
Problem 1.1    [Difficulty: 3] 

 

 

 

Given: Common Substances  

Tar Sand 

“Silly Putty” Jello 

Modeling clay Toothpaste 

Wax Shaving cream 

 

Some of these substances exhibit characteristics of solids and fluids under different conditions. 

Find: Explain and give examples. 

Solution: Tar, Wax, and Jello behave as solids at room temperature or below at ordinary pressures. At high 

pressures or over long periods, they exhibit fluid characteristics. At higher temperatures, all three 

liquefy and become viscous fluids. 

Modeling clay and silly putty show fluid behavior when sheared slowly. However, they fracture 

under suddenly applied stress, which is a characteristic of solids. 

Toothpaste behaves as a solid when at rest in the tube. When the tube is squeezed hard, toothpaste 

“flows” out the spout, showing fluid behavior. Shaving cream behaves similarly. 

Sand acts solid when in repose (a sand “pile”). However, it “flows” from a spout or down a steep 

incline. 



Problem 1.2    [Difficulty: 2] 

 

Given: Five basic conservation laws stated in Section 1-4. 

Write: A word statement of each, as they apply to a system.  

Solution: Assume that laws are to be written for a system.  

a. Conservation of mass — The mass of a system is constant by definition. 

b. Newton's second law of motion — The net force acting on a system is directly proportional to the product of the 

system mass times its acceleration. 

c. First law of thermodynamics — The change in stored energy of a system equals the net energy added to the 

system as heat and work. 

d. Second law of thermodynamics — The entropy of any isolated system cannot decrease during any process 

between equilibrium states. 

e. Principle of angular momentum — The net torque acting on a system is equal to the rate of change of angular 

momentum of the system. 



Problem 1.3    [Difficulty: 3] 

 

Open-Ended Problem Statement: The barrel of a bicycle tire pump becomes quite warm during use. 

Explain the mechanisms responsible for the temperature increase. 

 

Discussion: Two phenomena are responsible for the temperature increase: (1) friction between the pump piston 

and barrel and (2) temperature rise of the air as it is compressed in the pump barrel. 

Friction between the pump piston and barrel converts mechanical energy (force on the piston moving through a 

distance) into thermal energy as a result of friction. Lubricating the piston helps to provide a good seal with the 

pump barrel and reduces friction (and therefore force) between the piston and barrel. 

Temperature of the trapped air rises as it is compressed. The compression is not adiabatic because it occurs during a 

finite time interval. Heat is transferred from the warm compressed air in the pump barrel to the cooler surroundings. 

This raises the temperature of the barrel, making its outside surface warm (or even hot!) to the touch.  



Problem 1.4    [Difficulty: 3] 

 

Open-Ended Problem Statement: Consider the physics of “skipping” a stone across the water surface 

of a lake. Compare these mechanisms with a stone as it bounces after being thrown along a roadway. 

Discussion: Observation and experience suggest two behaviors when a stone is thrown along a water surface:  

1. If the angle between the path of the stone and the water surface is steep the stone may penetrate the water 

surface. Some momentum of the stone will be converted to momentum of the water in the resulting splash. 

After penetrating the water surface, the high drag* of the water will slow the stone quickly. Then, because the 

stone is heavier than water it will sink. 

2. If the angle between the path of the stone and the water surface is shallow the stone may not penetrate the water 

surface. The splash will be smaller than if the stone penetrated the water surface. This will transfer less 

momentum to the water, causing less reduction in speed of the stone. The only drag force on the stone will be 

from friction on the water surface. The drag will be momentary, causing the stone to lose only a portion of its 

kinetic energy. Instead of sinking, the stone may skip off the surface and become airborne again. 

When the stone is thrown with speed and angle just right, it may skip several times across the water surface. With 

each skip the stone loses some forward speed. After several skips the stone loses enough forward speed to penetrate 

the surface and sink into the water. 

Observation suggests that the shape of the stone significantly affects skipping. Essentially spherical stones may be 

made to skip with considerable effort and skill from the thrower. Flatter, more disc-shaped stones are more likely to 

skip, provided they are thrown with the flat surface(s) essentially parallel to the water surface; spin may be used to 

stabilize the stone in flight. 

By contrast, no stone can ever penetrate the pavement of a roadway. Each collision between stone and roadway will 

be inelastic; friction between the road surface and stone will affect the motion of the stone only slightly. Regardless 

of the initial angle between the path of the stone and the surface of the roadway, the stone may bounce several times, 

then finally it will roll to a stop. 

The shape of the stone is unlikely to affect trajectory of bouncing from a roadway significantly.  



Problem 1.5 [Difficulty: 1]

Given: Dimensions of a room

Find: Mass of air

Solution:

Basic equation: ρ
p

Rair T⋅
=

Given or available data p 14.7psi= T 59 460+( )R= Rair 53.33
ft lbf⋅

lbm R⋅
⋅=

V 10 ft⋅ 10× ft⋅ 8× ft⋅= V 800 ft
3

⋅=

Then ρ
p

Rair T⋅
= ρ 0.076

lbm

ft
3

⋅= ρ 0.00238
slug

ft
3

⋅= ρ 1.23
kg

m
3

=

M ρ V⋅= M 61.2 lbm⋅= M 1.90 slug⋅= M 27.8kg=



Problem 1.6 [Difficulty: 1]

Given: Data on oxygen tank.

Find: Mass of oxygen.

Solution: Compute tank volume, and then use oxygen density (Table A.6) to find the mass.

The given or available

data is:
D 16 ft⋅= p 1000 psi⋅= T 77 460+( ) R⋅= T 537 R⋅=

RO2 48.29
ft lbf⋅

lbm R⋅
⋅= (Table A.6)

For oxygen the critical temperature and pressure are: Tc 279 R⋅= pc 725.2 psi⋅= (data from NIST WebBook)

so the reduced temperature and pressure are: TR
T

Tc

1.925== pR
p

pc

1.379==

Using a compressiblity factor chart: Z 0.948= Since this number is close to 1, we can assume ideal gas behavior.

Therefore, the governing equation is the ideal gas equation p ρ RO2⋅ T⋅= and ρ
M

V
=

where V is the tank volume V
π D

3
⋅

6
= V

π

6
16 ft⋅( )

3
×= V 2144.7 ft

3
⋅=

Hence M V ρ⋅=
p V⋅

RO2 T⋅
= M 1000

lbf

in
2

⋅ 2144.7× ft
3

⋅
1

48.29
×

lbm R⋅

ft lbf⋅
⋅

1

537
×

1

R
⋅

12 in⋅

ft

⎛⎜
⎝

⎞
⎠

2

×=

M 11910 lbm⋅=



Problem 1.7    [Difficulty: 3] 

 

Given: Small particle accelerating from rest in a fluid. Net weight is W, resisting force FD = kV, where V 

is speed. 

Find: Time required to reach 95 percent of terminal speed, Vt. 

Solution: Consider the particle to be a system. Apply Newton's second law. 

Basic equation: ∑Fy = may 

Assumptions: 

1. W is net weight 

2. Resisting force acts opposite to V 

Then 

Fy y∑ = − = =W kV = ma
dt

m
dV W

g

dV

dt
 

or 
dV

dt
g(1

k

W
V)= −  

Separating variables, 
dV

1 V
g dt

k
W

−
=  

Integrating, noting that velocity is zero initially, ( ) gtgdtV
k

W

V

dV t

W

k
V

W
k

==−−=
− ∫∫ 00

1ln
1

 

or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==−

−−
W

kgt

W

kgt

e
k

W
VeV

W

k
1;1  

But V→Vt  as  t→∞, so Vt
W
k

= . Therefore 
V

V
1 e

t

kgt

W= −
−

 

When  V
Vt

0.95= , then  e 0.05

kgt

W
−

=   and 
kgt

W
3= . Thus t = 3W/gk 

W 

FD = kV 

y 

Particle 



Problem 1.8    [Difficulty: 2] 

 

Given: Small particle accelerating from rest in a fluid. Net weight is W, 

resisting force is FD = kV, where V is speed. 

Find: Distance required to reach 95 percent of terminal speed, Vt.  

Solution: Consider the particle to be a system.  Apply Newton's second law.  

Basic equation:   ∑Fy = may 

Assumptions:  

1. W is net weight. 

2. Resisting force acts opposite to V. 

Then,  dV W dV
dt g dy

F W kV = ma m Vy y= − = =∑     or     V dVk
W g dy

1 V− =  

At terminal speed, ay = 0  and  W
t k

V V= = . Then  
g

V dV1
V g dy

1 V− =  

Separating variables 

t

1
V

V dV
g dy

1 V
=

−
 

Integrating, noting that velocity is zero initially 
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2

2
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V
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t
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t
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V
V

V
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W
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⎡ ⎤⎛ ⎞
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⎢ ⎥⎝ ⎠⎣ ⎦−

= − − − −

= − + =

∴ = =

∫

 

W 
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Problem 1.9 [Difficulty: 2]

Given: Mass of nitrogen, and design constraints on tank dimensions.

Find: External dimensions.

Solution: Use given geometric data and nitrogen mass, with data from Table A.6.

The given or available data is: M 5 kg⋅= p 200 1+( ) atm⋅= p 20.4 MPa⋅=

T 20 273+( ) K⋅= T 293 K⋅= RN2 296.8
J

kg K⋅
⋅= (Table A.6)

The governing equation is the ideal gas equation p ρ RN2⋅ T⋅= and ρ
M

V
=

where V is the tank volume V
π D

2
⋅

4
L⋅= where L 2 D⋅=

Combining these equations:

Hence M V ρ⋅=
p V⋅

RN2 T⋅
=

p

RN2 T⋅

π D
2

⋅

4
⋅ L⋅=

p

RN2 T⋅

π D
2

⋅

4
⋅ 2⋅ D⋅=

p π⋅ D
3

⋅

2 RN2⋅ T⋅
=

Solving for D D
2 RN2⋅ T⋅ M⋅

p π⋅

⎛
⎜
⎝

⎞
⎠

1

3

= D
2

π
296.8×

N m⋅

kg K⋅
⋅ 293× K⋅ 5× kg⋅

1

20.4 10
6

×
×

m
2

N
⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

=

D 0.239 m⋅= L 2 D⋅= L 0.477 m⋅=

These are internal dimensions; the external ones are 2 x 0.5 cm larger: L 0.249 m⋅= D 0.487 m⋅=



Problem 1.10 [Difficulty: 4]

NOTE: Drag formula is in error: It should be:

FD 3 π⋅ V⋅ d⋅=

Mg 

FD = 3πVd 

a = dV/dt 

Given: Data on sphere and formula for drag.

Find: Diameter of gasoline droplets that take 1 second to fall 10 in.

Solution: Use given data and data in Appendices; integrate equation of

motion by separating variables.

The data provided, or available in the Appendices, are:

μ 4.48 10
7−

×
lbf s⋅

ft
2

⋅= ρw 1.94
slug

ft
3

⋅= SGgas 0.72= ρgas SGgas ρw⋅= ρgas 1.40
slug

ft
3

⋅=

Newton's 2nd law for the sphere (mass M) is (ignoring buoyancy effects) M
dV

dt
⋅ M g⋅ 3 π⋅ μ⋅ V⋅ d⋅−=

dV

g
3 π⋅ μ⋅ d⋅

M
V⋅−

dt=
so

Integrating twice and using limits V t( )
M g⋅

3 π⋅ μ⋅ d⋅
1 e

3− π⋅ μ⋅ d⋅

M
t⋅

−

⎛
⎜
⎝

⎞

⎠⋅= x t( )
M g⋅

3 π⋅ μ⋅ d⋅
t

M

3 π⋅ μ⋅ d⋅
e

3− π⋅ μ⋅ d⋅

M
t⋅

1−

⎛
⎜
⎝

⎞

⎠⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Replacing M with an expression involving diameter d M ρgas
π d

3
⋅

6
⋅= x t( )

ρgas d
2

⋅ g⋅

18 μ⋅
t

ρgas d
2

⋅

18 μ⋅
e

18− μ⋅

ρgas d
2⋅

t⋅

1−

⎛
⎜
⎜
⎝

⎞

⎠⋅+

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅=

This equation must be solved for d so that x 1 s⋅( ) 10 in⋅= .  The answer can be obtained from manual iteration, or by using

Excel's Goal Seek.

d 4.30 10
3−

× in⋅=

0 0.025 0.05 0.075 0.1

0.25

0.5

0.75

1

t (s)

x
 (

in
)

0 0.25 0.5 0.75 1

2.5

5

7.5

10

t (s)

x
 (

in
)

Note That the particle quickly reaches terminal speed, so that a simpler approximate solution would be to solve Mg = 3πµVd for d,

with V = 0.25 m/s (allowing for the fact that M is a function of d)!



Problem 1.11 [Difficulty: 3]

Given: Data on sphere and formula for drag.

Find: Maximum speed, time to reach 95% of this speed, and plot speed as a function of time.

Solution: Use given data and data in Appendices, and integrate equation of motion by separating variables.

The data provided, or available in the Appendices, are:

ρair 1.17
kg

m
3

⋅= μ 1.8 10
5−

×
N s⋅

m
2

⋅= ρw 999
kg

m
3

⋅= SGSty 0.016= d 0.3 mm⋅=

Then the density of the sphere is ρSty SGSty ρw⋅= ρSty 16
kg

m
3

=

The sphere mass is M ρSty
π d

3
⋅

6
⋅= 16

kg

m
3

⋅ π×
0.0003 m⋅( )

3

6
×= M 2.26 10

10−
× kg=

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ 3 π⋅ V⋅ d⋅=

so

Vmax
M g⋅

3 π⋅ μ⋅ d⋅
=

1

3 π⋅
2.26 10

10−
×× kg⋅ 9.81×

m

s
2

⋅
m

2

1.8 10
5−

× N⋅ s⋅
×

1

0.0003 m⋅
×= Vmax 0.0435

m

s
=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV

dt
⋅ M g⋅ 3 π⋅ μ⋅ V⋅ d⋅−=

Mg 

FD = 3πVd 

a = dV/dt 

so
dV

g
3 π⋅ μ⋅ d⋅

M
V⋅−

dt=

Integrating and using limits V t( )
M g⋅

3 π⋅ μ⋅ d⋅
1 e

3− π⋅ μ⋅ d⋅

M
t⋅

−

⎛
⎜
⎝

⎞

⎠⋅=



Using the given data

0 0.01 0.02

0.01

0.02

0.03

0.04

0.05

t (s)

V
 (

m
/s

)

The time to reach 95% of maximum speed is obtained from
M g⋅

3 π⋅ μ⋅ d⋅
1 e

3− π⋅ μ⋅ d⋅

M
t⋅

−

⎛
⎜
⎝

⎞

⎠⋅ 0.95 Vmax⋅=

so t
M

3 π⋅ μ⋅ d⋅
− ln 1

0.95 Vmax⋅ 3⋅ π⋅ μ⋅ d⋅

M g⋅
−

⎛
⎜
⎝

⎞
⎠

⋅= Substituting values t 0.0133 s=

The plot can also be done in Excel.



Problem 1.12 [Difficulty: 3]

 

mg 

kVt 

Given: Data on sphere and terminal speed.

Find: Drag constant k, and time to reach 99% of terminal speed.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: M 1 10
13−

× slug⋅= Vt 0.2
ft

s
⋅=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV

dt
⋅ M g⋅ k V⋅−= (1)

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ k Vt⋅= so k
M g⋅

Vt

=

k 1 10
13−

× slug⋅ 32.2×
ft

s
2

⋅
s

0.2 ft⋅
×

lbf s
2

⋅

slug ft⋅
×= k 1.61 10

11−
×

lbf s⋅

ft
⋅=

dV

g
k

M
V⋅−

dt=
To find the time to reach 99% of Vt, we need V(t).  From 1, separating variables

Integrating and using limits t
M

k
− ln 1

k

M g⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅=

We must evaluate this when V 0.99 Vt⋅= V 0.198
ft

s
⋅=

t 1− 10
13−

× slug⋅
ft

1.61 10
11−

× lbf⋅ s⋅
×

lbf s
2

⋅

slug ft⋅
× ln 1 1.61 10

11−
×

lbf s⋅

ft
⋅

1

1 10
13−

× slug⋅
×

s
2

32.2 ft⋅
×

0.198 ft⋅

s
×

slug ft⋅

lbf s
2

⋅
×−

⎛⎜
⎜
⎝

⎞

⎠
⋅=

t 0.0286 s=



Problem 1.13 [Difficulty: 5]

 

mg 

kVt 

Given: Data on sphere and terminal speed from Problem 1.12.

Find: Distance traveled to reach 99% of terminal speed; plot of distance versus time.

Solution: Use given data; integrate equation of motion by separating variables.

The data provided are: M 1 10
13−

× slug⋅= Vt 0.2
ft

s
⋅=

Newton's 2nd law for the general motion is (ignoring buoyancy effects) M
dV

dt
⋅ M g⋅ k V⋅−= (1)

Newton's 2nd law for the steady state motion becomes (ignoring buoyancy effects) M g⋅ k Vt⋅= so k
M g⋅

Vt

=

k 1 10
13−

× slug⋅ 32.2×
ft

s
2

⋅
s

0.2 ft⋅
×

lbf s
2

⋅

slug ft⋅
×= k 1.61 10

11−
×

lbf s⋅

ft
⋅=

To find the distance to reach 99% of Vt, we need V(y).  From 1: M
dV

dt
⋅ M

dy

dt
⋅

dV

dy
⋅= M V⋅

dV

dy
⋅= M g⋅ k V⋅−=

V dV⋅

g
k

M
V⋅−

dy=
Separating variables

Integrating and using limits y
M

2
g⋅

k
2

− ln 1
k

M g⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅
M

k
V⋅−=

We must evaluate this when V 0.99 Vt⋅= V 0.198
ft

s
⋅=

y 1 10
13−

⋅ slug⋅( )2 32.2 ft⋅

s
2

⋅
ft

1.61 10
11−

⋅ lbf⋅ s⋅

⎛
⎜
⎝

⎞

⎠

2

⋅
lbf s

2
⋅

slug ft⋅

⎛
⎜
⎝

⎞

⎠

2

⋅ ln 1 1.61 10
11−

⋅
lbf s⋅

ft
⋅

1

1 10
13−

⋅ slug⋅
⋅

s
2

32.2 ft⋅
⋅

0.198 ft⋅

s
⋅

slug ft⋅

lbf s
2

⋅
⋅−

⎛⎜
⎜
⎝

⎞

⎠
⋅

1 10
13−

⋅ slug⋅
ft

1.61 10
11−

⋅ lbf⋅ s⋅
×

0.198 ft⋅

s
×

lbf s
2

⋅

slug ft⋅
×+

...=

y 4.49 10
3−

× ft⋅=

Alternatively we could use the approach of Problem 1.12 and first find the time to reach terminal speed, and use this time in y(t) to

find the above value of y:

dV

g
k

M
V⋅−

dt=
From 1, separating variables

Integrating and using limits t
M

k
− ln 1

k

M g⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅= (2)



We must evaluate this when V 0.99 Vt⋅= V 0.198
ft

s
⋅=

t 1 10
13−

× slug⋅
ft

1.61 10
11−

× lbf⋅ s⋅
×

lbf s
2

⋅

slug ft⋅
⋅ ln 1 1.61 10

11−
×

lbf s⋅

ft
⋅

1

1 10
13−

× slug⋅
×

s
2

32.2 ft⋅
×

0.198 ft⋅

s
×

slug ft⋅

lbf s
2

⋅
×−

⎛⎜
⎜
⎝

⎞

⎠
⋅=

t 0.0286 s=

From 2, after rearranging V
dy

dt
=

M g⋅

k
1 e

k

M
− t⋅

−

⎛
⎜
⎝

⎞

⎠⋅=

Integrating and using limits y
M g⋅

k
t

M

k
e

k

M
− t⋅

1−

⎛
⎜
⎝

⎞

⎠⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

y 1 10
13−

× slug⋅
32.2 ft⋅

s
2

×
ft

1.61 10
11−

× lbf⋅ s⋅
×

lbf s
2

⋅

slug ft⋅
⋅ 0.0291 s⋅

10
13−

slug⋅
ft

1.61 10
11−

× lbf⋅ s⋅
⋅

lbf s
2

⋅

slug ft⋅
⋅ e

1.61 10
11−×

1 10
13−×

− .0291⋅

1−

⎛
⎜
⎜
⎝

⎞

⎠⋅+

...⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅=

y 4.49 10
3−

× ft⋅=

0 5 10 15 20 25

1.25

2.5

3.75

5

t (ms)

y
 (

0
.0

0
1

 f
t)

This plot can also be presented in Excel.



Problem 1.14 [Difficulty: 4]

Given: Data on sky diver: M 70 kg k 0.25
N s

2


m
2



Find: Maximum speed; speed after 100 m; plot speed as function of time and distance.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law:

Newton's 2nd law for the sky diver  (mass M) is (ignoring buoyancy effects): M
dV

dt
 M g k V

2
 (1)

 

Mg 

FD = kV2 

a = dV/dt

(a) For terminal speed Vt, acceleration is zero, so M g k V
2

 0 so Vt
M g

k


Vt 70 kg 9.81
m

s
2


m

2

0.25 N s
2




N s
2



kg m










1

2

 Vt 52.4
m

s


(b) For V at y = 100 m we need to find V(y).  From (1) M
dV

dt
 M

dV

dy


dy

dt
 M V

dV

dt
 M g k V

2


Separating variables and integrating:

0

V

V
V

1
k V

2


M g









d

0

y

yg




d

so ln 1
k V

2


M g









2 k

M
 y or V

2 M g

k
1 e

2 k y

M












Hence V y( ) Vt 1 e

2 k y

M












1

2



For y = 100 m: V 100 m( ) 52.4
m

s
 1 e

2 0.25
N s

2

m
2

 100 m
1

70 kg


kg m

s
2

N













1

2

 V 100 m( ) 37.4
m

s

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(c) For V(t) we need to integrate (1) with respect to t: M
dV

dt
 M g k V

2


Separating variables and integrating:

0

V

V
V

M g

k
V

2








d

0

t

t1




d

so t
1

2

M

k g
 ln

M g

k
V

M g

k
V












1

2

M

k g
 ln

Vt V

Vt V










Rearranging V t( ) Vt
e

2
k g

M
 t

1









e

2
k g

M
 t

1









 or V t( ) Vt tanh Vt
k

M
 t







0 5 10 15 20

20

40

60

t(s)

V
(m

/s
)

V t( )

t

The two graphs can also be plotted in Excel.



Problem 1.15 [Difficulty: 5]

Given: Data on sky diver: M 70 kg⋅= kvert 0.25
N s

2
⋅

m
2

⋅= khoriz 0.05
N s

2
⋅

m
2

⋅= U0 70
m

s
⋅=

Find: Plot of trajectory.

Solution: Use given data; integrate equation of motion by separating variables.

Treat the sky diver as a system; apply Newton's 2nd law in horizontal and vertical directions:

Vertical: Newton's 2nd law for the sky diver  (mass M) is (ignoring buoyancy effects): M
dV

dt
⋅ M g⋅ kvert V

2
⋅−= (1)

For V(t) we need to integrate (1) with respect to t:

Separating variables and integrating:

0

V

V
V

M g⋅

kvert

V
2

−

⌠
⎮
⎮
⎮
⎮
⌡

d

0

t

t1
⌠
⎮
⌡

d=

so t
1

2

M

kvert g⋅
⋅ ln

M g⋅

kvert

V+

M g⋅

kvert

V−

⎛
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟

⎠

⋅=

Rearranging o

r
V t( )

M g⋅

kvert

e

2

kvert g⋅

M
⋅ t⋅

1−

⎛⎜
⎜
⎝

⎞

⎠

e

2

kvert g⋅

M
⋅ t⋅

1+

⎛⎜
⎜
⎝

⎞

⎠

⋅= so V t( )
M g⋅

kvert

tanh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞

⎠
⋅=

For y(t) we need to integrate again:
dy

dt
V= or y tV

⌠
⎮
⌡

d=

y t( )

0

t

tV t( )
⌠
⎮
⌡

d=

0

t

t
M g⋅

kvert

tanh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞

⎠
⋅

⌠
⎮
⎮
⎮
⌡

d=
M g⋅

kvert

ln cosh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞

⎠

⎛
⎜
⎝

⎞

⎠
⋅=

y t( )
M g⋅

kvert

ln cosh
kvert g⋅

M
t⋅

⎛
⎜
⎝

⎞

⎠

⎛
⎜
⎝

⎞

⎠
⋅=



After the first few seconds we reach steady state:
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Horizontal: Newton's 2nd law for the sky diver  (mass M) is: M
dU

dt
⋅ khoriz− U

2
⋅= (2)

For U(t) we need to integrate (2) with respect to t:

Separating variables and integrating:

U0

U

U
1

U
2

⌠
⎮
⎮
⎮
⌡

d

0

t

t
khoriz

M
−

⌠
⎮
⎮
⌡

d= so
khoriz

M
− t⋅

1

U
−

1

U0

+=

Rearranging U t( )
U0

1
khoriz U0⋅

M
t⋅+

=

For x(t) we need to integrate again:
dx

dt
U= or x tU

⌠
⎮
⌡

d=

x t( )

0

t

tU t( )
⌠
⎮
⌡

d=

0

t

t
U0

1
khoriz U0⋅

M
t⋅+

⌠
⎮
⎮
⎮
⎮
⌡

d=
M

khoriz

ln
khoriz U0⋅

M
t⋅ 1+

⎛
⎜
⎝

⎞
⎠

⋅=

x t( )
M

khoriz

ln
khoriz U0⋅

M
t⋅ 1+

⎛
⎜
⎝

⎞
⎠

⋅=
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Plotting the trajectory:

0 1 2 3

3−

2−

1−

x(km)

y
(k

m
)

These plots can also be done in Excel.



Problem 1.16    [Difficulty: 3] 

 

Given: Long bow at range, R = 100 m. Maximum height of arrow is h = 10 m. Neglect air resistance. 

Find: Estimate of (a) speed, and (b) angle, of arrow leaving the bow. 

Plot: (a) release speed, and (b) angle, as a function of h  

Solution: Let V u i v j V i j)0 0 0= + = +0 0 0(cos sinθ θ  

ΣF m mgy
dv
dt

= = − , so v = v0 – gt, and  tf  =  2tv=0 = 2v0/g  

Also, mv
dv

dy
mg, v dv g dy, 0

v

2
gh0

2

= − = − − = −  

Thus h v 2g0
2=  (1) 

ΣF m
du

dt
0, so u u const, and R u t

2u v

g
0 0 f

0 0
x = = = = = =  (2) 

From Eq. 1: v 2gh0
2 =  (3) 

From Eq. 2: u
gR

2v

gR

2 2gh
u

gR

8h
0

0
0
2

2

= = ∴ =  

Then 
2

1
2

0

2
2

0

2

0

2

0
8

2and2
8 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=+=+=

h

gR
ghVgh

h

gR
vuV  (4) 

s

m
7.37

m10

1
m100

s

m

8

81.9
m10

s

m
81.92

2

1

22

220 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
××+××=V  

From Eq. 3: v 2gh V sin sin
2gh

V
0 0

1

0

= = = −θ θ,  (5) 

R 

V0 

θ0 

y 

x 

h 



°=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
×⎟

⎠
⎞

⎜
⎝
⎛ ××= − 8.21

m 37.7

s
m10

s

m
81.92sin

2

1

2

1θ  

Plots of V0 = V0(h) (Eq. 4) and θ0 =   θ 0(h) (Eq. 5) are presented below: 
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Problem 1.17 [Difficulty: 2]

Given: Basic dimensions M, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power Power
Energy

Time

Force Distance

Time


F L

t


From Newton's 2nd law Force Mass Acceleration so F
M L

t
2



Hence Power
F L

t


M L L

t
2

t


M L
2



t
3


kg m

2


s
3

slug ft
2



s
3

(b) Pressure Pressure
Force

Area


F

L
2


M L

t
2

L
2




M

L t
2




kg

m s
2



slug

ft s
2



(c) Modulus of elasticity Pressure
Force

Area


F

L
2


M L

t
2

L
2




M

L t
2




kg

m s
2



slug

ft s
2



(d) Angular velocity AngularVelocity
Radians

Time


1

t


1

s

1

s

(e) Energy Energy Force Distance F L
M L L

t
2


M L

2


t
2


kg m

2


s
2

slug ft
2



s
2

(f) Moment of a force MomentOfForce Force Length F L
M L L

t
2


M L

2


t
2


kg m

2


s
2

slug ft
2



s
2

(g) Momentum Momentum Mass Velocity M
L

t


M L

t


kg m

s

slug ft

s

(h) Shear stress ShearStress
Force

Area


F

L
2


M L

t
2

L
2




M

L t
2




kg

m s
2



slug

ft s
2



(i) Strain Strain
LengthChange

Length


L

L
 Dimensionless

(j) Angular momentum AngularMomentum Momentum Distance
M L

t
L

M L
2



t


kg m
2



s

slugs ft
2



s



Problem 1.18 [Difficulty: 2]

Given: Basic dimensions F, L, t and T.

Find: Dimensional representation of quantities below, and typical units in SI and English systems.

Solution:

(a) Power Power
Energy

Time

Force Distance×

Time
==

F L⋅

t
=

N m⋅

s

lbf ft⋅

s

(b) Pressure Pressure
Force

Area
=

F

L
2

=
N

m
2

lbf

ft
2

(c) Modulus of elasticity Pressure
Force

Area
=

F

L
2

=
N

m
2

lbf

ft
2

(d) Angular velocity AngularVelocity
Radians

Time
=

1

t
=

1

s

1

s

(e) Energy Energy Force Distance×= F L⋅= N m⋅ lbf ft⋅

(f) Momentum Momentum Mass Velocity×= M
L

t
⋅=

From Newton's 2nd law Force Mass Acceleration×= so F M
L

t
2

⋅= or M
F t

2
⋅

L
=

Hence Momentum M
L

t
⋅=

F t
2

⋅ L⋅

L t⋅
= F t⋅= N s⋅ lbf s⋅

(g) Shear stress ShearStress
Force

Area
=

F

L
2

=
N

m
2

lbf

ft
2

(h) Specific heat SpecificHeat
Energy

Mass Temperature×
=

F L⋅

M T⋅
=

F L⋅

F t
2

⋅

L

⎛
⎜
⎝

⎞

⎠
T⋅

=
L

2

t
2

T⋅
=

m
2

s
2

K⋅

ft
2

s
2

R⋅

(i) Thermal expansion coefficient ThermalExpansionCoefficient

LengthChange

Length

Temperature
=

1

T
=

1

K

1

R

(j) Angular momentum AngularMomentum Momentum Distance×= F t⋅ L⋅= N m⋅ s⋅ lbf ft⋅ s⋅



Problem 1.19 [Difficulty: 1]

Given: Viscosity, power, and specific energy data in certain units

Find: Convert to different units

Solution:

Using data from tables (e.g. Table G.2)

(a) 1
m

2

s
⋅ 1

m
2

s
⋅

1

12
ft⋅

0.0254 m⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

×= 10.76
ft

2

s
⋅=

(b) 100 W⋅ 100 W⋅
1 hp⋅

746 W⋅
×= 0.134 hp⋅=

(c) 1
kJ

kg
⋅ 1

kJ

kg
⋅

1000 J⋅

1 kJ⋅
×

1 Btu⋅

1055 J⋅
×

0.454 kg⋅

1 lbm⋅
×= 0.43

Btu

lbm
⋅=



Problem 1.20 [Difficulty: 1]

Given: Pressure, volume and density data in certain units

Find: Convert to different units

Solution:

Using data from tables (e.g. Table G.2)

(a) 1 psi⋅ 1 psi⋅
6895 Pa⋅

1 psi⋅
×

1 kPa⋅

1000 Pa⋅
×= 6.89 kPa⋅=

(b) 1 liter⋅ 1 liter⋅
1 quart⋅

0.946 liter⋅
×

1 gal⋅

4 quart⋅
×= 0.264 gal⋅=

(c) 1
lbf s⋅

ft
2

⋅ 1
lbf s⋅

ft
2

⋅
4.448 N⋅

1 lbf⋅
×

1

12
ft⋅

0.0254m⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

×= 47.9
N s⋅

m
2

⋅=



Problem 1.21 [Difficulty: 1]

Given: Specific heat, speed, and volume data in certain units

Find: Convert to different units

Solution:

Using data from tables (e.g. Table G.2)

(a) 4.18
kJ

kg K⋅
⋅ 4.18

kJ

kg K⋅
⋅

1 Btu⋅

1.055 kJ⋅
×

1 kg⋅

2.2046 lbm⋅
×

1 K⋅

1.8 R⋅
×= 0.998

Btu

lbm R⋅
⋅=

(b) 30
m

s
⋅ 30

m

s
⋅

3.281 ft⋅

1 m⋅
×

1 mi⋅

5280 ft⋅
⋅

3600 s⋅

hr
⋅= 67.1

mi

hr
⋅=

(c) 5 L⋅ 5 L⋅
1 m

3
⋅

1000 L⋅
×

100 cm⋅

1 m⋅

1 in⋅

2.54 cm⋅
×⎛⎜

⎝
⎞
⎠

3

×= 305 in
3

⋅=



Problem 1.22 [Difficulty: 1]

Given: Quantities in English Engineering (or customary) units.

Find: Quantities in SI units.

Solution: Use Table G.2 and other sources (e.g., Machinery's Handbook, Mark's Standard Handbook)

(a) 3.7 acre⋅ ft⋅ 3.7 acre⋅
4047 m

2
⋅

1 acre⋅
×

0.3048 m⋅

1 ft⋅
×= 4.56 10

3
× m

3
⋅=

(b) 150
in

3

s
⋅ 150

in
3

s
⋅

0.0254 m⋅

1 in⋅
⎛⎜
⎝

⎞
⎠

3

×= 0.00246
m

3

s
⋅=

(c) 3 gpm⋅ 3
gal

min
⋅

231 in
3

⋅

1 gal⋅
×

0.0254 m⋅

1 in⋅
⎛⎜
⎝

⎞
⎠

3

×
1 min⋅

60 s⋅
⋅= 0.000189

m
3

s
⋅=

(d) 3
mph

s
⋅ 3

mile

hr s⋅
⋅

1609 m⋅

1 mile⋅
×

1 hr⋅

3600 s⋅
×= 1.34

m

s
2

⋅=



Problem 1.23 [Difficulty: 1]

Given: Quantities in English Engineering (or customary) units.

Find: Quantities in SI units.

Solution: Use Table G.2 and other sources (e.g., Google)

(a) 100
ft

3

m
⋅ 100

ft
3

min
⋅

0.0254 m⋅

1 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

3

×
1 min⋅

60 s⋅
×= 0.0472

m
3

s
⋅=

(b) 5 gal⋅ 5 gal⋅
231 in

3
⋅

1 gal⋅
×

0.0254 m⋅

1 in⋅
⎛⎜
⎝

⎞
⎠

3

×= 0.0189 m
3

⋅=

(c) 65 mph⋅ 65
mile

hr
⋅

1852 m⋅

1 mile⋅
×

1 hr⋅

3600 s⋅
×= 29.1

m

s
⋅=

(d) 5.4 acres⋅ 5.4 acre⋅
4047 m

3
⋅

1 acre⋅
×= 2.19 10

4
× m

2
⋅=



Problem 1.24 [Difficulty: 1]

Given: Quantities in SI (or other) units.

Find: Quantities in BG units.

Solution: Use Table G.2.

(a) 50 m
2

⋅ 50 m
2

⋅
1 in⋅

0.0254m⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

2

×= 538 ft
2

⋅=

(b) 250 cc⋅ 250 cm
3

⋅
1 m⋅

100 cm⋅

1 in⋅

0.0254m⋅
×

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

3

×= 8.83 10
3−

× ft
3

⋅=

(c) 100 kW⋅ 100 kW⋅
1000 W⋅

1 kW⋅
×

1 hp⋅

746 W⋅
×= 134 hp⋅=

(d) 5
kg

m
2

⋅ 5
kg

m
2

⋅
0.0254m⋅

1 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

2

×
1 slug⋅

14.95 kg⋅
×= 0.0318

slug

ft
2

⋅=



Problem 1.25 [Difficulty: 1]

Given: Quantities in SI (or other) units.

Find: Quantities in BG units.

Solution: Use Table G.2.

(a) 180 cc⋅ 180 cm
3

⋅
1 m⋅

100 cm⋅

1 in⋅

0.0254m⋅
×

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

3

×= 6.36 10
3−

× ft
3

⋅=

(b) 300 kW⋅ 300 kW⋅
1000 W⋅

1 kW⋅
×

1 hp⋅

746 W⋅
×= 402 hp⋅=

(c) 50
N s⋅

m
2

⋅ 50
N s⋅

m
2

⋅
1 lbf⋅

4.448 N⋅
×

0.0254m⋅

1 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

2

×= 1.044
lbf s⋅

ft
2

⋅=

(d) 40 m
2

⋅ hr⋅ 40 m
2

⋅
1 in⋅

0.0254m⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

2

× hr⋅= 431 ft
2

⋅ hr⋅=



Problem 1.26 [Difficulty: 2]

Given: Geometry of tank, and weight of propane.

Find: Volume of propane, and tank volume; explain the discrepancy.

Solution: Use Table G.2 and other sources (e.g., Google) as needed.

The author's tank is approximately 12 in in diameter, and the cylindrical part is about 8 in.  The weight of propane specified is 17 lb.

The tank diameter is D 12 in⋅=

The tank cylindrical height is L 8 in⋅=

The mass of propane is mprop 17 lbm⋅=

The specific gravity of propane is SGprop 0.495=

The density of water is ρ 998
kg

m
3

⋅=

The volume of propane is given by Vprop

mprop

ρprop

=
mprop

SGprop ρ⋅
=

Vprop 17 lbm⋅
1

0.495
×

m
3

998 kg⋅
×

0.454 kg⋅

1 lbm⋅
×

1 in⋅

0.0254 m⋅
⎛⎜
⎝

⎞
⎠

3

×= Vprop 953 in
3

⋅=

The volume of the tank is given by a cylinder diameter D length L, πD2L/4 and a sphere (two halves) given by πD3/6

Vtank
π D

2
⋅

4
L⋅

π D
3

⋅

6
+=

Vtank
π 12 in⋅( )

2
⋅

4
8⋅ in⋅ π

12 in⋅( )
3

6
⋅+= Vtank 1810 in

3
⋅=

The ratio of propane to tank volumes is
Vprop

Vtank

53 %⋅=

This seems low, and can be explained by a) tanks are not filled completely, b) the geometry of the tank gave an overestimate of

the volume (the ends are not really hemispheres, and we have not allowed for tank wall thickness).



Problem 1.27 [Difficulty: 1]

Given: Acreage of land, and water needs.

Find: Water flow rate (L/min) to water crops.

Solution: Use Table G.2 and other sources (e.g., Machinery's Handbook, Mark's Standard Handbook) as needed.

The volume flow rate needed is Q
4 cm

week
10 hectare

Performing unit conversions Q
4 cm 10 hectare

week


0.04 m 10 hectare

week

1 10
4

 m
2



1 hectare


1000 L

m
3


1 week

7 day


1 day

24 hr


1 hr

60 min


Q 397
L

min




Problem 1.28 [Difficulty: 1]

Given: Data in given units

Find: Convert to different units

Solution:

(a) 1
in

3

min
⋅ 1

in
3

min
⋅

0.0254m⋅

1 in⋅

1000 mm⋅

1 m⋅
×⎛⎜

⎝
⎞
⎠

3

×
1 min⋅

60 s⋅
×= 273

mm
3

s
⋅=

(b) 1
m

3

s
⋅ 1

m
3

s
⋅

1 gal⋅

4 0.000946× m
3

⋅
×

60 s⋅

1 min⋅
×= 15850gpm⋅=

(c) 1
liter

min
⋅ 1

liter

min
⋅

1 gal⋅

4 0.946× liter⋅
×

60 s⋅

1 min⋅
×= 0.264 gpm⋅=

(d) 1 SCFM⋅ 1
ft

3

min
⋅

0.0254 m⋅

1

12
ft⋅

⎛
⎜
⎜
⎝

⎞

⎠

3

×
60 min⋅

1 hr⋅
×= 1.70

m
3

hr
⋅=



Problem 1.29 [Difficulty: 1]

Given: Density of mercury.

Find: Specific gravity, volume and weight.

Solution: Use basic definitions

SG
ρ

ρw

= From Appendix A ρw 1.94
slug

ft
3

⋅= so SG
26.3

1.94
= SG 13.6=

v
1

ρ
= so v

1

26.3

ft
3

slug
⋅

0.3048m⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

3

×
1 slug⋅

32.2 lbm⋅
×

1 lbm⋅

0.4536kg⋅
×= v 7.37 10

5−
×

m
3

kg
=

γ ρ g⋅=

Hence on earth γE 26.3
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
1 lbf⋅ s

2
⋅

1 slug⋅ ft⋅
×= γE 847

lbf

ft
3

=

On the moon γM 26.3
slug

ft
3

⋅ 5.47×
ft

s
2

⋅
1 lbf⋅ s

2
⋅

1 slug⋅ ft⋅
×= γM 144

lbf

ft
3

=

Note that mass-based quantities are independent of gravity



Problem 1.30 [Difficulty: 1]

Given: Definition of kgf.

Find: Conversion from psig to kgf/cm2.

Solution: Use Table G.2.

Define kgf kgf 1 kg⋅ 9.81×
m

s
2

⋅= kgf 9.81N=

Then 32
lbf

in
2

⋅
4.448 N⋅

1 lbf⋅
×

1 kgf⋅

9.81 N⋅
×

12 in⋅

1 ft⋅

1 ft⋅

0.3048m⋅
×

1 m⋅

100 cm⋅
×⎛⎜

⎝
⎞
⎠

2

× 2.25
kgf

cm
2

=



Problem 1.31 [Difficulty: 3]

Given: Information on canal geometry.

Find: Flow speed using the Manning equation, correctly and incorrectly!

Solution: Use Table G.2 and other sources (e.g., Google) as

needed.

The Manning equation is V
Rh

2

3
S0

1

2
⋅

n
= which assumes Rh in meters and V in m/s.

The given data is Rh 7.5 m⋅= S0
1

10
= n 0.014=

Hence V

7.5

2

3 1

10

⎛⎜
⎝

⎞
⎠

1

2

⋅

0.014
= V 86.5

m

s
⋅= (Note that we don't cancel units; we just write m/s

next to the answer!  Note also this is a very high

speed due to the extreme slope S0.)

Using the equation incorrectly: Rh 7.5 m⋅
1 in⋅

0.0254 m⋅
×

1 ft⋅

12 in⋅
×= Rh 24.6 ft⋅=

Hence V

24.6

2

3 1

10

⎛⎜
⎝

⎞
⎠

1

2

⋅

0.014
= V 191

ft

s
⋅= (Note that we again don't cancel units; we just

write ft/s next to the answer!)

This incorrect use does not provide the correct answer V 191
ft

s
⋅

12 in⋅

1 ft⋅
×

0.0254 m⋅

1 in⋅
×= V 58.2

m

s
= which is wrong!

This demonstrates that for this "engineering" equation we must be careful in its use!

To generate a Manning equation valid for Rh in ft and V in ft/s, we need to do the following:

V
ft

s

⎛⎜
⎝

⎞
⎠

V
m

s

⎛⎜
⎝

⎞
⎠

1 in⋅

0.0254 m⋅
×

1 ft⋅

12 in⋅
×=

Rh m( )

2

3
S0

1

2
⋅

n

1 in⋅

0.0254 m⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

×=



V
ft

s

⎛⎜
⎝

⎞
⎠

Rh ft( )

2

3
S0

1

2
⋅

n

1 in⋅

0.0254 m⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

2

3
−

×
1 in⋅

0.0254 m⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

×=
Rh ft( )

2

3
S0

1

2
⋅

n

1 in⋅

0.0254 m⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

1

3

×=

In using this equation, we ignore the units and just evaluate the conversion factor
1

.0254

1

12
⋅⎛⎜

⎝
⎞
⎠

1

3

1.49=

Hence V
ft

s

⎛⎜
⎝

⎞
⎠

1.49 Rh ft( )

2

3
⋅ S0

1

2
⋅

n
=

Handbooks sometimes provide this form of the Manning equation for direct use with BG units. In our case

we are asked to instead define a new value for n:

nBG
n

1.49
= nBG 0.0094= where V

ft

s

⎛⎜
⎝

⎞
⎠

Rh ft( )

2

3
S0

1

2
⋅

nBG

=

Using this equation with Rh = 24.6 ft: V

24.6

2

3 1

10

⎛⎜
⎝

⎞
⎠

1

2

⋅

0.0094
= V 284

ft

s
=

Converting to m/s V 284
ft

s
⋅

12 in⋅

1 ft⋅
×

0.0254 m⋅

1 in⋅
×= V 86.6

m

s
= which is the correct

answer!



[Difficulty: 2]Problem 1.32

Given: Equation for COPideal and temperature data.

Find: COPideal, EER, and compare to a typical Energy Star compliant EER value. 

Solution: Use the COP equation.  Then use conversions from Table G.2 or other sources (e.g., www.energystar.gov) to

find the EER.

The given data is TL 20 273( ) K TL 293 K TH 40 273( ) K TH 313 K

The COPIdeal is COPIdeal
293

313 293
14.65

The EER is a similar measure to COP except the cooling rate (numerator) is in BTU/hr and the electrical input (denominator) is in W:

EERIdeal COPIdeal

BTU

hr

W
 EERIdeal 14.65

2545
BTU

hr


746 W
 50.0

BTU

hr W


This compares to Energy Star compliant values of about 15 BTU/hr/W!  We have some way to go!  We can define the isentropic

efficiency as

ηisen

EERActual

EERIdeal



Hence the isentropic efficiency of a very good AC is about 30%. 



Problem 1.33 [Difficulty: 2]

Given: Equation for maximum flow rate.

Find: Whether it is dimensionally correct.  If not, find units of 2.38 coefficient.  Write a SI version of the equation

Solution: Rearrange equation to check units of 0.04 term.  Then use conversions from Table G.2 or other sources (e.g., Google)

"Solving" the equation for the constant 2.38: 2.38
mmax T0⋅

At p0⋅
=

Substituting the units of the terms on the right, the units of the constant are

slug

s
R

1

2
×

1

ft
2

×
1

psi
×

slug

s
R

1

2
×

1

ft
2

×
in

2

lbf
×

lbf s
2

⋅

slug ft⋅
×=

R

1

2
in

2
⋅ s⋅

ft
3

=

Hence the constant is actually c 2.38
R

1

2
in

2
⋅ s⋅

ft
3

⋅=

For BG units we could start with the equation and convert each term (e.g., At), and combine the result into a new constant, or simply

convert c directly:

c 2.38
R

1

2
in

2
⋅ s⋅

ft
3

⋅= 2.38
R

1

2
in

2
⋅ s⋅

ft
3

⋅
K

1.8 R⋅
⎛⎜
⎝

⎞
⎠

1

2

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×
1 ft⋅

0.3048m⋅
×=

c 0.04
K

1

2
s⋅

m
⋅= so mmax 0.04

At p0⋅

T0

⋅=  with At in m2, p0 in Pa, and T0 in K.



Problem 1.34 [Difficulty: 1]

Given: Equation for mean free path of a molecule.

Find: Dimensions of C for a diemsionally consistent equation. 

Solution: Use the mean free path equation.  Then "solve" for C and use dimensions.

The mean free path equation is λ C
m

ρ d
2




"Solving" for C, and using dimensions C
λ ρ d

2


m


C

L
M

L
3

 L
2



M
 0 The constant C is dimensionless.



Problem 1.35 [Difficulty: 1]

Given: Equation for drag on a body.

Find: Dimensions of CD. 

Solution: Use the drag equation.  Then "solve" for CD and use dimensions.

The drag equation is FD
1

2
ρ⋅ V

2
⋅ A⋅ CD⋅=

"Solving" for CD, and using dimensions CD

2 FD⋅

ρ V
2

⋅ A⋅
=

CD
F

M

L
3

L

t

⎛⎜
⎝

⎞
⎠

2

× L
2

×

=

But, From Newton's 2nd law Force Mass Acceleration⋅= or F M
L

t
2

⋅=

Hence CD
F

M

L
3

L

t

⎛⎜
⎝

⎞
⎠

2

× L
2

×

=
M L⋅

t
2

L
3

M
×

t
2

L
2

×
1

L
2

×= 0=

The drag coefficient is dimensionless.



Problem 1.36 [Difficulty: 1]

Given: Data on a container and added water.

Find: Weight and volume of water added.

Solution: Use Appendix A.

For the empty container Wc 3.5 lbf

For the filled container Mtotal 2.5 slug

The weight of water is then Ww Mtotal g Wc

Ww 2.5 slug 32.2
ft

s
2


1 lbf s

2


1 slug ft
 3.5 lbf Ww 77.0 lbf

The temperature is 90°F 32.2°C and from Table A.7 ρ 1.93
slug

ft
3



Hence Vw

Mw

ρ
 or Vw

Ww

g ρ


Vw 77.0 lbf
1

32.2


s
2

ft


1

1.93


ft
3

slug


1 slug ft

1 lbf s
2


 Vw 1.24ft

3




Problem 1.37 [Difficulty: 1]

Given: Equation for vibrations.

Find: Dimensions of c, k and f for a dimensionally consistent equation. Also, suitable units in SI and BG systems.

Solution: Use the vibration equation to find the diemsions of each quantity

The first term of the equation is m
d

2
x

dt
2



The dimensions of this are M
L

t
2



Each of the other terms must also have these dimensions.

Hence c
dx

dt


M L

t
2

 so c
L

t


M L

t
2

 and c
M

t


k x
M L

t
2

 so k L
M L

t
2

 and k
M

t
2



f
M L

t
2



Suitable units for c, k, and f are c:
kg

s

slug

s
k:

kg

s
2

slug

s
2

f:
kg m

s
2

slug ft

s
2

Note that c is a damping (viscous) friction term, k is a spring constant, and f is a forcing function.  These are more typically expressed

using F (force) rather than M (mass).  From Newton's 2nd law:

F M
L

t
2

 or M
F t

2


L


Using this in the dimensions and units for c, k, and f we find c
F t

2


L t


F t

L
 k

F t
2



L t
2




F

L
 f F

c:
N s

m

lbf s

ft
k:

N

m

lbf

ft
f: N lbf



Problem 1.38 [Difficulty: 1]

Given: Specific speed in customary units

Find: Units; Specific speed in SI units

Solution:

The units are
rpm gpm

1

2
⋅

ft

3

4

or
ft

3

4

s

3

2

Using data from tables (e.g. Table G.2)

NScu 2000
rpm gpm

1

2
⋅

ft

3

4

⋅=

NScu 2000
rpm gpm

1

2
⋅

ft

3

4

×
2 π⋅ rad⋅

1 rev⋅
×

1 min⋅

60 s⋅
×

4 0.000946× m
3

⋅

1 gal⋅

1 min⋅

60 s⋅
⋅

⎛
⎜
⎝

⎞

⎠

1

2

×

1

12
ft⋅

0.0254 m⋅

⎛
⎜
⎜
⎝

⎞

⎠

3

4

×=

NScu 4.06

rad

s

m
3

s

⎛
⎜
⎝

⎞

⎠

1

2

⋅

m

3

4

⋅=



Problem 1.39 [Difficulty: 1]

Given: "Engineering" equation for a pump

Find: SI version

Solution:

The dimensions of "1.5" are ft.

The dimensions of "4.5 x 10-5" are ft/gpm2.

Using data from tables (e.g. Table G.2), the SI versions of these coefficients can be obtained

1.5 ft⋅ 1.5 ft⋅
0.0254m⋅

1

12
ft⋅

×= 0.457 m⋅=

4.5 10
5−

×
ft

gpm
2

⋅ 4.5 10
5−

⋅
ft

gpm
2

⋅
0.0254m⋅

1

12
ft⋅

×
1 gal⋅

4 quart⋅

1quart

0.000946m
3

⋅
⋅

60 s⋅

1min
⋅⎛

⎜
⎝

⎞

⎠

2

×=

4.5 10
5−

⋅
ft

gpm
2

⋅ 3450
m

m
3

s

⎛
⎜
⎝

⎞

⎠

2
⋅=

The equation is

H m( ) 0.457 3450 Q
m

3

s

⎛
⎜
⎝

⎞

⎠

⎛
⎜
⎝

⎞

⎠

2

⋅−=



Problem 1.40    [Difficulty: 2] 

 

Given: Air at standard conditions – p = 29.9 in Hg, T = 59°F 

Uncertainty in p is ± 0.1 in Hg, in T is ± 0.5°F 

Note that 29.9 in Hg corresponds to 14.7 psia 

Find:  Air density using ideal gas equation of state; Estimate of uncertainty in calculated value. 

Solution:  

2

2

o

o

2 ft

in
144

R519

1

lbfft 53.3

Rlb

in

lbf
7.14 ××

⋅
⋅

×==
RT

pρ  

The uncertainty in density is given by  

%0963.0
59460

5.0
;1

%334.0
9.29

1.0
;1

1

2

2

1

22

±=
+

±
=−=−=−⋅=

∂
∂

±=
±

====
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=

T

p

Tp

u
RT

p

RT

pT

T

T

u
RT

RT

RT
RT

p

p

u
T

T
u

p

p
u

ρρ
ρ

ρ

ρ
ρ

ρ
ρ

ρ
ρρ

 

Then  

 

 

( )[ ] ( )[ ]
3

4

2

1
222

1
22

ft

lbm
1066.2%348.0

%0963.0%334.0

−×±=±=

−+±=−+=

ρ

ρ

u

uuu Tp



Problem 1.41 [Difficulty: 2]

Given: Air in hot air balloon

Hg mm1759 ±=p C160 °±=T

Find: (a) Air density using ideal gas equation of state

(b) Estimate of uncertainty in calculated value

Solution: We will apply uncertainty concepts.

Governing Equations: ρ
p

R T⋅
= (Ideal gas equation of state)

2

1
2

1

1

1 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

±= LxR u
x

R

R

x
u

(Propagation of Uncertainties)

We can express density as: ρ 101 10
3

⋅
N

m
2

×
kg K⋅

287 N⋅ m⋅
×

1

333 K⋅
× 1.06

kg

m
3

== ρ 1.06
kg

m
3

=

2

1

22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

±= Tp u
T

T
u

p

p
u

ρ
ρ

ρ
ρρSo the uncertainty in the density is:

1
1

==
∂
∂

RT
RT

p

p ρ
ρ

Solving each term separately: up
1

759
0.1318%⋅==

1
2

−=−=⎟
⎠
⎞

⎜
⎝
⎛ −=

∂
∂

RT

p

RT

pT

T

T

ρ
ρ

ρ
uT

1

333
0.3003%⋅==

( ) ( )[ ] ( ) ( )[ ]2122
2

1
22

%3003.0%1318.0 −+±=−+±= Tp uuuρ
Therefore:

⎟
⎠
⎞

⎜
⎝
⎛ ×±±= −

3

3

m

kg
1047.3%328.0ρu



Problem 1.42    [Difficulty: 2] 

 

Given: Standard American golf ball:  
1)  to(20in.01.068.1

1)  to(20oz01.062.1

±=
±=

D

m
 

Find:  Density and specific gravity; Estimate uncertainties in calculated values. 

Solution: Density is mass per unit volume, so  

( )

( ) ( )
3

33

3

33

333

3
4

kg/m 1130
m0254.0

in.

oz 16

kg 4536.0

in.68.1

1
oz 62.1

6

6

24

3

=××××=

====

π
ρ

πππ
ρ

D

m

D

m

R

m

V

m

 

and 13.1
kg 1000

m

m

kg
 1130SG

3

3

OH2

=×==
ρ
ρ

 

The uncertainty in density is given by 

2

1

22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= Dm u
D

D
u

m

m
u

ρ
ρ

ρ
ρρ  

%595.0
68.1

1.0
;3

6
3

6
3

%617.0
62.1

01.0
;1

1

44
±=

±
=−=−=⎟

⎠
⎞

⎜
⎝
⎛−⋅=

∂
∂

±=
±

==
∀
∀

=
∀

=
∂
∂

D

m

u
D

m

D

mD

D

D

u
m

m

m

ρππρ
ρ

ρ

ρ
ρ

ρ
 

Thus 

( )[ ] ( )[ ]
0214.0%89.1

m

kg
4.21%89.1%595.03%617.03

3
2

1
222

1
22

±=±==

±=±=×−+±=−+±=

ρ

ρρ

uu

uuuu

SG

Dm
 

Finally, 
1)  to(20     0214.013.1SG

1)  to(20kg/m4.211130 3

±=
±=ρ

 



Problem 1.43    [Difficulty: 2] 

 

Given: Pet food can  

H mm to

D mm to

m g to

= ±
= ±
= ±

102 1 20 1

73 1 20 1

397 1 20 1

( )

( )

( )

 

Find: Magnitude and estimated uncertainty of pet food density. 

Solution: Density is  

ρ
π π

ρ ρ=
∀

= = =
m m

R H

m

D H
or m

2
D H

2

4
( , , )  

From uncertainty analysis: 

2

1

222

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

±= HDm u
H

H
u

D

D
u

m

m
u

ρ
ρ

ρ
ρ

ρ
ρρ  

Evaluating: 

m

m

m

D H D H
u

D

D

D m

D H

m

D H
u

H

H

H m

D H

m

D H
u

m

D

H

ρ
ρ

ρ π ρ π

ρ
ρ

ρ π ρ π

ρ
ρ

ρ π ρ π

∂
∂

= = = =
±

= ±

∂
∂

= − = − = − =
±

= ±

∂
∂

= − = − = − =
±

= ±

4 1 1 4
1

1

397
0 252%

2
4

2
1 4

2
1

73
137%

1
4

1
1 4

1
1

102
0 980%

2 2

3 2

2 2 2

m
; .

( ) ( ) ; .

( ) ( ) ; .

 

Substituting: 
( ) ( ) ( )[ ]

%92.2

980.0137.12252.01 2

1
222

±=

×−+×−+×±=

ρ

ρ

u

u
 

∀ = = × × × = ×

=
∀

=
×

× =

−

−

π π

ρ

4 4
73 102 4 27 10

930

2 2 4D H mm mm
m

10 mm
m

m 397 g

4.27 10 m

kg

1000 g
kg m

2
3

9 3

3

4 3

3

( ) .

 

Thus: ρ = ±930 27 2 20 1. ( )kg m to3  



Problem 1.44    [Difficulty: 2] 

 

Given: Mass flow rate of water determine by collecting discharge over a timed interval is 0.2 kg/s. 

Scales can be read to nearest 0.05 kg. 

Stopwatch can be read to nearest 0.2 s. 

Find: Estimate precision of flow rate calculation for time intervals of (a) 10 s, and (b) 1 min. 

Solution: Apply methodology of uncertainty analysis, Appendix F: 

Computing equations: 
2

1
22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

+⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

±=

∆
∆

=

∆∆ tmm u
t

m

m

t
u

m

m

m

m
u

t

m
m













 

Thus 1and1
1

2

2

−=
∆
∆

−⋅
∆
∆

=
∆∂
∂∆

=
∆

∆=
∆∂
∂∆

t

m

m

t

t

m

m

t

t
t

m

m

m

m 






 

The uncertainties are expected to be ± half the least counts of the measuring instruments. 

Tabulating results:  

Time 

Interval, ∆t 

(s) 

Error in ∆t 

(s) 

Uncertainty 

in ∆t 

(%) 

Water 

Collected, 

∆m 

(kg) 

Error in ∆m 

(kg) 

Uncertainty 

in ∆m 

(%) 

Uncertainty 

in m  

(%) 

10 ± 0.10 ± 1.0 2.0 ± 0.025 ± 1.25 ± 1.60 

60 ± 0.10 ± 0.167 12.0 ± 0.025 ± 0.208 ± 0.267 

A time interval of about 15 seconds should be chosen to reduce the uncertainty in results to ± 1 percent.  



Problem 1.45    [Difficulty: 3] 

 

Given: Nominal mass flow rate of water determined by collecting discharge (in a beaker) over a timed 

interval is m g s= 100 ; Scales have capacity of 1 kg, with least count of 1 g; Timer has least 

count of 0.1 s; Beakers with volume of 100, 500, 1000 mL are available – tare mass of 1000 mL 

beaker is 500 g. 

 

Find: Estimate (a) time intervals, and (b) uncertainties, in measuring mass flow rate from using each of 

the three beakers.  

 

Solution: To estimate time intervals assume beaker is filled to maximum volume in case of 100 and 500 mL 

beakers and to maximum allowable mass of water (500 g) in case of 1000 mL beaker. 

 

Then 
 

m =
m

t
and t

m

m m

∆
∆

∆
∆ ∆∀

= =
ρ

 

 

Tabulating results 

 
∆∀
∆

=
=

100 500 1000

1 5

mL mL mL

t s s 5 s
 

 

Apply the methodology of uncertainty analysis, Appendix E. Computing equation:

 
2

1
22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

+⎟
⎠
⎞

⎜
⎝
⎛

∆∂
∂∆

±= ∆∆ tmm u
t

m

m

t
u

m

m

m

m
u








 

The uncertainties are ± half the least counts of the measuring instruments: δ δ∆ ∆m g t s= ± =0 5 0 05. .  

1and1
1

2

2

−=
∆
∆

−⋅
∆
∆

=
∆∂
∂∆

=
∆

∆=
∆∂
∂∆

t

m

m

t

t

m

m

t

t
t

m

m

m

m 






                      ( )[ ]2122

tmm uuu ∆∆ −+±=∴   

 

Tabulating results: 

 

Beaker 

Volume ∆∀ 

(mL) 

Water 

Collected 

∆m(g) 

Error in ∆m 

(g) 

Uncertainty 

in ∆m (%) 

Time 

Interval ∆t 

(s) 

Error in ∆t 

(s) 

Uncertainty 

in ∆t (%) 

Uncertainty 

in m (%) 

100 100 ± 0.50 ± 0.50 1.0 ± 0.05 ± 5.0 ± 5.03 

500 500 ± 0.50 ± 0.10 5.0 ± 0.05 ± 1.0 ± 1.0 

1000 500 ± 0.50 ± 0.10 5.0 ± 0.05 ± 1.0 ± 1.0 

Since the scales have a capacity of 1 kg and the tare mass of the 1000 mL beaker is 500 g, there is no advantage in 

using the larger beaker. The uncertainty in m could be reduced to ± 0.50 percent by using the large beaker if a scale 

with greater capacity the same least count were available 



Problem 1.46    [Difficulty: 2] 

 

Given: Standard British golf ball: 

 

   
m g to

D mm to

= ±
= ±

45 9 0 3 20 1

411 0 3 20 1

. . ( )

. . ( )
 

 
Find:  Density and specific gravity; Estimate of uncertainties in calculated values. 

 

Solution: Density is mass per unit volume, so  

 

ρ
π π π

ρ
π

=
∀

= = =

= × × =

m m

R

m

D

m

D

kg m kg m3 3

4
3

3 3 3

3

3

4 2

6

6
0 0459

1

0 0411
1260

( )

.
( . )

 

and  

SG
H O

kg

m

m

kg2
3

= = × =
ρ

ρ
1260

1000
126

3

.  

 

The uncertainty in density is given by   

 

%730.0
1.41

3.0
;3

6
3

6
3

%654.0
9.45

3.0
;1

1

44

2

1

22

±=±=−=⎟
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∂
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=
∀

=
∂
∂

⎥
⎥
⎦

⎤

⎢
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⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

±=

D

m

Dm

u
D

m

D

mD

m

DD

u
m

m

m

u
D

D
u

m

m
u

ππρρ

ρ
ρ

ρ

ρ
ρ

ρ
ρρ

 

 

Thus 

( )[ ] ( )[ ]

0289.0%29.2

mkg9.28%29.2

730.03654.03

3

2

1
222

1
22

±=±==

±=±=

×−+±=−+±=

ρ

ρ

ρ

uu

u

uuu

SG

Dm

 

 

Summarizing ρ = ±1260 28 9 20 1. ( )kg m to3
 

SG to= ±126 0 0289 20 1. . ( )  



Problem 1.47    [Difficulty: 3] 

 

Given: Soda can with estimated dimensions D = 66.0 ± 0.5 mm, H = 110 ± 0.5 mm. Soda has SG = 1.055 

 

Find:  Volume of soda in the can (based on measured mass of full and empty can); Estimate average 

depth to which the can is filled and the uncertainty in the estimate. 

 

Solution: Measurements on a can of coke give  

 
m g, m g m m m u gf e f e m= ± = ± ∴ = − = ±386 5 050 17 5 050 369. . . .  

 

2

1

22

⎥
⎥

⎦
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⎢
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⎟⎟
⎠

⎞
⎜⎜
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∂
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m

m

m
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m

m

m

m
u  

u
0.5 g

386.5 g
um mf e

= ± = ± = ± =0 00129
050

17 5
0 0286. ,

.

.
.  

0019.00286.01
369

5.17
00129.01

369

5.386 2
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⎡
⎟
⎠
⎞

⎜
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⎛ ××+⎟

⎠
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⎜
⎝
⎛ ××±=mu  

 

Density is mass per unit volume and SG =  ρ/ρΗ2Ο so 

 

 ∀ = = = × × × = × −m m

H O SG
g

m

kg

kg

1000 g
m

2ρ ρ
369

1000

1

1055
350 10

3
6 3

.
 

The reference value ρH2O is assumed to be precise. Since SG is specified to three places beyond the decimal point, 

assume uSG = ± 0.001. Then  

( ) ( )[ ]
mm102

m

mm10

m066.0

m1035044
or

4

%21.00021.0001.010019.01
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Notes: 

  

1. Printing on the can states the content as 355 ml. This suggests that the implied accuracy of the SG value may be 

over stated. 

2. Results suggest that over seven percent of the can height is void of soda. 



Problem 1.48 [Difficulty: 3]

Given: Data on water

Find: Viscosity; Uncertainty in viscosity

Solution:

The data is: A 2.414 10
5


N s

m
2

 B 247.8 K C 140 K T 303 K

The uncertainty in temperature is uT
0.5 K

293 K
 uT 0.171 %

Also μ T( ) A 10

B

T C( )
 Evaluating μ 293 K( ) 1.005 10

3


N s

m
2



For the uncertainty
T
μ T( )

d

d

A B ln 10( )

10

B

C T
C T( )

2




Hence uμ T( )
T

μ T( ) T
μ T( )

d

d
 uT

ln 10( ) B T uT

C T 2
 Evaluating uμ T( ) 1.11 %



Problem 1.49    [Difficulty: 4] 

 

Given: Dimensions of soda can:  D = 66 mm, H = 110 mm 

 

Find: Measurement precision needed to allow volume to be estimated with an 

uncertainty of ± 0.5 percent or less.  

 

Solution: Use the methods of Appendix F: 

 

Computing equations: 

 1
2

2

2 2

H D

D H

4

H D
u u u

H D

π

∀

∀ =

⎡ ⎤∂∀ ∂∀⎛ ⎞ ⎛ ⎞= ± +⎢ ⎥⎜ ⎟ ⎜ ⎟∀ ∂ ∀ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 

Since 
2D H

4
π∀ = , then 

2D
H 4

π∂∀
∂ = and DH

D 2
π∂∀

∂ = .  Letting D D
u xδ= ± and H H

u xδ= ± , and substituting,  

 
1 1
2 22 2 2 22

2 2

4H D 4D DH 2
u

D H 4 H D H 2 D H D

x x x xπ δ π δ δ δ
π π∀

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥= ± + = ± +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 

Solving, 

2 2 2 2

2 22 1 2
u ( )

H D H D

x x
x

δ δ δ∀

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

( ) ( )
1 1
2 22 2 2 21 2

1 2
H D

110 mm 66 mm

u 0.005
0.158 mm

( ) ( )
xδ ∀= ± = ± = ±

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎢ ⎥⎣ ⎦

 

Check:  

 

3

H

3

D

0.158 mm
u 1.44 10

H 110 mm

0.158 mm
u 2.39 10

D 66 mm

x

x

δ

δ

−

−

= ± = ± = ± ×

= ± = ± = ± ×
 

1 1
2 22 2 2 2

H Du [(u ) (2u ) ] [(0.00144) (0.00478) ] 0.00499∀ = ± + = ± + = ±  

 

If δx represents half the least count, a minimum resolution of about 2 δx ≈  0.32 mm is needed. 

H 

D 



Problem 1.50    [Difficulty: 3] 

 

Given: Lateral acceleration, a = 0.70 g, measured on 150-ft diameter skid pad;  Uncertainties in Path 

deviation ±2 ft; vehicle speed ±0.5 mph 

 

Find:  Estimate uncertainty in lateral acceleration; ow could experimental procedure be improved? 

 

Solution: Lateral acceleration is given by a = V2/R. 

 

From Appendix F, u u ua v R= ± +[( ) ( ) ] /2 2 2 1 2  

 

From the given data, 
s

ft
1.41ft75

s

ft
2.3270.0;

2

2 =××=== aRVaRV  

 

Then u
V

V

mi

hr

s

41.1 ft

ft

mi

hr

3600 s
v = ± = ± × × × = ±

δ
0 5 5280 0 0178. .  

 

and u
R

R
2 ft

ft
R = ± = ± × = ±

δ 1

75
0 0267.  

so 

 
u

u percent

a

a

= ± × + = ±

= ±

( . ) ( . ) .

.

/
2 0 0178 0 0267 0 0445

4 45

2 2
1 2

 

Experimental procedure could be improved by using a larger circle, assuming the absolute errors in measurement are 

constant. 

 

For 

 

( )[ ] %4.20240.00100.00109.02

0100.0
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2
;0109.0

8.45
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mph8.45
s

ft
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ft200;ft400
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Given data:

H = 57.7 ft

δL = 0.5 ft

δθ = 0.2 deg

For this building height, we are to vary θ (and therefore L ) to minimize the uncertainty u H.



Plotting u H vs θ

θ (deg) u H

5 4.02%

10 2.05%

15 1.42%

20 1.13%

25 1.00%

30 0.95%

35 0.96%

40 1.02%

45 1.11%

50 1.25%

55 1.44%

60 1.70%

65 2.07%

70 2.62%

75 3.52%

80 5.32%

85 10.69%

Optimizing using Solver

θ (deg) u H

31.4 0.947%

To find the optimum θ as a function of building height H  we need a more complex Solver

H  (ft) θ (deg) u H

50 29.9 0.992%

75 34.3 0.877%

100 37.1 0.818%

125 39.0 0.784%

175 41.3 0.747%

200 42.0 0.737%

250 43.0 0.724%

300 43.5 0.717%

400 44.1 0.709%

500 44.4 0.705%

600 44.6 0.703%

700 44.7 0.702%

800 44.8 0.701%

900 44.8 0.700%

1000 44.9 0.700%

Use Solver  to vary ALL θ's to minimize the total u H!

Total u H's:  11.3%

Uncertainty in Height (H  = 57.7 ft) vs θ

0%
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u
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θ 
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Problem 1.52    [Difficulty: 4] 

 

Given: American golf ball, m = 1.62 ± 0.01 oz, D = 1.68 in. 

 

Find: Precision to which D must be measured to estimate density within uncertainty of ± 1percent.  

 

Solution: Apply uncertainty concepts 

 

Definition: Density, 
33 Dm 4

3 6
R πρ π∀≡ ∀ = =  

Computing equation: 

1
2

1

2

1
R x

1

R
u u

R x

x⎡ ⎤⎛ ⎞∂⎢ ⎥= ± +⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦
L  

 

From the definition,  

 

3/6 3

6 mm

D D
(m, D)

π π
ρ ρ= = =  

 

Thus m
m

1
ρ

ρ
∂
∂ = and D

D
3

ρ
ρ

∂
∂ = , so  

 
1
22 2

m D

2 2 2

m D

u [(1 u ) (3 u ) ]

u u 9 u

ρ

ρ

= ± +

= +
 

Solving, 
1
22 21

D m3
u [u u ]ρ= ± −  

 

From the data given, 

1
2

m

2 2

D

u 0.0100

0.01 oz
u 0.00617

1.62 oz

1
u [(0.0100) (0.00617) ] 0.00262 or 0.262%

3

ρ = ±

±
= = ±

= ± − = ± ±

 

Since D
D D

u δ= ± , then 

 

D xD D u 1.68 in. 0.00262 0.00441in.δ = ± = ± = ±  

The ball diameter must be measured to a precision of ± 0.00441 in.( ± 0.112 mm) or better to estimate density 

within ± 1percent. A micrometer or caliper could be used. 



Problem 1.53 [Difficulty: 5]

Given: Syringe pump to deliver 100 mL/min δV 0.001
in

min
⋅= δD 0.0005 in⋅=

Find: (a) Plot uncertainty in flow rate as a function of bore.

(b) Find combination of piston speed and bore resulting in minimum uncertainty in flow rate.

Solution: We will apply uncertainty concepts.

Governing Equations: Q
π

4
D

2
⋅ V⋅= (Flow rate in syringe pump)

2

1
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1 ⎥
⎥
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(Propagation of Uncertainties)

Now solving for the piston speed in terms of the bore: V D( )
4 Q⋅

π D
2

⋅
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uSo the uncertainty in the flow rate is:

( ) ( )[ ]2122
2 VDQ uuu +±= 0=

∂

∂

D

uQwhere uD
δD

D
= uv

δV

V
= The uncertainty is minimized when

Substituting expressions in terms of bore we get: Dopt
32

π
2

δD Q⋅

δV

⎛⎜
⎝

⎞
⎠

2

⋅
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

1

6

=

Substituting all known values yields Dopt 1.76 in⋅=

Plugging this into the expression for the piston speed yields Vopt 2.50
in

min
⋅= and the uncertainty is uopt 0.0694 %⋅=

Graphs of the piston speed and the uncertainty in the flowrate as a function of the bore are shown on the following page.
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Problem 2.1 [Difficulty: 1]

Given: Velocity fields

Find: Whether flows are 1, 2 or 3D, steady or unsteady.

Solution:

(1) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(2) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )≠ Steady

(3) V
→

V
→

x( )= 1D V
→

V
→

t( )≠ Steady

(4) V
→

V
→

x( )= 1D V
→

V
→

t( )≠ Steady

(5) V
→

V
→

x( )= 1D V
→

V
→

t( )= Unsteady

(6) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )≠ Steady

(7) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(8) V
→

V
→

x y, z, ( )= 3D V
→

V
→

t( )≠ Steady



Problem 2.2 [Difficulty: 1]

Given: Velocity fields

Find: Whether flows are 1, 2 or 3D, steady or unsteady.

Solution:

(1) V
→

V
→

y( )= 1D V
→

V
→

t( )= Unsteady

(2) V
→

V
→

x( )= 1D V
→

V
→

t( )≠ Steady

(3) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(4) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(5) V
→

V
→

x( )= 1D V
→

V
→

t( )= Unsteady

(6) V
→

V
→

x y, z, ( )= 3D V
→

V
→

t( )≠ Steady

(7) V
→

V
→

x y, ( )= 2D V
→

V
→

t( )= Unsteady

(8) V
→

V
→

x y, z, ( )= 3D V
→

V
→

t( )≠ Steady



Problem 2.3    [Difficulty: 2] 

 

Given: Viscous liquid sheared between parallel disks. 

Upper disk rotates, lower fixed. 

Velocity field is:  
h

zr
eV

ω
θ̂=


 

Find: 

a. Dimensions of velocity field. 

b. Satisfy physical boundary conditions. 

Solution: To find dimensions, compare to ( )zyxVV ,,


=  form. 

The given field is ( )zrVV ,


= . Two space coordinates are included, so the field is 2-D. 

Flow must satisfy the no-slip condition: 

1. At lower disk, 0=V


 since stationary. 

z = 0, so 0
0

ˆ ==
h

r
eV

ω
θ


, so satisfied. 

2. At upper disk, ωθ reV ˆ=


 since it rotates as a solid body. 

z = h, so ωω
θθ re

h

hr
eV ˆˆ ==


, so satisfied. 

 



Problem 2.4 [Difficulty: 1]

Given: Velocity field

Find: Equation for streamlines

0 1 2 3 4 5

1

2

3

4

5

C = 1

C = 2

C = 3

C = 4

Streamline Plots

x (m)

y
 (

m
)

Solution:

For streamlines
v

u

dy

dx


B x y
2



A x
2

 y


B y

A x


So, separating variables
dy

y

B

A

dx

x


Integrating ln y( )
B

A
ln x( ) c

1

2
 ln x( ) c

The solution is y
C

x


The plot can be easily done in Excel.



Problem 2.5 [Difficulty: 2]

Given: Velocity field

Find: Equation for streamlines; Plot several in the first quadrant, including one that passes through point (0,0)

Solution:

Governing equation: For streamlines
v

u

dy

dx


Assumption:  2D flow

0 1 2 3 4 5

1

2

3

4

5

C = 1

C = 2

C = 3

C = 4

Streamline Plots

x (m)

y
 (

m
)

Hence
v

u

dy

dx


A y

A x


y

x


So, separating variables
dy

y

dx

x


Integrating ln y( ) ln x( ) c

The solution is ln x y( ) c

or y
C

x


The plot can be easily done in Excel.

The streamline passing through (0,0) is given by the vertical axis, then the horizontal axis.

The value of A is irrelevant to streamline shapes but IS relevant for computing the velocity at each point. 



Problem 2.6 [Difficulty: 1]

Given: Velocity field

Find: Whether field is 1D, 2D or 3D; Velocity components at (2,1/2); Equation for streamlines; Plot

Solution:

The velocity field is a function of x and y.  It is therefore 2D.

At point (2,1/2), the velocity components are u a x⋅ y⋅= 2
1

m s⋅
⋅ 2× m⋅

1

2
× m⋅= u 2

m

s
⋅=

v b y
2

⋅= 6−
1

m s⋅
⋅

1

2
m⋅⎛⎜

⎝
⎞
⎠

2

×= v
3

2
−

m

s
⋅=

For streamlines
v

u

dy

dx
=

b y
2

⋅

a x⋅ y⋅
=

b y⋅

a x⋅
=

So, separating variables
dy

y

b

a

dx

x
⋅=

Integrating ln y( )
b

a
ln x( )⋅ c+= y C x

b

a
⋅=

The solution is y C x
3−

⋅=

The streamline passing through point (2,1/2) is given by
1

2
C 2

3−
⋅= C

1

2
2
3

⋅= C 4= y
4

x
3

=

1 1.3 1.7 2

4

8

12

16

20

Streamline for C

Streamline for 2C

Streamline for 3C

Streamline for 4C

This can be plotted in Excel.



t = 0 t =1 s t = 20 s

(### means too large to view)

c = 1 c = 2 c = 3 c = 1 c = 2 c = 3 c = 1 c = 2 c = 3

x y y y x y y y x y y y

0.05 1.00 2.00 3.00 0.05 20.00 40.00 60.00 0.05 ###### ###### ######

0.10 1.00 2.00 3.00 0.10 10.00 20.00 30.00 0.10 ###### ###### ######

0.20 1.00 2.00 3.00 0.20 5.00 10.00 15.00 0.20 ###### ###### ######

0.30 1.00 2.00 3.00 0.30 3.33 6.67 10.00 0.30 ###### ###### ######

0.40 1.00 2.00 3.00 0.40 2.50 5.00 7.50 0.40 ###### ###### ######

0.50 1.00 2.00 3.00 0.50 2.00 4.00 6.00 0.50 ###### ###### ######

0.60 1.00 2.00 3.00 0.60 1.67 3.33 5.00 0.60 ###### ###### ######

0.70 1.00 2.00 3.00 0.70 1.43 2.86 4.29 0.70 ###### ###### ######

0.80 1.00 2.00 3.00 0.80 1.25 2.50 3.75 0.80 86.74 173.47 260.21

0.90 1.00 2.00 3.00 0.90 1.11 2.22 3.33 0.90 8.23 16.45 24.68

1.00 1.00 2.00 3.00 1.00 1.00 2.00 3.00 1.00 1.00 2.00 3.00

1.10 1.00 2.00 3.00 1.10 0.91 1.82 2.73 1.10 0.15 0.30 0.45

1.20 1.00 2.00 3.00 1.20 0.83 1.67 2.50 1.20 0.03 0.05 0.08

1.30 1.00 2.00 3.00 1.30 0.77 1.54 2.31 1.30 0.01 0.01 0.02

1.40 1.00 2.00 3.00 1.40 0.71 1.43 2.14 1.40 0.00 0.00 0.00

1.50 1.00 2.00 3.00 1.50 0.67 1.33 2.00 1.50 0.00 0.00 0.00

1.60 1.00 2.00 3.00 1.60 0.63 1.25 1.88 1.60 0.00 0.00 0.00

1.70 1.00 2.00 3.00 1.70 0.59 1.18 1.76 1.70 0.00 0.00 0.00

1.80 1.00 2.00 3.00 1.80 0.56 1.11 1.67 1.80 0.00 0.00 0.00

1.90 1.00 2.00 3.00 1.90 0.53 1.05 1.58 1.90 0.00 0.00 0.00

2.00 1.00 2.00 3.00 2.00 0.50 1.00 1.50 2.00 0.00 0.00 0.00



Streamline Plot (t = 0)
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Streamline Plot (t = 1 s)
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Streamline Plot (t = 20 s)

0

2

4

6

8

10

12

14

16

18

20

0.0 0.2 0.4 0.6 0.8 1.0 1.2

x

y

c = 1

c = 2

c = 3



a = 1

b = 1

C = 0 2 4 6

x y y y y

0.05 0.16 0.15 0.14 0.14

0.10 0.22 0.20 0.19 0.18

0.20 0.32 0.27 0.24 0.21

0.30 0.39 0.31 0.26 0.23

0.40 0.45 0.33 0.28 0.24

0.50 0.50 0.35 0.29 0.25

0.60 0.55 0.37 0.30 0.26

0.70 0.59 0.38 0.30 0.26

0.80 0.63 0.39 0.31 0.26

0.90 0.67 0.40 0.31 0.27

1.00 0.71 0.41 0.32 0.27

1.10 0.74 0.41 0.32 0.27

1.20 0.77 0.42 0.32 0.27

1.30 0.81 0.42 0.32 0.27

1.40 0.84 0.43 0.33 0.27

1.50 0.87 0.43 0.33 0.27

1.60 0.89 0.44 0.33 0.27

1.70 0.92 0.44 0.33 0.28

1.80 0.95 0.44 0.33 0.28

1.90 0.97 0.44 0.33 0.28

2.00 1.00 0.45 0.33 0.28

Streamline Plot

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.5 1.0 1.5 2.0

x

y

c = 0

c = 2

c = 4

c = 6



A = 10

B = 20

C =

1 2 4 6

x y y y y

0.00 0.50 1.00 2.00 3.00

0.10 0.48 0.95 1.90 2.86

0.20 0.45 0.91 1.82 2.73

0.30 0.43 0.87 1.74 2.61

0.40 0.42 0.83 1.67 2.50

0.50 0.40 0.80 1.60 2.40

0.60 0.38 0.77 1.54 2.31

0.70 0.37 0.74 1.48 2.22

0.80 0.36 0.71 1.43 2.14

0.90 0.34 0.69 1.38 2.07

1.00 0.33 0.67 1.33 2.00

1.10 0.32 0.65 1.29 1.94

1.20 0.31 0.63 1.25 1.88

1.30 0.30 0.61 1.21 1.82

1.40 0.29 0.59 1.18 1.76

1.50 0.29 0.57 1.14 1.71

1.60 0.28 0.56 1.11 1.67

1.70 0.27 0.54 1.08 1.62

1.80 0.26 0.53 1.05 1.58

1.90 0.26 0.51 1.03 1.54

2.00 0.25 0.50 1.00 1.50

Streamline Plot
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1.0

1.5

2.0
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3.5

0.0 0.5 1.0 1.5 2.0
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c = 4

c = 6 ((x,y) = (1.2)



Problem 2.10 [Difficulty: 2]

Given: Velocity field

Find: Equation for streamline through (1,3)

Solution:

For streamlines
v

u

dy

dx


A
y

x
2



A

x


y

x


So, separating variables
dy

y

dx

x


Integrating ln y( ) ln x( ) c

The solution is y C x which is the equation of a straight line.

For the streamline through point (1,3) 3 C 1 C 3 and y 3 x

For a particle up
dx

dt


A

x
 or x dx A dt x 2 A t c t

x
2

2 A

c

2 A


Hence the time for a particle to go from x = 1 to x = 2 m is

∆t t x 2( ) t x 1( ) ∆t
2 m( )

2
c

2 A

1 m( )
2

c

2 A


4 m
2

 1 m
2



2 2
m

2

s


 ∆t 0.75 s



Problem 2.11 [Difficulty: 3]

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equation for streamlines

Solution:

On the x axis, y = 0, so u
M y

2 π
 0 v

M x

2 π


0 0.2 0.4 0.6 0.8 1

50

100

150

200

x (km)

v
 (

m
/s

)

Plotting

The velocity is perpendicular to the axis and increases linearly with distance x.

This can also be plotted in Excel.

On the y axis, x = 0, so u
M y

2 π
 v

M x

2 π
 0

0 0.2 0.4 0.6 0.8 1

200

150

100

50

y (km)

u
 (

m
/s

)

Plotting

The velocity is perpendicular to the axis and increases linearly with distance y.

This can also be plotted in Excel.



On the y = x

axis
u

M y

2 π


M x

2 π
 v

M x

2 π


The flow is perpendicular to line y = x: Slope of line y =

x:
1

Slope of trajectory of

motion:

u

v
1

If we define the radial position: r x
2

y
2

 then along y =

x
r x

2
x

2
 2 x

Then the magnitude of the velocity along y = x isV u
2

v
2


M

2 π
x

2
x

2


M 2 x

2 π


M r

2 π


0 0.2 0.4 0.6 0.8 1

50

100

150

200

r (km)

V
(m

/s
)

Plotting

This can also be plotted in

Excel.

For

streamlines

v

u

dy

dx


M x

2 π

M y

2 π



x

y


So, separating

variables
y dy x dx

Integrati

ng

y
2

2

x
2

2
 c

The solution

is
x

2
y

2
 C which is the equation of a

circle.
The streamlines form a set of concentric circles.

This flow models a rigid body vortex flow.  See Example 5.6 for streamline plots.  Streamlines are circular, and the velocity

approaches zero as we approach the center.  In Problem 2.10, we see that the streamlines are also circular.  In a real tornado, at

large distances from the center, the velocities behave as in Problem 2.10; close to the center, they behave as in this problem.



[Difficulty: 3]Problem 2.12

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equation of streamlines

Solution:

On the x axis, y = 0, so u
K y

2 π x
2

y
2

 
 0 v

K x

2 π x
2

y
2

 


K

2 π x


1 0.5 0 0.5 1

160

80

80

160

x (km)

v
( 

m
/s

)

Plotting

The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.

This can also be plotted in Excel.

On the y axis, x = 0, so u
K y

2 π x
2

y
2

 


K

2 π y
 v

K x

2 π x
2

y
2

 
 0

1 0.5 0 0.5 1

160

80

80

160

y (km)

v
( 

m
/s

)

Plotting



The velocity is perpendicular to the axis, is very high close to the origin, and falls off to zero.

This can also be plotted in Excel.

On the y = x axis u
K x

2 π x
2

x
2

 


K

4 π x
 v

K x

2 π x
2

x
2

 


K

4 π x


The flow is perpendicular to line y = x: Slope of line y = x: 1

Slope of trajectory of motion:
u

v
1

If we define the radial position: r x
2

y
2

 then along y = x r x
2

x
2

 2 x

Then the magnitude of the velocity along y = x is V u
2

v
2


K

4 π

1

x
2

1

x
2


K

2 π 2 x


K

2 π r


1 0.5 0 0.5 1

160

80

80

160

x (km)

v
( 

m
/s

)

Plotting

This can also be plotted in Excel.

For streamlines
v

u

dy

dx


K x

2 π x
2

y
2 

K y

2 π x
2

y
2

 



x

y


So, separating variables y dy x dx

Integrating
y

2

2

x
2

2
 c

The solution is x
2

y
2

 C which is the equation of a

circle.

Streamlines form a set of concentric circles.

This flow models a vortex flow.  See Example 5.6 for streamline plots.  Streamlines are circular, and the velocity approaches infinity

as we approach the center.  In Problem 2.11, we see that the streamlines are also circular.  In a real tornado, at large distances from

the center, the velocities behave as in this problem; close to the center, they behave as in Problem 2.11.



Problem 2.13 [Difficulty: 3]

Given: Flow field

Find: Plot of velocity magnitude along axes, and y = x; Equations of streamlines

Solution:

On the x axis, y = 0, so u
q x

2 π x
2

y
2

 


q

2 π x
 v

q y

2 π x
2

y
2

 
 0

1 0.5 0 0.5 1

100

50

50

100

x (km)

u
 (

m
/s

)

Plotting

The velocity is very high close to the origin, and falls off to zero.  It is also along the axis.  This can be plotted in Excel.

On the y axis, x = 0, so u
q x

2 π x
2

y
2

 
 0 v

q y

2 π x
2

y
2

 


q

2 π y


1 0.5 0 0.5 1

100

60

20

20

60

100

y (km)

v
 (

m
/s

)

Plotting

The velocity is again very high close to the origin, and falls off to zero.  It is also along the axis.

This can also be plotted in Excel.  



On the y = x axis u
q x

2 π x
2

x
2

 


q

4 π x
 v

q x

2 π x
2

x
2

 


q

4 π x


The flow is parallel to line y = x: Slope of line y = x: 1

Slope of trajectory of motion:
v

u
1

If we define the radial position: r x
2

y
2

 then along y = x r x
2

x
2

 2 x

Then the magnitude of the velocity along y = x is V u
2

v
2


q

4 π

1

x
2

1

x
2


q

2 π 2 x


q

2 π r


1 0.5 0 0.5 1

100

60

20

20

60

100

r (km)

V
(m

/s
)

Plotting

This can also be plotted in Excel.

For streamlines
v

u

dy

dx


q y

2 π x
2

y
2

 


q x

2 π x
2

y
2

 



y

x


So, separating variables
dy

y

dx

x


Integrating ln y( ) ln x( ) c

The solution is y C x which is the equation of a straight line.

This flow field corresponds to a sink (discussed in Chapter 6).



Problem 2.14 [Difficulty: 2]

Given: Velocity field

Find: Proof that the parametric equations for particle motion are xp c1 e
A t⋅

⋅=  and yp c2 e
A− t⋅

⋅= ; pathline that was at

(2,2) at t = 0; compare to streamline through same point, and explain why they are similar or not.

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= A x⋅= vp

dy

dt
= A− y⋅=

So, separating variables
dx

x
A dt⋅=

dy

y
A− dt⋅=

Integrating ln x( ) A t⋅ C1+= ln y( ) A− t⋅ C2+=

x e
A t⋅ C1+

= e
C1

e
A t⋅

⋅= c1 e
A t⋅

⋅= y e
A− t⋅ C2+

= e
C2

e
A− t⋅

⋅= c2 e
A− t⋅

⋅=

The pathlines are x c1 e
A t⋅

⋅= y c2 e
A− t⋅

⋅=

Eliminating t t
1

A
ln

x

c1

⎛
⎜
⎝

⎞
⎠

⋅=
1

A
− ln

y

c2

⎛
⎜
⎝

⎞
⎠

⋅= ln x

1

A
y

1

A
⋅

⎛
⎜
⎝

⎞

⎠ const= or ln x
A

y
A

⋅( ) const=

so x
A

y
A

⋅ const= or x y⋅ 4= for given data

For streamlines
v

u

dy

dx
=

A y⋅

A x⋅
−=

y

x
=

So, separating variables
dy

y

dx

x
−=

Integrating ln y( ) ln x( )− c+=

The solution is ln x y⋅( ) c= or x y⋅ const= or x y⋅ 4= for given data

The streamline passing through (2,2) and the pathline that started at (2,2) coincide because the flow is steady!



Problem 2.15 [Difficulty: 2]

Given: Velocity field

Find: Proof that the parametric equations for particle motion are xp c1 e
A t⋅

⋅=  and yp c2 e
2 A⋅ t⋅

⋅= ; pathline that was at

(2,2) at t = 0; compare to streamline through same point, and explain why they are similar or not.

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For

streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= A x⋅= vp

dy

dt
= 2 A⋅ y⋅=

So, separating variables
dx

x
A dt⋅=

dy

y
2 A⋅ dt⋅=

Integrating ln x( ) A t⋅ C1+= ln y( ) 2 A⋅ t⋅ C2+=

x e
A t⋅ C1+

= e
C1

e
A t⋅

⋅= c1 e
A t⋅

⋅= y e
2 A⋅ t⋅ C2+

= e
C2

e
2 A⋅ t⋅

⋅= c2 e
2 A⋅ t⋅

⋅=

The pathlines are x c1 e
A t⋅

⋅= y c2 e
2 A⋅ t⋅

⋅=

Eliminating t y c2 e
2 A⋅ t⋅

⋅= c2
x

c1

⎛
⎜
⎝

⎞
⎠

2

⋅= so y c x
2

⋅= or y
1

2
x

2
⋅= for given data

For streamlines
v

u

dy

dx
=

2 A⋅ y⋅

A x⋅
=

2 y⋅

x
=

So, separating variables
dy

y

2 dx⋅

x
= Integrating ln y( ) 2 ln x( )⋅ c+=

The solution is ln
y

x
2

⎛
⎜
⎝

⎞

⎠
c=

or y C x
2

⋅= or y
1

2
x

2
⋅= for given data

The streamline passing through (2,2) and the pathline that started at (2,2) coincide because the flow is steady!



t = 0 t =1 s t = 20 s

C = 1 C = 2 C = 3 C = 1 C = 2 C = 3 C = 1 C = 2 C = 3

x y y y x y y y x y y y

0.00 1.00 2.00 3.00 0.000 1.00 1.41 1.73 0.00 1.00 1.41 1.73

0.10 1.00 2.00 3.00 0.025 1.00 1.41 1.73 0.10 1.00 1.41 1.73

0.20 1.00 2.00 3.00 0.050 0.99 1.41 1.73 0.20 1.00 1.41 1.73

0.30 1.00 2.00 3.00 0.075 0.99 1.41 1.73 0.30 0.99 1.41 1.73

0.40 1.00 2.00 3.00 0.100 0.98 1.40 1.72 0.40 0.98 1.40 1.72

0.50 1.00 2.00 3.00 0.125 0.97 1.39 1.71 0.50 0.97 1.40 1.72

0.60 1.00 2.00 3.00 0.150 0.95 1.38 1.71 0.60 0.96 1.39 1.71

0.70 1.00 2.00 3.00 0.175 0.94 1.37 1.70 0.70 0.95 1.38 1.70

0.80 1.00 2.00 3.00 0.200 0.92 1.36 1.69 0.80 0.93 1.37 1.69

0.90 1.00 2.00 3.00 0.225 0.89 1.34 1.67 0.90 0.92 1.36 1.68

1.00 1.00 2.00 3.00 0.250 0.87 1.32 1.66 1.00 0.89 1.34 1.67

1.10 1.00 2.00 3.00 0.275 0.84 1.30 1.64 1.10 0.87 1.33 1.66

1.20 1.00 2.00 3.00 0.300 0.80 1.28 1.62 1.20 0.84 1.31 1.65

1.30 1.00 2.00 3.00 0.325 0.76 1.26 1.61 1.30 0.81 1.29 1.63

1.40 1.00 2.00 3.00 0.350 0.71 1.23 1.58 1.40 0.78 1.27 1.61

1.50 1.00 2.00 3.00 0.375 0.66 1.20 1.56 1.50 0.74 1.24 1.60

1.60 1.00 2.00 3.00 0.400 0.60 1.17 1.54 1.60 0.70 1.22 1.58

1.70 1.00 2.00 3.00 0.425 0.53 1.13 1.51 1.70 0.65 1.19 1.56

1.80 1.00 2.00 3.00 0.450 0.44 1.09 1.48 1.80 0.59 1.16 1.53

1.90 1.00 2.00 3.00 0.475 0.31 1.05 1.45 1.90 0.53 1.13 1.51

2.00 1.00 2.00 3.00 0.500 0.00 1.00 1.41 2.00 0.45 1.10 1.48



Streamline Plot (t = 0)
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Problem 2.17 [Difficulty: 4]

Given: Pathlines of particles

Find: Conditions that make them satisfy Problem 2.10 flow field; Also Problem 2.11 flow field; Plot pathlines 

Solution:

The given pathlines are xp a sin ω t( ) yp a cos ω t( )

The velocity field of Problem 2.12 is u
K y

2 π x
2

y
2

 
 v

K x

2 π x
2

y
2

 


If the pathlines are correct we should be able to substitute xp and yp into the velocity field to find the velocity as a function of time:

u
K y

2 π x
2

y
2

 


K a cos ω t( )

2 π a
2

sin ω t( )
2

 a
2

cos ω t( )
2

 


K cos ω t( )

2 π a
 (1)

v
K x

2 π x
2

y
2

 


K a sin ω t( )( )

2 π a
2

sin ω t( )
2

 a
2

cos ω t( )
2

 


K sin ω t( )

2 π a
 (2)

We should also be able to find the velocity field as a function of time from the pathline equations (Eq. 2.9):

(2.9)dxp

dt
u

dxp

dt
v

u
dxp

dt
 a ω cos ω t( ) v

dyp

dt
 a ω sin ω t( ) (3)

Comparing Eqs. 1, 2 and 3 u a ω cos ω t( )
K cos ω t( )

2 π a
 v a ω sin ω t( )

K sin ω t( )

2 π a


Hence we see that a ω
K

2 π a
 or ω

K

2 π a
2


 for the pathlines to be correct.



The pathlines are

400 200 0 200 400

400

200

200

400

a = 300 m

a = 400 m

a = 500 m

To plot this in Excel, compute xp and yp

for t ranging from 0 to 60 s, with ω given

by the above formula.  Plot yp versus xp.

Note that outer particles travel much

slower!

