel Oil (HFO) 0.935 ~ 0.996
Diesel Oil (DO) 0.86 ~ 0.90
Boiler Fuel Oil (BO) 0.94 ~ 0.96
Lubricating Oil (LO) 0.90 ~ 0.924
Dieser Oil (DO) 0.86 ~ 0.90 Boiler Fuel Oil (BO) 0.94 ~ 0.96 Lubricating Oil (LO) 0.90 ~ 0.924

and the number of	propeller	rs.	·	
Cb	0.50	0.60	0.70	0.80
w (1 propeller)	0.14	0.23	0.29	0.35
w (2 propellers)	0.15	0.19	0.19	0.23
w (2 propellers)	0.15	0.19	0.19	0.23

Configuration of the Hull Appendages	1+k ₂
udder (1 propeller)	1.1~1.5
Rudder (2 propellers)	2.2
Rudder + structs (1 propeller)	2.7
Rudder + boss (2 propellers)	2.4
Stabilizer Fins	2.8
Bilge Keels	1.4
Domes	2.7

Cubic Effi	ciency	Factor	r (CEF)	
The CED is a useful ratio	defined l	ру		
CEF = C _{CRG} /(LBD)				
Typically presents values	of [0.50,	0.65] and	d it can be	2
- additional and a second s	a + b + b - b	ovnnocci	on:	
estimated for similar ship	is by the	expi essi	с С	[m3]
$CEF = k1 \cdot Cb^{k^2} \cdot C_{and}^{k3}$	$\cdot P_{\rm tran}^{k4}$	expi essi	С. С _{СР}	_e [m3]
$CEF = k1 \cdot Cb^{k2} \cdot C_{CRG}^{k3}$	$\cdot P_{MCR}^{k4}$		С _{СР} Р _М а	₂₆ [m3] ₂₈ [Hp]
$CEF = k1 \cdot Cb^{k2} \cdot C_{CRG}^{k3}$	$\cdot P_{MCR}^{k4}$ k1	k2	C _{CR} P _M	₂₆ [m3] ₂₈ [Hp] k4
estimated for similar ship $CEF = k1 \cdot Cb^{k2} \cdot C_{CRG}^{k3}$ Oil Tankers	 <i>P</i>^{k4}_{MCR} k1 0.6213 	k2 0.80	C _{CF} P _M k3 0.094	²⁶ [m3] _{CR} [Hp] k4 -0.10
estimated for similar ship $CEF = k1 \cdot Cb^{k2} \cdot C_{CRG}^{k3}$ Oil Tankers Bulk Carriers	$ P_{MCR}^{k4} $ k1 0.6213 0.7314	k2 0.80 0.66	C _{CF} P _M k3 0.094 0.079	^{AG} [m3] _R [Hp] k4 -0.10 -0.10
estimated for similar ship $CEF = k1 \cdot Cb^{k2} \cdot C_{CRG}^{k3}$ Oil Tankers Bulk Carriers Multi-Purpose	P_{MCR}^{k4} k1 0.6213 0.7314 1.2068	k2 0.80 0.66 0.60	C _{CF} P _M k3 0.094 0.079 0.077	<pre>k6 [m3] k6 [Hp] k4 -0.10 -0.10 -0.15</pre>

NSTITUTO		Bibliography (2)	
✓	Holtrop, J. e M Method", Inter	ennen, G. (1978), "A Statistical Po national Shipbuilding Progress, Vo	ower Prediction bl.25, No. 290.
✓	Holtrop, J. and Prediction Meth No.335, pp.166	Mennen, G. (1982), "An Approxim hod", International Shipbuilding P -170.	ate Power rogress, Vol.29,
✓	Holtrop, J. (198 Propulsion Data No.363, pp.272	34), "A Statistical Re-Analysis of ", International Shipbuilding Prog -276.	Resistance and ress, Vol. 31,
✓	IACS (1999), "	Requirements Concerning Mooring	and Anchoring".
✓	Kuiper, G. (1992	2), "The Wageningen Propeller Se	ries", Marin, Delft.
~	Kupras, L. K. (19 Precontracted	976), "Optimisation Method and P Ship Design", International Shipb	arametric Design in uilding Progress.
~	Parson, Michael Design and Cons	l G. (2003), "Parametric Design", (struction", Vol.I, Lamb (Ed.)	Chapter 11 of "Ship
M.V	/entura	Estimation Methods	120