This is the free vortex flow discussed in

Example 5.6

The velocity field of Problem 2.11 is u
M y

2 π
 v

M x

2 π


If the pathlines are correct we should be able to substitute xp and yp into the velocity field to find the velocity as a function of time:

u
M y

2 π


M a cos ω t( )( )

2 π


M a cos ω t( )

2 π
 (4)

v
M x

2 π


M a sin ω t( )( )

2 π


M a sin ω t( )

2 π
 (5)

Recall that u
dxp

dt
 a ω cos ω t( ) v

dyp

dt
 a ω sin ω t( ) (3)

Comparing Eqs. 1, 4 and 5 u a ω cos ω t( )
M a cos ω t( )

2 π
 v a ω sin ω t( )

M a sin ω t( )

2 π


Hence we see that ω
M

2 π
 for the pathlines to be correct.



400 200 0 200 400

600

400

200

200

400

a = 300 m

a = 400 m

a = 500 m

The pathlines

To plot this in Excel, compute xp and yp

for t ranging from 0 to 75 s, with ω given

by the above formula.  Plot yp versus xp.

Note that outer particles travel faster!

This is the forced vortex flow discussed in

Example 5.6

Note that this is rigid

body rotation!



Problem 2.18 [Difficulty: 2]

Given: Time-varying velocity field

Find: Streamlines at t = 0 s; Streamline through (3,3); velocity vector; will streamlines change with time

Solution:

For streamlines
v

u

dy

dx


a y 2 cos ω t( )( )

a x 2 cos ω t( )( )


y

x


At t = 0 (actually all times!)
dy

dx

y

x


So, separating variables
dy

y

dx

x


Integrating ln y( ) ln x( ) c

The solution is y
C

x
 which is the equation of a hyperbola.

For the streamline through point (3,3) C
3

3
 C 1 and y

1

x


The streamlines will not change with time since dy/dx does not change with time.

0 1 2 3 4 5

1

2

3

4

5

x

y

At t = 0 u a x 2 cos ω t( )( ) 5
1

s
 3 m 3

u 45
m

s


v a y 2 cos ω t( )( ) 5
1

s
 3 m 3

v 45
m

s


The velocity vector is tangent to the curve;

Tangent of curve at (3,3) is
dy

dx

y

x
 1

Direction of velocity at (3,3) is
v

u
1

This curve can be plotted in Excel.



Problem 2.19 [Difficulty: 3]

Given: Velocity field

Find: Plot of pathline traced out by particle that passes through point (1,1) at t = 0; compare to streamlines through same

point at the instants t = 0, 1 and 2s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= A 1 B t⋅+( )⋅= A 1

m

s
⋅= B 1

1

s
⋅= vp

dy

dt
= C t⋅ y⋅= C 1

1

s
2

⋅=

So, separating variables dx A 1 B t⋅+( )⋅ dt⋅=
dy

y
C t⋅ dt⋅=

Integrating x A t B
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅ C1+= ln y( )

1

2
C⋅ t

2
⋅ C2+=

y e

1

2
C⋅ t

2⋅ C2+

= e
C2

e

1

2
C⋅ t

2⋅

⋅= c2 e

1

2
C⋅ t

2⋅

⋅=

The pathlines are x A t B
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅ C1+= y c2 e

1

2
C⋅ t

2⋅

⋅=

Using given data x A t B
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅ 1+= y e

1

2
C⋅ t

2⋅

=

For streamlines
v

u

dy

dx
=

C y⋅ t⋅

A 1 B t⋅+( )⋅
=

So, separating variables 1 B t⋅+( )
dy

y
⋅

C

A
t⋅ dx⋅= which we can integrate for any given t (t is treated as a constant) 

Integrating 1 B t⋅+( ) ln y( )⋅
C

A
t⋅ x⋅ c+=

The solution is y
1 B t⋅+ C

A
t⋅ x⋅ const+= y

C

A
t⋅ x⋅ const+⎛⎜

⎝
⎞
⎠

1

1 B t⋅+( )

=



For particles at (1,1) at t = 0, 1, and 2s, using A, B, and C data: y 1= y x

1

2
= y 2 x⋅ 1−( )

1

3
=

0 1 2 3 4 5

1

2

3

4

5

Streamline (t=0)

Streamline (t=1)

Streamline (t=2)

Pathline

Streamline and Pathline Plots

x (m)

y
 (

m
)



Problem 2.20 [Difficulty: 3]

Given: Velocity field

Find: Plot of pathline traced out by particle that passes through point (1,1) at t = 0; compare to streamlines through

same point at the instants t = 0, 1 and 2s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= B x⋅ 1 A t⋅+( )⋅= A 0.5

1

s
⋅= B 1

1

s
⋅= vp

dy

dt
= C y⋅= C 1

1

s
⋅=

So, separating variables
dx

x
B 1 A t⋅+( )⋅ dt⋅=

dy

y
C dt⋅=

Integrating ln x( ) B t A
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅ C1+= ln y( ) C t⋅ C2+=

y e
C t⋅ C2+

= e
C2

e
C t⋅

⋅= c2 e
C t⋅

⋅=
x e

B t A
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅ C1+

= e
C1

e

B t A
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅

⋅= c1 e

B t A
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅

⋅=

The pathlines are x c1 e

B t A
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅

⋅= y c2 e
C t⋅

⋅=

Using given data x e

B t A
t
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅

= y e
C t⋅

=

For streamlines
v

u

dy

dx
=

C y⋅

B x⋅ 1 A t⋅+( )⋅
=

So, separating variables 1 A t⋅+( )
dy

y
⋅

C

B

dx

x
⋅= which we can integrate for any given t (t is treated as a constant) 

Integrating 1 A t⋅+( ) ln y( )⋅
C

B
ln x( )⋅ c+=



The solution is y
1 A t⋅+

const x

C

B
⋅= or y const x⋅=

For particles at (1,1) at t = 0, 1, and 2s y x

C

B
= y x

C

1 A+( )B
= y x

C

1 2 A⋅+( )B
=

0 1 2 3 4 5

1

2

3

4

5

Streamline (t=0)

Streamline (t=1)

Streamline (t=2)

Pathline

Streamline and Pathline Plots

x (m)

y
 (

m
)



Problem 2.21 [Difficulty: 3]

Given: Eulerian Velocity field

Find: Lagrangian position function that was at point (1,1) at t = 0; expression for pathline; plot pathline and compare to

streamlines through same point at the instants t = 0, 1 and 2s

Solution:

Governing equations: For pathlines (Lagrangian description) up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= A= A 2=

m

s
vp

dy

dt
= B− t⋅= B 2=

m

s
2

So, separating variables dx A dt⋅= dy B− t⋅ dt⋅=

Integrating x A t⋅ x0+= x0 1= m y B−
t
2

2
⋅ y0+= y0 1= m

The Lagrangian description is x t( ) A t⋅ x0+= y t( ) B−
t
2

2
⋅ y0+=

Using given data x t( ) 2 t⋅ 1+= y t( ) 1 t
2

−=

The pathlines are given by combining the equations t
x x0−

A
= y B−

t
2

2
⋅ y0+= B−

x x0−( )2

2 A
2

⋅
⋅ y0+=

Hence y x( ) y0 B
x x0−( )2

2 A
2

⋅
⋅−= or, using given data y x( ) 1

x 1−( )
2

4
−=

For streamlines
v

u

dy

dx
=

B− t⋅

A
=

So, separating variables dy
B t⋅

A
− dx⋅= which we can integrate for any given t (t is treated as a constant) 



The solution is y
B t⋅

A
− x⋅ c+= and for the one through (1,1) 1

B t⋅

A
− 1⋅ c+= c 1

B t⋅

A
+=

y
B t⋅

A
− x 1−( )⋅ 1+= y 1 t x 1−( )⋅−=

x 1 1.1, 20..=

0 5 10 15 20 25

100−

76−

52−

28−

4−

20

Streamline (t=0)

Streamline (t=1)

Streamline (t=2)

Pathline

Streamline Plots

x (m)

y
 (

m
)



Problem 2.22 [Difficulty: 3]

Given: Velocity field

Find: Plot of pathline of particle for t = 0 to 1.5 s that was at point (1,1) at t = 0; compare to streamlines through same

point at the instants t = 0, 1 and 1.5 s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= ax= a 2=

1

s
vp

dy

dt
= b y⋅ 1 c t⋅+( )⋅= b 2=

1

s
2

c 0.4=
1

s

So, separating variables
dx

x
a dt⋅= dy b y⋅ 1 c t⋅+( )⋅ dt⋅=

dy

y
b 1 c t⋅+( )⋅ dt⋅=

Integrating ln
x

x0

⎛
⎜
⎝

⎞
⎠

a t⋅= x0 1= m ln
y

y0

⎛
⎜
⎝

⎞
⎠

b t
1

2
c⋅ t

2
⋅+⎛⎜

⎝
⎞
⎠

⋅= y0 1= m

Hence x t( ) x0 e
a t⋅

⋅= y t( ) e

b t
1

2
c⋅ t

2⋅+⎛⎜
⎝

⎞
⎠

⋅

=

Using given data x t( ) e
2 t⋅

= y t( ) e
2 t⋅ 0.4 t

2⋅+
=

For streamlines
v

u

dy

dx
=

b y⋅ 1 c t⋅+( )⋅

a x⋅
=

So, separating variables
dy

y

b 1 c t⋅+( )⋅

a x⋅
dx⋅= which we can integrate for any given t (t is treated as a constant) 

Hence ln
y

y0

⎛
⎜
⎝

⎞
⎠

b

a
1 c t⋅+( )⋅ ln

x

x0

⎛
⎜
⎝

⎞
⎠

⋅=

The solution is y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
1 c t⋅+( )⋅

⋅=



For t 0= y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
1 c t⋅+( )⋅

⋅ x== t 1= y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
1 c t⋅+( )⋅

⋅ x
1.4

== t 1.5= y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
1 c t⋅+( )⋅

⋅ x
1.6

==
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Problem 2.23 [Difficulty: 3]

Given: Velocity field

Find: Plot of pathline of particle for t = 0 to 1.5 s that was at point (1,1) at t = 0; compare to streamlines through same

point at the instants t = 0, 1 and 1.5 s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Assumption:  2D flow

Hence for pathlines up
dx

dt
= a x⋅= a

1

5
=

1

s
vp

dy

dt
= b y⋅ t⋅= b

1

25
=

1

s
2

So, separating variables
dx

x
a dt⋅= dy b y⋅ t⋅ dt⋅=

dy

y
b t⋅ dt⋅=

Integrating ln
x

x0

⎛
⎜
⎝

⎞
⎠

a t⋅= x0 1= m ln
y

y0

⎛
⎜
⎝

⎞
⎠

b
1

2
⋅ t

2
⋅= y0 1= m

Hence x t( ) x0 e
a t⋅

⋅= y t( ) y0 e

1

2
b⋅ t

2⋅

⋅=

Using given data x t( ) e

t

5
= y t( ) e

t
2

50
=

For streamlines
v

u

dy

dx
=

b y⋅ t⋅

a x⋅
=

So, separating variables
dy

y

b t⋅

a x⋅
dx⋅= which we can integrate for any given t (t is treated as a constant) 

Hence ln
y

y0

⎛
⎜
⎝

⎞
⎠

b

a
t⋅ ln

x

x0

⎛
⎜
⎝

⎞
⎠

⋅=

b

a
0.2= x0 1= y0 1=

The solution is y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
t⋅

⋅=



For t 0= y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
t⋅

⋅ 1==

t 5= y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
t⋅

⋅ x==
b

a
t⋅ 1=

t 10= y y0
x

x0

⎛
⎜
⎝

⎞
⎠

b

a
t⋅

⋅ x
2

==
b

a
t⋅ 2=
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Pathline Streamlines

t = 0 t = 1 s t = 2 s

t x y x y x y x y

0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.25 1.00 0.78 1.00 0.78 1.00 0.97 1.00 0.98

0.50 1.01 0.61 1.00 0.61 1.01 0.88 1.01 0.94

0.75 1.03 0.47 1.00 0.47 1.03 0.75 1.03 0.87

1.00 1.05 0.37 1.00 0.37 1.05 0.61 1.05 0.78

1.25 1.08 0.29 1.00 0.29 1.08 0.46 1.08 0.68

1.50 1.12 0.22 1.00 0.22 1.12 0.32 1.12 0.57

1.75 1.17 0.17 1.00 0.17 1.17 0.22 1.17 0.47

2.00 1.22 0.14 1.00 0.14 1.22 0.14 1.22 0.37

2.25 1.29 0.11 1.00 0.11 1.29 0.08 1.29 0.28

2.50 1.37 0.08 1.00 0.08 1.37 0.04 1.37 0.21

2.75 1.46 0.06 1.00 0.06 1.46 0.02 1.46 0.15

3.00 1.57 0.05 1.00 0.05 1.57 0.01 1.57 0.11

3.25 1.70 0.04 1.00 0.04 1.70 0.01 1.70 0.07

3.50 1.85 0.03 1.00 0.03 1.85 0.00 1.85 0.05

3.75 2.02 0.02 1.00 0.02 2.02 0.00 2.02 0.03

4.00 2.23 0.02 1.00 0.02 2.23 0.00 2.23 0.02

4.25 2.47 0.01 1.00 0.01 2.47 0.00 2.47 0.01

4.50 2.75 0.01 1.00 0.01 2.75 0.00 2.75 0.01

4.75 3.09 0.01 1.00 0.01 3.09 0.00 3.09 0.00

5.00 3.49 0.01 1.00 0.01 3.49 0.00 3.49 0.00

Pathline and Streamline Plots
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Problem 2.25 [Difficulty: 3]

Given: Flow field

Find: Pathline for particle starting at (3,1); Streamlines through same point at t = 1, 2, and 3 s

Solution:

For particle paths 
dx

dt
u= a x⋅ t⋅= an

d

dy

dt
v= b=

Separating variables and integrating
dx

x
a t⋅ dt⋅= or ln x( )

1

2
a⋅ t

2
⋅ c1+=

dy b dt⋅= or y b t⋅ c2+=

Using initial condition (x,y) = (3,1) and the given values for a and b

c1 ln 3 m⋅( )= an

d
c2 1 m⋅=

The pathline is then x 3 e
0.05 t

2⋅
⋅= and y 4 t⋅ 1+=

For streamlines (at any time t)
v

u

dy

dx
=

b

a x⋅ t⋅
=

So, separating variables dy
b

a t⋅

dx

x
⋅=

Integrating y
b

a t⋅
ln x( )⋅ c+=

We are interested in instantaneous streamlines at various times that always pass through point (3,1).  Using a and b values:

c y
b

a t⋅
ln x( )⋅−= 1

4

0.1 t⋅
ln 3( )⋅−=

The streamline equation is y 1
40

t
ln

x

3

⎛⎜
⎝
⎞
⎠

⋅+=

0 1 2 3 4 5
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20

30

Pathline

Streamline (t=1)

Streamline (t=2)

Streamline (t=3)

x

y

These curves can be plotted in

Excel.



Problem 2.26 [Difficulty: 4]

Given: Velocity field

Find: Plot streamlines that are at origin at various times and pathlines that left origin at these times

Solution:

For streamlines
v

u

dy

dx
=

v0 sin ω t
x

u0

−⎛
⎜
⎝

⎞
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅

u0

=

So, separating variables (t=const) dy

v0 sin ω t
x

u0

−⎛
⎜
⎝

⎞
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅

u0

dx⋅=

Integrating y

v0 cos ω t
x

u0

−⎛
⎜
⎝

⎞
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅

ω
c+=

Using condition y = 0 when x = 0 y

v0 cos ω t
x

u0

−⎛
⎜
⎝

⎞
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

cos ω t⋅( )−⎡
⎢
⎣

⎤
⎥
⎦

⋅

ω
=

This gives streamlines y(x) at each time t

For particle paths, first find x(t) 
dx

dt
u= u0=

Separating variables and integrating dx u0 dt⋅= o

r
x u0 t⋅ c1+=

Using initial condition x = 0 at t = τ c1 u0− τ⋅= x u0 t τ−( )⋅=

For y(t) we have
dy

dt
v= v0 sin ω t

x

u0

−⎛
⎜
⎝

⎞
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅= so
dy

dt
v= v0 sin ω t

u0 t τ−( )⋅

u0

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

and
dy

dt
v= v0 sin ω τ⋅( )⋅=

Separating variables and integrating dy v0 sin ω τ⋅( )⋅ dt⋅= y v0 sin ω τ⋅( )⋅ t⋅ c2+=

Using initial condition y = 0 at t = τ c2 v0− sin ω τ⋅( )⋅ τ⋅= y v0 sin ω τ⋅( )⋅ t τ−( )⋅=

The pathline is then

x t τ, ( ) u0 t τ−( )⋅= y t τ, ( ) v0 sin ω τ⋅( )⋅ t τ−( )⋅= These terms give the path of a particle (x(t),y(t)) that started at t = τ.
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Streamline t = 0s

Streamline t = 0.05s

Streamline t = 0.1s

Streamline t = 0.15s

Pathline starting t = 0s

Pathline starting t = 0.05s

Pathline starting t = 0.1s

Pathline starting t = 0.15s

The streamlines are sinusoids; the pathlines are straight (once a water particle is fired it travels in a straight line).

These curves can be plotted in Excel.



Problem 2.27 [Difficulty: 5]

Given: Velocity field

Find: Plot streakline for first second of flow

Solution:

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

where x0, y0 is the position of the particle at t = t0, and re-interprete the results as streaklines

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

For particle paths, first find x(t) 
dx

dt
u= u0=

Separating variables and integrating dx u0 dt⋅= o

r
x x0 u0 t t0−( )⋅+=

For y(t) we have
dy

dt
v= v0 sin ω t

x

u0

−⎛
⎜
⎝

⎞
⎠

⋅⎡
⎢
⎣

⎤
⎥
⎦

⋅= so
dy

dt
v= v0 sin ω t

x0 u0 t t0−( )⋅+

u0

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

and
dy

dt
v= v0 sin ω t0

x0

u0

−
⎛
⎜
⎝

⎞

⎠
⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Separating variables and integrating dy v0 sin ω t0

x0

u0

−
⎛
⎜
⎝

⎞

⎠
⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅ dt⋅= y y0 v0 sin ω t0

x0

u0

−
⎛
⎜
⎝

⎞

⎠
⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅ t t0−( )⋅+=

The streakline is then xst t0( ) x0 u0 t t0−( )+= yst t0( ) y0 v0 sin ω t0

x0

u0

−
⎛
⎜
⎝

⎞

⎠
⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅ t t0−( )⋅+=

With x0 y0= 0=

xst t0( ) u0 t t0−( )⋅= yst t0( ) v0 sin ω t0( )⋅⎡⎣ ⎤⎦⋅ t t0−( )⋅=

0 2 4 6 8 10

2−

1−

1

2

Streakline for First Second

x (m)

y
 (

m
)

This curve can be plotted in Excel.  For t = 1, t0 ranges from 0 to t.



Problem 2.28 [Difficulty: 4]

Given: Velocity field

Find: Plot of streakline for t = 0 to 3 s at point (1,1); compare to streamlines through same point at the instants t = 0, 1

and 2 s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

Assumption:  2D flow

For pathlines up
dx

dt
= B x⋅ 1 A t⋅+( )⋅= A 0.5=

1

s
B 1=

1

s
vp

dy

dt
= C y⋅= C 1=

1

s

So, separating variables
dx

x
B 1 A t⋅+( )⋅ dt⋅=

dy

y
C dt⋅=

Integrating ln
x

x0

⎛
⎜
⎝

⎞
⎠

B t t0− A
t
2

t0
2

−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅= ln

y

y0

⎛
⎜
⎝

⎞
⎠

C t t0−( )⋅=

y y0 e
C t t0−( )⋅

⋅=
x x0 e

B t t0− A

t
2

t0
2−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅

⋅=

The pathlines are xp t( ) x0 e

B t t0− A

t
2

t0
2−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅

⋅= yp t( ) y0 e
C t t0−( )⋅

⋅=

where x0, y0 is the position of the particle at t = t0. Re-interpreting the results as streaklines:

The streaklines are then xst t0( ) x0 e

B t t0− A

t
2

t0
2−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅

⋅= yst t0( ) y0 e
C t t0−( )⋅

⋅=

where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)



For streamlines
v

u

dy

dx
=

C y⋅

B x⋅ 1 A t⋅+( )⋅
=

So, separating variables 1 A t⋅+( )
dy

y
⋅

C

B

dx

x
⋅= which we can integrate for any given t (t is treated as a constant) 

Integrating 1 A t⋅+( ) ln y( )⋅
C

B
ln x( )⋅ const+=

The solution is y
1 A t⋅+

const x

C

B
⋅=

For particles at (1,1) at t = 0, 1, and 2s y x= y x

2

3
= y x

1

2
=
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Problem 2.29 [Difficulty: 4]

Given: Velocity field

Find: Plot of streakline for t = 0 to 3 s at point (1,1); compare to streamlines through same point at the instants t = 0, 1

and 2 s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For streamlines

v

u

dy

dx
=

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

Assumption:  2D flow

For pathlines up
dx

dt
= a x⋅ 1 b t⋅+( )⋅= a 1=

1

s
b

1

5
=

1

s
vp

dy

dt
= c y⋅= c 1=

1

s

So, separating variables
dx

x
a 1 b t⋅+( )⋅ dt⋅=

dy

y
c dt⋅=

Integrating ln
x

x0

⎛
⎜
⎝

⎞
⎠

a t t0− b
t
2

t0
2

−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅= ln

y

y0

⎛
⎜
⎝

⎞
⎠

c t t0−( )⋅=

y y0 e
c t t0−( )⋅

⋅=
x x0 e

a t t0− b

t
2

t0
2−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅

⋅=



The pathlines are xp t( ) x0 e

a t t0− b

t
2

t0
2−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅

⋅= yp t( ) y0 e
c t t0−( )⋅

⋅=

where x0, y0 is the position of the particle at t = t0. Re-interpreting the results as streaklines:

The streaklines are then xst t0( ) x0 e

a t t0− b

t
2

t0
2−

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅

⋅= yst t0( ) y0 e
c t t0−( )⋅

⋅=

where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

For streamlines
v

u

dy

dx
=

c y⋅

a x⋅ 1 b t⋅+( )⋅
=

So, separating variables 1 b t⋅+( )
dy

y
⋅

c

a

dx

x
⋅= which we can integrate for any given t (t is treated as a constant) 

Integrating 1 b t⋅+( ) ln y( )⋅
c

a
ln x( )⋅ const+=

The solution is y
1 b t⋅+

const x

c

a
⋅=

For particles at (1,1) at t = 0, 1, and 2s y x= y x

2

3
= y x

1

2
=

0 1 2 3 4 5
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5

Streamline (t=0)

Streamline (t=1)

Streamline (t=2)

Streakline

Streamline and Pathline Plots

x (m)

y
 (

m
)



Problem 2.30 [Difficulty: 4]

Given: Velocity field

Find: Plot of pathline for t = 0 to 3 s for particle that started at point (1,2) at t = 0; compare to streakline through same

point at the instant t = 3

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
=

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

Assumption:  2D flow

For pathlines up
dx

dt
= a x⋅ t⋅= a

1

4
=

1

s
2

b
1

3
=

m

s
vp

dy

dt
= b=

So, separating variables
dx

x
a t⋅ dt⋅= dy b dt⋅=

Integrating ln
x

x0

⎛
⎜
⎝

⎞
⎠

a

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅= y y0− b t t0−( )⋅=

y y0 b t t0−( )⋅+=
x x0 e

a

2
t
2

t0
2−⎛

⎝
⎞
⎠⋅

⋅=

The pathlines are xp t( ) x0 e

a

2
t
2

t0
2−⎛

⎝
⎞
⎠⋅

⋅= yp t( ) y0 b t t0−( )⋅+=

where x0, y0 is the position of the particle at t = t0. Re-interpreting the results as streaklines:

The pathlines are then xst t0( ) x0 e

a

2
t
2

t0
2−⎛

⎝
⎞
⎠⋅

⋅= yst t0( ) y0 b t t0−( )⋅+=

where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)
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Problem 2.31 [Difficulty: 4]

Given: 2D velocity field

Find: Streamlines passing through (6,6); Coordinates of particle starting at (1,4); that pathlines, streamlines and

streaklines coincide

Solution:

For streamlines
v

u

dy

dx
=

b

a y
2

⋅
= or ya y

2
⋅

⌠⎮
⎮⌡

d xb
⌠
⎮
⌡

d=

Integrating
a y

3
⋅

3
b x⋅ c+=

For the streamline through point (6,6) c 60= and y
3

6 x⋅ 180+=

For particle that passed through (1,4) at t = 0 u
dx

dt
= a y

2
⋅= x1

⌠
⎮
⌡

d x x0−= ta y
2

⋅
⌠⎮
⎮⌡

d= We need y(t)

v
dy

dt
= b= y1

⌠
⎮
⌡

d tb
⌠
⎮
⌡

d= y y0 b t⋅+= y0 2 t⋅+=

Then x x0−

0

t

ta y0 b t⋅+( )2⋅
⌠
⎮
⌡

d= x x0 a y0
2

t⋅ b y0⋅ t
2

⋅+
b

2
t
3

⋅

3
+

⎛
⎜
⎝

⎞

⎠
⋅+=

Hence, with x0 1= y0 4= x 1 16 t⋅+ 8 t
2

⋅+
4

3
t
3

⋅+= At  t = 1 s x 26.3 m⋅=

y 4 2 t⋅+= y 6 m⋅=

For particle that passed through (-3,0) at t = 1 y1
⌠
⎮
⌡

d tb
⌠
⎮
⌡

d= y y0 b t t0−( )⋅+=

x x0−

t0

t

ta y0 b t⋅+( )2⋅
⌠
⎮
⎮⌡

d= x x0 a y0
2

t t0−( )⋅ b y0⋅ t
2

t0
2

−⎛
⎝

⎞
⎠⋅+

b
2

3
t
3

t0
3

−⎛
⎝

⎞
⎠⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Hence, with x0 = -3, y0 = 0 at t0 = 1 x 3−
4

3
t
3

1−( )⋅+=
1

3
4 t

3
⋅ 13−( )⋅= y 2 t 1−( )⋅=

Evaluating at t = 3 x 31.7 m⋅= y 4 m⋅=

This is a steady flow, so pathlines, streamlines and streaklines always coincide



Problem 2.32 [Difficulty: 3]

Solution The particle starting at t = 3 s follows the particle starting at t = 2 s;

The particle starting at t = 4 s doesn't move!

Pathlines: Starting at t = 0 Starting at t = 1 s Starting at t = 2 s Streakline at t = 4 s

t x y x y x y x y

0.00 0.00 0.00 2.00 2.00

0.20 0.20 0.40 1.80 1.60

0.40 0.40 0.80 1.60 1.20

0.60 0.60 1.20 1.40 0.80

0.80 0.80 1.60 1.20 0.40

1.00 1.00 2.00 0.00 0.00 1.00 0.00

1.20 1.20 2.40 0.20 0.40 0.80 -0.40

1.40 1.40 2.80 0.40 0.80 0.60 -0.80

1.60 1.60 3.20 0.60 1.20 0.40 -1.20

1.80 1.80 3.60 0.80 1.60 0.20 -1.60

2.00 2.00 4.00 1.00 2.00 0.00 0.00 0.00 -2.00

2.20 2.00 3.80 1.00 1.80 0.00 -0.20 0.00 -1.80

2.40 2.00 3.60 1.00 1.60 0.00 -0.40 0.00 -1.60

2.60 2.00 3.40 1.00 1.40 0.00 -0.60 0.00 -1.40

2.80 2.00 3.20 1.00 1.20 0.00 -0.80 0.00 -1.20

3.00 2.00 3.00 1.00 1.00 0.00 -1.00 0.00 -1.00

3.20 2.00 2.80 1.00 0.80 0.00 -1.20 0.00 -0.80

3.40 2.00 2.60 1.00 0.60 0.00 -1.40 0.00 -0.60

3.60 2.00 2.40 1.00 0.40 0.00 -1.60 0.00 -0.40

3.80 2.00 2.20 1.00 0.20 0.00 -1.80 0.00 -0.20

4.00 2.00 2.00 1.00 0.00 0.00 -2.00 0.00 0.00

Pathline and Streakline Plots
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x

y

Pathline starting at t = 0

Pathline starting at t = 1 s
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Problem 2.33 [Difficulty: 3]

Given: Velocity field

Find: Equation for streamline through point (1.1); coordinates of particle at t = 5 s and t = 10 s that was at (1,1) at t = 0;

compare pathline, streamline, streakline

Solution:

Governing equations: For streamlines
v

u

dy

dx
= For pathlines up

dx

dt
= vp

dy

dt
=

Assumption:  2D flow

Given data a
1

5
=

1

s
b 1=

m

s
x0 1= y0 1= t0 0=

For streamlines
v

u

dy

dx
=

b

a x⋅
=

So, separating variables
a

b
dy⋅

dx

x
=

Integrating
a

b
y y0−( )⋅ ln

x

x0

⎛
⎜
⎝

⎞
⎠

=

The solution is then y y0
b

a
ln

x

x0

⎛
⎜
⎝

⎞
⎠

⋅+ 5 ln x( )⋅ 1+==

Hence for pathlines up
dx

dt
= a x⋅= vp

dy

dt
= b=

Hence
dx

x
a dt⋅= dy b dt⋅=

Integrating ln
x

x0

⎛
⎜
⎝

⎞
⎠

a t t0−( )⋅= y y0− b t t0−( )⋅=

The pathlines are x x0 e
a t t0−( )⋅

⋅= y y0 b t t0−( )⋅+= or y y0
b

a
ln

x

x0

⎛
⎜
⎝

⎞
⎠

⋅+=



For a particle that was at x0 1=  m,  y0 1=  m  at t0 0=  s, at time t 1=  s we find the position is

x x0 e
a t t0−( )⋅

⋅ e

1

5
== m y y0 b t t0−( )⋅+ 2== m

For a particle that was at x0 1=  m,  y0 1=   m at t0 0=  s, at time t 5=  s we find the position is

x x0 e
a t t0−( )⋅

⋅ e== m y y0 b t t0−( )⋅+ 6== m

For a particle that was at x0 1=  m,  y0 1=   at t0 0=  s, at time t 10=  s we find the position is

x x0 e
a t t0−( )⋅

⋅ e
2

== m y y0 b t t0−( )⋅+ 11== m

For this steady flow streamlines, streaklines and pathlines coincide
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Problem 2.34 [Difficulty: 3]

Given: Velocity field

Find: Equation for streamline through point (2.5); coordinates of particle at t = 2 s that was at (0,4) at t = 0; coordinates of

particle at t = 3 s that was at (1,4.25) at t = 1 s;  compare pathline, streamline, streakline

Solution:

Governing equations: For streamlines
v

u

dy

dx
= For pathlines up

dx

dt
= vp

dy

dt
=

Assumption:  2D flow

Given data a 2=
m

s
b 1=

1

s
x0 2= y0 5= x 1= x x=

For streamlines
v

u

dy

dx
=

b x⋅

a
=

So, separating variables
a

b
dy⋅ x dx⋅=

Integrating
a

b
y y0−( )⋅

1

2
x

2
x0

2
−⎛

⎝
⎞
⎠⋅=

The solution is then y y0
b

2 a⋅
x

2
x0

2
−⎛

⎝
⎞
⎠⋅+

x
2

4
4+==

Hence for pathlines up
dx

dt
= a= vp

dy

dt
= b x⋅=

Hence dx a dt⋅= dy b x⋅ dt⋅=

Integrating x x0− a t t0−( )⋅= dy b x0 a t t0−( )⋅+⎡⎣ ⎤⎦⋅ dt⋅=

y y0− b x0 t t0−( )⋅
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠⋅+ a t0⋅ t t0−( )⋅−⎡⎢

⎣
⎤⎥
⎦

⋅=

The pathlines are x x0 a t t0−( )⋅+= y y0 b x0 t t0−( )⋅
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠⋅+ a t0⋅ t t0−( )⋅−⎡⎢

⎣
⎤⎥
⎦

⋅+=



For a particle that was at x0 0=  m,  y0 4=  m at t0 0= s, at time t 2=  s we find the position is

x x0 a t t0−( )⋅+ 4== m y y0 b x0 t t0−( )⋅
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠⋅+ a t0⋅ t t0−( )⋅−⎡⎢

⎣
⎤⎥
⎦

⋅+ 8== m

For a particle that was at x0 1=  m,  y0 4.25=  m at t0 1=  s, at time t 3=  s we find the position is

x x0 a t t0−( )⋅+ 5== m y y0 b x0 t t0−( )⋅
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠⋅+ a t0⋅ t t0−( )⋅−⎡⎢

⎣
⎤⎥
⎦

⋅+ 10.25== m

For this steady flow streamlines, streaklines and pathlines coincide; the particles refered to are the same particle!

0 1.2 2.4 3.6 4.8 6
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Problem 2.35 [Difficulty: 4]

Given: Velocity field

Find: Coordinates of particle at t = 2 s that was at (1,2) at t = 0; coordinates of particle at t = 3 s that was at (1,2) at t = 2 s;

plot pathline and streakline through point (1,2) and compare with streamlines through same point at t = 0, 1 and 2 s

Solution

:
Governing equations: For pathlines up

dx

dt
= vp

dy

dt
= For

streamlines

v

u

dy

dx
=

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

Assumption:  2D flow

Given data a 0.2=
1

s
b 0.4=

m

s
2

Hence for pathlines up
dx

dt
= a y⋅= vp

dy

dt
= b t⋅=

Hence dx a y⋅ dt⋅= dy b t⋅ dt⋅= y y0−
b

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅=

For x dx a y0⋅ a
b

2
⋅ t

2
t0

2
−⎛

⎝
⎞
⎠⋅+⎡⎢

⎣
⎤⎥
⎦

dt⋅=

Integrating x x0− a y0⋅ t t0−( )⋅ a
b

2
⋅

t
3

3

t0
3

3
− t0

2
t t0−( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+=

The pathlines are x t( ) x0 a y0⋅ t t0−( )⋅+ a
b

2
⋅

t
3

3

t0
3

3
− t0

2
t t0−( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+= y t( ) y0
b

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+=

These give the position (x,y) at any time t of a particle that was at (x0,y0) at time t0

Note that streaklines are obtained using the logic of the Governing equations, above



The streaklines are x t0( ) x0 a y0⋅ t t0−( )⋅+ a
b

2
⋅

t
3

3

t0
3

3
− t0

2
t t0−( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+= y t0( ) y0
b

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+=

These gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

For a particle that was at x0 1=  m,  y0 2=  m at t0 0= s, at time t 2=  s we find the position is (from pathline equations)

x x0 a y0⋅ t t0−( )⋅+ a
b

2
⋅

t
3

3

t0
3

3
− t0

2
t t0−( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+ 1.91== m y y0
b

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+ 2.8== m

For a particle that was at x0 1=  m,  y0 2=  m at t0 2=  s, at time t 3=  s we find the position is

x x0 a y0⋅ t t0−( )⋅+ a
b

2
⋅

t
3

3

t0
3

3
− t0

2
t t0−( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅+ 1.49== m y y0
b

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+ 3.0== m

For streamlines
v

u

dy

dx
=

b t⋅

a y⋅
=

So, separating variables y dy⋅
b

a
t⋅ dx⋅= where we treat t as a constant

Integrating
y

2
y0

2
−

2

b t⋅

a
x x0−( )⋅= and we have x0 1= m y0 2= m

The streamlines are then y y0
2 2 b⋅ t⋅

a
x x0−( )⋅+ 4 t⋅ x 1−( )⋅ 4+==
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Problem 2.36 [Difficulty: 4]

Given: Velocity field

Find: Coordinates of particle at t = 2 s that was at (2,1) at t = 0; coordinates of particle at t = 3 s that was at (2,1) at t = 2 s;

plot pathline and streakline through point (2,1) and compare with streamlines through same point at t = 0, 1 and 2 s

Solution:

Governing equations: For pathlines up
dx

dt
= vp

dy

dt
= For

streamlines

v

u

dy

dx
=

Following the discussion leading up to Eq. 2.10, we first find equations for the pathlines in form 

xp t( ) x t x0, y0, t0, ( )= and yp t( ) y t x0, y0, t0, ( )=

xst t0( ) x t x0, y0, t0, ( )= and yst t0( ) y t x0, y0, t0, ( )=

which gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

Assumption:  2D flow

Given data a 0.4=
m

s
2

b 2=
m

s
2

Hence for pathlines up
dx

dt
= a t⋅= vp

dy

dt
= b=

Hence dx a t⋅ dt⋅= dy b dt⋅=

Integrating x x0−
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅= y y0− b t t0−( )⋅=

The pathlines are x t( ) x0
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+= y t( ) y0 b t t0−( )⋅+=

These give the position (x,y) at any time t of a particle that was at (x0,y0) at time t0

Note that streaklines are obtained using the logic of the Governing equations, above

The streaklines are x t0( ) x0
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+= y t0( ) y0 b t t0−( )⋅+=



These gives the streakline at t, where x0, y0 is the point at which dye is released (t0 is varied from 0 to t)

For a particle that was at x0 2=  m,  y0 1=  m at t0 0= s, at time t 2=  s we find the position is (from pathline equations)

x x0
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+ 2.8== m y y0 b t t0−( )⋅+ 5== m

For a particle that was at x0 2=  m,  y0 1=  m at t0 2=  s, at time t 3=  s we find the position is

x x0
a

2
t
2

t0
2

−⎛
⎝

⎞
⎠⋅+ 3== m y y0 b t t0−( )⋅+ 3== m

For streamlines
v

u

dy

dx
=

b

a t⋅
=

So, separating variables dy
b

a t⋅
dx⋅= where we treat t as a constant

Integrating y y0−
b

a t⋅
x x0−( )⋅= and we have x0 2= m y0 1= m

The streamlines are then y y0
b

a t⋅
x x0−( )⋅+

5 x 2−( )⋅

t
1+==
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Problem 2.37 [Difficulty: 2]

Given: Sutherland equation

Find: Corresponding equation for kinematic viscosity

Solution:

Governing equation: μ
b T

1

2


1
S

T


 Sutherland equation p ρ R T Ideal gas equation

Assumptions:  Sutherland equation is valid; air is an ideal gas

The given data is b 1.458 10
6


kg

m s K

1

2


 S 110.4 K R 286.9
J

kg K
 p 101.3 kPa

The kinematic viscosity is ν
μ

ρ


μ R T

p


R T

p

b T

1

2


1
S

T



R b

p

T

3

2

1
S

T



b' T

3

2


1
S

T




where b'
R b

p
 b' 4.129 10

9


m
2

K
1.5

s


b' 286.9
N m

kg K
 1.458 10

6


kg

m s K

1

2



m

2

101.3 10
3

 N
 4.129 10

9


m
2

s K

3

2




S 110.4 K
Hence ν

b' T

3

2


1
S

T


 with b' 4.129 10
9


m

2

s K

3

2






Check with Appendix A, Table A.10.  At T 0 °C  we find T 273.1 K ν 1.33 10
5


m

2

s


ν

4.129 10
9


m

2

s K

3

2


273.1 K( )

3

2


1
110.4

273.1


 ν 1.33 10
5


m

2

s
 Check!

At T 100 °C  we find T 373.1 K ν 2.29 10
5


m

2

s


ν

4.129 10
9


m

2

s K

3

2


373.1 K( )

3

2


1
110.4

373.1


 ν 2.30 10
5


m

2

s
 Check!

0 20 40 60 80 100

1.5 10
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5

Calculated

Table A.10

Viscosity as a Function of Temperature

Temperature (C)

K
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2
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Problem 2.38 [Difficulty: 2]

Given: Sutherland equation with SI units

Find: Corresponding equation in BG units

Solution:

Governing equation: μ
b T

1

2
⋅

1
S

T
+

= Sutherland equation

Assumption:  Sutherland equation is valid

The given data is b 1.458 10
6−

×
kg

m s⋅ K

1

2
⋅

⋅= S 110.4 K⋅=

Converting constants b 1.458 10
6−

×
kg

m s⋅ K

1

2
⋅

⋅
lbm

0.454 kg⋅
×

slug

32.2 lbm⋅
×

0.3048 m⋅

ft
×

5 K⋅

9 R⋅
⎛⎜
⎝

⎞
⎠

1

2

×= b 2.27 10
8−

×
slug

ft s⋅ R

1

2
⋅

⋅=

Alternatively b 2.27 10
8−

×
slug

ft s⋅ R

1

2
⋅

lbf s
2

⋅

slug ft⋅
×= b 2.27 10

8−
×

lbf s⋅

ft
2

R

1

2
⋅

⋅=

Also S 110.4 K⋅
9 R⋅

5 K⋅
×= S 198.7 R⋅=

and
μ

b T

1

2
⋅

1
S

T
+

= with T in Rankine, µ in 
lbf s⋅

ft
2



Check with Appendix A, Table A.9.  At T 68 °F=  we find T 527.7 R⋅= μ 3.79 10
7−

×
lbf s⋅

ft
2

⋅=

μ

2.27 10
8−

×
lbf s⋅

ft
2

R

1

2
⋅

527.7 R⋅( )

1

2
×

1
198.7

527.7
+

= μ 3.79 10
7−

×
lbf s⋅

ft
2

⋅= Check!

At T 200 °F=  we find T 659.7 R⋅= μ 4.48 10
7−

×
lbf s⋅

ft
2

⋅=

μ

2.27 10
8−

×
lbf s⋅

ft
2

R

1

2
⋅

659.7 R⋅( )

1

2
×

1
198.7

659.7
+

= μ 4.48 10
7−

×
lbf s⋅

ft
2

⋅= Check!



Data: Using procedure of Appendix A.3:

T (
o
C) T (K) µ(x10

5
) T (K) T

3/2
/µ

0 273 1.86E-05 273 2.43E+08

100 373 2.31E-05 373 3.12E+08

200 473 2.72E-05 473 3.78E+08

300 573 3.11E-05 573 4.41E+08

400 673 3.46E-05 673 5.05E+08

The equation to solve for coefficients

S  and b  is

From the built-in Excel Hence:

Linear Regression  functions:

Slope = 6.534E+05 b  = 1.531E-06 kg/m
.
s

.
K

1/2

Intercept = 6.660E+07 S  = 101.9 K

R
2
 = 0.9996

Plot of Basic Data and Trend Line

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

0 100 200 300 400 500 600 700 800

T

T
3/2

/µ

Data Plot

Least Squares Fit

b

S
T

b

T
+⎟

⎠
⎞

⎜
⎝
⎛=

123

µ



Problem 2.40 [Difficulty: 2]

Given: Velocity distribution between flat plates

Find: Shear stress on upper plate; Sketch stress distribution

Solution:

Basic equation τyx μ
du

dy
⋅=

du

dy

d

dy
umax 1

2 y⋅

h

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅= umax
4

h
2

−⎛⎜
⎝

⎞

⎠
⋅ 2⋅ y⋅=

8 umax⋅ y⋅

h
2

−=

τyx

8 μ⋅ umax⋅ y⋅

h
2

−=

At the upper surface y
h

2
= and h 0.1 mm⋅= umax 0.1

m

s
⋅= μ 1.14 10

3−
×

N s⋅

m
2

⋅= (Table A.8)

Hence τyx 8− 1.14× 10
3−

×
N s⋅

m
2

⋅ 0.1×
m

s
⋅

0.1

2
× mm⋅

1 m⋅

1000 mm⋅
×

1

0.1 mm⋅

1000 mm⋅

1 m⋅
×⎛⎜

⎝
⎞
⎠

2

×= τyx 4.56−
N

m
2

⋅=

The upper plate is a minus y surface.  Since τyx < 0, the shear stress on the upper plate must act in the plus x direction.

The shear stress varies linearly with y τyx y( )
8 μ⋅ umax⋅

h
2

⎛⎜
⎜⎝

⎞

⎠
− y⋅=

5− 4− 3− 2− 1− 0 1 2 3 4 5

0.05−

0.04−

0.03−

0.02−

0.01−

0.01

0.02

0.03

0.04

0.05

Shear Stress (Pa)

y
 (

m
m

)



Problem 2.41 [Difficulty: 2]

Given: Velocity distribution between parallel plates

Find: Force on lower plate

Solution:

Basic equations F τyx A⋅= τyx μ
du

dy
⋅=

du

dy

d

dy
umax 1

2 y⋅

h

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅= umax
4

h
2

−⎛⎜
⎝

⎞

⎠
⋅ 2⋅ y⋅=

8 umax⋅ y⋅

h
2

−=

so τyx

8 μ⋅ umax⋅ y⋅

h
2

−= and F
8 A⋅ μ⋅ umax⋅ y⋅

h
2

−=

At the lower surface y
h

2
−= and h 0.1 mm⋅= A 1 m

2
⋅=

umax 0.05
m

s
⋅= μ 1.14 10

3−
×

N s⋅

m
2

⋅= (Table

A.8)

Hence F 8− 1× m
2

⋅ 1.14× 10
3−

×
N s⋅

m
2

⋅ 0.05×
m

s
⋅

0.1−

2
× mm⋅

1 m⋅

1000 mm⋅
×

1

0.1

1

mm
⋅

1000 mm⋅

1 m⋅
×⎛⎜

⎝
⎞
⎠

2

×=

F 2.28 N⋅= (to the right)



Problem 2.42    [Difficulty: 2] 
 

 
 

Open-Ended Problem Statement: Explain how an ice skate interacts with the ice surface. 

What mechanism acts to reduce sliding friction between skate and ice? 

 

Discussion: The normal freezing and melting temperature of ice is 0°C (32°F) at atmospheric 

pressure. The melting temperature of ice decreases as pressure is increased. Therefore ice can be caused to 

melt at a temperature below the normal melting temperature when the ice is subjected to increased pressure. 

A skater is supported by relatively narrow blades with a short contact against the ice. The blade of a typical 

skate is less than 3 mm wide. The length of blade in contact with the ice may be just ten or so millimeters. 

With a 3 mm by 10 mm contact patch, a 75 kg skater is supported by a pressure between skate blade and 

ice on the order of tens of megaPascals (hundreds of atmospheres). Such a pressure is enough to cause ice 

to melt rapidly. 

When pressure is applied to the ice surface by the skater, a thin surface layer of ice melts to become liquid 

water and the skate glides on this thin liquid film. Viscous friction is quite small, so the effective friction 

coefficient is much smaller than for sliding friction. 

The magnitude of the viscous drag force acting on each skate blade depends on the speed of the skater, the 

area of contact, and the thickness of the water layer on top of the ice. 

The phenomenon of static friction giving way to viscous friction is similar to the hydroplaning of a 

pneumatic tire caused by a layer of water on the road surface. 



Problem 2.43 [Difficulty: 2]

Given: Velocity profile

Find: Plot of velocity profile; shear stress on surface

Solution:

The velocity profile is u
ρ g⋅

μ
h y⋅

y
2

2
−

⎛
⎜
⎝

⎞

⎠
⋅ sin θ( )⋅= so the maximum velocity is at y = h umax

ρ g⋅

μ

h
2

2
⋅ sin θ( )⋅=

Hence we can plot
u

umax

2
y

h

1

2

y

h

⎛⎜
⎝

⎞
⎠

2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

u/umax

y
/h

This graph can be plotted in Excel

The given data is h 0.1 in⋅= μ 2.15 10
3−

×
lbf s⋅

ft
2

⋅= θ 45 deg⋅=

Basic equation τyx μ
du

dy
⋅= τyx μ

du

dy
⋅= μ

d

dy
⋅

ρ g⋅

μ
h y⋅

y
2

2
−

⎛
⎜
⎝

⎞

⎠
⋅ sin θ( )⋅= ρ g⋅ h y−( )⋅ sin θ( )⋅=

At the surface y = 0 τyx ρ g⋅ h⋅ sin θ( )⋅=

Hence τyx 0.85 1.94×
slug

ft
3

⋅ 32.2×
ft

s
2

⋅ 0.1× in⋅
1 ft⋅

12 in⋅
× sin 45 deg⋅( )×

lbf s
2

⋅

slug ft⋅
×= τyx 0.313

lbf

ft
2

⋅=

The surface is a positive y surface.  Since τyx > 0, the shear stress on the surface must act in the plus x direction.



Problem 2.44 [Difficulty: 2]

 

h 
y 

x 

L 

V = 20 ft/s 
dy

du
yx µτ =  

Given: Ice skater and skate geometry

Find: Deceleration of skater

Solution:

Governing equation: τyx μ
du

dy
⋅= ΣFx M ax⋅=

Assumptions:  Laminar flow

The given data is W 100 lbf⋅= V 20
ft

s
⋅= L 11.5 in⋅= w 0.125 in⋅= h 0.0000575 in⋅=

μ 3.68 10
5−

×
lbf s⋅

ft
2

⋅= Table A.7 @32oF

Then τyx μ
du

dy
⋅= μ

V

h
⋅= 3.68 10

5−
×

lbf s⋅

ft
2

⋅ 20×
ft

s
⋅

1

0.0000575 in⋅
×

12 in⋅

ft
×=

τyx 154
lbf

ft
2

⋅=

Equation of motion ΣFx M ax⋅= or τyx A⋅
W−

g
ax⋅=

ax

τyx A⋅ g⋅

W
−=

τyx L⋅ w⋅ g⋅

W
−=

ax 154−
lbf

ft
2

11.5× in⋅ 0.125× in⋅ 32.2×
ft

s
2

⋅
1

100 lbf⋅
×

ft
2

12 in⋅( )
2

×=

ax 0.495−
ft

s
2

⋅=



Problem 2.45 [Difficulty: 2]

Given: Block pulled up incline on oil layer

Find: Force required to pull the block

 

f 

 

θ 

N 

x 
x U 

y 

d 

 

W 

Solution:

Governing equations: τyx μ
du

dy
⋅=

ΣFx M ax⋅=

Assumptions:  Laminar flow

The given data is W 10 lbf⋅= U 2
ft

s
⋅= w 10 in⋅= d 0.001 in⋅= θ 25 deg⋅=

μ 3.7 10
2−

×
N s⋅

m
2

⋅= Fig. A.2 @100oF (38oC)

Equation of motion ΣFx M ax⋅= 0= s

o
F f− W sin θ( )⋅− 0=

The friction force is f τyx A⋅= μ
du

dy
⋅ A⋅= μ

U

d
⋅ w

2
⋅=

Hence F f W sin θ( )⋅+= μ
U

d
⋅ w

2
⋅ W sin θ( )⋅+=

F 3.7 10
2−

×
N s⋅

m
2

⋅ 0.0209×
lbf s⋅

ft
2

⋅
m

2

N s⋅
⋅ 2×

ft

s
⋅

1

0.001 in⋅
× 10 in⋅( )

2
×

ft

12 in⋅
× 10 lbf⋅ sin 25 deg⋅( )⋅+=

F 17.1 lbf⋅=



Problem 2.46 [Difficulty: 2]

Given: Block moving on incline on oil layer

Find: Speed of block when free, pulled, and pushed

 

f 

 

θ 

N 

x 
x U 

y 

d 

 

W 

Solution:

Governing equations: τyx μ
du

dy
⋅=

ΣFx M ax⋅=

Assumptions:  Laminar flow

The given data is M 10 kg⋅= W M g⋅= W 98.066 N= w 250 mm⋅=

d 0.025 mm⋅= θ 30 deg⋅= F 75 N⋅=

μ 10
1− N s⋅

m
2

⋅= Fig. A.2 SAE 10-39 @30oC

Equation of motion ΣFx M ax⋅= 0= so F f− W sin θ( )⋅− 0=

The friction force is f τyx A⋅= μ
du

dy
⋅ A⋅= μ

U

d
⋅ w

2
⋅=

Hence for uphill motion F f W sin θ( )⋅+= μ
U

d
⋅ w

2
⋅ W sin θ( )⋅+= U

d F W sin θ( )⋅−( )⋅

μ w
2

⋅
= (For downpush change

sign of W)

For no force: U
d W⋅ sin θ( )⋅

μ w
2

⋅
= U 0.196

m

s
=

Pushing up: U
d F W sin θ( )⋅−( )⋅

μ w
2

⋅
= U 0.104

m

s
= Pushing down: U

d F W sin θ( )⋅+( )⋅

μ w
2

⋅
= U 0.496

m

s
=



Problem 2.47 [Difficulty: 2]

Given: Data on tape mechanism

Find: Maximum gap region that can be pulled without breaking tape

Solution:

Basic equation τyx μ
du

dy
 and F τyx A

Here F is the force on each side of the tape; the total force is then FT 2 F 2 τyx A

c

c

t
y

x

L 

F,V

The velocity gradient is linear as shown
du

dy

V 0

c


V

c


The area of contact is A w L

Combining these results FT 2 μ
V

c
 w L

Solving for L L
FT c

2 μ V w


The given data is FT 25 lbf c 0.012 in μ 0.02
slug

ft s
 V 3

ft

s
 w 1 in

Hence L 25 lbf 0.012 in
1 ft

12 in


1

2


1

0.02


ft s

slug


1

3


s

ft


1

1


1

in

12 in

1 ft


slug ft

s
2

lbf
 L 2.5 ft



Problem 2.48 [Difficulty: 2]

Given: Flow data on apparatus

Find: The terminal velocity of mass m

Solution:

Given data: Dpiston 73 mm⋅= Dtube 75 mm⋅= Mass 2 kg⋅= L 100 mm⋅= SGAl 2.64=

Reference data: ρwater 1000
kg

m
3

⋅= (maximum density of water)

From Fig. A.2:, the dynamic viscosity of SAE 10W-30 oil at 25oC is: μ 0.13
N s⋅

m
2

⋅=

The terminal velocity of the mass m  is equivalent to the terminal velocity of the piston.  At that terminal speed, the acceleration of

the piston is zero.  Therefore, all forces acting on the piston must be balanced.  This means that the force driving the motion

(i.e. the weight of mass m and the piston) balances the viscous forces acting on the surface of the piston. Thus, at r = Rpiston:

Mass SGAl ρwater⋅
π Dpiston

2
⋅ L⋅

4

⎛⎜
⎜⎝

⎞

⎠
⋅+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

g⋅ τrz A⋅= μ
r
Vz

d

d
⋅⎛

⎜
⎝

⎞
⎠
π Dpiston⋅ L⋅( )⋅=

The velocity profile within the oil film is linear ...

Therefore
r
Vz

d

d

V

Dtube Dpiston−

2

⎛
⎜
⎝

⎞
⎠

=

Thus, the terminal velocity of the piston, V, is:

V
g SGAl ρwater⋅ π⋅ Dpiston

2
⋅ L⋅ 4 Mass⋅+⎛

⎝
⎞
⎠⋅ Dtube Dpiston−( )⋅

8 μ⋅ π⋅ Dpiston⋅ L⋅
=

or V 10.2
m

s
=



Problem 2.49 [Difficulty: 3]

Given: Flow data on apparatus

Find: Sketch of piston speed vs time; the time needed for the piston to reach 99% of its new terminal speed.

Solution:

Given data: Dpiston 73 mm Dtube 75 mm L 100 mm SGAl 2.64 V0 10.2
m

s


Reference data: ρwater 1000
kg

m
3

 (maximum density of water) (From Problem 2.48)

From Fig. A.2, the dynamic viscosity of SAE 10W-30 oil at 25oC is: μ 0.13
N s

m
2



The free body diagram of the piston after the cord is cut is:

Piston weight: Wpiston SGAl ρwater g
π Dpiston

2


4







 L

Viscous force: Fviscous V( ) τrz A

or Fviscous V( ) μ
V

1

2
Dtube Dpiston 











 π Dpiston L 

Applying Newton's second law: mpiston
dV

dt
 Wpiston Fviscous V( )

Therefore
dV

dt
g a V where a

8 μ

SGAl ρwater Dpiston Dtube Dpiston 


If V g a V then
dX

dt
a

dV

dt


The differential equation becomes
dX

dt
a X where X 0( ) g a V0

The solution to this differential equation is: X t( ) X0 e
a t

 or g a V t( ) g a V0  e
a t





Therefore V t( ) V0
g

a






e
a t( )


g

a


Plotting piston speed vs. time (which can be done in Excel)

0 1 2 3

2

4

6

8

10

12

Piston speed vs. time

V t( )

t

The terminal speed of the piston, Vt, is evaluated as t approaches infinity

Vt
g

a
 or Vt 3.63

m

s


The time needed for the piston to slow down to within 1% of its terminal velocity is:

t
1

a
ln

V0
g

a


1.01 Vt
g

a














 or t 1.93 s



Problem 2.50 [Difficulty: 3]

Given: Block on oil layer pulled by hanging weight

 

N 

Mg 
x 

y 

Fv 

Ft 

mg 

Ft 

Find: Expression for viscous force at speed V; differential equation for motion; block speed as function of time; oil viscosity

Solution:

Governing equations: τyx μ
du

dy
⋅= ΣFx M ax⋅=

Assumptions:  Laminar flow; linear velocity profile in oil layer

The given data is M 5 kg⋅= W m g⋅= 9.81 N⋅= A 25 cm
2

⋅= h 0.05 mm⋅=

Equation of motion (block) ΣFx M ax⋅= so Ft Fv− M
dV

dt
⋅= 1( )

Equation of motion (block) ΣFy m ay⋅= so m g⋅ Ft− m
dV

dt
⋅= 2( )

Adding Eqs. (1) and (2) m g⋅ Fv− M m+( )
dV

dt
⋅=

The friction force is Fv τyx A⋅= μ
du

dy
⋅ A⋅= μ

V

h
⋅ A⋅=

Hence m g⋅
μ A⋅

h
V⋅− M m+( )

dV

dt
⋅=

To solve separate variables dt
M m+

m g⋅
μ A⋅

h
V⋅−

dV⋅=

t
M m+( ) h⋅

μ A⋅
− ln m g⋅

μ A⋅

h
V⋅−⎛⎜

⎝
⎞
⎠

ln m g⋅( )−⎛⎜
⎝

⎞
⎠

⋅=
M m+( ) h⋅

μ A⋅
− ln 1

μ A⋅

m g⋅ h⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅=

Hence taking antilogarithms 1
μ A⋅

m g⋅ h⋅
V⋅− e

μ A⋅

M m+( ) h⋅
− t⋅

=



Finally V
m g⋅ h⋅

μ A⋅
1 e

μ A⋅

M m+( ) h⋅
− t⋅

−

⎡
⎢
⎣

⎤
⎥
⎦⋅= The maximum velocity is V

m g⋅ h⋅

μ A⋅
=

In Excel:

The data is M = 5.00 kg To find the viscosity for which the speed is 1 m/s after 1 s

m = 1.00 kg use Goal Seek  with the velocity targeted to be 1 m/s by varying

g = 9.81 m/s2 the viscosity in the set of cell below:

0 = 1.30 N.s/m2

A = 25 cm2
t (s) V (m/s)

h = 0.5 mm 1.00 1.000

t (s) V (m/s)

0.00 0.000

0.10 0.155

0.20 0.294

0.30 0.419

0.40 0.531

0.50 0.632

0.60 0.722

0.70 0.803

0.80 0.876

0.90 0.941

1.00 1.00

1.10 1.05

1.20 1.10

1.30 1.14

1.40 1.18

1.50 1.21

1.60 1.25

1.70 1.27

1.80 1.30

1.90 1.32

2.00 1.34

2.10 1.36

2.20 1.37

2.30 1.39

2.40 1.40

2.50 1.41

2.60 1.42

2.70 1.43

2.80 1.44

2.90 1.45

3.00 1.46

Speed V of Block vs Time t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

t (s)

V (m/s)



Problem 2.51 [Difficulty: 4]

Ff τ A⋅=

x, V, a

M g⋅

Given: Data on the block and incline

Find: Initial acceleration; formula for speed of block; plot; find speed after 0.1 s.  Find oil viscosity if speed is 0.3 m/s after

0.1 s

Solution:

Given data M 5 kg⋅= A 0.1 m⋅( )
2

= d 0.2 mm⋅= θ 30 deg⋅=

From Fig. A.2 μ 0.4
N s⋅

m
2

⋅=

Applying Newton's 2nd law to initial instant (no friction) M a⋅ M g⋅ sin θ( )⋅ Ff−= M g⋅ sin θ( )⋅=

so ainit g sin θ( )⋅= 9.81
m

s
2

⋅ sin 30 deg⋅( )×= ainit 4.9
m

s
2

=

Applying Newton's 2nd law at any instant M a⋅ M g⋅ sin θ( )⋅ Ff−= and Ff τ A⋅= μ
du

dy
⋅ A⋅= μ

V

d
⋅ A⋅=

so M a⋅ M
dV

dt
⋅= M g⋅ sin θ( )⋅

μ A⋅

d
V⋅−=

Separating variables
dV

g sin θ( )⋅
μ A⋅

M d⋅
V⋅−

dt=

Integrating and using limits
M d⋅

μ A⋅
− ln 1

μ A⋅

M g⋅ d⋅ sin θ( )⋅
V⋅−⎛⎜

⎝
⎞
⎠

⋅ t=

or V t( )
M g⋅ d⋅ sin θ( )⋅

μ A⋅
1 e

μ− A⋅

M d⋅
t⋅

−

⎛
⎜
⎝

⎞

⎠⋅=

At t = 0.1 s V 5 kg⋅ 9.81×
m

s
2

⋅ 0.0002× m⋅ sin 30 deg⋅( )⋅
m

2

0.4 N⋅ s⋅ 0.1 m⋅( )
2

⋅
×

N s
2

⋅

kg m⋅
× 1 e

0.4 0.01⋅

5 0.0002⋅
0.1⋅⎛⎜

⎝
⎞
⎠

−

−

⎡
⎢
⎣

⎤
⎥
⎦×=

V 0.1 s⋅( ) 0.404
m

s
⋅=



The plot looks like
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To find the viscosity for which V(0.1 s) = 0.3 m/s, we must solve  

V t 0.1 s⋅=( )
M g⋅ d⋅ sin θ( )⋅

μ A⋅
1 e

μ− A⋅

M d⋅
t 0.1 s⋅=( )⋅

−

⎡
⎢
⎣

⎤
⎥
⎦⋅=

The viscosity µ is implicit in this equation, so solution must be found by manual iteration, or by any of a number of classic

root-finding numerical methods, or by using Excel's Goal Seek

Using Excel: μ 1.08
N s⋅

m
2

⋅=



Problem 2.52 [Difficulty: 3]

Given: Block sliding on oil layer

Find: Direction of friction on bottom of block and on plate; expression for speed U versus time; time required to lose 95%

of initial speed

 

Fv 

x 

U 

y 
h 

 

Solution:

Governing equations: τyx μ
du

dy
⋅= ΣFx M ax⋅=

Assumptions:  Laminar flow; linear velocity profile in oil layer

The bottom of the block is  a -y surface, so τyx acts to the left; The plate

is a +y surface, so τyx acts to the right

Equation of motion ΣFx M ax⋅= so Fv M
dU

dt
⋅=

The friction force is Fv τyx A⋅= μ
du

dy
⋅ A⋅= μ

U

h
⋅ a

2
⋅=

Hence
μ a

2
⋅

h
− U⋅ M

dU

dt
⋅=

t

U

To solve separate variables
1

U
dU⋅

μ a
2

⋅

M h⋅
− dt⋅=

ln
U

U0

⎛
⎜
⎝

⎞
⎠

μ a
2

⋅

M h⋅
− t⋅=

Hence taking antilogarithms U U0 e

μ a
2⋅

M h⋅
− t⋅

⋅=

Solving for t t
M h⋅

μ a
2

⋅
− ln

U

U0

⎛
⎜
⎝

⎞
⎠

⋅=

Hence for 
U

U0

0.05= t 3.0
M h⋅

μ a
2

⋅
⋅=



Problem 2.53 [Difficulty: 2]

 

F 
x 

r 

d 
 

D

L 

Given: Varnish-coated wire drawn through die

Find: Force required to pull wire

Solution:

Governing equations: τyx μ
du

dy
⋅= ΣFx M ax⋅=

Assumptions:  Laminar flow; linear velocity profile in varnish layer

The given data is D 1 mm⋅= d 0.9 mm⋅= L 50 mm⋅= V 50
m

s
⋅= μ 20 10

2−
× poise=

Equation of motion ΣFx M ax⋅= so F Fv− 0= for steady speed

The friction force is Fv τyx A⋅= μ
du

dr
⋅ A⋅= μ

V

D d−

2

⎛⎜
⎝

⎞
⎠

⋅ π⋅ d⋅ L⋅=

Hence F Fv− 0=

so F
2 π⋅ μ⋅ V⋅ d⋅ L⋅

D d−
=

F 2 π⋅ 20× 10
2−

× poise
0.1 kg⋅

m s⋅ poise⋅
× 50×

m

s
⋅ 0.9× mm⋅ 50× mm⋅

1

1 0.9−( ) mm⋅
×

m

1000 mm⋅
×=

F 2.83 N=



Problem 2.54 [Difficulty: 3]

Given: Data on annular tube

Find: Whether no-slip is satisfied; location of zeroshear stress; viscous forces

Solution:

The velocity profile is uz r( )
1

4 μ

∆p

L
 Ri

2
r
2


Ro

2
Ri

2


ln
Ri

Ro









ln
r

Ri






















Check the no-slip condition.  When r Ro uz Ro  1

4 μ

∆p

L
 Ri

2
Ro

2


Ro
2

Ri
2



ln
Ri

Ro









ln
Ro

Ri























uz Ro  1

4 μ

∆p

L
 Ri

2
Ro

2
 Ro

2
Ri

2








 0

When r Ri uz Ri  1

4 μ

∆p

L
 Ri

2
Ri

2


Ro
2

Ri
2



ln
Ri

Ro









ln
Ri

Ri






















 0

The no-slip condition is satisfied.

The given data is Ri 5 mm Ro 25 mm ∆p 125 kPa L 2 m

The viscosity of the honey is μ 5
N s

m
2





The plot looks like
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For each, shear stress is given by τrx μ
du

dr


τrx μ
duz r( )

dr
 μ

d

dr


1

4 μ

∆p

L
 Ri

2
r
2


Ro

2
Ri

2


ln
Ri

Ro









ln
r

Ri



































Hence τrx
1

4

∆p

L
 2 r

Ro
2

Ri
2



ln
Ri

Ro








r
















2 r
Ro

2
Ri

2


ln
Ri

Ro








r

 0 or r
Ri

2
Ro

2


2 ln
Ri

Ro










 r 13.7 mm
For zero stress

On the outer surface
Fo τrx A

1

4

∆p

L
 2 Ro

Ro
2

Ri
2



ln
Ri

Ro








Ro














 2 π Ro L

Fo ∆p π Ro
2


Ro

2
Ri

2


2 ln
Ri

Ro



























Fo 125 10
3


N

m
2

 π 25 mm
1 m

1000 mm






2



25 mm( )
2

5 mm( )
2

 
1 m

1000 mm








2 ln
5

25



















Fo 172 N

On the inner surface Fi τrx A
1

4

∆p

L
 2 Ri

Ro
2

Ri
2



ln
Ri

Ro








Ri














 2 π Ri L

Fi ∆p π Ri
2


Ro

2
Ri

2


2 ln
Ri

Ro

























Hence Fi 125 10
3


N

m
2

 π 5 mm
1 m

1000 mm






2



25 mm( )
2

5 mm( )
2

 
1 m

1000 mm






2



2 ln
5

25



















Fi 63.4 N

Note that Fo Fi 236 N and ∆p π Ro
2

Ri
2





 236 N

The net pressure force just balances the net

viscous force!



Problem 2.55 [Difficulty: 3]

Given: Data on flow through a tube with a filament

Find: Whether no-slip is satisfied; location of zero stress;stress on tube and filament

Solution:

The velocity profile is V r( )
1

16 μ

∆p

L
 d

2
4 r

2


D
2

d
2



ln
d

D







ln
2 r

d


















Check the no-slip condition.

When
r

D

2
 V

D

2







1

16 μ

∆p

L
 d

2
D

2


D
2

d
2



ln
d

D







ln
D

d


















V D( )
1

16 μ

∆p

L
 d

2
D

2
 D

2
d

2
   0

When r
d

2
 V d( )

1

16 μ

∆p

L
 d

2
d

2


D
2

d
2



ln
d

D







ln
d

d
















 0

The no-slip condition is satisfied.

The given data is d 1 μm D 20 mm ∆p 5 kPa L 10 m

The viscosity of SAE 10-30 oil at 100oC is (Fig. A.2) μ 1 10
2


N s

m
2


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For each, shear stress is given by τrx μ
du

dr


τrx μ
dV r( )

dr
 μ

d

dr


1

16 μ

∆p

L
 d

2
4 r

2


D
2

d
2



ln
d

D







ln
2 r

Di




























τrx r( )
1

16

∆p

L
 8 r

D
2

d
2



ln
d

D







r












For the zero-stress point 8 r
D

2
d

2


ln
d

D







r

 0 or r
d

2
D

2


8 ln
d

D









 r 2.25 mm

3 2 1 0 1 2 3 4
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)

Using the stress formula τrx
D

2







2.374 Pa τrx
d

2







2.524 kPa



Problem 2.56 [Difficulty: 2]

Given: Flow between two plates

Find: Force to move upper plate; Interface velocity

Solution:

The shear stress is the same throughout (the velocity gradients are linear, and the stresses in the fluid at the interface must be

equal and opposite).

Hence τ μ1

du1

dy
 μ2

du2

dy
 or μ1

Vi

h1

 μ2

V Vi 
h2

 where Vi is the interface velocity

Solving for the interface

velocity Vi

Vi
V

1
μ1

μ2

h2

h1





1
m

s


1
0.1

0.15

0.3

0.5


 Vi 0.714
m

s


Then the force

required is
F τ A μ1

Vi

h1

 A 0.1
N s

m
2

 0.714
m

s


1

0.5 mm


1000 mm

1 m
 1 m

2
 F 143 N



Problem 2.57 [Difficulty: 2]

Given: Flow of three fluids between two plates

Find: Upper plate velocity; Interface velocities; plot velocity distribution

Solution:

The shear stress is the same throughout (the velocity gradients are linear, and the stresses in the fluids at the interfaces must be

equal and opposite).

Given data F 100 N h1 0.5 mm h2 0.25 mm h3 0.2 mm

A 1 m
2

 μ1 0.15
N s

m
2

 μ2 0.5
N s

m
2

 μ3 0.2
N s

m
2



The (constant) stress is τ
F

A
 τ 100 Pa

For each fluid τ μ
∆V

∆y
 or ∆V

τ ∆y

μ
 where ΔV is the overall change in velocity over distance Δy

Hence V12

τ h1

μ1

 V12 0.333
m

s
 where V12 is the velocity at the 1 - 2 interface

Hence V23

τ h2

μ2

V12 V23 0.383
m

s
 where V23 is the velocity at the 2 - 3 interface

Hence V
τ h3

μ3

V23 V 0.483
m

s
 where V is the velocity at the upper plate
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Problem 2.58                                                                       [Difficulty: 2]



 

Problem 2.59                                                            [Difficulty: 2]



 

Problem 2.60                                                          [Difficulty: 2]



Problem 2.61 [Difficulty: 3]

Given: Data on the viscometer

Find: Time for viscometer to lose 99% of speed

Solution:

The given data is R 50 mm⋅= H 80 mm⋅= a 0.20 mm⋅= I 0.0273 kg⋅ m
2

⋅= μ 0.1
N s⋅

m
2

⋅=

The equation of motion for the slowing viscometer is I α⋅ Torque= τ− A⋅ R⋅=

where α is the angular acceleration and τ is the viscous stress, and A is the surface area of the viscometer

The stress is given by τ μ
du

dy
⋅= μ

V 0−

a
⋅=

μ V⋅

a
=

μ R⋅ ω⋅

a
=

where V and ω are the instantaneous linear and angular velocities.

Hence I α⋅ I
dω

dt
⋅=

μ R⋅ ω⋅

a
− A⋅ R⋅=

μ R
2

⋅ A⋅

a
ω⋅=

Separating variables
dω

ω

μ R
2

⋅ A⋅

a I⋅
− dt⋅=

Integrating and using IC ω = ω0 ω t( ) ω0 e

μ R
2⋅ A⋅

a I⋅
− t⋅

⋅=

The time to slow down by 99% is obtained from solving 0.01 ω0⋅ ω0 e

μ R
2⋅ A⋅

a I⋅
− t⋅

⋅= so t
a I⋅

μ R
2

⋅ A⋅
− ln 0.01( )⋅=

Note that A 2 π⋅ R⋅ H⋅= so t
a I⋅

2 π⋅ μ⋅ R
3

⋅ H⋅
− ln 0.01( )⋅=

t
0.0002 m⋅ 0.0273⋅ kg⋅ m

2
⋅

2 π⋅
−

m
2

0.1 N⋅ s⋅
⋅

1

0.05 m⋅( )
3

⋅
1

0.08 m⋅
⋅

N s
2

⋅

kg m⋅
⋅ ln 0.01( )⋅= t 4.00 s=



 

Problem 2.62                                                       Difficulty: [2]



 

Problem 2.63                                                           [Difficulty: 4]



Problem 2.64 [Difficulty: 3]

Given: Shock-free coupling assembly

Find: Required viscosity

Solution:

Basic equation τrθ μ
du

dr
⋅= Shear force F τ A⋅= Torque T F R⋅= Power P T ω⋅=

Assumptions: Newtonian fluid, linear velocity

profile

 

δ 

V1 = ω1R

V2 = ω2(R + δ) 

τrθ μ
du

dr
⋅= μ

∆V

∆r
⋅= μ

ω1 R⋅ ω2 R δ+( )⋅−⎡⎣ ⎤⎦
δ

⋅=

τrθ μ
ω1 ω2−( ) R⋅

δ
⋅= Because δ << R

Then P T ω2⋅= F R⋅ ω2⋅= τ A2⋅ R⋅ ω2⋅=
μ ω1 ω2−( )⋅ R⋅

δ
2⋅ π⋅ R⋅ L⋅ R⋅ ω2⋅=

P
2 π⋅ μ⋅ ω2⋅ ω1 ω2−( )⋅ R

3
⋅ L⋅

δ
=

Hence μ
P δ⋅

2 π⋅ ω2⋅ ω1 ω2−( )⋅ R
3

⋅ L⋅
=

μ
10 W⋅ 2.5× 10

4−
× m⋅

2 π⋅

1

9000
×

min

rev
⋅

1

1000
×

min

rev
⋅

1

.01 m⋅( )
3

×
1

0.02 m⋅
×

N m⋅

s W⋅
×

rev

2 π⋅ rad⋅
⎛⎜
⎝

⎞
⎠

2

×
60 s⋅

min

⎛⎜
⎝

⎞
⎠

2

×=

μ 0.202
N s⋅

m
2

⋅= μ 2.02 poise⋅= which corresponds to SAE 30 oil at 30oC.



 

Problem 2.65                                                        [Difficulty: 4]   Part 1/2



 

Problem 2.65                                               [Difficulty: 4]   Part 2/2



Problem 2.66                                                             [Difficulty: 4]



 

Problem 2.67                                                           [Difficulty: 4]



The data is N (rpm) µ (N·s/m
2
)

10 0.121

20 0.139

30 0.153

40 0.159

50 0.172

60 0.172

70 0.183

80 0.185



The computed data is

ω (rad/s) ω/θ (1/s) η (N·s/m
2
x10

3
)

1.047 120 121

2.094 240 139

3.142 360 153

4.189 480 159

5.236 600 172

6.283 720 172

7.330 840 183

8.378 960 185

From the Trendline  analysis

k  = 0.0449

n  - 1 = 0.2068

n  = 1.21 The fluid is dilatant

The apparent viscosities at 90 and 100 rpm can now be computed

N (rpm) ω (rad/s) ω/θ (1/s) η (N·s/m
2
x10

3
)

90 9.42 1080 191

100 10.47 1200 195

Viscosity vs Shear Rate

η = 44.94(ω/θ)
0.2068

R
2
 = 0.9925

10

100

1000

100 1000

Shear Rate ω/θ (1/s)

η 
(N

.s
/m

2
x

1
0

3
) Data

Power Trendline



Problem 2.69 [Difficulty: 4]

Given: Data on insulation material

Find: Type of material; replacement material

Solution:

The velocity gradient is

du/dy  = U/ δ where δ  = 0.001 m

Data and τ  (Pa) U (m/s) du/dy  (s
-1

)

computations 50 0.000 0

100 0.000 0

150 0.000 0

163 0.005 5

171 0.01 10

170 0.03 25

202 0.05 50

246 0.1 100

349 0.2 200

444 0.3 300

Hence we have a Bingham plastic, with τ y  = 154 Pa

µ p  = 0.963 N·s/m
2

At τ  = 450 Pa, based on the linear fit du/dy  = 307 s
-1

For a fluid with τ y  = 250 Pa

we can use the Bingham plastic formula to solve for µ p  given τ , τ y  and du/dy  from above

µ p  = 0.652 N·s/m
2

Shear Stress vs Shear Strain

Linear data fit:

τ = 0.9632(du/dy ) + 154.34

R
2
 = 0.9977

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350

du/dy  (1/s)

τ 
(P

a
)



Problem 2.70 [Difficulty: 3]

Given: Viscometer data

Find: Value of k and n in Eq. 2.17

Solution:

The data is τ  (Pa) du/dy  (s
-1

)

0.0457 5

0.119 10

0.241 25

0.375 50

0.634 100

1.06 200

1.46 300

1.78 400

Hence we have k  = 0.0162

n  = 0.7934 Blood is pseudoplastic (shear thinning)

The apparent viscosity from η  = k (du/dy )
n -1

du/dy  (s
-1

) η  (N·s/m
2
) µ water = 0.001 N·s/m

2
 at 20

o
C

5 0.0116

10 0.0101 Hence, blood is "thicker" than water!

25 0.0083

50 0.0072

100 0.0063

200 0.0054

300 0.0050

400 0.0047

Shear Stress vs Shear Strain

τ = 0.0162(du/dy)
0.7934

R
2
 = 0.9902

0.01

0.1

1

10

1 10 100 1000

du/dy  (1/s)

τ 
(P

a
)

Data

Power Trendline



 

Problem 2.71                                                           [Difficulty: 5]



 

Problem 2.72                                                             [Difficulty: 5]



Problem 2.73 [Difficulty: 4]

 

ds 

AA 

U = ωr

dz 

z 

r 

a 

Section AA 

Given: Conical bearing geometry

Find: Expression for shear stress; Viscous torque on shaft

Solution:

Basic equation τ μ
du

dy
⋅= dT r τ⋅ dA⋅= Infinitesimal shear torque

Assumptions: Newtonian fluid, linear velocity profile (in narrow clearance gap), no slip condition

tan θ( )
r

z
= so r z tan θ( )⋅=

Then τ μ
du

dy
⋅= μ

∆u

∆y
⋅= μ

ω r⋅ 0−( )

a 0−( )
⋅=

μ ω⋅ z⋅ tan θ( )⋅

a
=

As we move up the device, shear stress increases linearly (because rate of shear strain does)

But from the sketch dz ds cos θ( )⋅= dA 2 π⋅ r⋅ ds⋅= 2 π⋅ r⋅
dz

cos θ( )
⋅=

The viscous torque on the element of area is dT r τ⋅ dA⋅= r
μ ω⋅ z⋅ tan θ( )⋅

a
⋅ 2⋅ π⋅ r⋅

dz

cos θ( )
⋅= dT

2 π⋅ μ⋅ ω⋅ z
3

⋅ tan θ( )
3

⋅

a cos θ( )⋅
dz⋅=

Integrating and using limits z = H and z = 0 T
π μ⋅ ω⋅ tan θ( )

3
⋅ H

4
⋅

2 a⋅ cos θ( )⋅
=

μ
2 a⋅ cos θ( )⋅ T⋅

π ω⋅ tan θ( )
3

⋅ H
4

⋅
=

Solving for µ

Using given data H 25 mm⋅= θ 30 deg⋅= a 0.2 mm⋅= ω 75
rev

s
⋅= T 0.325 N⋅ m⋅=

μ
2 a⋅ cos θ( )⋅ T⋅

π ω⋅ tan θ( )
3

⋅ H
4

⋅
= μ 1.012

N s⋅

m
2

⋅=

From Fig. A.2, at 20oC, CASTOR OIL has this viscosity!



 

Problem 2.74                                                       [Difficulty: 5]



 

Problem 2.75                                                        [Difficulty: 5]



Problem 2.76 [Difficulty: 5]

Given: Geometry of rotating bearing

Find: Expression for shear stress; Maximum shear stress; Expression for total torque; Total torque

Solution:

Basic equation τ μ
du

dy
⋅= dT r τ⋅ dA⋅=

Assumptions: Newtonian fluid, narrow clearance gap, laminar motion

From the figure r R sin θ( )⋅= u ω r⋅= ω R⋅ sin θ( )⋅=
du

dy

u 0−

h
=

u

h
=

h a R 1 cos θ( )−( )⋅+= dA 2 π⋅ r⋅ dr⋅= 2 π⋅ R sin θ( )⋅ R⋅ cos θ( )⋅ dθ⋅=

Then τ μ
du

dy
⋅=

μ ω⋅ R⋅ sin θ( )⋅

a R 1 cos θ( )−( )⋅+
=

To find the maximum τ set
θ

μ ω⋅ R⋅ sin θ( )⋅

a R 1 cos θ( )−( )⋅+
⎡⎢
⎣

⎤⎥
⎦

d

d
0= so

R μ⋅ ω⋅ R cos θ( )⋅ R− a cos θ( )⋅+( )⋅

R a+ R cos θ( )⋅−( )
2

0=

R cos θ( )⋅ R− a cos θ( )⋅+ 0= θ acos
R

R a+
⎛⎜
⎝

⎞
⎠

= acos
75

75 0.5+
⎛⎜
⎝

⎞
⎠

= θ 6.6 deg⋅=

τ 12.5 poise⋅ 0.1×

kg

m s⋅

poise
⋅ 2× π⋅

70

60
⋅

rad

s
⋅ 0.075× m⋅ sin 6.6 deg⋅( )×

1

0.0005 0.075 1 cos 6.6 deg⋅( )−( )⋅+[ ] m⋅
×

N s
2

⋅

m kg⋅
×=

τ 79.2
N

m
2

⋅=

The torque is T θr τ⋅ A⋅
⌠
⎮
⌡

d=

0

θmax

θ
μ ω⋅ R

4
⋅ sin θ( )

2
⋅ cos θ( )⋅

a R 1 cos θ( )−( )⋅+

⌠
⎮
⎮
⌡

d= wher

e
θmax asin

R0

R

⎛
⎜
⎝

⎞
⎠

= θmax 15.5 deg⋅=

This integral is best evaluated numerically using Excel, Mathcad, or a good calculator T 1.02 10
3−

× N m⋅⋅=
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Problem 2.78 [Difficulty: 2]

Given: Data on size of various needles

Find: Which needles, if any, will float

Solution:

For a steel needle of length L, diameter D, density ρs, to float in water with surface tension σ and contact angle θ, the vertical

force due to surface tension must equal or exceed the weight

2 L⋅ σ⋅ cos θ( )⋅ W≥ m g⋅=
π D

2
⋅

4
ρs⋅ L⋅ g⋅= or D

8 σ⋅ cos θ( )⋅

π ρs⋅ g⋅
≤

From Table A.4 σ 72.8 10
3−

×
N

m
⋅= θ 0 deg⋅= and for water ρ 1000

kg

m
3

⋅=

From Table A.1, for steel SG 7.83=

Hence
8 σ⋅ cos θ( )⋅

π SG⋅ ρ⋅ g⋅

8

π 7.83⋅
72.8× 10

3−
×

N

m
⋅

m
3

999 kg⋅
×

s
2

9.81 m⋅
×

kg m⋅

N s
2

⋅
×= 1.55 10

3−
× m⋅= 1.55 mm⋅=

Hence D < 1.55 mm.  Only the 1 mm needles float (needle length is irrelevant)



Problem 2.79 [Difficulty: 3]

Given: Caplillary rise data

Find: Values of A  and b

Solution:

D  (in.) h  (in.)

0.1 0.232

0.2 0.183

0.3 0.090

0.4 0.059

0.5 0.052

0.6 0.033 A = 0.403

0.7 0.017 b = 4.530

0.8 0.010

0.9 0.006 The fit is a good one (R
2
 = 0.9919)

1.0 0.004

1.1 0.003

Capillary Rise vs. Tube Diameter

h  = 0.403e
-4.5296D

R
2
 = 0.9919

0.0

0.1

0.2

0.3

0.0 0.2 0.4 0.6 0.8 1.0 1.2

D  (in.)


h

 (
in

.)



Problem 2.80    [Difficulty: 2] 
 

 
 

Open-Ended Problem Statement: Slowly fill a glass with water to the maximum possible 

level before it overflows. Observe the water level closely. Explain how it can be higher than the rim of the 

glass. 

 

Discussion: Surface tension can cause the maximum water level in a glass to be higher than the rim of 

the glass. The same phenomenon causes an isolated drop of water to “bead up” on a smooth surface. 

Surface tension between the water/air interface and the glass acts as an invisible membrane that allows 

trapped water to rise above the level of the rim of the glass. The mechanism can be envisioned as forces 

that act in the surface of the liquid above the rim of the glass. Thus the water appears to defy gravity by 

attaining a level higher than the rim of the glass. 

To experimentally demonstrate that this phenomenon is the result of surface tension, set the liquid level 

nearly as far above the glass rim as you can get it, using plain water. Add a drop of liquid detergent (the 

detergent contains additives that reduce the surface tension of water). Watch as the excess water runs over 

the side of the glass. 



Problem 2.81    [Difficulty: 5] 
 

 
 

Open-Ended Problem Statement: Plan an experiment to measure the surface tension of a 

liquid similar to water. If necessary, review the NCFMF video Surface Tension for ideas. Which method 

would be most suitable for use in an undergraduate laboratory? What experimental precision could be 

expected? 

 

Discussion: Two basic kinds of experiment are possible for an undergraduate laboratory: 

 

1. Using a clear small-diameter tube, compare the capillary rise of the unknown liquid with that of a 

known liquid (compare with water, because it is similar to the unknown liquid). 

 

This method would be simple to set up and should give fairly accurate results. A vertical 

traversing optical microscope could be used to increase the precision of measuring the liquid 

height in each tube. 

 

A drawback to this method is that the specific gravity and co ntact angle of the two liquids must be 

the same to allow the capillary rises to be compared. 

 

The capillary rise would be largest and therefore easiest to measure accurately in a tube with the 

smallest practical diameter. Tubes of several diameters could be used if desired. 

 

2. Dip an object into a pool of test liquid and measure the vertical force required to pull the object 

from the liquid surface. 

 

The object might be made rectangular (e.g., a sheet of plastic material) or circular (e.g., a metal 

ring). The net force needed to pull the same object from each liquid should be proportional to the 

surface tension of each liquid. 

 

This method would be simple to set up. However, the force magnitudes to be measured would be 

quite small. 

 

A drawback to this method is that the contact angles of the two liquids must be the same. 

 

The first method is probably best for undergraduate laboratory use. A quantitative estimate of experimental 

measurement uncertainty is impossible without knowing details of the test setup. It might be reasonable to 

expect results accurate to within ± 10% of the true surface tension. 

 

 

 

 

 

 

 

 

 

*Net force is the total vertical force minus the weight of the object.  A buoyancy correction would be 

necessary if part of the object were submerged in the test liquid. 
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Problem 2.83 [Difficulty: 2]

Given: Boundary layer velocity profile in terms of constants a, b and c

Find: Constants a, b and c

Solution:

Basic equation u a b
y

δ

⎛⎜
⎝

⎞
⎠

⋅+ c
y

δ

⎛⎜
⎝

⎞
⎠

2

⋅+=

Assumptions: No slip, at outer edge u = U and τ = 0

At y = 0 0 a= a 0=

At y = δ U a b+ c+= b c+ U= (1)

At y = δ τ μ
du

dy
⋅= 0=

0
d

dy
a b

y

δ

⎛⎜
⎝

⎞
⎠

⋅+ c
y

δ

⎛⎜
⎝

⎞
⎠

2

⋅+=
b

δ
2 c⋅

y

δ
2

⋅+=
b

δ
2

c

δ
⋅+= b 2 c⋅+ 0= (2)

From 1 and 2 c U−= b 2 U⋅=

Hence u 2 U⋅
y

δ

⎛⎜
⎝

⎞
⎠

⋅ U
y

δ

⎛⎜
⎝

⎞
⎠

2

⋅−=
u

U
2

y

δ

⎛⎜
⎝

⎞
⎠

⋅
y

δ

⎛⎜
⎝

⎞
⎠

2

−=

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1
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Problem 2.84 [Difficulty: 2]

Given: Boundary layer velocity profile in terms of constants a, b and c

Find: Constants a, b and c

Solution:

Basic equation u a b
y

δ

⎛⎜
⎝

⎞
⎠

⋅+ c
y

δ

⎛⎜
⎝

⎞
⎠

3

⋅+=

Assumptions: No slip, at outer edge u = U and τ = 0

At y = 0 0 a= a 0=

At y = δ U a b+ c+= b c+ U= (1)

At y = δ τ μ
du

dy
⋅= 0=

0
d

dy
a b

y

δ

⎛⎜
⎝

⎞
⎠

⋅+ c
y

δ

⎛⎜
⎝

⎞
⎠

3

⋅+=
b

δ
3 c⋅

y
2

δ
3

⋅+=
b

δ
3

c

δ
⋅+= b 3 c⋅+ 0= (2)

From 1 and 2 c
U

2
−= b

3

2
U⋅=

Hence u
3 U⋅

2

y

δ

⎛⎜
⎝

⎞
⎠

⋅
U

2

y

δ

⎛⎜
⎝

⎞
⎠

3

⋅−=
u

U

3

2

y

δ

⎛⎜
⎝

⎞
⎠

⋅
1

2

y

δ

⎛⎜
⎝

⎞
⎠

3

⋅−=
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Problem 2.85 [Difficulty: 1]

Given: Local temperature

Find: Minimum speed for compressibility effects

Solution:

Basic equation V M c⋅= and M 0.3= for compressibility effects

c k R⋅ T⋅= For air at STP, k = 1.40 and R = 286.9J/kg.K (53.33 ft.lbf/lbmoR).

Hence V M c⋅= M k R⋅ T⋅⋅=

V 0.3 1.4 53.33×
ft lbf⋅

lbm R⋅
⋅

32.2 lbm⋅ ft⋅

lbf s
2

⋅
× 60 460+( )× R⋅⎡

⎢
⎣

⎤
⎥
⎦

1

2

×
60 mph⋅

88
ft

s
⋅

⋅= V 229 mph⋅=



Problem 2.86 [Difficulty: 3]

Given: Geometry of and flow rate through tapered nozzle

Find: At which point becomes turbulent

Solution:

Basic equation For pipe flow (Section 2-6) Re
ρ V⋅ D⋅

μ
= 2300= for transition to turbulence

Also flow rate Q is given by Q
π D

2
⋅

4
V⋅=

We can combine these equations and eliminate V to obtain an expression for Re in terms of D and Q

Re
ρ V⋅ D⋅

μ
=

ρ D⋅

μ

4 Q⋅

π D
2

⋅
⋅=

4 Q⋅ ρ⋅

π μ⋅ D⋅
= Re

4 Q⋅ ρ⋅

π μ⋅ D⋅
=

For a given flow rate Q, as the diameter is reduced the Reynolds number increases (due to the velocity increasing with A-1 or D-2).

Hence for turbulence (Re = 2300), solving for D D
4 Q⋅ ρ⋅

2300 π⋅ μ⋅
=

The nozzle is tapered: Din 50 mm⋅= Dout

Din

5
= Dout 22.4 mm⋅=

Carbon tetrachloride: μCT 10
3− N s⋅

m
2

⋅= (Fig A.2) For water ρ 1000
kg

m
3

⋅=

SG 1.595= (Table A.2) ρCT SG ρ⋅= ρCT 1595
kg

m
3

=

For the given flow rate Q 2
L

min
⋅=

4 Q⋅ ρCT⋅

π μCT⋅ Din⋅
1354= LAMINAR

4 Q⋅ ρCT⋅

π μCT⋅ Dout⋅
3027= TURBULENT

For the diameter at which we reach turbulence D
4 Q⋅ ρCT⋅

2300 π⋅ μCT⋅
= D 29.4 mm⋅=

But L 250 mm⋅= and linear ratios leads to the distance from Din at which D 29.4 mm⋅=
Lturb

L

D Din−

Dout Din−
=

Lturb L
D Din−

Dout Din−
⋅= Lturb 186 mm⋅=



Problem 2.87 [Difficulty: 2]

Given: Data on water tube

Find: Reynolds number of flow; Temperature at which flow becomes turbulent

Solution:

Basic equation For pipe flow (Section 2-6) Re
ρ V D

μ


V D

ν


At 20oC, from Fig. A.3 ν 9 10
7


m

2

s
 and so Re 0.25

m

s
 0.005 m

1

9 10
7




s

m
2

 Re 1389

For the heated pipe Re
V D

ν
 2300 for transition to turbulence

Hence ν
V D

2300


1

2300
0.25

m

s
 0.005 m ν 5.435 10

7


m
2

s


From Fig. A.3, the temperature of water at this viscosity is approximately T 52 C



Problem 2.88 [Difficulty: 3]

Given: Data on supersonic aircraft

Find: Mach number; Point at which boundary layer becomes turbulent

Solution:

Basic equation V M c⋅= and c k R⋅ T⋅= For air at STP, k = 1.40 and R = 286.9J/kg.K (53.33 ft.lbf/lbmoR).

Hence M
V

c
=

V

k R⋅ T⋅
=

At 27 km the temperature is approximately (from Table A.3) T 223.5 K⋅=

M 2700 10
3

×
m

hr
⋅

1 hr⋅

3600 s⋅
×⎛⎜

⎝
⎞
⎠

1

1.4

1

286.9
×

kg K⋅

N m⋅
⋅

1 N⋅ s
2

⋅

kg m⋅
×

1

223.5
×

1

K
⋅

⎛
⎜
⎝

⎞

⎠

1

2

⋅= M 2.5=

For boundary layer transition, from Section 2-6 Retrans 500000=

Then Retrans

ρ V⋅ xtrans⋅

μ
= so xtrans

μ Retrans⋅

ρ V⋅
=

We need to find the viscosity and density at this altitude and pressure.  The viscosity depends on temperature only, but at 223.5

K = - 50oC, it is off scale of Fig. A.3.  Instead we need to use formulas as in Appendix A

At this altitude the density is (Table A.3) ρ 0.02422 1.225×
kg

m
3

⋅= ρ 0.0297
kg

m
3

=

For µ μ
b T

1

2
⋅

1
S

T
+

= where b 1.458 10
6−

×
kg

m s⋅ K

1

2
⋅

⋅= S 110.4 K⋅=

μ 1.459 10
5−

×
kg

m s⋅
= μ 1.459 10

5−
×

N s⋅

m
2

⋅=

Hence xtrans 1.459 10
5−

×
kg

m s⋅
⋅ 500000×

1

0.0297
×

m
3

kg
⋅

1

2700
×

1

10
3

×
hr

m
⋅

3600 s⋅

1 hr⋅
×= xtrans 0.327m=



Problem 2.89 [Difficulty: 2]

Given: Type of oil, flow rate, and tube geometry

Find: Whether flow is laminar or turbulent

Solution:

Data on SAE 30 oil SG or density is limited in the Appendix.  We can Google it or use the following ν
μ

ρ
= so ρ

μ

ν
=

At 100oC, from Figs. A.2 and A.3 μ 9 10
3−

×
N s⋅

m
2

⋅= ν 1 10
5−

×
m

2

s
⋅=

ρ 9 10
3−

×
N s⋅

m
2

⋅
1

1 10
5−

×
×

s

m
2

⋅
kg m⋅

s
2

N⋅
×= ρ 900

kg

m
3

=

Hence SG
ρ

ρwater

= ρwater 1000
kg

m
3

⋅= SG 0.9=

The specific weight is γ ρ g⋅= γ 900
kg

m
3

⋅ 9.81×
m

s
2

⋅
N s

2
⋅

kg m⋅
×= γ 8.829 10

3
×

N

m
3

⋅=

For pipe flow (Section 2-6) Q
π D

2
⋅

4
V⋅= so V

4 Q⋅

π D
2

⋅
=

Q 100 mL⋅
10

6−
m

3
⋅

1 mL⋅
×

1

9
×

1

s
⋅= Q 1.111 10

5−
×

m
3

s
=

Then V
4

π
1.11× 10

5−
×

m
3

s
⋅

1

12

1

mm
⋅

1000 mm⋅

1 m⋅
×⎛⎜

⎝
⎞
⎠

2

×= V 0.0981
m

s
=

Hence Re
ρ V⋅ D⋅

μ
=

Re 900
kg

m
3

⋅ 0.0981×
m

s
⋅ 0.012× m⋅

1

9 10
3−

×
×

m
2

N s⋅
⋅

N s
2

⋅

kg m⋅
×= Re 118=

Flow is laminar



Problem 2.90 [Difficulty: 2]

Given: Data on seaplane

Find: Transition point of boundary layer

Solution:

For boundary layer transition, from Section 2-6 Retrans 500000

Then Retrans

ρ V xtrans

μ


V xtrans

ν
 so xtrans

ν Retrans

V


At 45oF = 7.2oC (Fig A.3) ν 0.8 10
5


m

2

s


10.8
ft

2

s


1
m

2

s


 ν 8.64 10
5


ft

2

s


xtrans 8.64 10
5


ft

2

s
 500000

1

100 mph


60 mph

88
ft

s


 xtrans 0.295 ft

As the seaplane touches down:

At 45oF = 7.2oC (Fig A.3) ν 1.5 10
5


m

2

s


10.8
ft

2

s


1
m

2

s


 ν 1.62 10
4


ft

2

s


xtrans 1.62 10
4


ft

2

s
 500000

1

100 mph


60 mph

88
ft

s


 xtrans 0.552 ft



Problem 2.91 [Difficulty: 3]

Given: Data on airliner

Find: Sketch of speed versus altitude (M = const)

Solution:

Data on temperature versus height can be obtained from Table A.3

At 5.5 km the temperature is approximately 252 K

The speed of sound is obtained from

where k  = 1.4

R  = 286.9 J/kg·K (Table A.6)

c  = 318 m/s

We also have

V  = 700 km/hr

or V  = 194 m/s

Hence M  = V/c  or

M  = 0.611

To compute V  for constant M , we use V  = M ·c  = 0.611·c

At a height of 8 km: V  = 677 km/hr

NOTE:  Realistically, the aiplane will fly to a maximum height of about 10 km!

z (km) T (K) c (m/s) V (km/hr)

4 262 325 713

5 259 322 709

5 256 320 704

6 249 316 695

7 243 312 686

8 236 308 677

9 230 304 668

10 223 299 658

11 217 295 649

12 217 295 649

13 217 295 649

14 217 295 649

15 217 295 649

16 217 295 649

17 217 295 649

18 217 295 649

19 217 295 649

20 217 295 649

22 219 296 651

24 221 298 654

26 223 299 657

28 225 300 660

30 227 302 663

40 250 317 697

50 271 330 725

60 256 321 705

70 220 297 653

80 181 269 592

90 181 269 592

Speed vs. Altitude
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Problem 2.92    [Difficulty: 4] 
 

 
 

Open-Ended Problem Statement: How does an airplane wing develop lift? 

 

Discussion: The sketch shows the cross-section of a typical airplane wing. The airfoil section is 

rounded at the front, curved across the top, reaches maximum thickness about a third of the way back, and 

then tapers slowly to a fine trailing edge. The bottom of the airfoil section is relatively flat. (The discussion 

below also applies to a symmetric airfoil at an angle of incidence that produces lift.)  

  

It is both a popular expectation and an experimental fact that air flows more rapidly over the curved top 

surface of the airfoil section than along the relatively flat bottom. In the NCFMF video Flow Visualization, 

timelines placed in front of the airfoil indicate that fluid flows more rapidly along the top of the section 

than along the bottom. 

 

In the absence of viscous effects (this is a valid assumption outside the boundary layers on the airfoil) 

pressure falls when flow speed increases. Thus the pressures on the top surface of the airfoil where flow 

speed is higher are lower than the pressures on the bottom surface where flow speed does not increase. 

(Actual pressure profiles measured for a lifting section are shown in the NCFMF video Boundary Layer 

Control.) The unbalanced pressures on the top and bottom surfaces of the airfoil section create a net force 

that tends to develop lift on the profile. 

NACA 2412 Wing Section 



Problem 3.1 [Difficulty: 2]

Given: Data on nitrogen tank

Find: Pressure of nitrogen; minimum required wall thickness

Assumption: Ideal gas behavior

Solution:

Ideal gas equation of state: p V⋅ M R⋅ T⋅=

where, from Table A.6, for nitrogen R 55.16
ft lbf⋅
lbm R⋅
⋅=

Then the pressure of nitrogen is p
M R⋅ T⋅

V
= M R⋅ T⋅

6

π D
3

⋅

⎛
⎜
⎝

⎞
⎟
⎠

⋅=

p 140 lbm⋅ 55.16×
ft lbf⋅
lbm R⋅
⋅ 77 460+( )× R⋅

6

π 2.5 ft⋅( )
3

×

⎡
⎢
⎣

⎤
⎥
⎦

×
ft

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2

×=

p 3520
lbf

in
2

⋅=

 

σcπDt 

pπD
2
/4 

To determine wall thickness, consider a free body diagram for one hemisphere:

ΣF 0= p
π D

2
⋅
4

⋅ σc π⋅ D⋅ t⋅−=

where σc is the circumferential stress in the container

Then t
p π⋅ D

2
⋅

4 π⋅ D⋅ σc⋅
=

p D⋅
4 σc⋅

=

t 3520
lbf

in
2

⋅
2.5 ft⋅

4
×

in
2

30 10
3

× lbf⋅
×=

t 0.0733 ft⋅= t 0.880 in⋅=



Problem 3.2 [Difficulty: 2]

Given: Pure water on a standard day

Find: Boiling temperature at (a) 1000 m and (b) 2000 m, and compare with sea level value.

Solution:

We can determine the atmospheric pressure at the given altitudes from table A.3, Appendix A

The data are

Elevation

(m)
p/p o p  (kPa)

0 1.000 101.3

1000 0.887 89.9

2000 0.785 79.5

We can also consult steam tables for the variation of saturation temperature with pressure:

p (kPa) T sat  (°C)

70 90.0

80 93.5

90 96.7

101.3 100.0

We can interpolate the data from the steam tables to correlate saturation temperature with altitude:

Elevation

(m)
p/p o p  (kPa) T sat  (°C)

0 1.000 101.3 100.0

1000 0.887 89.9 96.7

2000 0.785 79.5 93.3

The data are plotted here.  They

show that the saturation temperature

drops approximately 3.4°C/1000 m.
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Problem 3.3 [Difficulty: 2]

Given: Data on flight of airplane

Find: Pressure change in mm Hg for ears to "pop"; descent distance from 8000 m to cause ears to "pop."

Solution:

Assume the air density is approximately constant constant from 3000 m to 2900 m.

From table A.3

ρSL 1.225
kg

m
3

 ρair 0.7423 ρSL ρair 0.909
kg

m
3



We also have from the manometer equation, Eq. 3.7

∆p ρair g ∆z and also ∆p ρHg g ∆hHg

Combining ∆hHg

ρair

ρHg

∆z
ρair

SGHg ρH2O
∆z SGHg 13.55   from Table A.2

∆hHg
0.909

13.55 999
100 m ∆hHg 6.72 mm

For the ear popping descending from 8000 m, again assume the air density is approximately constant constant, this time at 8000 m.

From table A.3

ρair 0.4292 ρSL ρair 0.526
kg

m
3



We also have from the manometer equation

ρair8000 g ∆z8000 ρair3000 g ∆z3000

where the numerical subscripts refer to conditions at 3000m and 8000m.

Hence

∆z8000

ρair3000 g

ρair8000 g
∆z3000

ρair3000

ρair8000

∆z3000 ∆z8000
0.909

0.526
100 m ∆z8000 173m



Problem 3.4 [Difficulty: 3]

Given: Boiling points of water at different elevations

Find: Change in elevation

Solution:

From the steam tables, we have the following data for the boiling point (saturation temperature) of water

Tsat (
o
F) p (psia)

195 10.39

185 8.39

The sea level pressure, from Table A.3, is

pSL = 14.696 psia

Hence

Tsat (
o
F) p/pSL

195 0.707

185 0.571

From Table A.3

p/pSL Altitude (m) Altitude (ft)

0.7372 2500 8203

0.6920 3000 9843

0.6492 3500 11484

0.6085 4000 13124

0.5700 4500 14765

Then, any one of a number of Excel  functions can be used to interpolate

(Here we use Excel 's Trendline analysis)

p/pSL Altitude (ft)

0.707 9303 Current altitude is approximately 9303 ft

0.571 14640

The change in altitude is then 5337 ft

Alternatively, we can interpolate for each altitude by using a linear regression between adjacent data points

p/pSL Altitude (m) Altitude (ft) p/pSL Altitude (m) Altitude (ft)

For 0.7372 2500 8203 0.6085 4000 13124

0.6920 3000 9843 0.5700 4500 14765

Then 0.7070 2834 9299 0.5730 4461 14637

The change in altitude is then 5338 ft

Altitude vs Atmospheric Pressure

z  = -39217(p/pSL) + 37029

R
2
 = 0.999
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Problem 3.5 [Difficulty: 2]

Given: Data on system

Find: Force on bottom of cube; tension in tether

Solution:

Basic equation
dp

dy
ρ− g⋅= or, for constant ρ ∆p ρ g⋅ h⋅= where h is measured downwards

The absolute pressure at the interface is pinterface patm SGoil ρ⋅ g⋅ hoil⋅+=

Then the pressure on the lower surface is pL pinterface ρ g⋅ hL⋅+= patm ρ g⋅ SGoil hoil⋅ hL+( )⋅+=

For the cube V 125 mL⋅= V 1.25 10
4−

× m
3

⋅=

Then the size of the cube is d V

1

3
= d 0.05m= and the depth in water to the upper surface is hU 0.3 m⋅=

Hence hL hU d+= hL 0.35m= where hL is the depth in water to the lower surface

The force on the lower surface is FL pL A⋅= where A d
2

= A 0.0025 m
2

=

FL patm ρ g⋅ SGoil hoil⋅ hL+( )⋅+⎡⎣ ⎤⎦ A⋅=

FL 101 10
3

×
N

m
2

⋅ 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.8 0.5× m⋅ 0.35 m⋅+( )×
N s

2
⋅

kg m⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

0.0025× m
2

⋅=

FL 270.894 N= Note: Extra decimals needed for computing T later!

For the tension in the tether, an FBD gives ΣFy 0= FL FU− W− T− 0= or T FL FU− W−=

where FU patm ρ g⋅ SGoil hoil⋅ hU+( )⋅+⎡⎣ ⎤⎦ A⋅=



Note that we could instead compute ∆F FL FU−= ρ g⋅ SGoil⋅ hL hU−( )⋅ A⋅= and T ∆F W−=

Using FU

FU 101 10
3

×
N

m
2

⋅ 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.8 0.5× m⋅ 0.3 m⋅+( )×
N s

2
⋅

kg m⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

0.0025× m
2

⋅=

FU 269.668 N= Note: Extra decimals needed for computing T later!

For the oak block (Table A.1) SGoak 0.77= so W SGoak ρ⋅ g⋅ V⋅=

W 0.77 1000×
kg

m
3

⋅ 9.81×
m

s
2

⋅ 1.25× 10
4−

× m
3

⋅
N s

2
⋅

kg m⋅
×= W 0.944 N=

T FL FU− W−= T 0.282N=



Problem 3.6 [Difficulty: 2]

Given: Data on system before and after applied force

Find: Applied force

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ p patm ρ g y y0  with p y0  patm

For initial state p1 patm ρ g h and F1 p1 A ρ g h A (Gage; F1 is hydrostatic upwards force)

For the initial FBD ΣFy 0 F1 W 0 W F1 ρ g h A

For final state p2 patm ρ g H and F2 p2 A ρ g H A (Gage; F2 is hydrostatic upwards force)

For the final FBD ΣFy 0 F2 W F 0 F F2 W ρ g H A ρ g h A ρ g A H h( )

F ρH2O SG g
π D

2

4

 H h( )

From Fig. A.1 SG 13.54

F 1000
kg

m
3

 13.54 9.81
m

s
2


π

4
 0.05 m( )

2
 0.2 0.025( ) m

N s
2


kg m



F 45.6 N



Problem 3.7 [Difficulty: 1]

Given: Pressure and temperature data from balloon

Find: Plot density change as a function of elevation

Assumption: Ideal gas behavior

Solution:

Using the ideal gas equation,  = p/RT

p (psia) T (
o
F)  (lbm/ft

3
)

14.71 53.6 0.07736

14.62 52.0 0.07715

14.53 50.9 0.07685

14.45 50.4 0.07647

14.36 50.2 0.07604

14.27 50.0 0.07560

14.18 50.5 0.07506

14.10 51.4 0.07447

14.01 52.9 0.07380

13.92 54.0 0.07319

13.84 53.8 0.07276

Density Distribution
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Problem 3.8 [Difficulty: 2]

Given: Properties of a cube floating at an interface

Find: The pressures difference between the upper and lower surfaces; average cube density

Solution:

The pressure difference is obtained from two applications of Eq. 3.7

pU p0 ρSAE10 g H 0.1 d( ) pL p0 ρSAE10 g H ρH2O g 0.9 d

where pU and pL are the upper and lower pressures, p0 is the oil free surface pressure, H is the depth of the interface, and d

is the cube size

Hence the pressure difference is

∆p pL pU ρH2O g 0.9 d ρSAE10 g 0.1 d ∆p ρH2O g d 0.9 SGSAE10 0.1 

From Table A.2 SGSAE10 0.92

∆p 999
kg

m
3

 9.81
m

s
2

 0.1 m 0.9 0.92 0.1( )
N s

2


kg m
 ∆p 972Pa

For the cube density, set up a free body force balance for the cube

ΣF 0 ∆p A W

Hence W ∆p A ∆p d
2



ρcube
m

d
3


W

d
3

g


∆p d
2



d
3

g


∆p

d g


ρcube 972
N

m
2


1

0.1 m


s
2

9.81 m


kg m

N s
2


 ρcube 991

kg

m
3





Problem 3.9 [Difficulty: 2]

Given: Data on tire at 3500 m and at sea level

Find: Absolute pressure at 3500 m; pressure at sea level

Solution:

At an elevation of 3500 m, from Table A.3:

pSL 101 kPa patm 0.6492 pSL patm 65.6 kPa

and we have pg 0.25 MPa pg 250 kPa p pg patm p 316 kPa

At sea level patm 101 kPa

Meanwhile, the tire has warmed up, from the ambient temperature at 3500 m, to 25oC.

At an elevation of 3500 m, from Table A.3 Tcold 265.4 K and Thot 25 273( ) K Thot 298K

Hence, assuming ideal gas behavior, pV = mRT, and that the tire is approximately a rigid container, the absolute pressure of the

hot tire is

phot

Thot

Tcold

p phot 354 kPa

Then the gage pressure is

pg phot patm pg 253 kPa



Problem 3.10 [Difficulty: 2]

Given: Data on air bubble

Find: Bubble diameter as it reaches surface

Solution:

Basic equation
dp

dy
ρsea g and the ideal gas equation p ρ R T

M

V
R T

We assume the temperature is constant, and the density of sea water is constant

For constant sea water density p patm SGsea ρ g h where p is the pressure at any depth h

Then the pressure at the initial depth is p1 patm SGsea ρ g h1

The pressure as it reaches the surface is p2 patm

For the bubble p
M R T

V
 but M and T are constant M R T const p V

Hence p1 V1 p2 V2 or V2 V1

P1

p2

 or D2
3

D1
3

p1

p2



Then the size of the bubble at the surface is D2 D1

p1

p2









1

3

 D1

patm ρsea g h1 
patm









1

3

 D1 1
ρsea g h1

patm










1

3



From Table A.2 SGsea 1.025 (This is at 68oF)

D2 0.3 in 1 1.025 1.94
slug

ft
3

 32.2
ft

s
2

 100 ft
in

2

14.7 lbf


1 ft
12 in







2


lbf s

2


slugft








1

3



D2 0.477 in



Problem 3.11 [Difficulty: 2]

Given: Properties of a cube suspended by a wire in a fluid

Find: The fluid specific gravity; the gage pressures on the upper and lower surfaces

Solution:

From a free body analysis of the cube: ΣF 0= T pL pU−( ) d
2

⋅+ M g⋅−=

where M and d are the cube mass and size and pL and pU are the pressures on the lower and upper surfaces

For each pressure we can use Eq. 3.7 p p0 ρ g⋅ h⋅+=

Hence pL pU− p0 ρ g⋅ H d+( )⋅+⎡⎣ ⎤⎦ p0 ρ g⋅ H⋅+( )−= ρ g⋅ d⋅= SG ρH2O⋅ d⋅=

where H is the depth of the upper surface

Hence the force balance gives SG
M g⋅ T−

ρH2O g⋅ d
3

⋅
= SG

2 slug⋅ 32.2×
ft

s
2

⋅
lbf s

2
⋅

slug ft⋅
× 50.7 lbf⋅−

1.94
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
lbf s

2
⋅

slug ft⋅
× 0.5 ft⋅( )

3
×

= SG 1.75=

From Table A.1, the fluid is Meriam blue.

The individual pressures are computed from Eq 3.7

p p0 ρ g⋅ h⋅+= or pg ρ g⋅ h⋅= SG ρH2O⋅ h⋅=

For the upper surface pg 1.754 1.94×
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
2

3
× ft⋅

lbf s
2

⋅
slug ft⋅

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2

×= pg 0.507 psi⋅=

For the lower surface pg 1.754 1.94×
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
2

3

1

2
+⎛⎜

⎝
⎞⎟
⎠

× ft⋅
lbf s

2
⋅

slug ft⋅
×

1 ft⋅
12 in⋅
⎛⎜
⎝

⎞⎟
⎠

2

×= pg 0.888 psi⋅=

Note that the SG calculation can also be performed using a buoyancy approach (discussed later in the chapter):

Consider a free body diagram of the cube: ΣF 0= T FB+ M g⋅−=

where M is the cube mass and FB is the buoyancy force FB SG ρH2O⋅ L
3

⋅ g⋅=

Hence T SG ρH2O⋅ L
3

⋅ g⋅+ M g⋅− 0= or SG
M g⋅ T−

ρH2O g⋅ L
3

⋅
= as before SG 1.75=



Problem 3.12 [Difficulty: 4]

Given: Model behavior of seawater by assuming constant bulk modulus

Find: (a) Expression for density as a function of depth h.

(b) Show that result may be written as

ρ = ρo + bh

(c) Evaluate the constant b

(d) Use results of (b) to obtain equation for p(h)

(e) Determine depth at which error in predicted pressure is 0.01%

Solution: From Table A.2, App. A: SGo 1.025= Ev 2.42 GPa⋅ 3.51 10
5

× psi⋅==

Governing Equations:
dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

(Definition of Bulk Modulus)
Ev

dp

dρ

ρ

=

Then dp ρ g⋅ dh⋅= Ev
dρ

ρ
⋅= or

dρ

ρ
2

g

Ev

dh= Now if we integrate:

ρo

ρ

ρ
1

ρ
2

⌠⎮
⎮
⎮⌡

d

0

h

h
g

Ev

⌠
⎮
⎮
⌡

d=

After integrating:
ρ ρo−

ρ ρo⋅
g h⋅
Ev

= Therefore: ρ
Ev ρo⋅

Ev g h⋅ ρo⋅−
= and

ρ

ρo

1

1
ρo g⋅ h⋅

Ev

−

=

(Binomial expansion may

be found in a host of

sources, e.g. CRC

Handbook of

Mathematics)

Now for  
ρo g⋅ h⋅

Ev

<<1, the binomial expansion may be used to approximate the density:
ρ

ρo

1
ρo g⋅ h⋅

Ev

+=

In other words, ρ ρo b h⋅+= where b
ρo

2
g⋅

Ev

=

Since dp ρ g⋅ dh⋅= then an approximate expression for the pressure as a function of depth is:

papprox patm−
0

h

hρo b h⋅+( ) g⋅
⌠
⎮
⌡

d= papprox patm−
g h⋅ 2 ρo⋅ b h⋅+( )⋅

2
=→ Solving for papprox we get:



papprox patm

g h⋅ 2 ρo⋅ b h⋅+( )⋅

2
+= patm ρo g⋅ h⋅+

b g⋅ h
2

⋅
2

+= patm ρo h⋅
b h

2
⋅
2

+
⎛
⎜
⎝

⎞
⎟
⎠

g⋅+=

Now if we subsitiute in the expression for b and simplify, we get:

papprox patm ρo h⋅
ρo

2
g⋅

Ev

h
2

2
⋅+

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

g⋅+= patm ρo g⋅ h⋅ 1
ρo g⋅ h⋅

2 Ev⋅
+

⎛
⎜
⎝

⎞
⎟
⎠

⋅+= papprox patm ρo g⋅ h⋅ 1
ρo g⋅ h⋅

2Ev

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+=

The exact soution for p(h) is obtained by utilizing the exact solution for ρ(h).  Thus:

pexact patm−

ρo

ρ

ρ
Ev

ρ

⌠
⎮
⎮
⌡

d= Ev ln
ρ

ρo

⎛
⎜
⎝

⎞
⎟
⎠

⋅= Subsitiuting for 
ρ

ρo

we get: pexact patm Ev ln 1
ρo g⋅ h⋅

Ev

−
⎛
⎜
⎝

⎞
⎟
⎠

1−

⋅+=

If we let x
ρo g⋅ h⋅

Ev

= For the error to be 0.01%:
∆pexact ∆papprox−

∆pexact

1

ρo g⋅ h⋅ 1
x

2
+⎛⎜

⎝
⎞⎟
⎠

⋅

Ev ln 1 x−( )
1−⎡⎣ ⎤⎦⋅

−= 1

x 1
x

2
+⎛⎜

⎝
⎞⎟
⎠

⋅

ln 1 x−( )
1−⎡⎣ ⎤⎦

−= 0.0001=

This equation requires an iterative solution, e.g. Excel's Goal Seek. The result is: x 0.01728= Solving x for h:

h
x Ev⋅

ρo g⋅
= h 0.01728 3.51× 10

5
×

lbf

in
2

⋅
ft

3

1.025 1.94× slug⋅
×

s
2

32.2 ft⋅
×

12 in⋅
ft

⎛⎜
⎝

⎞⎟
⎠

2

×
slug ft⋅

lbf s
2

⋅
×= h 1.364 10

4
× ft⋅=

This depth is over 2.5 miles, so the

incompressible fluid approximation is a

reasonable one at all but the lowest depths

of the ocean.



Problem 3.13 [Difficulty: 3]

Given: Model behavior of seawater by assuming constant bulk modulus

Find: The percent deviations in (a) density and (b) pressure at depth h = 6.5

mi, as compared to values assuming constant density.

Plot results over the range of 0 mi - 7 mi.

Solution: From Table A.2, App. A: SGo 1.025 Ev 2.42 GPa 3.51 10
5

 psi h 6.5 mi

Governing Equations:
dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

(Definition of Bulk Modulus)
Ev

dp

dρ

ρ



Then dp ρ g dh Ev
dρ

ρ
 or

dρ

ρ
2

g

Ev

dh Now if we integrate:

ρo

ρ

ρ
1

ρ
2





d

0

h

h
g

Ev






d

After integrating:
ρ ρo

ρ ρo
g h
Ev

 Therefore: ρ
Ev ρo

Ev ρo g h
 and

ρ

ρo

1

1
ρo g h

Ev





∆ρ

ρo

ρ ρo

ρo


ρ

ρo

1
1

1
ρo g h

Ev



1

1 1
ρo g h

Ev












1
ρo g h

Ev





ρo g h

Ev

1
ρo g h

Ev




∆ρ

ρo

ρo g h

Ev

1
ρo g h

Ev





To determine an expression for the percent deviation in pressure, we find p patm for variable ρ, and then for constant ρ.

For variable density and constant bulk modulus: p patm

ρo

ρ

ρ
Ev

ρ






d Ev ln
ρ

ρo











For constant density: pconstρ patm
0

h

hρo g




d ρo g h



∆p

pconstρ

Ev

ρo g h
ln 1

ρo g h

Ev










1









 1∆p

pconstρ

p pconstρ

pconstρ


Ev ln
ρ

ρo









 ρo g h

ρo g h


Ev

ρo g h
ln

ρ

ρo









 1

If we let x
Ev

ρo g
 x 3.51 10

5


lbf

in
2

1

1.025


1

1.94


ft
3

slug

1

32.2


s
2

ft

12 in
ft







2


slug ft

lbf s
2




mi

5280 ft
 x 149.5 mi

Substituting into the expressions for the deviations we get:

devρ
∆ρ

ρo



h

x

1
h

x



h

x h


h

149.5 mi h


devp
∆p

pconstρ


x

h
ln 1

h

x






1







 1
149.5 mi

h
ln 1

h

149.5 mi






1







 1

For h = 6.5 mi we get: devρ 4.55 % devp 2.24 %

The plot below shows the deviations in density and pressure as a function of depth from 0 mi to 7 mi:
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Problem 3.14 [Difficulty: 3]

 

Air H 

D Air H – y  

y 

y 

Given: Cylindrical cup lowered slowly beneath pool surface

Find: Expression for y in terms of h and H.

Plot y/H vs. h/H.

Solution:

Governing Equations:
dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

p V M R T (Ideal Gas Equation)

Assumptions: (1) Constant temperature compression of air inside cup

(2) Static liquid

(3) Incompressible liquid

First we apply the ideal gas equation (at constant temperature) for the pressure of the air in the cup: p V constant

Therefore: p V pa
π

4
 D

2
 H p

π

4
 D

2
 H y( ) and upon simplification: pa H p H y( )

Now we look at the hydrostatic pressure equation for the pressure exerted by the water.  Since ρ is constant, we integrate:

p pa ρ g h y( ) at the water-air interface in the cup.

Since the cup is submerged to a depth of h, these pressures must be equal:

pa H pa ρ g h y( )  H y( ) pa H pa y ρ g h y( ) H y( )

Explanding out the right hand side of this expression:

0 pa y ρ g h y( ) H y( ) ρ g h H ρ g h y ρ g H y ρ g y
2

 pa y

ρ g y
2

 pa ρ g h H( )  y ρ g h H 0 y
2

pa

ρ g
h H( )









y h H 0

We now use the quadratic equation: y

pa

ρ g
h H( )









pa

ρ g
h H( )









2

4 h H

2
 we only use the minus sign because y

can never be larger than H.



Now if we divide both sides by H, we get an expression for y/H:

y

H

pa

ρ g H
h

H
 1









pa

ρ g H
h

H
 1









2

4
h

H


2


The exact shape of this curve will depend upon the height of the cup.  The plot below was generated assuming:

pa 101.3 kPa

H 1 m

0 20 40 60 80 100

0.2

0.4

0.6

0.8

Depth Ratio, h/H

H
ei

g
h

t 
R

at
io

, 
y

/H



Problem 3.15 [Difficulty: 1]

Given: Geometry of straw

Find: Pressure just below the thumb

Assumptions: (1) Coke is incompressible

(2) Pressure variation within the air column is negligible

(3) Coke has density of water

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ ∆p ρ g h where h is measured downwards

This equation only applies in the 15 cm of coke in the straw - in the other 30 cm of air the pressure is essentially constant.

The gage pressure at the coke surface is pcoke ρ g hcoke

Hence, with hcoke 15 cm because h is measured downwards

pcoke 1000
kg

m
3

 9.81
m

s
2

 15 cm
m

100 cm


N s
2


kg m


kPa m

2


1000 N


pcoke 1.471 kPa gage

pcoke 99.9 kPa



Problem 3.16 [Difficulty: 2]

 

patmA 

pbaseA 

Cover 

Given: Data on water tank and inspection cover

Find: If the support bracket is strong enough; at what water depth would it fail

Assumptions: Water is incompressible and static

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ ∆p ρ g h where h is measured downwards

The absolute pressure at the base is pbase patm ρ g h where h 16 ft

The gage pressure at the base is pbase ρ g h This is the pressure to use as we have patm on the outside of the cover.

The force on the inspection cover is F pbase A where A 1 in 1 in A 1 in
2



F ρ g h A

F 1.94
slug

ft
3

 32.2
ft

s
2

 16 ft 1 in
2


ft

12 in






2


lbf s

2


slug ft


F 6.94 lbf The bracket is strong enough (it can take 9 lbf).

To find the maximum depth we start with F 9.00 lbf

h
F

ρ g A


h 9 lbf
1

1.94


ft
3

slug


1

32.2


s
2

ft


1

in
2


12 in

ft







2


slug ft

lbf s
2




h 20.7 ft



Problem 3.17 [Difficulty: 4]

Given: Container of mercury with vertical tubes of known diameter, brass

cylinder of known dimensions introduced into larger tube, where it floats.

d1 39.5 mm d2 12.7 mm D 37.5 mm H 76.2 mm SGHg 13.55 SGb 8.55

Find: (a) Pressureon the bottom of the cylinder

(b) New equlibrium level, h, of the mercury

Solution: We will analyze a free body diagram of the cylinder, and apply the hydrostatics equation.

Governing equations: ΣFz 0 (Vertical Equilibrium)

dp

dz
ρ g (Hydrostatic Pressure - z is positive upwards)

ρ SG ρwater (Definition of Specific Gravity)

 

pA

mg 
z 

Assumptions: (1) Static liquid

(2) Incompressible liquid

If we take a free body diagram of the cylinder:

ΣFz p
π

4
 D

2
 ρb g

π

4
 D

2
 H 0 thus: p ρb g H SGb ρwater g H

p 8.55 1000
kg

m
3

 9.81
m

s
2

 76.2 mm
m

10
3

mm
 p 6.39 kPa (gage)

This pressure must be generated by a column of mercury h+x in height.  Thus:

p ρHg g h x( ) SGHg ρwater g h x( ) SGb ρwater g H Thus: h x
SGb

SGHg

H

The value of x can be found by realizing that the volume of mercury in the system remains constant.  Therefore:

π

4
D

2
 x

π

4
d1

2
D

2




 h

π

4
d2

2
 h Now if we solve for x: x

d1

D









2

1
d2

D









2








h

These expressions now allow us to solve for h: h
SGb

SGHg

D
2

d1
2

d2
2


 H Substituting in values:

h
8.55

13.55

37.5 mm( )
2

39.5 mm( )
2

12.7 mm( )
2


 76.2 mm h 39.3 mm



Problem 3.18 [Difficulty: 2]

Given: Data on partitioned tank

Find: Gage pressure of trapped air; pressure to make water and mercury levels equal

Solution:

The pressure difference is obtained from repeated application of Eq. 3.7, or in other words, from Eq. 3.8.  Starting

from the right air chamber

pgage SGHg ρH2O g 3 m 2.9 m( ) ρH2O g 1 m

pgage ρH2O g SGHg 0.1 m 1.0 m 

pgage 999
kg

m
3

 9.81
m

s
2

 13.55 0.1 m 1.0 m( )
N s

2


kg m
 pgage 3.48 kPa

If the left air pressure is now increased until the water and mercury levels are now equal, Eq. 3.8 leads to

pgage SGHg ρH2O g 1.0 m ρH2O g 1.0 m

pgage ρH2O g SGHg 1 m 1.0 m 

pgage 999
kg

m
3

 9.81
m

s
2

 13.55 1 m 1.0 m( )
N s

2


kg m
 pgage 123 kPa



Problem 3.19 [Difficulty: 2]

Given: Data on partitioned tank

Find: Pressure of trapped air required to bring water and mercury levels equal if right air opening is sealed

Solution:

First we need to determine how far each free surface moves.

In the tank of Problem 3.18, the ratio of cross section areas of the partitions is 0.75/3.75 or 1:5.  Suppose the water surface (and

therefore the mercury on the left) must move down distance x to bring the water and mercury levels equal.  Then by mercury volume

conservation, the mercury free surface (on the right) moves up (0.75/3.75)x = x/5.  These two changes in level must cancel the original

discrepancy in free surface levels, of (1m + 2.9m) - 3 m = 0.9 m.  Hence x + x/5 = 0.9 m, or x = 0.75 m.  The mercury level thus moves

up x/5 = 0.15 m.

Assuming the air (an ideal gas, pV=RT) in the right behaves isothermally, the new pressure there will be

pright

Vrightold

Vrightnew
patm

Aright Lrightold

Aright Lrightnew
patm

Lrightold

Lrightnew

patm

where V, A and L represent volume, cross-section area, and vertical length

Hence

pright
3

3 0.15
101 kPa pright 106 kPa

When the water and mercury levels are equal application of Eq. 3.8 gives:

pleft pright SGHg ρH2O g 1.0 m ρH2O g 1.0 m

pleft pright ρH2O g SGHg 1.0 m 1.0 m 

pleft 106 kPa 999
kg

m
3

 9.81
m

s
2

 13.55 1.0 m 1.0 m( )
N s

2


kg m
 pleft 229 kPa

pgage pleft patm pgage 229 kPa 101 kPa pgage 128 kPa



Problem 3.20 [Difficulty: 2]

Given: Two-fluid manometer as shown

l 10.2 mm SGct 1.595 (From Table A.1, App. A)

Find: Pressure difference

Solution: We will apply the hydrostatics equation.

Governing equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

 

d 

z 

Assumptions: (1) Static liquid

(2) Incompressible liquid

Starting at point 1 and progressing to point 2 we have:

p1 ρwater g d l( ) ρct g l ρwater g d p2

Simplifying and solving for p2 p1 we have:

∆p p2 p1 ρct g l ρwater g l SGct 1  ρwater g l

Substituting the known data:

∆p 1.591 1( ) 1000
kg

m
3

 9.81
m

s
2

 10.2 mm
m

10
3

mm
 ∆p 59.1Pa



Problem 3.21 [Difficulty: 2]

Given: U-tube manometer, partiall filled with water, then a given volume of

Meriam red oil is added to the left side

D 6.35 mm Voil 3.25 cm
3

 SGoil 0.827 (From Table A.1, App. A)

Find: Equilibrium height, H, when both legs are open to atmosphere.

Solution: We will apply the basic pressure-height relation.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid

 

L 
L – H 

A 

B 

C 

D

Integration of the pressure equation gives: p2 p1 ρ g h2 h1 

Thus: pB pA ρoil g L and pD pC ρwater g L H( )

Since pA pC patm and pB pD since they are at the same height:

ρoil g L ρwater g L H( ) or SGoil L L H

Solving for H: H L 1 SGoil 

The value of L comes from the volume of the oil: Voil
π

4
D

2
 L

Solving for L: L
4 Voil

π D
2


 L

4 3.25 cm
3



π 6.35 mm( )
2



10 mm
cm







3

 L 102.62 mm

We can now calculate H: H 102.62 mm 1 0.827( ) H 17.75 mm



Problem 3.22 [Difficulty: 2]

Given: Two fluid manometer contains water and kerosene.  With both tubes

open to atmosphere, the difference in free surface elevations is known

Ho 20 mm⋅= SGk 0.82= (From Table A.1, App. A)

Find: The elevation difference, H, between the free surfaces of the fluids

when a gage pressure of 98.0 Pa is applied to the right tube.

Solution: We will apply the hydrostatics equation.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater⋅= (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid

When the gage pressure Δp is applied to the right tube, the water in the

right tube is displaced downward by a distance, l.  The kerosene in the

left tube is displaced upward by the same distance, l.

Under the applied gage pressure Δp, the elevation difference, H, is:

 

h H 

A B 

l 

l 

H0 

H1 

A B

Δp

H Ho 2 l⋅+=

Since points A and B are at the same elevation in the same fluid, their

pressures are the same.  Initially:

pA ρk g⋅ Ho H1+( )⋅= pB ρwater g⋅ H1⋅=

Setting these pressures equal:

ρk g⋅ Ho H1+( )⋅ ρwater g⋅ H1⋅=

Solving for H1

H1

ρk Ho⋅

ρwater ρk−
=

SGk Ho⋅

1 SGk−
= H1

0.82 20× mm⋅
1 0.82−

= H1 91.11 mm⋅=

Now under the applied gage pressure:

pA ρk g⋅ Ho H1+( )⋅ ρwater g⋅ l⋅+= pB ∆p ρwater g⋅ H1 l−( )⋅+=



Setting these pressures equal:

SGk Ho H1+( )⋅ l+
∆p

ρwater g⋅
H1 l−( )+= l

1

2

∆p

ρwater g⋅
H1+ SGk Ho H1+( )⋅−⎡

⎢
⎣

⎤
⎥
⎦

=

Substituting in known values we get:

l
1

2
98.0

N

m
2

⋅
1

999
×

m
3

kg

1

9.81
×

s
2

m
⋅

kg m⋅

N s
2

⋅
× 91.11 mm⋅ 0.82 20 mm⋅ 91.11 mm⋅+( )×−[ ]

m

10
3

mm⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×= l 5.000 mm⋅=

Now we solve for H:

H 20 mm⋅ 2 5.000× mm⋅+= H 30.0 mm⋅=



Problem 3.23 [Difficulty: 2]

Given: Data on manometer

Find: Deflection due to pressure difference

Solution:

Basic equation
dp

dy
ρ− g⋅= or, for constant ρ ∆p ρ g⋅ ∆h⋅= where h is measured downwards

Starting at p1 pA p1 SGA ρ⋅ g⋅ h l+( )⋅+= where l is the (unknown) distance from the level of the right

interface

Next, from A to B pB pA SGB ρ⋅ g⋅ h⋅−=

Finally, from A to the location of p2 p2 pB SGA ρ⋅ g⋅ l⋅−=

Combining the three equations p2 pA SGB ρ⋅ g⋅ h⋅−( ) SGA ρ⋅ g⋅ l⋅−= p1 SGA ρ⋅ g⋅ h l+( )⋅+ SGB ρ⋅ g⋅ h⋅−⎡⎣ ⎤⎦ SGA ρ⋅ g⋅ l⋅−=

p2 p1− SGA SGB−( ) ρ⋅ g⋅ h⋅=

h
p1 p2−

SGB SGA−( ) ρ⋅ g⋅
=

h 18
lbf

ft
2

⋅
1

2.95 0.88−( )
×

1

1.94
×

ft
3

slug
⋅

1

32.2
×

s
2

ft
⋅

slug ft⋅

s
2

lbf⋅
×=

h 0.139 ft⋅= h 1.67 in⋅=



Problem 3.24 [Difficulty: 2]

 

 

 

Given: Data on manometer

Find: Gage pressure at point a

Assumption: Water, liquids A and B are static and incompressible

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ ∆p ρ g ∆h

where ∆h is height difference

Starting at point a p1 pa ρH2O g h1 where h1 0.125 m 0.25 m h1 0.375 m

Next, in liquid A p2 p1 SGA ρH2O g h2 where h2 0.25 m

Finally, in liquid B patm p2 SGB ρH2O g h3 where h3 0.9 m 0.4 m h3 0.5m

Combining the three equations

patm p1 SGA ρH2O g h2  SGB ρH2O g h3 pa ρH2O g h1 SGA ρH2O g h2 SGB ρH2O g h3

pa patm ρH2O g h1 SGA h2 SGB h3 

or in gage pressures pa ρH2O g h1 SGA h2 SGB h3 

pa 1000
kg

m
3

 9.81
m

s
2

 0.375 1.20 0.25( ) 0.75 0.5( )[ ] m
N s

2


kg m


pa 4.41 10
3

 Pa pa 4.41 kPa (gage)



Problem 3.25 [Difficulty: 2]

Given: Two fluid manometer, Meriam red oil is the second fluid SGoil 0.827 from Table A.1

Find: The amplification factor which will be seen in this demonstrator

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid
 

a l 

hA 

h 

hB 

b 

Integrating the hydrostatic pressure equation we get:

p po ρ g h

For the left leg of the manometer: pa patm ρwater g hA

pb pa ρwater g l patm ρwater g hA l 

For the right leg: pa patm ρwater g hB

pb pa ρoil g l patm ρwater g hB SGoil l 

Combining the right hand sides of these two equations: patm ρwater g hA l  patm ρwater g hB SGoil l 

Upon simplification: hA l hB SGoil l ∆h hA hB l 1 SGoil  so the amplification factor would be:

AF
l

∆h


1

1 SGoil
 For Meriam red AF

1

1 0.827
5.78 AF 5.78



Problem 3.26 [Difficulty: 2]

Given: Water flow in an inclined pipe as shown.  The pressure difference is

measured with a two-fluid manometer

L 5 ft h 6 in SGHg 13.55 (From Table A.1, App. A)

Find: Pressure difference between A and B

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid

(3) Gravity is constant

Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆h

Progressing through the manometer from A to B:

pA ρwater g L sin 30 deg( ) ρwater g a ρwater g h ρHg g h ρwater g a pB

Simplifying terms and solving for the pressure difference:

∆p pA pB ρwater g h SGHg 1  L sin 30 deg( ) 

Substituting in values:

∆p 1.94
slug

ft
3

 32.2
ft

s
2

6 in
ft

12 in
 13.55 1( ) 5 ft sin 30 deg( )






lbf s

2


slugft


ft

12 in






2

 ∆p 1.638 psi



Problem 3.27 [Difficulty: 2]

Given: Data on fluid levels in a tank

Find: Air pressure; new equilibrium level if opening appears

Solution:

Using Eq. 3.8, starting from the open side and working in gage pressure

pair ρH2O g× SGHg 0.3 0.1−( )× m⋅ 0.1 m⋅− SGBenzene 0.1× m⋅−⎡⎣ ⎤⎦×=

Using data from Table A.2 pair 999
kg

m
3

⋅ 9.81×
m

s
2

⋅ 13.55 0.2× m⋅ 0.1 m⋅− 0.879 0.1× m⋅−( )×
N s

2
⋅

kg m⋅
×= pair 24.7 kPa⋅=

To compute the new level of mercury in the manometer, assume the change in level from 0.3 m is an increase of  x.  Then, because the

volume of mercury is constant, the tank mercury level will fall by distance (0.025/0.25)2x.  Hence, the gage pressure at the bottom of the tan

can be computed from the left and the right, providing a formula for x

SGHg ρH2O× g× 0.3 m⋅ x+( )× SGHg ρH2O× g× 0.1 m⋅ x
0.025

0.25

⎛⎜
⎝

⎞⎟
⎠

2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

× m⋅

ρH2O g× 0.1× m⋅ SGBenzene ρH2O× g× 0.1× m⋅++

...=

Hence x
0.1 m⋅ 0.879 0.1× m⋅+ 13.55 0.1 0.3−( )× m⋅+[ ]

1
0.025

0.25

⎛⎜
⎝

⎞⎟
⎠

2

+
⎡
⎢
⎣

⎤
⎥
⎦

13.55×

= x 0.184− m=

(The negative sign indicates the

manometer level actually fell)

The new manometer height is h 0.3 m⋅ x+= h 0.116 m=



Problem 3.28 [Difficulty: 2]

Given: Reservoir manometer with vertical tubes of knowm diameter.  Gage liquid is Meriam red oil

D 18 mm⋅= d 6 mm⋅= SGoil 0.827= (From Table A.1, App. A)

Find: The manometer deflection, L when a gage pressure equal to 25 mm of

water is applied to the reservoir.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater⋅= (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid

Integrating the hydrostatic pressure equation we get:

∆p ρ g⋅ ∆h⋅=

Beginning at the free surface of the reservoir, and accounting for the changes in pressure with elevation:

patm ∆p+ ρoil g⋅ x L+( )⋅+ patm=

Upon simplification: x L+
∆p

ρoil g⋅
= The gage pressure is defined as: ∆p ρwater g⋅ ∆h⋅= where ∆h 25 mm⋅=

Combining these two expressions: x L+
ρwater g⋅ h⋅

ρoil g⋅
=

∆h

SGoil

=

x and L are related through the manometer dimensions:
π

4
D

2
⋅ x⋅

π

4
d

2
⋅ L⋅= x

d

D

⎛⎜
⎝

⎞⎟
⎠

2

L=

Therefore: L
∆h

SGoil 1
d

D

⎛⎜
⎝

⎞⎟
⎠

2

+
⎡
⎢
⎣

⎤
⎥
⎦

⋅

= Substituting values into the expression: L
25 mm⋅

0.827 1
6 mm⋅

18 mm⋅
⎛⎜
⎝

⎞⎟
⎠

2

+
⎡
⎢
⎣

⎤
⎥
⎦

⋅

=

(Note: s
L

∆h
= which yields s 1.088= for this manometer.) L 27.2 mm⋅=



Problem 3.29 [Difficulty: 2]

Given: A U-tube manometer is connected to the open tank filled with water as

shown (manometer fluid is Meriam blue)

D1 2.5 m D2 0.7 m d 0.2 m SGoil 1.75 (From Table A.1, App. A)

Find: The manometer deflection, l

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid

 

D1 

D2 

d 





Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆h

When the tank is filled with water, the oil in the left leg of the manometer is displaced

downward by l/2.  The oil in the right leg is displaced upward by the same distance, l/2.

Beginning at the free surface of the tank, and accounting for the changes in pressure with

elevation:

patm ρwater g D1 D2 d
l

2






 ρoil g l patm

Upon simplification:

ρwater g D1 D2 d
l

2






 ρoil g l D1 D2 d
l

2
 SGoil l l

D1 D2 d

SGoil
1

2




l
2.5 m 0.7 m 0.2 m

1.75
1

2


 l 1.600 m



Problem 3.30 [Difficulty: 2]

Given: Reservoir manometer with dimensions shown.  The manometer fluid

specific gravity is given.

D
5

8
in d

3

16
in SGoil 0.827

Find: The required distance between vertical marks on the scale

corresponding to Δp of 1 in water.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dz
ρ g (Hydrostatic Pressure - z is positive upwards)

ρ SG ρwater (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid

 

h

x

Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆z

Beginning at the free surface of the tank, and accounting for the changes in pressure with

elevation:

patm ∆p ρoil g x h( ) patm

Upon simplification: ∆p ρoil g x h( ) The applied pressure is defined as: ∆p ρwater g l where l 1 in

Therefore: ρwater g l ρoil g x h( ) x h
l

SGoil



x and h are related through the manometer dimensions:
π

4
D

2
 x

π

4
d

2
 h x

d

D







2

h

Solving for h: h
l

SGoil 1
d

D







2












 Substituting values into the expression: h
1 in

0.827 1
0.1875 in
0.625 in







2














h 1.109 in



Problem 3.31 [Difficulty: 2]

Given: A U-tube manometer is connected to the open tank filled with water as

shown (manometer fluid is mercury).  The tank is sealed and pressurized.

D1 2.5 m D2 0.7 m d 0.2 m po 0.5 atm SGHg 13.55 (From Table A.1, App. A)

Find: The manometer deflection, l

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

Assumptions: (1) Static liquid

(2) Incompressible liquid
 

D1 

D2 

d 





Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆h

When the tank is filled with water and pressurized, the mercury in the left leg of the

manometer is displaced downward by l/2.  The mercury in the right leg is displaced

upward by the same distance, l/2.

Beginning at the free surface of the tank, and accounting for the changes in pressure with

elevation:

patm po ρwater g D1 D2 d
l

2






 ρHg g l patm

Upon simplification:

po ρwater g D1 D2 d
l

2






 ρHg g l l

po

ρwater g
D1 D2 d

SGHg
1

2




Substituting values into the expression:

l

0.5 atm
1.013 10

5
 N

m
2

atm


1

1000


m
3

kg


1

9.8


s
2

m








2.5 m 0.7 m 0.2 m

13.55
1

2


 l 0.549 m



Problem 3.32 [Difficulty: 3]

Given: Inclined manometer as shown.

D 96 mm d 8 mm
Angle θ is such that the liquid deflection L is five times that of a regular

U-tube manometer.

Find: Angle θ and manometer sensitivity.

Solution: We will apply the hydrostatics equations to this system.

Governing Equation: dp

dz
ρ g (Hydrostatic Pressure - z is positive upwards)

Assumptions: (1) Static liquid

(2) Incompressible liquid
 

x

Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆z

Applying this equation from point 1 to point 2:

p1 ρ g x L sin θ( )( ) p2

Upon simplification: p1 p2 ρ g x L sin θ( )( )

Since the volume of the fluid must remain constant:
π

4
D

2
 x

π

4
d

2
 L x

d

D







2

L

Therefore: p1 p2 ρ g L
d

D







2

sin θ( )










Now for a U-tube manometer: p1 p2 ρ g h Hence:
p1incl p2incl

p1U p2U

ρ g L
d

D







2

sin θ( )










ρ g h


For equal applied pressures: L
d

D







2

sin θ( )








 h Since L/h = 5: sin θ( )
h

L

d

D







2


1

5

8 mm
96 mm






2



θ 11.13 deg

The sensitivity of the manometer: s
L

∆he


L

SG h
 s

5

SG




Problem 3.33 [Difficulty: 3]

Given: Data on inclined manometer

Find: Angle θ for given data; find sensitivity

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ ∆p ρ g ∆h where Δh is height difference

Under applied pressure ∆p SGMer ρ g L sin θ( ) x( ) (1)

From Table A.1 SGMer 0.827

and Δp = 1 in. of water, or ∆p ρ g h where h 25 mm h 0.025 m

∆p 1000
kg

m
3

 9.81
m

s
2

 0.025 m
N s

2


kg m
 ∆p 245Pa

The volume of liquid must remain constant, so x Ares L Atube x L
Atube

Ares

 L
d

D







2

 (2)

Combining Eqs 1 and 2 ∆p SGMer ρ g L sin θ( ) L
d

D







2












Solving for θ sin θ( )
∆p

SGMer ρ g L
d

D







2



sin θ( ) 245
N

m
2


1

0.827


1

1000


m
3

kg


1

9.81


s
2

m


1

0.15


1

m


kg m

s
2

N


8

76







2

 0.186

θ 11 deg

The sensitivity is the ratio of manometer deflection to a vertical water manometer

s
L

h


0.15 m
0.025 m

 s 6



Problem 3.34 [Difficulty: 4]

Given: Barometer with water on top of the mercury column, Temperature is

known:

h2 6.5 in h1 28.35 in SGHg 13.55 (From Table A.2, App. A) T 70 °F

pv 0.363 psi (From Table A.7, App. A)

Find: (a) Barometric pressure in psia

(b) Effect of increase in ambient temperature on length of mercury

column for the same barometric pressure: Tf 85 °F

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ρ SG ρwater (Definition of Specific Gravity)

 

h2 

Water vapor 

h1 

Water 

Mercury 

Assumptions: (1) Static liquid

(2) Incompressible liquid

Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆h

Start at the free surface of the mercury and progress through the barometer to the vapor

pressure of the water:

patm ρHg g h1 ρwater g h2 pv

patm pv ρwater g SGHg h1 h2 

patm 0.363
lbf

in
2

 1.93
slug

ft
3

 32.2
ft

s
2


lbf s

2


slug ft
 13.55 28.35 in 6.5 in( )

ft

12 in






3

 patm 14.41
lbf

in
2



At the higher temperature, the vapor pressure of water increases to 0.60 psi.  Therefore, if the atmospheric pressure

were to remain constant, the length of the mercury column would have to decrease - the increased water vapor would

push the mercury out of the tube!



Problem 3.35 [Difficulty: 3]

Given: U-tube manometer with tubes of different diameter and two liquids, as shown.

d1 10 mm⋅= d2 15 mm⋅= SGoil 0.85=

Find: (a) the deflection, h, corresponding to

(b) the sensitivity of the manometer
∆p 250

N

m
2

⋅=

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dz
ρ− g⋅= (Hydrostatic Pressure - z is positive upwards)

ρ SG ρwater⋅= (Definition of Specific Gravity)

 

h 

A B 

l1 

patm 

l2 lw l3 

l4 

patm patm + Δp patm Assumptions: (1) Static liquid

(2) Incompressible liquid

Integrating the hydrostatic pressure equation we get:

p po− ρ− g⋅ z zo−( )⋅= ρ g⋅ zo z−( )⋅=

From the left diagram:

pA patm− ρwater g⋅ l1⋅= ρoil g⋅ l2⋅= 1( )

From the right diagram:

pB patm ∆p+( )− ρwater g⋅ l3⋅= 2( )

pB patm− ρwater g⋅ l4⋅ ρoil g⋅ l2⋅+= 3( )

Combining these three equations: ∆p ρwater g⋅ l4 l3−( )⋅ ρoil g⋅ l2⋅+= ρwater g⋅ l4 l1+ l3−( )⋅=

From the diagram we can see lw l1 l3−= and h l4= Therefore:

∆p ρwater g⋅ h lw+( )⋅= 4( )

We can relate lw to h since the volume of water in the manometer is constant:
π

4
d1

2
⋅ lw⋅

π

4
d2

2
⋅ h⋅= lw

d2

d1

⎛
⎜
⎝

⎞
⎟
⎠

2

h⋅=



Substituting this into (4) yields: ∆p ρwater g⋅ h⋅ 1
d2

d1

⎛
⎜
⎝

⎞
⎟
⎠

2

+
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= Solving for h: h
∆p

ρwater g⋅ 1
d2

d1

⎛
⎜
⎝

⎞
⎟
⎠

2

+
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

=

Substituting values into the equation: h 250
N

m
2

⋅
1

999
×

m
3

kg
⋅

1

9.81
×

s
2

m

1

1
15 mm⋅
10 mm⋅
⎛⎜
⎝

⎞⎟
⎠

2

+

×
kg m⋅

N s
2

⋅
×

10
3

mm⋅
m

×= h 7.85 mm⋅=

The sensitivity for the manometer is defined as: s
h

∆he

= where ∆p ρwater g⋅ ∆he⋅=

Therefore: s
1

1
d2

d1

⎛
⎜
⎝

⎞
⎟
⎠

2

+

= s
1

1
15 mm⋅
10 mm⋅
⎛⎜
⎝

⎞⎟
⎠

2

+

= s 0.308=

The design is a poor one.  The sensitivity could be improved by interchanging d2 and d1 , i.e., having d2 smaller than d1

A plot of the manometer sensitivity is shown below:

0 1 2 3 4 5

0.5

1

Diameter Ratio, d2/d1

S
en

si
ti

v
it

y



Problem 3.36 [Difficulty: 3]

Given: Water column standin in glass tube

∆h 50 mm⋅= D 2.5 mm⋅= σ 72.8 10
3−

×
N

m
= (From Table A.4, App. A)

Find: (a) Column height if surface tension were zero.

(b) Column height in 1 mm diameter tube

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

 

Δhp

Δhc

Δh 

Δhc

πDδ
θ 

Mg = ρgV

ΣFz 0= (Static Equilibrium)

Assumptions: (1) Static, incompressible liquid

(2) Neglect volume under meniscus

(3) Applied pressure remains constant

(4) Column height is sum of capillary rise and pressure

difference

Assumption #4 can be written as: ∆h ∆hc ∆hp+=

Choose a free-body diagram of the capillary rise portion of the column for analysis:

ΣFz π D⋅ σ⋅ cos θ( )⋅
π

4
D

2
⋅ ρ⋅ g⋅ ∆hc⋅−= 0= Therefore: ∆hc

4 σ⋅
ρ g⋅ D⋅

cos θ( )⋅=

Substituting values:

∆hc 4 72.8× 10
3−

×
N

m
⋅

1

999
×

m
3

kg
⋅

1

9.81
×

s
2

m
⋅

1

2.5
×

1

mm
⋅

kg m⋅

N s
2

⋅
×

10
3

mm⋅
m

⎛
⎜
⎝

⎞
⎟
⎠

2

×=

∆hc 11.89 mm⋅=

Therefore: ∆hp ∆h ∆hc−= ∆hp 50 mm⋅ 11.89 mm⋅−= ∆hp 38.1 mm⋅= (result for σ = 0)

For the 1 mm diameter tube:

∆hc 4 72.8× 10
3−

×
N

m
⋅

1

999
×

m
3

kg
⋅

1

9.81
×

s
2

m
⋅

1

1
×

1

mm
⋅

kg m⋅

N s
2

⋅
×

10
3

mm⋅
m

⎛
⎜
⎝

⎞
⎟
⎠

2

×=
∆hc 29.71 mm⋅=

∆h 29.7 mm⋅ 38.1 mm⋅+= ∆h 67.8 mm⋅=



Problem 3.37 [Difficulty: 4]

Given: Sealed tank is partially filled with water.  Water drains slowly from the

tank until the system attains equilibrium.  U-tube manometer is connected

to the tank as shown. (Meriam blue in manometer)

L 3 m D1 2.5 m D2 0.7 m d 0.2 m SGoil 1.75 (From Table A.2, App. A)

Find: The manometer deflection, l, under equilibrium conditions

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

p V M R T (Ideal gas equation of state)

ρ SG ρwater (Definition of Specific Gravity)

 

L 



D1 

H 

D2 
l 

d 

patm 
p0 

 

Assumptions: (1) Static liquid

(2) Incompressible liquid

(3) Air in tank behaves ideally

Integrating the hydrostatic pressure equation we get:

∆p ρ g ∆h

To determine the surface pressure po

under equilibrium conditions

we assume that the air expands at constant temperature:

pa Va

po Vo

M R Ta

M R To
 Thus, po

Va

Vo

pa
L D1  A

L H( ) A
pa

Simplifying: po

L D1 
L H( )

pa Now under equilibrium conditions: po ρwater g H pa Combining these expressions:

L D1 
L H( )

pa ρwater g H pa Upon rearranging: ρwater g H
2

 pa ρwater g L  H D1 pa 0

Now we apply the quadratic formula to solve for H:



a ρwater g a 999
kg

m
3

 9.81
m

s
2

 a 9.8 10
3


Pa

m


b pa ρwater g L  b 1.013 10
5


N

m
2

 999
kg

m
3

 9.81
m

s
2

 3 m







 b 1.307 10
5

 Pa

c D1 pa c 2.5 m 1.013 10
5


N

m
2

 c 2.532 10
5

 Pa m

Hupper
b b

2
4 a c

2 a
 Hupper

1.307 10
5

 Pa  1.307 10
5

 Pa 2 4 9.8 10
3


Pa

m
 2.532 10

5
 Pa m

2 9.8 10
3


Pa

m




Hupper 10.985 m

Hlower
b b

2
4 a c

2 a
 Hlower

1.307 10
5

 Pa  1.307 10
5

 Pa 2 4 9.8 10
3


Pa

m
 2.532 10

5
 Pa m

2 9.8 10
3


Pa

m




Hlower 2.352 m

Since H can not be greater than 3 m (otherwise the tank would overflow!), we must select the lower value for H: H 2.352 m

Solving for the pressure inside the tank: po
3 m 2.5 m( )

3 m 2.352 m( )
1.013 10

5
 Pa po 7.816 10

4
 Pa

Applying the hydrostatic pressure equation to the manometer: po ρwater g H D2 d
l

2






 ρoil g l pa

Solving for the manometer deflection: l
pa po

ρwater g
H D2 d









1

SGoil
1

2




l 1.013 10
5


N

m
2

 7.816 10
4


N

m
2









1

999


m
3

kg


1

9.81


s
2

m


kg m

N s
2


 2.352 m 0.7 m 0.2 m







1

1.75
1

2



l 0.407 m



Problem 3.38 [Difficulty :2]

Fluid 1

Fluid 2

 

σπDcosθ 

ρ1gΔhπD2/4

Given: Two fluids inside and outside a tube

Find: (a) An expression for height Δh

(b) Height difference when D =0.040 in for water/mercury

Assumptions: (1) Static, incompressible fluids

(2) Neglect meniscus curvature for column height and

volume calculations

Solution:

A free-body vertical force analysis for the section of fluid 1 height Δh in the tube below

the "free surface" of fluid 2 leads to

F∑ 0= ∆p
π D

2
⋅
4

⋅ ρ1 g⋅ ∆h⋅
π D

2
⋅
4

⋅− π D⋅ σ⋅ cos θ( )⋅+=

where Δp is the pressure difference generated by fluid 2 over height Δh, ∆p ρ2 g⋅ ∆h⋅=

Hence ∆p
π D

2
⋅
4

⋅ ρ1 g⋅ ∆h⋅
π D

2
⋅
4

⋅− ρ2 g⋅ ∆h⋅
π D

2
⋅
4

⋅ ρ1 g⋅ ∆h⋅
π D

2
⋅
4

⋅−= π− D⋅ σ⋅ cos θ( )⋅=

Solving for Δh ∆h
4 σ⋅ cos θ( )⋅

g D⋅ ρ2 ρ1−( )⋅
−=

For fluids 1 and 2 being water and mercury (for mercury σ = 375 mN/m and θ = 140o, from Table A.4), solving for Δh when

D = 0.040 in

∆h 4− 0.375×
N

m
⋅

lbf

4.448 N⋅
×

0.0254m

in
× cos 140 deg⋅( )×

s
2

32.2 ft⋅
×

1

0.040 in⋅
×

ft
3

1.94 slug⋅
×

12 in⋅
ft

⎛⎜
⎝

⎞⎟
⎠

3

×
1

13.6 1−( )
×

slugft⋅

lbf s
2

⋅
×=

∆h 0.360 in⋅=



Problem 3.39 [Difficulty: 2]

 

h2 

h1 

h3 

h4 

x 

Oil 

Air 

Hg 

Given: Data on manometer before and after an "accident"

Find: Change in mercury level

Assumptions: (1) Liquids are incompressible and static

(2) Pressure change across air in bubble is negligible

(3) Any curvature of air bubble surface can be neglected in volume calculations

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ ∆p ρ g ∆h where ∆h is height difference

For the initial state, working from right to left patm patm SGHg ρ g h3 SGoil ρ g h1 h2 

SGHg ρ g h3 SGoil ρ g h1 h2  (1)

Note that the air pocket has no effect!

For the final state, working from right to left patm patm SGHg ρ g h3 x  SGoil ρ g h4

SGHg ρ g h3 x  SGoil ρ g h4 (2)

The two unknowns here are the mercury levels before and after (i.e., h3 and x)

Combining Eqs. 1 and 2 SGHg ρ g x SGoil ρ g h1 h2 h4  x
SGoil

SGHg

h1 h2 h4  (3)

From Table A.1 SGHg 13.55

The term h1 h2 h4 is the difference between the total height of oil before and after the

accident

h1 h2 h4
∆V

π d
2


4










4

π

1

0.5 in






2

 0.2 in
3

 1.019 in

Then from Eq. 3 x
1.4

13.55
1.019 in x 0.1053 in



Problem 3.40 [Difficulty: 2]

Water

Given: Water in a tube or between parallel plates

Find: Height Δh for each system

Solution:

a) Tube: A free-body vertical force analysis for the section of water height Δh above the "free surface" in the tube, as

shown in the figure, leads to

F∑ 0= π D⋅ σ⋅ cos θ( )⋅ ρ g⋅ ∆h⋅
π D

2
⋅
4

⋅−=

Assumption: Neglect meniscus curvature for column height and volume calculations

Solving for Δh ∆h
4 σ⋅ cos θ( )⋅
ρ g⋅ D⋅

=

b) Parallel Plates: A free-body vertical force analysis for the section of water height Δh above the "free surface" between

plates arbitrary width w (similar to the figure above), leads to

F∑ 0= 2 w⋅ σ⋅ cos θ( )⋅ ρ g⋅ ∆h⋅ w⋅ a⋅−=

Solving for Δh ∆h
2 σ⋅ cos θ( )⋅
ρ g⋅ a⋅

=

For water σ = 72.8 mN/m and θ = 0o (Table A.4), so

a) Tube ∆h

4 0.0728×
N

m
⋅

999
kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.005× m⋅

kg m⋅

N s
2

⋅
×= ∆h 5.94 10

3−
× m= ∆h 5.94 mm⋅=

b) Parallel Plates ∆h

2 0.0728×
N

m
⋅

999
kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.005× m⋅

kg m⋅

N s
2

⋅
×= ∆h 2.97 10

3−
× m= ∆h 2.97 mm⋅=



σ = 0.005 lbf/ft

ρ = 1.94 slug/ft
3

Using the formula above

a  (in) Δh  (in)

0.004 0.0400

0.008 0.0200

0.012 0.0133

0.016 0.0100

0.020 0.0080

0.024 0.0067

0.028 0.0057

0.032 0.0050

0.036 0.0044

0.040 0.0040

0.044 0.0036

0.048 0.0033

0.052 0.0031

0.056 0.0029

0.060 0.0027

0.064 0.0025

0.068 0.0024

0.072 0.0022

0.080 0.0020

Capillary Height Between Vertical Plates

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Gap a  (in)

H
e

ig
h

t 
Δ
h

 (
in

)



p SL = 101 kPa

R  = 286.9 J/kg.K

 = 999 kg/m
3

The temperature can be computed from the data in the figure.

The pressures are then computed from the appropriate equation. From Table A.3

Agreement between calculated and tabulated data is very good (as it should be, considering the table data are also computed!)

Atmospheric Pressure vs Elevation
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S
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Table A.3



z  (km) T  (
o
C) T  (K) p /p SL

z  (km) p /p SL

0.0 15.0 288.0 m  = 1.000 0.0 1.000

2.0 2.0 275.00 0.0065 0.784 0.5 0.942

4.0 -11.0 262.0 (K/m) 0.608 1.0 0.887

6.0 -24.0 249.0 0.465 1.5 0.835

8.0 -37.0 236.0 0.351 2.0 0.785

11.0 -56.5 216.5 0.223 2.5 0.737

12.0 -56.5 216.5 T  = const 0.190 3.0 0.692

14.0 -56.5 216.5 0.139 3.5 0.649

16.0 -56.5 216.5 0.101 4.0 0.609

18.0 -56.5 216.5 0.0738 4.5 0.570

20.1 -56.5 216.5 0.0530 5.0 0.533

22.0 -54.6 218.4 m  = 0.0393 6.0 0.466

24.0 -52.6 220.4 -0.000991736 0.0288 7.0 0.406

26.0 -50.6 222.4 (K/m) 0.0211 8.0 0.352

28.0 -48.7 224.3 0.0155 9.0 0.304

30.0 -46.7 226.3 0.0115 10.0 0.262

32.2 -44.5 228.5 0.00824 11.0 0.224

34.0 -39.5 233.5 m  = 0.00632 12.0 0.192

36.0 -33.9 239.1 -0.002781457 0.00473 13.0 0.164

38.0 -28.4 244.6 (K/m) 0.00356 14.0 0.140

40.0 -22.8 250.2 0.00270 15.0 0.120

42.0 -17.2 255.8 0.00206 16.0 0.102

44.0 -11.7 261.3 0.00158 17.0 0.0873

46.0 -6.1 266.9 0.00122 18.0 0.0747

47.3 -2.5 270.5 0.00104 19.0 0.0638

50.0 -2.5 270.5 T  = const 0.000736 20.0 0.0546

52.4 -2.5 270.5 0.000544 22.0 0.0400

54.0 -5.6 267.4 m  = 0.000444 24.0 0.0293

56.0 -9.5 263.5 0.001956522 0.000343 26.0 0.0216

58.0 -13.5 259.5 (K/m) 0.000264 28.0 0.0160

60.0 -17.4 255.6 0.000202 30.0 0.0118

61.6 -20.5 252.5 0.000163 40.0 0.00283

64.0 -29.9 243.1 m  = 0.000117 50.0 0.000787

66.0 -37.7 235.3 0.003913043 0.0000880 60.0 0.000222

68.0 -45.5 227.5 (K/m) 0.0000655 70.0 0.0000545

70.0 -53.4 219.6 0.0000482 80.0 0.0000102

72.0 -61.2 211.8 0.0000351 90.0 0.00000162

74.0 -69.0 204.0 0.0000253

76.0 -76.8 196.2 0.0000180

78.0 -84.7 188.3 0.0000126

80.0 -92.5 180.5 T  = const 0.00000861

82.0 -92.5 180.5 0.00000590

84.0 -92.5 180.5 0.00000404

86.0 -92.5 180.5 0.00000276

88.0 -92.5 180.5 0.00000189

90.0 -92.5 180.5 0.00000130



Problem 3.43 [Difficulty: 3]

Given: Data on isothermal atmosphere

Find: Elevation changes for 3% pressure change and 5% density change; plot of pressure and density versus elevation

Solution:

Assumptions: Static, isothermal fluid,; g = constant; ideal gas behavior

Basic equations
dp

dz
ρ g and p ρ R T

Then
dp

dz
ρ g

p g
Rair T

 and
dp

p

g

Rair T
 dz

Integrating ∆z
Rair T0

g
 ln

p2

p1









 where T T0

For an ideal gas with T constant
p2

p1

ρ2 Rair T

ρ1 Rair T


ρ2

ρ1

 so ∆z
Rair T0

g
 ln

ρ2

ρ1









 C ln
ρ2

ρ1









 (1)

From Table A.6 Rair 287
N m
kg K


Evaluating C
Rair T0

g
 287

N m
kg K
 30 273( ) K

1

9.81


s
2

m


kg m

N s
2


 C 8865 m

For a 3% reduction in pressure
p2

p1

0.97 so from Eq. 1 ∆z 8865 m ln 0.97( ) ∆z 270 m

For a 5% reduction in density
ρ2

ρ1

0.95 so from Eq. 1 ∆z 8865 m ln 0.95( ) ∆z 455 m

To plot 
p2

p1

 and 
ρ2

ρ1

 we rearrange Eq. 1
ρ2

ρ1

p2

p1

 e

∆z

C



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This plot can be plotted in Excel



Problem 3.44 [Difficulty: 3]

Given: Atmospheric conditions at ground level (z = 0) in Denver, Colorado are p0 = 83.2 kPa, T0 = 25°C.

Pike's peak is at elevation z = 2690 m.

Find: p/p0 vs z for both cases.

Solution:

Governing Equations:
dp

dz
ρ g p ρ R T

Assumptions: (1) Static fluid

(2) Ideal gas behavior

(a) For an incompressible atmosphere:

dp

dz
ρ g becomes p p0

0

z

zρ g




d or p p0 ρ0 g z p0 1
g z

R T0









 (1)

At z 2690 m p 83.2 kPa 1 9.81
m

s
2

 2690 m
kg K

287 N m


1

298 K


N s
2


kg m








 p 57.5 kPa

(b) For an adiabatic atmosphere:
p

ρ
k

const ρ ρ0
p

p0









1

k



dp

dz
ρ g becomes dp ρ0

p

p0









1

k

 g dz or
1

p

1

k

dp
ρ0 g

p0

1

k

 dz

But

p0

p

p
1

p

1

k








d
k

k 1
p p0 

k 1
k

 hence
k

k 1
p

k 1
k

p0

k 1
k











ρ0 g

p0

1

k

 g z

Solving for the pressure ratio
p

p0

1
k 1

k

ρ0

p0

 g z








k

k 1

 or
p

p0

1
k 1

k

g z
R T0









k

k 1
 (2)

At z 2690 m p 83.2 kPa 1
1.4 1

1.4
9.81

m

s
2

 2690 m
kg K

287 N m


1

298 K


N s
2


kg m








1.4

1.4 1

 p 60.2 kPa



Equations 1 and 2 can be plotted:
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Problem 3.45 [Difficulty: 3]

Given: Martian atmosphere behaves as an idel gas, constant temperature

Mm 32.0 T 200 K g 3.92
m

s
2

 ρo 0.015
kg

m
3



Find: Density at z = 20 km

Plot the ratio of density to sea level density versus altitude, compare to

that of earth.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dz
ρ g (Hydrostatic Pressure - z is positive upwards)

p ρ R T (Ideal Gas Equation of State)

R
Ru

Mm

 (Definition of Gas Constant)

Assumptions: (1) Static fluid

(2) Constant gravitational acceleration

(3) Ideal gas behavior

Taking the differential of the equation of state (constant temperature): dp R T dρ

Substituting into the hydrostatic pressure equation: R T
dρ

dz
 ρ g Therefore:

dρ

ρ

g

R T
 dz

Integrating this expression:

ρo

ρ

ρ
1

ρ






d

0

z

z
g

R T






d ln
ρ

ρo









g z
R T

 or
ρ

ρo

e

g z
R T


 1( )

Evaluating: R 8314.3
N m

kg mol K


1

32.0


kg mol
kg

 R 259.822
N m
kg K


ρ 0.015
kg

m
3

 e

3.92
m

s
2

 20 10
3 m

1

259.822


kg K
N m


1

200


1

K


N s
2

kg m










 ρ 3.32 10
3


kg

m
3



For the Martian atmosphere, let x
g

R T
 x 3.92

m

s
2


1

259.822


kg K
N m


1

200


1

K


N s
2


kg m

 x 0.07544
1

km




Therefore:
ρ

ρo

e
x z

 These data are plotted along with the data for Earth's atmosphere from Table A.3.
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Problem 3.46 [Difficulty: 3]

Given: Door located in plane vertical wall of water tank as shown

 

c 

ps 

a 
y’ 

y 

b 

a 1.5 m⋅= b 1 m⋅= c 1 m⋅=

Atmospheric pressure acts on outer surface of door.

Find: Resultant force and line of action:

(a) for

(b) for

ps patm=

psg 0.3 atm⋅=

Plot F/Fo and y'/yc over range of ps/patm (Fo is force

determined in (a), yc is y-ccordinate of door centroid).

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dy
ρ g⋅= (Hydrostatic Pressure - y is positive downwards)

FR Ap
⌠⎮
⎮⌡

d= (Hydrostatic Force on door)

y' FR⋅ Ay p⋅
⌠⎮
⎮⌡

d= (First moment of force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

We will obtain a general expression for the force and line of action, and then simplify for parts (a) and (b).

Since dp ρ g⋅ dh⋅= it follows that p ps ρ g⋅ y⋅+=

Now because patm acts on the outside of the door, psg is the surface gage pressure: p psg ρ g⋅ y⋅+=

FR Ap
⌠⎮
⎮⌡

d=
c

c a+

yp b⋅
⌠
⎮
⌡

d=
c

c a+

ypsg ρ g⋅ y⋅+( ) b⋅
⌠
⎮
⌡

d= b psg a⋅
ρ g⋅
2

a
2

2 a⋅ c⋅+( )⋅+⎡⎢
⎣

⎤⎥
⎦

⋅= 1( )

y' FR⋅ Ay p⋅
⌠⎮
⎮⌡

d= Therefore: y'
1

FR

Ay p⋅
⌠⎮
⎮⌡

d=
1

FR c

c a+

yy psg ρ g⋅ y⋅+( )⋅ b⋅
⌠
⎮
⌡

d⋅=

Evaluating the integral: y'
b

FR

psg

2
c a+( )

2
c
2

−⎡⎣ ⎤⎦
ρ g⋅
3

c a+( )
3

c
3

−⎡⎣ ⎤⎦⋅+
⎡
⎢
⎣

⎤
⎥
⎦

=



Simplifying: y'
b

FR

psg

2
a
2

2 a⋅ c⋅+( ) ρ g⋅
3

a
3

3 a⋅ c⋅ a c+( )⋅+⎡⎣ ⎤⎦⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅= 2( )

For part (a) we know psg 0= so substituting into (1) we get: Fo
ρ g⋅ b⋅

2
a
2

2 a⋅ c⋅+( )⋅=

Fo
1

2
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 1× m⋅ 1.5 m⋅( )
2

2 1.5× m⋅ 1× m⋅+⎡⎣ ⎤⎦×
N s

2
⋅

kg m⋅
×= Fo 25.7 kN⋅=

Substituting into (2) for the line of action we get: y'
ρ g⋅ b⋅
3 Fo⋅

a
3

3 a⋅ c⋅ a c+( )⋅+⎡⎣ ⎤⎦⋅=

y'
1

3
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 1× m⋅
1

25.7 10
3

×
⋅

1

N
⋅ 1.5 m⋅( )

3
3 1.5× m⋅ 1× m⋅ 1.5 m⋅ 1 m⋅+( )×+⎡⎣ ⎤⎦×

N s
2

⋅
kg m⋅

×=

y' 1.9m=

For part (b) we know psg 0.3 atm⋅= .  Substituting into (1) we get:

FR 1 m⋅ 0.3 atm⋅
1.013 10

5
× N⋅

m
2

atm⋅
× 1.5× m⋅

1

2
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 1.5 m⋅( )
2

2 1.5× m⋅ 1× m⋅+⎡⎣ ⎤⎦×
N s

2
⋅

kg m⋅
×+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

×=

FR 71.3 kN⋅=

Substituting into (2) for the line of action we get:

y'

1 m⋅
0.3 atm⋅

2

1.013 10
5

× N⋅

m
2

atm⋅
× 1.5( )

2
2 1.5⋅ 1⋅+⎡⎣ ⎤⎦× m

2
⋅

999
kg

m
3

⋅ 9.81×
m

s
2

⋅

3
1.5( )

3
3 1.5⋅ 1⋅ 1.5 1+( )⋅+⎡⎣ ⎤⎦× m

3
⋅

N s
2

⋅
kg m⋅

×+

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

×

71.3 10
3

× N⋅
=

y' 1.789 m=

The value of F/Fo is obtained from Eq. (1) and our result from part (a):

F

Fo

b psg a⋅
ρ g⋅
2

a
2

2 a⋅ c⋅+( )⋅+⎡⎢
⎣

⎤⎥
⎦

⋅

ρ g⋅ b⋅
2

a
2

2 a⋅ c⋅+( )⋅
= 1

2 psg⋅

ρ g⋅ a 2 c⋅+( )⋅
+=

For the gate yc c
a

2
+= Therefore, the value of y'/yc is obtained from Eqs. (1) and (2):

y'

yc

2 b⋅
FR 2 c⋅ a+( )⋅

psg

2
a
2

2 a⋅ c⋅+( ) ρ g⋅
3

a
3

3 a⋅ c⋅ a c+( )⋅+⎡⎣ ⎤⎦⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅=
2 b⋅

2 c⋅ a+( )

psg

2
a
2

2 a⋅ c⋅+( ) ρ g⋅
3

a
3

3 a⋅ c⋅ a c+( )⋅+⎡⎣ ⎤⎦⋅+
⎡
⎢
⎣

⎤
⎥
⎦

b psg a⋅
ρ g⋅
2

a
2

2 a⋅ c⋅+( )⋅+⎡⎢
⎣

⎤⎥
⎦

⋅⎡⎢
⎣

⎤⎥
⎦

⋅=



Simplifying this expression we get:

y'

yc

2

2 c⋅ a+( )

psg

2
a
2

2 a⋅ c⋅+( ) ρ g⋅
3

a
3

3 a⋅ c⋅ a c+( )⋅+⎡⎣ ⎤⎦⋅+

psg a⋅
ρ g⋅
2

a
2

2 a⋅ c⋅+( )⋅+
⋅=

Based on these expressions we see that the force on the gate varies linearly with the increase in surface pressure, and that the line of

action of the resultant is always below the centroid of the gate.  As the pressure increases, however, the line of action moves closer to

the centroid.

Plots of both ratios are shown below:

0 1 2 3 4 5
0

10

20

30

40

Force Ratio vs. Surface Pressure

Surface Pressure (atm)

F
o
rc

e 
R

at
io

 F
/F

o

0 1 2 3 4 5
1

1.01

1.02

1.03

1.04

1.05

Line of Action Ratio vs. Surface Pressure

Surface Pressure (atm)

L
in

e 
o

f 
A

ct
io

n
 R

at
io

 y
'/y

c



Problem 3.47 [Difficulty: 2]

Given: Door of constant width, located in plane vertical wall of water tank is

hinged along upper edge.  

D

ps 

L 

h 

y 

x 

F 

pdA 

Hinge 
b 1 m D 1 m L 1.5 m

Atmospheric pressure acts on outer surface of door; force F is applied

at lower edge to keep door closed.

Find: (a) Force F, if 

(b) Force F, if

ps patm

psg 0.5 atm

Plot F/Fo over tange of ps/patm (Fo is force determined in (a)).

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

FR Ap



d (Hydrostatic Force on door)

ΣMz 0 (Rotational Equilibrium)

Assumptions: (1) Static fluid

(2) Constant density

(3) Door is in equilibrium

Taking moments about the hinge: F L Ay p



d 0 dA b dy

Solving for the force: F
1

L 0

L

yb y p




d 1( ) We will obtain a general expression for F

and then simplify for parts (a) and (b).

Since dp ρ g dh it follows that p ps ρ g h where h D y

and hence p ps ρ g D y( ) Now because patm acts on the outside of the door, psg is the surface gage pressure.

From Equation (1): F
1

L
0

L

yb y psg ρ g D y( ) 




d F
b

L
0

L

ypsg ρ g D  y ρ g y
2











d



After integrating: F
b

L
psg ρ g D  L

2

2
 ρ g

L
3

3










 or F b psg
L

2
 ρ g L

D

2

L

3












 2( )

(a) For ps patm it follows that psg 0 Therefore: Fo ρ g b L
D

2

L

3






 3( )

Fo 999
kg

m
3

 9.81
m

s
2

 1 m 1.5 m
1 m

2

1.5 m
3








N s

2


kg m
 Fo 14.7 kN

(b) For psg 0.5 atm we substitute variables:

F 1 m 0.5 atm
101 kPa

atm


1.5 m
2

 999
kg

m
3

 9.81
m

s
2

 1.5 m
1 m
2

1.5 m
3








N s

2


kg m








 F 52.6 kN

From Equations (2) and (3) we have:
F

Fo

b psg
L

2
 ρ g L

D

2

L

3














ρ g b L
D

2

L

3







 1

psg

2 ρ g
D

2

L

3









Here is a plot of the force ratio as a function of the surface pressure:
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Problem 3.48      [Difficulty: 5] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Discussion: The design requirements are specified except that a typical floor height is about 12 ft, making the total required lift 

about 36 ft.  A spreadsheet was used to calculate the system properties for various pressures.  Results are presented on the next page, 
followed by a sample calculation.  Total cost dropped quickly as system pressure was increased.  A shallow minimum was reached in 
the 100-110 psig range.  The lowest-cost solution was obtained at a system pressure of about 100 psig.  At this pressure, the reservoir 
of 140 gal required a 3.30 ft diameter pressure sphere with a 0.250 in wall thickness.  The welding cost was $155 and the material cost 
$433, for a total cost of $588.  Accumulator wall thickness was constrained at 0.250 in for pressures below 100 psi; it increased for 
higher pressures (this caused the discontinuity in slope of the curve at 100 psig).  The mass of steel became constant above 110 psig.  
No allowance was made for the extra volume needed to pressurize the accumulator.  Fail-safe design is essential for an elevator to be 
used by the public.  The control circuitry should be redundant.  Failures must be easy to spot.  For this reason, hydraulic actuation is 
good: leaks will be readily apparent.  The final design must be reviewed, approved, and stamped by a professional engineer since the 
design involves public safety.  The terminology used in the solution is defined in the following table: 

 

Symbol Definition Units 

p System pressure psig 

Ap Area of lift piston in2 

Voil Volume of oil gal 

Ds Diameter of spherical accumulator ft 

t Wall thickness of accumulator in 

Aw Area of weld in2 

Cw Cost of weld $ 

Ms Mass of steel accumulator lbm 

Cs Cost of steel $ 

Ct Total Cost $ 

 
A sample calculation and the results of the system simulation in Excel are presented below. 
 
 

 



 
 

σπ tDS  

4

2
SD

p
π

 



Results of system simulation: 
 

 



Problem 3.49 [Difficulty: 2]

Given: Geometry of chamber system

Find: Pressure at various locations

Assumptions: (1) Water and Meriam Blue are static and incompressible

(2) Pressure gradients across air cavities are negligible

Solution:

Basic equation
dp

dy
ρ g or, for constant ρ ∆p ρ g ∆h where ∆h is height difference

For point A pA patm ρH2O g h1 or in gage pressure pA ρH2O g h1

Here we have h1 8 in h1 0.667 ft

pA 1.94
slug

ft
3

 32.2
ft

s
2

 0.667 ft
lbf s

2


slugft


ft

12 in






2

 pA 0.289 psi (gage)

For the first air cavity pair1 pA SGMB ρH2O g h2 where h2 4 in h2 0.333 ft

From Table A.1 SGMB 1.75

pair1 0.289
lbf

in
2

 1.75 1.94
slug

ft
3

 32.2
ft

s
2

 0.333 ft
lbf s

2


slug ft


ft

12 in






2

 pair1 0.036 psi (gage)

Note that p = constant throughout the air pocket

For point B pB pair1 SGHg ρH2O g h3 where h3 6 in h3 0.5 ft

pB 0.036
lbf

in
2

 1.75 1.94
slug

ft
3

 32.2
ft

s
2

 0.5 ft
lbf s

2


slug ft


ft

12 in






2

 pB 0.416 psi (gage)

For point C pC pair2 SGHg ρH2O g h4 where h4 10 in h4 0.833 ft

pC 0.416
lbf

in
2

 1.75 1.94
slug

ft
3

 32.2
ft

s
2

 0.833 ft
lbf s

2


slug ft


ft

12 in






2

 pC 1.048 psi (gage)

For the second air cavity pair2 pC SGHg ρH2O h5 where h5 6 in h5 0.5 ft

pair2 1.048
lbf

in
2

 1.75 1.94
slug

ft
3

 32.2
ft

s
2

 0.5 ft
lbf s

2


slug ft


ft

12 in






2

 pair2 0.668 psi (gage)



Problem 3.50 [Difficulty: 3]

 

FA 

H = 25 ft 

y R = 10 ft 

h 

A 

B z x 

y 

Given: Geometry of gate

Find: Force FA for equilibrium

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp

dh
ρ g⋅= ΣMz 0=

or, use computing equations FR pc A⋅= y' yc

Ixx

A yc⋅
+= where y would be measured

from the free surface

Assumptions: static fluid; ρ = constant; patm on other side; door is in equilibrium

Instead of using either of these approaches, we note the following, using y as in the sketch

ΣMz 0= FA R⋅ Ay p⋅
⌠⎮
⎮⌡

d= with p ρ g⋅ h⋅= (Gage pressure, since p =

patm on other side)

FA
1

R
Ay ρ⋅ g⋅ h⋅

⌠⎮
⎮⌡

d⋅= with dA r dr⋅ dθ⋅= and y r sin θ( )⋅= h H y−=

Hence FA
1

R 0

π

θ
0

R

rρ g⋅ r⋅ sin θ( )⋅ H r sin θ( )⋅−( )⋅ r⋅
⌠
⎮
⌡

d
⌠
⎮
⌡

d⋅=
ρ g⋅
R

0

π

θ
H R

3
⋅
3

sin θ( )⋅
R

4

4
sin θ( )

2
⋅−

⎛
⎜
⎝

⎞
⎟
⎠

⌠
⎮
⎮
⌡

d⋅=

FR
ρ g⋅
R

2 H⋅ R
3

⋅
3

π R
4

⋅
8

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅= ρ g⋅
2 H⋅ R

2
⋅

3

π R
3

⋅
8

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅=

Using given data FR 1.94
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
2

3
25× ft⋅ 10 ft⋅( )

2
×

π

8
10 ft⋅( )

3
×−⎡⎢

⎣
⎤⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×= FR 7.96 10

4
× lbf⋅=



Problem 3.51 [Difficulty: 2]

 

FR 
dy 

a = 1.25 ft 

SG = 2.5 

y 

b = 1 ft 

y’ 

w 

Given: Geometry of access port

Find: Resultant force and location

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp

dy
ρ g⋅= ΣMs y' FR⋅= FRy

⌠⎮
⎮⌡

d= Ay p⋅
⌠⎮
⎮⌡

d=

or, use computing equations FR pc A⋅= y' yc

Ixx

A yc⋅
+=

We will show both methods

Assumptions:  Static fluid; ρ = constant; patm on other side

FR Ap
⌠⎮
⎮⌡

d= ASG ρ⋅ g⋅ y⋅
⌠⎮
⎮⌡

d= but dA w dy⋅= and
w

b

y

a
= w

b

a
y⋅=

Hence FR

0

a

ySG ρ⋅ g⋅ y⋅
b

a
⋅ y⋅

⌠
⎮
⎮
⌡

d=

0

a

ySG ρ⋅ g⋅
b

a
⋅ y

2
⋅

⌠
⎮
⎮
⌡

d=
SG ρ⋅ g⋅ b⋅ a

2
⋅

3
=

Alternatively FR pc A⋅= and pc SG ρ⋅ g⋅ yc⋅= SG ρ⋅ g⋅
2

3
⋅ a⋅= with A

1

2
a⋅ b⋅=

Hence FR
SG ρ⋅ g⋅ b⋅ a

2
⋅

3
=

For y' y' FR⋅ Ay p⋅
⌠⎮
⎮⌡

d=

0

a

ySG ρ⋅ g⋅
b

a
⋅ y

3
⋅

⌠
⎮
⎮
⌡

d=
SG ρ⋅ g⋅ b⋅ a

3
⋅

4
= y'

SG ρ⋅ g⋅ b⋅ a
3

⋅
4 FR⋅

=
3

4
a⋅=

Alternatively y' yc

Ixx

A yc⋅
+= and Ixx

b a
3

⋅
36

= (Google it!) y'
2

3
a⋅

b a
3

⋅
36

2

a b⋅
⋅

3

2 a⋅
⋅+=

3

4
a⋅=

Using given data, and SG = 2.5 (Table A.1) FR
2.5

3
1.94⋅

slug

ft
3

⋅ 32.2×
ft

s
2

⋅ 1× ft⋅ 1.25 ft⋅( )
2

×
lbf s

2
⋅

slug ft⋅
×= FR 81.3 lbf⋅=

and y'
3

4
a⋅= y' 0.938 ft⋅=



Problem 3.52 [Difficulty: 3]

Given: Geometry of plane gate
 

W 

h 

L = 3 m 

dF 

y 

L/2 

w = 2 m 

Find: Minimum weight to keep it closed

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp

dh
ρ g⋅= ΣMO 0=

or, use computing equations FR pc A⋅= y' yc

Ixx

A yc⋅
+=

Assumptions: static fluid; ρ = constant; patm on other side; door is in equilibrium

Instead of using either of these approaches, we note the following, using y as in the sketch

ΣMO 0= W
L

2
⋅ cos θ( )⋅ Fy

⌠⎮
⎮⌡

d=

We also have dF p dA⋅= with p ρ g⋅ h⋅= ρ g⋅ y⋅ sin θ( )⋅= (Gage pressure, since p = patm on other side)

Hence W
2

L cos θ( )⋅
Ay p⋅

⌠⎮
⎮⌡

d⋅=
2

L cos θ( )⋅
yy ρ⋅ g⋅ y⋅ sin θ( )⋅ w⋅

⌠⎮
⎮⌡

d⋅=

W
2

L cos θ( )⋅
Ay p⋅

⌠⎮
⎮⌡

d⋅=
2 ρ⋅ g⋅ w⋅ tan θ( )⋅

L 0

L

yy
2⌠

⎮
⌡

d⋅=
2

3
ρ⋅ g⋅ w⋅ L

2
⋅ tan θ( )⋅=

Using given data W
2

3
1000⋅

kg

m
3

⋅ 9.81×
m

s
2

⋅ 2× m⋅ 3 m⋅( )
2

× tan 30 deg⋅( )×
N s

2
⋅

kg m⋅
×= W 68 kN⋅=



Problem 3.53 [Difficulty: 4]

Given: Semicylindrical trough, partly filled with water to depth d.

Find: (a) General expressions for FR and y' on end of trough, if open to the atmosphere.

(b) Plots of results vs. d/R between 0 and 1.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dy
ρ g⋅= (Hydrostatic Pressure - y is positive downwards)

FR Ap
⌠⎮
⎮⌡

d= (Hydrostatic Force on door)

y' FR⋅ Ay p⋅
⌠⎮
⎮⌡

d= (First moment of force)

 

dy 

R – d 

θ 
d 

y h 

α 

Assumptions: (1) Static fluid

(2) Incompressible fluid

Integrating the pressure equation: p ρ g⋅ h⋅= where h y R d−( )−=

Therefore: p ρ g⋅ y R d−( )−[ ]⋅= ρ g⋅ R⋅
y

R
1

d

R
−⎛⎜

⎝
⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅=

Expressing this in terms of θ and α in the figure: p ρ g⋅ R⋅ cos θ( ) cos α( )−( )⋅=

For the walls at the end of the trough: dA w dy⋅= 2 R⋅ sin θ( )⋅ dy⋅= Now since y R cos θ( )⋅= it follows that dy R− sin θ( )⋅ dθ⋅=

Substituting this into the hydrostatic force equation:

FR
R d−

R

yp w⋅
⌠
⎮
⌡

d=
α

0

θρ g⋅ R⋅ cos θ( ) cos α( )−( )⋅ 2⋅ R⋅ sin θ( )⋅ R− sin θ( )⋅( )⋅
⌠
⎮
⌡

d=

Upon simplification:

FR 2 ρ⋅ g⋅ R
3

⋅
0

α

θsin θ( )
2

cos θ( )⋅ sin θ( )( )
2

cos α( )⋅−⎡⎣ ⎤⎦
⌠
⎮
⌡

d= 2 ρ⋅ g⋅ R
3

⋅
sin α( )( )

3

3
cos α( )

α

2

sin α( ) cos α( )⋅
2

−⎛⎜
⎝

⎞⎟
⎠

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

FR 2 ρ⋅ g⋅ R
3

⋅
sin α( )( )

3

3
cos α( )

α

2

sin α( ) cos α( )⋅
2

−⎛⎜
⎝

⎞⎟
⎠

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Non-dimensionalizing the force:
FR

ρ g⋅ R
3

⋅
2

sin α( )( )
3

3
cos α( )

α

2

sin α( ) cos α( )⋅
2

−⎛⎜
⎝

⎞⎟
⎠

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=



To find the line of action of the force:

y' FR⋅
R d−

R

yy p⋅ w⋅
⌠
⎮
⌡

d=
α

0

θR cos θ( )⋅ ρ⋅ g⋅ R⋅ cos θ( ) cos α( )−( )⋅ 2⋅ R⋅ sin θ( )⋅ R− sin θ( )⋅( )⋅
⌠
⎮
⌡

d=

Upon simplification:

y' FR⋅ 2 ρ⋅ g⋅ R
4

⋅
0

α

θsin θ( )( )
2

cos θ( )( )
2

⋅ cos α( ) sin θ( )( )
2

⋅ cos θ( )⋅−⎡⎣ ⎤⎦
⌠
⎮
⌡

d⋅= 2 ρ⋅ g⋅ R
4

⋅
1

8
α

sin 4 α⋅( )

4
−⎛⎜

⎝
⎞⎟
⎠

⋅ cos α( )
sin α( )( )

3

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

y' FR⋅ 2 ρ⋅ g⋅ R
4

⋅
1

8
α

sin 4 α⋅( )

4
−⎛⎜

⎝
⎞⎟
⎠

⋅ cos α( )
sin α( )( )

3

3
⋅−

⎡
⎢
⎣

⎤
⎥
⎦

⋅= and therefore y'
y' FR⋅

FR

= or
y'

R

y' FR⋅

R FR⋅
=

Simplifying the expression:

y'

R

1

8
α

sin 4 α⋅( )

4
−⎛⎜

⎝
⎞⎟
⎠

⋅ cos α( )
sin α( )( )

3

3
⋅−

sin α( )( )
3

3
cos α( )

α

2

sin α( ) cos α( )⋅
2

−⎛⎜
⎝

⎞⎟
⎠

⋅−

=

Plots of the non-dimensionalized force and the line of

action of the force are shown in the plots below:
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Problem 3.54 [Difficulty: 3]

Given: Gate geometry

Find: Depth H at which gate tips

Solution:

This is a problem with atmospheric pressure on both sides of the plate, so we can first determine the location of the

center of pressure with respect to the free surface, using Eq.3.11c (assuming depth H)

y' yc

Ixx

A yc⋅
+= and Ixx

w L
3

⋅
12

= with yc H
L

2
−=

where L = 1 m is the plate height and w is the plate width

Hence y' H
L

2
−⎛⎜

⎝
⎞⎟
⎠

w L
3

⋅

12 w⋅ L⋅ H
L

2
−⎛⎜

⎝
⎞⎟
⎠

⋅
+= H

L

2
−⎛⎜

⎝
⎞⎟
⎠

L
2

12 H
L

2
−⎛⎜

⎝
⎞⎟
⎠

⋅
+=

But for equilibrium, the center of force must always be at or below the level of the hinge so that the stop can hold the gate in

place.  Hence we must have

y' H 0.45 m⋅−>

Combining the two equations H
L

2
−⎛⎜

⎝
⎞⎟
⎠

L
2

12 H
L

2
−⎛⎜

⎝
⎞⎟
⎠

⋅
+ H 0.45 m⋅−≥

Solving for H H
L

2

L
2

12
L

2
0.45 m⋅−⎛⎜

⎝
⎞⎟
⎠

⋅
+≤ H

1 m⋅
2

1 m⋅( )
2

12
1 m⋅
2

0.45 m⋅−⎛⎜
⎝

⎞⎟
⎠

×
+≤ H 2.17 m⋅≤



Problem 3.55 [Difficulty: 1]

Given: Geometry of cup

Find: Force on each half of cup

Assumptions: (1) Tea is static and incompressible

(2) Atmospheric pressure on outside of cup

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp

dh
ρ g⋅=

or, use computing equation FR pc A⋅=

The force on the half-cup is the same as that on a rectangle of size h 8 cm⋅= and w 6.5 cm⋅=

FR Ap
⌠⎮
⎮⌡

d= Aρ g⋅ y⋅
⌠⎮
⎮⌡

d= but dA w dy⋅=

Hence FR
0

h

yρ g⋅ y⋅ w⋅
⌠
⎮
⌡

d=
ρ g⋅ w⋅ h

2
⋅

2
=

Alternatively FR pc A⋅= and FR pc A⋅= ρ g⋅ yc⋅ A⋅= ρ g⋅
h

2
⋅ h⋅ w⋅=

ρ g⋅ w⋅ h
2

⋅
2

=

Using given data FR
1

2
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 6.5× cm⋅ 8 cm⋅( )
2

×
m

100 cm⋅
⎛⎜
⎝

⎞⎟
⎠

3

×
N s

2
⋅

kg m⋅
×= FR 2.04 N⋅=

Hence a teacup is being forced apart by about 2 N: not much of a force, so a paper cup works!



Problem 3.56 [Difficulty: 3]

 
Ry 

Rx 

FR 

Fn 

Given: Geometry of lock system

Find: Force on gate; reactions at hinge

Solution:

Basic equation FR Ap
⌠⎮
⎮⌡

d=
dp

dh
ρ g⋅=

or, use computing equation FR pc A⋅=

Assumptions: static fluid; ρ = constant; patm on other side

The force on each gate is the same as that on a rectangle of size

h D= 10 m⋅= and w
W

2 cos 15 deg⋅( )⋅
=

FR Ap
⌠⎮
⎮⌡

d= Aρ g⋅ y⋅
⌠⎮
⎮⌡

d= but dA w dy⋅=

Hence FR
0

h

yρ g⋅ y⋅ w⋅
⌠
⎮
⌡

d=
ρ g⋅ w⋅ h

2
⋅

2
=

Alternatively FR pc A⋅= and FR pc A⋅= ρ g⋅ yc⋅ A⋅= ρ g⋅
h

2
⋅ h⋅ w⋅=

ρ g⋅ w⋅ h
2

⋅
2

=

Using given data FR
1

2
1000⋅

kg

m
3

⋅ 9.81×
m

s
2

⋅
34 m⋅

2 cos 15 deg⋅( )⋅
× 10 m⋅( )

2
×

N s
2

⋅
kg m⋅

×= FR 8.63 MN⋅=

For the force components Rx and Ry we do the following

ΣMhinge 0= FR
w

2
⋅ Fn w⋅ sin 15 deg⋅( )⋅−= Fn

FR

2 sin 15 deg⋅( )⋅
= Fn 16.7 MN⋅=

ΣFx 0= FR cos 15 deg⋅( )⋅ Rx−= 0= Rx FR cos 15 deg⋅( )⋅= Rx 8.34 MN⋅=

ΣFy 0= Ry− FR sin 15 deg⋅( )⋅− Fn+= 0= Ry Fn FR sin 15 deg⋅( )⋅−= Ry 14.4 MN⋅=

R 8.34 MN⋅ 14.4 MN⋅, ( )= R 16.7 MN⋅=



Problem 3.57 [Difficulty: 2]

Given: Liquid concrete poured between vertical forms as shown

t 0.25 m⋅= H 3 m⋅= W 5 m⋅= SGc 2.5= (From Table A.1, App. A)

Find: (a) Resultant force on form

(b) Line of application

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dy
ρ g⋅= (Hydrostatic Pressure - y is positive downwards)

FR pc A⋅= (Hydrostatic Force)

y' yc

Ixx

A yc⋅
+=

(Location of line of action)

x' xc

Ixy

A yc⋅
+=

 

W = 5 m 

H = 3 m 

FR 

t = 0.25 m 

Liquid Concrete 

x’ 

y’ 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface

and on the outside of the form.

For a rectangular plate: Ixx
W H

3
⋅
12

= Ixy 0=

xc 2.5 m⋅= yc 1.5 m⋅=

Integrating the hydrostatic pressure equation: p ρ g⋅ y⋅=
The density of concrete is:

ρ 2.5 1000×
kg

m
3

⋅= ρ 2.5 10
3

×
kg

m
3

=

Therefore, the force is: FR ρ g⋅ yc⋅ H⋅ W⋅=

Substituting in values gives us: FR 2.5 10
3

×
kg

m
3

⋅ 9.81×
m

s
2

⋅ 1.5× m⋅ 3× m⋅ 5× m⋅= FR 552 kN⋅=

To find the line of action of the resultant force:

y' yc
W H

3
⋅

12 W⋅ H⋅ yc⋅
+= yc

H
2

12 yc⋅
+= y' 1.5 m⋅

3 m⋅( )
2

12 1.5⋅ m⋅
+= y' 2.00 m=

Since Ixy 0= it follows that x' xc= x' 2.50 m⋅=



Problem 3.58 [Difficulty: 4]

Given: Window, in shape of isosceles triangle and hinged at the top is located in

the vertical wall of a form that contains concrete.

a 0.4 m b 0.3 m c 0.25 m SGc 2.5 (From Table A.1, App. A)

Find: The minimum force applied at D needed to keep the window closed.

Plot the results over the range of concrete depth between 0 and a.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

FR Ap



d (Hydrostatic Force on door)

y' FR Ay p



d (First moment of force)

ΣM 0 (Rotational equilibrium)

 

d 

dA 

h 

a w 

b 

D 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface and on the

outside of the window.

Integrating the pressure equation yields: p ρ g h d( ) for h > d

p 0 for h < d

where d a c d 0.15 m

Summing moments around the hinge: FD a Ah p



d 0

 

FD 
dF = pdA 

h a 

FD
1

a
Ah p




d
1

a d

a

hh ρ g h d( ) w




d
ρ g
a d

a

hh h d( ) w




d

From the law of similar triangles:
w

b

a h
a

 Therefore: w
b

a
a h( )



Into the expression for the force at D: FD
ρ g
a

d

a

h
b

a
h h d( ) a h( )






d
ρ g b

a
2

d

a

hh
3

 a d( ) h
2

 a d h 




d

Evaluating this integral we get:

FD
ρ g b

a
2

a
4

d
4

 
4


a d( ) a

3
d

3
 

3


a d a
2

d
2

 
2










 and after collecting terms:

FD ρ g b a
2


1

4
 1

d

a






4











1

3
1

d

a






 1
d

a






3











1

2

d

a
 1

d

a






2



















 1( )

The density of the concrete is: ρ 2.5 1000
kg

m
3

 ρ 2.5 10
3


kg

m
3


d

a

0.15

0.4
 0.375

Substituting in values for the force at D:

FD 2.5 10
3


kg

m
3

 9.81
m

s
2

 0.3 m 0.4 m( )
2


1

4
 1 0.375( )

4
 

1

3
1 0.375( ) 1 0.375( )

3
 

0.375

2
1 0.375( )

2
 






N s

2


kg m


To plot the results for different values of c/a, we use Eq. (1) and remember that d a c FD 32.9 N

Therefore, it follows that
d

a
1

c

a
 In addition, we can maximize the force by the maximum force

(when c = a or d = 0):

Fmax ρ g b a
2


1

4


1

3







ρ g b a

2


12
 and so

FD

Fmax

12
1

4
 1

d

a






4











1

3
1

d

a






 1
d

a






3











1

2

d

a
 1

d

a






2





















0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Concrete Depth Ratio (c/a)

F
o
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)



Problem 3.59 [Difficulty: 2]

Given: Door as shown; Data from Example 3.6.

Find: Force to keep door shut using the two seperate pressures method.

Solution: We will apply the computing equations to this system.

Governing Equations: FR pc A y' yc

Ixx

yc A
 Ixx

b L
3


12



 

F1 

h1’ 

F2 

h2’ 

p0 p0 

F1 p0 A F1 100
lbf

ft
2

 3 ft 2 ft F1 600 lbf x' 1 ft z' 1.5 ft

F2 pc A ρ g hc L b γ hc L b F2 100
lbf

ft
3

 1.5 ft 3 ft 2 ft F2 900 lbf

For the rectangular door Ixx
1

12
b L

3


h'2 hc

Ixx

b L hc
 hc

1

12

L
2

hc

 h'2 1.5 m
1

12

3 m( )
2

1.5 m
 h'2 2m

The free body diagram of the door is then

 

F1 

h1’ 

F2 

h2’ 

Ft 

Ay 
Az 

L 

ΣMAx 0 L Ft F1 L h'1  F2 L h'2 

Ft F1 1
h'1

L










 F2 1
h'2

L












Ft 600 lbf 1
1.5

3






 900 lbf 1
2

3






 Ft 600 lbf



Problem 3.60 [Difficulty: 2]

Given: Plug is used to seal a conduit. γ 62.4
lbf

ft
3

⋅=

Find: Magnitude, direction and location of the force of water on the plug.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
γ= (Hydrostatic Pressure - y is positive downwards)

FR pc A⋅= (Hydrostatic Force)

y' yc

Ixx

A yc⋅
+= (Location of line of action)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on the outside of the plug.

Integrating the hydrostatic pressure equation: p γ h⋅= FR pc A⋅= γ hc⋅
π

4
⋅ D

2
⋅=

FR 62.4
lbf

ft
3

⋅ 12× ft⋅
π

4
× 6 ft⋅( )

2
×= FR 2.12 10

4
× lbf⋅=

For a circular area: Ixx
π

64
D

4
⋅= Therefore: y' yc

π

64
D

4
⋅

π

4
D

2
⋅ yc⋅

+= yc
D

2

16 yc⋅
+= y' 12 ft⋅

6 ft⋅( )
2

16 12× ft⋅
+=

y' 12.19 ft⋅=

The force of water is to the right and

perpendicular to the plug.



Problem 3.61 [Difficulty: 1]

Given: Description of car tire

Find: Explanation of lift effect

Solution:

The explanation is as follows: It is true that the pressure in the entire tire is the same everywhere.  However, the tire at the top of the hub

will be essentially circular in cross-section, but at the bottom, where the tire meets the ground, the cross section will be approximately a

flattened circle, or elliptical.  Hence we can explain that the lower cross section has greater upward force than the upper cross section has

downward force (providing enough lift to keep the car up) two ways.  First, the horizontal projected area of the lower ellipse is larger than

that of the upper circular cross section, so that net pressure times area is upwards.  Second, any time you have an elliptical cross section

that's at high pressure, that pressure will always try to force the ellipse to be circular (thing of a round inflated balloon - if you squeeze it it

will resist!).  This analysis ignores the stiffness of the tire rubber, which also provides a little lift.



Problem 3.62 [Difficulty: 2]

Given: Circular access port of known diameter in side of water standpipe of

known diameter.  Port is held in place by eight bolts evenly spaced

around the circumference of the port.

Center of the port is located at a know distance below the free surface of

the water.

d 0.6 m D 7 m L 12 m

Find: (a) Total force on the port

(b) Appropriate bolt diameter

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - y is positive downwards)

 

d 

L 

D 

h 

FR pc A (Hydrostatic Force)

σ
F

A
 (Normal Stress in bolt)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Force is distributed evenly over all bolts

(4) Appropriate working stress in bolts is 100 MPa

(5) Atmospheric pressure acts at free surface of water and  on

outside of port.

Integrating the hydrostatic pressure equation: p ρ g h

The resultant force on the port is: FR pc A ρ g L
π

4
 d

2
 FR 999

kg

m
3

 9.81
m

s
2

 12 m
π

4
 0.6 m( )

2


N s
2


kg m



FR 33.3 kN

To find the bolt diameter we consider: σ
FR

A
 where A is the area of all of the bolts: A 8

π

4
 db

2
 2 π db

2


Therefore: 2 π db
2


FR

σ
 Solving for the bolt diameter we get: db

FR

2 π σ









1

2



db
1

2 π
33.3 10

3
 N

1

100 10
6




m
2

N








1

2

10
3

mm
m

 db 7.28 mm



Problem 3.63 [Difficulty: 3]

Given: Geometry of rectangular gate

 

F1 

D 

L 

y’ 

F2 

Find: Depth for gate to open

Solution:

Basic equation
dp

dh
ρ g ΣMz 0

Computing equations FR pc A y' yc

Ixx

A yc
 Ixx

b D
3


12



Assumptions: Static fluid; ρ = constant; patm on other side; no friction in hinge

For incompressible fluid p ρ g h where p is gage pressure and h is measured downwards

The force on the vertical gate (gate 1) is the same as that on a rectangle of size h = D and width w

Hence F1 pc A ρ g yc A ρ g
D

2
 D w

ρ g w D
2


2



The location of this force is y' yc

Ixx

A yc


D

2

w D
3


12

1

w D


2

D


2

3
D

The force on the horizontal gate (gate 2) is due to constant pressure, and is at the centroid

F2 p y D( ) A ρ g D w L

Summing moments about the hinge ΣMhinge 0 F1 D y'( ) F2
L

2
 F1 D

2

3
D





 F2
L

2


F1
D

3


ρ g w D
2


2

D

3
 F2

L

2
 ρ g D w L

L

2


ρ g w D
3


6

ρ g D w L
2


2



D 3 L 3 5 ft

D 8.66 ft



Problem 3.64 [Difficulty: 3]

Given: Gate AOC, hinged along O, has known width;

Weight of gate may be neglected. Gate is sealed at C.

b 6 ft⋅=

Find: Force in bar AB

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

FR pc A⋅= (Hydrostatic Force)

y' yc

Ixx

A yc⋅
+= (Location of line of action)

ΣMz 0= (Rotational equilibrium)

 

F1 

h1’ 

F2 

L1 

L2 

x2’ 

FAB 

L1 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water and  on

outside of gate

(4) No resisting moment in hinge at O

(5) No vertical resisting force at C

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅=

The free body diagram of the gate is shown here:

F1is the resultant of the distributed force on AO

F2is the resultant of the distributed force on OC

FAB is the force of the bar

Cx is the sealing force at C

First find the force on AO: F1 pc A1⋅= ρ g⋅ hc1⋅ b⋅ L1⋅=

F1 1.94
slug

ft
3

⋅ 32.2×
ft

s
2

⋅ 6× ft⋅ 6× ft⋅ 12× ft⋅
lbf s

2
⋅

slugft⋅
×= F1 27.0 kip⋅=



h'1 hc1

Ixx

A hc1⋅
+= hc1

b L1
3

⋅

12 b⋅ L1⋅ hc1⋅
+= hc1

L1
2

12 hc1⋅
+= h'1 6 ft⋅

12 ft⋅( )
2

12 6× ft⋅
+= h'1 8 ft⋅=

Next find the force on OC: F2 1.94
slug

ft
3

⋅ 32.2×
ft

s
2

⋅ 12× ft⋅ 6× ft⋅ 6× ft⋅
lbf s

2
⋅

slug ft⋅
×= F2 27.0 kip⋅=

 

F1 

h1’ 

F2 

L1 

L2 

x2’ 

FAB 

L1 
Since the pressure is uniform over OC, the force acts at the centroid of OC, i.e., x'2 3 ft⋅=

Summing moments about the hinge gives: FAB L1 L3+( )⋅ F1 L1 h'1−( )⋅− F2 x'2⋅+ 0=

Solving for the force in the bar: FAB

F1 L1 h'1−( )⋅ F2 x'2⋅−

L1 L3+
=

Substituting in values: FAB
1

12 ft⋅ 3 ft⋅+
27.0 10

3
× lbf⋅ 12 ft⋅ 8 ft⋅−( )× 27.0 10

3
× lbf⋅ 3× ft⋅−⎡⎣ ⎤⎦⋅=

FAB 1800 lbf⋅= Thus bar AB is in compression



Problem 3.65 [Difficulty: 3]

Given: Gate shown with fixed width, bass of gate is negligible.

Gate is in equilibrium.

b 3 m⋅=

Find: Water depth, d

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

FR pc A⋅= (Hydrostatic Force)

y' yc

Ixx

A yc⋅
+= (Location of line of action)

ΣMz 0= (Rotational equilibrium)

 

L 

y 

l 
d 

M 

h 

θ 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water and  on

outside of gate

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅=

FR pc A⋅= ρ g⋅ hc⋅ A⋅= hc
d

2
= A b

d

sin θ( )
⋅=

Therefore, FR
ρ g⋅ b⋅ d

2
⋅

2 sin θ( )⋅
= To find the line of application of this force:

y' yc

Ixx

A yc⋅
+= Since Ixx

b l
3

⋅
12

= and A b l⋅= it follows that

y' yc
b l

3
⋅

12 b⋅ l⋅ yc⋅
+= yc

l
2

12 yc⋅
+= where l is the length of the gate in contact with the water (as seen in diagram)



l and d are related through: l
d

sin θ( )
= Therefore, yc

l

2
=

d

2 sin θ( )⋅
= and y'

d

2 sin θ( )⋅
d

2

sin θ( )( )
2

2 sin θ( )⋅
12 d⋅

⋅+=
2 d⋅

3 sin θ( )⋅
=

 
T 

y 

y’ 
d FR 

θ 
Ahoriz 

Avertical 

The free body diagram of the gate is shown here:

Summing moments about the hinge gives:

T L⋅ l y'−( ) FR⋅− 0= where T M g⋅=

Solving for l: l
d

sin θ( )
=

M g⋅ L⋅
FR

y'+= So upon further substitution we get:

d
2 M⋅ g⋅ L⋅

ρ g⋅ b⋅ d
2

⋅
sin θ( )⋅

2 d⋅
3 sin θ( )⋅

+⎛
⎜
⎝

⎞
⎟
⎠

sin θ( )⋅= or
d

3

2 M⋅ L⋅ sin θ( )( )
2

⋅

ρ b⋅ d
2

⋅
=

Solving for d: d
6 M⋅ L⋅
ρ b⋅

sin θ( )( )
2

⋅⎡⎢
⎣

⎤⎥
⎦

1

3

= Substituting in values: d 6 2500× kg⋅ 5× m⋅
1

999
×

m
3

kg
⋅

1

3m
× sin 60 deg⋅( )( )

2
×

⎡
⎢
⎣

⎤
⎥
⎦

1

3

=

d 2.66m=



Problem 3.66 [Difficulty: 3]

Given: Geometry of gate

 

h 

D 

FR 

y 

FA 

y’ 

Find: Force at A to hold gate closed

Solution:

Basic equation
dp

dh
ρ g ΣMz 0

Computing equations FR pc A y' yc

Ixx

A yc
 Ixx

w L
3


12



Assumptions: Static fluid; ρ = constant; patm on other side; no friction in hinge

For incompressible fluid p ρ g h where p is gage pressure and h is measured downwards

The hydrostatic force on the gate is that on a rectangle of size L and width w.

Hence FR pc A ρ g hc A ρ g D
L

2
sin 30 deg( )





 L w

FR 1000
kg

m
3

 9.81
m

s
2

 1.5
3

2
sin 30 deg( )





 m 3 m 3 m
N s

2


kg m
 FR 199 kN

The location of this force is given by y' yc

Ixx

A yc
  where y' and y

c
 are measured along the plane of the gate to the free surface

yc
D

sin 30 deg( )

L

2
 yc

1.5 m
sin 30 deg( )

3 m
2

 yc 4.5m

y' yc

Ixx

A yc
 yc

w L
3


12

1

w L


1

yc

 yc
L

2

12 yc
 4.5 m

3 m( )
2

12 4.5 m
 y' 4.67 m

Taking moments about the hinge ΣMH 0 FR y'
D

sin 30 deg( )






 FA L

FA FR

y'
D

sin 30 deg( )






L
 FA 199 kN

4.67
1.5

sin 30 deg( )






3
 FA 111 kN



Problem 3.67 [Difficulty: 3]

Given: Block hinged and floating

Find: SG of the wood

Solution:

Basic equation
dp

dh
ρ g ΣMz 0

Computing equations FR pc A y' yc

Ixx

A yc


Assumptions: Static fluid; ρ = constant; patm on other side; no friction in hinge

For incompressible fluid p ρ g h where p is gage pressure and h is measured downwards

The force on the vertical section is the same as that on a rectangle of height d and width L

 

F1 

y’ 

F2 

Mg 

y 

x 

Hence

F1 pc A ρ g yc A ρ g
d

2
 d L

ρ g L d
2


2



The location of this force is

y' yc

Ixx

A yc


d

2

L d
3


12

1

L d


2

d


2

3
d

The force on the horizontal section is due to constant pressure, and is at the centroid

F2 p y d( ) A ρ g d L L

Summing moments about the hinge ΣMhinge 0 F1 d y'( ) F2
L

2
 M g

L

2


Hence F1 d
2

3
d





 F2
L

2
 SG ρ L

3
 g

L

2


SG ρ g L
4


2

ρ g L d
2


2

d

3
 ρ g d L

2


L

2
 SG

1

3

d

L







3


d

L
 SG

1

3

0.5

1







3


0.5

1
 SG 0.542



Problem 3.68 [Difficulty: 4]

Given: Various dam cross-sections

Find: Which requires the least concrete; plot cross-section area A as a function of α

Solution:

For each case, the dam width b has to be large enough so that the weight of the dam exerts enough moment to balance the

moment due to fluid hydrostatic force(s).  By doing a moment balance this value of b can be found

a) Rectangular dam

Straightforward application of the computing equations of Section 3-5 yields

b

D 
FH 

y mg

O

FH pc A⋅= ρ g⋅
D

2
⋅ w⋅ D⋅=

1

2
ρ⋅ g⋅ D

2
⋅ w⋅=

y' yc

Ixx

A yc⋅
+=

D

2

w D
3

⋅

12 w⋅ D⋅
D

2
⋅

+=
2

3
D⋅=

so y D y'−=
D

3
=

Also m ρcement g⋅ b⋅ D⋅ w⋅= SG ρ⋅ g⋅ b⋅ D⋅ w⋅=

Taking moments about O M0.∑ 0= FH− y⋅
b

2
m⋅ g⋅+=

so
1

2
ρ⋅ g⋅ D

2
⋅ w⋅⎛⎜

⎝
⎞
⎠

D

3
⋅

b

2
SG ρ⋅ g⋅ b⋅ D⋅ w⋅( )⋅=

Solving for b b
D

3 SG⋅
=

The minimum rectangular cross-section area is A b D⋅=
D

2

3 SG⋅
=

For concrete, from Table A.1, SG = 2.4, so A
D

2

3 SG⋅
=

D
2

3 2.4×
= A 0.373 D

2
⋅=



FH 

b
αb 

D

FV 

y 

x 

m1g m2g

O

b) Triangular dams

Instead of analysing right-triangles, a general analysis is made, at the end of

which right triangles are analysed as special cases by setting α = 0 or 1.

Straightforward application of the computing equations of Section 3-5 yields 

FH pc A⋅= ρ g⋅
D

2
⋅ w⋅ D⋅=

1

2
ρ⋅ g⋅ D

2
⋅ w⋅=

y' yc

Ixx

A yc⋅
+=

D

2

w D
3

⋅

12 w⋅ D⋅
D

2
⋅

+=
2

3
D⋅=

so y D y'−=
D

3
=

Also FV ρ V⋅ g⋅= ρ g⋅
α b⋅ D⋅

2
⋅ w⋅=

1

2
ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅= x b α b⋅−( )

2

3
α⋅ b⋅+= b 1

α

3
−⎛⎜

⎝
⎞
⎠

⋅=

For the two triangular masses

m1
1

2
SG⋅ ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅= x1 b α b⋅−( )

1

3
α⋅ b⋅+= b 1

2 α⋅

3
−⎛⎜

⎝
⎞
⎠

⋅=

m2
1

2
SG⋅ ρ⋅ g⋅ 1 α−( )⋅ b⋅ D⋅ w⋅= x2

2

3
b 1 α−( )⋅=

Taking moments about O

M0.∑ 0= FH− y⋅ FV x⋅+ m1 g⋅ x1⋅+ m2 g⋅ x2⋅+=

so
1

2
ρ⋅ g⋅ D

2
⋅ w⋅⎛⎜

⎝
⎞
⎠

−
D

3
⋅

1

2
ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅⎛⎜

⎝
⎞
⎠

b⋅ 1
α

3
−⎛⎜

⎝
⎞
⎠

⋅+

1

2
SG⋅ ρ⋅ g⋅ α⋅ b⋅ D⋅ w⋅⎛⎜

⎝
⎞
⎠

b⋅ 1
2 α⋅

3
−⎛⎜

⎝
⎞
⎠

⋅
1

2
SG⋅ ρ⋅ g⋅ 1 α−( )⋅ b⋅ D⋅ w⋅⎡⎢

⎣
⎤⎥
⎦

2

3
⋅ b 1 α−( )⋅++

... 0=

Solving for b b
D

3 α⋅ α
2

−( ) SG 2 α−( )⋅+

=

For a right triangle with the hypotenuse in contact with the water, α = 1, and

b
D

3 1− SG+
=

D

3 1− 2.4+
= b 0.477 D⋅=

The cross-section area is A
b D⋅

2
= 0.238 D

2
⋅= A 0.238 D

2
⋅=

For a right triangle with the vertical in contact with the water, α = 0, and



b
D

2 SG⋅
=

D

2 2.4⋅
= b 0.456 D⋅=

The cross-section area is A
b D⋅

2
= 0.228 D

2
⋅= A 0.228 D

2
⋅=

For a general triangle A
b D⋅

2
=

D
2

2 3 α⋅ α
2

−( ) SG 2 α−( )⋅+⋅

= A
D

2

2 3 α⋅ α
2

−( ) 2.4 2 α−( )⋅+⋅

=

The final result is A
D

2

2 4.8 0.6 α⋅+ α
2

−⋅

=

The dimensionless area, A /D 2, is plotted

Alpha A /D 2

0.0 0.2282

0.1 0.2270

0.2 0.2263

0.3 0.2261

0.4 0.2263

0.5 0.2270

0.6 0.2282

0.7 0.2299

0.8 0.2321

0.9 0.2349

1.0 0.2384

Solver  can be used to

find the minimum area

Alpha A /D 2

0.300 0.2261

Dam Cross Section vs Coefficient  

0.224

0.226

0.228

0.230

0.232

0.234

0.236

0.238

0.240

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Coefficient  

D
im

e
n

s
io

n
le

s
s

 A
re

a
 A

/D
2

From the Excel workbook, the minimum area occurs at α = 0.3

Amin
D

2

2 4.8 0.6 0.3×+ 0.3
2

−⋅

= A 0.226 D
2

⋅=

The final results are that a triangular cross-section with α = 0.3 uses the least concrete; the next best is a right triangle with the

vertical in contact with the water; next is the right triangle with the hypotenuse in contact with the water; and the cross-section

requiring the most concrete is the rectangular cross-section.



Problem 3.69 [Difficulty: 2]

Given: Geometry of dam

Find: Vertical force on dam

Assumption: Water is static and incompressible

Solution:

Basic equation:
dp

dh
ρ g⋅=

For incompressible fluid p patm ρ g⋅ h⋅+= where h is measured downwards from the free surface

The force on each horizontal section (depth d = 0.5 m and width w = 3 m) is

F p A⋅= patm ρ g⋅ h⋅+( ) d⋅ w⋅=

Hence the total force is FT patm patm ρ g⋅ h⋅+( )+ patm ρ g⋅ 2⋅ h⋅+( )+ patm ρ 3⋅ g⋅ h⋅+( )+ patm ρ g⋅ 4⋅ h⋅+( )+⎡⎣ ⎤⎦ d⋅ w⋅=

where we have used h as the height of the steps

FT d w⋅ 5 patm⋅ 10 ρ⋅ g⋅ h⋅+( )⋅=

FT 0.5 m⋅ 3× m⋅ 5 101× 10
3

×
N

m
2

⋅ 10 999×
kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.5× m⋅
N s

2
⋅

kg m⋅
×+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

×=

FT 831 kN⋅=



Problem 3.70 [Difficulty: 2]

Given: Geometry of dam

Find: Vertical force on dam

Assumptions: (1) water is static and incompressible

(2) since we are asked for the force of the water, all pressures will be written as gage

Solution:

Basic equation:
dp

dh
ρ g

For incompressible fluid p ρ g h where p is gage pressure and h is measured downwards from the free surface

The force on each horizontal section (depth d and width w) is

F p A ρ g h d w (Note that d and w will change in terms of x and y for each section of the dam!)

Hence the total force is (allowing for the fact that some faces experience an upwards (negative) force)

FT p A Σρ g h d w ρ g d Σ h w

Starting with the top and working downwards

FT 1.94
slug

ft
3

 32.2
ft

s
2

 3 ft 3 ft 12 ft( ) 3 ft 6 ft( ) 9 ft 6 ft( ) 12 ft 12 ft( )[ ]
lbf s

2


slug ft


FT 2.70 10
4

 lbf The negative sign indicates a net upwards force (it's actually a buoyancy effect on the three middle sections)



Problem 3.71 [Difficulty: 3]

Given: Parabolic gate, hinged at O has a constant width.

b 1.5 m a 1.0 m
2

 D 1.2 m H 1.4 m

Find: (a) Magnitude and moment of the vertical force on the gate due to water

(b) Horizontal force applied at A required to maintain equilibrium

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ΣMz 0 (Rotational equilibrium)

Fv Ayp



d (Vertical Hydrostatic Force)

x' Fv Fvx



d (Moment of vertical force)

y' FH FHy



d (Moment of Horizontal Hydrostatic Force)

Oy 

y’ 

H 

x’ 

x 

FV 

Ox 

FH 

FA 
y Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water

and  on outside of gate

Integrating the hydrostatic pressure equation: p ρ g h

(a) The magnitude and moment of the vertical component of hydrostatic force:

Fv Ayp



d xρ g h b



d where h D y x a y
3

 dx 3 a y
2

 dy

Substituting back into the relation for the force: Fv
0

D

yρ g D y( ) b 3 a y
2






d 3 ρ g b a
0

D

yD y
2

 y
3

 



d

Evaluating the integral: Fv 3 ρ g b a
D

4

3

D
4

4










 ρ g b a
D

4

4




Oy 

y’ 

H 

x’ 

x 

FV 

Ox 

FH 

FA 
y Substituting values we calculate the force:

Fv 999
kg

m
3

 9.81
m

s
2

 1.5 m 1.0
1

m
2


1.2 m( )

4

4


N s
2


kg m



Fv 7.62 kN

To find the associated moment: x' Fv Fvx



d Ayx p



d Using the derivation for the force:

x' Fv
0

D

ya y
3

 ρ g D y( ) b 3 a y
2






d 3 ρ g a
2

 b
0

D

yD y
5

 y
6

 



d Evaluating the integral:

x' Fv 3 ρ g a
2

 b
D

7

6

D
7

7











3

42
ρ g a

2
 b D

7
 ρ g a

2
 b

D
7

14
 Now substituting values into this equation:

x'Fv 999
kg

m
3

 9.81
m

s
2


1.0

m
2









2

 1.5 m
1.20 m( )

7

14


N s
2


kg m

 x'Fv 3.76 kN m (positive indicates

counterclockwise)

(b) Horizontal force at A to maintain equilibrium: we take moments at O:

x' FV y' FH H FA 0 Solving for the force at A: FA
1

H
x' Fv y' FH 

To get the moment of the horizontal hydrostatic force:

y' FH FHy



d Axy p



d yy ρ g h b



d ρ g b
0

D

yy D y( )




d ρ g b
0

D

yD y y
2

 



d

Evaluating the integral: y' FH ρ g b
D

3

2

D
3

3










 ρ g b
D

3

6
 Now substituting values into this equation:

y'FH 999
kg

m
3

 9.81
m

s
2

 1.5 m
1.20 m( )

3

6


N s
2


kg m

 y'FH 4.23 kN m (counterclockwise)

Therefore: FA
1

1.4

1

m
 3.76 kN m 4.23 kN m( ) FA 5.71 kN



Problem 3.72 [Difficulty: 3]

Given: Parabolic gate, hinged at O has a constant width.

b 2 m c 0.25 m
1

 D 2 m H 3 m

Find: (a) Magnitude and line of action of the vertical force on the gate due to water

(b) Horizontal force applied at A required to maintain equilibrium

(c) Vertical force applied at A required to maintain equilibrium

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards)

ΣMz 0 (Rotational equilibrium)

Fv Ayp



d (Vertical Hydrostatic Force)

x' Fv Fvx



d (Location of line of action)

FH pc A (Horizontal Hydrostatic Force)

h' hc

Ixx

A hc
 (Location of line of action)

Oy 

h’ 
B 

x’ 

x 

FV 

Ox 

FH 

y 
Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water and  on

outside of gate

Integrating the hydrostatic pressure equation: p ρ g h

(a) The magnitude and line of action of the vertical component of hydrostatic force:

Fv Ayp



d
0

D

c

xρ g h b





d
0

D

c

xρ g D y( ) b





d
0

D

c

xρ g D c x
2

  b





d ρ g b
0

D

c

xD c x
2

 




d

Evaluating the integral: Fv ρ g b
D

3

2

c

1

2

1

3

D

3

2

c

1

2


















2 ρ g b

3

D

3

2

c

1

2

 1( )



Substituting values: Fv
2

3
999

kg

m
3

 9.81
m

s
2

 2 m 2 m( )

3

2


1

0.25
m





1

2


N s

2


kg m
 Fv 73.9 kN

To find the line of action of this force: x' Fv Fvx



d Therefore, x'
1

Fv

Fvx



d
1

Fv

Ayx p



d

Using the derivation for the force: x'
1

Fv 0

D

c

xx ρ g D c x
2

  b





d
ρ g b

Fv 0

D

c

xD x c x
3

 




d

Evaluating the integral: x'
ρ g b

Fv

D

2

D

c


c

4

D

c







2











ρ g b

Fv

D
2

4 c
 Now substituting values into this equation:

x' 999
kg

m
3

 9.81
m

s
2

 2 m
1

73.9 10
3




1

N


1

4
 2 m( )

2


1

0.25
 m

N s
2


kg m

 x' 1.061 m

To find the required force at A for equilibrium, we need to find the horizontal force of the water on the gate and its

line of action as well.  Once this force is known we take moments about the hinge (point O).

FH pc A ρ g hc b D ρ g
D

2
 b D ρ g b

D
2

2
 since hc

D

2
 Therefore the horizontal force is:

FH 999
kg

m
3

 9.81
m

s
2

 2 m
2 m( )

2

2


N s
2


kg m

 FH 39.2 kN

To calculate the line of action of this force:

h' hc

Ixx

A hc


D

2

b D
3


12

1

b D


2

D


D

2

D

6


2

3
D h'

2

3
2 m h' 1.333m

Oy 

h’ 
H 

x’ 

x 

FV 

Ox 

FH 

FA 
y 

D 

Now we have information to solve parts (b) and (c):

(b) Horizontal force applied at A for equilibrium: take moments about O:

FA H Fv x' FH D h'( ) 0 Solving for FA FA

Fv x' FH D h'( )

H


FA
1

3

1

m
 73.9 kN 1.061 m 39.2 kN 2 m 1.333 m( )[ ] FA 34.9 kN

Oy 

h’ 

L 
x’ 

x 

FV 

Ox 

FH 

FA y 

D 

(c) Vertical force applied at A for equilibrium: take moments about O:

FA L Fv x' FH D h'( ) 0
Solving for FA FA

Fv x' FH D h'( )

L


L is the value of x at y = H.  Therefore: L
H

c
 L 3 m

1

0.25
 m L 3.464m

FA
1

3.464

1

m
 73.9 kN 1.061 m 39.2 kN 2 m 1.333 m( )[ ] FA 30.2 kN



Problem 3.73 [Difficulty: 2]

Given: Liquid concrete is poured into the form shown

R 2 ft⋅= w 15 ft⋅= SGc 2.5= (Table A.1, App. A)

Find: Magnitude and line of action of the vertical force on the form

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards)

Fv Ayp
⌠⎮
⎮⌡

d= (Vertical Hydrostatic Force)

x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= (Moment of vertical force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of concrete

and  on outside of gate

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅=

Fv Ayp
⌠⎮
⎮⌡

d= Aρ g⋅ h⋅ sin θ( )⋅
⌠⎮
⎮⌡

d= where dA w R⋅ dθ⋅= and h R y−= R R sin θ( )⋅−=

Therefore, Fv
0

π

2

θρ g⋅ R R sin θ( )⋅−( )⋅ w⋅ R⋅ sin θ( )⋅
⌠⎮
⎮
⌡

d= ρ g⋅ w⋅ R
2

⋅
0

π

2

θsin θ( ) sin θ( )( )
2

−⎡⎣ ⎤⎦
⌠⎮
⎮
⌡

d⋅=

Evaluating the integral: Fv ρ g⋅ w⋅ R
2

⋅ 0 1−( )−
π

4
0−⎛⎜

⎝
⎞⎟
⎠

− 0 0−( )+⎡⎢
⎣

⎤⎥
⎦

⋅= ρ g⋅ w⋅ R
2

⋅ 1
π

4
−⎛⎜

⎝
⎞⎟
⎠

⋅=

The density of concrete is: ρ 2.5 1.94×
slug

ft
3

⋅= ρ 4.85
slug

ft
3

⋅=

Substituting values we calculate the force: Fv 4.85
slug

ft
3

⋅ 32.2×
ft

s
2

⋅ 15× ft⋅ 2 ft⋅( )
2

× 1
π

4
−⎛⎜

⎝
⎞⎟
⎠

×
lbf s

2
⋅

slugft⋅
×= Fv 2011 lbf⋅=

To find the line of action: x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= Ayx p⋅
⌠⎮
⎮⌡

d= Using the derivation for the force:



x' Fv⋅ θR cos θ( )⋅ ρ⋅ g⋅ R R sin θ( )⋅−( )⋅ w⋅ R⋅ sin θ( )⋅
⌠⎮
⎮⌡

d= ρ g⋅ w⋅ R
3

⋅
0

π

2

θsin θ( ) cos θ( )⋅ sin θ( )( )
2

cos θ( )⋅−⎡⎣ ⎤⎦
⌠⎮
⎮
⌡

d⋅=

Evaluating the integral: x' Fv⋅ ρ g⋅ w⋅ R
3

⋅
1

2

1

3
−⎛⎜

⎝
⎞⎟
⎠

⋅= ρ g⋅ w⋅
R

3

6
⋅= Therefore the line of action of the force is:

x'
x' Fv⋅

Fv

=
ρ g⋅ w⋅

R
3

6
⋅

ρ g⋅ w⋅ R
2

⋅ 1
π

4
−⎛⎜

⎝
⎞⎟
⎠

⋅
=

R

6 1
π

4
−⎛⎜

⎝
⎞⎟
⎠

⋅
= Substituting values: x'

2 ft⋅

6 1
π

4
−⎛⎜

⎝
⎞⎟
⎠

⋅
= x' 1.553 ft⋅=



Problem 3.74 [Difficulty: 2]

Given: Open tank as shown.  Width of curved surface b 10 ft⋅=

Find: (a) Magnitude of the vertical force component on the curved surface

(b) Line of action of the vertical component of the force

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
γ= (Hydrostatic Pressure - h is positive downwards)

L 

x’ 

x 

FRy 

y 

Fv Ayp
⌠⎮
⎮⌡

d−= (Vertical Hydrostatic Force)

x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= (Moment of vertical force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water

and  on outside of wall

Integrating the hydrostatic pressure equation: p γ h⋅= We can define along the surface h L R
2

x
2

−( )
1

2

−=

We also define the incremental area on the curved surface as: dAy b dx⋅= Substituting these into the force equation we get:

Fv Ayp
⌠⎮
⎮⌡

d−=
0

R

xγ L R
2

x
2

−( )
1

2

−

⎡⎢
⎢⎣

⎤⎥
⎥⎦⋅ b⋅

⌠
⎮
⎮
⎮
⌡

d−= γ− b⋅
0

R

xL R
2

x
2

−−( )⌠
⎮
⌡

d⋅= γ− b⋅ R⋅ L R
π

4
⋅−⎛⎜

⎝
⎞⎟
⎠

⋅=

Fv 62.4
lbf

ft
3

⋅ 10× ft⋅ 4× ft⋅ 10 ft⋅ 4 ft⋅
π

4
×−⎛⎜

⎝
⎞⎟
⎠

×⎡
⎢
⎣

⎤
⎥
⎦

−= Fv 17.12− 10
3

× lbf⋅= (negative indicates downward)

To find the line of action of the force: x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= where dFv γ− b⋅ L R
2

x
2

−−( )⋅ dx⋅=

Therefore: x'
x' Fv⋅

Fv

=
1

γ b⋅ R⋅ L R
π

4
⋅−⎛⎜

⎝
⎞⎟
⎠

⋅ 0

R

xx γ⋅ b⋅ L R
2

x
2

−−( )⋅
⌠
⎮
⌡

d⋅=
1

R L R
π

4
⋅−⎛⎜

⎝
⎞⎟
⎠

⋅ 0

R

xL x⋅ x R
2

x
2

−⋅−( )⌠
⎮
⌡

d⋅=

Evaluating the integral: x'
4

R 4 L⋅ π R⋅−( )⋅
1

2
L⋅ R

2
⋅

1

3
R

3
⋅−⎛⎜

⎝
⎞⎟
⎠

⋅=
4 R

2
⋅

R 4 L⋅ π R⋅−( )⋅
L

2

R

3
−⎛⎜

⎝
⎞⎟
⎠

⋅=
4 R⋅

4 L⋅ π R⋅−
L

2

R

3
−⎛⎜

⎝
⎞⎟
⎠

⋅=

Substituting known values: x'
4 4⋅ ft⋅

4 10⋅ ft⋅ π 4⋅ ft⋅−
10 ft⋅

2

4 ft⋅
3

−⎛⎜
⎝

⎞⎟
⎠

⋅= x' 2.14 ft⋅=



Problem 3.75 [Difficulty: 2]

Given: Gate formed in the shape of a circular arc has width w.  Liquid is water;

depth h = R

Find: (a) Magnitude of the net vertical force component due to fluids acting on the gate

(b) Line of action of the vertical component of the force

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dy
ρ g⋅= (Hydrostatic Pressure - y is positive downwards)

Fv Ayp
⌠⎮
⎮⌡

d−= (Vertical Hydrostatic Force)

x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= (Moment of vertical force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water

and  on outside of gate

Integrating the hydrostatic pressure equation: p ρ g⋅ y⋅=

Instead of y, we use θ as our variable of integration: y R sin θ( )⋅=

Therefore, dy R cos θ( )⋅ dθ⋅= In addition, dAy w R⋅ sin θ( )⋅ dθ⋅=

Therefore, Fv
0

π

2

θρ g⋅ R⋅ sin θ( )⋅ w⋅ R⋅ sin θ( )⋅
⌠⎮
⎮
⌡

d−= ρ− g⋅ R
2

⋅ w⋅
0

π

2

θsin θ( )( )
2

⌠⎮
⎮
⌡

d⋅= ρ− g⋅ R
2

⋅ w⋅
π

4
⋅= Fv

π ρ⋅ g⋅ R
2

⋅ w⋅
4

−=

(negative indicates downward)

To find the line of action of the vertical component of the force: x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= where x R cos θ( )⋅= and the elemental force is

dFv ρ− g⋅ R
2

⋅ w⋅ sin θ( )( )
2

⋅ dθ⋅= Substituting into the above integral yields:

x'
x' Fv⋅

Fv

=
4

π ρ⋅ g⋅ R
2

⋅ w⋅
−

0

π

2

θR cos θ( )⋅( )− ρ g⋅ R
2

⋅ w⋅ sin θ( )( )
2

⋅⎡⎣ ⎤⎦⋅
⌠⎮
⎮
⌡

d⋅=
4 R⋅
π 0

π

2

θsin θ( )( )
2

cos θ( )⋅
⌠⎮
⎮
⌡

d⋅=
4 R⋅
π

1

3
⋅= x'

4 R⋅
3 π⋅

=



Problem 3.76 [Difficulty: 3]

Given: Dam with cross-section shown.  Width of dam

b 160 ft

Find: (a) Magnitude and line of action of the vertical force component on the dam

(b) If it is possible for the water to overturn dam

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards from

free surface)

Fv Ayp



d (Vertical Hydrostatic Force)

FH pc A (Horizontal Hydrostatic Force)

x' Fv Fvx



d (Moment of vertical force)

A 

x’ 

x 

FH 

y 

y’ 

h’ FV 

B 

h' hc

Ixx

hc A
 (Line of action of vertical force)

ΣMz 0 (Rotational Equilibrium)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water

and  on outside of dam

Integrating the hydrostatic pressure equation: p ρ g h

Into the vertical force equation: Fv Ayp



d
xA

xB

xρ g h b




d ρ g b
xA

xB

xH y( )




d

From the definition of the dam contour: x y A y B Therefore: y
B

x A
 and xA

10 ft
2


9 ft

1 ft xA 2.11 ft



Into the force equation: Fv ρ g b

xA

xB

xH
B

x A











d ρ g b H xB xA  B ln
xB A

xA A


















 Substituting known values:

Fv 1.94
slug

ft
3

 32.2
ft

s
2

 160 ft 9 ft 7.0 ft 2.11 ft( ) 10 ft
2

 ln
7.0 1
2.11 1













lbf s

2


slug ft
 Fv 2.71 10

5
 lbf

To find the line of action of the force: x' Fv Fvx



d where dFv ρ g b H
B

x A






 dx Therefore:

x'
x' Fv

Fv


1

Fv
xA

xB

xx ρ g b H
B

x A












d
1

H xB xA  B ln
xB A

xA A









 xA

xB

xH x
B x

x A











d

Evaluating the integral: x'

H

2
xB

2
xA

2




 B xB xA  B A ln

xB A

xA A











H xB xA  B ln
xB A

xA A











 Substituting known values we get:

x'

9 ft
2

7
2

2.11
2

  ft
2

 10 ft
2

 7 2.11( ) ft 10 ft
2

 1 ft ln
7 1

2.11 1








9 ft 7 2.11( ) ft 10 ft
2

 ln
7 1

2.11 1







 x' 4.96 ft

To determine whether or not the water can overturn the dam, we need the horizontal force and its line of action:

FH pc A ρ g
H

2
 H b

ρ g b H
2


2



Substituting values: FH
1

2
1.94

slug

ft
3

 32.2
ft

s
2

 160 ft 9 ft( )
2


lbf s

2


slug ft
 FH 4.05 10

5
 lbf

For the line of action: h' hc

Ixx

hc A
 where hc

H

2
 A H b Ixx

b H
3


12



Therefore: h'
H

2

b H
3


12

2

H


1

b H


H

2

H

6


2

3
H h'

2

3
9 ft h' 6.00 ft

Taking moments of the hydrostatic forces about the origin:

Mw FH H h'( ) Fv x' Mw 4.05 10
5

 lbf 9 6( ) ft 2.71 10
5

 lbf 4.96 ft Mw 1.292 10
5

 lbf ft

The negative sign indicates that this is a clockwise moment about the origin.  Since the weight of the dam will also contribute a clockwise

moment about the origin, these two moments should not cause the dam to tip to the left.

Therefore, the water can not overturn the dam.



Problem 3.77 [Difficulty: 3]

Given: Tainter gate as shown w 35 m

Find: Force of the water acting on the gate

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards from

free surface)

dF p dA (Hydrostatic Force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts at free surface of water

and  on outside of gate

Integrating the hydrostatic pressure equation:

p ρ g h ρ g R sin θ( )

Resolving the hydrostatic force into horizontal and vertical components:

dFH dF cos θ( ) p dA cos θ( ) ρ g R sin θ( ) w R dθ cos θ( ) since dA w R dθ

Integrating this expression: FH
0

θ1

θρ g R
2

 w sin θ( ) cos θ( )




d where θ1 asin
10 m
20 m






 30 deg

FH ρ g R
2

 w
0

30 deg

θsin θ( ) cos θ( )




d ρ g R
2

 w
sin 30 deg( )( )

2

2


ρ g R
2

 w
8

 Substituting known values:

FH
1

8
999

kg

m
3

 9.81
m

s
2

 20 m( )
2

 35 m
N s

2


kg m
 FH 1.715 10

7
 N

Similarly, we can calculate the vertical component of the hydrostatic force: dFv dF sin θ( ) p dA sin θ( ) ρ g R
2

 w sin θ( )( )
2

 dθ

Fv ρ g R
2

 w
0

30 deg

θsin θ( )( )
2




d ρ g R
2

 w
π

12

3

8










 Substituting known values:

Fv
π

12

3

8










999
kg

m
3

 9.81
m

s
2

 20 m( )
2

 35 m
N s

2


kg m
 Fv 6.21 10

6
 N



Now since the gate surface in contact with the water is a circular arc, all elements dF of the force, and hence the line of action of the resulta

must pass through the pivot.  Thus:

Magnitude of the resultant force:

FR FH
2

Fv
2

 FR 1.715 10
7

 N 2 6.21 10
6

 N 2 FR 1.824 10
7

 N

The line of action of the force:

α atan
Fv

FH









 α atan
6.21 10

6
 N

1.715 10
7

 N







 α 19.9 deg

The force passes through the pivot at an

angle α to the horizontal.



Problem 3.78 [Difficulty: 4]

FV 

D 

y 
R 

A 

x 

FH 

F1 

x y’ 

FB 

W1 

W2 

Weights for computing FV 

R/2 4R/3π 

WGate 

Given: Gate geometry

Find: Force on stop B

Solution:

Basic equations
dp

dh
ρ g⋅=

ΣMA 0=

Assumptions: static fluid; ρ = constant; patm on other side

For incompressible fluid p ρ g⋅ h⋅= where p is gage pressure and h is measured downwards

We need to compute force (including location) due to water on curved surface and underneath.  For curved surface we could integrate

pressure, but here we use the concepts that FV (see sketch) is equivalent to the weight of fluid above, and FH is equivalent to the force on

a vertical flat plate.  Note that the sketch only shows forces that will be used to compute the moment at A

For FV FV W1 W2−=

with
W1 ρ g⋅ w⋅ D⋅ R⋅= 1000

kg

m
3

⋅ 9.81×
m

s
2

⋅ 3× m⋅ 4.5× m⋅ 3× m⋅
N s

2
⋅

kg m⋅
×= W1 397 kN⋅=

W2 ρ g⋅ w⋅
π R

2
⋅
4

⋅= 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅ 3× m⋅
π

4
× 3 m⋅( )

2
×

N s
2

⋅
kg m⋅

×= W2 208 kN⋅=

FV W1 W2−= FV 189 kN⋅=

with x given by FV x⋅ W1
R

2
⋅ W2

4 R⋅
3 π⋅
⋅−= or x

W1

Fv

R

2
⋅

W2

Fv

4 R⋅
3 π⋅
⋅−=

x
397

189

3 m⋅
2

×
208

189

4

3 π⋅
× 3× m⋅−= x 1.75m=

For FH Computing equations FH pc A⋅= y' yc

Ixx

A yc⋅
+=



Hence FH pc A⋅= ρ g⋅ D
R

2
−⎛⎜

⎝
⎞⎟
⎠

⋅ w⋅ R⋅=

FH 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅ 4.5 m⋅
3 m⋅
2

−⎛⎜
⎝

⎞⎟
⎠

× 3× m⋅ 3× m⋅
N s

2
⋅

kg m⋅
×= FH 265 kN⋅=

The location of this force is

y' yc

Ixx

A yc⋅
+= D

R

2
−⎛⎜

⎝
⎞⎟
⎠

w R
3

⋅
12

1

w R⋅ D
R

2
−⎛⎜

⎝
⎞⎟
⎠

⋅
×+= D

R

2
−

R
2

12 D
R

2
−⎛⎜

⎝
⎞⎟
⎠

⋅
+=

y' 4.5 m⋅
3 m⋅

2
−

3 m⋅( )
2

12 4.5 m⋅
3 m⋅
2

−⎛⎜
⎝

⎞⎟
⎠

×
+= y' 3.25 m=

The force F1 on the bottom of the gate is F1 p A⋅= ρ g⋅ D⋅ w⋅ R⋅=

F1 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅ 4.5× m⋅ 3× m⋅ 3× m⋅
N s

2
⋅

kg m⋅
×= F1 397 kN⋅=

For the concrete gate (SG = 2.4 from Table A.2)

WGate SG ρ⋅ g⋅ w⋅
π R

2
⋅
4

⋅= 2.4 1000⋅
kg

m
3

⋅ 9.81×
m

s
2

⋅ 3× m⋅
π

4
× 3 m⋅( )

2
×

N s
2

⋅
kg m⋅

×= WGate 499 kN⋅=

Hence, taking moments about A FB R⋅ F1
R

2
⋅+ WGate

4 R⋅
3 π⋅
⋅− FV x⋅− FH y' D R−( )−[ ]⋅− 0=

FB
4

3 π⋅
WGate⋅

x

R
FV⋅+

y' D R−( )−[ ]

R
FH⋅+

1

2
F1⋅−=

FB
4

3 π⋅
499× kN⋅

1.75

3
189× kN⋅+

3.25 4.5 3−( )−[ ]

3
265× kN⋅+

1

2
397× kN⋅−=

FB 278 kN⋅=



Problem 3.79 [Difficulty: 4]

Given: Sphere with different fluids on each side

Find: Resultant force and direction

Solution:

The horizontal and vertical forces due to each fluid are treated separately.  For each, the horizontal force is equivalent to that

on a vertical flat plate; the vertical force is equivalent to the weight of fluid "above".

For horizontal forces, the computing equation of Section 3-5 is FH pc A  where A is the area of the equivalent vertical

plate.
For vertical forces, the computing equation of Section 3-5 is FV ρ g V  where V is the volume of fluid above the curved

surface.

The data is For water ρ 999
kg

m
3



For the fluids SG1 1.6 SG2 0.8

For the weir D 3 m L 6 m

(a) Horizontal Forces

For fluid 1 (on the left) FH1 pc A ρ1 g
D

2






D L
1

2
SG1 ρ g D

2
 L

FH1
1

2
1.6 999

kg

m
3

 9.81
m

s
2

 3 m( )
2

 6 m
N s

2


kg m
 FH1 423 kN

For fluid 2 (on the right) FH2 pc A ρ2 g
D

4






D

2
 L

1

8
SG2 ρ g D

2
 L

FH2
1

8
0.8 999

kg

m
3

 9.81
m

s
2

 3 m( )
2

 6 m
N s

2


kg m
 FH2 52.9 kN

The resultant horizontal force is FH FH1 FH2 FH 370 kN

(b) Vertical forces

For the left geometry, a "thought experiment" is needed to obtain surfaces with fluid "above" 



Hence FV1 SG1 ρ g

π D
2

4

2
 L

FV1 1.6 999
kg

m
3

 9.81
m

s
2


π 3 m( )

2


8
 6 m

N s
2


kg m

 FV1 333 kN

(Note: Use of buoyancy leads to the same result!)

For the right side, using a similar logic

FV2 SG2 ρ g

π D
2

4

4
 L

FV2 0.8 999
kg

m
3

 9.81
m

s
2


π 3 m( )

2


16
 6 m

N s
2


kg m

 FV2 83.1 kN

The resultant vertical force is FV FV1 FV2 FV 416 kN

Finally the resultant force and direction can be computed

F FH
2

FV
2

 F 557 kN

α atan
FV

FH









 α 48.3 deg



Problem 3.80 [Difficulty: 3]

Given: Cylindrical weir as shown; liquid is water

Find: Magnitude and direction of the resultant force of the water on the weir

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards from

free surface)

dFR

→⎯
p− dA

→⎯
⋅= (Hydrostatic Force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surfaces and on the

first quadrant of the cylinder

D1 

y 
x 

D2 

h1 

h2 

θ 
Using the coordinate system shown in the diagram at the right:

FRx FR

→⎯
i

→
⋅= A

→
p

⌠⎮
⎮⌡

d− i
→
⋅= Ap cos θ 90 deg⋅+( )⋅

⌠⎮
⎮⌡

d−= Ap sin θ( )⋅
⌠⎮
⎮⌡

d=

FRy FR

→⎯
j

→
⋅= A

→
p

⌠⎮
⎮⌡

d− j
→
⋅= Ap cos θ( )⋅

⌠⎮
⎮⌡

d−= Now since dA L R⋅ dθ⋅= it follows that

FRx
0

3 π⋅
2

θp L⋅ R⋅ sin θ( )⋅
⌠⎮
⎮
⌡

d= and FRy
0

3 π⋅
2

θp L⋅ R⋅ cos θ( )⋅
⌠⎮
⎮
⌡

d−=

Next, we integrate the hydrostatic pressure equation: p ρ g⋅ h⋅= Now over the range 0 θ≤ π≤ h1 R 1 cos θ( )−( )=

Over the range π θ≤
3 π⋅
2

≤ h2 R− cos θ( )⋅=

Therefore we can express the pressure in terms of θ and substitute into the force equations:

FRx
0

3 π⋅
2

θp L⋅ R⋅ sin θ( )⋅
⌠⎮
⎮
⌡

d=
0

π

θρ g⋅ R⋅ 1 cos θ( )−( )⋅ L⋅ R⋅ sin θ( )⋅
⌠
⎮
⌡

d

π

3 π⋅
2

θρ g⋅ R⋅ cos θ( )⋅ L⋅ R⋅ sin θ( )⋅
⌠⎮
⎮
⌡

d−=

FRx ρ g⋅ R
2

⋅ L⋅
0

π

θ1 cos θ( )−( ) sin θ( )⋅
⌠
⎮
⌡

d⋅ ρ g⋅ R
2

⋅ L⋅
π

3 π⋅
2

θcos θ( ) sin θ( )⋅
⌠⎮
⎮
⌡

d⋅−=



FRx ρ g⋅ R
2

⋅ L⋅
0

π

θ1 cos θ( )−( ) sin θ( )⋅
⌠
⎮
⌡

d

π

3 π⋅
2

θcos θ( ) sin θ( )⋅
⌠⎮
⎮
⌡

d−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅= ρ g⋅ R
2

⋅ L⋅ 2
1

2
−⎛⎜

⎝
⎞⎟
⎠

⋅=
3

2
ρ⋅ g⋅ R

2
⋅ L⋅=

Substituting known values: FRx
3

2
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 1.5 m⋅( )
2

× 6× m⋅
N s

2
⋅

kg m⋅
×= FRx 198.5 kN⋅=

Similarly we can calculate the vertical force component:

FRy
0

3 π⋅
2

θp L⋅ R⋅ cos θ( )⋅
⌠⎮
⎮
⌡

d−=
0

π

θρ g⋅ R⋅ 1 cos θ( )−( )⋅ L⋅ R⋅ cos θ( )⋅
⌠
⎮
⌡

d

π

3 π⋅
2

θρ g⋅ R⋅ cos θ( )⋅ L⋅ R⋅ cos θ( )⋅
⌠⎮
⎮
⌡

d−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

−=

FRy ρ− g⋅ R
2

⋅ L⋅
0

π

θ1 cos θ( )−( ) cos θ( )⋅
⌠
⎮
⌡

d

π

3 π⋅
2

θcos θ( )( )
2

⌠⎮
⎮
⌡

d−

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

⋅= ρ g⋅ R
2

⋅ L⋅
π

2

3 π⋅
4

+
π

2
−⎛⎜

⎝
⎞⎟
⎠

⋅=
3 π⋅
4

ρ⋅ g⋅ R
2

⋅ L⋅=

Substituting known values: FRy
3 π⋅

4
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 1.5 m⋅( )
2

× 6× m⋅
N s

2
⋅

kg m⋅
×= FRy 312 kN⋅=

Now since the weir surface in contact with the water is a circular arc, all elements dF of the force, and hence the line of action of the

resultant force, must pass through the pivot.  Thus:

Magnitude of the resultant force: FR 198.5 kN⋅( )
2

312 kN⋅( )
2

+= FR 370 kN⋅=

The line of action of the force: α atan
312 kN⋅

198.5 kN⋅
⎛⎜
⎝

⎞⎟
⎠

= α 57.5 deg⋅=



Problem 3.81 [Difficulty: 3]

Given: Cylindrical log floating against dam

Find: (a) Mass per unit length of the log (b) Contact force per unit length between log and dam

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards from

free surface)

dF
→⎯

p dA
→⎯

⋅= (Hydrostatic Force)

dFH 

dF 
h 

θ dFV 

R = D/2 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surfaces and on the

first quadrant of the log

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅= ρ g⋅ R⋅ 1 cos θ( )−( )⋅=

Resolving the incremental force into horizontal and vertical components:

dF p dA⋅= p w⋅ R⋅ dθ⋅= ρ g⋅ R⋅ 1 cos θ( )−( )⋅ w⋅ R⋅ dθ⋅= ρ g⋅ R
2

⋅ w⋅ 1 cos θ( )−( )⋅=

dFH dF sin θ( )⋅= ρ g⋅ R
2

⋅ w⋅ 1 cos θ( )−( )⋅ dθ⋅ sin θ( )⋅= dFv dF cos θ( )⋅= ρ g⋅ R
2

⋅ w⋅ 1 cos θ( )−( )⋅ dθ⋅ cos θ( )⋅=

Integrating the expression for the horizontal force will provide us with the contact force per unit length:

FH
0

3 π⋅
2

θρ g⋅ R
2

⋅ w⋅ 1 cos θ( )−( )⋅ sin θ( )⋅
⌠⎮
⎮
⌡

d= ρ g⋅ R
2

⋅ w⋅
0

3 π⋅
2

θsin θ( ) sin θ( ) cos θ( )⋅−( )

⌠⎮
⎮
⌡

d⋅= ρ g⋅ R
2

⋅ w⋅
1

2
− 1+⎛⎜

⎝
⎞⎟
⎠

⋅=
ρ g⋅ R

2
⋅ w⋅
2

=

Therefore:
FH

w

ρ g⋅ R
2

⋅
2

=

Integrating the expression for the vertical force will provide us with the mass per unit length of the log:

Fv
0

3 π⋅
2

θρ g⋅ R
2

⋅ w⋅ 1 cos θ( )−( )⋅ cos θ( )⋅
⌠⎮
⎮
⌡

d= ρ g⋅ R
2

⋅ w⋅
0

3 π⋅
2

θ1 cos θ( )−( ) cos θ( )⋅
⌠⎮
⎮
⌡

d⋅= ρ g⋅ R
2

⋅ w⋅ 1−
3 π⋅
4

−⎛⎜
⎝

⎞⎟
⎠

⋅=

Therefore:
Fv

w
ρ− g⋅ R

2
⋅ 1

3 π⋅
4

+⎛⎜
⎝

⎞⎟
⎠

⋅= From a free-body diagram for the log: ΣFy 0=
m

w
− g⋅

Fv

w
− 0=

m

w

Fv

w g⋅
−=

Solving for the mass of the log:
m

w
ρ R

2
⋅ 1

3 π⋅
4

+⎛⎜
⎝

⎞⎟
⎠

⋅=



Problem 3.82 [Difficulty: 3]

Given: Curved surface, in shape of quarter cylinder, with given radius R and width w; water stands to depth H.

R 0.750 m⋅= w 3.55 m⋅= H 0.650 m⋅=

Find: Magnitude and line of action of (a) vertical force and (b) horizontal force on the curved

surface

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards from

free surface)

Fv Ayp
⌠⎮
⎮⌡

d= (Vertical Hydrostatic Force)

FH pc A⋅= (Horizontal Hydrostatic Force)

x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= (Moment of vertical force)

h' hc

Ixx

hc A⋅
+= (Line of action of horizontal force)

dF 

h 
H R 

θ 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surface of the

water and on the left side of the curved surface

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅=

dF 

h’ 

H R 
θ 

FV 

FH 
y’ 

x’ From the geometry: h H R sin θ( )⋅−= y R sin θ( )⋅= x R cos θ( )⋅= dA w R⋅ dθ⋅=

θ1 asin
H

R

⎛⎜
⎝

⎞⎟
⎠

= θ1 asin
0.650

0.750

⎛⎜
⎝

⎞⎟
⎠

= θ1 1.048 rad⋅=

Therefore the vertical component of the hydrostatic force is:

Fv Ayp
⌠⎮
⎮⌡

d= Aρ g⋅ h⋅ sin θ( )⋅
⌠⎮
⎮⌡

d=
0

θ1

θρ g⋅ H R sin θ( )⋅−( )⋅ sin θ( )⋅ w⋅ R⋅
⌠
⎮
⌡

d=

Fv ρ g⋅ w⋅ R⋅
0

θ1

θH sin θ( )⋅ R sin θ( )( )
2

⋅−⎡⎣ ⎤⎦
⌠
⎮
⌡

d⋅= ρ g⋅ w⋅ R⋅ H 1 cos θ1( )−( )⋅ R
θ1

2

sin 2 θ1⋅( )
4

−
⎛
⎜
⎝

⎞
⎟
⎠

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=



Fv 999
kg

m
3

⋅ 9.81×
m

s
2

⋅ 3.55× m⋅ 0.750× m⋅ 0.650 m⋅ 1 cos 1.048 rad⋅( )−( )× 0.750 m⋅
1.048

2

sin 2 1.048× rad⋅( )

4
−⎛⎜

⎝
⎞⎟
⎠

×−⎡⎢
⎣

⎤⎥
⎦

×
N s

2
⋅

kg m⋅
×=

Fv 2.47 kN⋅=

To calculate the line of action of this force:

x' Fv⋅ AR cos θ( )⋅ ρ⋅ g⋅ h⋅ sin θ( )⋅
⌠⎮
⎮⌡

d= ρ g⋅ w⋅ R
2

⋅
0

θ1

θH sin θ( )⋅ cos θ( )⋅ R sin θ( )( )
2

⋅ cos θ( )⋅−⎡⎣ ⎤⎦
⌠
⎮
⌡

d⋅=

Evaluating the integral: x' Fv⋅ ρ g⋅ w⋅ R
2

⋅
H

2
sin θ1( )( )2

⋅
R

3
sin θ1( )( )3

⋅−⎡⎢
⎣

⎤⎥
⎦

⋅= Therefore we may find the line of action:

x'
x' Fv⋅

Fv

=
ρ g⋅ w⋅ R

2
⋅

Fv

H

2
sin θ1( )( )2

⋅
R

3
sin θ1( )( )3

⋅−⎡⎢
⎣

⎤⎥
⎦

⋅= Substituting in known values: sin θ1( ) 0.650

0.750
=

x' 999
kg

m
3

⋅ 9.81×
m

s
2

⋅ 3.55× m⋅ 0.750 m⋅( )
2

×
1

2.47 10
3

×
×

1

N
⋅

0.650 m⋅
2

0.650

0.750

⎛⎜
⎝

⎞⎟
⎠

2

×
0.750 m⋅

3

0.650

0.750

⎛⎜
⎝

⎞⎟
⎠

3

×−
⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×=

x' 0.645 m=

For the horizontal force: FH pc A⋅= ρ g⋅ hc⋅ H⋅ w⋅= ρ g⋅
H

2
⋅ H⋅ w⋅=

ρ g⋅ H
2

⋅ w⋅
2

=

FH
1

2
999×

kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.650 m⋅( )
2

× 3.55× m⋅
N s

2
⋅

kg m⋅
×= FH 7.35 kN⋅=

For the line of action of the horizontal force: h' hc

Ixx

hc A⋅
+= where Ixx

w H
3

⋅
12

= A w H⋅= Therefore:

h' hc

Ixx

hc A⋅
+=

H

2

w H
3

⋅
12

2

H
⋅

1

w H⋅
⋅+=

H

2

H

6
+=

2

3
H⋅= h'

2

3
0.650× m⋅= h' 0.433 m=



Problem 3.83      [Difficulty: 2] 
 

 
 

Given: Canoe floating in a pond 

Find: What happens when an anchor with too short of a line is thrown from canoe 

Solution:  
 

Governing equation:   

WgVF dispwB    

 
 
Before the anchor is thrown from the canoe the buoyant force on the canoe balances out the weight of the canoe and anchor: 
 

11 canoewanchorcanoeB gVWWF   

 
The anchor weight can be expressed as 

aaanchor gVW   

 
so the initial volume displaced by the canoe can be written as 

 

a

w

a

w

canoe

canoe V
g

W
V







1
 

 
After throwing the anchor out of the canoe there will be buoyant forces acting on the canoe and the anchor.  Combined, these buoyant 
forces balance the canoe weight and anchor weight: 
 

awcanoewanchorcanoeB gVgVWWF  
22

 

 
 

a

w

a

w

canoe

canoe V
g

W

g

W
V 

2  

 
Using the anchor weight, 
 

aa

w

a

w

canoe

canoe VV
g

W
V 




2  

 
Hence the volume displaced by the canoe after throwing the anchor in is less than when the anchor was in the canoe, meaning that the 
canoe is floating higher. 



Problem 3.84 [Difficulty: 3]

Given: Curved surface, in shape of quarter cylinder, with given radius R and width w; liquid concrete stands to depth H.

R 1 ft⋅= w 4 ft⋅= Fvmax 350 lbf⋅= SG 2.50= From Table A.1, App A

Find: (a) Maximum depth of concrete to avoid cracking

(b) Line of action on the form.

(c)  Plot the vertical force and line of action over H ranging from 0 to R.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards from

free surface)

Fv Ayp
⌠⎮
⎮⌡

d= (Vertical Hydrostatic Force)

d 

h 

θ1 

FV 

x 

x’ 

y θ x' Fv⋅ Fvx
⌠⎮
⎮⌡

d= (Moment of vertical force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surface of the concrete

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅=

From the geometry: y R sin θ( )⋅= x R cos θ( )⋅= h y d−= d R H−= dA w R⋅ dθ⋅=

Therefore the vertical component of the hydrostatic force is:

Fv Ayp
⌠⎮
⎮⌡

d= Aρ g⋅ h⋅ sin θ( )⋅
⌠⎮
⎮⌡

d=
θ1

π

2

θρ g⋅ R sin θ( )⋅ d−( )⋅ sin θ( )⋅ w⋅ R⋅
⌠
⎮
⎮
⌡

d= where θ1 asin
d

R

⎛⎜
⎝

⎞⎟
⎠

=

Fv ρ g⋅ w⋅ R⋅
θ1

π

2

θR sin θ( )( )
2

⋅ d sin θ( )( )⋅−⎡⎣ ⎤⎦
⌠
⎮
⎮
⌡

d⋅= ρ g⋅ w⋅ R⋅ R
π

4

θ1

2
−

sin 2 θ1⋅( )
4

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅ d cos θ1( )⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅= In terms of H:

sin 2 θ1⋅( ) 2 sin θ1( )⋅ cos θ1( )⋅=
2 R H−( )⋅ 2 R⋅ H⋅ H

2
−⋅

R
2

=
sin θ1( ) R H−

R
= cos θ1( ) R

2
R H−( )

2
−

R
=

2 R⋅ H⋅ H
2

−
R

=



This equation can be solved iterative

for H:
Fv ρ g⋅ w⋅ R⋅ R

π

4

asin 1
H

R
−⎛⎜

⎝
⎞⎟
⎠

2
−

R H−( ) 2 R⋅ H⋅ H
2

−⋅

2R
2

+

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅ R H−( )
2 R⋅ H⋅ H

2
−

R
⋅−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅=
H 0.773 ft⋅=

To calculate the line of action of this force:

x' Fv⋅ Ax ρ⋅ g⋅ h⋅ sin θ( )⋅
⌠⎮
⎮⌡

d= ρ g⋅ R
2

⋅ w⋅
θ1

π

2

θR sin θ( )( )
2

⋅ cos θ( )⋅ d sin θ( )⋅ cos θ( )⋅−⎡⎣ ⎤⎦
⌠
⎮
⎮
⌡

d⋅=

Evaluating the integral: x' Fv⋅ ρ g⋅ R
2

⋅ w⋅
R

3
1 sin θ1( )( )3

−⎡
⎣

⎤
⎦⋅

d

2
cos θ1( )( )2

⋅−⎡⎢
⎣

⎤⎥
⎦

⋅=

Therefore we may find the line of action: x'
x' Fv⋅

Fv

=
ρ g⋅ R

2
⋅ w⋅
Fv

R

3
1 sin θ1( )( )3

−⎡
⎣

⎤
⎦⋅

d

2
cos θ1( )( )2

⋅−⎡⎢
⎣

⎤⎥
⎦

⋅=

Substituting in known values: sin θ1( ) 1 0.773−
1

= 0.227= cos θ1( ) 1 0.227
2

−= 0.9739=

x' 2.5 1.94×
slug

ft
3

⋅⎛
⎜
⎝

⎞
⎟
⎠

32.2×
ft

s
2

⋅ 1 ft⋅( )
2

× 4× ft⋅
1

350
×

1

lbf
⋅

1 ft⋅
3

1 0.227( )
3

−⎡⎣ ⎤⎦×
0.227 ft⋅

2
0.9739( )

2
×−⎡⎢

⎣
⎤⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×= x' 0.396 ft⋅=

We may use the equations we developed above to plot the vertical force and line of action as a function of the height of the concrete in the 

0.0 0.5 1.0
0.0

100.0

200.0

300.0

400.0

500.0

Vertical Force vs. Depth Ratio

Depth Ratio H/R

V
er

ti
ca

l 
F

o
rc

e 
(l

b
f)

0.0 0.5 1.0
0.0

0.2

0.4

Line of Action vs. Depth Ratio

Depth Ratio H/R

L
in

e 
o

f 
A

ct
io

n
 (

ft
)



Problem 3.85 [Difficulty: 3]

Given: Model cross section of canoe as a parabola.  Assume constant width W over entire length L

y a x
2

 a 1.2 ft
1

 W 2 ft L 18 ft

Find: Expression relating the total mass of canoe and contents to distance d.  Determine maximum

allowable total mass without swamping the canoe.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g (Hydrostatic Pressure - h is positive downwards from

free surface)

Fv Ayp



d (Vertical Hydrostatic Force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surface of the water and inner

surface of the canoe.

At any value of d the weight of the canoe and its contents is balanced by the net vertical force of the water on the canoe.

Integrating the hydrostatic pressure equation: p ρ g h

Fv Ayp



d xρ g h L



d where h H d( ) y

To determine the upper limit of integreation we remember that y a x
2

 At the surface

y H d Therefore, x
H d

a
 and so the vertical force is:

Fv 2

0

H d
a

xρ g H d( ) a x
2

  L





d 2 ρ g L
0

H d
a

xH d( ) a x
2

 




d 2 ρ g L
H d( )

3

2

a

a

3

H d( )

a







3

2













Upon simplification: Fv 2 ρ g L
H d( )

3

2

a
 1

1

3







4 ρ g L

3 a
H d( )

3

2
 M g or M

4 ρ L

3 a
H d( )

3

2
 where M is the

mass of the canoe.

The limit for no swamping is d=0, and so: M
4

3
1.94

slug

ft
3

 18 ft
ft

1.2
 2.4 ft( )

3

2


32.174 lb
slug

 M 5.08 10
3

 lb

This leaves us no margin, so if we set d=0.2 ft we get M
4

3
1.94

slug

ft
3

 18 ft
ft

1.2
 2.2 ft( )

3

2


32.174 lb
slug

 M 4.46 10
3

 lb

Clearly the answer is highly dependent upon the allowed risk of swamping!



Problem 3.86 [Difficulty: 4]

Given: Cylinder of mass M, length L, and radius R is hinged along its length and immersed in an incompressilble liquid to depth

Find: General expression for the cylinder specific gravity as a function of α=H/R needed to hold

the cylinder in equilibrium for α ranging from 0 to 1.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dh
ρ g⋅= (Hydrostatic Pressure - h is positive downwards from free surface)

dFH 

dF h 

θ 
dFV 

H = αR 

Fv Ayp
⌠⎮
⎮⌡

d= (Vertical Hydrostatic Force)

ΣM 0= (Rotational Equilibrium)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surface of the liquid.

The moments caused by the hydrostatic force and the weight of the cylinder about the hinge need to balance each other.

Integrating the hydrostatic pressure equation: p ρ g⋅ h⋅=

dFv dF cos θ( )⋅= p dA⋅ cos θ( )⋅= ρ g⋅ h⋅ w⋅ R⋅ dθ⋅ cos θ( )⋅=

Now the depth to which the cylinder is submerged is H h R 1 cos θ( )−( )⋅+=

Therefore h H R 1 cos θ( )−( )⋅−= and into the vertical force equation:

dFv ρ g⋅ H R 1 cos θ( )−( )⋅−[ ]⋅ w⋅ R⋅ cos θ( )⋅ dθ⋅= ρ g⋅ w⋅ R
2

⋅
H

R
1 cos θ( )−( )−⎡⎢

⎣
⎤⎥
⎦

⋅ cos θ( )⋅ dθ⋅=

dFv ρ g⋅ w⋅ R
2

⋅ α 1−( ) cos θ( )⋅ cos θ( )( )
2

+⎡⎣ ⎤⎦⋅ dθ⋅= ρ g⋅ w⋅ R
2

⋅ α 1−( ) cos θ( )⋅
1 cos 2 θ⋅( )+

2
+⎡⎢

⎣
⎤⎥
⎦

⋅ dθ⋅=

Now as long as α is not greater than 1, the net horizontal hydrostatic force will be zero due to symmetry, and the vertical force is:

Fv
θmax−

θmax

Fv1
⌠
⎮
⌡

d=
0

θmax

Fv2
⌠
⎮
⌡

d= where cos θmax( ) R H−
R

= 1 α−= or θmax acos 1 α−( )=



Fv 2ρ g⋅ w⋅ R
2

⋅

0

θmax

θα 1−( ) cos θ( )⋅
1

2
+

1

2
cos 2 θ⋅( )⋅+⎡⎢

⎣
⎤⎥
⎦

⌠
⎮
⎮
⌡

d⋅= Now upon integration of this expression we have:

Fv ρ g⋅ w⋅ R
2

⋅ acos 1 α−( ) 1 α−( ) α 2 α−( )⋅⋅−⎡⎣ ⎤⎦⋅=

The line of action of the vertical force due to the liquid is through the centroid of the displaced liquid, i.e., through the center of the cylinde

The weight of the cylinder is given by: W M g⋅= ρc V⋅ g⋅= SG ρ⋅ π⋅ R
2

⋅ w⋅ g⋅= where ρ is the density of the fluid and SG
ρc

ρ
=

The line of action of the weight is also throught the center of the cylinder. Taking moment about the hinge we get:

ΣMo W R⋅ Fv R⋅−= 0= or in other words W Fv= and therefore:

SG ρ⋅ π⋅ R
2

⋅ w⋅ g⋅ ρ g⋅ w⋅ R
2

⋅ acos 1 α−( ) 1 α−( ) α 2 α−( )⋅⋅−⎡⎣ ⎤⎦⋅= SG
1

π
acos 1 α−( ) 1 α−( ) α 2 α−( )⋅⋅−⎡⎣ ⎤⎦⋅=
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Problem 3.87 [Difficulty: 4]

Given: Canoe, modeled as a right semicircular cylindrical shell, floats in water of depth d. The shell has outer radius R and leng

R 1.2 ft⋅= L 17 ft⋅= d 1 ft⋅=

Find: (a) General expression for the maximum total mass that can be floated, as a function of depth,

(b) evaluate for the given conditions

(c) plot for range of water depth between 0 and R.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: dp

dy
ρ g⋅= (Hydrostatic Pressure - y is positive downwards from

free surface)

Fv Ayp
⌠⎮
⎮⌡

d= (Vertical Hydrostatic Force)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts on free surface of the liquid.

dF 
y 

θ 

d 

θmax 
y is a function of θ for a given depth d: y d R R cos θ( )⋅−( )−= d R− R cos θ( )⋅+=

The maximum value of θ: θmax acos
R d−( )

R

⎡⎢
⎣

⎤⎥
⎦

=

A free-body diagram of the canoe gives: ΣFy 0= M g⋅ Fv−= where Fv is the vertical force of the water on the canoe.

Fv Ayp
⌠⎮
⎮⌡

d= Ap cos θ( )⋅
⌠⎮
⎮⌡

d=
θmax−

θmax

θρ g⋅ y⋅ L⋅ R⋅ cos θ( )⋅
⌠
⎮
⌡

d= 2 ρ⋅ g⋅ L⋅ R⋅
0

θmax

θd R− R cos θ( )⋅+( ) cos θ( )⋅
⌠
⎮
⌡

d⋅=

Fv 2 ρ⋅ g⋅ L⋅ R⋅
0

θmax

θd R−( ) cos θ( )⋅ R cos θ( )( )
2

⋅+⎡⎣ ⎤⎦
⌠
⎮
⌡

d⋅= 2 ρ⋅ g⋅ L⋅ R⋅ d R−( ) sin θmax( )⋅ R
θmax

2

sin 2 θmax⋅( )
4

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Since M
Fv

g
= it follows that M 2 ρ⋅ L⋅ R⋅ d R−( ) sin θmax( )⋅ R

θmax

2

sin 2 θmax⋅( )
4

+
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

For R 1.2 ft⋅= L 17 ft⋅= and d 1 ft⋅= we can determine the mass: θmax acos
1.2 1−( )

1.2

⎡⎢
⎣

⎤⎥
⎦

= θmax 1.403 rad⋅=



M 2 1.94×
slug

ft
3

⋅ 17× ft⋅ 1.2× ft⋅ 1 ft⋅ 1.2 ft⋅−( ) sin 1.403 rad⋅( )× 1.2 ft⋅
1.403 rad⋅

2

sin 2 1.403× rad⋅( )

4
+⎛⎜

⎝
⎞⎟
⎠

×+⎡⎢
⎣

⎤⎥
⎦

×
32.2 lbm⋅

slug
×=

M 1895 lbm⋅=

When we enter the values of d/R into the expressions for θmax and M, we get the following graph:
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Problem 3.88 [Difficulty: 4]

Given: Geometry of glass observation room

Find: Resultant force and direction

Assumptions: Water in aquarium is static and incompressible

Solution:

The x, y and z components of force due to the fluid are treated separately.  For the x, y components, the horizontal force is equivalent to that

on a vertical flat plate; for the z component, (vertical force) the force is equivalent to the weight of fluid above.

For horizontal forces, the computing equation of Section 3-5 is FH pc A  where A is the area of the equivalent vertical plate.

For the vertical force, the computing equation of Section 3-5 is FV ρ g V  where V is the volume of fluid above the curved surface.

The data are For water ρ 1.94
slug

ft
3



For the fluid (Table A.2) SG 1.025

For the aquarium R 5 ft H 35 ft

(a) Horizontal Forces

Consider the x component

The center of pressure of the glass is yc H
4 R
3 π

 yc 32.88 ft

Hence FHx pc A SG ρ g yc  π R
2


4



FHx 1.025 1.94
slug

ft
3

 32.2
ft

s
2

 32.88 ft
π 5 ft( )

2


4


lbf s
2


slug ft

 FHx 4.13 10
4

 lbf

The y component is of the same magnitude as the x component

FHy FHx FHy 4.13 10
4

 lbf

The resultant horizontal force (at 45o to the x and y axes) is

FH FHx
2

FHy
2

 FH 5.85 10
4

 lbf



(b) Vertical forces

The vertical force is equal to the weight of fluid above (a volume defined by a rectangular column minus a segment of a sphere)

The volume is V
π R

2

4

H

4 π R
3

3

8
 V 621.8 ft

3


Then FV SG ρ g V FV 1.025 1.94
slug

ft
3

 32.2
ft

s
2

 621.8 ft
3


lbf s

2


slug ft


FV 3.98 10
4

 lbf

Finally the resultant force and direction can be computed

F FH
2

FV
2

 F 7.07 10
4

 lbf

α atan
FV

FH









 α 34.3 deg

Note that α is the angle the resultant force makes with the horizontal



Problem *3.89 [Difficulty: 2]

Given: Hydrometer as shown, submerged in nitric acid. When submerged in

water, h = 0 and the immersed volume is 15 cubic cm.

SG 1.5 d 6 mm

Find: The distance h when immersed in nitric acid.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g Vd (Buoyant force is equal to weight of displaced fluid)

Assumptions: (1) Static fluid

(2) Incompressible fluid

Taking a free body diagram of the hydrometer: ΣFz 0 M g Fbuoy 0

Solving for the mass of the hydrometer: M
Fbuoy

g
 ρ Vd

When immersed in water: M ρw Vw When immersed in nitric acid: M ρn Vn

Since the mass of the hydrometer is the same in both cases: ρw Vw ρn Vn

When the hydrometer is in the nitric acid: Vn Vw
π

4
d

2
 h ρn SG ρw

Therefore: ρw Vw SG ρw Vw
π

4
d

2
 h





 Solving for the height h:

Vw SG Vw
π

4
d

2
 h





 Vw 1 SG( ) SG
π

4
 d

2
 h

h Vw
SG 1

SG








4

π d
2


 h 15 cm

3


1.5 1
1.5








4

π 6 mm( )
2




10 mm
cm







3

 h 177 mm



Problem *3.90 [Difficulty: 3]

Given: Data on sphere and weight

 

T 

FB 

W 

Find: SG of sphere; equilibrium position when freely floating

Solution:

Basic equation FB ρ g V and ΣFz 0 ΣFz 0 T FB W

where T M g M 10 kg FB ρ g
V

2
 W SG ρ g V

Hence M g ρ g
V

2
 SG ρ g V 0 SG

M

ρ V
1

2


SG 10 kg
m

3

1000 kg


1

0.025 m
3




1

2
 SG 0.9

The specific weight is γ
Weight

Volume


SG ρ g V
V

 SG ρ g γ 0.9 1000
kg

m
3

 9.81
m

s
2


N s

2


kg m
 γ 8829

N

m
3



For the equilibriul position when floating, we repeat  the force balance with T = 0

FB W 0 W FB with FB ρ g Vsubmerged

From references (trying Googling "partial sphere volume") Vsubmerged
π h

2

3

3 R h( )

where h is submerged depth and R is the sphere radius R
3 V
4 π






1

3

 R
3

4 π
0.025 m

3






1

3

 R 0.181 m

Hence W SG ρ g V FB ρ g
π h

2

3

 3 R h( ) h
2

3 R h( )
3 SG V
π



h
2

3 0.181 m h( )
3 0.9 .025 m

3


π
 h

2
0.544 h( ) 0.0215

This is a cubic equation for h.  We can keep guessing h values, manually iterate, or use Excel's Goal Seek to find h 0.292 m



Problem *3.91 [Difficulty: 2]

Given: Specific gravity of a person is to be determined from measurements of weight in air and the met weight when

totally immersed in water.

Find: Expression for the specific gravity of a person from the measurements.

Solution: We will apply the hydrostatics equations to this system.

Governing Equation: Fbuoy ρ g Vd (Buoyant force is equal to weight of displaced fluid)

Fnet 

Fbuoy 

Mg 

Assumptions: (1) Static fluid

(2) Incompressible fluid

Taking a free body diagram of the body: ΣFy 0 Fnet M g Fbuoy 0

Fnet is the weight measurement for the immersed body.

Fnet M g Fbuoy M g ρw g Vd However in air: Fair M g

Therefore the weight measured in water is: Fnet Fair ρw g Vd and Vd

Fair Fnet

ρw g


Now in order to find the specific gravity of the person, we need his/her density:

Fair M g ρ g Vd ρ g
Fair Fnet 
ρw g

 Simplifying this expression we get: Fair
ρ

ρw

Fair Fnet 

Now if we call the density of water at 4 deg C ρw4C then: Fair

ρ

ρw4C









ρw

ρw4C









Fair Fnet 
SG

SGw

Fair Fnet 

Solving this expression for the specific gravity of the person SG, we get: SG SGw

Fair

Fair Fnet




Problem *3.92 [Difficulty: 2]

Given: Iceberg floating in seawater

Find: Quantify the statement, "Only the tip of an iceberg shows (in seawater)."

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g Vd (Buoyant force is equal to weight of displaced fluid)

Fbuoy 

Mg 

Assumptions: (1) Static fluid

(2) Incompressible fluid

Taking a free body diagram of the iceberg: ΣFz 0 M g Fbuoy 0

M g Fbuoy ρsw g Vd But the mass of the iceberg is also: M ρice Vtot

Combining these expressions: ρice Vtot g ρsw g Vd Vd Vtot

ρice

ρsw

 Vtot

SGice

SGsw



The volume of the iceberg above the water is: Vshow Vtot Vd Vtot 1
SGice

SGsw












Therefore we may define a volume fraction: VF
Vshow

Vtot

 1
SGice

SGsw



Substituting in data from Tables A.1 and A.2 we get: VF 1
0.917

1.025
 VF 0.1054 Only 10% of the iceberg is above water



Problem *3.93 [Difficulty: 2]

Given: Geometry of steel cylinder

Find: Volume of water displaced; number of 1 kg wts to make it sink

Solution:

The data is For water ρ 999
kg

m
3



For steel (Table A.1) SG 7.83

For the cylinder D 100 mm H 1 m δ 1 mm

The volume of the cylinder is Vsteel δ
π D

2

4

π D H








 Vsteel 3.22 10
4

 m
3



The weight of the cylinder is W SG ρ g Vsteel

W 7.83 999
kg

m
3

 9.81
m

s
2

 3.22 10
4

 m
3


N s

2


kg m
 W 24.7 N

At equilibium, the weight of fluid displaced is equal to the weight of the cylinder

Wdisplaced ρ g Vdisplaced W

Vdisplaced
W

ρ g
 24.7 N

m
3

999 kg


s
2

9.81 m


kg m

N s
2


 Vdisplaced 2.52 L

To determine how many 1 kg wts will make it sink, we first need to find the extra volume that will need to be dsiplaced

Distance cylinder sank x1

Vdisplaced

π D
2


4









 x1 0.321m

Hence, the cylinder must be made to sink an additional distance x2 H x1 x2 0.679 m

We deed to add n weights so that 1 kg n g ρ g
π D

2

4

 x2

n
ρ π D

2
 x2

4 1 kg
 999

kg

m
3


π

4
 0.1 m( )

2
 0.679 m

1

1 kg


N s
2


kg m

 n 5.33

Hence we need n 6  weights to sink the cylinder



Problem *3.94 [Difficulty: 2]

Given: Experiment performed by Archimedes to identify the material conent of King

Hiero's crown. The crown was weighed in air and in water.

Find: Expression for the specific gravity of the crown as a function of the weights in water and air.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fb ρ g Vd (Buoyant force is equal to weight of displaced fluid)

Fb 
Mg 

Ww 
Assumptions: (1) Static fluid

(2) Incompressible fluid

Taking a free body diagram of the body: ΣFz 0 Ww M g Fb 0

Ww is the weight of the crown in water.

Ww M g Fbuoy M g ρw g Vd However in air: Wa M g

Therefore the weight measured in water is: Ww Wa ρw g Vd

so the volume is: Vd

Wa Ww

ρw g
 Now the density of the crown is: ρc

M

Vd


M ρw g

Wa Ww


Wa

Wa Ww
ρw

Therefore, the specific gravity of the crown is: SG
ρc

ρw


Wa

Wa Ww
 SG

Wa

Wa Ww


Note: by definition specific gravity is the density of an object divided by the density of water at 4 degrees Celsius, so the measured

temperature of the water in the experiment and the data from tables A.7 or A.8 may be used to correct for the variation in density of the

water with temperature.



Problem *3.95    [Difficulty: 2] 
 

 
 
 

Open-Ended Problem Statement: Gas bubbles are released from the regulator of a submerged 

Scuba diver. What happens to the bubbles as they rise through the seawater? 
 

Discussion: Air bubbles released by a submerged diver should be close to ambient pressure at the 

depth where the diver is swimming. The bubbles are small compared to the depth of submersion, so each 
bubble is exposed to essentially constant pressure.  Therefore the released bubbles are nearly spherical in 
shape. 
 
The air bubbles are buoyant in water, so they begin to rise toward the surface. The bubbles are quite light, 
so they reach terminal speed quickly. At low speeds the spherical shape should be maintained. At higher 
speeds the bubble shape may be distorted. 
 
As the bubbles rise through the water toward the surface, the hydrostatic pressure decreases. Therefore the 
bubbles expand as they rise. As the bubbles grow larger, one would expect the tendency for distorted 
bubble shape to be exaggerated. 



Problem *3.96 [Difficulty: 2]

Given: Balloons with hot air, helium and hydrogen. Claim lift per cubic foot of 0.018, 0.066, and 0.071 pounds force per cubic f

for respective gases, with the air heated to 150 deg. F over ambient.

Find: (a) evaluate the claims of lift per unit volume

(b) determine change in lift when air is heated to 250 deg. F over ambient.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: L ρa g V ρg g V (Net lift force is equal to difference in weights of air and gas)

p ρ R T (Ideal gas equation of state)

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Ideal gas behavior

The lift per unit volume may be written as: LV
L

V
g ρa ρg  ρa g 1

ρg

ρa










 now if we take the ideal gas equation and

we take into account that the pressure inside and outside the balloon are equal:
L

V
ρa g 1

Ra Ta

Rg Tg










 γa 1
Ra Ta

Rg Tg












At standard conditions the specific weight of air is: γa 0.0765
lbf

ft
3

 the gas constant is: Ra 53.33
ft lbf
lbm R
 and Ta 519 R

For helium: Rg 386.1
ft lbf
lbm R
 Tg Ta and therefore: LVHe 0.0765

lbf

ft
3

 1
53.33

386.1






 LVHe 0.0659
lbf

ft
3



For hydrogen: Rg 766.5
ft lbf
lbm R
 Tg Ta and therefore: LVH2 0.0765

lbf

ft
3

 1
53.33

766.5






 LVH2 0.0712
lbf

ft
3



For hot air at 150 degrees above ambient:

Rg Ra Tg Ta 150 R and therefore: LVair150 0.0765
lbf

ft
3

 1
519

519 150






 LVair150 0.0172
lbf

ft
3



The agreement with the claims stated above is good.

For hot air at 250 degrees above ambient:

Rg Ra Tg Ta 250 R and therefore: LVair250 0.0765
lbf

ft
3

 1
519

519 250






 LVair250 0.0249
lbf

ft
3



LVair250

LVair150

1.450 Air at ΔT of 250 deg. F gives 45% more lift than air at ΔT of 150 deg.F!



Problem *3.97 [Difficulty: 2]

V FB 

W = Mg 

y 

FD 

Given: Data on hydrogen bubbles

Find: Buoyancy force on bubble; terminal speed in water

Solution:

Basic equation FB ρ g V ρ g
π

6
 d

3
 and ΣFy M ay ΣFy 0 FB FD W for terminal speed

FB 1.94
slug

ft
3

 32.2
ft

s
2


π

6
 0.001 in

1 ft
12 in







3


lbf s

2


slug ft
 FB 1.89 10

11
 lbf

For terminal speed FB FD W 0 FD 3 π μ V d FB where we have ignored W, the weight of the bubble (at

STP most gases are about 1/1000 the density of water)

Hence V
FB

3 π μ d
 with μ 2.10 10

5


lbf s

ft
2

 from Table A.7 at 68oF

V 1.89 10
11

 lbf
1

3 π


1

2.10 10
5




ft
2

lbf s


1

0.001 in


12 in
1 ft



V 1.15 10
3


ft

s
 V 0.825

in

min


As noted by Professor Kline in the film "Flow Visualization", bubbles rise slowly!



Problem *3.98 [Difficulty: 3]

Fbuoyancy 

Wload 

y 

Whot air 

Given: Data on hot air balloon

Find: Maximum mass of balloon for neutral buoyancy; mass for initial acceleration of 2.5 ft/s2.

Assumptions: Air is treated as static and incompressible, and an ideal gas

Solution:

Basic equation FB ρatm g V and ΣFy M ay

Hence ΣFy 0 FB Whotair Wload ρatm g V ρhotair g V M g for neutral buoyancy

M V ρatm ρhotair 
V patm

R

1

Tatm

1

Thotair











M 320000 ft
3

 14.7
lbf

in
2


12 in

ft







2


lbm R

53.33 ft lbf


1

48 460( ) R
1

160 460( ) R






 M 4517 lbm

Initial acceleration ΣFy FB Whotair Wload ρatm ρhotair  g V Mnew g Maccel a Mnew 2 ρhotair V  a

Solving for Mnew ρatm ρhotair  g V Mnew g Mnew 2 ρhotair V  a

Mnew V
ρatm ρhotair  g 2 ρhotair a

a g


V patm

a g
g

1

Tatm

1

Thotair










2 a

Thotair











Mnew 320000 ft
3

 14.7
lbf

in
2


12 in

ft







2


lbm R

53.33 ft lbf


s
2

2.5 32.2( ) ft
 32.2

1

48 460( )

1

160 460( )






 2 2.5
1

160 460( )







ft

s
2

R


Mnew 1239 lbm

To make the balloon move up or down during flight, the air needs to be heated to a higher temperature, or let cool (or let in ambient air).



Problem *3.99 [Difficulty: 4]

Given: Spherical balloon filled with helium lifted a payload of mass M=230 kg.

At altitude, helium and air were in thermal equilibrium. Balloon diameter is

120 m and specific gravity of the skin material is 1.28.

Find: The altitude to which the balloon rose.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g Vd (Buoyant force is equal to mass of displaced fluid)

p ρ R T (Ideal gas equation of state)

t 

z

D 

M 

Assumptions: (1) Static, incompressible fluid

(2) Static equilibrium at 49 km altitude

(3) Ideal gas behavior

Taking a free body diagram of the balloon and payload: ΣFz Fbuoy MHe g Ms g M g 0

Substituting for the buoyant force and knowing that mass is density times volume:

ρair g Vb ρHe g Vb ρs g Vs M g 0 ρair Vb ρHe Vb ρs Vs M 0

The volume of the balloon: Vb
π

6
D

3
 The volume of the skin: Vs π D

2
 t Substituting these into the force equation:

ρair ρHe
6

π D
3


π ρs t D

2
 M



 From the ideal gas equation of state and remembering that pressure and temperature of the air

and helium are equal:

p

T

6

π D
3


π ρs t D

2
 M





1

1

Rair

1

RHe









 Substituting known values and consulting Appendix A for gas constants:

p

T


6

π

1

120 m( )
3

 π 1280
kg

m
3

 0.013 10
3

 m 120 m( )
2

 230 kg








1

1

287

1

2080



N m
kg K


Pa m
2


N

 3.616 10
4


kPa

K


To determine the altitude, we need to check this ratio against data from Table A.3. We find that

the ratio of pressure to temperature matches the result above at:
h 48.3 km



Problem *3.100 [Difficulty: 3]

Given: A pressurized balloon is to be designed to lift a payload of mass M to an altitude of 40 km, where p = 3.0 mbar
and T = -25 deg C. The balloon skin has a specific gravity of 1.28 and thickness 0.015 mm. The gage pressure of

the helium is 0.45 mbar. The allowable tensile stress in the balloon is 62 MN/m2

t 

M

D 

Find: (a) The maximum balloon diameter
(b) The maximum payload mass

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g⋅ Vd⋅= (Buoyant force is equal to mass
of displaced fluid)

p ρ R⋅ T⋅= (Ideal gas equation of state)

πD 2∆p/4 

πDtσ 
Assumptions: (1) Static, incompressible fluid

(2) Static equilibrium at 40 km altitude
(3) Ideal gas behavior

The diameter of the balloon is limited by the allowable tensile stress in the skin:

ΣF
π

4
D

2
⋅ ∆p⋅ π D⋅ t⋅ σ⋅−= 0= Solving this expression for the diameter: Dmax

4 t⋅ σ⋅

∆p
=

Fbuoyant 

Mbg 

Mg 

z 

Dmax 4 0.015× 10
3−

× m⋅ 62× 10
6

×
N

m
2

⋅
1

0.45 10
3−

⋅ bar⋅
×

bar m
2

⋅

10
5

N⋅
×= Dmax 82.7m=

To find the maximum allowable payload we perform a force balance on the system:

ΣFz Fbuoy MHe g⋅− Mb g⋅− M g⋅−= 0= ρa g⋅ Vb⋅ ρHe g⋅ Vb⋅− ρs g⋅ Vs⋅− M g⋅− 0=

Solving for M: M ρa ρHe−( ) Vb⋅ ρs Vs⋅−= The volume of the balloon is: Vb
π

6
D

3
⋅=

The volume of the skin is: Vs π D
2

⋅ t⋅= Therefore, the mass is: M
π

6
ρa ρHe−( )⋅ D

3
⋅ π ρs⋅ D

2
⋅ t⋅−=

The air density: ρa

pa

Ra T⋅
= ρa 3.0 10

3−
× bar⋅

kg K⋅

287 N⋅ m⋅
×

1

273 25−( ) K⋅
×

10
5

N⋅

bar m
2

⋅
×= ρa 4.215 10

3−
×

kg

m
3

=

Repeating for helium: ρHe
p

R T⋅
= ρHe 6.688 10

4−
×

kg

m
3

=

The payload mass is: M
π

6
4.215 0.6688−( )× 10

3−
×

kg

m
3

⋅ 82.7 m⋅( )
3

× π 1.28× 10
3

×
kg

m
3

⋅ 82.7 m⋅( )
2

× 0.015× 10
3−

× m⋅−=

M 638 kg=



Problem *3.101 [Difficulty: 3]

(L + c)/2 

L 

c 

FBB 

WB

FBR

WR 

L/2 

a
θ 

Fhinge,y

Fhinge,x

Given: Geometry of block and rod

Find: Angle for equilibrium

Assumptions: Water is static and incompressible

Solution:

Basic
equations

ΣMHinge 0= FB ρ g⋅ V⋅= (Buoyancy)

The free body diagram is as shown.  FBB and FBR are the buoyancy of the

block and rod, respectively; c is the (unknown) exposed length of the rod

Taking moments about the hinge

WB FBB−( ) L⋅ cos θ( )⋅ FBR
L c+( )

2
⋅ cos θ( )⋅− WR

L

2
⋅ cos θ( )⋅+ 0=

with WB MB g⋅= FBB ρ g⋅ VB⋅= FBR ρ g⋅ L c−( )⋅ A⋅= WR MR g⋅=

Combining equations MB ρ VB⋅−( ) L⋅ ρ A⋅ L c−( )⋅
L c+( )

2
⋅− MR

L

2
⋅+ 0=

We can solve for MB ρ A⋅ L
2

c
2

−( )⋅ 2 MB ρ VB⋅−
1

2
MR⋅+⎛⎜

⎝
⎞
⎠

⋅ L⋅=

MB
ρ A⋅

2 L⋅
L

2
c
2

−( )⋅ ρ VB⋅+
1

2
MR⋅−= and since c

a

sin θ( )
= MB

ρ A⋅

2 L⋅
L

2 a

sin θ( )

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅ ρ VB⋅+
1

2
MR⋅−=

MB
1

2
1000×

kg

m
3

⋅ 20× cm
2

⋅
m

100 cm⋅
⎛⎜
⎝

⎞
⎠

2

×
1

5 m⋅
× 5 m⋅( )

2 0.25 m⋅

sin 12 deg⋅( )

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 1000
kg

m
3

⋅ 0.025× m
3

⋅+
1

2
1.25× kg⋅−=

MB 29.1 kg=



Problem *3.102 [Difficulty: 3]

Given: Glass hydrometer used to measure SG of liquids. Stem has diameter D=5 mm, distance between marks on stem is

d=2 mm per 0.1 SG. Hydrometer floats in kerosene (Assume zero contact angle between glass and kerosene).

Find: Magnitude of error introduced by surface tension.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g⋅ Vd⋅= (Buoyant force is equal to weight of displaced fluid)

d = 

2 mm/0.1 SG

∆FB 

y 

D = 5 mm 

Kerosene 

Fσ  

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Zero contact angle between ethyl alcohol and glass

The surface tension will cause the hydrometer to sink ∆h lower into the liquid. Thus for

this change:

ΣFz ∆Fbuoy Fσ−= 0=

The change in buoyant force is: ∆Fbuoy ρ g⋅ ∆V⋅= ρ g⋅
π

4
⋅ D

2
⋅ ∆h⋅=

The force due to surface tension is: Fσ π D⋅ σ⋅ cos θ( )⋅= π D⋅ σ⋅=

Thus, ρ g⋅
π

4
⋅ D

2
⋅ ∆h⋅ π D⋅ σ⋅= Upon simplification:

ρ g⋅ D⋅ ∆h⋅

4
σ=

Solving for ∆h: ∆h
4 σ⋅

ρ g⋅ D⋅
= From Table A.2, SG = 1.43 and from Table A.4, σ = 26.8 mN/m

Therefore, ∆h 4 26.8× 10
3−

×
N

m
⋅

m
3

1430 kg⋅
×

s
2

9.81 m⋅
×

1

5 10
3−

× m⋅
×

kg m⋅

s
2

N⋅
×= ∆h 1.53 10

3−
× m=

So the change in specific gravity will be: ∆SG 1.53 10
3−

× m⋅
0.1

2 10
3−

× m⋅
×= ∆SG 0.0765=

From the diagram, surface tension acts to cause the hydrometer to float lower in the liquid. Therefore, surface tension results in an

indicated specific gravity smaller than the actual specific gravity.



Problem *3.103 [Difficulty:4]

Given: Sphere partially immersed in a liquid of specific gravity SG.

Find: (a) Formula for buoyancy force as a function of the submersion depth d
(b) Plot of results over range of liquid depth

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g⋅ Vd⋅= (Buoyant force is equal to weight of displaced fluid)

Assumptions: (1) Static fluid
(2) Incompressible fluid
(3) Atmospheric pressure acts everywhere

d 

Rsinθ 

R 

dθ 

θmax 

hWe need an expression for the displaced volume of fluid at an arbitrary
depth d. From the diagram we see that:

d R 1 cos θmax( )−( )= at an arbitrary depth h: h d R 1 cos θ( )−( )⋅−= r R sin θ( )⋅=

So if we want to find the volume of the submerged portion of the sphere we calculate:

Vd
0

θmax

hπ r
2⌠

⎮
⌡

d= π

0

θmax

θR
2

sin θ( )( )
2

⋅ R⋅ sin θ( )⋅
⌠
⎮
⌡

d⋅= π R
3

⋅
0

θmax

θsin θ( )( )
3⌠

⎮
⌡

d⋅= Evaluating the integral we get:

Vd π R
3

⋅
cos θmax( )( )3

3
cos θmax( )−

2

3
+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅= Now since: cos θmax( ) 1
d

R
−= we get: Vd π R

3
⋅

1

3
1

d

R
−⎛⎜

⎝
⎞
⎠

3

1
d

R
−⎛⎜

⎝
⎞
⎠

−
2

3
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Thus the buoyant force is: Fbuoy ρw SG⋅ g⋅ π⋅ R
3

⋅
1

3
1

d

R
−⎛⎜

⎝
⎞
⎠

3

⋅ 1
d

R
−⎛⎜

⎝
⎞
⎠

−
2

3
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

If we non-dimensionalize by the force on a fully submerged sphere:

Fd

Fbuoy

ρw SG⋅ g⋅
4

3
⋅ π⋅ R

3
⋅

=
3

4

1

3
1

d

R
−⎛⎜

⎝
⎞
⎠

3

⋅ 1
d

R
−⎛⎜

⎝
⎞
⎠

−
2

3
+

⎡
⎢
⎣

⎤
⎥
⎦

= Fd
3

4

1

3
1

d

R
−⎛⎜

⎝
⎞
⎠

3

⋅ 1
d

R
−⎛⎜

⎝
⎞
⎠

−
2

3
+

⎡
⎢
⎣

⎤
⎥
⎦

=
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Problem 3.104 [Difficulty: 2]

(L + c)/2 

L 

c 

FBR 

WR 

L/2 

a
θ 

Given: Geometry of rod

Find: How much of rod is submerged; force to lift rod out of water

Solution:

Basic equations ΣMHinge 0= FB ρ g⋅ V⋅= (Buoyancy)

The free body diagram is as shown.  FBR is the buoyancy of the rod; c is

the (unknown) exposed length of the rod

Taking moments about the hinge

FBR−
L c+( )

2
⋅ cos θ( )⋅ WR

L

2
⋅ cos θ( )⋅+ 0=

with FBR ρ g⋅ L c−( )⋅ A⋅= WR MR g⋅=

Hence ρ− A⋅ L c−( )⋅
L c+( )

2
⋅ MR

L

2
⋅+ 0=

We can solve for c ρ A⋅ L
2

c
2

−( )⋅ MR L⋅=

c L
2

L MR⋅

ρ A⋅
−=

c 5 m⋅( )
2

5 m⋅
m

3

1000 kg⋅
×

1

20
×

1

cm
2

⋅
100 cm⋅

1 m⋅
⎛⎜
⎝

⎞
⎠

2

× 1.25× kg⋅−=

c 4.68 m=

Then the submerged length is L c− 0.323 m=

To lift the rod out of the water requires a force equal to half the rod weight (the reaction also takes half the weight)

F
1

2
MR⋅ g⋅=

1

2
1.25× kg⋅ 9.81×

m

s
2

⋅
N s

2
⋅

kg m⋅
×= F 6.1 N=



Problem *3.105 [Difficulty: 2]

FB 

W 

H = 60 cm 

θ 

h = 5 cm 

y 

x 

Given: Data on river

Find: Largest diameter of log that will be transported

Solution:

Basic equation FB ρ g⋅ Vsub⋅= and ΣFy 0= ΣFy 0= FB W−=

where FB ρ g⋅ Vsub⋅= ρ g⋅ Asub⋅ L⋅= W SG ρ⋅ g⋅ V⋅= SG ρ⋅ g⋅ A⋅ L⋅=

From references (e.g. CRC Mathematics Handbook) Asub
R

2

2
θ sin θ( )−( )⋅= where R is the radius and θ is

the included angle

Hence ρ g⋅
R

2

2
⋅ θ sin θ( )−( )⋅ L⋅ SG ρ⋅ g⋅ π⋅ R

2
⋅ L⋅=

θ sin θ( )− 2 SG⋅ π⋅= 2 0.8× π×=

This equation can be solved by manually iterating, or by using a good calculator, or by using Excel's Goal Seek

θ 239 deg⋅=

From geometry the submerged amount of a log is H h− and also R R cos π
θ

2
−⎛⎜

⎝
⎞
⎠

⋅+

Hence H h− R R cos π
θ

2
−⎛⎜

⎝
⎞
⎠

⋅+=

Solving for R R
H h−

1 cos 180deg
θ

2
−⎛⎜

⎝
⎞
⎠

+

= R
0.6 0.05−( ) m⋅

1 cos 180
239

2
−⎛⎜

⎝
⎞
⎠

deg⋅⎡⎢
⎣

⎤⎥
⎦

+

= R 0.369 m=

D 2 R⋅= D 0.737 m=



Problem *3.106 [Difficulty: 4]

FB 

W 
FL 

FU 

x 

y 

Given: Data on sphere and tank bottom

Find: Expression for SG of sphere at which it will float to surface;
minimum SG to remain in position

Assumptions: (1) Water is static and incompressible
(2) Sphere is much larger than the hole at the bottom of the tank

Solution:

Basic equations FB ρ g⋅ V⋅= and ΣFy FL FU− FB+ W−=

where FL patm π⋅ a
2

⋅= FU patm ρ g⋅ H 2 R⋅−( )⋅+⎡⎣ ⎤⎦ π⋅ a
2

⋅=

FB ρ g⋅ Vnet⋅= Vnet
4

3
π⋅ R

3
⋅ π a

2
⋅ 2⋅ R⋅−=

W SG ρ⋅ g⋅ V⋅= with V
4

3
π⋅ R

3
⋅=

Now if the sum of the vertical forces is positive, the sphere will float away, while if the sum is zero or negative the sphere will stay
at the bottom of the tank (its weight and the hydrostatic force are greater than the buoyant force). 

Hence ΣFy patm π⋅ a
2

⋅ patm ρ g⋅ H 2 R⋅−( )⋅+⎡⎣ ⎤⎦ π⋅ a
2

⋅− ρ g⋅
4

3
π⋅ R

3
⋅ 2 π⋅ R⋅ a

2
⋅−⎛⎜

⎝
⎞
⎠

⋅+ SG ρ⋅ g⋅
4

3
⋅ π⋅ R

3
⋅−=

This expression simplifies to ΣFy π ρ⋅ g⋅ 1 SG−( )
4

3
⋅ R

3
⋅ H a

2
⋅−⎡⎢

⎣
⎤⎥
⎦

⋅=

ΣFy π 1.94×
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
4

3
1 0.95−( )× 1 in⋅

ft

12 in⋅
×⎛⎜

⎝
⎞
⎠

3

× 2.5 ft⋅ 0.075 in⋅
ft

12 in⋅
×⎛⎜

⎝
⎞
⎠

2

×−
⎡
⎢
⎣

⎤
⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×=

ΣFy 0.012− lbf⋅= Therefore, the sphere stays at the bottom of the tank.



Problem *3.107 [Difficulty: 4]

Given: Cylindrical timber, D = 1 ft and L = 15 ft, is weighted on the lower end so that is floats vertically with 10 ft

submerged in sea water. When displaced vertically from equilibrium, the timber oscillates in a vertical direction

upon release.

Find: Estimate the frequency of the oscillation. Neglect viscous forces or water motion.

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: Fbuoy ρ g Vd (Buoyant force is equal to weight of displaced fluid)

d =10 ft 

(Equilibrium 

Depth) 

D  = 1 ft 

L 

Assumptions: (1) Static fluid

(2) Incompressible fluid

(3) Atmospheric pressure acts everywhere

(4) Viscous effects and water motion are negligible.

At equilibrium: ΣFy Fbuoy M g 0 M ρ Vd ρ A d

Once the timber is displaced: ΣFy Fbuoy M g M
d

2
y

dt
2



ρ g A d y( ) M g M
d

2
y

dt
2

 ρ g A d ρ g A y ρ A d g M
d

2
y

dt
2



Thus we have the equation: M
d

2
y

dt
2

 ρ g A y 0 or:
d

2
y

dt
2

ρ g A

ρ A d
y 0

d
2
y

dt
2

g

d
y 0

This ODE describes simple harmonic motion with the natural frequency ω described by: ω
2 g

d


Solving for ω: ω
g

d
 ω

32.2 ft

s
2

1

10 ft


ω 1.7944
rad

s


To express this as a frequency: f
ω

2 π
 f

1.7944
1

s


2 π
 f 0.286 Hz



Problem *3.108 [Difficulty: 3]

H  = 8 ft 

h = 7 ft 

θ = 60o 

Floating Sinking 
Given: Data on boat

Find: Effective density of water/air bubble mix if boat sinks

Solution:

Basic equations FB ρ g⋅ V⋅= and ΣFy 0=

We can apply the sum of forces for the "floating" free body 

ΣFy 0= FB W−= where FB SGsea ρ⋅ g⋅ Vsubfloat⋅=

Vsubfloat
1

2
h⋅

2 h⋅

tan θ⋅
⎛⎜
⎝

⎞
⎠

⋅ L⋅=
L h

2
⋅

tan θ( )
= SGsea 1.024= (Table A.2)

Hence W
SGsea ρ⋅ g⋅ L⋅ h

2
⋅

tan θ( )
= (1)

We can apply the sum of forces for the "sinking" free body 

ΣFy 0= FB W−= where FB SGmix ρ⋅ g⋅ Vsub⋅= Vsubsink
1

2
H⋅

2 H⋅

tan θ⋅
⎛⎜
⎝

⎞
⎠

⋅ L⋅=
L H

2
⋅

tan θ( )
=

Hence W
SGmix ρ⋅ g⋅ L⋅ H

2
⋅

tan θ( )
= (2)

Comparing Eqs. 1 and 2 W
SGsea ρ⋅ g⋅ L⋅ h

2
⋅

tan θ( )
=

SGmix ρ⋅ g⋅ L⋅ H
2

⋅

tan θ( )
=

SGmix SGsea
h

H

⎛⎜
⎝

⎞
⎠

2

⋅= SGmix 1.024
7

8

⎛⎜
⎝

⎞
⎠

2

×= SGmix 0.784=

The density is ρmix SGmix ρ⋅= ρmix 0.784 1.94×
slug

ft
3

⋅= ρmix 1.52
slug

ft
3

⋅=



Problem *3.109 [Difficulty: 2]

F 

20 cm

FB 

W 

8 cm

2 cm 

D = 10 cm 

x

y

Given: Data on inverted bowl and dense fluid

Find: Force to hold in place

Assumption: Fluid is static and incompressible

Solution:

Basic equations FB ρ g⋅ V⋅= and ΣFy 0= ΣFy 0= FB F− W−=

Hence F FB W−=

For the buoyancy force FB SGfluid ρH2O⋅ g⋅ Vsub⋅= with Vsub Vbowl Vair+=

For the weight W SGbowl ρH2O⋅ g⋅ Vbowl⋅=

Hence F SGfluid ρH2O⋅ g⋅ Vbowl Vair+( )⋅ SGbowl ρH2O⋅ g⋅ Vbowl⋅−=

F ρH2O g⋅ SGfluid Vbowl Vair+( )⋅ SGbowl Vbowl⋅−⎡⎣ ⎤⎦⋅=

F 999
kg

m
3

⋅ 9.81×
m

s
2

⋅ 15.6 0.9 L⋅
m

3

1000 L⋅
× 0.08 0.02−( ) m⋅

π 0.1 m⋅( )
2

⋅

4
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

× 5.7 0.9 L⋅
m

3

1000 L⋅
×

⎛
⎜
⎝

⎞

⎠
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×=

F 159.4 N=



Problem *3.110    [Difficulty: 4] 
 

 
 
 

Open-Ended Problem Statement: In the “Cartesian diver” child's toy, a miniature “diver” is 

immersed in a column of liquid. When a diaphragm at the top of the column is pushed down, the diver 
sinks to the bottom. When the diaphragm is released, the diver again rises. Explain how the toy might 
work. 
 

Discussion: A possible scenario is for the toy to have a flexible bladder that contains air. Pushing 

down on the diaphragm at the top of the liquid column would increase the pressure at any point in the 
liquid. The air in the bladder would be compressed slightly as a result. The volume of the bladder, and 
therefore its buoyancy, would decrease, causing the diver to sink to the bottom of the liquid column. 
 
Releasing the diaphragm would reduce the pressure in the water column. This would allow the bladder to 
expand again, increasing its volume and therefore the buoyancy of the diver. The increased buoyancy 
would permit the diver to rise to the top of the liquid column and float in a stable, partially submerged 
position, on the surface of the liquid. 



Problem *3.111    [Difficulty: 4] 
 

 
 
 

Open-Ended Problem Statement: Consider a conical funnel held upside down and submerged 

slowly in a container of water. Discuss the force needed to submerge the funnel if the spout is open to the 
atmosphere. Compare with the force needed to submerge the funnel when the spout opening is blocked by a 
rubber stopper. 
 

Discussion: Let the weight of the funnel in air be Wa. Assume the funnel is held with its spout vertical 

and the conical section down. Then Wa will also be vertical. 
 
Two possible cases are with the funnel spout open to atmosphere or with the funnel spout sealed. 
With the funnel spout open to atmosphere, the pressures inside and outside the funnel are equal, so no net 
pressure force acts on the funnel. The force needed to support the funnel will remain constant until it first 
contacts the water. Then a buoyancy force will act vertically upward on every element of volume located 
beneath the water surface. 
 
The first contact of the funnel with the water will be at the widest part of the conical section. The buoyancy 
force will be caused by the volume formed by the funnel thickness and diameter as it begins to enter the 
water. The buoyancy force will reduce the force needed to support the funnel. The buoyancy force will 
increase as the depth of submergence of the funnel increases until the funnel is fully submerged. At that 
point the buoyancy force will be constant and equal to the weight of water displaced by the volume of the 
material from which the funnel is made. 
 
If the funnel material is less dense than water, it would tend to float partially submerged in the water. The 
force needed to support the funnel would decrease to zero and then become negative (i.e., down) to fully 
submerge the funnel. 
 
If the funnel material were denser than water it would not tend to float even when fully submerged. The 
force needed to support the funnel would decrease to a minimum when the funnel became fully submerged, 
and then would remain constant at deeper submersion depths. 
With the funnel spout sealed, air will be trapped inside the funnel. As the funnel is submerged gradually 
below the water surface, it will displace a volume equal to the volume of the funnel material plus the 
volume of trapped air. Thus its buoyancy force will be much larger than when the spout is open to 
atmosphere. Neglecting any change in air volume (pressures caused by submersion should be small 
compared to atmospheric pressure) the buoyancy force would be from the entire volume encompassed by 
the outside of the funnel. Finally, when fully submerged, the volume of the rubber stopper (although small) 
will also contribute to the total buoyancy force acting on the funnel. 



Problem *3.112 [Difficulty: 2]

Given: Steel balls resting in floating plastic shell in a bucket of water

Find: What happens to water level when balls are dropped in water

Solution: Basic equation FB ρ Vdisp g W for a floating body weight W

When the balls are in the plastic shell, the shell and balls displace a volume of water equal to their own weight - a large volume

because the balls are dense.  When the balls are removed from the shell and dropped in the water, the shell now displaces only a

small volume of water, and the balls sink, displacing only their own volume.  Hence the difference in displaced water before and

after moving the balls is the difference between the volume of water that is equal to the weight of the balls, and the volume of the

balls themselves.  The amount of water displaced is significantly reduced, so the water level in the bucket drops.

Volume displaced before moving balls: V1

Wplastic Wballs

ρ g


Volume displaced after moving balls: V2

Wplastic

ρ g
Vballs

Change in volume displaced ∆V V2 V1 Vballs

Wballs

ρ g
 Vballs

SGballs ρ g Vballs

ρ g


∆V Vballs 1 SGballs 

Hence initially a large volume is displaced; finally a small volume is displaced (ΔV < 0 because SGballs > 1)



Problem *3.113    [Difficulty: 4] 
 

 
 
 

Open-Ended Problem Statement: A proposed ocean salvage scheme involves pumping air 

into “bags” placed within and around a wrecked vessel on the sea bottom. Comment on the practicality of 
this plan, supporting your conclusions with analyses. 
 

Discussion: This plan has several problems that render it impractical. First, pressures at the sea bottom 

are very high. For example, Titanic was found in about 12,000 ft of seawater. The corresponding pressure 
is nearly 6,000 psi. Compressing air to this pressure is possible, but would require a multi-stage compressor 
and very high power. 
 
Second, it would be necessary to manage the buoyancy force after the bag and object are broken loose from 
the sea bed and begin to rise toward the surface. Ambient pressure would decrease as the bag and artifact 
rise toward the surface. The air would tend to expand as the pressure decreases, thereby tending to increase 
the volume of the bag. The buoyancy force acting on the bag is directly proportional to the bag volume, so 
it would increase as the assembly rises. The bag and artifact thus would tend to accelerate as they approach 
the sea surface. The assembly could broach the water surface with the possibility of damaging the artifact 
or the assembly. 
 
If the bag were of constant volume, the pressure inside the bag would remain essentially constant at the 
pressure of the sea floor, e.g., 6,000 psi for Titanic. As the ambient pressure decreases, the pressure 
differential from inside the bag to the surroundings would increase. Eventually the difference would equal 
sea floor pressure. This probably would cause the bag to rupture. 
 
If the bag permitted some expansion, a control scheme would be needed to vent air from the bag during the 
trip to the surface to maintain a constant buoyancy force just slightly larger than the weight of the artifact in 
water. Then the trip to the surface could be completed at low speed without danger of broaching the surface 
or damaging the artifact. 



Problem *3.114 [Difficulty: 3]

Given: Cylindrical container rotating as in Example 3.10

R 0.25 m⋅= ho 0.3 m⋅= f 2 Hz⋅=

Find: (a) height of free surface at the entrance

(b) if solution depends on ρ

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: (Hydrostatic equation)

Assumptions: (1) Incompressible fluid

(2) Atmospheric pressure acts everywhere

In order to obtain the solution we need an expression for the shape of the free surface in terms of ω, r, and ho. The required

expression was derived in Example 3.10. The equation is:

z ho
ω R⋅( )

2

2 g⋅

1

2

r

R

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅−=

The angular velocity ω is related to the frequency of rotation through: ω 2 π⋅ f⋅= ω 2 π⋅ 2×
rad

s
⋅ 12.57

rad

s
⋅==

Now since h1 is the z value which corresponds to r = 0: h1 ho
ω R⋅( )

2

4 g⋅
−=

Substituting known values: h1 0.3 m⋅
1

4
12.57

rad

s
⋅ 0.25× m⋅⎛⎜

⎝
⎞
⎠

2

×
s
2

9.81 m⋅
×−= h1 0.05 m=

The solution is independent of ρ because the equation of the free surface is independent of ρ as well.



Problem *3.115 [Difficulty: 2]

Given: U-tube accelerometer

Find: Acceleration in terms of h and L

Solution: We will apply the hydrostatics equations to this system.

Governing Equations: (Hydrostatic equation in x-direction)

(Hydrostatic equation in y-direction)

Assumptions: (1) Incompressible fluid

(2) Neglect sloshing

(3) Ignore corners

(4) Both ends of U-tube are open to atmosphere

In the coordinate system we are using, we can see that: ax a= ay 0= gx 0= gy g−=

a
x

p ρ−=
∂
∂

g
y

p ρ−=
∂
∂

dy
y

p
dx

x

p
dp

∂
∂

+
∂
∂

=Thus, Now if we evaluate Δp from left to right in the U-tube:

y
y

p
x

x

p
p ∆

∂
∂

+∆
∂
∂

=∆We may also write this expression as: ∆p ρ− g⋅( ) b−( )⋅ ρ− a⋅( ) L−( )⋅+ ρ− g⋅( ) b h+( )⋅+= 0=

Simplifying this expression: ∆p ρ a⋅ L⋅ ρ g⋅ h⋅−= 0= Solving for h: h
a L⋅

g
=



Problem *3.116 [Difficulty: 2]

Given: Rectangular container with constant acceleration

Find: Slope of free surface

Solution: Basic equation

In components
x

p



 ρ gx ρ ax

y
p




 ρ gy ρ ay

z
p




 ρ gz ρ az

We have ay az 0 gx g sin θ( ) gy g cos θ( ) gz 0

Hence
x

p



 ρ g sin θ( ) ρ ax (1)

y
p




 ρ g cos θ( ) 0 (2)

z
p




 0 (3)

From Eq. 3 we can simplify from p p x y z( ) to p p x y( )

Hence a change in pressure is given by dp
x

p



dx

y
p




dy

At the free surface p = const., so dp 0
x

p



dx

y
p




dy or

dy

dx

x
p





y
p





 at the free surface

Hence at the free surface, using Eqs 1 and 2
dy

dx

x
p





y
p






ρ g sin θ( ) ρ ax

ρ g cos θ( )


g sin θ( ) ax

g cos θ( )


dy

dx

9.81 0.5( )
m

s
2

 3
m

s
2



9.81 0.866( )
m

s
2





At the free surface, the slope is
dy

dx
0.224



Problem *3.117 [Difficulty: 2]

Given: Spinning U-tube sealed at one end

Find: Maximum angular speed for no cavitation

Assumptions: (1) water is incompressible
(2) constant angular velocity

Solution: Basic equation

In components
r
p

∂

∂

⎛
⎜
⎝

⎞
⎠

− ρ ar⋅= ρ−
V

2

r
⋅= ρ− ω

2
⋅ r⋅=

z
p

∂

∂
ρ− g⋅=

Between D and C, r = constant, so
z

p
∂

∂
ρ− g⋅= and so pD pC− ρ− g⋅ H⋅= (1)

Between B and A, r = constant, so
z

p
∂

∂
ρ− g⋅= and so pA pB− ρ− g⋅ H⋅= (2)

Between B and C, z = constant, so
r
p

∂

∂
ρ ω

2
⋅ r⋅= and so

pB

pC

p1
⌠
⎮
⌡

d

0

L

rρ ω
2

⋅ r⋅
⌠
⎮
⌡

d=

pC pB− ρ ω
2

⋅
L

2

2
⋅= (3)

Integrating

Since pD = patm, then from Eq 1 pC patm ρ g⋅ H⋅+=

From Eq. 3 pB pC ρ ω
2

⋅
L

2

2
⋅−= so pB patm ρ g⋅ H⋅+ ρ ω

2
⋅

L
2

2
⋅−=

From Eq. 2 pA pB ρ g⋅ H⋅−= so pA patm ρ ω
2

⋅
L

2

2
⋅−=

Thus the minimum pressure occurs at point A (not B). Substituting known data to find the pressure at A:

pA 14.7
lbf

in
2

⋅ 1.94
slug

ft
3

⋅ 1600
rev

min
⋅

2 π⋅ rad⋅

rev
×

min

60 s⋅
×⎛⎜

⎝
⎞
⎠

2

×
1

2
× 3 in⋅

ft

12 in⋅
×⎛⎜

⎝
⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×

ft

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×− 2.881
lbf

in
2

⋅==

At 68oF from steam tables, the vapor pressure of water is pv 0.339 psi⋅= which is less than the pressure at A.
Therefore, cavitation does not occur.:



Problem *3.118 [Difficulty: 2]

Given: Spinning U-tube sealed at one end

Find: Pressure at A; water loss due to leak

Assumption: Water is incompressible; centripetal acceleration is constant

Solution: Basic equation

From the analysis of Example Problem 3.10, solving the basic equation, the pressure p at any point (r,z) in a continuous
rotating fluid is given by

p p0
ρ ω

2
⋅

2
r
2

r0
2

−⎛
⎝

⎞
⎠⋅+ ρ g⋅ z z0−( )⋅−= (1) where p0 is a reference pressure at point (r0,z0)

In this case p pA= p0 pD= z zA= zD= z0= H= r 0= r0 rD= L=

The speed of rotation is ω 300 rpm⋅= ω 31.4
rad

s
⋅=

The pressure at D is pD 0 kPa⋅= (gage)

Hence pA
ρ ω

2
⋅

2
L

2
−( )⋅ ρ g⋅ 0( )⋅−=

ρ ω
2

⋅ L
2

⋅

2
−=

1

2
− 1.94×

slug

ft
3

⋅ 31.4
rad

s
⋅⎛⎜

⎝
⎞
⎠

2

× 3 in⋅( )
2

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

4

×
lbf s

2
⋅

slug ft⋅
×=

pA 0.42− psi⋅= (gage)

When the leak appears,the water level at A will fall, forcing water out at point D.  Once again, from the analysis
of Example Problem 3.10, we can use Eq 1

In this case p pA= 0= p0 pD= 0= z zA= z0 zD= H= r 0= r0 rD= L=

Hence 0
ρ ω

2
⋅

2
L

2
−( )⋅ ρ g⋅ zA H−( )⋅−=

zA H
ω

2
L

2
⋅

2 g⋅
−= 12in

1

2
31.4

rad

s
⋅⎛⎜

⎝
⎞
⎠

2

× 3 in⋅( )
2

×
s
2

32.2 ft⋅
×

1 ft⋅

12 in⋅
×−= zA 0.52 in⋅=

The amount of water lost is ∆h H zA−= 12 in⋅ 0.52 in⋅−= ∆h 11.48 in⋅=



Problem *3.119 [Difficulty: 2]

 

R 

ω 


Given: Centrifugal manometer consists of pair of parallel disks that rotate to develop a

radial pressure difference. There is no flow between the disks.

Find: (a) an expression for the pressure difference, ∆p, as a function of ω, R, and ρ.
(b) find ω if ∆p = 8 µm H2O and R = 50 mm

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations:
(Hydrostatic equation)

rr ag
r

p ρρ =+
∂
∂

− (Hydrostatic equation in radial direction)

Assumptions: (1) Incompressible fluid

(2) Standard air between disks

(3) Rigid body motion

(4) Radial direction is horizontal

For rigid body motion: ar
V

2

r
−=

r ω⋅( )
2

r
−= r− ω

2
⋅= In addition, since r is horizontal: gr 0=

2ωρr
r

p
=

∂
∂

Thus, the hydrostatic equation becomes:

We can solve this expression by separating variables and integrating:

∆p ρ ω
2

⋅
0

R

rr
⌠
⎮
⌡

d⋅= Evaluating the integral on the right hand side: ∆p
ρ ω

2
⋅ R

2
⋅

2
=

Solving for the rotational frequency: ω
2 ∆p⋅

ρ R
2

⋅
= The pressure differential can be expressed as: ∆p ρ g⋅ ∆h⋅=

Therefore: ω 2
ρw

ρair

⋅
g ∆h⋅

R
2

⋅=

Substituting in values: ω 2
999

1.225
× 9.81×

m

s
2

⋅ 8× 10
6−

× m⋅
1

50 10
3−

× m⋅( )2
×= ω 7.16

rad

s
⋅=



Problem *3.120 [Difficulty: 2]

ω = 1000 s
-1 

r2 

r1 = 50 mm

r1 
r2 = 130 mm

ρ 

Given: Test tube with water

Find: (a) Radial acceleration

(b) Radial pressure gradient

(c) Rotational speed needed to generate 250 MPa pressure at the bottom of the tube

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations: (Hydrostatic equation)

rr ag
r

p ρρ =+
∂
∂

− (Hydrostatic equation in radial direction)

Assumptions: (1) Incompressible fluid

(2) Rigid body motion

(3) Radial direction is horizontal

For rigid body motion: ar
V

2

r
−=

r ω⋅( )
2

r
−= r− ω

2
⋅= ar r− ω

2
⋅=

2ωρr
r

p
=

∂
∂

In addition, since r is horizontal: gr 0= Thus, the hydrostatic equation becomes:

We can solve this expression by separating variables and integrating: ∆p ρ ω
2

⋅
r1

r2

rr
⌠
⎮
⌡

d⋅=

Evaluating the integral on the right hand side: ∆p
ρ ω

2
⋅

2
r2

2
r1

2
−⎛

⎝
⎞
⎠⋅= Solving for ω: ω

2 ∆p⋅

ρ r2
2

r1
2

−⎛
⎝

⎞
⎠⋅

=

Substituting in values: ω 2 250× 10
6

×
N

m
2

⋅
m

3

999 kg⋅
×

1

130 10
3−

× m⋅( )2

50 10
3−

× m⋅( )2

−

×
kg m⋅

N s
2

⋅
×

rev

2 π⋅ rad⋅
×=

ω 938 Hz⋅=



Problem *3.121 [Difficulty: 3]

Given: Rectangular container of base dimensions 0.4 m x 0.2 m and a height of 0.4 m is filled with water to a depth of d =

0.2 m. Mass of empty container is Mc = 10 kg. The container slides down an incline of θ = 30 deg with respect to

the horizontal. The coefficient of sliding friction is 0.30.

θ 

y 

x 

α 

Find: The angle of the water surface relative to the horizontal.

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations:
(Hydrostatic equation)

aMF = (Newton's Second Law)

Assumptions: (1) Incompressible fluid

(2) Rigid body motion

xa
x

p ρ=
∂
∂

− xa
x

p ρ−=
∂
∂

yag
y

p ρρ =−
∂
∂

− ( )yag
y

p
+−=

∂
∂ ρWriting the component relations:

dy
y

p
dx

x

p
dp

∂
∂

+
∂
∂

=We write the total differential of pressure as: Now along the free surface of the water dp = 0. Thus:

y

x

ag

a

yp

xp

dx

dy

+
−=

∂∂
∂∂

−= and α atan
dy

dx
−⎛⎜

⎝
⎞
⎠

= To determine the acceleration components we analyze a free-body diagram:

M Mc Mw+= Mc ρw Vw⋅+= M 10 kg⋅ 999
kg

m
3

⋅ 0.4× m⋅ 0.2× m⋅ 0.2× m⋅+= M 25.98 kg=

ΣFy' 0= N M g⋅ cos θ( )⋅−= N M g⋅ cos θ( )⋅= N 25.98 kg⋅ 9.81×
m

s
2

⋅ cos 30 deg⋅( )×
N s

2
⋅

kg m⋅
×= N 220.7 N=

θ 

y 

x 

Ff = µN

N 

y’ 

x’ 
Mg

ΣFx' M ax'⋅= M g⋅ sin θ( )⋅ Ff−= M g⋅ sin θ( )⋅ μ N⋅−= ax' g sin θ( )⋅ μ
N

M
⋅−=

ax' 9.81
m

s
2

⋅ sin 30 deg⋅( )× 0.30 220.7× N⋅
1

25.98 kg⋅
×

kg m⋅

N s
2

⋅
×−= ax' 2.357

m

s
2

=

Now that we have the acceleration in the x'-y' system, we transform it to the x-y system: ax ax' cos θ( )⋅= ay ax'− sin θ( )⋅=

ax 2.357
m

s
2

⋅ cos 30 deg⋅( )×= ax 2.041
m

s
2

= ay 2.357−
m

s
2

⋅ sin 30 deg⋅( )×= ay 1.178−
m

s
2

=

Thus, α atan
2.041

9.81 1.178−
⎛⎜
⎝

⎞
⎠

= α 13.30 deg⋅=



Problem *3.122 [Difficulty: 3]

Given: Rectangular container of base dimensions 0.4 m x 0.2 m and a height of 0.4 m is filled with water to a depth of d =

0.2 m. Mass of empty container is Mc = 10 kg. The container slides down an incline of θ = 30 deg with respect to

the horizontal without friction.

Find: (a) The angle of the water surface relative to the horizontal.

(b) The slope of the free surface for the same acceleration up the plane.

θ 

y 

x 

α 

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations:
(Hydrostatic equation)

aMF = (Newton's Second Law)

Assumptions: (1) Incompressible fluid

(2) Rigid body motion

xa
x

p ρ=
∂
∂

− xa
x

p ρ−=
∂
∂

yag
y

p ρρ =−
∂
∂

− ( )yag
y

p
+−=

∂
∂ ρWriting the component relations:

dy
y

p
dx

x

p
dp

∂
∂

+
∂
∂

=We write the total differential of pressure as: Now along the free surface of the water dp = 0. Thus:

y

x

ag

a

yp

xp

dx

dy

+
−=

∂∂
∂∂

−= and α atan
dy

dx
−⎛⎜

⎝
⎞
⎠

= To determine the acceleration components we analyze a free-body diagram:

M Mc Mw+= Mc ρw Vw⋅+= M 10 kg⋅ 999
kg

m
3

⋅ 0.4× m⋅ 0.2× m⋅ 0.2× m⋅+= M 25.98 kg=

θ 

y 

x 

Ff = µN

N 

y’ 

x’ 
Mg 

ΣFx' M ax'⋅= M g⋅ sin θ( )⋅= ax' g sin θ( )⋅= ax ax' cos θ( )⋅= g sin θ( )⋅ cos θ( )⋅=

ay ax'− sin θ( )⋅= g sin θ( )( )
2

⋅=

Thus,
dy

dx

g sin θ( )⋅ cos θ( )⋅

g 1 sin θ( )( )
2

−⎡⎣ ⎤⎦
−=

sin θ( ) cos θ( )⋅

cos θ( )( )
2

−=
sin θ( )

cos θ( )
−= tan θ( )−= α 30 deg⋅=

For the acceleration up the incline: ax g− sin θ( )⋅ cos θ( )⋅= ay g sin θ( )( )
2

⋅=

Thus, slope
g sin θ( )⋅ cos θ( )⋅

g 1 sin θ( )( )
2

+⎡⎣ ⎤⎦
=

sin θ( ) cos θ( )⋅

1 sin θ( )( )
2

+
−= slope

sin 30 deg⋅( ) cos 30 deg⋅( )⋅

1 sin 30 deg⋅( )( )
2

+
= slope 0.346=



Problem *3.123 [Difficulty: 3]

Given: Cubical box with constant acceleration

Find: Slope of free surface; pressure along bottom of box

Solution: Basic equation

In components
x

p
∂

∂
− ρ gx⋅+ ρ ax⋅=

y
p

∂

∂
− ρ gy⋅+ ρ ay⋅=

z
p

∂

∂
− ρ gz⋅+ ρ az⋅=

We have ax ax= gx 0= ay 0= gy g−= az 0= gz 0=

Hence
x

p
∂

∂
SG− ρ⋅ ax⋅= (1)

y
p

∂

∂
SG− ρ⋅ g⋅= (2)

z
p

∂

∂
0= (3)

From Eq. 3 we can simplify from p p x y, z, ( )= to p p x y, ( )=

Hence a change in pressure is given by dp
x

p
∂

∂
dx⋅

y
p

∂

∂
dy⋅+= (4)

At the free surface p = const., so dp 0=
x

p
∂

∂
dx⋅

y
p

∂

∂
dy⋅+= or

dy

dx

x
p

∂

∂

y
p

∂

∂

−=
ax

g
−=

0.25 g⋅

g
−=

Hence at the free surface
dy

dx
0.25−=

The equation of the free surface is then y
x

4
− C+= and through volume conservation the fluid rise in the rear

balances the fluid fall in the front, so at the midpoint the
free surface has not moved from the rest position

For size L 80 cm⋅= at the midpoint x
L

2
= y

L

2
= (box is half filled)

L

2

1

4
−

L

2
⋅ C+= C

5

8
L⋅= y

5

8
L⋅

x

4
−=

Combining Eqs 1, 2, and 4 dp SG− ρ⋅ ax⋅ dx⋅ SG ρ⋅ g⋅ dy⋅−= or p SG− ρ⋅ ax⋅ x⋅ SG ρ⋅ g⋅ y⋅− c+=

We have p patm= when x 0= y
5

8
L⋅= so patm SG− ρ⋅ g⋅

5

8
⋅ L⋅ c+= c patm SG ρ⋅ g⋅

5

8
⋅ L⋅+=

p x y, ( ) patm SG ρ⋅
5

8
g⋅ L⋅ ax x⋅− g y⋅−⎛⎜

⎝
⎞
⎠

⋅+= patm SG ρ⋅ g⋅
5

8
L⋅

x

4
− y−⎛⎜

⎝
⋅+=

On the bottom y = 0 so

p x 0, ( ) patm SG ρ⋅ g⋅
5

8
L⋅

x

4
−⎛⎜

⎝
⎞
⎠

⋅+= 101 0.8 1000×
kg

m
3

⋅
N s

2
⋅

kg m⋅
× 9.81×

m

s
2

⋅
5

8
0.8× m⋅

x

4
−⎛⎜

⎝
⎞
⎠

×
kPa

10
3

Pa⋅
×+=

p x 0, ( ) 105 1.96 x⋅−= (p in kPa, x in m)



Problem *3.124 [Difficulty: 3]

 

r2

Vmax = ωr2
Given: Gas centrifuge, with maximum peripheral speed Vmax = 950 ft/s contains

uranium hexafluoride gas (M = 352 lb/lbmol) at 620 deg F.

Find: (a) Ratio of maximum pressure to pressure at the centrifuge axis
(b) Evaluate pressure ratio at 620 deg F.

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations:
(Hydrostatic equation)

rr ag
r

p ρρ =+
∂
∂

− (Hydrostatic equation radial component)

Assumptions: (1) Incompressible fluid
(2) Rigid body motion
(3) Ideal gas behavior, constant temperature

2ωρ r
TR

p
a

r

p

g

r =−=
∂
∂

For rigid body motion: ar
V

2

r
−=

r ω⋅( )
2

r
−= r− ω

2
⋅= Thus:

Separating variables and integrating:

p1

p2

p
1

p

⌠
⎮
⎮
⌡

d
ω

2

Rg T⋅
0

r2

rr
⌠
⎮
⌡

d⋅= ln
p2

p1

⎛
⎜
⎝

⎞

⎠

ω
2

Rg T⋅

r2
2

2
⋅= where we define: Vmax ω r2⋅= therefore: ln

p2

p1

⎛
⎜
⎝

⎞

⎠

Vmax
2

2 Rg⋅ T⋅
=

Solving for the pressure ratio: prat

p2

p1

= e

Vmax
2

2 Rg⋅ T⋅

⎛⎜
⎜
⎝

⎞

⎠=

The gas constant: Rg
1545

352

ft lbf⋅

lbm R⋅
⋅= Rg 4.39

ft lbf⋅

lbm R⋅
⋅=

Substituting in all known values: prat e

950
ft

s
⋅⎛⎜

⎝
⎞
⎠

2
1

2
×

lbm R⋅

4.39 ft⋅ lbf⋅
×

1

620 460+( ) R⋅
×

lbf s
2⋅

32.2 lbm⋅ ft⋅
×

⎡
⎢
⎣

⎤
⎥
⎦= prat 19.2=



Problem *3.125 [Difficulty: 3]

V = 5 m/s 
d 

d 

R= 1 m 

rT 

Given: Pail is swung in a vertical circle. Water moves as a rigid body.

Point of interest is the top of the trajectory.

Find: (a) Tension in the string

(b) Pressure on pail bottom from the water.

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations: (Hydrostatic equation)

rr ag
r

p ρρ =+
∂
∂

− (Hydrostatic equation radial component)

Assumptions: (1) Incompressible fluid

(2) Rigid body motion

(3) Center of mass of bucket and water are located at a radius

of 1 m where V = rω = 5 m/s

Summing the forces in the radial direction: T− Mb Mw+( ) g⋅− Mb Mw+( )ar= where ar
V

2

r
−=

Thus the tension is: T Mb Mw+( ) V
2

r
g−

⎛
⎜
⎝

⎞

⎠
⋅= where: Mb 15 N⋅

s
2

9.81 m⋅
×

kg m⋅

N s
2

⋅
×= Mb 1.529 kg⋅=

and: Mw ρ V⋅= ρ
π

4
⋅ d

2
⋅ h⋅= Mw 999

kg

m
3

⋅
π

4
× 0.4 m⋅( )

2
× 0.2× m⋅= Mw 25.11 kg⋅=

Now we find T: T 1.529 25.11+( ) kg⋅ 5
m

s
⋅⎛⎜

⎝
⎞
⎠

2
1

1 m⋅
× 9.81

m

s
2

⋅−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×
N s

2
⋅

kg m⋅
×= T 405 N⋅=

r

V
g

r

p 2

ρρ −=−
∂
∂

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

g
r

V

r

p 2

ρIf we apply this information to the radial hydrostatic equation we get: Thus:

If we assume that the radial pressure gradient is constant throughout the water, then the pressure gradient is equal to:

pr 999
kg

m
3

⋅ 5
m

s
⋅⎛⎜

⎝
⎞
⎠

2
1

1 m⋅
× 9.81

m

s
2

⋅−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×
N s

2
⋅

kg m⋅
×= pr 15.17

kPa

m
⋅=

and we may calculate the pressure at the bottom of the bucket: ∆p pr ∆r⋅= ∆p 15.17
kPa

m
⋅ 0.2× m⋅= ∆p 3.03 kPa⋅=



Problem *3.126 [Difficulty: 3]

H/2 

D = 2.5 in.

H = 5 in.r

z 

R = 5 ft SG = 1.05

Given: Half-filled soft drink can at the outer edge of a merry-go-round

ω 0.3
rev

s
⋅=

Find: (a) Slope of free surface
(b) Spin rate necessary for spillage
(c) Likelihood of spilling versus slipping

Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations:
(Hydrostatic equation)

rr ag
r

p ρρ =+
∂
∂

− (Hydrostatic equation radial component)

zz ag
z

p ρρ =+
∂
∂

− (Hydrostatic equation z component)

Assumptions: (1) Incompressible fluid
(2) Rigid body motion
(3) Merry-go-round is horizontal

2ωρr
r

p
=

∂
∂

g
z

p ρ−=
∂
∂

ar
V

2

r
−=

r ω⋅( )
2

r
−= r− ω

2
⋅= az 0= gr 0= gz g−= Thus: So p = p(r,z)

g

r

g

r

zp

rp

dr

dz 22 ω
ρ
ωρ

=
−

−=
∂∂
∂∂

−=dz
z

p
dr

r

p
dp

∂
∂

+
∂
∂

= For the free surface the pressure is constant. Therefore:

So the slope at the free surface is slope 5 ft⋅ 20
rev

min
⋅

min

60 s⋅
×

2 π⋅ rad⋅

rev
×⎛⎜

⎝
⎞
⎠

2

×
s
2

32.2 ft⋅
×= slope 0.681=

 

H

D

To spill, the slope must be slopesp
H

D
= slopesp

5

2.5
= slopesp 2.000=

Thus, ωsp
g

r

dz

dr
⋅= ωsp 32.2

ft

s
2

⋅
1

5 ft⋅
× 2×= ωsp 3.59

rad

s
⋅=

This is nearly double the original speed (2.09 rad/s). Now the coefficient of static friction between the can and the surface of the
merry-go-round is probably less than 0.5.Thus the can would not likely spill or tip; it would slide off!



Problem *3.127 [Difficulty: 2]

Discussion: Separate the problem into two parts: (1) the motion of the ball in water below the pool surface, and (2) the
motion of the ball in air above the pool surface.

Below the pool water surface the motion of each ball is controlled by buoyancy force and inertia. For small depths of submersion
ball speed upon reaching the surface will be small. As depth is increased, ball speed will increase until terminal speed in water is
approached. For large depths, the actual depth will be irrelevant because the ball will reach terminal speed before reaching the pool
water surface. All three balls are relatively light for their diameters, so terminal speed in water should be reached quickly. The depth
of submersion needed to reach terminal speed should be fairly small, perhaps 1 meter or less (The initial water depth required to
reach terminal speed may be calculated using the methods of Chapter 9).

Buoyancy is proportional to volume and inertia is proportional to mass. The ball with the largest volume per unit mass should
accelerate most quickly to terminal speed. This will probably be the beach ball, followed by the table-tennis ball and the water polo
ball.

The ball with the largest diameter has the smallest frontal area per unit volume; the terminal speed should be highest for this ball.
Therefore, the beach ball should have the highest terminal speed, followed by the water polo ball and the table-tennis ball.

Above the pool water surface the motion of each ball is controlled by aerodynamic drag force, gravity force, and inertia (see the
equation below). Without aerodynamic drag, the height above the pool water surface reached by each ball will depend only on its
initial speed (The maximum height reached by a ball in air with aerodynamic drag may be calculated using the methods of Chapter 9).
Aerodynamic drag reduces the height reached by the ball.

Aerodynamid drag is proportional to frontal area. The heaviest ball per unit frontal area (probably the water polo ball) should reach
the maximum height and the lightest ball per unit area (probably the beach ball) should reach the minimum height.

V0 

W = mg 

y 

FD 

ΣFy FD− m g⋅−= m ay⋅= m
dV

dt
⋅= CD− A⋅

1

2
⋅ ρ⋅ V

2
⋅ m g⋅−= since FD CD A⋅

1

2
⋅ ρ⋅ V

2
⋅=

Thus,

CD A⋅
1

2
⋅ ρ⋅ V

2
⋅

m
− g−

dV

dt
= V

dV

dy
⋅= (1) We solve this by separating variables:

V dV⋅

1
CD A⋅ ρ⋅

m g⋅

V
2

2
⋅+

g− dy⋅= Integrating this expression over the flight of the ball yields:

m g⋅

ρ CD⋅ A⋅
− ln 1

ρ CD⋅ A⋅

m g⋅

Vo
2

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅ g− ymax⋅=

Solving for the maximum height: ymax
m

ρ CD⋅ A⋅
− ln 1

ρ CD⋅ A⋅

m g⋅

Vo
2

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅= Simplifying: ymax

m

ρ CD⋅ A⋅
− ln 1

FDo

m g⋅
+

⎛
⎜
⎝

⎞
⎠

⋅= (2)

If we neglect drag, equation (1) becomes: g− dy⋅ V dV⋅= Integrating and solving for the maximum height: ymax

Vo
2

2 g⋅
−= (3)

Checking the limiting value predicted by Eq (2) as CD 0→ : we remember that for small x that ln(1+x) = -x. Thus:

g

VV

mg

AC

AC

m
y ooD

D
CC DD 22
limlim

22

0
max

0
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

→→

ρ
ρ

which is the result in Equation (3).



Problem *3.128 [Difficulty: 4]

x 

ro 

θ 

ri 

y  Given: A steel liner is to be formed in a spinning horizontal mold. To insure uniform thickness

the minimum angular velocity should be at least 300 rpm.  For steel, SG = 7.8

Find: (a) The resulting radial acceleration on the inside surface of the liner

(b) the maximum and minimum pressures on the surface of the mold (gravity is

downward in

this diagram)
Solution: We will apply the hydrostatics equations to this system.

agp ρρ =+∇−Governing Equations:
(Hydrostatic equation)

rr ag
r

p ρρ =+
∂
∂

− (Hydrostatic equation radial component)

θθ ρρ
θ

ag
p

r
=+

∂
∂

−
1 (Hydrostatic equation transeverse component)

zz ag
z

p ρρ =+
∂
∂

− (Hydrostatic equation z component)

Assumptions: (1) Incompressible fluid

(2) Rigid body motion

ar
V

2

r
−=

r ω⋅( )
2

r
−= r− ω

2
⋅= aθ 0= az 0= gr g− cos θ( )⋅= gθ g sin θ( )⋅= gz 0=

Hence: ar 4 in⋅ 300
rev

min
×

2 π⋅ rad⋅

rev
×

min

60 s⋅
×⎛⎜

⎝
⎞
⎠

2

×
ft

12 in⋅
×= ar 329

ft

s
2

⋅= ar 10.23 g⋅=

θρωρρρ cos2 grag
r

p
rr −=−=

∂
∂ θρρρ

θ θθ sinrgrarg
p

=−=
∂
∂

0=−=
∂
∂

zz ag
z

p ρρ
Thus:

( ) ( ) θθρθρωρθ
θ

drgdrgrd
p

dr
r

p
dp sincos2 +−=

∂
∂

+
∂
∂

=

θρωρ
θ

cos2 gr
r

p
−=⎟

⎠
⎞

∂
∂

We can integrate to find pressure as a function of r and θ. p ri θ, ( ) patm=

Therefore, we integrate: p patm−
ri

r

rρ r⋅ ω
2

⋅ ρ g⋅ cos θ( )⋅−( )⌠
⎮
⌡

d f θ( )+=



p patm ρ ω
2

⋅
r
2

ri
2

−⎛
⎝

⎞
⎠

2
⋅+ ρ g⋅ cos θ( )⋅ r ri−( )⋅− f θ( )+= Taking the derivative of pressure with respect to θ:

( ) θρ
θ

θρ
θ

sinsin rg
d

df
grr

p
i

r

=+−=⎟
⎠
⎞

∂
∂

Thus, the integration function f(θ) is: f θ( ) ρ− g⋅ ri⋅ cos θ( )⋅ C+=

Therefore, the pressure is: p patm ρ ω
2

⋅
r
2

ri
2

−⎛
⎝

⎞
⎠

2
⋅+ ρ g⋅ r ri−( )⋅ cos θ( )⋅− ρ g⋅ ri⋅ cos θ( )⋅− C+=

The integration constant is determined from the boundary condition: p ri θ, ( ) patm=

patm patm ρ ω
2

⋅
ri

2
ri

2
−⎛

⎝
⎞
⎠

2
⋅+ ρ g⋅ ri ri−( )⋅ cos θ( )⋅− ρ g⋅ ri⋅ cos θ( )⋅− C+= ρ− g⋅ ri⋅ cos θ( )⋅ C+ 0= C ρ g⋅ ri⋅ cos θ( )⋅=

Therefore, the pressure is: p patm ρ ω
2

⋅
r
2

ri
2

−⎛
⎝

⎞
⎠

2
⋅+ ρ g⋅ r ri−( )⋅ cos θ( )⋅−=

The maximum pressure should occur on the mold surface at θ = π:

pmaxgage 7.8 1.94⋅
slug

ft
3

⋅⎛
⎜
⎝

⎞

⎠
31.42

rad

s
⋅⎛⎜

⎝
⎞
⎠

2

×
1

2
×

6
2

4
2

−

12
2

⎛⎜
⎜
⎝

⎞

⎠
⋅ ft

2
⋅ 7.8 1.94⋅

slug

ft
3

⋅⎛
⎜
⎝

⎞

⎠
32.2×

ft

s
2

⋅
6 4−

12

⎛⎜
⎝

⎞
⎠

× ft⋅ cos π( )⋅−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

lbf s
2

⋅

slug ft⋅
⋅=

pmaxgage 1119 psf⋅= pmaxgage 7.77 psi⋅=

The minimum pressure should occur on the mold surface at θ = 0:

pmingage 7.8 1.94⋅
slug

ft
3

⋅⎛
⎜
⎝

⎞

⎠
31.42

rad

s
⋅⎛⎜

⎝
⎞
⎠

2

×
1

2
×

6
2

4
2

−

12
2

⎛⎜
⎜
⎝

⎞

⎠
⋅ ft

2
⋅ 7.8 1.94⋅

slug

ft
3

⋅⎛
⎜
⎝

⎞

⎠
32.2×

ft

s
2

⋅
6 4−

12

⎛⎜
⎝

⎞
⎠

× ft⋅ cos 0( )⋅−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

lbf s
2

⋅

slug ft⋅
⋅=

pmingage 956 psf⋅= pmingage 6.64 psi⋅=

(In both results we divided by 144 to convert from psf to psi.)



Problem *3.129 [Difficulty: 4]

Discussion: A certain minimum angle of inclination would be needed to overcome static friction and start the container

into motion down the incline. Once the container is in motion, the retarding force would be provided by

sliding (dynamic) friction. the coefficient of dynamic friction usually is smaller than the static friction

coefficient. Thus the container would continue to accelerate as it moved down the incline. This acceleration

would procide a non-zero slope to the free surface of the liquid in the container.

In principle the slope could be measured and the coefficent of dynamic friction calculated. In practice several problems would arise.

To calculate dynamic friction coefficient one must assume the liquid moves as a solid body, i.e., that there is no sloshing. This

condition could only be achieved if there were nminimum initial disturbance and the sliding distance were long.

It would be difficult to measure the slope of the free surface of liquid in the moving container. Images made with a video camera or a

digital still camera might be processed to obtain the required slope information.

θ 

Ff = µN 

N 

y 

x 
mg 

α 

ΣFy 0= N M g⋅ cos θ( )⋅−= N M g⋅ cos θ( )⋅=

ΣFx M ax⋅= M g⋅ sin θ( )⋅ Ff−= Ff μk N⋅= μk M⋅ g⋅ cos⋅ θ( )⋅=

Thus the acceleration is:

agp ρρ =+∇−ax g sin θ( )⋅ μk g⋅ cos θ( )⋅−= Now for a static liquid:

( )θµθρρθρ cossinsin ggag
x

p
kx −==+

∂
∂

− θµρ coskg
x

p
=

∂
∂

0cos ==−
∂
∂

− xag
y

p ρθρ θρ cosg
y

p
−=

∂
∂

dy
y

p
dx

x

p
dp

∂
∂

+
∂
∂

=

k
k

g

g

yp

xp

dx

dy µ
θρ
θµρ

=
−

−=
∂∂
∂∂

−=
cos

cos
For the free surface the pressure is constant. Therefore:

So the free surface angle is: α atan μk( )= Now since it is necessary to make the container slip along the surface,

θ atan μs( )> atan μk( )> α=

Thus, α < θ, as shown in the sketch above.



Problem 4.1 [Difficulty: 2]

Given: Data on mass and spring

Find: Maximum spring compression

Solution:

The given data is M 5 lb⋅= h 5 ft⋅= k 25
lbf

ft
⋅=

Apply the First Law of Thermodynamics: for the system consisting of the mass and the spring (the spring has gravitional potential

energy and the spring elastic potential energy)

Total mechanical energy at initial state E1 0=

Note: The datum for zero potential is the top of the uncompressed spring

Total mechanical energy at instant of maximum compression x E2 M g⋅ x−( )⋅
1

2
k⋅ x

2
⋅+=

But E1 E2=

so 0 M g⋅ x−( )⋅
1

2
k⋅ x

2
⋅+=

Solving for x x
2 M⋅ g⋅

k
= x 2 5× lb⋅ 32.2×

ft

s
2

⋅
ft

25 lbf⋅
×

32.2 lb⋅ ft⋅

s
2

lbf⋅
×= x 0.401 ft⋅=

When just resting on the spring x
M g⋅

k
= x 0.200 ft=

When dropped from height h:

Total mechanical energy at initial state E1 M g⋅ h⋅=

Total mechanical energy at instant of maximum compression x E2 M g⋅ x−( )⋅
1

2
k⋅ x

2
⋅+=

Note: The datum for zero potential is the top of the uncompressed spring

But E1 E2=

so M g⋅ h⋅ M g⋅ x−( )⋅
1

2
k⋅ x

2
⋅+=



Solving for x x
2 2 M⋅ g⋅

k
x⋅−

2 M⋅ g⋅ h⋅

k
− 0=

x
M g⋅

k

M g⋅

k

⎛⎜
⎝

⎞
⎠

2
2 M⋅ g⋅ h⋅

k
++=

x 5 lb⋅ 32.2×
ft

s
2

⋅
ft

25 lbf⋅
×

32.2 lb⋅ ft⋅

s
2

lbf⋅
× 5 lb⋅ 32.2×

ft

s
2

⋅
ft

25 lbf⋅
×

32.2 lb⋅ ft⋅

s
2

lbf⋅
×⎛

⎜
⎝

⎞

⎠

2

2 5× lb⋅ 32.2×
ft

s
2

⋅
ft

25 lbf⋅
×

32.2 lb⋅ ft⋅

s
2

lbf⋅
× 5× f⋅++=

x 1.63 ft⋅=

Note that ignoring the loss of potential of the mass due to spring compression x gives

x
2 M⋅ g⋅ h⋅

k
= x 1.41 ft⋅=



Problem 4.2      [Difficulty: 2] 
 

 
 

Given: An ice-cube tray with water at 15oC is frozen at –5oC. 

Find: Change in internal energy and entropy 

Solution: Apply the Tds and internal energy equations 

 

Governing equations: pdvduTds +=   dTcdu v=  

 

 

Assumption:  Neglect volume change 

   Liquid properties similar to water 

 

The given or available data is: 

( ) K288K273151 =+=T  ( ) K268K27352 =+−=T  

 

Kkg

kcal
1

⋅
=vc    

3m

kg
999=ρ  

 

Then with the assumption:  dTcdupdvduTds v==+=  

 

or    
T

dT
cds v=  

 

Integrating   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

1

2
12 ln

T

T
css v  or ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−=∆

1

2
12 ln

T

T
VcssmS vρ  

 

kcal

J
4190

288

268
ln

Kkg

kcal
1

mL

m10
mL250

m

kg
999

36

3
×⎟
⎠
⎞

⎜
⎝
⎛×

⋅
×××=∆

−

S  

 

 

K

kJ
0753.0−=∆S  

 

Also    ( )1212 TTcuu v −=−  or ( ) TVcTTmcU vv ∆=−=∆ ρ12  

 

    ( )
kcal

J
4190K288268

Kkg

kcal
1

mL

m10
mL250

m

kg
999

36

3
×−−×

⋅
×××=∆

−

U  

 

    kJ9.20−=∆U  



Problem 4.3 [Difficulty: 2]

θ 

Fn
M

V

Given: Data on ball and pipe

Find: Speed and location at which contact is lost

Solution:

The given data is r 1 mm⋅= R 50 mm⋅=

Fn∑ Fn m g⋅ cos θ( )⋅−= m an⋅=

an
V

2

R r+
−=

Contact is lost when Fn 0= or m− g⋅ cos θ( )⋅ m−
V

2

R r+
⋅=

V
2

g R r+( )⋅ cos θ( )⋅= (1)

For no resistance energy is conserved, so E m g⋅ z⋅ m
V

2

2
⋅+= m g⋅ R r+( )⋅ cos θ( )⋅ m

V
2

2
⋅+= E0= m g⋅ R r+( )⋅=

Hence from energy considerations V
2

2 g⋅ R r+( )⋅ 1 cos θ( )−( )⋅= (2)

Combining 1 and 2, V
2

2 g⋅ R r+( )⋅ 1 cos θ( )−( )⋅= g R r+( )⋅ cos θ( )⋅= or 2 1 cos θ( )−( )⋅ cos θ( )=

Hence θ acos
2

3

⎛⎜
⎝

⎞
⎠

= θ 48.2 deg⋅=

Then from 1 V R r+( ) g⋅ cos θ( )⋅= V 0.577
m

s
=



Problem 4.4 [Difficulty: 2]

Given: Data on Boeing 777-200 jet

Find: Minimum runway length for takeoff

Solution:

Basic equation ΣFx M
dV

dt
⋅= M V⋅

dV

dx
⋅= Ft= constant= Note that the "weight" is already in mass units!

Separating variables M V⋅ dV⋅ Ft dx⋅=

Integrating x
M V

2
⋅

2 Ft⋅
=

x
1

2
325× 10

3
× kg 225

km

hr

1 km⋅

1000 m⋅
×

1 hr⋅

3600 s⋅
×⎛⎜

⎝
⎞
⎠

2

×
1

2 425× 10
3

×
×

1

N
⋅

N s
2

⋅

kg m⋅
×= x 747 m=

For time calculation M
dV

dt
⋅ Ft= dV

Ft

M
dt⋅=

Integrating t
M V⋅

Ft

=

t 325 10
3

× kg 225×
km

hr

1 km⋅

1000 m⋅
×

1 hr⋅

3600 s⋅
×

1

2 425× 10
3

×
×

1

N
⋅

N s
2

⋅

kg m⋅
×= t 23.9 s=

Aerodynamic and rolling resistances would significantly increase both these results



Problem 4.5 [Difficulty: 2]

Given: Car sliding to a stop

Find: Initial speed; skid time

Solution:

Governing equations: ΣFx M ax⋅= Ff μ W⋅=

Assumptions:  Dry friction; neglect air resistance

Given data L 200 ft⋅= μ 0.7=

ΣFx Ff−= μ− W⋅= M ax⋅=
W

g
ax⋅=

W

g 2
t

x
d

d

2

⋅=

or
2

t

x
d

d

2

μ− g⋅=

Integrating, and using I.C. V = V0 at t = 0

Hence
dx

dt
μ− g⋅ t⋅ c1+= μ− g⋅ t⋅ V0+= (1)

Integrating again x
1

2
− g⋅ t

2
⋅ V0 t⋅+ c2+=

1

2
− g⋅ t

2
⋅ V0 t⋅+= since x = 0 at t = 0 (2)

We have the final state, at which xf L= and
dx

dt
0= at t tf=

From Eq. 1
dx

dt
0= μ− g⋅ tf⋅ V0+= so tf

V0

μ g⋅
=

Substituting into Eq. 2 x xf= L=
1

2
− g⋅ t

2
⋅ V0 t⋅+=

1

2
− g⋅ tf

2
⋅ V0 tf⋅+=

1

2
− g⋅

V0

μ g⋅

⎛
⎜
⎝

⎞
⎠

2

⋅ V0

V0

μ g⋅
⋅+=

V0
2

2 μ⋅ g⋅
=

Solving L
V0

2 μ⋅ g⋅
= or V0 2 μ⋅ g⋅ L⋅=

Using the data V0 64.7 mph⋅= The skid time is tf

V0

μ g⋅
= tf 4.21 s=



Problem 4.6 [Difficulty: 2]

Given: Block sliding to a stop

Find: Distance and time traveled; new coeeficient of friction

Solution:

Governing equations: ΣFx M ax⋅= Ff μ W⋅=

Assumptions:  Dry friction; neglect air resistance

Given data μ 0.6= V0 5
m

s
⋅= M 2 kg⋅= L 2 m⋅=

ΣFx Ff−= μ− W⋅= M ax⋅=
W

g
ax⋅=

W

g 2
t

x
d

d

2

⋅= or
2

t

x
d

d

2

μ− g⋅=

Integrating, and using I.C. V = V0 at t = 0

Hence
dx

dt
μ− g⋅ t⋅ c1+= μ− g⋅ t⋅ V0+= (1)

Integrating again x
1

2
− g⋅ t

2
⋅ V0 t⋅+ c2+=

1

2
− g⋅ t

2
⋅ V0 t⋅+= since x = 0 at t = 0 (2)

We have the final state, at which xf L= and
dx

dt
0= at t tf=

From Eq. 1
dx

dt
0= μ− g⋅ tf⋅ V0+= so tf

V0

μ g⋅
= Using given data tf 0.850 s=

Substituting into Eq. 2 x xf= L=
1

2
− g⋅ t

2
⋅ V0 t⋅+=

1

2
− g⋅ tf

2
⋅ V0 tf⋅+=

1

2
− g⋅

V0

μ g⋅

⎛
⎜
⎝

⎞
⎠

2

⋅ V0

V0

μ g⋅
⋅+=

V0
2

2 μ⋅ g⋅
=

Solving x
V0

2

2 μ⋅ g⋅
= (3) Using give data x 2.12 m=

For rough surface, using Eq. 3 with x = L μ
V0

2

2 g⋅ L⋅
= μ 0.637= tf

V0

μ g⋅
= tf 0.800 s=



Problem 4.7 [Difficulty: 2]

Given: Car entering a curve

Find: Maximum speed

Solution:

Governing equations: ΣFr M ar⋅= Ff μ W⋅= ar
V

2

r
=

Assumptions:  Dry friction; neglect air resistance

Given data μdry 0.7= μwet 0.3= r 100 ft⋅=

ΣFr Ff−= μ− W⋅= μ− M⋅ g⋅= M ax⋅= M
V

2

r
⋅=

or V μ r⋅ g⋅=

Hence, using given data V μdry r⋅ g⋅= V 32.4 mph⋅= V μwet r⋅ g⋅= V 21.2 mph⋅=



Problem 4.8 [Difficulty: 2]

Given: Data on air compression process

Find: Work done

Solution:

Basic equation δw p dv⋅=

Assumptions:  1) Adiabatic  2) Frictionless process δw = pdv

p1 1 atm⋅= p2 4 atm⋅= T1 20 °C= T1 293 K=
Given data

From Table A.6 R 286.9
J

kg K⋅
⋅= and k 1.4=

Before integrating we need to relate p and v.  An adiabatic frictionless (reversible) process is isentropic, which for an ideal gas gives

p v
k

⋅ C= where k
cp

cv

=

δw p dv⋅= C v
k−

⋅ dv⋅=

Integrating w
C

k 1−
v2

1 k−
v2

1 k−
−⎛

⎝
⎞
⎠⋅=

1

k 1−( )
p2 v2

k
⋅ v2

1 k−
p1 v1

k
⋅ v2

1 k−
⋅−⎛

⎝
⎞
⎠⋅=

w
R

k 1−( )
T2 T1−( )⋅=

R T1⋅

k 1−( )

T2

T1

1−
⎛
⎜
⎝

⎞

⎠
⋅= (1)

But p v
k

⋅ C= means p1 v1
k

⋅ p2 v2
k

⋅= or p1

R T1⋅

p1

⎛
⎜
⎝

⎞

⎠

k

⋅ p2

R T2⋅

p2

⎛
⎜
⎝

⎞

⎠

k

⋅=

Rearranging
T2

T1

p2

p1

⎛
⎜
⎝

⎞

⎠

k 1−

k

=

Combining with Eq. 1 w
R T1⋅

k 1−

p2

p1

⎛
⎜
⎝

⎞

⎠

k 1−

k

1−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

w
1

0.4
286.9×

J

kg K⋅
⋅ 20 273+( )× K

4

1

⎛⎜
⎝

⎞
⎠

1.4 1−

1.4

1−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

×= w 102
kJ

kg
=



Problem 4.9 [Difficulty: 2]

Given: Data on cooling of a can of soda in a refrigerator

Find: How long it takes to warm up in a room

Solution:

The First Law of Thermodynamics for the can (either warming or cooling) is

M c⋅
dT

dt
⋅ k− T Tamb−( )⋅= or

dT

dt
k− T Tamb−( )⋅=

where M is the can mass, c is the average specific heat of the can and its contents, T is the temperature, and Tamb is the ambient

temperature

Separating variables
dT

T Tamb−
A− dt⋅=

Integrating T t( ) Tamb Tinit Tamb−( ) e
A− t

⋅+=

where Tinit is the initial temperature.  The available data from the coolling can now be used to obtain a value for constant A

Given data for cooling Tinit 80 °F= Tinit 540 R⋅= Tamb 35 °F= Tamb 495 R⋅=

T 45 °F= T 505 R⋅= when τ 2 hr⋅=

Hence k
1

τ
ln

Tinit Tamb−

T Tamb−

⎛
⎜
⎝

⎞

⎠
⋅=

1

2 hr⋅

1 hr⋅

3600 s⋅
× ln

540 495−

505 495−
⎛⎜
⎝

⎞
⎠

×= k 2.09 10
4−

× s
1−

=

Then, for the warming up process

Tinit 45 °F= Tinit 505 R⋅= Tamb 72 °F= Tamb 532 R⋅=

Tend 60 °F= Tend 520 R⋅=

with Tend Tamb Tinit Tamb−( ) e
k− τ

⋅+=

Hence the time τ is τ
1

k
ln

Tinit Tamb−

Tend Tamb−

⎛
⎜
⎝

⎞

⎠
⋅=

s

2.09 10
4−

⋅
ln

505 532−

520 532−
⎛⎜
⎝

⎞
⎠

⋅= τ 3.88 10
3

× s= τ 1.08 hr⋅=



Problem 4.10 [Difficulty: 2]

Given: Data on heating and cooling a copper block

Find: Final system temperature

Solution:

Basic equation Q W ∆E

Assumptions:  1) Stationary system ΔE = ΔU   2) No work W = 0   3) Adiabatic Q = 0

Then for the system (water and copper)

∆U 0 or Mcopper ccopper Tcopper Mw cw Tw Mcopper ccopper Mw cw  Tf (1)

where Tf  is the final temperature of the water (w) and copper (copper)

The given data is Mcopper 5 kg ccopper 385
J

kg K
 cw 4186

J

kg K
 V 4 L

Tcopper 90 273( ) K Tw 10 273( ) K

Also, for the water ρ 999
kg

m
3

 so Mw ρ V Mw 4.00 kg

Solving Eq. 1 for Tf Tf

Mcopper ccopper Tcopper Mw cw Tw

Mcopper ccopper Mw cw 


Tf 291 K Tf 18.1 °C



Problem 4.11 [Difficulty: 2]

Given: Data on heat loss from persons, and people-filled auditorium

Find: Internal energy change of air and of system; air temperature rise

Solution:

Basic equation Q W ∆E

Assumptions:  1) Stationary system ΔE =ΔU   2) No work W = 0

Then for the air ∆U Q 85
W

person
 6000 people 15 min

60 s

min
 ∆U 459 MJ

For the air and people ∆U Qsurroundings 0

The increase in air energy is equal and opposite to the loss in people energy

For the air ∆U Q but for air (an ideal gas) ∆U M cv ∆T with M ρ V
p V

Rair T


Hence ∆T
Q

M cv


Rair Q T

cv p V


From Table A.6 Rair 286.9
J

kg K
 and cv 717.4

J

kg K


∆T
286.9

717.4
459 10

6
 J 20 273( ) K

1

101 10
3




m
2

N


1

3.5 10
5




1

m
3

 ∆T 1.521 K

This is the temperature change in 15 min.  The rate of change is then
∆T

15 min
6.09

K

hr




Problem 4.12    [Difficulty: 3] 

 

 

 
 

Given:  Data on velocity field and control volume geometry 

 

Find:  Several surface integrals 

 

Solution: 
 

 

kwdyjwdzAd ˆˆ
1 −=


   kdyjdzAd ˆˆ
1 −=


 

 

kwdyAd ˆ
2 −=


    kdyAd ˆ
2 −=


 

 

( )kbyjaV ˆˆ +=


    ( )kyjV ˆ5ˆ10 +=


 

 

 

 

(a) ( ) ( ) ydydzkdyjdzkyjdAV 510ˆˆˆ5ˆ101 −=−⋅+=⋅


 

 

(b) 5.7
2

5
10510

1

0

21

0

1

0

1

0

1
1

=−=−=⋅ ∫∫∫ yzydydzdAV
A


 

 

(c) ( ) ( ) ydykdykyjdAV 5ˆˆ5ˆ102 −=−⋅+=⋅


 

 

 

(d) ( ) ( ) ydykyjdAVV 5ˆ5ˆ102 +−=⋅


 

 

(e) ( ) ( ) kjkyjyydykyjdAVV
A

ˆ33.8ˆ25ˆ
3

25ˆ255ˆ5ˆ10

1

0

3
1

0

2

1

0

2
2

−−=−−=+−=⋅ ∫∫


 

 

 

y 

z 

 

 

Control 
volume 



Problem 4.13    [Difficulty: 3] 

 

 

 
Given:  Data on velocity field and control volume geometry 

 

Find:  Volume flow rate and momentum flux 

 

Solution: 
 

First we define the area and velocity vectors 

 

kdydyxidydzAd ˆˆ +=


     

 

jbyiaxV ˆˆ +=


 or jyixV ˆˆ +=


 

 

We will need the equation of the surface:  xz
4

3
3−=  or zx

3

4
4 −=  

Then 

 

a) Volume flow rate 

( ) ( )

( )
s

m
30

s

m
3060

3

2
45

3

4
45ˆˆˆˆ

33

3

0

2

3

0

3

0

5

0

=−=

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ −==+⋅+=⋅= ∫∫ ∫∫∫

Q

zzdzzdzxdykdxdyidydzjyixAdVQ
AA



 

b) Momentum flux 

 

( ) ( )( ) ( ) ( )( )

( )

( )

Nˆ75ˆ80flux Momentum

ˆ75ˆ1648485

ˆ612
2

25ˆ
27

16

3

16
165ˆ

3

2
4

2

25ˆ
9

16

3

32
165

ˆ
3

4
4

2
ˆ

3

4
45ˆˆ

ˆˆˆˆˆˆˆˆ

3

0

32

3

0

2

3

0

2

3

0

5

0

23

0

23

0

5

0

3

0

5

0

2

ji

ji

jizzzjzzidzzz

jdzz
y

idzzjdzxydyidzdyx

xdydzjyixkdxdyidydzjyixjyixAdVV
AAA

+=

++−=

−+⎟
⎠
⎞

⎜
⎝
⎛ +−==⎟

⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +−=

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −=+=

+=+⋅++=⋅

∫

∫∫∫ ∫∫ ∫

∫∫∫

ρρ

ρρρ


 

x 

y 

5 m 

4 m

3 m

z



Problem 4.14    [Difficulty: 3] 

 

 

 
Given:  Data on velocity field and control volume geometry 

 

Find:  Surface integrals 

 

Solution: 
 

First we define the area and velocity vectors 

 

jdxdzidydzAd ˆˆ +=


 kcjbyiaxV ˆˆˆ ++=


   or   kjyixV ˆˆ2ˆ2 ++=


 

We will need the equation of the surface:  xy
2

3
=  or yx

3

2
=  

Then 

 

( ) ( )

( )
s

m
2466

4

3
2

3

1
2

2

3

3

2

ˆˆˆˆˆ

3

2

0

2

3

0

2

2

0

2

0

2

0

3

0

2

0

2

0

2

0

3

0

−=−−=

−−=−−=−−=

−⋅++−=⋅

∫ ∫∫ ∫∫ ∫∫ ∫

∫∫

baQ

xbyaxdxdzbydydzadzbydxdzaxdy

jdxdzidydzkcjbyiaxdAV
AA



 

We will again need the equation of the surface:  xy
2

3
=  or yx

3

2
= , and also dxdy

2

3
=  and ba =  

( ) ( )( ) ( )
( )( )

( )

( ) ( ) ( )

2

4

22

2

0

2
2

0

3
2

2

0

3
2

2

0

2

0

2

0

2

0

22

2

0

2

0

22

s

mˆ60ˆ96ˆ64

ˆ12ˆ24ˆ16
2

6ˆ
3

9ˆ
3

6

ˆ3ˆ
2

9ˆ3

3ˆˆ
2

3ˆ

2

3

2

3ˆˆ
2

3ˆ

ˆˆˆ

ˆˆˆˆˆˆˆˆ

kji

kacjaia
x

acj
x

ai
x

a

kdzacxdxjdzdxxaidzdxxa

axdxdzkcjaxiax

xdxdzadxdzaxkcjaxiax

bydxdzaxdydzkcjbyiax

jdxdzidydzkcjbyiaxkcjbyiaxAdVV

A

A

A

AA

−−=

−−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

−−=

−⎟
⎠
⎞

⎜
⎝
⎛ ++−=

⎟
⎠
⎞

⎜
⎝
⎛ −−⎟
⎠
⎞

⎜
⎝
⎛ ++−=

−−++−=

−⋅++−++−=⋅

∫ ∫∫ ∫∫ ∫

∫

∫

∫
∫∫



 

x 

y 

5 m

4 m

3 m 

z



Problem 4.15      [Difficulty: 2] 
 

 
 

 

 

 

 

Given: Control Volume with linear velocity distribution 

Find: Volume flow rate and momentum flux 

Solution: Apply the expressions for volume and momentum flux 

 

Governing equations: ∫ ⋅=
A

dAVQ


  ( )∫ ⋅=
A

AdVVmf


ρ  

 

Assumption:  (1) Incompressible flow 

 

For a linear velocity profile iy
h

V
V ˆ=


 and also  idywAd ˆ−=


 

 

For the volume flow rate: 

( )
hh

y

h

y

y

h

Vw
dyy

h

Vw
idywi

h

V
Q

0

2

00
2

ˆˆ −=−=−⋅= ∫∫
==

 

 

VhwQ
2

1
−=  

 

The momentum flux is 

 
hh

y

h

y

y
i

h

wV
dyyi

h

wV
ydy

h

Vw
i

h

V
mf

0

3

2

2

0

2

2

2

0
3

ˆˆˆ ρρρ −=−=⎟
⎠
⎞

⎜
⎝
⎛−⋅= ∫∫

==

 

    

iwhVmf ˆ
3

1 2ρ−=  



Problem 4.16      [Difficulty: 2] 
 

 
 

 

 

 

 

Given: Control Volume with linear velocity distribution 

Find: Kinetic energy flux 

Solution: Apply the expression for kinetic energy flux 

 

Governing equation: ∫ ⋅=
A

AdV
V

kef


ρ
2

2

 

 

 

Assumption:  (1) Incompressible flow 

 

For a linear velocity profile iy
h

V
V ˆ=


 ( ) y
h

V
yV =  and also  idywAd ˆ−=


 

 

The kinetic energy flux is 

 
hh

y

h

y

y

h

wV
dyy

h

wV
ydy

h

Vw
y

h

V
kef

0

4

3

3

0

3

3

3

0

2

4222

1 ρρρ −=−=⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛= ∫∫

==

 

    

whVkef 3

8

1 ρ−=  



Problem 4.17      [Difficulty: 2] 
 

 
 

Given: Control Volume with parabolic velocity distribution 

Find: Volume flow rate and momentum flux 

Solution: Apply the expressions for volume and momentum flux 

 

Governing equations: ∫ ⋅=
A

dAVQ


  ( )∫ ⋅=
A

AdVVmf


ρ  

 

 

Assumption:  (1) Incompressible flow 

 

For a linear velocity profile i
R

r
uiuV ˆ1ˆ

2

max
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−==


 and also  irdrAd ˆ2π=


 

 

For the volume flow rate: 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−= ∫∫

==
42

2
42

22ˆ2ˆ1
22

max

0

2

42

max

0

2

3

max

0

2

max

RR
u

R

rr
udy

R

r
ruirdri

R

r
uQ

hR

y

R

r

ππππ

 

 

2
max

2

1
RuQ π=  

 

The momentum flux is 

 

( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

∫

∫∫

=

==

642
ˆ2

642
ˆ2

2ˆ2

2ˆ1ˆ2ˆ1ˆ1

222
2
max

0

4

6

2

42
2
max

0

4

5

2

3
2
max

0

2

3

max

2

max

0

2

max

2

max

RRR
iu

R

r

R

rr
iu

dr
R

r

R

r
riu

dr
R

r
rui

R

r
uirdri

R

r
ui

R

r
umf

h

R

y

R

y

R

r

π

π

π

ππ

 

    

iRumf ˆ
3

1 22
maxπ=  



Problem 4.18      [Difficulty: 2] 
 

 
 

Given: Control Volume with parabolic velocity distribution 

Find: Kinetic energy flux 

Solution: Apply the expressions for kinetic energy flux 

 

Governing equation: ∫ ⋅=
A

AdV
V

kef


ρ
2

2

 

 

 

Assumption:  (1) Incompressible flow 

 

For a linear velocity profile i
R

r
uiuV ˆ1ˆ

2

max
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−==


  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−==

2

max 1
R

r
uuV   and also irdrAd ˆ2π=


 

 

For the volume flow rate: 

( )

h

R

r

R

r

R

r

R

r

R

r

R

r

R

rr
u

dr
R

r

R

r

R

r
ru

rdr
R

r

R

r

R

r
u

rdr
R

r
u

R

r

R

r
u

irdri
R

r
u

R

r
ukef

0

6

8

4

6

2
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3
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0

6
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4
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2

3
3
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0
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3
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0

2
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2
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0

2
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2
2
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824

3

2

33

331

1221
2

1

ˆ2ˆ11
2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

∫

∫

∫

∫

=

=

=

=

πρ

πρ

πρ

πρ

πρ

 

 

23
max

8

1
Rukef πρ=  

 



Problem 4.19 [Difficulty: 1]

Given: Data on flow through nozzles

Find: Exit velocity in each jet; velocity in pipe

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

The given data is Q 2.2 gpm⋅= d
1

32
in⋅= n 50= (Number of nozzles) D

3

4
in⋅=

Area of each nozzle A
π

4
d

2
⋅= A 7.67 10

4−
× in

2
=

Area of the pipe Apipe
π

4
D

2
⋅= Apipe 0.442in

2
=

Total area of nozzles Atotal n A⋅= Atotal 0.0383in
2

=

The jet speeds are then V
Q

Atotal

= V 18.4
ft

s
= (Note that gal 231 in

3
= )

Then for the pipe flow

CS

V
→

A
→
⋅( )∑ Vpipe− Apipe⋅ n V⋅ A⋅+= 0=

Hence Vpipe V
n A⋅

Apipe

⋅= V n⋅
d

D

⎛⎜
⎝

⎞
⎠

2

⋅=

Vpipe 18.4
ft

s
⋅ 50×

1

32

3

4

⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

2

×= Vpipe 1.60
ft

s
⋅=



Problem 4.20 [Difficulty: 1]

Given: Data on flow through nozzles

Find: Average velocity in head feeder; flow rate

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then for the nozzle flow

CS

V
→

A
→
⋅( )∑ Vfeeder− Afeeder⋅ 10 Vnozzle⋅ Anozzle⋅+= 0=

Hence Vfeeder Vnozzle

10 Anozzle⋅

Afeeder

⋅= Vnozzle 10⋅
Dnozzle

Dfeeder

⎛
⎜
⎝

⎞

⎠

2

⋅=

Vfeeder 10
ft

s
⋅ 10×

1

8

1

⎛
⎜
⎜
⎝

⎞

⎠

2

×= Vfeeder 1.56
ft

s
⋅=

The flow rate is Q Vfeeder Afeeder⋅= Vfeeder

π Dfeeder
2

⋅

4
⋅=

Q 1.56
ft

s
⋅

π

4
× 1 in⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

2

×
7.48 gal⋅

1 ft
3

⋅
×

60 s⋅

1 min⋅
×= Q 3.82 gpm⋅=



Problem 4.21 [Difficulty: 3]

Given: Data on flow into and out of tank

Find: Time at which exit pump is switched on; time at which drain is opened; flow rate into drain

Solution:

Basic equation

t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Uniform flow   2) Incompressible flow

After inlet pump is on

t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+

t
Mtank

∂

∂
ρ Vin⋅ Ain⋅−= 0=

t
Mtank

∂

∂
ρ Atank⋅

dh

dt
⋅= ρ Vin⋅ Ain⋅=

dh

dt
Vin

Ain

Atank

⋅= Vin

Din

Dtank

⎛
⎜
⎝

⎞

⎠

2

⋅= where h is the level of water in the tank

Hence the time to reach hexit = 0.7 m is texit

hexit

dh

dt

=
hexit

Vin

Dtank

Din

⎛
⎜
⎝

⎞

⎠

2

⋅= texit 0.7 m⋅
1

5
×

s

m
⋅

3 m⋅

0.1 m⋅
⎛⎜
⎝

⎞
⎠

2

×= texit 126 s=

After exit pump is on
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+

t
Mtank

∂

∂
ρ Vin⋅ Ain⋅− ρ Vexit⋅ Aexit⋅+= 0= Atank

dh

dt
⋅ Vin Ain⋅ Vexit Aexit⋅−=

dh

dt
Vin

Ain

Atank

⋅ Vexit

Aexit

Atank

⋅−= Vin

Din

Dtank

⎛
⎜
⎝

⎞

⎠

2

⋅ Vexit

Dexit

Dtank

⎛
⎜
⎝

⎞

⎠

2

⋅−=

Hence the time to reach hdrain = 2 m is tdrain texit

hdrain hexit−( )
dh

dt

+=
hdrain hexit−( )

Vin

Din

Dtank

⎛
⎜
⎝

⎞

⎠

2

⋅ Vexit

Dexit

Dtank

⎛
⎜
⎝

⎞

⎠

2

⋅−

=

tdrain 126 s⋅ 2 0.7−( ) m⋅
1

5
m

s
⋅

0.1 m⋅

3 m⋅
⎛⎜
⎝

⎞
⎠

2

× 3
m

s
⋅

0.08 m⋅

3 m⋅
⎛⎜
⎝

⎞
⎠

2

×−

×+=
tdrain 506 s=

The flow rate into the drain is equal to the net inflow (the level in the tank is now constant)

Qdrain Vin

π Din
2

⋅

4
⋅ Vexit

π Dexit
2

⋅

4
⋅−= Qdrain 5

m

s
⋅

π

4
× 0.1 m⋅( )

2
× 3

m

s
⋅

π

4
× 0.08 m⋅( )

2
×−= Qdrain 0.0242

m
3

s
=



Problem 4.22 [Difficulty: 1]

Given: Data on wind tunnel geometry

Find: Average speeds in wind tunnel; diameter of section 3

Solution:

Basic equation Q V A

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Given data: Q 15
m

3

s
 D1 1.5 m D2 1 m V3 75

m

s


Between sections 1 and 2 Q V1 A1 V1

π D1
2



4
 V2 A2 V2

π D2
2



4


Hence V1
Q

π

4
D1

2


 V1 8.49
m

s
 V2

Q

π

4
D2

2


 V2 19.1
m

s


For section 3 we can use V1

π D1
2



4
 V3

π D3
2



4
 or D3 D1

V1

V3

 D3 0.505 m



Problem 4.23 Difficulty: 4]

Given: Data on flow into and out of cooling tower

Find: Volume and mass flow rate of cool water; mass flow rate of moist and dry air

Solution:

Basic equation

CS

ρ V
→
⋅ A
→
⋅( )∑ 0= and at each inlet/exit Q V A⋅=

Assumptions:  1) Uniform flow   2) Incompressible flow

Given data: mwarm 2.5 10
5

⋅
lb

hr
⋅= D 6 in⋅= V 5

ft

s
⋅= ρmoist 0.065

lb

ft
3

⋅=

At the cool water exit Qcool V A⋅= Qcool 5
ft

s
⋅

π

4
× 0.5 ft⋅( )

2
×= Qcool 0.982

ft
3

s
⋅= Qcool 441 gpm⋅=

The mass flow rate is mcool ρ Qcool⋅= mcool 1.94
slug

ft
3

⋅ 0.982×
ft

3

s
⋅= mcool 1.91

slug

s
⋅= mcool 2.21 10

5
×

lb

hr
⋅=

NOTE: Software does not allow dots over terms, so m represents mass flow rate, not mass!

For the water flow we need

CS

ρ V
→
⋅ A
→
⋅( )∑ 0= to balance the water flow

We have mwarm− mcool+ mv+ 0= mv mwarm mcool−= mv 29341
lb

hr
⋅=

This is the mass flow rate of water vapor.  To obtain air flow rates, from psychrometrics x
mv

mair

=

where x is the relative humidity.  It is also known (try Googling "density of moist air") that
ρmoist

ρdry

1 x+

1 x
RH2O

Rair

⋅+

=

We are given ρmoist 0.065
lb

ft
3

⋅=



For dry air we could use the ideal gas equation ρdry
p

R T⋅
= but here we use atmospheric air density (Table A.3)

ρdry 0.002377
slug

ft
3

⋅= ρdry 0.002377
slug

ft
3

⋅ 32.2×
lb

slug
⋅= ρdry 0.0765

lb

ft
3

⋅=

Note that moist air is less dense than dry air!

Hence
0.065

0.0765

1 x+

1 x
85.78

53.33
⋅+

= using data from Table A.6

x
0.0765 0.065−

0.065
85.78

53.33
⋅ .0765−

= x 0.410=

Hence
mv

mair

x= leads to mair

mv

x
= mair 29341

lb

hr
⋅

1

0.41
×= mair 71563

lb

hr
⋅=

Finally, the mass flow rate of moist air is mmoist mv mair+= mmoist 1.01 10
5

×
lb

hr
⋅=



Problem 4.24 [Difficulty: 1]

Given: Data on flow through box

Find: Velocity at station 3

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then for the box

CS

V
→

A
→
⋅( )∑ V1− A1⋅ V2 A2⋅+ V3 A3⋅+= 0=

Note that the vectors indicate that flow is in at location 1 and out at location 2; we assume outflow at location 3

Hence V3 V1

A1

A3

⋅ V2

A2

A3

⋅−= V3 10
ft

s
⋅

0.5

0.6
× 20

ft

s
⋅

0.1

0.6
×−= V3 5

ft

s
⋅=

Based on geometry Vx V3 sin 60 deg⋅( )⋅= Vx 4.33
ft

s
⋅=

Vy V3− cos 60 deg⋅( )⋅= Vy 2.5−
ft

s
⋅=

V3

→⎯
4.33

ft

s
⋅ 2.5−

ft

s
⋅, ⎛⎜

⎝
⎞
⎠

=



Problem 4.25 [Difficulty: 1]

Given: Data on flow through device

Find: Volume flow rate at port 3

Solution:

Basic equation

CS

V
→

A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Then for the box

CS

V
→

A
→
⋅( )∑ V1− A1⋅ V2 A2⋅+ V3 A3⋅+= V1− A1⋅ V2 A2⋅+ Q3+=

Note we assume outflow at port 3

Hence Q3 V1 A1⋅ V2 A2⋅−= Q3 3
m

s
⋅ 0.1× m

2
⋅ 10

m

s
⋅ 0.05× m

2
⋅−= Q3 0.2−

m
3

s
⋅=

The negative sign indicates the flow at port 3 is inwards. Flow rate at port 3 is 0.2 m3/s inwards



Problem 4.26 [Difficulty: 1]

Given: Water needs of farmer

Find: Number of supply pipes needed

Solution:

Basic equation Q V A

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

The given data is: A 150 m 400 m A 6 10
4

 m
2

 h 7.5 cm t 1 hr D 37.5 cm V 2.5
m

s


Then Q
A h

t
 Q 1.25

m
3

s


If n is the number of pipes Q V
π

4
 D

2
 n or n

4 Q

π V D
2


 n 4.527

The farmer needs 5 pipes.



Problem 4.27 [Difficulty: 1]

Given: Data on filling of glass carboy

Find: Time to fill

Solution:

We can treat this as an unsteady problem if we choose the CS as the entire carboy

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Incompressible flow 2) Uniform flow

Given data: Q 3 gpm⋅= D 15 in⋅= h 2 ft⋅=

Hence
t
MCV

∂

∂
ρ A⋅

dh

dt
⋅= ρ A⋅

h

τ
⋅=

CS

ρ V
→
⋅ A
→
⋅( )∑−= ρ Q⋅=

where Q is the fill rate, A is the carboy cross-section area, dh/dt is the rate of rise in the carboy, and τ is the fill time

Hence τ

π

4
D

2
⋅ h⋅

Q
= τ 6.12 min⋅=



Problem 4.28 [Difficulty: 1]

Given: Data on filling of a sink

Find: Time to half fill; rate at which level drops

Solution:

This is an unsteady problem if we choose the CS as the entire sink

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Incompressible flow

Given data: mrate 4 gpm⋅= L 2 ft⋅= w 18 in⋅= d 12 in⋅= Q 4 gpm⋅= Qdrain 1 gpm⋅=

Hence
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑−= Inflow Outflow−= (1)

To half fill: V
1

2
L⋅ w⋅ d⋅= V 1.5 ft

3
= V 11.2 gal=

Then, using Eq 1
V

τ
Q= τ

V

Q
= τ 168 s= τ 2.81 min=

After the drain opens, Eq. 1 becomes
dV

dt
L w⋅ Vlevel⋅= Qdrain−= where Vlevel is the speed of water level drop

Vlevel

Qdrain

L w⋅
−= Vlevel 7.43− 10

4−
×

ft

s
= Vlevel 0.535−

in

min
=



Problem 4.29 [Difficulty: 1]

Given: Air flow system

Find: Flow rate and velocity into each room; narrowest supply duct

Solution:

Basic equation Q V A

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

The given data is: Qperson 8
L

s
 nrooms 6 nstudents 20

h 200 mm w 500 mm Vmax 1.75
m

s


Then for each room Qroom nstudents Qperson Qroom 160
L

s
 Qroom 0.16

m
3

s


and Vroom

Qroom

w h
 Vroom 1.6

m

s


For the supply duct Q nrooms Qroom Q 960
L

s
 Q 0.96

m
3

s


and Q Vmax A Vmax w h where w and h are now the supply duct dimensions h 500 mm

w
Q

Vmax h
 w 1.097 m



Problem 4.30 [Difficulty: 1]

Given: Data on filling of a basement during a storm

Find: Flow rate of storm into basement

Solution:

This is an unsteady problem if we choose the CS as the entire basement

Basic equation
t
MCV

∂

∂
CS

ρ V
→
⋅ A
→
⋅( )∑+ 0=

Assumptions:  1) Incompressible flow

Given data: Qpump 27.5 gpm⋅=
dh

dt
4

in

hr
⋅= A 30 ft⋅ 20⋅ ft⋅=

Hence
t
MCV

∂

∂
ρ A⋅

dh

dt
⋅=

CS

ρ V
→
⋅ A
→
⋅( )∑−= ρ Qstorm⋅ ρ Qpump⋅−= where A is the basement area

and dh/dt is the rate at which the

height of water in the basement

changes.

Qstorm Qpump A
dh

dt
⋅−=

or

Qstorm 27.5
gal

min
⋅ 30 ft⋅ 20× ft⋅

4

12

ft

hr
⋅⎛⎜

⎝
⎞
⎠

×
7.48 gal⋅

ft
3

×
1 hr⋅

60 min⋅
×−= Data on gals from Table G.2

Qstorm 2.57 gpm⋅=



Problem 4.31 [Difficulty: 1]

Given: Data on compressible flow

Find: Downstream density

Solution:

Basic equation

CS

ρ V
→
⋅ A
→
⋅( )∑ 0=

Assumptions:  1) Steady flow   2) Uniform flow

Then for the box

CS

ρ V
→
⋅ A
→
⋅( )∑ ρu− Vu⋅ Au⋅ ρd Vd⋅ Ad⋅+= 0=

Hence ρu ρd

Vd Ad⋅

Vu Au⋅
⋅= ρu 1

kg

m
3

⋅

1000
m

s
⋅

1500
m

s
⋅

⋅
0.1 m

2
⋅

0.25 m
2

⋅
⋅= ρu 0.267

kg

m
3

=



Problem 4.32 [Difficulty: 2]

Given: Data on flow through device

Find: Velocity V3; plot V3 against time; find when V3 is zero; total mean flow

Solution:

Governing equation: For incompressible flow (Eq. 4.13) and uniform flow A
→

V
→⌠⎮

⎮⌡
d V

→

∑ A
→
⋅= 0=

Applying to the device (assuming V3 is out) V1− A1⋅ V2 A2⋅− V3 A3⋅+ 0=

V3

V1 A1⋅ V2 A2⋅+

A3

=

10 e

t

2
−

⋅
m

s
⋅ 0.1× m

2
⋅ 2 cos 2 π⋅ t⋅( )⋅

m

s
⋅ 0.2× m

2
⋅+

0.15 m
2

⋅
=

The velocity at A3 is V3 6.67 e

t

2
−

⋅ 2.67 cos 2 π⋅ t⋅( )⋅+=

The total mean volumetric flow at A3 is

Q

0

∞

tV3 A3⋅
⌠
⎮
⌡

d=
0

∞

t6.67 e

t

2
−

⋅ 2.67 cos 2 π⋅ t⋅( )⋅+

⎛
⎜
⎝

⎞

⎠ 0.15⋅

⌠
⎮
⎮
⎮⌡

d
m

s
m

2
⋅⎛⎜

⎝
⎞
⎠

⋅=

Q

∞t

2− e

t

2
−

⋅
1

5 π⋅
sin 2 π⋅ t⋅( )⋅+

⎛
⎜
⎜
⎝

⎞

⎠
lim

→
2−( )−= 2 m

3
⋅= Q 2 m

3
⋅=

The time at which V3 first is zero, and the plot of V3 is shown in the corresponding Excel workbook t 2.39 s⋅=



t  (s) V 3 (m/s)

0.00 9.33

0.10 8.50

0.20 6.86

0.30 4.91

0.40 3.30

0.50 2.53

0.60 2.78

0.70 3.87

0.80 5.29

0.90 6.41

1.00 6.71

1.10 6.00

1.20 4.48

1.30 2.66

1.40 1.15

1.50 0.48

1.60 0.84

1.70 2.03

1.80 3.53 The time at which V 3 first  becomes zero can be found using Goal Seek

1.90 4.74

2.00 5.12 t (s) V 3 (m/s)

2.10 4.49 2.39 0.00

2.20 3.04

2.30 1.29

2.40 -0.15

2.50 -0.76

Exit Velocity vs Time

-2

0

2

4

6

8

10

0.0 0.5 1.0 1.5 2.0 2.5

t  (s)

V
3
 (

m
/s

)



Problem 4.33 [Difficulty: 2]

Given: Data on flow down an inclined plane

Find: Find umax

Solution:

Basic equation mflow Aρu
⌠
⎮
⌡

d=

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 mflow

0

h

yρ
ρ g⋅ sin θ( )⋅

μ
⋅ h y⋅

y
2

2
−

⎛
⎜
⎝

⎞

⎠
⋅ w⋅

⌠⎮
⎮
⎮⌡

d=
ρ

2
g⋅ sin θ( )⋅ w⋅

μ
0

h

yh y⋅
y

2

2
−

⎛
⎜
⎝

⎞

⎠

⌠⎮
⎮
⎮⌡

d⋅=

mflow
ρ

2
g⋅ sin θ( )⋅ w⋅

μ

h
3

2

h
3

6
−

⎛
⎜
⎝

⎞

⎠
⋅=

Hence mflow
ρ

2
g⋅ sin θ( )⋅ w⋅ h

3
⋅

3 μ⋅
=



Problem 4.34 [Difficulty: 2]

CS 

x 



y 
2h 



Given: Data on flow at inlet and outlet of channel

Find: Find umax

Solution:

0=⋅∫
CS

AdV


ρBasic equation

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 ρ− U⋅ 2⋅ h⋅ w⋅
h−

h

yρ u y( )⋅
⌠
⎮
⌡

d+ 0=

h−

h

yumax 1
y

h

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅

⌠⎮
⎮
⎮⌡

d 2 h⋅ U⋅=

umax h h−( )−[ ]
h

3

3 h
2

⋅

h
3

3 h
2

⋅
−
⎛⎜
⎜
⎝

⎞

⎠
−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅ 2 h⋅ U⋅= umax
4

3
⋅ h⋅ 2 h⋅ U⋅=

Hence umax
3

2
U⋅=

3

2
2.5×

m

s
⋅= umax 3.75

m

s
⋅=



Problem 4.35 [Difficulty: 2]

Given: Data on flow at inlet and outlet of pipe

Find: Find U

Solution:

0=⋅∫
CS

AdV


ρBasic equation

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at inlet and exit ρ− U⋅ π⋅ R
2

⋅
0

R

rρ u r( )⋅ 2⋅ π⋅ r⋅
⌠
⎮
⌡

d+ 0=

0

R

rumax 1
r

R

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅ 2⋅ r⋅

⌠⎮
⎮
⎮⌡

d R
2

U⋅=

umax R
2 1

2
R

2
⋅−⎛⎜

⎝
⎞
⎠

⋅ R
2

U⋅= U
1

2
umax⋅=

Hence U
1

2
3×

m

s
⋅= U 1.5

m

s
⋅=



Problem 4.36 [Difficulty: 2]

Given: Data on flow at inlet and outlet of channel

Find: Find umax

Solution:

0=⋅∫
CS

AdV


ρBasic equation

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 ρ− V1⋅ H⋅ w⋅

H−

H

yρ V2 y( )⋅ w⋅
⌠
⎮
⌡

d+ 0=

or V1 H⋅

H−

H

yVm cos
π y⋅

2 H⋅
⎛⎜
⎝

⎞
⎠

⋅
⌠
⎮
⎮
⌡

d= 2

0

H

yVm cos
π y⋅

2 H⋅
⎛⎜
⎝

⎞
⎠

⋅
⌠
⎮
⎮
⌡

d⋅= 2 Vm⋅
2 H⋅

π
⋅ sin

π

2

⎛⎜
⎝

⎞
⎠

sin 0( )−⎛⎜
⎝

⎞
⎠

⋅=
4 H⋅ Vm⋅

π
=

Vm
π

4
V1⋅=

Hence



Problem 4.37 [Difficulty: 3]

Given: Velocity distribution in annulus

Find: Volume flow rate; average velocity; maximum velocity; plot velocity distribution

Solution:

Governing equation For the flow rate (Eq. 4.14a) and average velocity (Eq.

4.14b)
Q A

→
V
→⌠⎮

⎮⌡
d= Vav

Q

A
=

The given data is Ro 5 mm⋅= Ri 1 mm⋅=
∆p

L
10−

kPa

m
⋅= μ 0.1

N s⋅

m
2

⋅= (From Fig. A.2)

u r( )
∆p−

4 μ⋅ L⋅
Ro

2
r
2

−
Ro

2
Ri

2
−

ln
Ri

Ro

⎛
⎜
⎝

⎞

⎠

ln
Ro

r

⎛
⎜
⎝

⎞
⎠

⋅+
⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

⋅=

The flow rate is Q

Ri

Ro

ru r( ) 2⋅ π⋅ r⋅
⌠
⎮
⌡

d=

Considerable mathematical manipulation leads to Q
∆p π⋅

8 μ⋅ L⋅
Ro

2
Ri

2
−⎛

⎝
⎞
⎠⋅

Ro
2

Ri
2

−⎛
⎝

⎞
⎠

ln
Ro

Ri

⎛
⎜
⎝

⎞

⎠

Ri
2

Ro
2

+⎛
⎝

⎞
⎠−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

Substituting values Q
π

8
10− 10

3
⋅( )⋅

N

m
2

m⋅
⋅

m
2

0.1 N⋅ s⋅
⋅ 5

2
1

2
−( )⋅

m

1000

⎛⎜
⎝

⎞
⎠

2

⋅
5

2
1

2
−

ln
5

1

⎛⎜
⎝

⎞
⎠

5
2

1
2

+( )−
⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅
m

1000

⎛⎜
⎝

⎞
⎠

2

⋅=

Q 1.045 10
5−

×
m

3

s
= Q 10.45

mL

s
⋅=

The average velocity is Vav
Q

A
=

Q

π Ro
2

Ri
2

−⎛
⎝

⎞
⎠⋅

= Vav
1

π
1.045× 10

5−
×

m
3

s
⋅

1

5
2

1
2

−
×

1000

m

⎛⎜
⎝

⎞
⎠

2

⋅= Vav 0.139
m

s
=

The maximum velocity occurs when
du

dr
0=

x

∆p−

4 μ⋅ L⋅
Ro

2
r
2

−
Ro

2
Ri

2
−

ln
Ri

Ro

⎛
⎜
⎝

⎞

⎠

ln
Ro

r

⎛
⎜
⎝

⎞
⎠

⋅+
⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

⋅
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

d

d
=

∆p

4 μ⋅ L⋅
− 2− r⋅

Ro
2

Ri
2

−⎛
⎝

⎞
⎠

ln
Ri

Ro

⎛
⎜
⎝

⎞

⎠
r⋅

−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=



Then r
Ri

2
Ro

2
−

2 ln
Ri

Ro

⎛
⎜
⎝

⎞

⎠
⋅

= r 2.73 mm⋅= Substituting in u(r) umax u 2.73 mm⋅( )= 0.213
m

s
⋅=

The maximum velocity using Solver instead, and the plot, are also shown in an Excel workbook

R o = 5 mm

R i = 1 mm

¬p /L  = -10 kPa/m

¬◊ϕ 0.1 N.s/m
2

r  (mm) u  (m/s)

1.00 0.000

1.25 0.069

1.50 0.120

1.75 0.157

2.00 0.183

2.25 0.201

2.50 0.210

2.75 0.213

3.00 0.210

3.25 0.200

3.50 0.186

3.75 0.166

4.00 0.142

4.25 0.113

4.50 0.079

4.75 0.042

5.00 0.000

The maximum velocity can be found using Solver

r  (mm) u  (m/s)

2.73 0.213

Annular Velocity Distribution

0

1

2

3

4

5

6

0.00 0.05 0.10 0.15 0.20 0.25

u  (m/s)

r
 (
m

m
)



Problem 4.38 [Difficulty: 2]

Given: Data on flow at inlet and outlet of a reducing elbow

Find: Find the maximum velcoity at section 1

Solution:

0=⋅∫
CS

AdV


ρBasic equation

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1, 2 and 3

0

h1

yV1 y( ) w⋅
⌠
⎮
⌡

d− V2 w⋅ h2⋅+ V3 w⋅ h3⋅+ 0=

or
V1max

h1 0

h1

yy
⌠
⎮
⌡

d⋅
V1max

h1

h1
2

2
⋅= V2 h2⋅ V3 h3⋅+=

Hence V1max
2

h1

V3 h3⋅ V2 h2⋅+( )⋅=

V1max
2

0.5 m⋅
5

m

s
⋅ 0.15× m⋅ 1

m

s
⋅ 0.2× m⋅+⎛⎜

⎝
⎞
⎠

⋅= V1max 3.80
m

s
=



Problem 4.39 [Difficulty: 2]

Given: Data on flow at inlet and outlet of channel

Find: Find umax

Solution:

0=⋅∫
CS

AdV


ρBasic equation

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at inlet and exit U− w⋅ h⋅

0

h

xVexit x( ) w⋅
⌠
⎮
⌡

d+ 0=

Here we have Vexit Vmax Vmax Vmin−( ) x

h
⋅−= But we also have Vmax 2 Vmin⋅=

Hence Vexit 2 Vmin⋅ Vmin
x

h
⋅−=

0

h

xVexit x( ) w⋅
⌠
⎮
⌡

d

0

h

x2 Vmin⋅ Vmin
x

h
⋅−⎛⎜

⎝
⎞
⎠

w⋅
⌠
⎮
⎮
⌡

d= 2 Vmin⋅ h⋅ Vmin
h

2

2 h⋅
⋅−

⎛
⎜
⎝

⎞

⎠
w⋅=

3

2
Vmin⋅ h⋅ w⋅=

3

2
Vmin⋅ h⋅ w⋅ U w⋅ h⋅= Vmin

2

3
U⋅=

Hence

Vmin
2

3
7.5×

m

s
⋅= Vmin 5.00

m

s
⋅=



Problem 4.30

 

Problem 4.40                                                           [Difficulty: 2]



Problem 4.27

 

Problem 4.41                                                        [Difficulty: 2]



Problem 4.31

 

Problem 4.42                                                        [Difficulty: 2]



Problem 4.28
 

Problem 4.43                                                            [Difficulty: 2]



Problem 4.33
 

Problem 4.44                                                           [Difficulty: 2]



Problem 4.45 [Difficulty: 2]

 

Outflow 

CS 

Given: Data on airflow out of tank

Find: Find rate of change of density of air in tank

Solution:

0=⋅+
∂
∂

∫∫
CSCV

AdVVd
t


ρρ

Basic equation

Assumptions:  1) Density in tank is uniform 2) Uniform flow 3) Air is an ideal gas

Hence Vtank

dρtank

dt
⋅ ρexit V⋅ A⋅+ 0=

dρtank

dt

ρexit V⋅ A⋅

Vtank

−=
pexit V⋅ A⋅

Rair Texit⋅ Vtank⋅
−=

dρtank

dt
300− 10

3
×

N

m
2

⋅ 250×
m

s
⋅ 100× mm

2
⋅

1 m⋅

1000 mm⋅
⎛⎜
⎝

⎞
⎠

2

×
1

286.9
×

kg K⋅

N m⋅
⋅

1

20− 273+( ) K⋅
×

1

0.4 m
3

⋅
×=

dρtank

dt
0.258−

kg

m
3

s
⋅= The mass in the tank is decreasing, as expected

Hence



Problem 4.32

 

Problem 4.46                                                        [Difficulty: 2]



Problem 4.35
 

Problem 4.47          [Difficulty: 2]



Problem 4.48 [Difficulty: 3]

Given: Data on draining of a tank

Find: Depth at various times; Plot of depth versus time

Solution:

0=⋅+
∂
∂

∫∫
CSCV

AdVVd
t


ρρBasic equation

Assumptions:  1) Uniform flow   2) Incompressible flow  3) Neglect air density

Treating the tank as the CV the basic equation becomes

t
0

y

yρ Atank⋅
⌠
⎮
⌡

d
∂

∂
ρ V⋅ Aopening⋅+ 0= or ρ

π

4
⋅ D

2
⋅

dy

dt
⋅ ρ

π

4
⋅ d

2
⋅ V⋅+ 0=

Using V 2 g⋅ y⋅= and simplifying
dy

dt

d

D

⎛⎜
⎝

⎞
⎠

2

− 2 g⋅⋅ y

1

2
⋅=

Separating variables
dy

y

1

2

d

D

⎛⎜
⎝

⎞
⎠

2

2 g⋅⋅ dt⋅= and integrating 2 y

1

2
y0

1

2
−

⎛⎜
⎜⎝

⎞

⎠⋅
d

D

⎛⎜
⎝

⎞
⎠

2

− 2 g⋅⋅ t=

Solving for y y t( ) y0 1
g

2 y0⋅

d

D

⎛⎜
⎝

⎞
⎠

2

⋅ t⋅−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

2

⋅=

Using the given data y 1 min⋅( ) 1.73 ft⋅= y 2 min⋅( ) 0.804 ft⋅= y 3 min⋅( ) 0.229 ft⋅=

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

t (min)

D
ep

th
 (

ft
)



Problem 4.49 [Difficulty: 3]

Given: Data on draining of a tank

Find: Times to a depth of 1 foot; Plot of drain timeversus opening size

Solution:

0=⋅+
∂
∂

∫∫
CSCV

AdVVd
t


ρρBasic equation

Assumptions:  1) Uniform flow   2) Incompressible flow  3) Neglect air density

Treating the tank as the CV the basic equation becomes

t
0

y

yρ Atank⋅
⌠
⎮
⌡

d
∂

∂
ρ V⋅ Aopening⋅+ 0= or ρ

π

4
⋅ D

2
⋅

dy

dt
⋅ ρ

π

4
⋅ d

2
⋅ V⋅+ 0=

Using V 2 g⋅ y⋅= and simplifying
dy

dt

d

D

⎛⎜
⎝

⎞
⎠

2

− 2 g⋅⋅ y

1

2
⋅=

Separating variables
dy

y

1

2

d

D

⎛⎜
⎝

⎞
⎠

2

2 g⋅⋅ dt⋅= and integrating 2 y

1

2
y0

1

2
−

⎛⎜
⎜⎝

⎞

⎠⋅
d

D

⎛⎜
⎝

⎞
⎠

2

− 2 g⋅⋅ t=

Using the given data t 2 ft⋅( ) 45.6 s= t 1 ft⋅( ) 105 s=
Solving for t t

2 y0⋅

g

D

d

⎛⎜
⎝

⎞
⎠

2

⋅ 1
y

y0

−
⎛
⎜
⎝

⎞

⎠
⋅=

Hence for the first drop of 1 foot ∆t t 2 ft⋅( )= ∆t 45.6 s=

For the second drop of 1 foot ∆t t 1 ft⋅( ) t 2 ft⋅( )−= ∆t 59.5 s=

This is because as the level drops the exit speed, hence drain rate, decreases.

0.1 0.2 0.3 0.4 0.5

5

10

15

d (in)

D
ra

in
 T

im
e 

(m
in

)



Problem 4.38
Problem 4.50               [Difficulty: 3]



Problem 4.39
 

Problem 4.51                                                           [Difficulty: 3]



Problem 4.40
 

Problem 4.52                                                           [Difficulty: 3]



Problem 4.41
 

Problem 4.53                                                             [Difficulty: 3]

P4.48.



Problem 4.42
 

Problem 4.54                                                             [Difficulty: 4]



Problem 4.55 [Difficulty: 4]

Given: Data on draining of a funnel

Find: Formula for drain time; time to drain from 12 in to 6 in; plot drain time versus hole diameter

Solution:

0=⋅+
∂
∂

∫∫
CSCV

AdVVd
t


ρρBasic equation

Assumptions:  1) Uniform flow   2) Incompressible flow  3) Neglect air density

Treating the funnel as the CV the basic equation becomes

t
0

y

yρ Afunnel⋅
⌠
⎮
⌡

d
∂

∂
ρ V⋅ Aopening⋅+ 0=

For the funnel Afunnel π r
2

⋅= π y tan θ( )⋅( )
2

⋅=

Hence ρ π⋅ tan θ( )( )
2

⋅
t 0

y

yy
2⌠

⎮
⌡

d
∂

∂
⋅ ρ V⋅

π

4
⋅ d

2
⋅+ 0= or tan θ( )( )

2

t

y
3

3

⎛
⎜
⎝

⎞

⎠
d

d
⋅ 2 g⋅ y⋅−

d
2

4
⋅=

Then tan θ( )( )
2

y
2

⋅
dy

dt
⋅ 2 g⋅ y⋅−

d
2

4
⋅=

Separating variables y

3

2
dy⋅

2 g⋅ d
2

⋅

4 tan θ( )
2

⋅
− dt⋅=

Hence

y0

0

yy

3

2

⌠
⎮
⎮
⎮
⌡

d
2 g⋅ d⋅

4 tan θ( )
2

⋅
− t⋅= or

2

5
y0

5

2
⋅

2 g⋅ d⋅

4 tan θ( )
2

⋅
t⋅=

Solving for t t
8

5

tan θ( )
2

y0

5

2
⋅

2 g⋅ d⋅
⋅= and using the given data t 2.55 min⋅=



To find the time to drain from 12 in to 6 in., we use the time equation with the two depths; this finds the time to drain from 12 in and 6

in, so the difference is the time we want

y1 6 in⋅= ∆t1
8

5

tan θ( )
2

y0

5

2
⋅

2 g⋅ d
2

⋅
⋅

8

5

tan θ( )
2

y1

5

2
⋅

2 g⋅ d
2

⋅
⋅−= ∆t1 2.1 min⋅=

∆t2
8

5

tan θ( )
2

y1

5

2
⋅

2 g⋅ d
2

⋅
⋅= ∆t2 0.451 min⋅= Note that ∆t1 ∆t2+ 2.55 min⋅=

The second time is a bit longer because although the flow rate decreases, the area of the funnel does too.

0.25 0.3 0.35 0.4 0.45 0.5

1

2

3

d (in)

D
ra

in
 T

im
e 

(m
in

)



Problem 4.56 [Difficulty: 4]

Given: Data on draining of a funnel

Find: Diameter that will drain in 1 min.; plot diamter versus depth y0

Solution:

0=⋅+
∂
∂

∫∫
CSCV

AdVVd
t


ρρBasic equation

Assumptions:  1) Uniform flow   2) Incompressible flow  3) Neglect air density

Treating the funnel as the CV the basic equation becomes

t
0

y

yρ Afunnel⋅
⌠
⎮
⌡

d
∂

∂
ρ V⋅ Aopening⋅+ 0=

For the funnel Afunnel π r
2

⋅= π y tan θ( )⋅( )
2

⋅=

Hence ρ π⋅ tan θ( )( )
2

⋅
t 0

y

yy
2⌠

⎮
⌡

d
∂

∂
⋅ ρ V⋅

π

4
⋅ d

2
⋅+ 0= or tan θ( )( )

2

t

y
3

3

⎛
⎜
⎝

⎞

⎠
d

d
⋅ 2 g⋅ y⋅−

d
2

4
⋅=

Then tan θ( )( )
2

y
2

⋅
dy

dt
⋅ 2 g⋅ y⋅−

d
2

4
⋅= Separating variables y

3

2
dy⋅

2 g⋅ d
2

⋅

4 tan θ( )
2

⋅
− dt⋅=

Hence

y0

0

yy

3

2

⌠
⎮
⎮
⎮
⌡

d
2 g⋅ d⋅

4 tan θ( )
2

⋅
− t⋅= or

2

5
y0

5

2
⋅

2 g⋅ d⋅

4 tan θ( )
2

⋅
t⋅=

Solving for d d
8

5

tan θ( )
2

y0

5

2
⋅

2 g⋅ t⋅
⋅= and using the given data, for t 1 min= d 0.399 in=

0 2 4 6 8 10 12 14 16 18 20 22 24

0.2

0.4

0.6

0.8

1

y0 (in)

d
 (

in
)



 

Problem 4.57                                             [Difficulty: 4]  Part 1/2



 

Problem 4.57                                                          [Difficulty: 4]   Part 2/2

For p = 500 kPa, solving Eq. 2 for t we find t = 42.2 days 



Problem 4.58 [Difficulty: 3]

Given: Data on flow through a control surface

Find: Net rate of momentum flux

Solution:

∫ ⋅
CS

dAVV


ρBasic equation: We need to evaluate

Assumptions:  1) Uniform flow at each section

From Problem 4.24 V1 10
ft

s
⋅= A1 0.5 ft

2
⋅= V2 20

ft

s
⋅= A2 0.1 ft

2
⋅= A3 0.6 ft

2
⋅= V3 5

ft

s
⋅= It is an outlet

( ) ( ) ( ) ( )[ ] ( )
( ) ( )[ ]

( )[ ] ( )[ ]jAVAViAVAV

AVjViVAVjVAViV

AVjViVAVjVAViV

AVVAVVAVVdAVV
CS

ˆ60cosˆ60sin

ˆ60cosˆ60sinˆˆ

ˆ60cosˆ60sinˆˆ

3

2

32

2

23

2

31

2

1

3333222111

3333222111

333222111

−++−=

−++−=

⋅−+⋅+⋅=

⋅+⋅+⋅=⋅∫

ρρ

ρρρ

ρρρ

ρρρρ



Then for the control surface

( )[ ]=+− 60sin3

2

31

2

1 AVAVρHence the x component is

65
lbm

ft
3

⋅ 10
2

− 0.5× 5
2

0.6× sin 60 deg⋅( )×+( )×
ft

4

s
2

⋅
lbf s

2
⋅

lbm ft⋅
× 2406− lbf⋅=

( )[ ]=− 60cos3

2

32

2

2 AVAVρand the y component is

65
lbm

ft
3

⋅ 20
2

0.1× 5
2

0.6× cos 60 deg⋅( )×−( )×
ft

4

s
2

⋅
lbf s

2
⋅

lbm ft⋅
× 2113 lbf⋅=



Problem 4.59 [Difficulty: 3]

CS 

x 



y 
2h 



Given: Data on flow at inlet and outlet of channel

Find: Ratio of outlet to inlet momentum flux

Solution:

∫ ⋅=
A

x dAVu


ρmfBasic equation: Momentum flux in x direction at a section

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 mfx1 U ρ⋅ U− 2⋅ h⋅( )⋅ w⋅= mfx1 2 ρ⋅ w⋅ U
2

⋅ h⋅=

Hence mfx2
h−

h

yρ u
2

⋅ w⋅
⌠
⎮
⌡

d= ρ w⋅ umax
2

⋅

h−

h

y1
y

h

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

2⌠
⎮
⎮
⎮
⌡

d⋅= ρ w⋅ umax
2

⋅

h−

h

y1 2
y

h

⎛⎜
⎝

⎞
⎠

2

⋅−
y

h

⎛⎜
⎝

⎞
⎠

4

+
⎡
⎢
⎣

⎤
⎥
⎦

⌠⎮
⎮
⎮⌡

d⋅=

mfx2 ρ w⋅ umax
2

⋅ 2 h⋅
4

3
h⋅−

2

5
h⋅+⎛⎜

⎝
⎞
⎠

⋅= ρ w⋅ umax
2

⋅
16

15
⋅ h⋅=

Then the ratio of momentum fluxes is

mfx2

mfx1

16

15
ρ⋅ w⋅ umax

2
⋅ h⋅

2 ρ⋅ w⋅ U
2

⋅ h⋅
=

8

15

umax

U

⎛
⎜
⎝

⎞
⎠

2

⋅=

But, from Problem 4.34 umax
3

2
U⋅=

mfx2

mfx1

8

15

3

2
U⋅

U

⎛
⎜
⎜
⎝

⎞

⎠

2

⋅=
6

5
= 1.2=

Hence the momentum increases as it flows in the entrance region of the channel.  This appears to contradict common sense, as

friction should reduce flow momentum.  What happens is the pressure drops significantly along the channel so the net force on

the CV is to the right.



Problem 4.60 [Difficulty: 3]

Given: Data on flow at inlet and outlet of pipe

Find: Ratio of outlet to inlet momentum flux

Solution:

∫ ⋅=
A

x dAVu


ρmfBasic equation: Momentum flux in x direction at a section

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating at 1 and 2 mfx1 U ρ⋅ U− π⋅ R
2

⋅( )⋅= mfx1 ρ π⋅ U
2

⋅ R
2

⋅=

Hence mfx2
0

R

rρ u
2

⋅ 2⋅ π⋅ r⋅
⌠
⎮
⌡

d= 2 ρ⋅ π⋅ umax
2

⋅

0

R

rr 1
r

R

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

2

⋅

⌠
⎮
⎮
⎮
⌡

d⋅= 2 ρ⋅ π⋅ umax
2

⋅

0

R

yr 2
r
3

R
2

⋅−
r
5

R
4

+
⎛⎜
⎜
⎝

⎞

⎠

⌠
⎮
⎮
⎮
⌡

d⋅=

mfx2 2 ρ⋅ π⋅ umax
2

⋅
R

2

2

R
2

2
−

R
2

6
+

⎛
⎜
⎝

⎞

⎠
⋅= ρ π⋅ umax

2
⋅

R
2

3
⋅=

Then the ratio of momentum fluxes is

mfx2

mfx1

1

3
ρ⋅ π⋅ umax

2
⋅ R

2
⋅

ρ π⋅ U
2

⋅ R
2

⋅
=

1

3

umax

U

⎛
⎜
⎝

⎞
⎠

2

⋅=

But, from Problem 4.35 umax 2 U⋅=
mfx2

mfx1

1

3

2 U⋅

U

⎛⎜
⎝

⎞
⎠

2

⋅=
4

3
= 1.33=

Hence the momentum increases as it flows in the entrance region of the pipe  This appears to contradict common sense, as friction

should reduce flow momentum.  What happens is the pressure drops significantly along the pipe so the net force on the CV is to

the right.



Problem 4.61 [Difficulty: 3]

Given: Data on flow through a bend

Find: Find net momentum flux

Solution:

0=⋅∫
CS

AdV


ρBasic equations Momentum fluxes: mfx = mfy =

Assumptions:  1) Steady flow   2) Incompressible flow

Evaluating mass flux at 1, 2 and 3

0

h1

yV1 y( ) w⋅
⌠
⎮
⌡

d− V2 w⋅ h2⋅+ V3 w⋅ h3⋅+ 0=

or V3 h3⋅

0

h1

yV1 y( )
⌠
⎮
⌡

d V2 h2⋅−=

0

h1

yV1max
y

h1

⋅
⌠
⎮
⎮
⌡

d V2 h2⋅−=
V1max

h1

h1
2

2
⋅ V2 h2⋅−=

Hence V1max
2

h1

V3 h3⋅ V2 h2⋅+( )⋅= Using given data V1max 3.8
m

s
=

For the x momentum, evaluating at 1, 2 and 3

mfx

0

h1

yV1 y( ) ρ⋅ V1 y( )⋅ w⋅
⌠
⎮
⌡

d− V3 cos θ( )⋅ ρ⋅ V3⋅ h3⋅ w⋅+=

mfx

0

h1

yV1max
y

h1

⋅⎛
⎜
⎝

⎞
⎠

2

ρ⋅ w⋅
⌠
⎮
⎮
⎮⌡

d− V3
2
ρ⋅ h3⋅ cos θ( )⋅ w⋅+=

V1max
2

h1
2

−
h1

3

3
⋅ ρ⋅ w⋅ V3

2
ρ⋅ h3⋅ w⋅ cos θ( )⋅+=

mfx ρ w⋅ V1max
2

−
h1

3
⋅ V3

2
cos θ( )⋅ h3⋅+

⎛
⎜
⎝

⎞
⎠

⋅= Using given data mfx 841 N=

For the y momentum, evaluating at 1, 2 and 3

mfy V2− ρ⋅ V2⋅ h2⋅ w⋅ V3 sin θ( )⋅ ρ⋅ V3⋅ h3⋅ w⋅+=

mfy ρ w⋅ V2
2

− h2⋅ V3
2

sin θ( )⋅ h3⋅−⎛
⎝

⎞
⎠⋅= Using given data mfy 2075− N=



Problem 4.49
 

Problem 4.62                                                        [Difficulty: 2]



Problem 4.63 [Difficulty: 2]

 
CS 

x 

 

y 

Rx 



U 

Given: Water jet hitting object

Find: Jet speed; Force generated

Solution:

Basic equations: Continuity and Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Given data Q 1 gpm⋅= d 0.01 in⋅= ρ 1.94
slug

ft
3

⋅=

Using continuity Q V A⋅= U
π

d
⋅ d

2
⋅= Using data U

Q

π

4
d

2
⋅

= U 4085
ft

s
= U 2785 mph⋅= FAST!

Using momentum Rx u1 ρ⋅ u1− A1⋅( )⋅= ρ− U
2

⋅ A⋅= ρ− U
2

⋅
π D

2
⋅

4
⋅=

Hence Rx ρ− U
2

⋅
π d

2
⋅

4
⋅=

Rx 1.94−
slug

ft
3

⋅ 4085
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×

π
.01

12
ft⋅⎛⎜

⎝
⎞
⎠

2

⋅

4
×

lbf s
2

⋅

slug ft⋅
×= Rx 17.7− lbf⋅=



Problem 4.64 [Difficulty: 1]

Given: Fully developed flow in pipe

Find: Why pressure drops if momentum is constant

Solution:

Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Fully developed flow

Hence Fx
∆p

L
τw As⋅−= 0= ∆p L τw⋅ As⋅=

where ∆p is the pressure drop over length L, τw is the wall friction and As is the pipe surface area

The sum of forces in the x direction is zero.  The friction force on the fluid is in the negative x direction, so the net pressure force

must be in the positive direction.  Hence pressure drops in the x direction so that pressure and friction forces balance



Problem 4.65 [Difficulty: 2]

Given: Data on flow and system geometry

Find: Force required to hold plug

Solution:

Basic equation:

The given data is D1 0.25 m⋅= D2 0.2 m⋅= Q 1.5
m

3

s
⋅= p1 3500 kPa⋅= ρ 999

kg

m
3

⋅=

Then A1

π D1
2

⋅

4
= A1 0.0491 m

2
= V1

Q

A1

= V1 30.6
m

s
=

A2
π

4
D1

2
D2

2
−⎛

⎝
⎞
⎠⋅= A2 0.0177 m

2
= V2

Q

A2

= V2 84.9
m

s
=

Applying the basic equation

F− p1 A2⋅+ p2 A2⋅− 0 V1 ρ− V1⋅ A1⋅( )⋅+ V2 ρ V2⋅ A2⋅( )⋅+= and p2 0= (gage)

Hence F p1 A1⋅ ρ V1
2

A1⋅ V2
2

A2⋅−⎛
⎝

⎞
⎠⋅+=

F 3500
kN

m
2

× 0.0491⋅ m
2

⋅ 999
kg

m
3

⋅ 30.6
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.0491⋅ m
2

⋅ 84.9
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.0177⋅ m
2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

×+= F 90.4 kN⋅=



Problem 4.66 [Difficulty: 2]

Given: Nozzle hitting stationary cart

Find: Value of M to hold stationary; plot M versu θ

Solution:

Basic equation: Momentum flux in x direction for the tank

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow 5) Exit velocity is V

Hence Rx M− g⋅= V ρ⋅ V− A⋅( )⋅ V cos θ( )⋅ V A⋅( )⋅+= ρ V
2

⋅ A⋅ cos θ( ) 1−( )⋅= M
ρ V

2
⋅ A⋅

g
1 cos θ( )−( )⋅=

When θ = 40o M
s
2

9.81 m⋅
1000×

kg

m
3

⋅ 10
m

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.1× m
2

⋅ 1 cos 40 deg⋅( )−( )×= M 238 kg=

0 45 90 135 180

1000

2000

3000

Angle (deg)

M
 (

k
g

)

This graph can be plotted in Excel



Problem 4.67 [Difficulty: 2]

Given: Large tank with nozzle and wire

Find: Tension in wire; plot for range of water depths

Solution:

Basic equation: Momentum flux in x direction for the tank

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx T V ρ V A( ) ρ V
2

 A ρ 2 g y( )
π d

2


4
 T

1

2
ρ g y π d

2
 T is linear with y!

When y = 0.9 m T
π

2
1000

kg

m
3

 9.81
m

s
2

 0.9 m 0.015 m( )
2


N s

2


kg m
 T 3.12 N

0 0.3 0.6 0.9

1

2

3

4

y (m)

T
 (

N
)

This graph can be plotted in Excel



Problem 4.68 [Difficulty: 2]

 

CS 



Rx 



V 

V 
θ 

y 

x 

Given: Water flowing past cylinder

Find: Horizontal force on cylinder

Solution:

Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx u1 ρ⋅ u1− A1⋅( )⋅ u2 ρ⋅ u2 A2⋅( )⋅+= 0 ρ V− sin θ( )⋅( )⋅ V a⋅ b⋅( )⋅+= Rx ρ− V
2

⋅ a⋅ b⋅ sin θ( )⋅=

For given data Rx 1000−
kg

m
3

⋅ 3
m

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.0125× m⋅ 0.0025× m⋅ sin 20 deg⋅( )×
N s

2
⋅

kg m⋅
×= Rx 0.0962− N=

This is the force on the fluid (it is to the left).  Hence the force on the cylinder is Rx Rx−= Rx 0.0962 N=



Problem 4.69 [Difficulty: 2]

CS 

x 

 

y 

Rx 


V V 

Given: Water jet hitting plate with opening

Find: Force generated on plate; plot force versus diameter d

Solution:

Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Hence Rx u1 ρ⋅ u1− A1⋅( )⋅ u2 ρ⋅ u2 A2⋅( )⋅+= ρ− V
2

⋅
π D

2
⋅

4
⋅ ρ V

2
⋅

π d
2

⋅

4
⋅+= Rx

π ρ⋅ V
2

⋅ D
2

⋅

4
− 1

d

D

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅= (1)

For given data Rx
π

4
− 1.94⋅

slug

ft
3

⋅ 15
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×
1

3
ft⋅⎛⎜

⎝
⎞
⎠

2

× 1
1

4

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×= Rx 35.7− lbf⋅=

From Eq 1 (using the absolute value of Rx)

0 0.2 0.4 0.6 0.8 1

10

20

30

40

Diameter Ratio (d/D)

F
o

rc
e 

(l
b

f)

This graph can be plotted in Excel



Problem 4.70 [Difficulty: 4]

 

CS 

x 
y 

Rx 

V 

W 

Given: Water flowing into tank

Find: Mass flow rates estimated by students.  Explain discrepancy

Solution:

Basic equation: Momentum flux in y direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

For the first student m1
ρ V⋅

t
= where m1 represents mass flow rate (software cannot render a dot above it!)

m1 1000
kg

m
3

⋅ 3× m
3

⋅
1

60 s⋅
×= m1 50.0

kg

s
=

For the second student m2
M

t
= where m2 represents mass flow rate

m2 3150 kg⋅
1

60 s⋅
×= m2 52.5

kg

s
=

There is a discrepancy because the second student is measuring instantaneous weight PLUS the force generated as the pipe flow

momentum is "killed".

There is a discrepancy because the second student is measuring instantaneous weight PLUS the force generated as the pipe flow

momentum is "killed".  To analyse this we first need to find the speed at which the water stream enters the tank, 10 m below the

pipe exit.  This would be a good place to use the Bernoulli equation, but this problem is in the set before Bernoulli is covered.

Instead we use the simple concept that the fluid is falling under gravity (a conclusion supported by the Bernoulli equation).  From

the equations for falling under gravity:

Vtank
2

Vpipe
2

2 g⋅ h⋅+=

where Vtank is the speed entering the tank, Vpipe is the speed at the pipe, and h = 10 m is the distance traveled.  Vpipe is obtained from

Vpipe

m1

ρ
π dpipe

2
⋅

4
⋅

=
4 m1⋅

π ρ⋅ dpipe
2

⋅
=



Vpipe
4

π
50×

kg

s
⋅

m
3

1000 kg⋅
×

1

0.05 m⋅
⎛⎜
⎝

⎞
⎠

2

×= Vpipe 25.5
m

s
=

Then Vtank Vpipe
2

2 g⋅ h⋅+= Vtank 25.5
m

s
⋅⎛⎜

⎝
⎞
⎠

2

2 9.81×
m

s
2

⋅ 10× m+= Vtank 29.1
m

s
=

We can now use the y momentum equation for the CS shown above

Ry W− Vtank− ρ⋅ Vtank− Atank⋅( )⋅=

where Atank is the area of the water flow as it enters the tank.  But for the water flow Vtank Atank⋅ Vpipe Apipe⋅=

Hence ∆W Ry W−= ρ Vtank⋅ Vpipe⋅
π dpipe

2
⋅

4
⋅=

This equation indicate the instantaneous difference  ΔW between the scale reading (Ry) and the actual weight of water (W) in the tank

∆W 1000
kg

m
3

⋅ 29.1×
m

s
⋅ 25.5×

m

s
⋅

π

4
× 0.05 m⋅( )

2
×= ∆W 1457 N=

Inducated as a mass, this is ∆m
∆W

g
= ∆m 149 kg=

Hence the scale overestimates the weight of water by 1457 N, or a mass of 149 kg

For the second student M 3150 kg⋅ 149 kg⋅−= M 3001 kg=

Hence m2
M

t
= where m2 represents mass flow rate

m2 3001 kg⋅
1

60 s⋅
×= m2 50.0

kg

s
=

Comparing with the answer obtained from student 1, we see the students now agree!  The discrepancy was entirely caused by the

fact that the second student was measuring the weight of tank water PLUS the momentum lost by the water as it entered the tank!



Problem 4.71 [Difficulty: 3]

Given: Water tank attached to mass

Find: Whether tank starts moving; Mass to just hold in place

Solution:

Basic equation: Momentum flux in x direction for the tank

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure at exit 4) Uniform flow

Hence Rx V cos θ( )⋅ ρ⋅ V A⋅( )⋅= ρ V
2

⋅
π D

2
⋅

4
⋅ cos θ( )⋅=

We need to find V.  We could use the Bernoulli equation, but here it is known that V 2 g⋅ h⋅= where h = 2 m is the

height of fluid in the tank

V 2 9.81×
m

s
2

⋅ 2× m⋅= V 6.26
m

s
=

Hence Rx 1000
kg

m
3

⋅ 6.26
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
π

4
× 0.05 m⋅( )

2
× cos 60 deg⋅( )×= Rx 38.5 N=

This force is equal to the tension T in the wire T Rx= T 38.5 N=

For the block, the maximum friction force a mass of M = 10 kg can generate is Fmax M g⋅ μ⋅= where µ is static friction

Fmax 10 kg⋅ 9.81×
m

s
2

⋅ 0.55×
N s

2
⋅

kg m⋅
×= Fmax 54.0 N=

Hence the tension T created by the water jet is less than the maximum friction Fmax; the tank is at rest

The mass that is just sufficient is given by M g⋅ μ⋅ Rx=

M
Rx

g μ⋅
= M 38.5 N⋅

1

9.81
×

s
2

m
⋅

1

0.55
×

kg m⋅

N s
2

⋅
×= M 7.14 kg=



Problem 4.72 [Difficulty: 4]

Given: Gate held in place by water jet

Find: Required jet speed for various water depths

Solution:

Basic equation: Momentum flux in x direction for the wall

Note: We use this equation ONLY for the jet impacting the wall.  For the hydrostatic force and location we use computing equations

FR pc A⋅= y' yc

Ixx

A yc⋅
+=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx V ρ⋅ V− Ajet⋅( )⋅= ρ− V
2

⋅
π D

2
⋅

4
⋅=

This force is the force generated by the wall on the jet; the force of the jet hitting the wall is then

Fjet Rx−= ρ V
2

⋅
π D

2
⋅

4
⋅= where D is the jet diameter

For the hydrostatic force FR pc A⋅= ρ g⋅
h

2
⋅ h⋅ w⋅=

1

2
ρ⋅ g⋅ w⋅ h

2
⋅= y' yc

Ixx

A yc⋅
+=

h

2

w h
3⋅

12

w h⋅
h

2
⋅

+=
2

3
h⋅=

where h is the water depth and w is the gate width

For the gate, we can take moments about the hinge to obtain Fjet− hjet⋅ FR h y'−( )⋅+ Fjet− hjet⋅ FR
h

3
⋅+= 0=

where hjet is the height of the jet from the ground

Hence Fjet ρ V
2

⋅
π D

2
⋅

4
⋅ hjet⋅= FR

h

3
⋅=

1

2
ρ⋅ g⋅ w⋅ h

2
⋅

h

3
⋅= V

2 g⋅ w⋅ h
3

⋅

3 π⋅ D
2

⋅ hj⋅
=

For the first case (h = 1 m) V
2

3 π⋅
9.81×

m

s
2

⋅ 1× m⋅ 1 m⋅( )
3

×
1

0.05 m⋅
⎛⎜
⎝

⎞
⎠

2

×
1

1 m⋅
×= V 28.9

m

s
=

For the second case (h = 0.5 m) V
2

3 π⋅
9.81×

m

s
2

⋅ 1× m⋅ 0.5 m⋅( )
3

×
1

0.05 m⋅
⎛⎜
⎝

⎞
⎠

2

×
1

1 m⋅
×= V 10.2

m

s
=

For the first case (h = 0.25 m) V
2

3 π⋅
9.81×

m

s
2

⋅ 1× m⋅ 0.25 m⋅( )
3

×
1

0.05 m⋅
⎛⎜
⎝

⎞
⎠

2

×
1

1 m⋅
×= V 3.61

m

s
=



Problem 4.55
 

Problem 4.73                                                         [Difficulty: 2]



Problem 4.56
 

Problem 4.74                                                          [Difficulty: 2]



 

Problem 4.75                                                          [Difficulty: 2]



Problem 4.76 [Difficulty: 3]

Given: Flow into and out of CV

Find: Expressions for rate of change of mass, and force

Solution:

Basic equations: Mass and momentum flux

Assumptions:  1) Incompressible flow 2) Uniform flow

For the mass equation
dMCV

dt
CS

ρ V
→
⋅ A
→
⋅( )∑+

dMCV

dt
ρ V1− A1⋅ V2 A2⋅− V3 A3⋅+ V4 A4⋅+( )⋅+= 0=

dMCV

dt
ρ V1 A1⋅ V2 A2⋅+ V3 A3⋅− V4 A4⋅−( )⋅=

For the x momentum Fx

p1 A1⋅

2
+

5

13
p2⋅ A2⋅+

4

5
p3⋅ A3⋅−

5

13
p4⋅ A4⋅− 0

V1

2
ρ− V1⋅ A1⋅( )⋅+

5

13
V2⋅ ρ− V2⋅ A2⋅( )⋅+

4

5
V3⋅ ρ V3⋅ A3⋅( )⋅

5

13
V3⋅ ρ V3⋅ A3⋅( )⋅++

...=

Fx

p1 A1⋅

2
−

5

13
p2⋅ A2⋅−

4

5
p3⋅ A3⋅+

5

13
p4⋅ A4⋅+ ρ

1

2
− V1

2
⋅ A1⋅

5

13
V2

2
⋅ A2⋅−

4

5
V3

2
⋅ A3⋅+

5

13
V3

2
⋅ A3⋅+⎛

⎜
⎝

⎞
⎠

⋅+=

For the y momentum Fy

p1 A1⋅

2
+

12

13
p2⋅ A2⋅−

3

5
p3⋅ A3⋅−

12

13
p4⋅ A4⋅+ 0

V1

2
ρ− V1⋅ A1⋅( )⋅+

12

13
V2⋅ ρ− V2⋅ A2⋅( )⋅−

3

5
V3⋅ ρ V3⋅ A3⋅( )⋅

12

13
V3⋅ ρ V3⋅ A3⋅( )⋅−+

...=

Fy

p1 A1⋅

2
−

12

13
p2⋅ A2⋅+

3

5
p3⋅ A3⋅+

12

13
p4⋅ A4⋅− ρ

1

2
− V1

2
⋅ A1⋅

12

13
V2

2
⋅ A2⋅−

3

5
V3

2
⋅ A3⋅+

12

13
V3

2
⋅ A3⋅−⎛

⎜
⎝

⎞
⎠

⋅+=



Problem 4.77 [Difficulty: 2]

 

Rx 

y 

x CS

 



Given: Water flow through elbow

Find: Force to hold elbow

Solution:

Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx p1g A1⋅+ p2g A2⋅+ V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅−= Rx p1g− A1⋅ p2g A2⋅− ρ V1
2

A1⋅ V2
2

A2⋅+⎛
⎝

⎞
⎠⋅−=

From continuity V2 A2⋅ V1 A1⋅= so V2 V1

A1

A2

⋅= V1

D1

D2

⎛
⎜
⎝

⎞

⎠

2

⋅= V2 0.8
m

s
⋅

0.2

0.04

⎛⎜
⎝

⎞
⎠

2

⋅= V2 20
m

s
⋅=

Hence Rx 350− 10
3

×
N

m
2

⋅
π 0.2 m⋅( )

2
⋅

4
× 75 10

3
×

N

m
2

⋅
π 0.04 m⋅( )

2
⋅

4
×−

1000−
kg

m
3

⋅ 0.8
m

s
⋅⎛⎜

⎝
⎞
⎠

2
π 0.2 m⋅( )

2
⋅

4
× 20

m

s
⋅⎛⎜

⎝
⎞
⎠

2
π .04 m⋅( )

2
⋅

4
×+

⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×+

...=

Rx 11.6− kN⋅=

The force is to the left: It is needed to hold the elbow on against the high pressures, plus it generates the large change in x momentum



Problem 4.78 [Difficulty: 2]

Rx 

y 

x 
CS

Given: Water flow through elbow

Find: Force to hold elbow

Solution:

Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure at exit 4) Uniform flow

Hence Rx p1g A1⋅+ V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅−= Rx p1g− A1⋅ ρ V1
2

A1⋅ V2
2

A2⋅+⎛
⎝

⎞
⎠⋅−=

From continuity V2 A2⋅ V1 A1⋅= so V2 V1

A1

A2

⋅= V2 10
ft

s
⋅

4

1
⋅= V2 40

ft

s
⋅=

Hence Rx 15−
lbf

in
2

⋅ 4× in
2

⋅ 1.94
slug

ft
3

⋅ 10
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

4⋅ in
2

⋅ 40
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

1⋅ in
2

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×−= Rx 86.9− lbf⋅=

The force is to the left: It is needed to hold the elbow on against the high pressure, plus it generates the large change in x momentum



Problem 4.79 [Difficulty: 2]

Given: Water flow through nozzle

Find: Force to hold nozzle

Solution:

Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx p1g A1⋅+ p2g A2⋅+ V1 ρ− V1⋅ A1⋅( )⋅ V2 cos θ( )⋅ ρ V2⋅ A2⋅( )⋅+= Rx p1g− A1⋅ ρ V2
2

A2⋅ cos θ( )⋅ V1
2

A1⋅−⎛
⎝

⎞
⎠⋅+=

From continuity V2 A2⋅ V1 A1⋅= s

o
V2 V1

A1

A2

⋅= V1

D1

D2

⎛
⎜
⎝

⎞

⎠

2

⋅= V2 1.5
m

s
⋅

30

15

⎛⎜
⎝

⎞
⎠

2

⋅= V2 6
m

s
⋅=

Hence Rx 15− 10
3

×
N

m
2

⋅
π 0.3 m⋅( )

2
⋅

4
× 1000

kg

m
3

⋅ 6
m

s
⋅⎛⎜

⎝
⎞
⎠

2
π 0.15 m⋅( )

2
⋅

4
× cos 30 deg⋅( )⋅ 1.5

m

s
⋅⎛⎜

⎝
⎞
⎠

2
π .3 m⋅( )

2
⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×+=

Rx 668− N⋅= The joint is in tension: It is needed to hold the elbow on against the high pressure, plus it generates the large

change in x momentum



Problem 4.61
 

Problem 4.80                                                         [Difficulty: 2]



Problem 4.63 Problem 4.81                                                         [Difficulty: 2]



Problem 4.82 [Difficulty: 2]

Rx

y

x

CS

 



Given: Water flow through orifice plate

Find: Force to hold plate

Solution:

Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Incompressible flow 3) Uniform flow

Hence Rx p1g A1⋅+ p2g A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+= Rx p1g− A1⋅ ρ V2
2

A2⋅ V1
2

A1⋅−⎛
⎝

⎞
⎠⋅+=

From continuity Q V1 A1⋅= V2 A2⋅=

so V1
Q

A1

= 20
ft

3

s
⋅

4

π
1

3
ft⋅⎛⎜

⎝
⎞
⎠

2

⋅

×= 229
ft

s
⋅= and V2 V1

A1

A2

⋅= V1
D

d

⎛⎜
⎝

⎞
⎠

2

⋅= 229
ft

s
⋅

4

1.5

⎛⎜
⎝

⎞
⎠

2

×= 1628
ft

s
⋅=

NOTE: problem has an error: Flow rate should be 2 ft3/s not 20 ft3/s!  We will provide answers to both

Hence Rx 200−
lbf

in
2

⋅
π 4 in⋅( )

2
⋅

4
× 1.94

slug

ft
3

⋅ 1628
ft

s
⋅⎛⎜

⎝
⎞
⎠

2
π 1.5 in⋅( )

2
⋅

4
× 229

ft

s
⋅⎛⎜

⎝
⎞
⎠

2
π 4 in⋅( )

2
⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×+=

Rx 51707 lbf⋅=

With more realistic velocities

Hence Rx 200−
lbf

in
2

⋅
π 4 in⋅( )

2
⋅

4
× 1.94

slug

ft
3

⋅ 163
ft

s
⋅⎛⎜

⎝
⎞
⎠

2
π 1.5 in⋅( )

2
⋅

4
× 22.9

ft

s
⋅⎛⎜

⎝
⎞
⎠

2
π 4 in⋅( )

2
⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×+=

Rx 1970− lbf⋅=
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Problem 4.84 [Difficulty: 2]

Rx

y

x

CS

Ve

Given: Data on rocket motor

Find: Thrust produced

Solution:

Basic equation: Momentum flux in x direction for the elbow

Assumptions:  1) Steady flow   2) Neglect change of momentum within CV 3) Uniform flow

Hence Rx peg Ae Ve ρe Ve Ae  me Ve Rx peg Ae me Ve

where peg is the exit pressure (gage), me is the mass flow rate at the exit (software cannot render dot over m!) and Ve is the exit velocity

For the mass flow rate me mnitricacid maniline 80
kg

s
 32

kg

s
 me 112

kg

s


Hence Rx 110 101( ) 10
3


N

m
2


π 0.6 m( )

2


4
 112

kg

s
 180

m

s


N s
2



kg m
 Rx 22.7 kN
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Problem 4.85 [Difficulty: 2]



 

Problem 4.86                                                          [Difficulty: 3]



Problem 4.87 [Difficulty: 2]

Given: Data on flow and system geometry

Find: Deflection angle as a function of speed; jet speed for 10o deflection

Solution:

The given data is ρ 999
kg

m
3

⋅= A 0.01 m
2

⋅= L 2 m⋅= k 500
N

m
⋅= x0 1 m⋅=

Basic equation (y momentum):

Applying this to the current system in the vertical direction

Fspring V sin θ( )⋅ ρ V⋅ A⋅( )⋅= But Fspring k x⋅= k x0 L sin θ( )⋅−( )⋅=

Hence k x0 L sin θ( )⋅−( )⋅ ρ V
2

⋅ A⋅ sin θ( )⋅=

Solving for θ θ asin
k x0⋅

k L⋅ ρ A⋅ V
2

⋅+

⎛⎜
⎜⎝

⎞

⎠
=

For the speed at which θ = 10o, solve V
k x0 L sin θ( )⋅−( )⋅

ρ A⋅ sin θ( )⋅
= V

500
N

m
⋅ 1 2 sin 5 deg⋅( )⋅−( )⋅ m⋅

999
kg

m
3

⋅ 0.01⋅ m
2

⋅ sin 5 deg⋅( )⋅

kg m⋅

N s
2

⋅
⋅= V 21.8

m

s
=

0 5 10 15 20 25

5

10

15

20

25

30

35

V (m/s)

A
n

g
le

 (
d

eg
.)



Problem 4.69
 

Problem 4.88                                                         [Difficulty: 3]



Problem 4.71
 

Problem 4.89                                                         [Difficulty: 3]



Problem 4.90 [Difficulty: 2]

Rx

CS 

Ry

y

x

Given: Data on nozzle assembly

Find: Reaction force

Solution:

Basic equation: Momentum flux in x and y directions

Assumptions:  1) Steady flow   2) Incompressible flow  CV 3) Uniform flow

For x momentum Rx V2 cos θ( )⋅ ρ V2⋅ A2⋅( )⋅= ρ V2
2

⋅
π D2

2
⋅

4
⋅ cos θ( )⋅=

From continuity A1 V1⋅ A2 V2⋅= V2 V1

A1

A2

⋅= V1

D1

D2

⎛
⎜
⎝

⎞

⎠

2

⋅= V2 2
m

s
⋅

7.5

2.5

⎛⎜
⎝

⎞
⎠

2

×= V2 18
m

s
=

Hence Rx 1000
kg

m
3

⋅ 18
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
π

4
× 0.025 m⋅( )

2
× cos 30 deg⋅( )×

N s
2

⋅

kg m⋅
×= Rx 138 N⋅=

For y momentum Ry p1 A1⋅− W− ρ Vol⋅ g⋅− V1− ρ− V1⋅ A1⋅( )⋅ V2 sin θ( )⋅ ρ V2⋅ A2⋅( )⋅−=

Ry p1

π D1
2

⋅

4
⋅ W+ ρ Vol⋅ g⋅+

ρ π⋅

4
V1

2
D1

2
⋅ V2

2
D2

2
⋅ sin θ( )⋅−⎛

⎝
⎞
⎠⋅+=

where W 4.5 kg⋅ 9.81×
m

s
2

⋅
N s

2
⋅

kg m⋅
×= W 44.1 N= Vol 0.002 m

3
⋅=

Hence Ry 125 10
3

×
N

m
2

⋅
π 0.075 m⋅( )

2
⋅

4
× 44.1 N⋅+ 1000

kg

m
3

⋅ 0.002× m
3

⋅ 9.81×
m

s
2

⋅
N s

2
⋅

kg m⋅
×+

1000
kg

m
3

⋅
π

4
× 2

m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.075 m⋅( )
2

× 18
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.025 m⋅( )
2

× sin 30 deg⋅( )×−
⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×+

...=

Ry 554 N⋅=



Problem 4.91 [Difficulty: 3]

Given: Data on water jet pump

Find: Speed at pump exit; pressure rise

Solution:

Basic equation: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow  CV 3) Uniform flow

From continuity ρ− Vs⋅ As⋅ ρ Vj⋅ Aj⋅− ρ V2⋅ A2⋅+ 0= V2 Vs

As

A2

⋅ Vj

Aj

A2

⋅+= Vs

A2 Aj−

A2

⎛
⎜
⎝

⎞

⎠
⋅ Vj

Aj

A2

⋅+=

V2 10
ft

s
⋅

0.75 0.1−

0.75

⎛⎜
⎝

⎞
⎠

× 100
ft

s
⋅

0.1

0.75
×+= V2 22

ft

s
⋅=

For x momentum p1 A2⋅ p2 A2⋅− Vj ρ− Vj⋅ Aj⋅( )⋅ Vs ρ− Vs⋅ As⋅( )⋅+ V2 ρ V2⋅ A2⋅( )⋅+=

∆p p2 p1−= ρ Vj
2

Aj

A2

⋅ Vs
2

As

A2

⋅+ V2
2

−
⎛
⎜
⎝

⎞

⎠
⋅=

∆p 1.94
slug

ft
3

⋅ 100
ft

s
⋅⎛⎜

⎝
⎞
⎠

2
0.1

0.75
× 10

ft

s
⋅⎛⎜

⎝
⎞
⎠

2
0.75 0.1−( )

0.75
×+ 22

ft

s
⋅⎛⎜

⎝
⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×=

Hence ∆p 1816
lbf

ft
2

⋅= ∆p 12.6 psi⋅=



Problem 4.73
 

Problem 4.92                                                       [Difficulty: 3]



Problem 4.93 [Difficulty: 3]

Rx y

x 

CS

V2V1

p2p1

Given: Data on adiabatic flow of air

Find: Force of air on pipe

Solution:

Basic equation: Continuity, and momentum flux in x direction, plus ideal gas equation

p ρ R T

Assumptions:  1) Steady flow   2) Ideal gas  CV 3) Uniform flow

From continuity ρ1 V1 A1 ρ2 V2 A2 0 ρ1 V1 A ρ2 V2 A ρ1 V1 ρ2 V2

For x momentum Rx p1 A p2 A V1 ρ1 V1 A  V2 ρ2 V2 A  ρ1 V1 A V2 V1 

Rx p2 p1  A ρ1 V1 A V2 V1 

For the air ρ1

P1

Rair T1
 ρ1 200 101( ) 10

3


N

m
2


kg K

286.9 N m


1

60 273( ) K
 ρ1 3.15

kg

m
3



Rx 80 200( ) 10
3


N

m
2

 0.05 m
2

 3.15
kg

m
3

 150
m

s
 0.05 m

2
 300 150( )

m

s


N s
2



kg m


Hence Rx 2456 N

This is the force of the pipe on the air; the pipe is opposing flow.  Hence the force of the air on the pipe is Fpipe Rx

Fpipe 2456 N The air is dragging the pipe to the right
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Problem 4.94                                                       [Difficulty: 3]



Problem 4.95 [Difficulty: 3]

Rx y

x

CS 

V2V1

p2p1

V3
ρ1 ρ2 

Given: Data on heated flow of gas

Find: Force of gas on pipe

Solution:

Basic equation: Continuity, and momentum flux in x direction

p ρ R⋅ T⋅=

Assumptions:  1) Steady flow   2) Uniform flow

From continuity ρ1− V1⋅ A1⋅ ρ2 V2⋅ A2⋅+ m3+ 0= V2 V1

ρ1

ρ2

⋅
m3

ρ2 A⋅
−= where m3 = 20 kg/s is the mass leaving

through the walls (the software does not

allow a dot)

V2 170
m

s
⋅

6

2.75
× 20

kg

s
⋅

m
3

2.75 kg⋅
×

1

0.15 m
2

⋅
×−= V2 322

m

s
=

For x momentum Rx p1 A⋅+ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ V2 ρ2 V2⋅ A⋅( )⋅+=

Rx p2 p1−( ) ρ2 V2
2

⋅+ ρ1 V1
2

⋅−⎡
⎣

⎤
⎦ A⋅=

Rx 300 400−( ) 10
3

×
N

m
2

⋅ 2.75
kg

m
3

⋅ 322
m

s
⋅⎛⎜

⎝
⎞
⎠

2

× 6
kg

m
3

⋅ 170
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

N s
2

⋅

kg m⋅
×+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

0.15× m
2

⋅=

Hence Rx 1760 N=



Problem 4.96 [Difficulty: 3]

Given: Data on flow out of pipe device

Find: Velocities at 1 and 2; force on coupling

Solution:

Basic equations (continuity and x and y mom.):

The given data is ρ 999
kg

m
3

⋅= D 20 cm⋅= L 1 m⋅= t 20 mm⋅= p3g 50 kPa⋅= Q 0.3
m

3

s
⋅=

From continuity Q A Vave⋅= due to linear velocity distribution Vave
1

2
V1 V2+( )⋅=

Note that at the exit V x( ) V1

V2 V1−( )
L

x⋅+=

Hence Q
1

2
V1 V2+( )⋅ L⋅ t⋅=

1

2
V1 2 V1⋅+( )⋅ L⋅ t⋅=

V1
2 Q⋅

3 L⋅ t⋅
= V1 10

m

s
= V2 2 V1⋅= V2 20

m

s
=

At the inlet (location 3) V3
Q

π

4
D

2
⋅

= V3 9.549
m

s
=

Applying x momentum Rx p3g
π

4
⋅ D

2
⋅+ V3− ρ⋅ Q⋅= Rx p3g−

π

4
⋅ D

2
⋅ V3 ρ⋅ Q⋅−= Rx 4.43− kN⋅=

Applying y momentum Ry
0

L

xV x( ) ρ⋅ V x( )⋅ t⋅
⌠
⎮
⌡

d−= ρ− t⋅

0

L

xV1

V2 V1−( )
L

x⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2⌠
⎮
⎮
⎮
⌡

d⋅=

Expanding and integrating Ry ρ− t⋅ V1
2

L⋅ 2 V1⋅
V2 V1−

L

⎛
⎜
⎝

⎞
⎠

⋅
L

2

2
⋅+

V2 V1−

L

⎛
⎜
⎝

⎞
⎠

2
L

3

3
⋅+

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅= Ry 4.66− kN⋅=
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Problem 4.79

 

Problem 4.98         [Difficulty: 3]



Problem 4.99 [Difficulty: 4]

Given: Data on flow in wind tunnel

Find: Mass flow rate in tunnel; Maximum velocity at section 2; Drag on object

Solution: Basic equations: Continuity, and momentum flux in x direction; ideal gas equation

p ρ R⋅ T⋅=

Assumptions:  1) Steady flow   2) Uniform density at each section

From continuity mflow ρ1 V1⋅ A1⋅= ρ1 V1⋅
π D1

2
⋅

4
⋅= where mflow is the mass flow rate

We take ambient conditions for the air density ρair

patm

Rair Tatm⋅
= ρair 101000

N

m
2

⋅
kg K⋅

286.9 N⋅ m⋅
×

1

293 K⋅
×= ρair 1.2

kg

m
3

=

mflow 1.2
kg

m
3

⋅ 12.5×
m

s
⋅

π 0.75 m⋅( )
2

⋅

4
×= mflow 6.63

kg

s
=

Also mflow A2ρ2 u2⋅
⌠
⎮
⎮⌡

d= ρair

0

R

rVmax
r

R
⋅ 2⋅ π⋅ r⋅

⌠
⎮
⎮
⌡

d⋅=
2 π⋅ ρair⋅ Vmax⋅

R
0

R

rr
2⌠

⎮
⌡

d⋅=
2 π⋅ ρair⋅ Vmax⋅ R

2
⋅

3
=

Vmax

3 mflow⋅

2 π⋅ ρair⋅ R
2

⋅
= Vmax

3

2 π⋅
6.63×

kg

s
⋅

m
3

1.2 kg⋅
×

1

0.375 m⋅
⎛⎜
⎝

⎞
⎠

2

×= Vmax 18.8
m

s
=

For x momentum Rx p1 A⋅+ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ A2ρ2 u2⋅ u2⋅
⌠
⎮
⎮⌡

d+=

Rx p2 p1−( ) A⋅ V1 mflow⋅−

0

R

rρair Vmax
r

R
⋅⎛⎜

⎝
⎞
⎠

2

⋅ 2⋅ π⋅ r⋅

⌠⎮
⎮
⎮⌡

d+= p2 p1−( ) A⋅ V1 mflow⋅−
2 π⋅ ρair⋅ Vmax

2
⋅

R
2

0

R

rr
3⌠

⎮
⌡

d⋅+=

Rx p2 p1−( ) A⋅ V1 mflow⋅−
π

2
ρair⋅ Vmax

2
⋅ R

2
⋅+=

We also have p1 ρ g⋅ h1⋅= p1 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅ 0.03× m⋅= p1 294 Pa= p2 ρ g⋅ h2⋅= p2 147 Pa⋅=

Hence Rx 147 294−( )
N

m
2

⋅
π 0.75 m⋅( )

2
⋅

4
× 6.63−

kg

s
⋅ 12.5×

m

s
⋅

π

2
1.2×

kg

m
3

⋅ 18.8
m

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.375 m⋅( )
2

×+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

N

k
×+=

Rx 54− N= The drag on the object is equal and opposite Fdrag Rx−= Fdrag 54.1 N=



Problem 4.100 [Difficulty: 2]

Given: Data on wake behind object

Find: An expression for the drag

Solution:

Basic equation:

Momentum

Applying this to the horizontal motion

F U ρ π 1
2

 U 
0

1

ru r( ) ρ 2 π r u r( )




d F πρ U
2

2

0

1

rr u r( )
2






d









F πρ U
2

 1 2

0

1

rr 1 cos
π r

2







2










2









d















F πρ U
2

 1 2

0

1

rr 2 r cos
π r

2







2

 r cos
π r

2







4







d















Integrating and using the limits F πρ U
2

 1
3

8

2

π
2

















 F
5 π

8

2

π





ρ U

2




Problem 4.101 [Difficulty: 3]

CS 

x 



y 
2h 



Given: Data on flow in 2D channel

Find: Maximum velocity; Pressure drop

Solution:

Basic equations: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Neglect friction

Given data w 25 mm⋅= h 50 mm⋅= Q 0.025
m

3

s
⋅= ρ 750

kg

m
3

⋅=

From continuity Q U1 2⋅ h⋅ w⋅= U1
Q

2 w⋅ h⋅
= U1 10.0

m

s
=

Also ρ− U1⋅ A1⋅ Aρ u2⋅
⌠
⎮
⎮⌡

d+ 0=

U1 2⋅ h⋅ w⋅ w

h−

h

yumax 1
y

2

h
2

−
⎛⎜
⎜
⎝

⎞

⎠
⋅

⌠
⎮
⎮
⎮
⌡

d⋅= w umax⋅ h h−( )−[ ]
h

3

h

3
−⎛⎜
⎝

⎞
⎠

−⎡⎢
⎣

⎤⎥
⎦

−⎡⎢
⎣

⎤⎥
⎦

⋅= w umax⋅
4

3
⋅ h⋅=

Hence umax
3

2
U1⋅= umax 15

m

s
=

For x momentum p1 A⋅ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ A2ρ2 u2⋅ u2⋅
⌠
⎮
⎮⌡

d+= Note that there is no Rx (no friction)

p1 p2− ρ− U1
2

⋅
w

A

h−

h

yρ umax
2

⋅ 1
y

2

h
2

−
⎛⎜
⎜
⎝

⎞

⎠

2

⋅

⌠
⎮
⎮
⎮
⎮⌡

d⋅+= ρ− U1
2

⋅
ρ umax

2
⋅

h
2 h⋅ 2

2

3
h⋅⎛⎜

⎝
⎞
⎠

⋅− 2
1

5
h⋅⎛⎜

⎝
⎞
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅+=

∆p p1 p2−= ρ− U1
2

⋅
8

15
ρ⋅ umax

2
⋅+= ρ U1⋅

8

15

3

2

⎛⎜
⎝

⎞
⎠

2

⋅ 1−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Hence ∆p
1

5
ρ⋅ U1

2
⋅= ∆p 15.0 kPa⋅=



Problem 4.102 [Difficulty: 3]

CS 

x 



y 
2h 



Given: Data on flow in 2D channel

Find: Maximum velocity; Pressure drop

Solution:

Basic equations: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Neglect friction

Given data R 75 mm⋅= Q 0.1
m

3

s
⋅= ρ 850

kg

m
3

⋅=

From continuity Q U1 π⋅ R
2

⋅= U1
Q

π R
2

⋅
= U1 5.66

m

s
=

Also ρ− U1⋅ A1⋅ Aρ u2⋅
⌠
⎮
⎮⌡

d+ 0=

U1 π⋅ R
2

⋅

0

R

rumax 1
r
2

R
2

−
⎛⎜
⎜
⎝

⎞

⎠
⋅ 2⋅ π⋅ r⋅

⌠
⎮
⎮
⎮
⌡

d= 2 π⋅ umax⋅
R

2

2

R
4

4 R
2

⋅
−

⎛⎜
⎜
⎝

⎞

⎠
⋅= 2 π⋅ umax⋅

R
2

4
⋅= π umax⋅

R
2

2
⋅=

Hence umax 2 U1⋅= umax 11.3
m

s
=

For x momentum p1 A⋅ p2 A⋅− V1 ρ1− V1⋅ A⋅( )⋅ A2ρ2 u2⋅ u2⋅
⌠
⎮
⎮⌡

d+= Note that there is no Rx (no friction)

p1 p2−( ) π⋅ R
2

⋅ ρ− π⋅ R
2

⋅ U1
2

⋅

0

R

rρ umax
2

⋅ 1
r
2

R
2

−
⎛⎜
⎜
⎝

⎞

⎠

2

⋅ 2⋅ π⋅ r⋅

⌠
⎮
⎮
⎮
⎮⌡

d+= ρ− π⋅ R
2

⋅ U1
2

⋅ 2 π⋅ ρ⋅ umax
2

⋅
R

2

2
2

R
4

4 R
2

⋅
⋅−

R
6

6 R
4

⋅
+

⎛⎜
⎜
⎝

⎞

⎠
⋅+=

∆p p1 p2−= ρ− U1
2

⋅
1

3
ρ⋅ umax

2
⋅+= ρ− U1

2
⋅

1

3
ρ⋅ 2 U1⋅( )2⋅+= ρ U1⋅

1

3
2( )

2
⋅ 1−⎡⎢

⎣
⎤⎥
⎦

⋅=
1

3
ρ⋅ U1

2
⋅=

Hence ∆p
1

3
850×

kg

m
3

⋅ 5.66
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
N s

2
⋅

kg m⋅
×= ∆p 9.08 kPa⋅=



Problem 4.84
 

Problem 4.103                                                         [Difficulty: 3]



Problem 4.86

 

Problem 4.104                                                        [Difficulty: 3]



Problem 4.105 [Difficulty: 4]

CS

x

y

a

b

d

c 

Ff 

Given: Data on flow of boundary layer

Find: Plot of velocity profile; force to hold plate

Solution:

Basic equations: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible 3) No net pressure force

Given data ρ 750
kg

m
3

⋅= w 1 m⋅= U0 10
m

s
⋅= L 1 m⋅= δ 5 mm⋅=

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

y

δ

u y( )

U0

From continuity ρ− U0⋅ w⋅ δ⋅ mbc+
0

δ

yρ u⋅ w⋅
⌠
⎮
⌡

d+ 0= where mbc is the mass flow rate across bc (Note:

sotware cannot render a dot!)

Hence mbc

0

δ

yρ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

For x momentum Ff− U0 ρ− U0⋅ w⋅ δ⋅( )⋅ U0 mbc⋅+
0

δ

yu ρ⋅ u⋅ w⋅
⌠
⎮
⌡

d+=

0

δ

yU0
2

− u
2

+ U0 U0 u−( )⋅+⎡
⎣

⎤
⎦ w⋅

⌠
⎮
⌡

d=

Then the drag force is Ff

0

δ

yρ u⋅ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

0

δ

yρ U0
2

⋅
u

U0

⋅ 1
u

U0

−⎛
⎜
⎝

⎞
⎠

⋅
⌠
⎮
⎮
⌡

d=



But we have
u

U0

3

2
η⋅

1

2
η

3
⋅−= where we have used substitution y δ η⋅=

Ff

w

0

η 1=

ηρ U0
2

⋅ δ⋅
u

U0

⋅ 1
u

U0

−⎛
⎜
⎝

⎞
⎠

⋅
⌠
⎮
⎮
⌡

d= ρ U0
2

⋅ δ⋅

0

1

η
3

2
η⋅

9

4
η

2
⋅−

1

2
η

3
⋅−

3

2
η

4
⋅+

1

4
η

6
⋅−⎛⎜

⎝
⎞
⎠

⌠
⎮
⎮
⌡

d⋅=

Ff

w
ρ U0

2
⋅ δ⋅

3

4

3

4
−

1

8
−

3

10
+

1

28
−⎛⎜

⎝
⎞
⎠

⋅= 0.139 ρ⋅ U0
2

⋅ δ⋅=

Hence
Ff

w
0.139 750×

kg

m
3

⋅ 10
m

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.05× m⋅
N s

2
⋅

kg m⋅
×=

Ff

w
52.1

N

m
=



Problem 4.106 [Difficulty: 4]

CS

x

y

a

b

d

c 

Ff 

Given: Data on flow of boundary layer

Find: Force on plate per unit width

Solution:

Basic equations: Continuity, and momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible 3) No net pressure force

From continuity ρ− U0⋅ w⋅ δ⋅ mbc+
0

δ

yρ u⋅ w⋅
⌠
⎮
⌡

d+ 0= where mbc is the mass flow rate across bc (Note: sotware

cannot render a dot!)

Hence mbc

0

δ

yρ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

For x momentum Ff− U0 ρ− U0⋅ w⋅ δ⋅( )⋅ U0 mbc⋅+
0

δ

yu ρ⋅ u⋅ w⋅
⌠
⎮
⌡

d+=

0

δ

yU0
2

− u
2

+ U0 U0 u−( )⋅+⎡
⎣

⎤
⎦ w⋅

⌠
⎮
⌡

d=

Then the drag force is Ff

0

δ

yρ u⋅ U0 u−( )⋅ w⋅
⌠
⎮
⌡

d=

0

δ

yρ U0
2

⋅
u

U0

⋅ 1
u

U0

−⎛
⎜
⎝

⎞
⎠

⋅
⌠
⎮
⎮
⌡

d=

But we have
u

U0

y

δ
= where we have used substitution y δ η⋅=

Ff

w

0

η 1=

ηρ U0
2

⋅ δ⋅
u

U0

⋅ 1
u

U0

−⎛
⎜
⎝

⎞
⎠

⋅
⌠
⎮
⎮
⌡

d= ρ U0
2

⋅ δ⋅
0

1

ηη 1 η−( )⋅
⌠
⎮
⌡

d⋅=

Ff

w
ρ U0

2
⋅ δ⋅

1

2

1

3
−⎛⎜

⎝
⎞
⎠

⋅=
1

6
ρ⋅ U0

2
⋅ δ⋅=

Hence
Ff

w

1

6
1.225×

kg

m
3

⋅ 20
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
2

1000
× m⋅

N s
2

⋅

kg m⋅
×= (using standard atmosphere density)

Ff

w
0.163

N

m
⋅=
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Problem 4.109                                                             [Difficulty: 4]



Problem *4.91
 

Problem *4.110                                                          [Difficulty: 4]



Problem *4.111 [Difficulty: 4]

CS 





Given: Air jet striking disk

Find: Manometer deflection; Force to hold disk

Solution:

Basic equations: Hydrostatic pressure,  Bernoulli, and momentum flux in x direction

p

ρ

V
2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying Bernoulli between jet exit and stagnation point

p

ρair

V
2

2
+

p0

ρair

0+= p0 p−
1

2
ρair⋅ V

2
⋅=

But from hydrostatics p0 p− SG ρ⋅ g⋅ ∆h⋅= so ∆h

1

2
ρair⋅ V

2
⋅

SG ρ⋅ g⋅
=

ρair V
2

⋅

2 SG⋅ ρ⋅ g⋅
=

∆h 0.002377
slug

ft
3

⋅ 225
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×
1

2 1.75⋅
×

ft
3

1.94 slug⋅
×

s
2

32.2 ft⋅
×= ∆h 0.55 ft⋅= ∆h 6.6 in⋅=

For x momentum Rx V ρair− A⋅ V⋅( )⋅= ρair− V
2

⋅
π D

2
⋅

4
⋅=

Rx 0.002377−
slug

ft
3

⋅ 225
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×

π
0.5

12
ft⋅⎛⎜

⎝
⎞
⎠

2

⋅

4
×

lbf s
2

⋅

slug ft⋅
×= Rx 0.164− lbf⋅=

The force of the jet on the plate is then F Rx−= F 0.164 lbf⋅=



Problem *4.112 [Difficulty: 3]

CS 

x 

 

y 

Rx



V, A

Given: Water jet shooting upwards; striking surface

Find: Flow rate; maximum pressure; Force on hand

Solution:

Basic equations: Bernoulli and momentum flux in x direction

p

ρ

V
2

2
 g z constant

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure throughout 4) Uniform flow

Given data h 10 m ρ 1000
kg

m
3

 D 1 cm

Using Bernoulli between the jet exit and its maximum height h 
patm

ρ

V
2

2


patm

ρ
g h

or V 2 g h V 14.0
m

s


Then Q
π

4
D

2
 V Q 66.0

L

min


For Dr. Pritchard the maximum pressure is obtained from Bernoulli
patm

ρ

V
2

2


pmax

ρ
 p

1

2
ρ V

2
 p 98.1 kPa

(gage)

For Dr. Pritchard blocking the jet, from x momentum applied to the CV Rx u1 ρ u1 A1  ρ V
2

 A

Hence F ρ V
2


π

4
 D

2
 F 15.4 N

Repeating for Dr. Fox h 15 m V 2 g h V 17.2
m

s
 Q

π

4
D

2
 V Q 80.8

L

min


p
1

2
ρ V

2
 p 147.1 kPa (gage)

F ρ V
2


π

4
 D

2
 F 23.1 N



 

Problem *4.113                                                          [Difficulty: 3]



Problem *4.114 [Difficulty: 3]

CS 

 

Given: Water jet striking disk

Find: Expression for speed of jet as function of height; Height for stationary disk

Solution:

Basic equations: Bernoulli; Momentum flux in z direction

p

ρ

V
2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V
2

2
g h⋅+= V

2
V0

2
2 g⋅ h⋅−= V V0

2
2 g⋅ h⋅−=

Hence M− g⋅ w1 ρ− w1⋅ A1⋅( )⋅= ρ− V
2

⋅ A⋅=

But from continuity ρ V0⋅ A0⋅ ρ V⋅ A⋅= so V A⋅ V0 A0⋅=

Hence we get M g⋅ ρ V⋅ V⋅ A⋅= ρ V0⋅ A0⋅ V0
2

2 g⋅ h⋅−⋅=

Solving for h h
1

2 g⋅
V0

2 M g⋅

ρ V0⋅ A0⋅
⎛
⎜
⎝

⎞
⎠

2

−
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

h
1

2

s
2

9.81 m⋅
× 10

m

s
⋅⎛⎜

⎝
⎞
⎠

2

2 kg⋅
9.81 m⋅

s
2

×
m

3

1000 kg⋅
×

s

10 m⋅
×

4

π
25

1000
m⋅⎛⎜

⎝
⎞
⎠

2

⋅

×
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

2

−

⎡⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥⎦

×=

h 4.28 m=
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Problem *4.96 cont'd
 

Problem *4.115                                                      [Difficulty: 4]   Part 2/2



Problem *4.116 [Difficulty: 3]

Given: Stream of water striking a vane

Find: Water speed; horizontal force on vane

Solution:

Basic equations: Bernoulli; Momentum flux in x direction

p

ρ

V
2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow

Given or available data D 50 mm⋅= ρwater 1000
kg

m
3

⋅= ρHg 13.6 ρwater⋅= θ 30 deg⋅= ∆h 0.75 m⋅=

From Bernoulli p0 p
1

2
ρwater⋅ V

2
⋅+= and for the manometer p0 p− ρHg g⋅ ∆h⋅=

Combining
1

2
ρwater⋅ V

2
⋅ ρHg g⋅ ∆h⋅= or V

2 ρHg⋅ g⋅ ∆h⋅

ρwater

= V 14.1
m

s
=

Applying x momentum to the vane Rx ρwater V⋅ V−
π

4
⋅ D

2
⋅⎛⎜

⎝
⎞
⎠

⋅ ρwater V− cos θ( )⋅( )⋅ V
π

4
⋅ D

2
⋅⎛⎜

⎝
⎞
⎠

⋅+=

Rx ρwater− V
2

⋅
π

4
⋅ D

2
⋅ 1 cos θ( )+( )⋅= Rx 733− N=

Assuming frictionless, incompressible flow with no net pressure force is realistic, except along the vane where friction will

reduce flow momentum at the exit.



Problem *4.117 [Difficulty: 2]

Given: Data on flow and venturi geometry

Find: Force on convergent section; water pressure

Solution:

Basic equations:

Bernoulli equation and x momentum
p

ρ

V
2

2
+ g z⋅+ const=

The given data is ρ 999
kg

m
3

⋅= D 100 mm⋅= d 50 mm⋅= p1 200 kPa⋅= Q 1000
L

min
⋅=

For pressure we first need the velocities

A1
π D

2
⋅

4
= A1 0.00785 m

2
= A2

π

4
d

2
⋅= A2 0.00196 m

2
=

Then V1
Q

π

4
D

2
⋅

= V1 2.12
m

s
= V2

Q

A2

= V2 8.49
m

s
=

Applying Bernoulli between inlet and throat p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+=

Solving for p2 p2 p1
ρ

2
V1

2
V2

2
−⎛

⎝
⎞
⎠⋅+=

p2 200 kPa⋅
1

2
999⋅

kg

m
3

⋅ 2.12
2

8.49
2

−( )×
m

2

s
2

⋅
N s

2
⋅

kg m⋅
×

kN

1000 N⋅
×+= p2 166 kPa⋅=

Applying the horizontal component of momentum

F− p1 A2⋅+ p2 A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=

or F p1 A1⋅ p2 A2⋅− ρ V1
2

A1⋅ V2
2

A2⋅−⎛
⎝

⎞
⎠⋅+=

F 200
kN

m
2

⋅ 0.00785× m
2

⋅ 166
kN

m
2

⋅ 0.00196× m
2

⋅− 999
kg

m
3

⋅ 2.12
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.00785⋅ m
2

⋅ 8.49
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.00196⋅ m
2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m×
⋅+=

F 1.14 kN=



Problem *4.118 [Difficulty: 3]

Given: Nozzle flow striking inclined plate

Find: Mimimum gage pressure

Solution:

Basic equations: Bernoulli and y momentum

p

ρ

V
2

2
 g z const

The given data is ρ 999
kg

m
3

 q 1200
L

s m
 W 80 mm h 0.25 m w 20 mm H 7.5 m θ 30 deg

For the exit velocity and nozzle velocity V2
q

W
 V2 15.0

m

s
 V1 V2

w

W
 V1 3.75

m

s


Then from Bernoulli p1
ρ

2
V1

2
 patm

ρ

2
V2

2
 or p1

ρ

2
V2

2
V1

2




 ρ g h p1 103 kPa

(gage)

Applying Bernoulli between 2 and the plate (state 3)

patm
ρ

2
V2

2
 patm

ρ

2
V3

2
 ρ g H V3 V2

2
2 g H V3 19.3

m

s


For the plate there is no force along the plate (x momentum) as there is no friction.  For the force normal to the plate

(y momentum) we have

Ry V3 cos θ( ) ρ V3 A3  V3 cos θ( ) ρ q( ) Ry V3 cos θ( ) ρ q Ry 20.0
kN

m




Problem *4.119 [Difficulty: 3]

Given: Water faucet flow

Find: Expressions for stream speed and diameter; plot

Solution:

Basic equation: Bernoulli
p

ρ

V
2

2
+ g z⋅+ const=

Assumptions: Laminar, frictionless, uniform flow

The given data is D0 5 mm⋅= h 50 mm⋅= Q
1 L⋅

3 min⋅
= Q 0.333

L

min
⋅=

The initial velocity is V0
Q

π

4
D0

2
⋅

= V0 0.283
m

s
=

Then applying Bernoulli between the exit and any other location
patm

ρ

V0
2

2
+

patm

ρ

V
2

2
+ g z⋅−= (z downwards)

Then V z( ) V0
2

2 g⋅ z⋅+= Also V0
π

4
⋅ D0

2
⋅ V

π

4
⋅ D

2
⋅= so D z( )

D0

1
2 g⋅ z⋅

V0
2

+⎛⎜
⎜⎝

⎞

⎠

1

4

=

Evaluating at h V h( ) 1.03
m

s
= D h( ) 2.62 mm⋅=

2.5− 1.5− 0.5− 0.5 1.5 2.5

40

30

20

10

Diameter (mm)

H
ei

g
h

t 
(m

m
)

0 10 20 30 40 50

0.25

0.5

0.75

1

1.25

z (mm)

V
 (

m
/s

)
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Problem *4.120                                                       [Difficulty: 4]



Problem *4.100
 

Problem *4.121                                                            [Difficulty: 4]



Problem *4.102
 

Problem *4.122                                                        [Difficulty: 4]



 

Problem *4.123                                                         [Difficulty: 4]   Part 1/2



 

Problem *4.123                                                      [Difficulty: 4]   Part 2/2



Problem *4.124 [Difficulty: 5]

Given: Plates coming together

Find: Expression for velcoity field; exit velocity; plot

Solution: Apply continuity using deformable CV as shown

Basic equation:
= 0

Assumptions: Incompressible, uniform flow

Given data: V0 0.01
m

s
 h0 2 mm R 100 mm

Continuity becomes or
t
π r

2
 h 


V 2 π r h 0

or π r
2


dh

dt
 V 2 π r h π r

2
 V0 V 2 π r h 0 Hence V r( ) V0

r

2 h


If V0 is constant h h0 V0 t so V r t( )
V0 r

2 h0 V0 t 
 Note that tmax

h0

V0

 tmax 0.200 s

Evaluating V R 0( ) 0.250
m

s
 V R 0.1 s( ) 0.500

m

s


0 0.05 0.1 0.15 0.2

2

4

6

t (s)

E
x

it
 V

el
o

ci
ty

 (
m

/s
)

The velocity greatly increases as the constant flow rate exits through a gap that becomes narrower with time.
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Problem *4.125                                                   [Difficulty: 5]   Part 1/2



Problem *4.104 cont'd
 

Problem *4.125                                                     [Difficulty: 5]   Part 2/2



Problem *4.126                                            [Difficulty: 4]   Part 1/2



 

Problem *4.126                                                 [Difficulty: 4]   Part 2/2



Problem *4.127 [Difficulty: 3]

CS (moves 
at speed U) 

y

x 

 

Rx 

Ry

Given: Water jet striking moving vane

Find: Force needed to hold vane to speed U = 5 m/s

Solution:

Basic equations: Momentum flux in x and y directions

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is

constant

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Rx ρ V U−( )
2

A⋅ cos θ( ) 1−( )⋅= A
π

4

40

1000
m⋅⎛⎜

⎝
⎞
⎠

2

⋅= A 1.26 10
3−

× m
2

=

Using given data

Rx 1000
kg

m
3

⋅ 25 5−( )
m

s
⋅⎡⎢

⎣
⎤⎥
⎦

2

× 1.26× 10
3−

× m
2

⋅ cos 150 deg⋅( ) 1−( )×
N s

2
⋅

kg m⋅
×= Rx 940− N=

Then Ry v1 ρ− V1⋅ A1⋅( )⋅ v2 ρ V2⋅ A2⋅( )⋅+= 0− V U−( ) sin θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Ry ρ V U−( )
2

A⋅ sin θ( )⋅= Ry 1000
kg

m
3

⋅ 25 5−( )
m

s
⋅⎡⎢

⎣
⎤⎥
⎦

2

× 1.26× 10
3−

× m
2

⋅ sin 150 deg⋅( )×
N s

2
⋅

kg m⋅
×= Ry 252 N=

Hence the force required is 940 N to the left and 252 N upwards to maintain motion at 5 m/s



Problem 4.128 [Difficulty: 3]

CS (moves 
at speed U) 

y

x



 

Rx
Ry

Given: Water jet striking moving vane

Find: Force needed to hold vane to speed U = 10 m/s

Solution:

Basic equations: Momentum flux in x and y directions

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is

constant

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Rx ρ V U−( )
2

A⋅ cos θ( ) 1−( )⋅=

Using given data

Rx 1000
kg

m
3

⋅ 30 10−( )
m

s
⋅⎡⎢

⎣
⎤⎥
⎦

2

× 0.004× m
2

⋅ cos 120 deg⋅( ) 1−( )×
N s

2
⋅

kg m⋅
×= Rx 2400− N=

Then Ry v1 ρ− V1⋅ A1⋅( )⋅ v2 ρ V2⋅ A2⋅( )⋅+= 0− V U−( ) sin θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Ry ρ V U−( )
2

A⋅ sin θ( )⋅= Ry 1000
kg

m
3

⋅ 30 10−( )
m

s
⋅⎡⎢

⎣
⎤⎥
⎦

2

× 0.004× m
2

⋅ sin 120 deg⋅( )×
N s

2
⋅

kg m⋅
×= Ry 1386 N=

Hence the force required is 2400 N to the left and 1390 N upwards to maintain motion at 10 m/s



 

Problem 4.129                                                    [Difficulty: 2]



Problem 4.130 [Difficulty: 3]

Given: Data on jet boat

Find: Formula for boat speed; flow rate; value of k; new speed and flow rate

Solution:
CV in boat

coordinates
Basic equation:

Momentum

Given data D 75 mm⋅= Vj 15
m

s
⋅= V 10

m

s
⋅= ρ 1000

kg

m
3

⋅=

Applying the horizontal component of momentum

Fdrag V ρ− Q⋅( )⋅ Vj ρ Q⋅( )⋅+= or, with Fdrag k V
2

⋅= k V
2

⋅ ρ Q⋅ Vj⋅ ρ Q⋅ V⋅−=

k V
2

⋅ ρ Q⋅ V⋅+ ρ Q⋅ Vj⋅− 0=

Solving for V V
ρ Q⋅

2 k⋅
−

ρ Q⋅

2 k⋅
⎛⎜
⎝

⎞
⎠

2 ρ Q⋅ Vj⋅

k
++= (1)

For the flow rate Q Vj
π

4
⋅ D

2
⋅= Q 0.0663

m
3

s
=

To find k from Eq 1, let α
ρ Q⋅

2 k⋅
= then V α− α

2
2 α⋅ Vj⋅++=

V α+( )
2

V
2

2 α⋅ V⋅+ α
2

+= α
2

2 α⋅ Vj⋅+= or α
V

2

2 Vj V−( )⋅
= α 10

m

s
=

Hence k
ρ Q⋅

2 α⋅
= k 3.31

N

m

s

⎛⎜
⎝

⎞
⎠

2
=

For Vj 25
m

s
⋅= Q Vj

π

4
⋅ D

2
⋅= Q 0.11

m
3

s
= V

ρ Q⋅

2 k⋅
−

ρ Q⋅

2 k⋅
⎛⎜
⎝

⎞
⎠

2 ρ Q⋅ Vj⋅

k
++

⎡
⎢
⎣

⎤
⎥
⎦

= V 16.7
m

s
=



Problem 4.110
 

Problem 4.131      [Difficulty: 2]



Problem 4.112
 

Problem 4.132     [Difficulty: 2]



Problem 4.133 [Difficulty: 3]

CS (moves 
at speed U) 

y

x



 

Rx
Ry

Given: Water jet striking moving vane

Find: Expressions for force and power; Show that maximum power is when U = V/3

Solution:

Basic equation: Momentum flux for inertial CV

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow

5) Jet relative velocity is constant

Then Rx u1 ρ V1 A1  u2 ρ V2 A2  V U( ) ρ V U( ) A[ ] V U( ) cos θ( ) ρ V U( ) A[ ]

Rx ρ V U( )
2

A cos θ( ) 1( )

This is force on vane; Force exerted by vane is equal and opposite

Fx ρ V U( )
2

 A 1 cos θ( )( )

The power produced is then

P U Fx ρ U V U( )
2

 A 1 cos θ( )( )

To maximize power wrt to U

dP

dU
ρ V U( )

2
 A 1 cos θ( )( ) ρ 2( ) 1( ) V U( ) U A 1 cos θ( )( ) 0

Hence V U 2 U V 3 U 0 U
V

3
 for maximum power

Note that there is a vertical force, but it generates no power



Problem 4.134 [Difficulty: 3]

CS (moves to 

left at speed Vc) 

y 

x 

 

 

Rx 

Vj + Vc 

Vj + Vc 

t 

R 

Given: Water jet striking moving cone

Find: Thickness of jet sheet; Force needed to move cone

Solution:

Basic equations: Mass conservation; Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Jet relative velocity is

constant

Then ρ− V1⋅ A1⋅ ρ V2⋅ A2⋅+ 0= ρ− Vj Vc+( )⋅
π Dj

2
⋅

4
⋅ ρ Vj Vc+( )⋅ 2⋅ π⋅ R⋅ t⋅+ 0= (Refer to sketch)

Hence t
Dj

2

8 R⋅
= t

1

8
4 in⋅( )

2
×

1

9 in⋅
×= t 0.222 in⋅=

Using relative velocities, x momentum is

Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= Vj Vc+( )− ρ Vj Vc+( )⋅ Aj⋅⎡⎣ ⎤⎦⋅ Vj Vc+( ) cos θ( )⋅ ρ Vj Vc+( )⋅ Aj⋅⎡⎣ ⎤⎦⋅+=

Rx ρ Vj Vc+( )2 Aj⋅ cos θ( ) 1−( )⋅=

Using given data

Rx 1.94
slug

ft
3

⋅ 100 45+( )
ft

s
⋅⎡⎢

⎣
⎤⎥
⎦

2

×

π
4

12
ft⋅⎛⎜

⎝
⎞
⎠

2

⋅

4
× cos 60 deg⋅( ) 1−( )×

lbf s
2

⋅

slug ft⋅
×= Rx 1780− lbf⋅=

Hence the force is 1780 lbf to the left; the upwards equals the weight



Problem 4.114
 

Problem 4.135                                                        [Difficulty: 3]



Problem 4.116
 

Problem 4.136                                                          [Difficulty: 3]



Problem 4.117
 

Problem 4.137                                                       [Difficulty: 3]



 

Problem 4.138                                                         [Difficulty: 2]



Problem 4.139 [Difficulty: 4]

Given: Jet impacting a splitter vane

Find: Mass flow rate ratio; new speed U

Solution: Apply momentum equation to inertial CV

Assumptions: No pressure force; neglect water mass on vane; steady flow wrt vane; uniform flow; no change of speed wrt the vane

Basic equation

Given data V 25
m

s
⋅= A 7.85 10

5−
⋅ m

2
⋅= U 10

m

s
⋅= θ 30 deg⋅= ρ 999

kg

m
3

⋅=

For constant speed wrt the vane, the jet velocity at each location is V U−

For no vertical force, y momentum becomes 0 v1 m1−( )⋅ v2 m2⋅+ v3 m3⋅+= where vi and mi are the vertical components

of velocity and mass flow rates, respectively,

at the inlet and exits, wrt the vane

coordinates

Hence 0 0 V U−( ) m2⋅+ V U−( ) sin θ( )⋅ m3⋅−= or m2 m3 sin θ( )⋅=
m2

m3

sin θ( )=
1

2
=

Note that m1 ρ A⋅ V U−( )⋅= m1 1.18
kg

s
=

and m1 m2 m3+= so m1 m3 sin θ( )⋅ m3+=
m3

m1

1

1 sin θ( )+
=

m3

m1

2

3
= m3 0.784

kg

s
= m2 0.392

kg

s
=

and using x momentum Rx u1 m1−( )⋅ u2 m2⋅+ u3 m3⋅+= V U−( ) m1−( )⋅ 0+ V U−( ) cos θ( )⋅ m3⋅+=

Writing in terms of m1 Rx V U−( ) m1⋅
cos θ( )

1 sin θ( )+
1−⎛⎜

⎝
⎞
⎠

⋅= Rx 7.46− N=

Instead, the force is now Rx 16− N⋅= but Rx V U−( ) m1⋅
cos θ( )

1 sin θ( )+
1−⎛⎜

⎝
⎞
⎠

⋅= and m1 ρ A⋅ V U−( )⋅=

Hence Rx V U−( )
2
ρ⋅ A⋅

cos θ( )

1 sin θ( )+
1−⎛⎜

⎝
⎞
⎠

⋅=

Solving for U U V
Rx

ρ A⋅
cos θ( )

1 sin θ( )+
1−⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

−= U 3.03
m

s
=



Problem 4.120
 

Problem 4.140                                                         [Difficulty: 3]

Problem 4.133



 

Problem 4.141                                                      [Difficulty: 2]



 

Problem 4.142                                                   [Difficulty: 3]



Problem 4.143 [Difficulty: 4]

Given: Data on vane/slider

Find: Formula for acceleration and speed; plot

Solution:

The given data is ρ 999
kg

m
3

⋅= M 30 kg⋅= A 0.005 m
2

⋅= V 20
m

s
⋅= μk 0.3=

The equation of motion, from Problem 4.141, is
dU

dt

ρ V U−( )
2

⋅ A⋅

M
g μk⋅−=

The acceleration is thus a
ρ V U−( )

2
⋅ A⋅

M
g μk⋅−= Separating variables

dU

ρ V U−( )
2

⋅ A⋅

M
g μk⋅−

dt=

Substitute u V U−= dU du−=
du

ρ A⋅ u
2

⋅

M
g μk⋅−

dt−=

But u
1

ρ A⋅ u
2

⋅

M
g μk⋅−

⎛
⎜
⎝

⎞

⎠

⌠
⎮
⎮
⎮
⎮
⌡

d
M

g μk⋅ ρ⋅ A⋅
− atanh

ρ A⋅

g μk⋅ M⋅
u⋅

⎛
⎜
⎝

⎞

⎠
⋅=

and u = V - U so
M

g μk⋅ ρ⋅ A⋅
− atanh

ρ A⋅

g μk⋅ M⋅
u⋅

⎛
⎜
⎝

⎞

⎠
⋅

M

g μk⋅ ρ⋅ A⋅
− atanh

ρ A⋅

g μk⋅ M⋅
V U−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Using initial conditions
M

g μk⋅ ρ⋅ A⋅
− atanh

ρ A⋅

g μk⋅ M⋅
V U−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅
M

g μk⋅ ρ⋅ A⋅
atanh

ρ A⋅

g μk⋅ M⋅
V⋅

⎛
⎜
⎝

⎞

⎠
⋅+ t−=

V U−
g μk⋅ M⋅

ρ A⋅
tanh

g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

ρ A⋅

g μk⋅ M⋅
V⋅

⎛
⎜
⎝

⎞

⎠
+

⎛⎜
⎜⎝

⎞

⎠
⋅=

U V
g μk⋅ M⋅

ρ A⋅
tanh

g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

ρ A⋅

g μk⋅ M⋅
V⋅

⎛
⎜
⎝

⎞

⎠
+

⎛⎜
⎜⎝

⎞

⎠
⋅−=

Note that atanh
ρ A⋅

g μk⋅ M⋅
V⋅

⎛
⎜
⎝

⎞

⎠
0.213

π

2
i⋅−=

which is complex and difficult to handle in Excel, so we use the identity atanh x( ) atanh
1

x

⎛⎜
⎝

⎞
⎠

π

2
i⋅−= for x > 1



so U V
g μk⋅ M⋅

ρ A⋅
tanh

g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

1

ρ A⋅

g μk⋅ M⋅
V⋅

⎛
⎜
⎜
⎝

⎞

⎠

+
π

2
i⋅−

⎛
⎜
⎜
⎜
⎝

⎞

⎟

⎠

⋅−=

and finally the identity tanh x
π

2
i⋅−⎛⎜

⎝
⎞
⎠

1

tanh x( )
=

to obtain
U t( ) V

g μk⋅ M⋅

ρ A⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅

1

V
⋅

⎛
⎜
⎝

⎞

⎠
+

⎛
⎜
⎝

⎞

⎠

−=

Note that a
ρ V U−( )

2
⋅ A⋅

M
g μk⋅−= and V U−

g μk⋅ M⋅

ρ A⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅

1

V
⋅

⎛
⎜
⎝

⎞

⎠
+

⎛
⎜
⎝

⎞

⎠

=

a t( )
g μk⋅

tanh
g μk⋅ ρ⋅ A⋅

M
t⋅ atanh

g μk⋅ M⋅

ρ A⋅

1

V
⋅

⎛
⎜
⎝

⎞

⎠
+

⎛
⎜
⎝

⎞

⎠

2
g μk⋅−=

Hence

The plots are presented below
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Problem 4.133



Problem 4.145 [Difficulty: 4]

CS (moves at 

speed 

instantaneous 

speed U) 

y 

x 



 

Given: Water jet striking moving vane/cart assembly

Find: Angle θ at t = 5 s; Plot θ(t)

Solution:

Basic equation: Momentum flux in x direction for accelerating CV

Assumptions:  1) No changes in CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet relative

velocity

Then M− arfx⋅ u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

M− arfx⋅ ρ V U−( )
2

A⋅ cos θ( ) 1−( )⋅= or cos θ( ) 1
M arfx⋅

ρ V U−( )
2

⋅ A⋅
−=

Since arfx constant= then U arfx t⋅= cos θ( ) 1
M arfx⋅

ρ V arfx t⋅−( )2⋅ A⋅
−=

θ acos 1
M arfx⋅

ρ V arfx t⋅−( )2⋅ A⋅
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

=

Using given data

θ acos 1 55 kg⋅ 1.5×
m

s
2

⋅
m

3

1000 kg⋅
×

1

15
m

s
⋅ 1.5

m

s
2

⋅ 5× s⋅−⎛
⎜
⎝

⎞

⎠

2
×

1

0.025 m
2

⋅
×−

⎡⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥⎦

= θ 19.7 deg⋅= at t = 5 s
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The solution is only valid for θ up to 180o (when t = 9.14 s).  This graph can be plotted in Excel



Problem 4.146 [Difficulty: 3]

Given: Vaned cart with negligible resistance

Find: Initial jet speed; jet and cart speeds at 2.5 s and 5 s; what happens to V - U?

Solution: Apply x momentum

Assumptions:  1) All changes wrt CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet area

Given data ρ 999
kg

m
3

⋅= M 5 kg⋅= A 50 mm
2

⋅= a 2.5
m

s
2

⋅= θ 120 deg⋅=

Then a− M⋅ u1 ρ− V U−( )⋅ A⋅[ ]⋅ u1 ρ V U−( )⋅ A⋅[ ]⋅+= where u1 V U−= and u2 V U−( ) cos θ( )⋅=

Hence a M⋅ ρ V U−( )
2

⋅ 1 cos θ( )−( )⋅ A⋅= From this equation we can see that for constant acceleration V and U must

increase at the same rate!

Solving for V V t( ) a t⋅
M a⋅

ρ 1 cos θ( )−( )⋅ A⋅
+=

Hence, evaluating V 0( ) 12.9
m

s
= V 2.5 s⋅( ) 19.2

m

s
= V 5 s⋅( ) 25.4

m

s
=

Also, for constant acceleration U t( ) a t⋅= so V U−
M a⋅

ρ 1 cos θ( )−( )⋅ A⋅
= const!=
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Problem 4.130
 

Problem 4.150                                                         [Difficulty: 3]



Problem 4.151 [Difficulty: 4]

Given: Vaned cart being hit by jet

Find: Jet speed to stop cart in 1s and 2 s; distance traveled

Solution: Apply x momentum

Assumptions:  1) All changes wrt CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet area

Given data ρ 999
kg

m
3

⋅= M 5 kg⋅= D 35 mm⋅= θ 60 deg⋅= U0 5
m

s
⋅=

A
π

4
D

2
⋅= A 962 mm

2
⋅=

Then arf− M⋅ u1 ρ− V U+( )⋅ A⋅[ ]⋅ u2 ρ V U+( )⋅ A⋅[ ]⋅+=

where arf
dU

dt
= u1 V U+( )−= and u2 V U+( )− cos θ( )⋅=

Hence
dU

dt
− M⋅ ρ V U+( )

2
⋅ A⋅ ρ V U+( )

2
⋅ A⋅ cos θ( )⋅−= ρ V U+( )

2
⋅ A⋅ 1 cos θ( )−( )⋅=

or
dU

dt
− M⋅ ρ V U+( )

2
⋅ A⋅ 1 cos θ( )−( )⋅= (1)

d V U+( )

V U+( )
2

−
ρ 1 cos θ( )−( )⋅ A⋅

M
dt⋅=

Note that V is constant, so dU = d(V+U), separating variables

Integrating from U0 at t = 0 to U = 0 at t
1

V

1

V U0+
−

ρ 1 cos θ( )−( )⋅ A⋅

M
t⋅=

Solving for V
U0

V V U0+( )⋅

ρ 1 cos θ( )−( )⋅ A⋅ t⋅

M
= or V

2
V U0⋅+

M U0⋅

ρ 1 cos θ( )−( )⋅ A⋅ t⋅
−

Hence V
U0

2
−

U0
2

4

U0 M⋅

ρ A⋅ 1 cos θ( )−( )⋅ t⋅
++=



To find distances note that
dU

dt

dU

dx

dx

dt
⋅= U

dU

dx
⋅=

so Eq. 1 can be rewritten as U−
dU

dx
⋅ M⋅ ρ V U+( )

2
⋅ A⋅ 1 cos θ( )−( )⋅=

Separating variables
U dU⋅

V U+( )
2

ρ A⋅ 1 cos θ( )−( )⋅

M
− dx⋅=

U0

0

U
U

V U+( )
2

⌠
⎮
⎮
⎮
⌡

d ln
V

V U0+
⎛
⎜
⎝

⎞
⎠

V

V
+

V

V U0+
−=

It can be shown that (Remember that V is constant)

ln
V

V U0+
⎛
⎜
⎝

⎞
⎠

1+
V

V U0+
−

ρ A⋅ 1 cos θ( )−( )⋅

M
− x⋅=

Solving for x x
M

ρ A⋅ 1 cos θ( )−( )⋅
− ln

V

V U0+
⎛
⎜
⎝

⎞
⎠

1+
V

V U0+
−⎛

⎜
⎝

⎞
⎠

⋅=

Substituting values:

To stop in t 1 s⋅= V
U0

2
−

U0
2

4

U0 M⋅

ρ A⋅ 1 cos θ( )−( )⋅ t⋅
++= V 5.13

m

s
=

and x
M

ρ A⋅ 1 cos θ( )−( )⋅
− ln

V

V U0+
⎛
⎜
⎝

⎞
⎠

1+
V

V U0+
−⎛

⎜
⎝

⎞
⎠

⋅= x 1.94 m=

To stop in t 2 s⋅= V
U0

2
−

U0
2

4

U0 M⋅

ρ A⋅ 1 cos θ( )−( )⋅ t⋅
++= V 3.18

m

s
=

and x
M

ρ A⋅ 1 cos θ( )−( )⋅
− ln

V

V U0+
⎛
⎜
⎝

⎞
⎠

1+
V

V U0+
−⎛

⎜
⎝

⎞
⎠

⋅= x 3.47 m=
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Problem 4.153 [Difficulty: 4]

Given: Data on vane/slider

Find: Formula for acceleration, speed, and position; plot

Solution: Apply x momentum

Assumptions:  1) All changes wrt CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet area

The given data is ρ 999
kg

m
3

 M 30 kg A 0.005 m
2

 V 20
m

s
 k 7.5

N s

m


Then k U M arf u1 ρ V U( ) A[ ] u2 m2 u3 m3

where arf
dU

dt
 u1 V U u2 0 u3 0

Hence k U M
dU

dt
 ρ V U( )

2
 A

or
dU

dt

ρ V U( )
2

 A

M

k U

M


The acceleration is thus a
ρ V U( )

2
 A

M

k U

M


The differential equation for U can be solved analytically, but is quite messy.  Instead we use a simple numerical method - Euler's

method

U n 1( ) U n( )
ρ V U n( )( )

2
 A

M

k U n( )

M









∆t where Δt is the time step

For the position x
dx

dt
U

so x n 1( ) x n( ) U n( ) ∆t

The final set of equations is

U n 1( ) U n( )
ρ V U n( )( )

2
 A

M

k U n( )

M









∆t

a n( )
ρ V U n( )( )

2
 A

M

k U n( )

M


x n 1( ) x n( ) U n( ) ∆t



The results can be plotted in Excel

t  (s) x  (m) U  (m/s) a  (m/s2)

0.0 0.0 0.0 66.6

0.1 0.0 6.7 28.0

0.2 0.7 9.5 16.1

0.3 1.6 11.1 10.5

0.4 2.7 12.1 7.30

0.5 3.9 12.9 5.29

0.6 5.2 13.4 3.95

0.7 6.6 13.8 3.01

0.8 7.9 14.1 2.32

0.9 9.3 14.3 1.82

1.0 10.8 14.5 1.43

1.1 12.2 14.6 1.14

1.2 13.7 14.7 0.907

1.3 15.2 14.8 0.727

1.4 16.6 14.9 0.585

1.5 18.1 15.0 0.472

1.6 19.6 15.0 0.381

1.7 21.1 15.1 0.309

1.8 22.6 15.1 0.250

1.9 24.1 15.1 0.203

2.0 25.7 15.1 0.165

2.1 27.2 15.1 0.134

2.2 28.7 15.2 0.109

2.3 30.2 15.2 0.0889

2.4 31.7 15.2 0.0724

2.5 33.2 15.2 0.0590

2.6 34.8 15.2 0.0481

2.7 36.3 15.2 0.0392

2.8 37.8 15.2 0.0319

2.9 39.3 15.2 0.0260

3.0 40.8 15.2 0.0212
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Problem 4.154                                                          [Difficulty: 3]



Problem 4.136
 

Problem 4.155                                                         [Difficulty: 3]



Problem 4.156 [Difficulty: 3]

Given: Data on system

Find: Jet speed to stop cart after 1 s; plot speed & position; maximum x; time to return to origin

Solution: Apply x momentum

Assumptions:  1) All changes wrt CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet area

The given data is ρ 999
kg

m
3

⋅= M 100 kg⋅= A 0.01 m
2

⋅= U0 5
m

s
⋅=

Then arf− M⋅ u1 ρ− V U+( )⋅ A⋅[ ]⋅ u2 m2⋅+ u3 m3⋅+=

where arf
dU

dt
= u1 V U+( )−= and u2 u3= 0=

Hence
dU

dt
− M⋅ ρ V U+( )

2
⋅ A⋅= or

dU

dt

ρ V U+( )
2

⋅ A⋅

M
−= which leads to

d V U+( )

V U+( )
2

ρ A⋅

M
dt⋅⎛⎜

⎝
⎞
⎠

−=

Integrating and using the IC U = U0 at t = 0 U V−
V U0+

1
ρ A⋅ V U0+( )⋅

M
t⋅+

+=

To find the jet speed V to stop the cart after 1 s, solve the above equation for V, with U = 0 and t = 1 s.  (The equation becomes a

quadratic in V).  Instead we use Excel's Goal Seek in the associated workbook

From Excel V 5
m

s
⋅=

For the position x we need to integrate
dx

dt
U= V−

V U0+

1
ρ A⋅ V U0+( )⋅

M
t⋅+

+=

The result is x V− t⋅
M

ρ A⋅
ln 1

ρ A⋅ V U0+( )⋅

M
t⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

This equation (or the one for U with U = 0) can be easily used to find the maximum value of x by differentiating, as well as the time for x

to be zero again.  Instead we use Excel's Goal Seek and Solver in the associated workbook

From Excel xmax 1.93 m⋅= t x 0=( ) 2.51 s⋅=

The complete set of equations is U V−
V U0+

1
ρ A⋅ V U0+( )⋅

M
t⋅+

+= x V− t⋅
M

ρ A⋅
ln 1

ρ A⋅ V U0+( )⋅

M
t⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=



The plots are presented in the Excel workbook:

t  (s) x  (m) U  (m/s) To find V for U = 0 in 1 s, use Goal Seek

0.0 0.00 5.00

0.2 0.82 3.33 t (s) U (m/s) V (m/s)

0.4 1.36 2.14 1.0 0.00 5.00

0.6 1.70 1.25

0.8 1.88 0.56 To find the maximum x , use Solver

1.0 1.93 0.00

1.2 1.88 -0.45 t (s) x (m)

1.4 1.75 -0.83 1.0 1.93

1.6 1.56 -1.15

1.8 1.30 -1.43 To find the time at which x = 0 use Goal Seek

2.0 0.99 -1.67

2.2 0.63 -1.88 t (s) x (m)

2.4 0.24 -2.06 2.51 0.00

2.6 -0.19 -2.22

2.8 -0.65 -2.37

3.0 -1.14 -2.50
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Problem 4.157 [Difficulty: 2]

Given: Mass moving betweem two jets

Find: Time st slow to 2.5 m/s; plot position; rest position; explain

Solution: Apply x momentum

Assumptions:  1) All changes wrt CV   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow 5) Constant jet area

The given data is ρ 999
kg

m
3

⋅= M 5 kg⋅= V 20
m

s
⋅= U0 10

m

s
⋅= U 2.5

m

s
⋅= A 100 mm

2
⋅=

Then arf− M⋅ u1 ρ− V U−( )⋅ A⋅[ ]⋅ u2 ρ− V U+( )⋅ A⋅[ ]⋅+ u3 m3⋅+=

where arf
dU

dt
= u1 V U−= u2 V U+( )−= and u3 0=

Hence
dU

dt
− M⋅ ρ A⋅ V U−( )

2
− V U+( )

2
+⎡⎣ ⎤⎦⋅= 4 ρ⋅ A⋅ V⋅ U⋅=

Separating and integrating
dU

U

4 ρ⋅ A⋅ V⋅

M
− dt⋅= or ln U( ) ln U0( )−

4 ρ⋅ A⋅ V⋅

M
− t⋅= U U0 e

4 ρ⋅ A⋅ V⋅

M
− t⋅

⋅= (1)

Solving for t t
M

4 ρ⋅ V⋅ A⋅
− ln

U

U0

⎛
⎜
⎝

⎞
⎠

⋅= and using given data t 0.867 s= for U 2.5
m

s
=

For position x
dx

dt
U= U0 e

4 ρ⋅ A⋅ V⋅

M
− t⋅

⋅=

and a straightforward integration leads to x t( )
M U0⋅

4 ρ⋅ V⋅ A⋅
1 e

4 ρ⋅ V⋅ A⋅

M
− t⋅

−

⎛
⎜
⎝

⎞

⎠⋅= For t 0.867 s= x t( ) 4.69 m=

For large time xfinal

M U0⋅

4 ρ⋅ V⋅ A⋅
= xfinal 6.26 m=

0 1 2 3 4

2

4

6

8

t (s)

x
 (

m
)



Problem *4.158 [Difficulty: 3]

 

CS moving 

at speed U 

 



Given: Water jet striking moving disk

Find: Acceleration of disk when at a height of 3 m

Solution:

Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards) for linear accelerating CV

p

ρ

V
2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow (All in jet)

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V1
2

2
g z z0−( )⋅+= V1 V0

2
2 g⋅ z0 z−( )⋅+=

V1 15
m

s
⋅⎛⎜

⎝
⎞
⎠

2

2 9.81×
m

s
2

⋅ 0 3−( )⋅ m⋅+= V1 12.9
m

s
=

The momentum equation becomes

W− M arfz⋅− w1 ρ− V1⋅ A1⋅( )⋅ w2 ρ V2⋅ A2⋅( )⋅+= V1 U−( ) ρ− V1 U−( )⋅ A1⋅⎡⎣ ⎤⎦⋅ 0+=

Hence arfz

ρ V1 U−( )2⋅ A1⋅ W−

M
=

ρ V1 U−( )2⋅ A1⋅

M
g−=

ρ V1 U−( )2⋅ A0⋅
V0

V1

⋅

M
g−= using V1 A1⋅ V0 A0⋅=

arfz 1000
kg

m
3

⋅ 12.9 5−( )
m

s
⋅⎡⎢

⎣
⎤⎥
⎦

2

× 0.005× m
2

⋅
15

12.9
×

1

30 kg⋅
× 9.81

m

s
2

⋅−= arfz 2.28
m

s
2

=



Problem 4.159 [Difficulty: 4]

CS moving 

at speed U 

 



D = 75 mm 

M = 35 kg

Given: Water jet striking disk

Find: Plot mass versus flow rate to find flow rate for a steady height of 3 m

Solution:

Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards)

p

ρ

V
2

2
 g z constant

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow (All in jet)

The Bernoulli equation becomes
V0

2

2
g 0

V1
2

2
g h V1 V0

2
2 g h

The momentum equation becomes

M g w1 ρ V1 A1  w2 ρ V2 A2  V1 ρ V1 A1  0

Hence M
ρ V1

2
 A1

g
 but from continuity V1 A1 V0 A0

M
ρ V1 V0 A0

g


π

4

ρ V0 D0
2



g
 V0

2
2 g h and also Q V0 A0

This equation is difficult to solve for V0 for a given M.  Instead we plot first:

0.02 0.04 0.06 0.08

50

100

150

Q (cubic meter/s)

M
 (

k
g

)

Goal Seek or Solver in Excel feature can be used to find Q when M = 35 kg Q 0.0469
m

3

s

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Problem 4.142
 

Problem 4.162                                                        [Difficulty: 3]   Part 1/2



Problem 4.142  cont'd
 

Problem 4.162 Difficulty: [3]  Part 2/2



Problem 4.163 [Difficulty: 4]

Given: Rocket sled on track

Find: Plot speed versus time; maximum speed; effect of reducing k

Solution:

Basic equation: Momentum flux in x direction

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure in jet 4) Uniform flow (All in jet)

Given data M0 5000 kg⋅= k 50
N s⋅

m
⋅= Ve 1750

m

s
⋅= Mfuel 1000 kg⋅= mrate 50

kg

s
⋅=

The momentum equation becomes FR− arf M⋅− ue mrate⋅= Ve− mrate⋅= and FR k U⋅=

From continuity M M0 mrate t⋅−=

Hence, combining k− U⋅ M0 mrate t⋅−( ) dU

dt
⋅− Ve− mrate⋅= or

dU

dt

Ve mrate⋅ k U⋅−

M0 mrate t⋅−
=

Separating variables
dU

Ve mrate⋅ k U⋅−

dt

M0 mrate t⋅−( )
=

Integrating
1

k
ln Ve mrate⋅ k U⋅−( ) ln Ve mrate⋅( )−( )( )⋅

1

mrate

ln M0 mrate t⋅−( ) ln M0( )−( )⋅=

Simplifying
1

k
ln

Ve mrate⋅ k U⋅−

Ve mrate⋅

⎛
⎜
⎝

⎞

⎠
⋅

1

k
ln 1

k U⋅

Ve mrate⋅
−⎛

⎜
⎝

⎞
⎠

⋅=
1

mrate

ln
M0 mrate t⋅−

M0

⎛
⎜
⎝

⎞

⎠
⋅=

1

mrate

ln 1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅=

Solving for U U t( )
Ve mrate⋅

k
1 1

mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠

k

mrate

−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=

Using given data U 10 s⋅( ) 175
m

s
= and fuel is used up when tfuel

Mfuel

mrate

= tfuel 20 s=



This is when the speed is maximum Umax U tfuel( )= Umax 350
m

s
=

With 10% reduction in k k2 0.9 k⋅= Umax2

Ve mrate⋅

k2

1 1
mrate tfuel⋅

M0

−
⎛
⎜
⎝

⎞

⎠

k2

mrate

−

⎡⎢
⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎥
⎦

⋅= Umax2 354
m

s
=

The percent improvement is
Umax2 Umax−

Umax

1.08 %⋅=

When the fuel runs out the momentum equation simplifies from k− U⋅ M0 mrate t⋅−( ) dU

dt
⋅− Ve− mrate⋅= to k− U⋅

dU

dt
− 0=

The solution to this (with U = Umax when t = tfuel) Uempty t( ) Umax e

k t tfuel−( )⋅

M0 Mfuel−
−

⋅=

0 20 40 60
0

100

200

300

400

t (s)

U
 (

m
/s

)



Problem 4.164 [Difficulty: 3]

y

x

CS at speed U

Ve

Y

X

Given: Data on rocket sled

Find: Minimum fuel to get to 265 m/s

Solution:

Basic equation: Momentum flux in x direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities

From continuity
dM

dt
mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum arfx− M⋅
dU

dt
− M0 mrate t⋅−( )⋅= ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

Separating variables dU
Ve mrate⋅

M0 mrate t⋅−
dt⋅=

Integrating U Ve ln
M0

M0 mrate t⋅−

⎛
⎜
⎝

⎞

⎠
⋅= Ve− ln 1

mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅=

or t
M0

mrate

1 e

U

Ve

−

−

⎛⎜
⎜⎝

⎞

⎠⋅=

The mass of fuel consumed is mf mrate t⋅= M0 1 e

U

Ve

−

−

⎛⎜
⎜⎝

⎞

⎠⋅=

Hence mf 900 kg⋅ 1 e

265

2750
−

−

⎛
⎜
⎝

⎞

⎠×= mf 82.7 kg=



Problem 4.165 [Difficulty: 3]

y

x

CS at speed U

Ve

Y

X

Given: Data on rocket weapon

Find: Expression for speed of weapon; minimum fraction of mass that must be fuel

Solution:

Basic equation: Momentum flux in x direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate

From continuity
dM

dt
mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum arfx− M⋅
dU

dt
− M0 mrate t⋅−( )⋅= ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

Separating variables dU
Ve mrate⋅

M0 mrate t⋅−
dt⋅=

Integrating from U = U0 at t = 0 to U = U at t = t

U U0− Ve− ln M0 mrate t⋅−( ) ln M0( )−( )⋅= Ve− ln 1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅=

U U0 Ve ln 1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅−=

Rearranging MassFractionConsumed
mrate t⋅

M0

= 1 e

U U0−( )
Ve

−

−= 1 e

3500 600−( )

6000
−

−= 0.383=

Hence 38.3% of the mass must be fuel to accomplish the task.  In reality, a much higher percentage would be needed due to drag

effects
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Problem 4.147
 

Problem 4.167                                                    [Difficulty: 3]
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Problem 4.148
 

Problem 4.169 [Difficulty: 3]



Problem 4.170 [Difficulty: 3]

 y 

x 

CS at speed V 

Ve 

Y 

X 

Given: Data on rocket

Find: Speed after 5 s; Maximum velocity; Plot of speed versus time

Solution:

Basic equation: Momentum flux in y direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate

From continuity
dM

dt
mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum M− g⋅ arfy M⋅− ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅= or arfy
dV

dt
=

Ve mrate⋅

M
g−=

Ve mrate⋅

M0 mrate t⋅−
g−=

Separating variables dV
Ve mrate⋅

M0 mrate t⋅−
g−

⎛
⎜
⎝

⎞

⎠
dt⋅=

Integrating from V = at t = 0 to V = V at t = t

V Ve− ln M0 mrate t⋅−( ) ln M0( )−( )⋅ g t⋅−= Ve− ln 1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅ g t⋅−= V Ve− ln 1

mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅ g t⋅−=

At t = 5 s Vmax 2500−
m

s
⋅ ln 1 10

kg

s
⋅

1

350 kg⋅
× 5× s⋅−⎛⎜

⎝
⎞
⎠

⋅ 9.81
m

s
2

⋅ 5× s⋅−= Vmax 336
m

s
=

For the motion after 5 s, assuming the fuel is used up, the equation of motion becomes a M− g⋅=

0 20 40 60

500−

300−

100−

100

300

500

Time (s)

V
 (

m
/s

)
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Problem 4.172 [Difficulty: 4]

CS (moves 

at speed U) 





Ff 
Ry 

y 

x 

Given: Water jet striking moving vane

Find: Plot of terminal speed versus turning angle; angle to overcome static friction

Solution:

Basic equations: Momentum flux in x and y directions

Assumptions:  1) Incompressible flow 2) Atmospheric pressure in jet 3) Uniform flow 4) Jet relative velocity is constant

Then Ff− M arfx⋅− u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= V U−( )− ρ V U−( )⋅ A⋅[ ]⋅ V U−( ) cos θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

arfx

ρ V U−( )
2

A⋅ 1 cos θ( )−( )⋅ Ff−

M
= (1)

Also Ry M g⋅− v1 ρ− V1⋅ A1⋅( )⋅ v2 ρ⋅ V2⋅ A2⋅+= 0 V U−( ) sin θ( )⋅ ρ V U−( )⋅ A⋅[ ]⋅+=

Ry M g⋅ ρ V U−( )
2

A⋅ sin θ( )⋅+=

At terminal speed arfx = 0 and Ff = µkRy.  Hence in Eq 1

0
ρ V Ut−( )2⋅ A⋅ 1 cos θ( )−( )⋅ μk M g⋅ ρ V Ut−( )2⋅ A⋅ sin θ( )⋅+⎡

⎣
⎤
⎦⋅−

M
=

ρ V Ut−( )2⋅ A⋅ 1 cos θ( )− μk sin θ( )⋅−( )⋅

M
μk g⋅−=

or V Ut−
μk M⋅ g⋅

ρ A⋅ 1 cos θ( )− μk sin θ( )⋅−( )⋅
= Ut V

μk M⋅ g⋅

ρ A⋅ 1 cos θ( )− μk sin θ( )⋅−( )⋅
−=

The terminal speed as a function of angle is plotted below; it can be generated in Excel
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For the static case Ff μs Ry⋅= and arfx 0= (the cart is about to move, but hasn't)

Substituting in Eq 1, with U = 0

0
ρ V

2
⋅ A⋅ 1 cos θ( )− μs ρ V

2
⋅ A⋅ sin θ( )⋅ M g⋅+( )⋅−⎡

⎣⋅

M
=

or cos θ( ) μs sin θ( )⋅+ 1
μs M⋅ g⋅

ρ V
2

⋅ A⋅
−=

We need to solve this for θ!  This can be done by hand or by using Excel's Goal Seek or Solver θ 19.0 deg⋅=

Note that we need θ = 19o, but once started we can throttle back to about θ = 12.5o and still keep moving!
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Problem 4.176 [Difficulty: 4]

 y 

x 

CS at speed V 

Ve 

Y 

X 

Given: Data on rocket

Find: Maximum speed and height; Plot of speed and distance versus time

Solution:

Basic equation: Momentum flux in y direction

Assumptions:  1) No resistance   2) pe = patm 3) Uniform flow 4) Use relative velocities 5) Constant mass flow rate

From continuity
dM

dt
mrate= constant= so M M0 mrate t⋅−= (Note: Software cannot render a dot!)

Hence from momentum M− g⋅ arfy M⋅− ue ρe Ve⋅ Ae⋅( )⋅= Ve− mrate⋅=

Hence arfy
dV

dt
=

Ve mrate⋅

M
g−=

Ve mrate⋅

M0 mrate t⋅−
g−=

Separating variables dV
Ve mrate⋅

M0 mrate t⋅−
g−

⎛
⎜
⎝

⎞

⎠
dt⋅=

Integrating from V = at t = 0 to V = V at t = t

V Ve− ln M0 mrate t⋅−( ) ln M0( )−( )⋅ g t⋅−= Ve− ln 1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅ g t⋅−=

V Ve− ln 1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅ g t⋅−= for t tb≤ (burn time) (1)

To evaluate at tb = 1.7 s, we need Ve and mrate mrate

mf

tb

= mrate
12.5 gm⋅

1.7 s⋅
= mrate 7.35 10

3−
×

kg

s
=

Also note that the thrust Ft is due to

momentum flux from the rocket
Ft mrate Ve⋅= Ve

Ft

mrate

= Ve
5.75 N⋅

7.35 10
3−

×
kg

s
⋅

kg m⋅

s
2

N⋅
×= Ve 782

m

s
=

Hence Vmax Ve− ln 1
mrate tb⋅

M0

−
⎛
⎜
⎝

⎞

⎠
⋅ g tb⋅−=

Vmax 782−
m

s
⋅ ln 1 7.35 10

3−
×

kg

s
⋅

1

0.0696 kg⋅
× 1.7× s⋅−⎛⎜

⎝
⎞
⎠

⋅ 9.81
m

s
2

⋅ 1.7× s⋅−= Vmax 138
m

s
=



To obtain Y(t) we set V = dY/dt in Eq 1, and integrate to find

Y
Ve M0⋅

mrate

1
mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
ln 1

mrate t⋅

M0

−
⎛
⎜
⎝

⎞

⎠
1−

⎛
⎜
⎝

⎞

⎠
⋅ 1+

⎡
⎢
⎣

⎤
⎥
⎦

⋅
1

2
g⋅ t

2
⋅−= t tb≤ tb 1.7 s⋅= (2)

At t = tb Yb 782
m

s
⋅ 0.0696× kg⋅

s

7.35 10
3−

× kg⋅
× 1

0.00735 1.7⋅

0.0696
−⎛⎜

⎝
⎞
⎠

ln 1
.00735 1.7⋅

.0696
−⎛⎜

⎝
⎞
⎠

1−⎛⎜
⎝

⎞
⎠

1+⎡⎢
⎣

⎤⎥
⎦

⋅

1

2
− 9.81×

m

s
2

⋅ 1.7 s⋅( )
2

×+

...=

Yb 113 m=

After burnout the rocket is in free assent.  Ignoring drag V t( ) Vmax g t tb−( )⋅−= (3)

Y t( ) Yb Vmax t tb−( )⋅+
1

2
g⋅ t tb−( )2⋅−= t tb> (4)

The speed and position as functions of time are plotted below.  These are obtained from Eqs 1 through 4, and can be plotted in

Excel
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m
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1500
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m
)

Using Solver, or by differentiating y(t) and setting to zero, or by setting V(t) = 0, we find for the maximum y

t 15.8 s= ymax 1085 m=



Problem 4.177 [Difficulty: 3]

Given: Data on "jet pack" rocket

Find: Initial exhaust mass flow rate; mass flow rate at end; maximum time of flight

Solution:

Basic equation: Momentum flux in y direction

Assumptions:  1) Jet pack just hovers  2) Steady flow  3) Uniform flow 4) Use relative velocities

Given data Ve 3000
m

s
⋅= M0 200 kg⋅= Mfuel 100 kg⋅= gmoon 0.17 g⋅= gmoon 1.67

m

s
2

=

At all instants, the momentum becomes M− gmoon⋅ v1− mrate⋅= Ve− mrate⋅= or mrate

M gmoon⋅

Ve

=

Hence, initially mrateinit

M0 gmoon⋅

Ve

= mrateinit 0.111
kg

s
=

Finally, when all the fuel is just used up, the mass is Mf M0 Mfuel−= Mf 100 kg=

Then mratefinal

Mf gmoon⋅

Ve

= mratefinal 0.0556
kg

s
=

Flight ends as fuel is used up.  To find this, from continuity
dM

dt
mrate= but mrate

M gmoon⋅

Ve

=

Hence
dM

dt

M gmoon⋅

Ve

= so
dM

M

gmoon

Ve

dt⋅=

Integrating ln
M0

M

⎛
⎜
⎝

⎞
⎠

gmoon

Ve

t⋅= or M M0 e

gmoon

Ve

− t⋅

⋅=

Solving for t t
Ve

gmoon

− ln
M

M0

⎛
⎜
⎝

⎞
⎠

⋅= so when M Mf= tfinal

Ve

gmoon

− ln
Mf

M0

⎛
⎜
⎝

⎞

⎠
⋅= tfinal 20.8 min=
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Problem 4.180 [Difficulty: 5]

 

CS moving 

at speed U 

 



Given: Water jet striking moving disk

Find: Motion of disk; steady state height

Solution:

Basic equations: Bernoulli; Momentum flux in z direction (treated as upwards) for linear accelerating CV

p

ρ

V
2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible flow 3) Atmospheric pressure 4) Uniform flow 5) velocities wrt CV (All in jet)

The Bernoulli equation becomes
V0

2

2
g 0⋅+

V1
2

2
g h⋅+= V1 V0

2
2 g⋅ h⋅−= (1)

V1 15
m

s
⋅⎛⎜

⎝
⎞
⎠

2

2 9.81×
m

s
2

⋅ 0 3−( )⋅ m⋅+= V1 12.9
m

s
=

The momentum equation becomes M− g⋅ M arfz⋅− w1 ρ− V1⋅ A1⋅( )⋅ w2 ρ V2⋅ A2⋅( )⋅+= V1 U−( ) ρ− V1 U−( )⋅ A1⋅⎡⎣ ⎤⎦⋅ 0+=

With arfz
d

2
h

dt
2

= and U
dh

dt
= we get M− g⋅ M

d
2
h

dt
2

⋅− ρ− V1
dh

dt
−⎛⎜

⎝
⎞
⎠

2

⋅ A1⋅=

Using Eq 1, and from continuity V1 A1⋅ V0 A0⋅=
d

2
h

dt
2

V0
2

2 g⋅ h⋅−
dh

dt
−⎛⎜

⎝
⎞
⎠

2 ρ A0⋅ V0⋅

M V0
2

2 g⋅ h⋅−⋅

⋅ g−= (2)

This must be solved numerically!  One approach is to use Euler's method (see the Excel solution)

At equilibrium h h0=
dh

dt
0=

d
2
h

dt
2

0= so

V0
2

2 g⋅ h0⋅−⎛
⎝

⎞
⎠ ρ⋅ A0⋅ V0⋅ M g⋅− 0= and h0

V0
2

2 g⋅
1

M g⋅

ρ V0
2

⋅ A0⋅

⎛⎜
⎜⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Hence h0
1

2
15

m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
s
2

9.81 m⋅
× 1 30 kg⋅ 9.81×

m

s
2

⋅
m

3

1000 kg⋅
×

s

15 m⋅
⎛⎜
⎝

⎞
⎠

2

×
1

.005 m
2

⋅
×

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2

−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

×= h0 10.7 m=



In Excel:

Ξt  = 0.05 s

A 0 = 0.005 m
2

g  = 9.81 m/s
2

V  = 15 m/s

M  = 30 kg

Ξ = 1000 kg/m
3

t  (s) h  (m) dh/dt  (m/s) d
2
h/dt

2
 (m/s

2
)

0.000 2.000 0.000 24.263

0.050 2.000 1.213 18.468

0.100 2.061 2.137 14.311

0.150 2.167 2.852 11.206

0.200 2.310 3.412 8.811

0.250 2.481 3.853 6.917

0.300 2.673 4.199 5.391

0.350 2.883 4.468 4.140

0.400 3.107 4.675 3.100

0.450 3.340 4.830 2.227

0.500 3.582 4.942 1.486

0.550 3.829 5.016 0.854

0.600 4.080 5.059 0.309

0.650 4.333 5.074 -0.161

0.700 4.587 5.066 -0.570

0.750 4.840 5.038 -0.926

0.800 5.092 4.991 -1.236 t  (s) h  (m) dh/dt  (m/s) d
2
h/dt

2
 (m/s

2
)

0.850 5.341 4.930 -1.507 2.950 10.506 0.380 -0.766

0.900 5.588 4.854 -1.744 3.000 10.525 0.341 -0.698

0.950 5.830 4.767 -1.951 3.050 10.542 0.307 -0.634

1.000 6.069 4.669 -2.130 3.100 10.558 0.275 -0.574

1.050 6.302 4.563 -2.286 3.150 10.571 0.246 -0.519

1.100 6.530 4.449 -2.420 3.200 10.584 0.220 -0.469

1.150 6.753 4.328 -2.535 3.250 10.595 0.197 -0.422

1.200 6.969 4.201 -2.631 3.300 10.604 0.176 -0.380

1.250 7.179 4.069 -2.711 3.350 10.613 0.157 -0.341

1.300 7.383 3.934 -2.776 3.400 10.621 0.140 -0.306

1.350 7.579 3.795 -2.826 3.450 10.628 0.124 -0.274

1.400 7.769 3.654 -2.864 3.500 10.634 0.111 -0.245

1.450 7.952 3.510 -2.889 3.550 10.640 0.098 -0.219

1.500 8.127 3.366 -2.902 3.600 10.645 0.087 -0.195

1.550 8.296 3.221 -2.904 3.650 10.649 0.078 -0.174

1.600 8.457 3.076 -2.896 3.700 10.653 0.069 -0.155

1.650 8.611 2.931 -2.878 3.750 10.656 0.061 -0.138

1.700 8.757 2.787 -2.850 3.800 10.659 0.054 -0.123

1.750 8.896 2.645 -2.814 3.850 10.662 0.048 -0.109

1.800 9.029 2.504 -2.769 3.900 10.665 0.043 -0.097

1.850 9.154 2.365 -2.716 3.950 10.667 0.038 -0.086

1.900 9.272 2.230 -2.655 4.000 10.669 0.033 -0.077

1.950 9.384 2.097 -2.588 4.050 10.670 0.030 -0.068

2.000 9.488 1.967 -2.514 4.100 10.672 0.026 -0.060

2.050 9.587 1.842 -2.435 4.150 10.673 0.023 -0.053

2.100 9.679 1.720 -2.350 4.200 10.674 0.021 -0.047

2.150 9.765 1.602 -2.261 4.250 10.675 0.018 -0.042

2.200 9.845 1.489 -2.167 4.300 10.676 0.016 -0.037

2.250 9.919 1.381 -2.071 4.350 10.677 0.014 -0.033

2.300 9.989 1.278 -1.972 4.400 10.678 0.013 -0.029

2.350 10.052 1.179 -1.871 4.450 10.678 0.011 -0.026

2.400 10.111 1.085 -1.769 4.500 10.679 0.010 -0.023

2.450 10.166 0.997 -1.666 4.550 10.679 0.009 -0.020
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Problem 4.181                                                      [Difficulty: 5]   Part 1/2
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Problem 4.133
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Problem 4.185                                                       [Difficulty: 3]   Part 2/2



Problem *4.165
 

Problem 4.186                                                            [Difficulty: 2]

Example 4.6

4.6



 

Problem 4.187                                                              [Difficulty: 3]



Problem 4.188 [Difficulty: 3]

Given: Data on rotating spray system

Find: Torque required to hold stationary; steady-state speed

Solution:

Basic equation: Rotating CV

Assumptions: 1) No surface force; 2) Body torques cancel; 3) Sprinkler stationary; 4) Steady flow; 5) Uniform flow; 6) L<<r

The given data is Q 15
L

min
⋅= R 225 mm⋅= d 5 mm⋅= ρ 999

kg

m
3

⋅=

For each branch V
1

2

Q

π

4
d

2
⋅

⋅= V 6.37
m

s
=

The basic equation reduces to a single scalar equation (FOR EACH BRANCH)

Tshaft Vr
→

α
→

r
→
×( )× ρ⋅

⌠⎮
⎮⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d= where α is the angular acceleration

But r
→

α
→

r
→
×( )× r

2
α⋅= (r and α perpendicular); the volume integral is Vr

→
α
→

r
→
×( )× ρ⋅

⌠⎮
⎮⌡

d Vr
2
α⋅ ρ⋅

⌠⎮
⎮⌡

d=
R

3

3
α⋅
π

4
⋅ d

2
⋅=

For the surface integral (FOR EACH BRANCH) A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d R V⋅ ρ⋅
Q

2
⋅=

Combining Tshaft
R

3

3
α⋅ ρ⋅

π

4
⋅ d

2
⋅− R V⋅ ρ⋅

Q

2
⋅= (1)

When the sprayer is at rest, α = 0, so Tshaft R V⋅ ρ⋅
Q

2
⋅= Tshaft 0.179 N m⋅=

The total torque is then Ttotal 2 Tshaft⋅= Ttotal 0.358 N m⋅=

When the device is released is released (Tshaft = 0 in Eq 1), we can solve for α α
6 ρ⋅ Q⋅ V⋅

ρ π⋅ d
2

⋅ R
2

⋅
= α 2.402 10

3
×

1

s
2

=



Problem 4.189 [Difficulty: 3]

Given: Data on rotating spray system

Find: Differential equation for motion; steady speed

Solution:

Basic equation: Rotating CV

Assumptions: 1) No surface force; 2) Body torques cancel; 3) Steady flow; 5) Uniform flow; 6) L<<r

The given data is Q 15
L

min
⋅= R 225 mm⋅= d 5 mm⋅= ρ 999

kg

m
3

⋅=

For each branch V
1

2

Q

π

4
d

2
⋅

⋅= V 6.37
m

s
= A

π

4
d

2
⋅= A 19.6 mm

2
=

The basic equation reduces to a single scalar equation (FOR EACH BRANCH)

Vr
→

2 ω
→
⋅ V

→
× r

→
× α

→
r

→
×+( )× ρ⋅

⌠⎮
⎮⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d= where α is the angular acceleration

But r
→

2 ω
→
⋅ V

→
× r

→
× α

→
r

→
×+( )× 2 ω⋅ r⋅ V⋅ α r

2
⋅+= (r and α perpendicular)

The volume integral is then Vr
→

2 ω
→
⋅ V

→
× r

→
× α

→
r

→
×+( )× ρ⋅

⌠⎮
⎮⌡

d− ω R
2

⋅ V⋅ α
R

3

3
⋅+

⎛
⎜
⎝

⎞

⎠
− ρ⋅ A⋅=

For the surface integral (FOR EACH BRANCH) A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d R V⋅ ρ⋅
Q

2
⋅=

Combining ω R
2

⋅ V⋅ α
R

3

3
⋅+

⎛
⎜
⎝

⎞

⎠
− ρ⋅ A⋅ R V⋅ ρ⋅

Q

2
⋅= or α

3

A R
2

⋅
ω− V⋅ A⋅ R⋅

Q V⋅

2
−⎛⎜

⎝
⎞
⎠

⋅= (1)

The steady state speed (α = 0 in Eq 1) is then when ωmax− V⋅ A⋅ R⋅
Q V⋅

2
− 0= or ωmax

Q

2 A⋅ R⋅
−=

ωmax 28.3−
1

s
= ωmax 270− rpm=



Problem 4.190 [Difficulty: 3]

NOTE ERROR: Retarding torque is 0.05 N.m!

Given: Data on rotating spray system

Find: Differential equation for motion; steady speed; troque to stop

Solution:

Basic equation: Rotating CV

Assumptions: 1) No surface force; 2) Body torques cancel; 3) Steady flow; 5) Uniform flow; 6) L<<r

The given data is Q 15
L

min
⋅= R 225 mm⋅= d 5 mm⋅= ρ 999

kg

m
3

⋅= T 0.05 N⋅ m⋅=

For each branch V
1

2

Q

π

4
d

2
⋅

⋅= V 6.37
m

s
= A

π

4
d

2
⋅= A 19.6 mm

2
⋅=

The basic equation reduces to a single scalar equation (FOR EACH BRANCH)

T

2
Vr

→
2 ω
→
⋅ V

→
× r

→
× α

→
r
→
×+( )× ρ⋅

⌠⎮
⎮⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d= where T is the retarding torque α is the angular

acceleration

But r
→

2 ω
→
⋅ V

→
× r

→
× α

→
r

→
×+( )× 2 ω⋅ r⋅ V⋅ α r

2
⋅+= (r and α perpendicular)

The volume integral is then Vr
→

2 ω
→
⋅ V

→
× r

→
× α

→
r
→
×+( )× ρ⋅

⌠⎮
⎮⌡

d− ω R
2

⋅ V⋅ α
R

3

3
⋅+

⎛
⎜
⎝

⎞

⎠
− ρ⋅ A⋅=

For the surface integral (FOR EACH BRANCH) A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d R V⋅ ρ⋅
Q

2
⋅=

Combining
T

2
ω R

2
⋅ V⋅ α

R
3

3
⋅+

⎛
⎜
⎝

⎞

⎠
ρ⋅ A⋅− R V⋅ ρ⋅

Q

2
⋅= or α

3

2 ρ⋅ A⋅ R
3

⋅
T 2 ρ⋅ A⋅ ω⋅ R

2
⋅ V⋅− ρ R⋅ Q⋅ V⋅−( )⋅= (1)

The steady state speed (α = 0 in Eq 1) is then when T 2 ρ⋅ A⋅ ωmax⋅ R
2

⋅ V⋅− ρ R⋅ Q⋅ V⋅− 0= or ωmax
T ρ R⋅ Q⋅ V⋅−

2 ρ⋅ A⋅ R
2

⋅ V⋅
=

ωmax 24.3−
1

s
= ωmax 232− rpm⋅=

For no rotation use α = ω = 0 in Eq 1, and solve for Tmax Tmax ρ Q⋅ R⋅ V⋅= Tmax 0.358 N m⋅⋅=



Problem 4.191 [Difficulty: 4]

Given: Data on rotating spray system

Find: Torque required to hold stationary; steady-state speed

Solution:

Basic equation: Rotating CV

The given data is ρ 999
kg

m
3

⋅= δ 2.5 mm⋅= ro 300 mm⋅= Qin 3
L

s
⋅= ri 300 250−( ) mm⋅=

For no rotation (ω = 0) the basic equation reduces to a single scalar equation

Tshaft A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d= or Tshaft 2 δ⋅
ri

ro

rr V⋅ ρ⋅ V⋅
⌠
⎮
⌡

d⋅= 2 ρ⋅ V
2

⋅ δ⋅
ri

ro

rr
⌠
⎮
⌡

d⋅= ρ V
2

⋅ δ⋅ ro
2

ri
2

−⎛
⎝

⎞
⎠⋅=

where V is the exit velocity with respect to the CV V
Qin

2 δ⋅ ro ri−( )⋅
= V 2.40

m

s
=

Hence Tshaft ρ
Qin

2 δ⋅ ro ri−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅ δ⋅ ro
2

ri
2

−⎛
⎝

⎞
⎠⋅= Tshaft

ρ Qin
2

⋅

4 δ⋅

ro ri+( )
ro ri−( )

⋅=

Tshaft
1

4
3

L

s
⋅

10
3−

m
3

⋅

L
×

⎛
⎜
⎝

⎞

⎠

2

×
999 kg⋅

m
3

×
1

0.0025 m⋅
×

0.3 0.05+( )

0.3 0.05−( )
×= Tshaft 1.26 N m⋅⋅=

For the steady rotation speed the equation becomes Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d=

The volume integral term Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d−  must be evaluated for the CV.  The velocity in the CV varies with r.  This

variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is Q, the flow out is Q + dQ, and the loss

through the slot is Vδdr.  Hence mass conservation leads to

Q dQ+( ) V δ⋅ dr⋅+ Q− 0= dQ V− δ⋅ dr⋅= Q r( ) V− δ⋅ r⋅ const+=



At the inlet (r = ri) Q Qi=
Qin

2
=

Hence Q Qi V δ⋅ ri r−( )⋅+=
Qin

2

Qin

2 δ⋅ ro ri−( )⋅
δ⋅ ri r−( )⋅+= Q

Qin

2
1

ri r−

ro ri−
+

⎛
⎜
⎝

⎞

⎠
⋅=

Qin

2

ro r−

ro ri−

⎛
⎜
⎝

⎞

⎠
⋅=

and along each rotor the water speed is v r( )
Q

A
=

Qin

2 A⋅

ro r−

ro ri−

⎛
⎜
⎝

⎞

⎠
⋅=

Hence the term - Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d  becomes

Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− 4 ρ⋅ A⋅ ω⋅
ri

ro

rr v r( )⋅
⌠
⎮
⌡

d⋅= 4 ρ⋅ ω⋅

ri

ro

rr
Qin

2
⋅

ro r−

ro ri−

⎛
⎜
⎝

⎞

⎠
⋅

⌠
⎮
⎮
⎮⌡

d⋅=

Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− 2 ρ⋅ Qin⋅ ω⋅

ri

ro

rr
ro r−

ro ri−

⎛
⎜
⎝

⎞

⎠
⋅

⌠
⎮
⎮
⎮⌡

d⋅= ρ Qin⋅ ω⋅
ro

3
ri

2
2 ri⋅ 3 ro⋅−( )⋅+

3 ro ri−( )⋅
⋅=

or

Recall that A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d ρ V
2

⋅ δ⋅ ro
2

ri
2

−⎛
⎝

⎞
⎠⋅=

Hence equation Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d= becomes

ρ Qin⋅ ω⋅
ro

3
ri

2
2 ri⋅ 3 ro⋅−( )⋅+

3 ro ri−( )⋅
⋅ ρ V

2
⋅ δ⋅ ro

2
ri

2
−⎛

⎝
⎞
⎠⋅=

Solving for ω ω
3 ro ri−( )⋅ V

2
⋅ δ⋅ ro

2
ri

2
−⎛

⎝
⎞
⎠⋅

Qin ro
3

ri
2

2 ri⋅ 3 ro⋅−( )⋅+⎡
⎣

⎤
⎦⋅

= ω 120 rpm⋅=



Problem 4.192 [Difficulty: 4]

Given: Data on rotating spray system

Find: Torque required to hold stationary; steady-state speed

Solution:

Governing equation: Rotating CV

The given data is ρ 999
kg

m
3

⋅= δ 2.5 mm⋅= ro 300 mm⋅= ri 300 250−( ) mm⋅= Qin 3
L

s
⋅=

For no rotation (ω = 0) this equation reduces to a single scalar equation

Tshaft A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d= or Tshaft 2 δ⋅
ri

ro

rr V⋅ ρ⋅ V⋅
⌠
⎮
⌡

d⋅=

where V is the exit velocity with respect to the CV.  We need to find V(r).  To do this we use mass conservation, and the fact that the

distribution is linear

V r( ) Vmax

r ri−( )
ro ri−( )

⋅= and 2
1

2
⋅ Vmax⋅ ro ri−( )⋅ δ⋅ Qin=

so V r( )
Qin

δ

r ri−( )
ro ri−( )2

⋅=

Hence Tshaft 2 ρ⋅ δ⋅
ri

ro

rr V
2

⋅
⌠
⎮
⌡

d⋅= 2
ρ Qin

2
⋅

δ
⋅

ri

ro

rr
r ri−( )

ro ri−( )2
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d⋅= Tshaft

ρ Qin
2

⋅ ri 3 ro⋅+( )⋅

6 δ⋅ ro ri−( )⋅
=

Tshaft
1

6
3

L

s
⋅

10
3−

m
3

⋅

L
×

⎛
⎜
⎝

⎞

⎠

2

×
999 kg⋅

m
3

×
1

0.0025 m⋅
×

0.05 3 0.3⋅+( )

0.3 0.05−( )
×= Tshaft 2.28 N m⋅⋅=

For the steady rotation speed the equation becomes

Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d=



The volume integral term Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d−  must be evaluated for the CV.  The velocity in the CV varies with r.  This

variation can be found from mass conservation

For an infinitesmal CV of length dr and cross-section A at radial position r, if the flow in is Q, the flow out is Q + dQ, and the loss

through the slot is Vδdr  Hence mass conservation leads to

Q dQ+( ) V δ⋅ dr⋅+ Q− 0= dQ V− δ⋅ dr⋅= Q r( ) Qi δ−

ri

r

r
Qin

δ

r ri−( )
ro ri−( )2

⋅
⌠
⎮
⎮
⎮
⌡

d⋅= Qi

ri

r

rQin

r ri−( )
ro ri−( )2

⋅
⌠
⎮
⎮
⎮
⌡

d−=

At the inlet (r = ri) Q Qi=
Qin

2
=

Q r( )
Qin

2
1

r ri−( )2

ro ri−( )2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=
Hence

and along each rotor the water speed is v r( )
Q

A
=

Qin

2 A⋅
1

r ri−( )2

ro ri−( )2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Hence the term - Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d  becomes 4 ρ⋅ A⋅ ω⋅
ri

ro

rr v r( )⋅
⌠
⎮
⌡

d

⎛
⎜
⎜
⎝

⎞

⎠
⋅ 4 ρ⋅ ω⋅

ri

ro

r
Qin

2
r⋅ 1

r ri−( )2

ro ri−( )2
−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d⋅=

or 2 ρ⋅ Qin⋅ ω⋅

ri

ro

rr 1
ro r−( )2

ro ri−( )2
−⋅

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d⋅ ρ Qin⋅ ω⋅
1

6
ro

2
⋅

1

3
ri⋅ ro⋅+

1

2
ri

2
⋅−⎛⎜

⎝
⎞
⎠

⋅=

Recall that A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d
ρ Qin

2
⋅ ri 3 ro⋅+( )⋅

6 ro ri−( )⋅ δ⋅
=

Hence equation Vr
→

2 ω
→
⋅ Vxyz

→⎯⎯
×⎛

⎝
⎞
⎠× ρ⋅

⌠
⎮
⎮
⌡

d− A
→

r
→

Vxyz

→⎯⎯
× ρ⋅ Vxyz

→⎯⎯
⋅

⌠
⎮
⎮
⌡

d=

becomes ρ Qin⋅ ω⋅
1

6
ro

2
⋅

1

3
ri⋅ ro⋅+

1

2
ri

2
⋅−⎛⎜

⎝
⎞
⎠

⋅
ρ Qin

2
⋅ ri 3 ro⋅+( )⋅

6 ro ri−( )⋅ δ⋅
=

Solving for ω ω
ρ Qin⋅ ri 3 ro⋅+( )⋅

ro
2

2 ri⋅ ro⋅+ 3 ri
2

⋅−⎛
⎝

⎞
⎠ ro ri−( )⋅ ρ⋅ δ⋅

= ω 387 rpm⋅=



 

Problem 4.193                                                             [Difficulty: 3]



 

Problem 4.194                                                       [Difficulty: 3]



Problem *4.175
 

Problem 4.195                                                             [Difficulty: 3]



Problem *4.176

 

Problem 4.196                                                           [Difficulty: 3]



 

Problem 4.197                                                              [Difficulty: 4]



Problem *4.178

 

Problem 4.198                                                           [Difficulty: 4]



Problem *4.179
 

Problem 4.199                                                        [Difficulty: 4]   Part 1/2



Problem *4.179 cont'd

 

Problem 4.199 Difficulty: [4]   Part 2/2



Problem *4.180

 

Problem 4.200                                                         [Difficulty: 4]   Part 1/3



Problem *4.180 cont'd
 

Problem 4.200                                                      [Difficulty: 4]   Part 2/3



Problem *4.180 cont'd

 

Problem 4.200                                                       [Difficulty: 4]   Part 3/3



Problem *4.181

 

Problem 4.201                                                  [Difficulty: 5]   Part 1/2



Problem *4.181  cont'd

 

Problem 4.201                                             [Difficulty: 5]   Part 2/2



 

Problem 4.202                                                    [Difficulty: 5]   Part 1/2



 

Problem 4.202                                 [Difficulty: 5]   Part 2/2



Problem 4.183 Problem 4.203                                                           [Difficulty: 2]



Problem 4.204 [Difficulty: 3]

Given: Compressed air bottle

Find: Rate of temperature change

Solution:

Basic equations: Continuity; First Law of Thermodynamics for a CV

Assumptions:  1) Adiabatic   2) No work 3) Neglect KE 4) Uniform properties at exit 5) Ideal gas

Given data p 500 kPa⋅= T 20°C= T 293K= V 100 L⋅= mexit 0.01
kg

s
⋅=

Also Rair
286.9 N⋅ m⋅

kg K⋅
= cv 717.4

N m⋅

kg K⋅
⋅=

From continuity

t
MCV

∂

∂
mexit+ 0= where mexit is the mass flow rate at the exit (Note: Software does not allow a dot!)

t
MCV

∂

∂
mexit−=

From the 1st law 0
t

Mu
⌠
⎮
⌡

d
∂

∂
u

p

ρ
+⎛⎜

⎝
⎞
⎠

mexit⋅+= u
t
M

∂

∂

⎛
⎜
⎝

⎞
⎠

⋅ M
t
u

∂

∂

⎛
⎜
⎝

⎞
⎠

⋅+ u
p

ρ
+⎛⎜

⎝
⎞
⎠

mexit⋅+=

Hence u mexit−( )⋅ M cv⋅
dT

dt
⋅+ u mexit⋅+

p

ρ
mexit⋅+ 0=

dT

dt

mexit p⋅

M cv⋅ ρ⋅
−=

But M ρ V⋅= (where V is volume) so
dT

dt

mexit p⋅

V cv⋅ ρ
2

⋅
−=

For air ρ
p

Rair T⋅
= ρ 500 10

3
×

N

m
2

⋅
kg K⋅

286.9 N⋅ m⋅
×

1

20 273+( ) K⋅
×= ρ 5.95

kg

m
3

=

Hence
dT

dt
0.01−

kg

s
⋅ 500× 10

3
×

N

m
2

⋅
1

100 L⋅
×

L

10
3−

m
3

⋅
×

kg K⋅

717.4 N⋅ m⋅
×

m
3

5.95 kg⋅

⎛
⎜
⎝

⎞

⎠

2

×= 1.97−
K

s
⋅= 1.97−

C

s
⋅=



Problem 4.205 [Difficulty: 3]

Given: Data on centrifugal water pump

Find: Pump efficiency

Solution:

Basic equations:

(4.56)

∆p SGHg ρ⋅ g⋅ ∆h⋅= η
Ws

Pin

=

Available data: D1 0.1 m⋅= D2 0.1 m⋅= Q 0.02
m

3

s
⋅= Pin 6.75 kW⋅=

ρ 1000
kg

m
3

= SGHg 13.6= h1 0.2− m⋅= p2 240 kPa⋅=

Assumptions:  1) Adiabatic  2) Only shaft work  3) Steady  4) Neglect Δu  5) Δz = 0  6) Incompressible  7) Uniform flow

Then Ws− p1 v1⋅
V1

2

2
+

⎛⎜
⎜⎝

⎞

⎠
mrate−( )⋅ p2 v2⋅

V2
2

2
+

⎛⎜
⎜⎝

⎞

⎠
mrate( )⋅+=

Since mrate ρ Q⋅= and V1 V2= (from continuity)

Ws− ρ Q⋅ p2 v2⋅ p1 v1⋅−( )⋅= Q p2 p1−( )⋅=

p1 ρHg g⋅ h⋅= or p1 SGHg ρ⋅ g⋅ h1⋅= p1 26.7− kPa⋅=

Ws Q p1 p2−( )⋅= Ws 5.33− kW⋅= The negative sign indicates work in

η
Ws

Pin

= η 79.0 %⋅=



Problem 4.187
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Problem 4.186
 

Problem 4.207                                                         [Difficulty: 2]



Problem 4.188
 

Problem 4.208                                                         [Difficulty: 2]



Problem 4.209 [Difficulty: 3]

z

x

 
V2

 

 

CV (a)

CV (b)
zmax

Given: Data on fire boat hose system

Find: Volume flow rate of nozzle; Maximum water height; Force on boat

Solution:

Basic equation: First Law of Thermodynamics for a CV

Assumptions:  1) Neglect losses 2) No work 3) Neglect KE at 1 4) Uniform properties at exit 5) Incompressible 6) patm at 1 and 2

Hence for CV (a) Ws−
V2

2

2
g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
mexit⋅= mexit ρ V2⋅ A2⋅= where mexit is mass flow rate (Note:

Software cannot render a dot!)

Hence, for V2 (to get the flow rate) we need to solve
1

2
V2

2
⋅ g z2⋅+⎛⎜

⎝
⎞
⎠
ρ⋅ V2⋅ A2⋅ Ws−= which is a cubic for V2!

To solve this we could ignore the gravity term, solve for velocity, and then check that the gravity term is in fact

minor.  Alternatively we could manually iterate, or use a calculator or Excel, to solve.  The answer is V2 114
ft

s
⋅=

Hence the flow rate is Q V2 A2⋅= V2

π D2
2

⋅

4
⋅= Q 114

ft

s
⋅

π

4
×

1

12
ft⋅⎛⎜

⎝
⎞
⎠

2

×= Q 0.622
ft

3

s
⋅= Q 279 gpm⋅=

To find zmax, use the first law again to (to CV (b)) to get Ws− g zmax⋅ mexit⋅=

zmax

Ws

g mexit⋅
−=

Ws

g ρ⋅ Q⋅
−= zmax 15 hp⋅

550 ft⋅ lbf⋅

s

1 hp⋅
×

s
2

32.2 ft⋅
×

ft
3

1.94 slug⋅
×

s

0.622 ft
3

⋅
×

slug ft⋅

s
2

lbf⋅
×= zmax 212 ft⋅=

For the force in the x direction when jet is horizontal we need x momentum

Then Rx u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= 0 V2 ρ⋅ Q⋅+= Rx ρ Q⋅ V2⋅=

Rx 1.94
slug

ft
3

⋅ 0.622×
ft

3

s
⋅ 114×

ft

s
⋅

lbf s
2

⋅

slug ft⋅
×= Rx 138 lbf⋅=



Problem 4.189
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Problem 4.211 [Difficulty: 4]

Given: Data on helicopter-type craft

Find: Air speed; Minimum power needed

Solution:

Basic equation: Contunity, z momentum; First Law of Thermodynamics for a CV; Bernoulli; Ideal gas

= 0

p

ρ

V
2

2
+ g z⋅+ const= p ρ Rair⋅ T⋅= ∆h cp ∆T⋅=

Assumptions:  1) Atmospheric at exit 2) Standard air 3) Uniform properties at exit 4) Incompressible

Given data M 1000 kg⋅= p 101 kPa⋅= T 15 °C= Do 4.5 m⋅= Di 4.25 m⋅= Rair
286.9 N⋅ m⋅

kg K⋅
=

Then A1
π

4
Do

2
⋅= A1 15.9 m

2
= A2

π

4
Do

2
Di

2
−⎛

⎝
⎞
⎠⋅= A2 1.72 m

2
= ρ

p

Rair T⋅
= ρ 1.222

kg

m
3

=

From continuity 0 ρ− V1⋅ A1⋅( ) ρ V2⋅ A2⋅( )+= or V1

A2

A1

V1⋅=

From momentum p1g− A1⋅ M g⋅− w1 ρ− V1⋅ A1⋅( )⋅ w2 ρ V2⋅ A2⋅( )⋅+= w1 V1−= w2 V1−= and ρ V1⋅ A1⋅ ρ V2⋅ A2⋅=

Then p1g− A1⋅ M g⋅− V1 ρ⋅ V1⋅ A1⋅ V2 ρ⋅ V2⋅ A2⋅−= ρ− V2⋅ A2⋅ V2 V1−( )⋅=

For this flow Bernoulli also applies between the atmosphere and location 1 patm p1
1

2
ρ⋅ V1

2
⋅+= p1g

1

2
− ρ⋅ V1

2
⋅=

Using continuity p1g A1⋅
1

2
− ρ⋅ V1

2
⋅ A1⋅=

1

2
− ρ⋅ V2⋅ A2⋅ V1⋅=

1

2
− ρ⋅ V2

2
⋅ A2⋅

A2

A1

⋅=



Substituting into the momentum equation and using continuity

1

2
ρ⋅ V2

2
⋅ A2⋅

A2

A1

⋅ M g⋅− ρ− V2
2

⋅ A2⋅ 1
V1

V2

−
⎛
⎜
⎝

⎞

⎠
⋅= ρ− V2

2
⋅ A2⋅ 1

A2

A1

−
⎛
⎜
⎝

⎞

⎠
⋅= or M g⋅ ρ V2

2
⋅ A2⋅ 1

1

2

A2

A1

⋅−
⎛
⎜
⎝

⎞

⎠
⋅=

Hence V2
M g⋅

ρ A2⋅ 1
1

2

A2

A1

⋅−
⎛
⎜
⎝

⎞

⎠
⋅

= Substituting values V2 70.3
m

s
=

For power we use the First Law

We have additional assumptions 5) pv = const 6) Neglect Δz

Then Ws− mrate

V2
2

V1
2

−

2

⎛⎜
⎜⎝

⎞

⎠
⋅ mrate u2 u1−

dQ

dm
−⎛⎜

⎝
⎞
⎠

⋅+=

The last term is non-mechanical energy; the minimum possible work is when this is zero.  Hence

Ws− Wmin−= mrate

V2
2

V1
2

−

2

⎛⎜
⎜⎝

⎞

⎠
⋅= mrate

V2
2

2
⋅ 1

V1

V2

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=
ρ A2⋅ V2

2
⋅

2
1

A2

A1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Wmin

ρ A2⋅ V2
3

⋅

2
1

A2

A1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= Using given data Wmin 360 kW⋅=
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Problem 5.1 [Difficulty: 1]

Given: The list of velocity fields provided above

Find: Which of these fields possibly represent two-dimensional, incompressible flow

Solution: We will check these flow fields against the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

Based on the two assumptions listed above, the continuity equation reduces to:

x
u



 y
v




 0

This is the criterion against which we will check all of the flow fields.

a) u x y t( ) 2 x
2

 y
2

 x
2

y v x y t( ) x
3

x y
2

4 y 
x

u x y t( )



4 x 2 x y

y
v x y t( )




x 2 y 4( )

Hence

x
u



 y
v




 0 INCOMPRESSIBLE

b) u x y t( ) 2 x y x
2

y v x y t( ) 2 x y y
2

 x
2


x

u x y t( )



2 y 2 x y

y
v x y t( )




2 x 2 y

Hence

x
u



 y
v




 0 NOT INCOMPRESSIBLE

c) u x y t( ) x
2

t 2 y v x y t( ) x t
2

 y t
x

u x y t( )



2 t x

y
v x y t( )




t

Hence

x
u



 y
v




 0 NOT INCOMPRESSIBLE

d) u x y t( ) 2 x 4 y( ) x t v x y t( ) 3 x y( ) y t

x
u x y t( )




t 2 x 4 y( ) 2 t x

y
v x y t( )




t 3 x 3 y( ) 3 t y

Hence
x

u


 y
v




 0 NOT INCOMPRESSIBLE



Problem 5.2 [Difficulty: 2]

Given: Velocity fields

Find: Which are 3D incompressible

Solution: We will check these flow fields against the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equation: (Continuity equation)

Assumption: Incompressible flow (ρ is constant)

Based on the assumption, the continuity equation reduces to:
x

u


 y
v






z
w




 0

This is the criterion against which we will check all of the flow fields.

a) u x y z t( ) 2 y
2

 2 x z v x y z t( ) 2 y z 6 x
2

 y z w x y z t( ) 3 x
2

 z
2

 x
3

y
4



x
u x y z t( )




2 z

y
v x y z t( )




6 x

2
 z 2 z

z
w x y z t( )




6 x

2
 z

Hence
x

u


 y
v






z
w




 0 NOT INCOMPRESSIBLE

b) u x y z t( ) x y z t v x y z t( ) x y z t
2

 w x y z t( ) z
2

x t
2

 y t 

x
u x y z t( )




t y z

y
v x y z t( )




t
2

x z
z

w x y z t( )



2 z t

2
x t y 

Hence
x

u


 y
v






z
w




 0 NOT INCOMPRESSIBLE

c) u x y z t( ) x
2

2 y z
2

 v x y z t( ) x 2 y z w x y z t( ) 2 x z y
2

 2 z

x
u x y z t( )




2 x

y
v x y z t( )




2

z
w x y z t( )




2 2 x

Hence
x

u


 y
v






z
w




 0 INCOMPRESSIBLE



Problem 5.3 [Difficulty: 2]

Given: x component of velocity

Find: y component for incompressible flow; Valid for unsteady?; How many y components?

Solution:

Basic equation:
x
ρ u( )



 y
ρ v( )






z
ρ w( )






t
ρ




 0

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u


 y
v




 0 or

y
v



 x
u






x
A x y B( )[ ]




 A y B( )

Integrating v x y( ) yA y B( )




d A
y

2

2
B y









 f x( )

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(x) can be any function of x.  The simplest is f(x) = 0

v x y( ) A
y

2

2
B y









 v x y( ) 6 y
y

2

2




Problem 5.4 [Difficulty: 1]

Given: The velocity field provided above

Find: The conditions under which this fields could represent incompressible flow

Solution: We will check this flow field against the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

0











z

w

y

v

x

u
Based on the assumption listed, the continuity equation reduces to:

A
x

u





E
y

v





J
z

w





Calculating the partial derivatives of the velocity components:

Applying this information to the continuity equation we get the necessary condition for incompressible flow:

A E J 0

(B, C, D, F, G, and H are arbitrary)



Problem 5.5 [Difficulty: 2]

Given: x component of velocity

Find: y component for incompressible flow; Valid for unsteady? How many y components?

Solution:

Basic

Equation: x
ρ u⋅( )

∂

∂ y
ρ v⋅( )

∂

∂
+

z
ρ w⋅( )

∂

∂
+

t
ρ

∂

∂
+ 0=

Assumptions: Incompressible flow (ρ is constant)

Flow is only in the x-y plane

Hence
x

u
∂

∂ y
v

∂

∂
+ 0= or

y
v

∂

∂ x
u

∂

∂
−=

x
3 x

2
⋅ y⋅ y

3
−( )∂

∂
−= 6− x⋅ y⋅=

Integrating v x y, ( ) y6 x⋅ y⋅
⌠
⎮
⌡

d−= 3− x⋅ y
2

⋅ f x( )+=

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(x) can be any function of x.  The simplest is f(x) = 0 v x y, ( ) 3− x⋅ y
2

⋅=



Problem 5.6 [Difficulty: 2]

Given: The x-component of velocity in a steady, incompressible flow field 

Find: The simplest y-component of velocity for this flow field

Solution: We will check this flow field against the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

0







y

v

x

u
Based on the two assumptions listed above, the continuity equation reduces to:

2x

A

x

u





2x

A

x

u

y

v









The partial of u with respect to x is: Therefore from continuity, we have

Integrating this expression will yield the y-component of velocity: v y
A

x
2







d f x( )
A y

x
2

f x( )

The simplest version of this velocity component would result when f(x) = 0: v
A y

x
2





Problem 5.7 [Difficulty: 2]

Given: y component of velocity

Find: x component for incompressible flow; Simplest x components?

Solution:

Basic

equation: x
ρ u( )



 y
ρ v( )






z
ρ w( )






t
ρ




 0

Assumptions: Incompressible flow (ρ is constant)

Flow is only in the x-y plane

Hence
x

u


 y
v




 0 or

x
u



 y
v






y
A x y x

2
y

2
  


 A x x

2
y

2
  A x y 2 y 

Integrating u x y( ) xA x
3

3 x y
2

 



d
1

4
 A x

4


3

2
A x

2
 y

2
 f y( )

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(y) can be any function of y.  The simplest is f(y) = 0

u x y( )
3

2
A x

2
 y

2


1

4
A x

4
 u x y( )

9

2
x

2
 y

2


3

4
x

4




Problem 5.8 [Difficulty: 3]

Given: y component of velocity

Find: x component for incompressible flow; Simplest x component

Solution:

Basic equation:
x
ρ u( )



 y
ρ v( )






z
ρ w( )






t
ρ




 0

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u


 y
v




 0 or

x
u



 y
v






y

2 x y

x
2

y
2

 2













2 x x
2

3 y
2

 

x
2

y
2

 3












Integrating
u x y( ) x

2 x x
2

3 y
2

 

x
2

y
2

 3

















d
x

2
y

2


x
2

y
2

 2
f y( )

x
2

y
2

 2 y
2



x
2

y
2

 2
f y( )

u x y( )
1

x
2

y
2



2 y
2



x
2

y
2

 2
 f y( )

The simplest form is u x y( )
1

x
2

y
2



2 y
2



x
2

y
2

 2


Note: Instead of this approach we could have verified that u and v satisfy continuity

x

1

x
2

y
2



2 y
2



x
2

y
2

 2














 y

2 x y

x
2

y
2

 2











 0 However, this does not verify

the solution is the simplest.



Problem 5.9 [Difficulty: 2]

Given: x component of velocity

Find: y component for incompressible flow; Valid for unsteady? How many y components?

Solution:

Basic equation:
x
ρ u( )



 y
ρ v( )






z
ρ w( )






t
ρ




 0

Assumption:  Incompressible flow; flow in x-y plane

Hence
x

u


 y
v




 0 or

y
v



 x
u






x
A e

x

b
 cos

y

b
























A

b
e

x

b
 cos

y

b





















Integrating v x y( ) y
A

b
e

x

b
 cos

y

b















d A e

x

b
 sin

y

b







 f x( )

This basic equation is valid for steady and unsteady flow (t is not explicit)

There are an infinite number of solutions, since f(x) can be any function of x.  The simplest is f(x) = 0

v x y( ) A e

x

b
 sin

y

b







 v x y( ) 10 e

x

5
 sin

y

5











Problem 5.10 [Difficulty: 2]

Given: Approximate profile for a laminar boundary layer:

u
U y

δ
 δ c x (c is constant)

Find: (a) Show that the simplest form of v is

v
u

4

y

x


(b) Evaluate maximum value of v/u where δ = 5 mm and x = 0.5 m

Solution: We will check this flow field using the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

0







y

v

x

u
Based on the two assumptions listed above, the continuity equation reduces to:

2

3

2

1

2

2
2

1

cx

Uy
cx

Uy

dx

du

x

u







 





2

3

2cx

Uy

x

u

y

v









The partial of u with respect to x is: Therefore from continuity:

Integrating this expression will yield the y-component of velocity: v y
U y

2 c x

3

2









d f x( )
U y

2


4 c x

3

2


f x( )

Now due to the no-slip condition at the wall (y = 0) we get f(x) = 0. Thus: v
U y

2


4 c x

3

2



U y

c x

1

2


y

4 x


u y

4 x
 (Q.E.D.) v

u

4

y

x


The maximum value of v/U is where y = δ: vratmax
v

u


δ

4 x
 vratmax

5 10
3

 m

4 0.5 m
 vratmax 0.0025



Problem 5.11 [Difficulty: 3]

Given: Approximate (parabolic) profile for a laminar boundary layer:

u

U
2

y

δ








y

δ







2

 δ c x (c is constant)

Find: (a) Show that the simplest form of v for incompressible flow is

v

U

δ

x

1

2

y

δ







2


1

3

y

δ







3












(b) Plot v/U versus y/δ
(c) Evaluate maximum value of v/U where δ = 5 mm and x = 0.5 m

Solution: We will check this flow field using the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

0







y

v

x

u
Based on the two assumptions listed above, the continuity equation reduces to:

2

1

3

2

2 2

122 

















cx
yy

U
dx

du

x

u





The partial of u with respect to x is: Now since δ c x

1

2
 x

1

2


c

δ
 and thus





































 2

2

2

3

2

2

2


yyUcyyUc

x

u
































 2

2

2


yyUc

x

u

y

v
Therefore from continuity:

Integrating this expression will yield the y-component of velocity: v y
U c

2


δ

y

δ







y

δ







2


















d f x( ) Evaluating:

v
U c

2


δ
2

y
2

2 δ

y
3

3 δ
2












 f x( )
U c

2


δ

1

2

y

δ







2


1

3

y

δ







3










 f x( )
Since δ c x

1

2
 c

2 δ
2

x
 Thus:



v U
δ

x


1

2

y

δ







2


1

3

y

δ







3










 f x( ) Now due to the no-slip condition at the wall (y = 0) we get f(x) = 0. Therefore:

v

U

δ

x

1

2

y

δ







2


1

3

y

δ







3










 (Q.E.D.)
v

U

δ

x

1

2

y

δ







2


1

3

y

δ







3












Plotting this relationship shows:
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Assuming x = 0.5 m and δ = 5 mm

The maximum value of v/U is where y = δ: vratmax
v

U


δ

x

1

2

1

3







δ

6 x
 vratmax

5 10
3

 m

6 0.5 m
 vratmax 0.00167



Problem 5.12 [Difficulty: 3]

Given: Approximate (sinusoidal) profile for a laminar boundary layer:

u

U
sin

π y

2 δ






 δ c x (c is constant)

Find: (a) Show that the simplest form of v for incompressible flow is

v

U

1

π

δ

x
 cos

π

2

y

δ






π

2

y

δ






sin
π

2

y

δ






 1







(b) Plot v/U versus y/δ
(c) Evaluate maximum value of v/U where δ = 5 mm and x = 0.5 m

Solution: We will check this flow field using the continuity equation

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

0







y

v

x

u
Based on the two assumptions listed above, the continuity equation reduces to:





























 













 2
cos

42

1

2
cos

2
2

1

2

2

1

2

y
x

Ucy
cx

yy
U

dx

du

x

u

The partial of u with respect to x is:


















2
cos

4 3

2 yyUc

x

u

















2
cos

4 3

2 yyUc

y

v
Now since δ c x

1

2
 x

1

2


c

δ
 and thus Therefore from continuity:

Integrating this expression will yield the y-component of velocity: v y
π U c

2
 y

4 δ
3


cos

π y

2 δ














d f x( ) Evaluating:

v
π U c

2


4 δ
3


yy cos

π y

2 δ












d f x( )
π U c

2


4 δ
3



2 δ y

π
sin

π

2

y

δ







4 δ

2


π
2

cos
π

2

y

δ















 f x( ) Simplifying this expression:



v
U c

2


2 δ
2


y sin

π

2

y

δ







2 δ

π
cos

π

2

y

δ












 f x( ) Since δ c x

1

2
 c

2 δ
2

x
 Thus:

v
U

2

δ

x


y

δ
sin

π

2

y

δ







2

π
cos

π

2

y

δ












 f x( ) Now due to the no-slip condition at the wall (y = 0) we get:

0
U

2

δ

x


2

π
cos 0( )





 f x( ) f x( )
U δ

π x
 Therefore: v

U

2

δ

x


y

δ
sin

π

2

y

δ







2

π
cos

π

2

y

δ













U δ

π x
 Simplifying:

v
U

π

δ

x


π

2

y

δ
 sin

π

2

y

δ




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Plotting this relationship shows:

Assuming x = 0.5 m and δ = 5 mm
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The maximum value of v/U is where y = δ: vratmax
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Problem 5.13 [Difficulty: 3]

Given: Data on boundary layer

Find: y component of velocity ratio; location of maximum value; plot velocity profiles; evaluate at particular point

Solution:

u x y( ) U
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For incompressible flow
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The maximum occurs at y δ as seen in the Excel work shown below.
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x
 1

1

2
1







At δ 5 mm  and x 0.5 m , the maximum vertical velocity is
vmax

U
0.00188



To find when v /U  is maximum, use Solver  in Excel

v /U y /δ
0.00188 1.0
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Problem 5.14 [Difficulty: 3]

Given: Steady, incompressible flow in x-y plane:

u A x
2

 y
2

 A 0.3 m
3

 s
1



Find: (a) a possible y component of velocity for this flow field

(b) if the result is valid for unsteady, incompressible flow

(c) number of possible y components for velocity

(d) equation of the streamlines for the flow

(e) plot streamlines through points (1,4) and (2,4)

Solution: We will check this flow field using the continuity equation

      0
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
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
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
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
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
Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

0







y
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u
Based on the two assumptions listed above, the continuity equation reduces to:

22Axy
x

u



 22Axy

x

u

y

v









The partial of u with respect to x is: Therefore from continuity:

Integrating this expression will yield the y-component of velocity: v x2 A x y
2


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d f x( ) v
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3
 A x

2
 y

3
 f x( )

The basic equation reduces for the same form for unsteady flow. Hence The result is valid for unsteady, incompressible flow.

Since f(x) is arbitrary: There are an infinite number of possible y-components of velocity.

The simplest version of v is when f(x) = 0. Therefore, the equation of the corresponding streamline is:
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 Separating variables and integrating:
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are the equations of the streamlines of this flow field.

Plotting streamline for point (1, 4): 1 4

3

2
 8 x y
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Plotting streamline for point (2, 4): 2 4

3

2
 16 x y

3

2
 16

The two streamlines are plotted here in red (1,4) and blue (2,4):



Problem 5.15 [Difficulty: 3]

Given: Steady, incompressible flow in x-y plane:

v B x y
3

 B 0.2 m
3

 s
1



Find: (a) the simplest x component of velocity for this flow field

(b) equation of the streamlines for the flow

(c) plot streamlines through points (1,4) and (2,4)

Solution: We will check this flow field using the continuity equation
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Governing

Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)
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
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

y
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u
Based on the two assumptions listed above, the continuity equation reduces to:
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The partial of v with respect to y is: Therefore from continuity:

Integrating this expression will yield the x-component of velocity: u x3 B x y
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The equation of a streamline is:
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Plotting streamline for point (1, 4): 1 4
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Plotting streamline for point (2, 4): 2 4
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The two streamlines are plotted here in red (1,4) and blue (2,4):



 Problem 5.16 [Difficulty: 5] 
 

 
 

 

Discussion: Refer back to the discussion of streamlines, pathlines, and streaklines in 

Section 2-2. 

 

Because the sprinkler jet oscillates, this is an unsteady flow.  Therefore pathlines and 

streaklines need not coincide. 

 

A pathline is a line tracing the path of an individual fluid particle.  The path of each 

particle is determined by the jet angle and the speed at which the particle leaves the jet. 

 

Once a particle leaves the jet it is subject to gravity and drag forces.  If aerodynamic drag 

were negligible, the path of each particle would be parabolic.  The horizontal speed of the 

particle would remain constant throughout its trajectory.  The vertical speed would be 

slowed by gravity until reaching peak height, and then it would become increasingly 

negative until the particle strikes the ground.  The effect of aerodynamic drag is to reduce 

the particle speed.  With drag the particle will not rise as high vertically nor travel as far 

horizontally.  At each instant the particle trajectory will be lower and closer to the jet 

compared to the no-friction case.  The trajectory after the particle reaches its peak height 

will be steeper than in the no-friction case. 

 

A streamline is a line drawn in the flow that is tangent everywhere to the velocity vectors 

of the fluid motion.  It is difficult to visualize the streamlines for an unsteady flow field 

because they move laterally.  However, the streamline pattern may be drawn at an instant. 

 

A streakline is the locus of the present locations of fluid particles that passed a reference 

point at previous times.  As an example, choose the exit of a jet as the reference point.  

Imagine marking particles that pass the jet exit at a given instant and at uniform time 

intervals later.  The first particle will travel farthest from the jet exit and on the lowest 

trajectory; the last particle will be located right at the jet exit.  The curve joining the 

present positions of the particles will resemble a spiral whose radius increases with 

distance from the jet opening. 



Problem 5.17 [Difficulty: 4]

Given: Conservation of mass in rectangular coordinates

Find: Identical result to Equation 5.1a by expanding products of density and velocity in a Taylor Series.

Solution: We will use the diagram in Figure 5.1 (shown here). We will apply the conservation of mass evaluating the

derivatives at point O:

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation - Eqn 5.1a)

Assumptions: Expansion of density and velocity via Taylor series is valid

around point O.
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The net mass flux out of the volume in the x-direction would then be:
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We may divide the volume out of all terms: (Q.E.D.)
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Problem 5.18 [Difficulty: 2]

Given: The list of velocity fields provided above

Find: Which of these fields possibly represent incompressible flow

Solution: We will check these flow fields against the continuity equation
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Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

 
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rVrBased on the two assumptions listed above, the continuity equation reduces to:

This is the criterion against which we will check all of the flow fields.
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This could be an incompressible flow field.
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This could be an incompressible flow field.

 
01cos1cos

22















































r

a
U

r

a
U

V

r

rVr 



(c) Vr U cos θ( ) 1
a

r






2












Vθ U sin θ( ) 1
a

r






2












This could be an incompressible flow field.



Problem 5.19 [Difficulty: 2]

Given: The list of velocity fields provided above

Find: Which of these fields possibly represent incompressible flow

Solution: We will check these flow fields against the continuity equation
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Equations: (Continuity equation)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

Based on the two assumptions listed above, the continuity equation reduces to:
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This is the criterion against which we will check all of the flow fields.
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Problem 5.20 [Difficulty: 3]

Given: r component of velocity

Find: θ component for incompressible flow; How many θ components

Solution:

Basic equation:
1

r r
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Assumptions: Incompressible flow

Flow in r-θ plane

Hence
1

r r
r Vr⋅( )∂

∂
⋅

1

r θ
Vθ( )∂

∂
⋅+ 0= or

θ
Vθ

∂

∂ r
r Vr⋅( )∂

∂
−=

r
r U⋅ cos θ( )⋅( )

∂

∂
−= U cos θ( )⋅−=

Integrating Vθ r θ, ( ) θU cos θ( )⋅
⌠
⎮
⌡

d−= U sin θ( )⋅− f r( )+=

Vθ r θ, ( ) U− sin θ( )⋅ f r( )+=

There are an infinite number of solutions as f(r) can be any function of r

The simplest form is Vθ r θ, ( ) U− sin θ( )⋅=



Problem 5.21 [Difficulty: 3]

Given: r component of velocity

Find: θ component for incompressible flow; How many θ components

Solution:

Basic equation:
1

r r
ρ r Vr 




1

r θ
ρ Vθ 




z
ρ Vz 




t
ρ




 0

Assumption:  Incompressible flow; flow in r-θ plane

Hence
1

r r
r Vr 




1

r θ
Vθ 


 0 o

r θ
Vθ



 r
r Vr 




r

Λ cos θ( )

r











Λ cos θ( )

r
2



Integrating Vθ r θ( ) θ
Λ cos θ( )

r
2







d
Λ sin θ( )

r
2

 f r( )

Vθ r θ( )
Λ sin θ( )

r
2

 f r( )

There are an infinite number of solutions as f(r) can be any function of r

The simplest form is Vθ r θ( )
Λ sin θ( )

r
2





Problem 5.22 [Difficulty: 2]

Given: Flow between parallel disks as shown. Velocity is purely tangential. No-slip

condition is satisfied, so velocity varies linearly with z.

Find: An expression for the velocity field

Solution: We will apply the continuity equation to this system.

      0
11

















t
V

z
V

r
Vr

rr
zr




 

Governing

Equations: (Continuity equation)

kVeVeVV zrr
ˆˆˆ  


(Velocity flow field)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Purely tangential flow

(3) Linear velocity variation with z

0



V

Based on the first two assumptions, the continuity equation reduces to: thus: Vθ Vθ r z( )

Since the velocity is linear with z, we may write: Vθ r z( ) z f r( ) C Now we apply known boundary conditions:

1: Vθ r 0( ) 0 0 f r( ) C 0 C 0 2: Vθ r h( ) r ω h f r( ) r ω f r( )
r ω

h


Therefore the tangential velocity is: Vθ ω r
z

h
 Thus, the velocity field is:

 e
h

z
rV ˆ





Problem 5.23 [Difficulty: 4]

Given: Definition of "del" operator in cylindrical coordinates, velocity vector

 V


Find: (a) An expression for            in cylindrical coordinates.

(b) Show result is identical to Equation 5.2c.

Solution: We will apply the velocity field to the del operator and simplify.

z
k

r
e

r
er 











 ˆ1
ˆˆ



Governing

Equations: (Definition of "del" operator)

kVeVeVV zrr
ˆˆˆ  


(Velocity flow field)

      0
11













zr V
z

V
r

Vr
rr




  (Equation 5.2c)

r
r e

e
e

e
ˆ

ˆ
ˆ

ˆ












 (Hints from footnote)

 V




   

     
     

     z

r
r

rrrrr

zrrzrrzrrr

zrrr

V
z

kkV
e

r
eV

r
ee

V
e

r
eV

r
eeV

r
ee

kVeVeV
z

kkVeVeV
r

ekVeVeV
r

e

kVeVeV
z

k
r

e
r

eV

































































































ˆˆˆ1
ˆ

1
ˆˆ

ˆ1
ˆ

1
ˆˆˆˆ

ˆˆˆˆˆˆˆ
1

ˆˆˆˆˆ

ˆˆˆˆ1
ˆˆ


Substituting using the governing equations yields:

1ˆˆˆˆˆˆ  kkeeee rr
0ˆˆˆˆ   eeee rr

Using the hints listed above, and knowing that:

           

         

       zrr

zrrr

zr
r

r

V
z

V
r

V
r

V
r

V
z

V
r

eeV
r

V
r

eeV
r

V
z

V
e

r
eV

r
V

e

r
eV

r
V














































































11

1
ˆˆ

11
ˆˆ

ˆ1
ˆ

1ˆ1
ˆ



     rrr Vr
rr

V
r

V
r







 11

Combining the first two terms: which can be verified through differentiation. Thus:

       zr V
z

V
r

Vr
rr

V 


  











11

(Q.E.D.)



Problem 5.24 [Difficulty: 3]

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch various streamlines

Solution:

Vr
A

r
 Vθ

B

r


For incompressible flow
1

r r
r Vr d

d


1

r θ
Vθ

d

d
 0

1

r r
r Vr d

d
 0

1

r θ
Vθ

d

d
 0

Hence
1

r r
r Vr d

d


1

r θ
Vθ

d

d
 0 Flow is incompressible

For the streamlines
dr

Vr

r dθ

Vθ


r dr

A

r
2

dθ

B


r
1

r






d θ
A

B






d Integrating ln r( )
A

B
θ const

so

4 2 0 2 4

4

2

2

4

(a)

(b)

(c)

Equation of streamlines is r C e

A

B
θ



(a) For A = B = 1 m2/s, passing through point (1m, /2)

r e

θ
π

2




(b) For A =  1 m2/s, B = 0 m2/s, passing through point (1m, /2)

θ
π

2


(c) For A =  0 m2/s, B = 1 m2/s, passing through point (1m, /2)

r 1 m



Problem *5.25 [Difficulty: 2]

i
h

y
UV ˆ


Given: Velocity field for viscometric flow of Example 5.7:

Find: (a) Stream function

(b) Locate streamline that divides flow rate equally

Solution: The flow is incompressible, so the stream function may be derived

x
v

y
u









Governing

Equations: (Definition of stream function)

Integrating the velocity will result in the stream function: ψ yu




d f x( ) yU
y

h







d f x( )
U y

2


2 h
f x( )

Let ψ = 0 at y = 0, so f(x) = 0: ψ
U y

2


2 h


The stream function is a maximum value at y = h: ψmax
U h

2


2 h


U h

2
 The flow rate is:

Q

w
ψmax ψmin

U h

2
0

U h

2


So the streamline which splits the flow rate into two equal parts is: ψhalfQ
1

2
ψmax

1

2

U h

2


U h

4


Therefore, the equation of this streamline would be:
U y

2


2 h

U h

4
 Simplifying this equation: y

2 h
2

2
 or: y

h

2


y
h

2




Problem *5.26 [Difficulty: 3]

Given: Velocity field

Find: Stream function ψ

Solution:

Basic equations:
x
ρ u( )



 y
ρ v( )






z
ρ w( )






t
ρ




 0 u

y
ψ




 v

x
ψ






Assumptions: Incompressible flow

Flow in x-y plane

Hence
x

u


 y
v




 0 or

x
2 y 2x 1( )[ ]



 y
x x 1( ) 2 y

2
 


 0

Hence u 2 y 2 x 1( )
y
ψ




 ψ x y( ) y2 y 2 x 1( )





d 2 x y
2

 y
2

 f x( )

and v x x 1( ) 2 y
2


x
ψ




 ψ x y( ) xx x 1( ) 2 y

2
 




d
x

3

3


x
2

2
 2 x y

2
 g y(

Comparing these f x( )
x

3

3


x
2

2
 and g y( ) y

2


The stream function is ψ x y( ) y
2

2 x y
2


x

2

2


x
3

3


Checking u x y( )
y

y
2

2 x y
2


x

2

2


x
3

3













 u x y( ) 2 y 4 x y

v x y( )
x

y
2

2 x y
2


x

2

2


x
3

3













 v x y( ) x

2
x 2 y

2




Problem *5.27 [Difficulty: 3]

Given: The velocity field

Find: Whether or not it is a incompressible flow; sketch stream function

Solution:
Vr

A

r
 Vθ

B

r


For incompressible flow
1

r r
r Vr d

d


1

r θ
Vθ

d

d
 0

1

r r
r Vr d

d
 0

1

r θ
Vθ

d

d
 0

1

r r
r Vr d

d


1

r θ
Vθ

d

d
 0 Flow is incompressible

Hence

For the stream function
θ
ψ




r Vr A ψ A θ f r( )

Integrating
r
ψ




Vθ

B

r
 ψ B ln r( ) g θ( )

Comparing, stream function is ψ A θ B ln r( )

ψ



Problem *5.28 [Difficulty: 2]

Given: Stream function for an incompressible flow field:

ψ U r sin θ( )
q

2 π
θ

Find: (a) Expression for the velocity field

(b) Location of stagnation points

(c) Show that the stream function is equal to zero at the stagnation points.

Solution: We will generate the velocity field from the stream function.

r
V

r
Vr 














1

Governing

Equations: (Definition of stream function)

Taking the derivatives of the stream function: Vr U cos θ( )
q

2 π r
 Vθ U sin θ( )




 eUe
R

q
UV r

ˆsinˆ
2

cos 





 


So the velocity field is:

To find the stagnation points we must find the places where both velocity components are zero. When Vr 0 r
q

2 π U cos θ( )


When Vθ 0 sin θ( ) 0 therefore: θ 0 π Now we can apply these values of θ to the above relation to find r:

For θ = 0: r
q

2 π U cos 0( )


q

2 π U
 For θ = π: r

q

2 π cos π( )


q

2 π U
 These represent the same point:

Stagnation point at:

r θ( )
q

2 π U
0







At the stagnation point: ψstagnation U
q

2 π U
 sin 0( )

q

2 π
0 0

ψstagnation 0



Problem *5.29 [Difficulty: 3]

Given: Velocity field

Find: Whether it's 1D, 2D or 3D flow; Incompressible or not; Stream function ψ

Solution:

Basic equation:
x
ρ u( )



 y
ρ v( )






z
ρ w( )






t
ρ




 0 u

z
ψ




 w

x
ψ






Assumption:  Incompressible flow; flow in x-z plane (v = 0)

Velocity field is a function of x and z only, so is 2D

Check for incompressible
x

u


 z
w




 0

x
z 3 x

2
 z

2
  


6 x z

z
x x

2
3 z

2
  


6 x z

Hence
x

u


 z
w




 0 Flow is INCOMPRESSIBLE

Hence u z 3 x
2

 z
2

 
z
ψ




 ψ x z( ) zz 3 x

2
 z

2
 




d
3

2
x

2
 z

2


1

4
z
4

 f x( )

and w x x
2

3 z
2

 
x
ψ




 ψ x z( ) xx x

2
3 z

2
  




d
x

4

4


3

2
x

2
 z

2
 g z( )

Comparing these f x( )
x

4

4
 and g z( )

z
4

4


The stream function is ψ x z( )
x

4

4


3

2
x

2
 z

2


z
4

4


Checking u x z( )
z

x
4

4


3

2
x

2
 z

2


z
4

4













 u x z( ) 3 x

2
 z z

3


w x z( )
y

z y
3

 z
3

y 


 w x z( ) z

3
3 y

2
 z



Problem *5.30 [Difficulty: 3]

Given: Stream function for an incompressible flow field:

ψ 5 A x 2 A y A 2
m

s


Find: (a) Sketch streamlines ψ = 0 and ψ = 5

(b) Velocity vector at (0, 0)

(c) Flow rate between streamlines passing through points (2, 2) and (4, 1)

Solution: We will generate the velocity field from the stream function.

x
v

y
u









Governing

Equations:
(Definition of stream function)

Assumptions: Incompressible flow (ρ is constant)

Flow is only in the x-y plane

For ψ = 0: 0 5 A x 2 A y Solving for y: y
5

2
 x

For ψ = 5: 5 5 A x 2 A y Solving for y: y
5

2
 x

5

2

m
2

s


s

2 m


5

2
 x

5

2
m

4 2 0 2 4

10

5

5

10

x (m)

y
 (

m
)

Here is the plot of the two streamlines: ψ =0 is in red; ψ = 5 is in blue

Generating  the velocity components from the stream function derivatives:

u 2 A v 5 A Therefore, the velocity vector at (0, 0) is:

jiV ˆ10ˆ4 


At the point (2, 2) the stream function value is: ψa 5 2
m

s
 2 m 2 2

m

s
 2 m ψa 28

m
2

s


At the point (4, 1) the stream function value is: ψb 5 2
m

s
 4 m 2 2

m

s
 1 m ψb 44

m
2

s


The flow rate between these two streamlines is: Q ψb ψa Q 44
m

2

s










28
m

2

s










 Q 16
m

3

s m


Flow rate is 16 m3/s per meter of depth



Problem *5.31 [Difficulty: 3]

Given: Approximate profile for a laminar boundary layer:

u
U y

δ
 δ c x (c is constant)

Find: (a) Stream function for the flow field

(b) Location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.

Solution: We will generate the stream function from the velocity field.

x
v

y
u









Governing

Equations:
(Definition of stream function)

Integrating the x-component of velocity yields the stream function: ψ y
U y

δ






d f x( )
U y

2


2 δ
f x( )

If we set ψ 0 at y 0 then the stream function would be: ψ
U y

2


2 δ


The total flow rate per unit depth within the boundary layer is: Q ψ δ( ) ψ 0( )
U δ

2


2 δ
0

1

2
U δ

At one-quarter of the flow rate in the boundary layer: Q
1

4

1

2
 U δ

1

8
U δ Therefore, the streamline would be located at:

1

8
U δ

U y
2



2 δ
 Solving for y: y

2 1

4
δ
2

 So at one-quarter of the flow rate:
y

δ

1

2


At one-half of the flow rate in the boundary layer: Q
1

2

1

2
 U δ

1

4
U δ Therefore, the streamline would be located at:

1

4
U δ

U y
2



2 δ
 Solving for y: y

2 1

2
δ
2

 So at one-quarter of the flow rate:
y

δ

1

2




Problem *5.32 [3]

Given: Approximate profile for a laminar boundary layer:

u

U
2

y

δ








y

δ







2

 δ c x (c is constant)

Find: (a) Stream function for the flow field

(b) Location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.

Solution: We will generate the stream function from the velocity field.

x
v

y
u









Governing

Equations:
(Definition of stream function)

Integrating the x-component of velocity yields the stream function:

ψ yU 2
y

δ








y

δ







2


















d f x( ) U δ
y

δ







2
1

3

y

δ







3










 f x( ) If we set ψ 0 at y 0 the stream function would be:

ψ U δ
y

δ







2
1

3

y

δ







3












The total flow rate per unit depth within the boundary layer is: Q ψ δ( ) ψ 0( ) U δ
δ

δ






2
1

3

δ

δ






3










 0
2

3
U δ

At one-quarter of the flow rate in the boundary layer: Q
1

4

2

3
 U δ

1

6
U δ Therefore, the streamline would be located at:

1

6
U δ U δ

y

δ







2
1

3

y

δ







3










 or 2
y

δ







3

 6
y

δ







2

 1 0 We may solve this cubic for y/δ using several methods,

including Goal Seek in Excel or polyroots in Mathcad. Once the roots are determined, only one root would make physical sense.

So at one-quarter of the flow rate:
y

δ
0.442

At one-half of the flow rate in the boundary layer: Q
1

2

2

3
 U δ

1

3
U δ Therefore, the streamline would be located at:

1

3
U δ U δ

y

δ







2
1

3

y

δ







3










 or
y

δ







3

3
y

δ







2

 1 0 We solve this cubic as we solved the previous one.

So at one-half of the flow rate:
y

δ
0.653



Problem *5.33 [Difficulty: 3]

Given: Approximate profile for a laminar boundary layer:

u

U
sin

π y

2 δ






 δ c x (c is constant)

Find: (a) Stream function for the flow field

(b) Location of streamlines at one-quarter and one-half the total flow rate in the boundary layer.

Solution: We will generate the stream function from the velocity field.

x
v

y
u









Governing

Equations:
(Definition of stream function)

Integrating the x-component of velocity yields the stream function: ψ yU sin
π y

2 δ












d f x( )
2 U δ

π
 cos

π y

2 δ






 f x( )

If we set ψ 0 at y 0 the stream function would be: ψ
2 U δ

π
 cos

π y

2 δ








The total flow rate per unit depth within the boundary layer is: Q ψ δ( ) ψ 0( )
2 U δ

π
 cos

π

2







cos 0( )






2 U δ

π


At one-quarter of the flow rate in the boundary layer: Q
1

4

2 U δ

π


U δ

2 π
 Therefore, the streamline would be located at:

U δ

2 π

2 U δ

π
1 cos

π y

2 δ












 or
1

4
1 cos

π y

2 δ






 solving for y/δ: y

δ

2

π
acos

3

4









So at one-quarter of the flow rate:
y

δ
0.460

At one-quarter of the flow rate in the boundary layer: Q
1

2

2 U δ

π


U δ

π
 Therefore, the streamline would be located at:

U δ

π

2 U δ

π
1 cos

π y

2 δ












 or
1

2
1 cos

π y

2 δ






 solving for y/δ: y

δ

2

π
acos

1

2









So at one-half of the flow rate:
y

δ
0.667



Problem *5.34 [Difficulty: 3]

Given: Data on boundary layer

Find: Stream function; locate streamlines at 1/4 and 1/2 of total flow rate

Solution:

u x y( ) U
3

2

y

δ








1

2

y

δ







3










 and δ x( ) c x

For the stream function u
y
ψ




 U

3

2

y

δ








1

2

y

δ







3












Hence ψ yU
3

2

y

δ








1

2

y

δ







3


















d ψ U
3

4

y
2

δ


1

8

y
4

δ
3










 f x( )

Let ψ = 0 = 0 along y = 0, so f(x) = 0, so ψ U δ
3

4

y

δ







2


1

8

y

δ







4












The total flow rate in the boundary layer is

Q

W
ψ δ( ) ψ 0( ) U δ

3

4

1

8







5

8
U δ

At 1/4 of the total ψ ψ0 U δ
3

4

y

δ







2


1

8

y

δ







4











1

4

5

8
U δ







24
y

δ







2

 4
y

δ







4

 5 or 4 X
2

 24 X 5 0 where X
2 y

δ


The solution to the

quadratic is
X

24 24
2

4 4 5

2 4
 X 0.216 Note that the other root is

24 24
2

4 4 5

2 4
5.784

Hence
y

δ
X 0.465

At 1/2 of the total flow ψ ψ0 U δ
3

4

y

δ







2


1

8

y

δ







4











1

2

5

8
U δ







12
y

δ







2

 2
y

δ







4

 5 or 2 X
2

 12 X 5 0 where X
2 y

δ


The solution to the

quadratic is
X

12 12
2

4 2 5.

2 2
 X 0.450 Note that the other root is

12 12
2

4 2 5

2 2
5.55

Hence
y

δ
X 0.671



Problem *5.35 [Difficulty: 3]

Given: Rigid body motion in Example Problem 5.6

 erV ˆ


ω 0.5
rad

s


Find: (a) Stream function for the flow field

(b) Volume flow rate per unit depth between r = 0.10 m and 0.12 m

(c) Sketch velocity profiles along a line of constant θ
(d) Check the volume flow rate calculated from the stream function by integrating the velocity profile

along this line.

Solution: We will generate the stream function from the velocity field.

r
V

r
Vr 














1Governing

Equations:
(Definition of stream function)

Integrating the θ-component of velocity yields the stream function: ψ rr ω




d f θ( )
ω r

2


2
 f θ( )

Now take the derivative of the stream function: Vr
1

r

df

dθ
 0 Therefore, f θ( ) C ψ

ω r
2



2
 C

The volume flow rate per unit depth is: Q ψ r2  ψ r1 
ω r2

2


2
 C






ω r1
2



2
 C







ω

2
r1

2
r2

2






Substituting in known values: Q
1

2
0.5

rad

s
 0.10

2
0.12

2
  m

2
 Q 0.001100

m
3

s m


Because Q<0, the flow is in the direction of eθ

Along a line of constant θ, the velocity varies linearly:

From the linear velocity variation, Vθ ω r Thus the flow rate is:

Q

r1

r2

rVθ





d ω

r1

r2

rr




d
ω

2
r2

2
r1

2






Substituting known values: Q
1

2
0.5

rad

s
 0.12

2
0.10

2
  m

2
 Q 0.001100

m
3

s m


These two expressions are the same

with the exception of the sign.



Problem *5.36 [Difficulty: 3]

U 

x 

y 

h 

Given: Linear velocity profile

Find: Stream function ψ; y coordinate for half of flow

Solution:

Basic equations: u
y
ψ




 v

x
ψ




 and we

have
u U

y

h







 v 0

Assumption:  Incompressible flow; flow in x-y plane

Check for incompressible
x

u


 y
v




 0

x
U

y

h









0

y
0




0

Hence
x

u


 y
v




 0 Flow is INCOMPRESSIBLE

Hence u U
y

h


y
ψ




 ψ x y( ) yU

y

h







d
U y

2


2 h
f x( )

and v 0
x
ψ




 ψ x y( ) x0





d g y( )

Comparing these f x( ) 0 and g y( )
U y

2


2 h


The stream function is ψ x y( )
U y

2


2 h


For the flow (0 < y < h) Q

0

h

yu




d
U

h
0

h

yy




d
U h

2


For half the flow rate
Q

2
0

hhalf

yu




d
U

h
0

hhalf

yy




d
U hhalf

2


2 h


1

2

U h

2








U h

4


Hence hhalf
2 1

2
h

2
 hhalf

1

2
h

1.5 m

2
 1.06 m



Problem *5.37 [Difficulty: 3]

Given: Rigid body motion in Example Problem 5.6

e
r

C
V ˆ


C 0.3
m

2

s


Find: (a) Stream function for the flow field

(b) Volume flow rate per unit depth between r = 0.20 m and 0.24 m

(c) Sketch velocity profiles along a line of constant θ
(d) Check the volume flow rate calculated from the stream function by integrating the velocity profile

along this line.

Solution: We will generate the stream function from the velocity field.

r
V

r
Vr 














1Governing

Equations:
(Definition of stream function)

Assumptions: Incompressible flow

Flow is in the r-θ plane only

Integrating the θ-component of velocity yields the stream function: ψ r
C

r






d f θ( ) C ln r( ) f θ( )

Now take the derivative of the stream function: Vr
1

r

df

dθ
 0 Therefore, f θ( ) C1 ψ C ln r( ) C1

The volume flow rate per unit depth is: Q ψ r2  ψ r1  C ln r2  C1  C ln r1  C1  C ln
r1

r2











Substituting in known values: Q 0.3
m

2

s
 ln

0.20

0.24








Q 0.0547

m
3

s m


Because Q<0, the flow is in the direction of eθ

Along a line of constant θ, the velocity varies inversely with r:

From the velocity profile, Vθ
C

r
 Thus the flow rate is:

Q

r1

r2

rVθ





d

r1

r2

r
C

r






d C ln
r2

r1









 Substituting known values: Q 0.3
m

2

s
 ln

0.24

0.20








Q 0.0547

m
3

s m


These two expressions are the same

with the exception of the sign.



Problem 5.38 [Difficulty: 2]

Given: The velocity field provided above

Find: (a) the number of dimensions of the flow

(b) if this describes a possible incompressible flow

(c) the acceleration of a fluid particle at point (1,2,3)

Solution: We will check this flow field against the continuity equation, and then apply the definition of acceleration
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Governing

Equations: (Continuity equation)

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 


















 (Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two dimensional flow (velocity is not a function of z)

(3) Steady flow (velocity is not a function of t)

Based on assumption (2), we may state that: The flow is two dimensional.

0

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



y
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u
Based on assumptions (1) and (3), the continuity equation reduces to:

This is the criterion against which we will check the flow field.
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This could be an incompressible flow field.
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Based on assumptions (2) and (3), the acceleration reduces to: and the partial derivatives of velocity are:
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and Therefore the acceleration vector is equal to:
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At point (1,2,3), the acceleration is:
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Problem 5.39 [Difficulty: 3]

Given: Velocity field

Find: Whether flow is incompressible; Acceleration of particle at (2,1)

Solution:

Basic equations:
x

u


 y
v




 0

u x y( ) A x
4

6 x
2

 y
2

 y
4

  v x y( ) A 4 x y
3

 4 x
3

 y 

For incompressible flow
x

u


 y
v




 0

Checking
x

A x
4

6 x
2

 y
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 y
4

  
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A 4 x

3
 12 x y
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2
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Hence

x
u
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 y
v




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For this flow ax u
x

u
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
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y
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ax A x
4

6 x
2

 y
2

 y
4

 
x

A x
4

6 x
2

 y
2

 y
4
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Hence at (2,1) ax 4
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Problem 5.40 [Difficulty: 2]

Given: The velocity field provided above

Find: (a) the number of dimensions of the flow

(b) if this describes a possible incompressible flow

(c) the acceleration of a fluid particle at point (2,1,3)

Solution: We will check this flow field against the continuity equation, and then apply the definition of acceleration
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Equations: (Continuity equation)

t

V

z

V
w

y

V
v

x

V
u
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VD
a p 


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



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
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


 (Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Steady flow (velocity is not a function of t)

Since the velocity is a function of x, y, and z, we may state that: The flow is three dimensional.
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Based on assumptions (1) and (2), the continuity equation reduces to:

This is the criterion against which we will check the flow field.
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Based on assumption (2), the acceleration reduces to: and the partial derivatives of velocity are:
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and Therefore the acceleration vector is equal to:
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At point (2,1,3):

       

2

3

22

2

2

23

2

2

s

mˆ54ˆ4ˆ48

ˆm3
sm

1
2ˆm1

2ˆm1m2
s

2

sm

2
m1m2

sm

2
2

kji

kj
s

ia p










































































2s

mˆ54ˆ4ˆ48 kjia p 




Problem 5.41 [Difficulty: 3]

Given: x component of velocity field

Find: Simplest y component for incompressible flow; Acceleration of particle at (1,3)

Solution:

Basic equations u
y
ψ




 v

x
ψ






We are given u x y( ) A x
5

10 x
3

 y
2

 5 x y
4

 

Hence for incompressible flow ψ x y( ) yu




d yA x
5

10 x
3

 y
2

 5 x y
4

 



d A x
5

y
10

3
x

3
 y

3
 x y

5






 f x( )

v x y( )
x
ψ xy 




x
A x

5
y

10

3
x

3
 y

3
 x y

5






 f x( )








 A 5 x

4
 y 10 x

2
 y

3
 y

5
  F x( )

Hence v x y( ) A 5 x
4

 y 10 x
2

 y
3

 y
5

  F x( ) where F(x) is an arbitrary function of x

The simplest is v x y( ) A 5 x
4

 y 10 x
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 y
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 y
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 

For this flow ax u
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u



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10 x
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 
x

A x
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Problem 5.42 [Difficulty: 2]

Given: The velocity field provided above

Find: (a) if this describes a possible incompressible flow

(b) the acceleration of a fluid particle at point (x,y) = (0.5 m, 5 mm)

(c) the slope of the streamline through that point

Solution: We will check this flow field against the continuity equation, and then apply the definition of acceleration
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Equations: (Continuity equation)

t

V
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V
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V
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 (Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two-dimensional flow (velocity is not a function of z)

(3) Steady flow (velocity is not a function of t)
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u This is the criterion against which we

will check the flow field.
Based on the assumptions above, the continuity equation reduces to:
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Based on assumptions (2) and (3), the acceleration reduces to: and the partial derivatives of velocity are:
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and Therefore the acceleration vector is equal to:
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The slope of the streamline is given by: slope
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 Problem 5.43 [Difficulty: 2] 
 

 
 

Given: X component of a 2-dimensional transient flow. 

Find: Y component of flow and total acceleration. 

Solution:  

Governing 
Equations: 

0











z

w

y

v

x

u
 (Continuity Equation for an Incompressible Fluid) 

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 



















 (Material Derivative) 

Assumptions: 
Incompressible fluid 

No motion along the wall (x = 0) limited to two dimensions (w = 0). 

 

The given or available data is: 







T

t
Axu

2
sin   0w    

 

Simplify the continuity equation to find v:  














T

t
A

x

u

y

v 2
sin  

Integrate:   C
T

t
Ayv 







2

sin  

Use the boundary condition of no flow at the origin to solve for the constant of integration 

 

Give the velocity in vector form:    jyix
T

t
AV ˆˆ2

sin 








 

 

Use the material derivative to find the acceleration. Start with the convective terms. 
y

V
v

x

V
ua convp 











,  

 jyix
T

t
A

j
T

t
A

T

t
Ayi

T

t
A

T

t
Ax

y

V
v

x

V
ua convp

ˆˆ2
sin

ˆ2
sin

2
sinˆ2

sin
2

sin

22

,






















































 

 

Finish the local term:   


















T

t
A

T
jyix

T

t
A

t

V
a localp

 2
cos

2ˆˆ2
sin,




 

 









T

t
Ayv

2
sin









T

t

T

A
a localp

 2
cos

2
,


 

 jyix
T

t
Aa convp

ˆˆ2
sin 22

, 










Problem 5.44 [Difficulty: 2]

Given: The 2-dimensional, incompressible velocity field provided above

Find: (a) dimensions of the constant A

(b) simplest x-component of the velocity

(c) acceleration of a particle at (1,2)

Solution: We will check the dimensions against the function definition, check the flow field against the continuity equation,

and then apply the definition of acceleration.

      0















t
w

z
v

y
u

x


Governing

Equations: (Continuity equation)

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 


















 (Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) Two-dimensional flow (velocity is not a function of z)

(3) Steady flow (velocity is not a function of t)

 
LLt

L

xy

v
A

11









  

Lt
A

1
Since v A x y it follows that A

v

x y
 and the dimensions of A are given by:

0







y

v

x

u

x

u
Ax

y

v








Based on the assumptions above, the continuity equation reduces to: Therefore:

Integrating with respect to x will yield the x-component of velocity: u xA x




d f y( )
1

2
A x

2
 f y( )

u
1

2
A x

2


The simplest x-component of velocity is obtained for f(y) = 0:

y

V
v

x

V
ua p 










Based on assumptions (2) and (3), the acceleration reduces to: and the partial derivatives of velocity are:

jAyiAx
x

V ˆˆ 




jAx
y

V ˆ




and Therefore the acceleration vector is equal to:

    jyxAixAjAxAxyjAyiAxAxa p
ˆ

2

1ˆ
2

1ˆˆˆ
2

1 22322 


At  (1 , 2):

jAiAa p
ˆ21

2

1ˆ1
2

1 2232 





 






 








  jiAa p

ˆˆ
2

12



Problem 5.45 [Difficulty: 2]

Given: Velocity field

Find: Whether flow is incompressible; expression for acceleration; evaluate acceleration along axes and along y = x

Solution:

The given data is A 10
m

2

s
 u x y( )

A x

x
2

y
2


 v x y( )

A y

x
2

y
2




For incompressible flow
x

u


 y
v




 0

Hence, checking
x

u


 y
v




 A

x
2

y
2

 
x

2
y

2
 2

 A
x

2
y

2
 

x
2

y
2

 2
 0 Incompressible flow

The acceleration is given by

For the present steady, 2D flow ax u
du

dx
 v

du

dy


A x

x
2

y
2



A x
2

y
2

 

x
2

y
2

 2












A y

x
2

y
2



2 A x y

x
2

y
2

 2








 ax
A

2
x

x
2

y
2

 2


ay u
dv

dx
 v

dv

dy


A x

x
2

y
2



2 A x y

x
2

y
2

 2









A y

x
2

y
2



A x
2

y
2

 

x
2

y
2

 2










 ay
A

2
y

x
2

y
2

 2


Along the x axis ax
A

2

x
3


100

x
3

 ay 0

Along the y axis ax 0 ay
A

2

y
3


100

y
3



Along the line x = y ax
A

2
x

r
4


100 x

r
4

 ay
A

2
y

r
4


100 y

r
4



where r x
2

y
2



For this last case the acceleration along the line x = y is a ax
2

ay
2


A

2

r
4

 x
2

y
2


A

2

r
3


100

r
3

 a
A

2

r
3


100

r
3



In each case the acceleration vector points towards the origin, proportional to 1/distance 3, so the flow field is a radial

decelerating flow. 



Problem 5.46 [Difficulty: 2]

Given: Duct flow with incompressible, inviscid liquid

U 5
m

s
 L 0.3 m u x( ) U 1

x

2 L








Find:

Solution: We will apply the definition of acceleration to the velocity.

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 


















Governing

Equation:
(Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) One-dimensional flow along centerline (u = u(x) only)

(3) Steady flow (velocity is not a function of t)

Based on assumptions (2) and (3), the acceleration reduces to: apx u
x

u



 U 1

x

2 L












U

2 L







U

2

2 L
 1

x

2 L








apx
U

2

2 L
 1

x

2 L








Expression for acceleration along the centerline of the duct



Problem 5.47 [Difficulty: 4]

 

4 in 1 in 

6 ft 

x

y

Given: Flow in a pipe with variable diameter

Find: Expression for particle acceleration; Plot of velocity and acceleration along centerline

Solution:

Basic equations:

Assumptions: 1) Incompressible flow

2) Uniform flow

Continuity reduces to and for the flow rate Q V A V
π D

2


4


But D Di

Do Di 
L

x where Di and Do are the inlet and exit diameters, and x is

distance along the pipe of length L: D(0) = D i, D(L) = Do.

Hence Vi

π Di
2



4
 V

π Di

Do Di 
L

x








2



4


V Vi

Di
2

Di

Do Di 
L

x








2


Vi

1

Do

Di

1








L
x









2
 V x( )

Vi

1

Do

Di

1








L
x









2


Some representative values are V 0 ft( ) 3
ft

s
 V

L

2







7.68
ft

s
 V L( ) 48

ft

s


The acceleration is given by



For this flow ax V
x

V



 ax

Vi

1

Do

Di

1








L
x









2 x

Vi

1

Do

Di

1








L
x









2




















2 Vi
2


Do

Di

1










L

x
Do

Di

1










L
1









5





ax x( )

2 Vi
2


Do

Di

1










L

x
Do

Di

1










L
1









5





Some representative values are ax 0 m( ) 2.25
ft

s
2

 ax
L

2







23.6
ft

s
2

 ax L( ) 2.30 10
3


ft

s
2



The following plots can be done in Excel
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Problem 5.48 [Difficulty: 2]

Given: Incompressible, inviscid flow of air between parallel disks

Find:

apr 3 10
3


m

s
2



  rerRVV ˆ


Solution: We will apply the conservation of mass and the definition of acceleration to the velocity.

      0
11

















t
V

z
V

V

r
rV

rr
zr




 


Governing

Equations:
(Continuity Equation)

 
t

V
VV

Dt

VD
a p 










(Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) One-dimensional flow (velocity not a function of θ or  z)

(3) Flow is only in the r-direction

(4) Steady flow (velocity is not a function of t)

Based on the above assumptions, the continuity equation reduces to:
1

r r
r Vr 


 0 or r Vr C

Thus: Vr
C

r
 should be the form of the solution. Now since at r = R: R V C it follows that: Vr

R

r
V or:

  rerRVV ˆ


(Q.E.D.)

Based on assumptions (2) - (4), acceleration is radial only, and that acceleration is equal to: apr Vr
r
Vr






apr V
R

r






V
R

r
2










V

2

R


R

r







3

 Therefore, at r = ri: apr 15
m

s






2


1

0.075 m


75

25







3

 apr 8.1 10
4


m

s
2



Therefore, at r = R: apr 15
m

s






2


1

0.075 m


75

75







3



(a) simplified version of continuity equation valid in this flow field

(b) show that the velocity is described by:

(c) acceleration of a particle at r = ri, r = R



Problem 5.49 [Difficulty: 2]

Given: Incompressible flow between parallel plates as shown

Find:

Therefore, the particle acceleration is:

Vr
Q

2 π r h


Solution: We will apply the conservation of mass and the definition of acceleration to the velocity.

      0
11

















t
V

z
V

V

r
rV

rr
zr




 


Governing

Equation:
(Continuity Equation)

 
t

V
VV

Dt

VD
a p 










(Particle acceleration)

Assumptions: (1) Incompressible flow (ρ is constant)

(2) One-dimensional flow (velocity not a function of θ or  z)

(3) Flow is only in the r-direction

(4) Steady flow (velocity is not a function of t)

Based on the above assumptions, the continuity equation reduces to:
1

r r
r Vr 


 0 or r Vr C

Thus: Vr
C

r
 should be the form of the solution. Now since the volumetric flow rate is: Q 2 π r h Vr it follows that:

Vr
Q

2 π r h


(Q.E.D.)

Based on assumptions (2) - (4), acceleration is radial only, and that acceleration is equal to: apr Vr
r
Vr






rp e
rh

Q
a ˆ

1

2 3

2










apr
Q

2 π r h

Q

2 π r
2

 h


Q

2 π h






2


1

r
3



(a) Show that the radial component of velocity is:

(b) Acceleration in the gap



Problem 5.50 [Difficulty: 4]

Given: Data on pollution concentration

Find: Plot of concentration; Plot of concentration over time for moving vehicle; Location and value of maximum rate

change

Solution:

tz
w

y
v

x
u

Dt

D
















Basic equation: (Material Derivative)

Assumption: Concentration of pollution is a function of x only

Sensor travels in x-direction only

For this case we have u U v 0 w 0 c x( ) A e

x

2 a


e

x

a












Hence
Dc

Dt
u

dc

dx
 U

x
A e

x

2 a


e

x

a


















d

d


U A

a
e

x

a


1

2
e

x

2 a
















We need to convert this to a function of time.  For this motion u = U so x U t

Dc

Dt

U A

a
e

U t

a


1

2
e

U t

2 a
















The following plots can be done in Excel
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p
m

)



0 0.1 0.2 0.3 0.4 0.5

1 10
4

1 10
4

2 10
4

3 10
4

4 10
4

t (s)

D
c/

D
t 

(p
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m
/s

)

The magnitude of the rate of change is maximized when

d

dx

Dc

Dt







d

dx

U A

a
e

x

a


1

2
e

x

2 a


























 0

U A

a
2

1

4
e

x

2 a


 e

x

a














 0 or e

x

2 a
4

xmax 2 a ln 4( ) 2 3 ft ln 4( ) xmax 8.32 ft

tmax

xmax

U
 8.32 ft

s

70 ft
 tmax 0.119 s

Dcmax

Dt

U A

a
e

xmax

a


1

2
e

xmax

2 a
















Dcmax

Dt
70

ft

s
 3 10

5
 ppm

1

3 ft
 e

8.32

3


1

2
e

8.32

2 3















Dcmax

Dt
4.38 10

5


ppm

s


Note that there is another maximum rate, at t = 0 (x = 0)

Dcmax

Dt
70

ft

s
 3 10

5
 ppm

1

3 ft
 1

1

2







Dcmax

Dt
3.50 10

4


ppm

s




Problem 5.51 [Difficulty: 2]

Given: Sediment concentration fates in a river after a rainfall are:

t
c




100

ppm

hr


x
c




50

ppm

mi


Stream speed is 0.5 mph, where a boat is used to survey the concentration.

The boat speed is 2.5 mph.

Find:

Physically the observed rates of change differ because the

observer is convected through the flow. The convective

change may add to or subtract from the local rate of change.

Solution: We will apply the concept of substantial derivative

t

c

z

c
w

y

c
v

x

c
u

Dt

Dc
















Governing

Equation:
(Substantial Derivative)

Assumptions: (1) One-dimensional motion (velocity not a function of y or z)

(2) Steady flow (velocity is not a function of t)

t

c

x

c
u

Dt

Dc








Based on the above assumptions, the substantial derivative reduces to:

To obtain the rates of change from the boat, we set u uB

(i) For travel upstream, uB us Vb uB 0.5 mph 2.5 mph uB 2 mph

Dcup 2.0
mi

hr
 50

10
6

mi
 100

10
6

hr


Dcup 0.00
10

6

hr


(ii) For drifting, uB us uB 0.5 mph

Dcdrift 0.5
mi

hr
 50

10
6

mi
 100

10
6

hr


Dcdrift 125.0
10

6

hr


(iii) For travel downstream, uB us Vb uB 0.5 mph 2.5 mph uB 3 mph

Dcdown 3.0
mi

hr
 50

10
6

mi
 100

10
6

hr


Dcdown 250
10

6

hr


(a) rates of change of sediment concentration observed when boat travels

upstream, drifts with the current, or travels downstream.

(b) explain why the observed rates differ



Problem 5.52 [Difficulty: 2]

Given: Instruments on board an aircraft flying through a cold front show ambient temperature

dropping at 0.7 oF/min, air speed of 400 knots and 2500 ft/min rate of climb.

Find:

Solution: We will apply the concept of substantial derivative

t

T

z

T
w

y

T
v

x

T
u

Dt

DT
















Governing

Equation:
(Substantial Derivative)

Assumptions: (1) Two-dimensional motion (velocity not a function of z)

(2) Steady flow (velocity is not a function of t)

(3) Temperature is constant in y direction

x

T
u

Dt

DT




Based on the above assumptions, the substantial derivative reduces to:

Finding the velocity components: V 400
nmi

hr


6080 ft

nmi


hr

3600 s
 V 675.56

ft

s
 v 2500

ft

min


min

60 s
 v 41.67

ft

s


Therefore: u 675.56
ft

s






2

41.67
ft

s






2

 u 674.27
ft

s


So the rate of change of temperature through the cold front is: δTx
0.7 ∆°F

min

s

674.27 ft


min

60 s


5280 ft

mi


δTx 0.0914
∆°F

mi


Rate of temperature change with respect to horizontal distance through cold front.



Problem 5.53 [Difficulty: 2]

Given: Aircraft flying north with speed of 300 mph with respect to ground, 3000 ft/min

vertical. Rate of temperature change is -3 deg F/1000 ft altitude. Ground temperature

varied 1 deg F/mile.

Find:

Solution: We will apply the concept of substantial derivative

t

T

z

T
w

y

T
v

x

T
u

Dt

DT
















Governing

Equation:
(Substantial Derivative)

Assumptions: (1) Two-dimensional motion (velocity not a function of z)

(2) Steady flow (velocity is not a function of t)

y

T
v

x

T
u

Dt

DT








Based on the above assumptions, the substantial derivative reduces to:

Substituting numerical values: δT 300
mi

hr


1 ∆°F

mi


hr

60 min






3000
ft

min


3 ∆°F

1000 ft






 δT 14
∆°F

min


Rate of temperature change shown by on-board flight recorder



 Problem 5.54 [Difficulty: 4] 
 

 
 

Given: Z component of an axisymmetric transient flow. 

Find: Radial component of flow and total acceleration. 

Solution:  

Governing 
Equations: 

 
0

11













z

VV

rr

rV

r

zr




 (Continuity Equation for an Incompressible Fluid) 

t

V

z

V
V

V

r

V

r

V
Va

t

V

z

V
V

r

VV

r

V

r

V
Va

zz
z

zz
rpz

rr
z

rr
rpr










































,

2

,

 (Particle acceleration) 

Assumptions: 
Incompressible fluid 

No motion along the wall (z  = 0) limited to two dimensions (Vθ = 0 and all partials with respect to θ are zero). 

 

The given or available data is: 







T

t
AzVZ

2
sin   0V   

 
0





 

 

 

Simplify the continuity equation to find Vr:  
   




















T

t
Ar

r

rV

z

V

r

rV

r

rzr 2
sin

1
 

Solve using separation of variables:   C
T

tAr
rVr 







2

sin
2

2

 

Use the boundary condition of no flow at the origin to solve for the constant of integration 

 

 

Find the convective terms of acceleration. 0
2

sin
2

sin
2

2
sin

2
, 






























T

t
Az

T

tA

T

trA

z

V
V

r

V
Va r

z
r

rconvr


 

 

 

 

 































T

t
A

T

t
Az

T

trA

z

V
V

r

V
Va z

z
z

rconvz

 2
sin

2
sin0

2
sin

2
,  

 

 

 









T

trA
Vr

2
sin

2









T

trA
a convr

2
sin

4

2
2

,   









T

t
zAa convz

2
sin 22

,   



Find the local terms: 











T

trA

Tt

V
a r

localr

 2
cos

2

2
,  

 

   











T

t
Az

Tt

V
a z

localz

 2
cos

2
,  

 

 










T

t

T

rA
a localr

 2
cos,









T

t

T

zA
a localz

 2
cos

2
,



Problem 5.55 [Difficulty: 3]

Given: Definition of "del" operator

Find:

Solution: We will directly substitute the velocity vector into the expression.

k
z

j
y

i
x

ˆˆˆ











Governing

Equation:
("del" operator in rectangular coordinates)

kwjviuV ˆˆˆ 


(velocity vector)

Assumptions: None.

     

 

k
z

w
w

y

w
v

x

w
uj

z

v
w

y

v
v

x

v
ui

z

u
w

y

u
v

x

u
u

kwjviu
z

w
y

v
x

u

kwjviuk
z

j
y

i
x

kwjviuVV

ˆˆˆ

ˆˆˆ

ˆˆˆˆˆˆˆˆˆ







































































































Directly substituting we get:

The components of this vector are the x-, y-, and z-components of the convective acceleration:

t

w

z

w
w

y

w
v

x

w
ua

t

v

z

v
w

y

v
v

x

v
ua

t

u

z

u
w

y

u
v

x

u
ua

zp

yp

xp









































































an expression for the convective acceleration for a fluid particle.



Problem 5.56 [Difficulty: 3]

Given: Steady, two-dimensional velocity field represented above

Find:

(When C = 0 the streamline is on

the x- and y-axes.)

Solution: We will apply the acceleration definition, and determine the streamline slope.

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 


















Governing

Equations:
(Particle acceleration)

Assumptions: (1) Two-dimensional flow (velocity is not a function of z)

(2) Incompressible flow

Streamlines along the x-y plane are defined by
dy

dx

v

u


A y

A x
 Thus:

dx

x

dy

y
 0

After integrating: ln x( ) ln y( ) ln C( ) which yields: x y C (Q.E.D.)

y

V
v

x

V
ua p 










Based on the above assumptions the particle acceleration reduces to: Substituting in the field:

      jyixAjAAyiAAxa p
ˆˆˆˆ 2 

  jyixAa p
ˆˆ2 


which simplifies to

 
2s

mˆ2ˆ5.0 jia p 
  

2s

mˆˆ jia p 
  

2s

mˆ5.0ˆ2 jia p 


At (x,y) = (0.5m, 2m) At (x,y) = (1m, 1m) At (x,y) = (2m, 0.5m)

0

1

2

3

4

5

0 1 2 3 4 5

X (m)

Y
 (

m
)

Here is the plot of the streamlines:

(a) proof that streamlines are hyperbolas (xy = C)

(b) acceleration of a particle in this field

(c) acceleration of particles at (x,y) = (1/2m, 2m), (1m,1m), and (2m, 1/2m)

(d) plot streamlines corresponding to C = 0, 1, and 2 m2 and show accelerations



Problem 5.57 [Difficulty: 3]

Given: Steady, two-dimensional velocity field represented above

Find:

A x B( ) y C

Solution: We will apply the acceleration definition, and determine the streamline slope.

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 


















Governing

Equations:
(Particle acceleration)

Assumptions: (1) Two-dimensional flow (velocity is not a function of z)

(2) Incompressible flow

y

V
v

x

V
ua p 










Based on the above assumptions the particle acceleration reduces to: Substituting in the field:

         jyAiABxAjAAyiABAxa p
ˆˆˆˆ 22 

     jyAiABxAa p
ˆˆ 22 



 
2s

mˆ0533.0ˆ12.0 jia p 
  

2s

mˆ0800.0ˆ08.0 jia p 


At (x,y) = (0m, 4/3m) At (x,y) = (1m, 1m)

 
2s

mˆ160.0ˆ04.0 jia p 


At (x,y) = (2m, 0.5m)

Streamlines along the x-y plane are defined by
dy

dx

v

u


A y

A x B
 Thus:

dx

A x B

dy

A y
 0 After integrating:

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5 6 7 8 9

X (m)

Y
 (

m
)

1

A
ln A x B( )

1

A
ln y( )

1

A
ln C( ) which yields:

Here is the plot of the streamlines:

(a) general acceleration of a particle in this field

(b) acceleration of particles at (x,y) = (0m, 4/3m), (1m,2m), and (2m, 4m)

(c) plot streamlines with acceleration vectors



Problem 5.58 [Difficulty: 3]

Given: Velocity field represented above

Find:

y x
B

A






 constant

Solution: We will check the velocity field against the continuity equation, apply the acceleration definition, and

determine the streamline slope.
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Governing

Equations:
(Continuity equation)
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 (Particle acceleration)

Assumptions: (1) Two-dimensional flow (velocity is not a function of z)

(2) Incompressible flow

Based on the above assumptions the continuity equation reduces to:
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u


 y
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
 0 This is the criterion to check the velocity.

The partial derivatives are:
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Based on the above assumptions the particle acceleration reduces to: Substituting in the field:

      kDjyCiABxAkDjCCyiABAxa p
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Streamlines along the x-y plane are defined by
dy

dx

v

u


C y

A x B
 Thus:
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A


dy

y
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A x B
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dx

x
B

A


dy

y
 0
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 (

m
)

Solving this ODE by integrating: ln x
B

A






ln y( ) const

Here is a plot of the streamlines

passing through (3, 2):
Therefore:

(a) the proper value for C if the flow field is incompressible

(b) acceleration of a particle at (x,y) = (3m,2m)

(c) sketch the streamlines in the x-y plane



Problem 5.59 [Difficulty: 3]

Given: Linear approximate profile for two-dimensional boundary layer

Find:

ratio 100

Solution: We will apply the acceleration definition.
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Governing

Equation:
(Particle acceleration)

Assumptions: (1) Two-dimensional flow (velocity is not a function of z)

(2) Incompressible flow

(3) Steady flow
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Based on the above assumptions the particle acceleration reduces to: The velocities and derivatives are:
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The maximum values are when y = δ: apxmax
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U
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When x = 0.5 m and δ = 5 mm: ratio
0.5 m

0.005 m


(a) x- and y-components of acceleration of a fluid particle

(b) locate the maximum values of acceleration

(c) compute ratio of maximum acceleration components



Problem 5.60 [Difficulty: 4]

x 

y 

U 

Given: Flow in boundary layer

Find: Expression for particle acceleration ax; Plot acceleration and find maximum at x = 0.8 m

Solution:
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At λ = 0.634 ax
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The following plot can be done in Excel
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Problem 5.61 [Difficulty: 3]

Given: Steady, two-dimensional velocity field represented above

Find:

 
2,

s

mˆ0ˆ0 jia localp 


Solution: We will apply the acceleration definition, and determine the streamline slope.
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Equations:
(Particle acceleration)
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 (Continuity equation)

Assumptions: (1) Two-dimensional flow (velocity is not a function of z)

(2) Incompressible flow

Based on the two assumptions listed above, the continuity equation reduces to:
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This is the criterion against which we will check all of the flow fields.
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Based on the above assumptions the particle acceleration reduces to:
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The local acceleration is:

(a) prove velocity field represents a possible incompressible flow field

(b) expression for the streamline at t = 1.5 s

(c) plot of the streamline through (x,y) = (2m,4m) at that instant

(d) local velocity vector

(e) vectors representing local, convective, and total accelerations



The convective acceleration is:
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The total acceleration is the sum of the two acceleration terms:
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Here is the plot of the streamline

and the vectors:



Problem 5.62 [Difficulty: 3]

Given: Sinusoidal profile for two-dimensional boundary layer

Find:

(Eqn. 3)

Solution: We will apply the acceleration definition.

Governing

Equation: (Particle acceleration)

Assumptions: (1) Two-dimensional flow (velocity is not a function of z)

(2) Incompressible flow

(3) Steady flow
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Based on the above assumptions the particle acceleration reduces to: To make this easier, define η:
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The velocities and derivatives are: u U sin η( )
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 Simplifying this expression:
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(a) x- and y-components of acceleration of a fluid particle

(b) plot components as functions of y/δ for U = 20 ft/s, x = 3 ft, δ = 0.04 in

(c) maximum values of acceleration at this x location
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So the accelerations are:
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 cos η( ) η sin η( ) 1 η

2
cos η( ) 

U

π

δ

x
 cos η( ) η sin η( ) 1( )

U

2 x
 η cos η( )

Simplifying this expression: apy
U

2
δ

2 π x
2


η cos η( ) cos η( ) η sin η( ) 1( ) sin η( ) 1 η

2
  cos η( ) η sin η( ) 1  

Here are the plots of the acceleration components:
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The maximum values and their locations may be found using Excel or Mathcad: apxmax 16.7
ft

s
2

 apymax 0.0178
ft

s
2



y

δ
0.667

y

δ
0.839



Problem 5.63 [Difficulty: 3]

We will apply the continuity equation to the control volume shown:

Given: Flow between parallel disks through porous surface

Find:

apz Vr
r
Vz




 Vz

z
Vz




 v0

r

2 h
 0 v0 1

z

h







v0

h


Solution:

apz

v0
2

h

z

h
1







 




CSCV

AdVVd
t


0

Governing

Equations: (Continuity)

 
t

V
VV

Dt

VD
a p 










(Particle Accleration)

Assumptions: (1) Steady flow

(2) Incompressible flow

(3) Uniform flow at every section

(4) Velocity in θ-direction is zero

Based on the above assumptions the continuity equation reduces to: 0 ρ v0 π r
2

 ρ Vr 2 π r h Solving for Vr: Vr v0
r

2 h


We apply the differential form of continuity to find       :Vz
1

r r
r Vr 




z
Vz




 0

1

r r
r Vr 




v0

h


z
Vz






Therefore:

Vz z
v0

h






d f r( ) v0
z

h
 f r( ) Now at z = 0: Vz v0 Therefore we can solve for f(r): v0 v0

0

h
 f r( ) f r( ) v0

So we find that the z-component of velocity is: Vz v0 1
z

h








z

V
V

r

V
Va zrp 











Based on the above assumptions the particle acceleration reduces to:

r
Vr





v0

2 h


z
Vr




0

r
Vz




0

z
Vz





v0

h


So the accelerations are:

apr Vr
r
Vr




 Vz

z
Vr




 v0

r

2 h


v0

2 h
 v0 1

z

h






 0 apr

v0
2

r

4 h
2




(a) show that Vr = vor/2h

(b) expression for the z-component of velocity (vo<<V)

(c) expression for acceleration of fluid particle in the gap



Problem 5.64 [Difficulty: 3]

Given: Steady inviscid flow over a circular cylinder of radius R

Find:

aprmax 0.372
U

2

R


Solution: We will apply the particle acceleration definition to the velocity field

 
t

V
VV

Dt

VD
a p 








Governing

Equation: (Particle Accleration)

Assumptions: (1) Steady flow

(2) Inviscid flow

(3) No flow in z-direction, velocity is not a function of z












V

r

V

r

V
Va rp




Based on the above assumptions the particle acceleration reduces to: and the components are:

apr Vr
r
Vr






Vθ

r θ
Vr






Vθ
2

r
 apθ Vr

r
Vθ






Vθ

r θ
Vθ






Vr Vθ

r


When θ = π: Vr U 1
R

r







2










 Vθ 0
r
Vr




U 2

R
2

r
3

 2 U
R

2

r
3


θ

Vr



0

r
Vθ




0

θ
Vθ




0

So the accelerations are: apr U 1
R

r







2










 2 U
R

2

r
3


2 U

2


R

R

r







3

 1
R

r







2










 apr
2 U

2


R

R

r







3

 1
R

r







2












apθ 0

To find the maximum acceleration, we take the derivative of the accleration and set it to zero: Let η
R

r


η
apr

d

d

2 U
2



R
3 η

2
 1 η

2
  η

3
2 η 

2 U
2



R
5 η

4
 3η

2
  0 Therefore: η

3

5
 or r 1.291 R

The maximum acceleration would then be: aprmax
2 U

2


R

1

1.291







3

 1
1

1.291







2












(a) Expression for acceleration of particle moving along θ = π
(b) Expression for accleeration of particle moving along r = R

(c) Locations at which accelerations in r- and θ- directions reach maximum and minimum values

(d) Plot ar as a function of R/r for θ = π and as a function of θ for r = R

(e) Plot aθ as a function of θ for r = R



When r = R: Vr 0 Vθ 2 U sin θ( )
r
Vr




0

θ
Vr




0

r
Vθ




0

θ
Vθ




2 U cos θ( )

So the accelerations are: apr
2 U cos θ( )( )

2

R


4 U
2



R
sin θ( )( )

2
 apr

4 U
2



R
sin θ( )( )

2


apθ
2 U sin θ( )

R
2 U cos θ( )

4 U
2



R
sin θ( ) cos θ( ) apθ

4 U
2



R
sin θ( ) cos θ( )

Radial acceleration is minimum at θ 180 deg
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Accelerations at this angle are: armin 4
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 aθ 0

Azimuthal acceleration is maximum at θ 45 deg

Accelerations at this angle are: ar 2
U

2

R
 aθmax 2

U
2

R


Azimuthal acceleration is minimum at θ 135 deg

Accelerations at this angle are: ar 2
U

2

R
 aθmin 2

U
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The plots of acceleration along the stagnation streamline and

the cylinder surface are shown here. In all cases the

accelerations have been normalized by U2/R



Problem 5.65 [Difficulty: 3]

Given: Air flow through porous surface into narrow gap

Find:

The acceleration vector would be:

Solution: We will apply the continuity equation to the control volume shown:

 




CSCV

AdVVd
t


0

Governing

Equations: (Continuity)

t

V

z

V
w

y

V
v

x

V
u

Dt

VD
a p 



















(Particle Accleration)

Assumptions: (1) Steady flow

(2) Incompressible flow

(3) Uniform flow at every section

Based on the above assumptions the continuity equation reduces to: 0 x w v0 h w u x( ) Solving for u: u x( ) v0
x

h


We apply the differential form of continuity to find v:
x

u


 y
v




 0

x
u





v0

h


y
v




 Therefore the y-velocity v is:

v y
v0

h






d f x( ) v0
y

h
 f x( ) Now at y = 0: v v0 Therefore we can solve for f(x): v0 v0

0

h
 f x( ) f x( ) v0

So we find that the y-component of velocity is: v v0 1
y

h








y

V
v

x

V
ua p 










Based on the above assumptions the particle acceleration reduces to:

x
u





v0

h


y
u




0

x
v




0

y
v





v0

h


So the accelerations are:

apx u
x

u



 v

y
u




 v0

x

h


v0

h
 v0 1

y

h






 0 apx

v0
2

x

h
2



apy u
x

v



 v

y
v




 v0

x

h
 0 v0 1

y

h







v0

h
 apy

v0
2

h

y

h
1





















  j

h

y
i

h

x

h

v
a p

ˆ1ˆ
2

0

(a) show that u(x) = vox/h

(b) expression for the y-component of velocity

(c) expression for acceleration of fluid particle in the gap



Problem 5.66 [Difficulty: 3]

Given: Velocity field and nozzle geometry

Find: Acceleration along centerline; plot

Solution:

Assumption: Incompressible flow

The given data is A0 5 ft
2

 L 20 ft b 0.2 ft
1

 U0 20
ft

s
 ω 0.16

rad

s
 A x( ) A0 1 b x( )

The velocity on the centerline is obtained from continuity u x( ) A x( ) U0 Ao

so u x t( )
A0

A x( )
U0 0.5 0.5 cos ω t( )( )

U0

1 b x( )
0.5 0.5 cos ω t( )( )

The acceleration is given by

For the present 1D flow ax
t
u




u

x
u






0.5 U0 ω sin ω t( )

1 b x


U0

1 b x( )
0.5 0.5 cos ω t( )( )

U0 b 0.5 cos ω t( ) 0.5( )

1 b x( )
2









ax

U0

1 b x( )
0.5 ω sin ω t( )( ) 0.5 0.5 cos ω t( )( )

U0 b 0.5 cos ω t( ) 0.5( )

1 b x( )
2














 The plot is shown here:
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Problem 5.67 [Difficulty: 4]

Given: Steady, two-dimensional velocity field of Problem 5.56

Find:

These results are identical to the accelerations calculated in Problem 5.56.

Solution: We will apply the particle acceleration definition to the velocity field

 
t

V
VV

Dt

VD
a p 








Governing

Equation: (Particle Accleration)

Assumptions: (1) Incompressible flow

(2) Two-dimensional flow

(3) Steady flow

For the given flow, u A x and v A y Thus up
t
f1

d

d
 A xp A f1 or

df1

f1

A dt Integrating from x0 to f1
yields:

x0

f1

f1
1

f1






d ln
f1

x0









 A t Solving for f1
yields: f1 t( ) x0 e

A t


Similarly, we can find: vp
t
f2

d

d
 A yp A f2 or

df2

f2

A dt Integrating from y0 to f2
yields: f2 t( ) y0 e

A t


In this problem, x0
1

2
m and y0 2 m Knowing the final position, we can solve for the time required.

To reach (1, 1):

x 1.0 m t ln 2( ) 1 s t 0.693 s y 1.0 m t ln
1

2







 1 s t 0.693 s t 0.693 s

To reach (2, 0.5):

x 2.0 m t ln 4( ) 1 s t 1.386 s y 0.5 m t ln
1

4







 1 s t 1.386 s t 1.386 s

The acceleration components are:

 
2s

mˆˆ jia p 


ax 2
t

f1
d

d

2

 x0 A
2

 e
A t

 A
2

f1 t( ) ay 2
t

f2
d

d

2

 x0 A( )
2

 e
A t

 A
2

f2 t( ) At (x, y) = (1, 1):

 
2s

mˆ5.0ˆ2 jia p 


At (x, y) = (2, 0.5):

(a) expressions for particle coordinates, xp = f1(t) and yp = f2(t)

(b) Time requires for particle to travel from (0.5, 2) to (1, 1) and (2, 0.5)

(c) compare acceleration determined from f1(t) and f2(t) to those found in Problem 5.56



Problem 5.68 [Difficulty: 3]

Given: One-dimensional, incompressible flow through circular channel.

Find:

Solution: We will apply the particle acceleration definition to the velocity field

 
t

V
VV

Dt

VD
a p 








Governing

Equations: (Particle Accleration)

 




CSCV

AdVVd
t


0 (Continuity equation)

Assumptions: (1) Incompressible flow

(2) One-dimensional flow

Based on the above assumptions the continuity equation can provide the velocity at any location: u U
A1

A


R1

r









2



Now based on the geometry of the channel we can write r R1 R1 R2  x

L
 R1 ∆R

x

L
 Therefore the flow speed is:

u U
R1

2

R1 ∆R
x

L






2


U0 U1 sin ω t( ) 

1
∆R

R1

x

L















2
 Based on the above assumptions the particle acceleration reduces to:

i
t

u

x

u
ua p

ˆ

















Substituting the velocity and derivatives into this expression we can get the acceleration in the x-direction:

ax

U0 U1 sin ω t( ) 

1
∆R

R1

x

L















2

U0 U1 sin ω t( ) 

1
∆R

R1

x

L















3
 2( )

∆R

R1 L








ω U1 cos ω t( )

1
∆R

R1

x

L















2
 When we simplify this expression we get:

ax
2 ∆R

R1 L

U0 U1 sin ω t( ) 2

1
∆R

R1

x

L















5


ω U1 cos ω t( )

1
∆R

R1

x

L















2
 Now we substitute the given values into this expression we get:

(a) the acceleration of a particle at the channel exit

(b) plot as a function of time for a compleye cycle.

(c) plot acceleration if channel is constant area

(d) explain difference between the two acceleration cases



ax 2 0.1 m
1

0.2 m


1

1 m
 20 2 sin ω t( )( )

2


m
2

s
2


1

1
0.1 m

0.2 m
1





5
 0.3

rad

s
 2

m

s
 cos ω t( )

1

1
0.1 m

0.2 m
1





2


0 10 20
0

5 10
3

1 10
4

1.5 10
4

2 10
4

Acceleration in Converging Channel

Time (s)
A

cc
el

er
at

io
n

 (
m

/s
^
2
)

ax 32 20 2 sin 0.3
rad

s
 t











2

 2.4 cos 0.3
rad

s
 t














m

s
2



Here is a plot of the acceleration versus time.

For a constant area channel, ΔR = 0 and the acceleration becomes:

ax 0.6 cos 0.3
rad

s
 t











m

s
2



The plot of that acceleration is shown below.

The acceleration is so much larger for the converging channel

than in the constant area channel because the convective

acceleration is generated by the converging channel - the

constant area channel has only local acceleration.

0 10 20
1

0.5

0

0.5

1

Acceleration in Constant-Area Channel

Time (s)

A
cc

el
er

at
io

n
 (

m
/s

^
2
)



Problem 5.69 [Difficulty: 2]

Given: Velocity components

Find: Which flow fields are irrotational

Solution:

For a 2D field, the irrotationality the test is
x

v


 y
u




 0

a) u x y t( ) 2 x
2

 y
2

 v x y t( ) x
3

x y
2

2 y 
x

v x y t( )



3 x

2
 y

2
 2 y

y
u x y t( )




2 y

Hence
x

v


 y
u




 0

Not irrotational

b) u x y t( ) 2 x y x
2

 y v x y t( ) 2 x y y
2

 x
2


x

v x y t( )



2 x 2 y

y
u x y t( )




2 x 1

Hence
x

v


 y
u




 0

Not irrotational

c) u x y t( ) x t 2 y v x y t( ) x t
2

 y t
x

v x y t( )



t
2


y

u x y t( )



2

Hence
x

v


 y
u




 0

Not irrotational

d) u x y t( ) x 2 y( ) x t v x y t( ) 2 x y( ) y t
x

v x y t( )



2 t y

y
u x y t( )




2 t x

Hence
x

v


 y
u




 0

Not irrotational



(a) An expression for            in cylindrical coordinates.

(b) Show result is identical to Equations 5.12.

Problem 5.70 [Difficulty: 4]

Given: Definition of "del" operator in cylindrical coordinates, velocity vector

 VV


Find:

Solution: We will apply the velocity field to the del operator and simplify.

z
k

r
e

r
er 











 ˆ1
ˆˆ



Governing

Equations: (Definition of "del" operator)

kVeVeVV zrr
ˆˆˆ  


(Velocity flow field)

r
r e

e
e

e
ˆ

ˆ
ˆ

ˆ












 (Hints from footnote)

 VV


Substituting using the governing equations yields:

     

 

     
   

kV
z

VeV
z

V

eV
z

VkV
r

V
eV

r

V
eV

r

V
kV

r
VeV

r
VeV

r
V

kVeVeV
z

VkVeVeV
r

V
kVeVeV

r
V

kVeVeV
z

V
r

V

r
V

kVeVeV
z

k
r

e
r

ekVeVeVVV

zzz

rrzzrrzrrrrr

zrrzzrrzrrr

zrrzr

zrrrzrr

ˆˆ

ˆˆˆˆˆˆˆ

ˆˆˆˆˆˆˆˆˆ

ˆˆˆ

ˆˆˆˆ1
ˆˆˆˆˆ



































































































































Applying the product rule to isolate derivatives of the unit vectors:

 

k
z

V
Ve

z

V
Ve

z

V
V

k
V

r

V
V

e

r

V
e

V

r

V
V

e

r

V
e

V

r

V
k

r

V
Ve

r

V
Ve

r

V
VVV

z
zzr

r
z

z
r

r
r

rz
rrr

r
r

ˆˆˆ

ˆˆ
ˆ

ˆ
ˆˆˆˆ

































































Collecting terms:

 

k
z

V
V

V

r

V

r

V
V

e
z

V
V

r

VVV

r

V

r

V
Ve

z

V
V

r

VV

r

V

r

V
VVV

z
z

zz
r

z

r

rr
r

z
rr

r

ˆ

ˆˆ
2









































































The three terms in parentheses are the three components of convective acceleration given in Equations 5.12.



(a) Circulation about a contour bounded by x = 0.4 m, x = 0.6 m,  y = 0, and y = 8 mm.

(b) Result if evaluated Δx = 0.2 m further downstream

Problem 5.71 [Difficulty: 4]

Given: Sinusoidal approximation to boundary-layer velocity profile:

u U sin
π

2

y

δ






 where δ 5 mm at x 0.5 m

Neglect the vertical component of velocity. U 0.5
m

s


Find:

Solution: We will apply the definition of circulation to the given velocity field.

  sdV
Governing

Equation:
(Definition of circulation)

From the definition of circulation we break up the integral:

 
dacdbcab

sdVsdVsdVsdV
 Since the velocity is zero over ab, and since

the velocity and path are perpendicular over bc

and da: 

Γ

xc

xd

xU




d U xc xd  Γ 0.5
m

s
 0.6 m 0.4 m( ) Γ 0.1

m
2

s


At the downstream location, since δ c x

1

2
 δ' δ

x

x'







1

2

 δ' 5 mm
0.8 m

0.5 m






1

2

 δ' 6.325 mm

Now since the boundary layer is less than 8 mm thick at point c', the integral along c'c will be the same as that along cd.

Γbb'c'c Γabcd



Circulation about the unit square shown above.

Problem 5.72 [Difficulty: 2]

Given: Velocity field for flow in a rectangular corner as in Example 5.8.

Find:

Solution: We will apply the definition of circulation to the given velocity field.

  sdV
Governing

Equation:
(Definition of circulation)

 
dacdbcab

sdVsdVsdVsdV


From the definition of circulation we break up the integral:

    AydyAxdxjdyidxjAyiAxsdV  ˆˆˆˆ
The integrand is equal to: Therefore, the circulation is equal to:

Γ

xa

xd

xA x




d

yd

yc

yA y




d
xc

xb

xA x




d
yb

ya

yA y




d
A

2
xd

2
xa

2




 yc

2
yd

2




 xb

2
xc

2




 ya

2
yb

2










Γ
1

2
0.3

1

s
 2

2
1

2
  2

2
1

2
  1

2
2

2
  1

2
2

2
   m

2
 Γ 0

m
2

s


This result is to be expected since the flow is irrotational

and by Stokes' theorem, the circulation is equal to the curl

of the velocity over the bounded area (Eqn. 5.18).



Problem 5.73 [Difficulty: 3]

Given: Flow field

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility
x

u


 y
v




 0 Irrotationality

x
v



 y
u




 0

a) u x y( ) x
7

21 x
5

 y
2

 35 x
3

 y
4

 7 x y
6

 v x y( ) 7 x
6

 y 35 x
4

 y
3

 21 x
2

 y
5

 y
7



x
u x y( )




7 x

6
 105 x

4
 y

2
 105 x

2
 y

4
 7 y

6


y
v x y( )




7 x

6
 105 x

4
 y

2
 105 x

2
 y

4
 7 y

6


Hence
x

u


 y
v




 0 COMPRESSIBLE

b) u x y( ) x
7

21 x
5

 y
2

 35 x
3

 y
4

 7 x y
6

 v x y( ) 7 x
6

 y 35 x
4

 y
3

 21 x
2

 y
5

 y
7



x
v x y( )




42 x

5
 y 140 x

3
 y

3
 42 x y

5


y
u x y( )




 42 x

5
 y 140 x

3
 y

3
 42 x y

5


Hence
x

v


 y
u




 0 ROTATIONAL

Note that if we define v x y( ) 7 x
6

 y 35 x
4

 y
3

 21 x
2

 y
5

 y
7

  then the flow is incompressible and irrotational!



(a) show that the velocity field represents a possible incompressible flow

(b) Rotation at (x, y) = (1, 1)

(c) Circulation about the unit square shown above

Problem 5.74 [Difficulty: 2]

Solution:

Given: Two-dimensional flow field

Find:

Γ 0.500
ft

2

s


We will apply the definition of circulation to the given velocity field.

      0















t
w

z
v

y
u

x

Governing

Equations:
(Continuity equation)

V



2

1 (Definition of rotation)

  sdV


(Definition of circulation)

Assumptions: (1) Steady flow

(2) Incompressible flow

(3) Two dimensional flow (velocity is not a function of z)

Based on the assumptions listed above, the continuity equation reduces to:
x

u


 y
v




 0

This is the criterion against which we will check the flow field.

x
u



 y
v




 2A x B x 2

1

2 ft s
 x

1

ft s
x 0 This could be an incompressible flow field.

kBy

BxyAx

zyx

kji

ˆ
2

1

0

ˆˆˆ

2

1

2














s

radˆ5.0 k


From the definition of rotation: At (x, y) = (1, 1)

 
dacdbcab

sdVsdVsdVsdV


From the definition of circulation we break up the integral:

    BxydydxAxjdyidxjBxyiAxsdV  22 ˆˆˆˆ
The integrand is equal to: Therefore, the circulation is equal to:

Γ

xa

xb

xA x
2






d

yb

yc

yB x y




d
xc

xd

xA x
2






d
yd

ya

yB x y




d Evaluating the integrals:

Γ
A

3
xb

3
xa

3
 xd

3
 xc

3






B

2
xc yc

2
yb

2




 xa ya

2
yd

2








 Since xa xd 0 and xb xc we can simplify:

Γ
B

2
xc yc

2
yb

2




 Substituting given values: Γ

1

2

1

ft s






 1 ft 1
2

0
2

  ft
2





(a) show that the velocity field represents a possible incompressible flow

(b) Rotation at (x, y) = (1, 1)

(c) Circulation about the unit square shown above

[Difficulty: 2]Problem 5.75

Γ 0.5
m

2

s


Given: Two-dimensional flow field

Find:

Solution: We will apply the definition of circulation to the given velocity field.

      0















t
w

z
v

y
u

x

Governing

Equations:
(Continuity equation)

V



2

1 (Definition of rotation)

  sdV


(Definition of circulation)

Assumptions: (1) Steady flow

(2) Incompressible flow

(3) Two dimensional flow (velocity is not a function of z)

Based on the assumptions listed above, the continuity equation reduces to:

x
u



 y
v




 0

This is the criterion against which we will check the flow field.

x
u



 y
v




 A y 2 B y

1

m s
y 2

1

2 m s
 y 0 This could be an incompressible flow field.

kAx

ByAxy

zyx

kji

ˆ
2

1

0

ˆˆˆ

2

1

2














s

radˆ5.0 k


From the definition of rotation: At (x, y) = (1, 1)

 
dacdbcab

sdVsdVsdVsdV


From the definition of circulation we break up the integral:

    dyByAxydxjdyidxjByiAxysdV 22 ˆˆˆˆ 


The integrand is equal to: Therefore, the circulation is equal to:

Γ

xa

xb

xA x y




d

yb

yc

yB y
2






d
xc

xd

xA x y




d
yd

ya

yB y
2






d
A

2
xb

2
xa

2




 ya yc  B

3
yc

3
yb

3
 ya

3
 yd

3






Since ya yd 0 and yb yc we can simplify: Γ
A

2
 xb

2
xa

2




 yc Substituting given values:

Γ
1

2

1

m s
 1

2
0

2
  m

2
 1 m



Problem 5.76 [Difficulty: 3]

Given: Stream function

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility
x

u


 y
v




 0 Irrotationality

x
v



 y
u




 0

Note: The fact that ψ exists means the flow is incompressible, but we check anyway

ψ x y( ) 3 x
5

 y 10 x
3

 y
3

 3 x y
5



Hence u x y( )
y
ψ x y( )




3 x

5
 30 x

3
 y

2
 15 x y

4
 v x y( )

x
ψ x y( )




 30 x

2
 y

3
 15 x

4
 y 3 y

5


For incompressibility

x
u x y( )




15 x

4
 90 x

2
 y

2
 15 y

4


y
v x y( )




90 x

2
 y

2
 15 x

4
 15 y

4


Hence
x

u


 y
v




 0 INCOMPRESSIBLE

For irrotationality

x
v x y( )




60 x y

3
 60 x

3
 y

y
u x y( )




 60 x

3
 y 60 x y

3


Hence
x

v


 y
u




 0 IRROTATIONAL



Problem 5.77 [Difficulty: 3]

Given: Stream function

Find: If the flow is incompressible and irrotational

Solution:

Basic equations: Incompressibility
x

u


 y
v




 0 Irrotationality

x
v



 y
u




 0

Note: The fact that ψ exists means the flow is incompressible, but we check anyway

ψ x y( ) x
6

15 x
4

 y
2

 15 x
2

 y
4

 y
6



Hence u x y( )
y
ψ x y( )




60 x

2
 y

3
 30 x

4
 y 6 y

5
 v x y( )

x
ψ x y( )




 60 x

3
 y

2
 6 x

5
 30 x y

4


For incompressibility

x
u x y( )




120 x y

3
 120 x

3
 y

y
v x y( )




120 x

3
 y 120 x y

3


Hence
x

u


 y
v




 0 INCOMPRESSIBLE

For irrotationality

x
v x y( )




180 x

2
 y

2
 30 x

4
 30 y

4


y
u x y( )




 30 x

4
 180 x

2
 y

2
 30 y

4


Hence
x

v


 y
u




 0 IRROTATIONAL



(a) Expression for the velocity field

(b) Rate of rotation

(c) Stream function

Problem 5.78 [Difficulty: 2]

Given: Velocity field for motion in the x-direction with constant shear

Find:

Solution: We will apply the definition of circulation to the given velocity field.

      0















t
w

z
v

y
u

x

Governing

Equations:
(Continuity equation)

V



2

1 (Definition of rotation)

Assumptions: (1) Steady flow

(2) Incompressible flow

  ixfAyV ˆ


The x-component of velocity is: u yA




d f x( ) Ay f x( ) Since flow is parallel to the x-axis:

 
kA

xfAy

zyx

kji

ˆ
2

1

00

ˆˆˆ

2

1















s

radˆ05.0 k


From the definition of rotation:

From the definition of the stream function ψ yu




d g x( ) yA y f x( )( )




d g x( )
1

2
A y

2
 f x( ) y g x( )

v
x
ψ






x
f x( )

d

d
 y

x
g x( )

d

d
 0 Therefore, the derivatives of both f and g are zero, and thus f and g are constants:

ψ
1

2
A y

2
 c1 y c2



Problem 5.79 [Difficulty: 2]

Given: The stream function

Find: Whether or not the flow is incompressible; whether or not the flow is irrotational

Solution:

ψ x y( )
A

2 π x
2

y
2

 


The stream function is

The velocity components are u x y( )
y
ψ x y( )





A y

π x
2

y
2

 2

 v x y( )
x
ψ x y( )






A x

π x
2

y
2

 2



Because a stream function exists, the flow is: Incompressible

Alternatively, we can check with
x

u


 y
v




 0

x
u



 y
v






4 A x y

π x
2

y
2

 3


4 A x y

π x
2

y
2

 3
 0 Incompressible

For a 2D field, the irrotionality the test is
x

v


 y
u




 0

x
v x y( )



 y
u x y( )






4 A x
2



π x
2

y
2

 3

2 A

π x
2

y
2

 2


4 A y

2


π x
2

y
2

 3


2 A

π x
2

y
2

 2


Not irrotational



(a) Show that this represents an incompressible velocity field

(b) the rotation of the flow

(c) Plot several streamlines in the upper half plane

Problem 5.80 [Difficulty: 2]

Given: Flow field represented by a stream function.

Find:

Solution: We will apply the definition of rotation to the given velocity field.

V



2

1Governing

Equation:
(Definition of rotation)

Assumptions: (1) Steady flow

(2) Incompressible flow

From the definition of the stream function: u
y
ψ




 A x 2 A y v

x
ψ




 A y Applying the continuity equation:

This could be an incompressible

flow field
x

u


 y
v




 A A 0

 
  kAkA

AyyxA

zyx

kji

ˆˆ2
2

1

02

ˆˆˆ

2

1















kA ˆ


From the definition of rotation:

The streamlines are curves where the stream function is constant, i.e., ψ constant Here is a plot of streamlines:

4 2 0 2 4
0

1

2

3

4

5
psi = 0

psi = -2

psi = 6

Streamline Plot

X (m)

Y
 (

m
)



(a) Expression for the velocity field

(b) Show that flow field is irrotational

(c) Plot several streamlines and illustrate velocity field

Problem 5.81 [Difficulty: 3]

Given: Flow field represented by a stream function.

Find:

Solution: We will apply the definition of circulation to the given velocity field.

V



2

1Governing

Equation:
(Definition of rotation)

Assumptions: (1) Steady flow

(2) Incompressible flow

jxiyV ˆ2ˆ2 


From the definition of the stream function: u
y
ψ




 2 y v

x
ψ




 2 x In vector notation:

  0ˆ22
2

1

022

ˆˆˆ

2

1 












 k

xy

zyx

kji

 0


From the definition of rotation:

Flow is irrotational

The streamlines are curves where the stream function is constant, i.e., ψ constant Here is a plot of streamlines:

0 1 2 3 4 5
0

1

2

3

4

5
psi = 0

psi = 4

psi = 8

Streamline Plot

X (m)

Y
 (

m
)



(a) Fluid rotation

(b) Circulation about the curve shown

(c) Stream function

(d) Plot several streamlines in first quadrant

Problem 5.82 [Difficulty: 2]

Given: Flow field represented by a velocity function.

Find:

Solution: We will apply the definition of rotation and circulation to the given velocity field.

V



2

1Governing

Equation:
(Definition of rotation)

  sdV


(Definition of circulation)

Assumption: Steady flow

 kBy

BxyAx

zyx

kji

ˆ
2

1

0

ˆˆˆ

2

1

2














sft

radˆ


 ky


From the definition of rotation:

 
dacdbcab

sdVsdVsdVsdV


From the definition of circulation we break up the integral:

    BxydydxAxjdyidxjBxyiAxsdV  22 ˆˆˆˆ
The integrand is equal to: Therefore, the circulation is equal to:

Γ

xa

xb

xA x
2






d

yb

yc

yB x y




d
xc

xd

xA x
2






d
yd

ya

yB x y




d Evaluating the integral:

Γ
A

3
xb

3
xa

3
 xd

3
 xc

3






B

2
xc yc

2
yb

2




 xa ya

2
yd

2








 Since xa xd 0 and xb xc we can simplify:

Γ
B

2
xc yc

2
yb

2




 Substituting given values: Γ

1

2

2

ft s
 1 ft 1

2
0

2
  ft

2
 Γ 1.000

ft
2

s


From the definition of the stream function: u
y
ψ




 ψ yu





d f x( ) yA x
2





d f x( ) A x
2

 y f x( )

In addition, v
x
ψ




 ψ xv





d g y( ) xB x y




d g y( )
B

2
 x

2
 y g y( ) Comparing the two stream functions:

1

ft s
x

2
 y f x( )

1

ft s
x

2
 y g y( ) Thus, f g constant Taking f(x) = 0:

ψ A x
2

 y



The streamlines are curves where the stream function is constant, i.e., ψ constant Here is a plot of streamlines:

0 1 2 3 4 5
0

1

2

3

4

5
ψ = 1

ψ = 4

ψ = 8

ψ = 16

Streamline Plot

X (ft)

Y
 (

ft
)



(a) An expression for the stream function

(b) Circulation about the curve shown

(c) Plot several streamlines (including the stagnation streamline) in first quadrant

Problem 5.83 [Difficulty: 2]

Given: Flow field represented by a velocity function.

Find:

Solution: We will apply the definition of circulation to the given velocity field.

  sdV
Governing

Equation:
(Definition of circulation)

Assumptions: Steady flow

From the definition of the stream function: u
y
ψ




 ψ yu





d f x( ) yA y B( )




d f x( )
A

2
y

2
 B y f x( )

In addition, v
x
ψ




 ψ xv





d g y( ) xA x




d g y( )
A

2
 x

2
 g y( ) Comparing the two stream functions:

A

2
y

2
 B y f x( )

A

2
 x

2
 g y( ) Thus, f x( )

A

2
 x

2
 C Taking C = 0: ψ

A

2
y

2
x

2
  B y

 
dacdbcab

sdVsdVsdVsdV


From the definition of circulation we break up the integral:

       AxdydxBAyjdyidxjAxiBAysdV  ˆˆˆˆ
The integrand is equal to: Therefore, the circulation is:

Γ

xa

xb

xA y B( )




d

yb

yc

yA x




d
xc

xd

xA y B( )




d
yd

ya

yA x




d Evaluating the integral:

Γ A ya B  xb xa  A xb yc yb  A yc B  xd xc  A xd ya yd  Substituting known values:

Γ
10

s
0 ft 10

ft

s






1 0( ) ft
10

s
1 ft 1 0( ) ft

10

s
1 ft 10

ft

s






0 1( ) ft
10

s
0 ft 1 0( ) ft

Γ 0
ft

2

s




The streamlines are curves where the stream function is constant, i.e., ψ constant Here is a plot of streamlines:

0 1 2 3 4 5
0

1

2

3

4

5
ψ = -5

ψ = 0

ψ = 5

ψ = 10

Streamline Plot

X (ft)

Y
 (

ft
)

The stagnation streamline is the one running through the point

where the velocity vanishes:

A ystag B 0 ystag
B

A
 1 ft

A xstag 0 xstag 0

Plugging this information in to find the stream function at

the stagnation point yields:

ψstag
10

2 s
1 ft( )

2
0 ft( )

2
  10

ft

s
 1 ft

ψstag 5
ft

2

s




(a) Average rate of rotation of two line segments at +/- 45 degrees

(b) Show that this is the same as in the example

Problem 5.84 [Difficulty: 3]

Given: Viscometric flow of Example 5.7, V = U(y/h)i, where U = 4 mm/s and h = 4 mm

Find:

Solution: We will apply the definition of rotation to the given velocity field.

V



2

1Governing

Equation:
(Definition of rotation)

Assumptions: (1) Steady flow

(2) Incompressible flow

Considering the lines shown: uc ua
y

u



l sin θ1  

ωac
uc ua  sin θ1 

l
 since the component  normal to l is u sin θ1 

ωac
y

u




l sin θ1   sin θ1 

l


y
u




sin θ1  2

U

h
sin θ1  2 Now consider this sketch:

ub ud
y

u



l sin θ2   ωbd

ud ub  sin θ2 

l
 since the component  normal to l is u sin θ2 

ωbd
y

u




l sin θ2   sin θ2 

l


y
u




sin θ2  2

U

h
sin θ2  2 Now we sum these terms:

ω
1

2
ωac ωbd 

1

2


U

h
 sin θ1  2 sin θ2  2



 When θ1 45 deg and θ2 135 deg

ω
1

2


U

h


1

2









2
1

2









2










 ω
1

2


U

h


Substituting for U and h: ω
1

2
 4

mm

s


1

4 mm


ω 0.5
1

s




(a) Expression for circulation about a closed contour of height h and length L

(b) Evaluate part (a) for h = b/2 and h = b

(c) Show that the same result is obtained from area integral of Stokes Theorem (Eq. 5.14)

Problem 5.85 [Difficulty: 3]

Given: Velocity field for pressure-driven flow between stationary parallel plates

Find:

Solution: We will apply the definition of circulation to the given velocity field.

  sdV
Governing

Equations:
(Definition of circulation)

    sdVdAV
A


(Stokes Theorem)

Assumptions: (1) Steady flow

 
4321

sdVsdVsdVsdV


From the definition of circulation we break up the integral:

  dx
b

y

b

y
Ujdyidxi

b

y

b

y
UsdV 






 






  1ˆˆˆ1


The integrand is equal to: Therefore, the circulation is equal to:

Γ

0

L

xU
0

b
 1

0

b












d

L

0

xU
h

b
 1

h

b












d U L
h

b
 1

h

b






 Γ U L
h

b
 1

h

b








For h = b/2: Γ U L
1

b


b

2
 1

1

b

b

2






 Γ
U L

4
 For h = b: Γ U L 1 1 1( ) Γ 0

   





 
















AAA

dA
b

y

b
UdA

y

u

x

v
dAV

21
From Stokes Theorem: We define dA = L dy:

Γ U L

0

h

y
1

b

2

b
y










d U L
h

b

h
2

b










 U L
h

b
 1

h

b






 Γ U L
h

b
 1

h

b










(a) Whether or not this is an irrotational flow

(b) Stream function for the flow

Problem 5.86 [Difficulty: 3]

Given: Velocity field approximation for the core of a tornado

Find:

Solution: We will apply the definition of rotation to the given velocity field.

V



2

1Governing

Equation:
(Definition of rotation)

z
k

r
e

r
er 











 ˆ1
ˆˆ




(Definition of "del" operator)

r
r e

e
e

e
ˆ

ˆ
ˆ

ˆ













(Hints from text)

Assumptions: (1) Steady flow

(2) Two-dimensional flow (no z velocity, velocity is not a function of θ or z)

  
 eVeV

z
k

r
e

r
e rrr

ˆˆˆ1
ˆˆ

2

1























From the definition of rotation: Employing assumption (2) yields:

   










































 


 
 eVeV

r
e

r

V
e

r

V
eeeVeV

r
e

r
e rr

r
rrrrr

ˆˆ
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ˆˆˆˆ
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1
ˆˆ

1
ˆˆ

2

1 From product

rule:

    









































 








e
V

V
e

e
V

V
e

r
e

r

V
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r

V
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r
r

rr
r

rr

ˆ
ˆ

ˆ
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1
ˆˆˆˆˆ

2

1
Using the hints from the

text:

      k
r

VV

rr

V

r

VV

r
ee

r

VV

rr

V
ee

r

V
ee rrr

r
r

rr
ˆ1

2
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ˆˆ

1
ˆˆˆˆ

2

1






 






















 










 












 



 




0ˆ
222

1ˆ
2

1
22









 






 



 k
r

K

r

K
k

r

V

r

V


 Since V is only a function of r: Flow is

irrotational.

To build the stream function:Vr
1

r θ
ψ




 ψ θr Vr





d f r( ) θ
q

2 π






d f r( )
q θ

2 π
 f r( )

Vθ
r
ψ




 ψ rVθ





d g θ( ) r
K

2 π r






d g θ( )
K

2 π
 ln r( ) g θ( ) Comparing these two expressions:

q θ

2 π
 f r( )

K

2 π
 ln r( ) g θ( ) f r( )

K

2 π
 ln r( ) ψ

K

2 π
 ln r( )

q θ

2 π




(a) Rates of linear and angjular deformation for this flow

(b) Expression for the vorticity vector

Problem 5.87 [Difficulty: 2]

Given: Velocity field for fully-developed flow in a circular tube

Find:

Solution: We will apply the definition of vorticity to the given velocity field.

V


Governing

Equation:

(Definition of vorticity)

Assumptions: (1) Steady flow

 
0

11















z

VV

rr

rV

r
V zr




 Rates of linear deformation in all three

directions is zero.
The volume dilation rate of the flow is:

The angular deformations are: r-θ plane:
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r r

Vθ

r



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








θ
Vr




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 
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The vorticity in cylindrical coordinates is:

 e
R

r
V ˆ

2
2max





Problem 5.88 [Difficulty: 3]

Given: Velocity field for pressure-driven flow between stationary parallel plates

Find: (a) Rates of linear and angjular deformation for this flow

(b) Expression for the vorticity vector

(c) Location of maximum vorticity

Solution: We will apply the definition of vorticity to the given velocity field.

V


Governing

Equation:

(Definition of vorticity)

Assumptions: (1) Steady flow

0












z

w

y

v

x

u
V
 Rates of linear deformation in all three

directions is zero.
The volume dilation rate of the flow is:

The angular deformations are: x-y plane:
x

v

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


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The vorticity is:

The vorticity is a maximum at y=b

and y=-b



 Problem 5.89 [Difficulty: 2] 
 

    
 

Given: Flow between infinite plates 

Find: Prove that u = 0, dP/dy = constant 

Solution:  

Governing 
Equations: 

0










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 (Continuity Equation) 
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 (Navier-Stokes Equations) 

Assumptions: 
Incompressible fluid 

No motion along the wall (x = 0) limited to two dimensions (w = 0). 

 

Prove that u = 0: 

 

Given that )(zVV


  this means that 0









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Also given that the flow is fully developed which means that )(yVV


 so that 0




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
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And steady flow implies that )(tVV


  

 

The continuity equation becomes 0



x

u
, but because ),,( tzyuu  then )(xuu   meaning that the partial derivative here 

becomes an ordinary derivative:  0
dx

du
 

 

Integrating the ordinary derivative gives:     constantu  

 

By the no-slip boundary condition u = 0 at the surface of either plate meaning the constant must be zero. 

 

Hence:    0u  

 

 



 

Prove that constant



y

P
: 

Due to the fact that u = 0, and gravity is in the negative y-direction the x-component of the Navier-Stokes Equation becomes: 

 

0



x

P
  hence )(xPP   

 

Due to the fact that w = 0, and gravity is in the negative y-direction the z-component of the Navier-Stokes Equation becomes: 

 

0

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z

P
  hence )(zPP   

 

 

The y-component of the Navier-Stokes Equation reduces to: 
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It has been shown that ),( zxPP  and because the flow is steady )(tPP  meaning that ).(yPP   This means that the left 

hand side of [1] can only be a function of y or a constant.  Additionally, by the fully developed, steady flow, and  

)(zVV


 conditions it is shown that ).(xvv    For this reason the right hand side of [1] can only be a function or x or a constant. 

 

Mathematically speaking it is impossible for:    )()( xgyf   so each side of [1] must be a constant. 

 

Hence, constant

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 Problem 5.90 [Difficulty: 3] 
 

 
 

 

Given: temperature profile and temperature-dependent viscosity expression 

Find: Velocity Profile 

Solution:  

Governing 
Equations: 
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 (Navier-Stokes Equations) 

Assumptions: Incompressible fluid 

 

Similar to the Example 5.9, the x-component momentum equation can be simplified to  




sing
dy

d yx                                                                                     (1) 

Integrating once, one has 

1sin Cgyyx                                                                               (2) 

 

Using the boundary condition: 0)(  hyyx                                              

 sin1 ghc                                                                                           (3) 

 

Substituting c1 into eq. (2),  

 sin)( yhg
dy

du
yx                                                               (4) 

     

 

Here, the fluid viscosity depends on the temperature, 



)/1)((1 0

0

hyTTa w 


                                                                (5) 

Substituting equation (5) into equation (4), we have 
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Integrating equation (6) once 

22

2

0

0

))
3

1()()
2

1((
sin

C
h

y

h

y
yTTa

h

y
y

gh
u w 




        (7) 

 

At y=0, u=0:  c2=0. 

 

Substituting c2=0 into eq. (7), one obtains 
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When a=0, eq. (8) can be simplified to  

)
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1(
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0 h

y
y

gh
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
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, and it is exactly the same velocity profile in Example 5.9. 

 



Problem 5.91 [Difficulty: 2]

Given: Sinusoidal approximation for velocity profile in laminar boundary layer

Fvmax 1.851
kN

m
3



Find: (a) Express shear force per unit volume in the x-direction

(b) Maximum value at these conditions

Solution: We will evaluate a differential volume of fluid in this flow field

Assumptions: (1) Steady flow

The differential of shear force would be: dFshear τ dτ( ) dx dz τ dx dz dτ dx dz and
dFsx
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From the given profile:
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The maximum magnitue for this shear force is when y = δ: Fvmax
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 μ U
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For water: μ 0.001
N s

m
2

 U 3
m

s
 δ 2 mm Substituting these values:
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Problem 5.92 [Difficulty: 3]

Given: Linear approximation for velocity profile in laminar boundary layer

Find: (a) Express rotation, find maximum

(b) Express angular deformation, locate maximum

(c) Express linear deformation, locate maximum

(d) Express shear force per unit volume, locate maximum

Solution: We will apply the definition of rotation to the given velocity field.
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1Governing

Equation:

(Definition of rotation)

Assumptions: (1) Steady flow
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ωz
1

2


1

4


3

2


U y
2



c x

5

2



1

2

U

c x

1

2



1

2


3

8

U y
2



c x

5

2



U

c x

1

2
















U

2 c x

1

2


 1
3

8

y

x







2










 ωz
U

2 δ
 1

3

8

y

x







2












Maximum value at y = δ
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The shear stress is τyx μ
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Therefore the shear stress per unit volume is:



Problem 5.93 [Difficulty: 2]

Given: Velocity profile for fully developed laminar flow in a tube

Find: (a) Express shear force per unit volume in the x-direction

(b) Maximum value at these conditions

Solution: We will evaluate a differential volume of fluid in this flow field

Assumptions: (1) Steady flow

The differential of shear force would be: dFshear τ dτ( ) 2 π r dz dr τ 2 π r dz dr 2 π r dτ dz dr

and  in cylindrical coordinates:
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 Problem 5.94 [Difficulty: 3] 
 

 
 

Given: Horizontal, fully developed flow 

Find: Velocity Profile and pressure gradient 

Solution:  

Governing 
Equations: 
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 (Navier-Stokes Equations) 

Assumptions: 
(1) Incompressible fluid 

(2) Zero net flow rate 

 

For fully developed flow 
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The general solution for equation (1) is 

21

2

2
CyC

dx

dpy
u 


                                    (2) 

where C1 and C2 are constants. 
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The net flow or flow rate is zero:  
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 Problem 5.95 [Difficulty: 3] 
 

 
 

 

Given: N-S equations and simplification assumptions 

Find: Fluid Velocity 

Solution:  

Governing 
Equations: 

 0 u  (Continuity Equation) 

BJuuu  2p-ρ  (Momentum Equation) 

Assumptions: 
(1) Incompressible fluid 

(2) Two dimensional, fully developed flow driven by Lorentz force 

(2) Zero pressure gradient 

 

 

 

Write the 2D continuity and momentum equations in Cartesian coordinates: 
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Simplify the above equations: 
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Using the assumption of zero pressure gradient, equation (3) vanishes, and equation (2) can be 
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General solution for equation (4) is  
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Apply the no slip boundary conditions into equation (5), we get  
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 Problem 5.96 [Difficulty: 2] 

 

 
 

Given: Temperature-dependent fluid density and the Navier-Stokes equations 

Find: Explanation for the buoyancy-driven flow; effect of angle on fluid velocity 

Solution:  

Governing 
Equations: 
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 (Navier-Stokes Equations) 

Assumption: Incompressible fluid 

 

 

(1) The first term in the right-hand-side of the momentum equations (5.27a)-(5.27c) represents the 

gravitational body force, which is proportional to the local fluid density. The fluid density in the region 

at temperature 72
o
C is higher than that in the region at temperature 90-94 

o
C, and meanwhile is lower 

than that in the region at temperature 50-55 
o
C. Thus, the net gravitational force induces counter-

clockwise fluid circulation within the loop. 

(2) Since the fluid circulation is driven by buoyancy force which is proportional to gcos where g is the 

gravitational acceleration, one can control the flow rate in the loop by adjusting the inclination angle . 

When the angle =90
o
, there is no fluid motion. When =0, the flow rate is the maximum. 



 Problem 5.97 [Difficulty: 3] 

 

 
 

 

Given: N-S equations 

Find: Fluid velocity 

Solution:  

Governing 
Equations: 

 0 u     (Continuity equation) 

uuu
2 p-ρ     (Momentum equation) 

Assumptions: 
(1) Two-dimensional fully developed flow 

(2) Zero pressure gradient 

 

(1) Write the continuity and momentum equations in Cartesian form: 

 





























































(3)                                       )()(

(2)                                      )()(

(1)                                                                             0

2

2

2

2

2

2

2

2

y

v

x

v

y

p

y

v
v

x

v
u

y

u

x

u

x

p

y

u
v

x

u
u

y

v

x

u



  

 



Simplify the above equations: 

)(00 yuu
x

u
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  

Using the assumption of zero pressure gradient, equation (3) vanishes, and equation (2) can be simplified as 

2

2

0
dy

ud                                                                             (4) 

General solution for equation (4) is given as 

21 CyCu                                                                            (5) 

Apply the boundary condition into equation (5), we get  
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Therefore, C1=0 and EC



2  

The fluid velocity is given as 

Eyu



)(                                                                         (6) 

 

(2)  Pressure-driven flow has a parabolic flow velocity profile; while EOF has a plug velocity profile and it is 

independent of the channel size. 

 

(3) Substituting =7.0810
-10

 CV
-1

m
-1, =0.1V, Pa.s, and E=1000 V/m into equation (6), one obtains 
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Problem 5.98 [Difficulty: 3]

d  = 3 mm

D  = 250 mm

y 0 = 1 m

L  = 4 m

ρ  = 999 kg/m
3

µ  = 0.001 N·s/m
2

h  = 12 min h  = 6 min

k  = 0.000099 s
-1

n t n (min) y n (m) n t n (min) y n (m) y Exact(m)

0 0 1 0 0.0 1 1

1 12 0.929 1 6.0 0.964 0.965

2 24 0.862 2 12.0 0.930 0.931

3 36 0.801 3 18.0 0.897 0.898

4 48 0.743 4 24.0 0.865 0.867

5 60 0.690 5 30.0 0.834 0.836

6 72 0.641 6 36.0 0.804 0.807

7 84 0.595 7 42.0 0.775 0.779

8 96 0.553 8 48.0 0.748 0.751

9 108 0.513 9 54.0 0.721 0.725

10 120 0.477 10 60.0 0.695 0.700

11 66.0 0.670 0.675

12 72.0 0.646 0.651

Error: 3% 13 78.0 0.623 0.629

14 84.0 0.601 0.606

15 90.0 0.579 0.585

16 96.0 0.559 0.565

17 102.0 0.539 0.545

18 108.0 0.520 0.526

19 114.0 0.501 0.507

20 120.0 0.483 0.489

Error: 1%
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Problem 5.99 [Difficulty: 3]

∆x ∆x ∆x
0.06545 0.032725 0.021817

n x y n x y n x y y Exact

0 0.000 0.000 0 0.000 0.000 0 0.000 0.000 0.000

1 0.065 0.065 1 0.033 0.033 1 0.022 0.022 0.022

2 0.131 0.131 2 0.065 0.065 2 0.044 0.044 0.044

3 0.196 0.196 3 0.098 0.098 3 0.065 0.065 0.065

4 0.262 0.260 4 0.131 0.131 4 0.087 0.087 0.087

5 0.327 0.323 5 0.164 0.163 5 0.109 0.109 0.109

6 0.393 0.385 6 0.196 0.195 6 0.131 0.131 0.131

7 0.458 0.446 7 0.229 0.227 7 0.153 0.152 0.152

8 0.524 0.504 8 0.262 0.259 8 0.175 0.174 0.174

9 0.589 0.561 9 0.295 0.291 9 0.196 0.195 0.195

10 0.654 0.615 10 0.327 0.322 10 0.218 0.217 0.216

11 0.720 0.667 11 0.360 0.353 11 0.240 0.238 0.238

12 0.785 0.716 12 0.393 0.384 12 0.262 0.259 0.259

13 0.851 0.763 13 0.425 0.414 13 0.284 0.280 0.280

14 0.916 0.806 14 0.458 0.444 14 0.305 0.301 0.301

15 0.982 0.846 15 0.491 0.473 15 0.327 0.322 0.321

16 1.047 0.882 16 0.524 0.502 16 0.349 0.343 0.342

17 1.113 0.915 17 0.556 0.530 17 0.371 0.363 0.362

18 1.178 0.944 18 0.589 0.558 18 0.393 0.383 0.383

19 1.244 0.969 19 0.622 0.585 19 0.415 0.404 0.403

20 1.309 0.990 20 0.654 0.612 20 0.436 0.424 0.423

21 1.374 1.007 21 0.687 0.638 21 0.458 0.443 0.442

22 1.440 1.020 22 0.720 0.663 22 0.480 0.463 0.462

23 1.505 1.028 23 0.753 0.688 23 0.502 0.482 0.481

24 1.571 1.032 24 0.785 0.712 24 0.524 0.501 0.500

25 0.818 0.735 25 0.545 0.520 0.519

Error 3.24% 26 0.851 0.757 26 0.567 0.539 0.537

27 0.884 0.779 27 0.589 0.557 0.556

28 0.916 0.800 28 0.611 0.576 0.574

29 0.949 0.820 29 0.633 0.593 0.591

30 0.982 0.839 30 0.654 0.611 0.609

31 1.014 0.857 31 0.676 0.628 0.626

32 1.047 0.874 32 0.698 0.645 0.643

33 1.080 0.890 33 0.720 0.662 0.659

34 1.113 0.906 34 0.742 0.678 0.676

35 1.145 0.920 35 0.764 0.695 0.692

36 1.178 0.934 36 0.785 0.710 0.707

37 1.211 0.946 37 0.807 0.726 0.722

38 1.244 0.958 38 0.829 0.741 0.737

39 1.276 0.968 39 0.851 0.756 0.752

40 1.309 0.978 40 0.873 0.770 0.766

41 1.342 0.986 41 0.894 0.784 0.780

42 1.374 0.994 42 0.916 0.798 0.793

43 1.407 1.000 43 0.938 0.811 0.806

44 1.440 1.006 44 0.960 0.824 0.819

45 1.473 1.010 45 0.982 0.836 0.831

46 1.505 1.013 46 1.004 0.848 0.843

47 1.538 1.015 47 1.025 0.860 0.855

48 1.571 1.016 48 1.047 0.871 0.866

49 1.069 0.882 0.877

50 1.091 0.893 0.887

51 1.113 0.903 0.897

52 1.134 0.913 0.906

53 1.156 0.922 0.915

54 1.178 0.931 0.924

55 1.200 0.939 0.932

Error 1.63% 56 1.222 0.947 0.940

57 1.244 0.954 0.947

58 1.265 0.961 0.954

59 1.287 0.968 0.960

60 1.309 0.974 0.966

61 1.331 0.980 0.971

62 1.353 0.985 0.976

63 1.374 0.990 0.981

64 1.396 0.994 0.985

65 1.418 0.998 0.988

66 1.440 1.001 0.991

67 1.462 1.004 0.994

68 1.484 1.006 0.996

69 1.505 1.008 0.998

70 1.527 1.009 0.999

71 1.549 1.010 1.000

72 1.571 1.011 1.000

Error 1.09%
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Problem 5.100 [Difficulty: 3]

N  = 4

x  = 0.333

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 1

-1.000 1.333 0.000 0.000 0

0.000 -1.000 1.333 0.000 0

0.000 0.000 -1.000 1.333 0

x Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.000

0.333 0.750 0.750 0.000 0.000 0.750 0.717 0.000

0.667 0.563 0.563 0.750 0.000 0.563 0.513 0.001

1.000 0.422 0.422 0.563 0.750 0.422 0.368 0.001

0.040



N  = 8

x  = 0.143

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1

-1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0

0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.000 0

0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0

0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0

0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0

0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0

0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0

Inverse Matrix

x 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000

0.143 0.875 0.875 0.000 0.000 0.000 0.000 0.000 0.000 0.875 0.867 0.000

0.286 0.766 0.766 0.875 0.000 0.000 0.000 0.000 0.000 0.766 0.751 0.000

0.429 0.670 0.670 0.766 0.875 0.000 0.000 0.000 0.000 0.670 0.651 0.000

0.571 0.586 0.586 0.670 0.766 0.875 0.000 0.000 0.000 0.586 0.565 0.000

0.714 0.513 0.513 0.586 0.670 0.766 0.875 0.000 0.000 0.513 0.490 0.000

0.857 0.449 0.449 0.513 0.586 0.670 0.766 0.875 0.000 0.449 0.424 0.000

1.000 0.393 0.393 0.449 0.513 0.586 0.670 0.766 0.875 0.393 0.368 0.000

0.019

N  = 16

x  = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1

2 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

3 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

4 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

5 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

6 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

7 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0



x Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.000

0.067 0.938 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.938 0.936 0.000

0.133 0.879 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.879 0.875 0.000

0.200 0.824 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.824 0.819 0.000

0.267 0.772 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.772 0.766 0.000

0.333 0.724 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.724 0.717 0.000

0.400 0.679 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.679 0.670 0.000

0.467 0.637 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.637 0.627 0.000

0.533 0.597 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.597 0.587 0.000

0.600 0.559 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.559 0.549 0.000

0.667 0.524 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.524 0.513 0.000

0.733 0.492 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.492 0.480 0.000

0.800 0.461 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.461 0.449 0.000

0.867 0.432 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.432 0.420 0.000

0.933 0.405 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.405 0.393 0.000

1.000 0.380 0.380 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.380 0.368 0.000

0.009

N x Error

4 0.333 0.040

8 0.143 0.019

16 0.067 0.009



Problem 5.101 [Difficulty: 3]

New Eq. 5.37:

N  = 4

x  = 0.333

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 0

-1.000 1.333 0.000 0.000 0.52392

0.000 -1.000 1.333 0.000 0.15683

0.000 0.000 -1.000 1.333 -0.2774

x Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

0.333 0.750 0.750 0.000 0.000 0.393 0.522 0.004

0.667 0.563 0.563 0.750 0.000 0.412 0.666 0.016

1.000 0.422 0.422 0.563 0.750 0.101 0.414 0.024

0.212

N  = 8

x  = 0.143

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

-1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0.27413

0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.24032

0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.18703

0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.11857

0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.0405

0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.000 -0.0409

0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.143 -0.1189

   iii xxuxu 2cos211  



Inverse Matrix

x 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.143 0.875 0.875 0.000 0.000 0.000 0.000 0.000 0.000 0.240 0.263 0.000

0.286 0.766 0.766 0.875 0.000 0.000 0.000 0.000 0.000 0.420 0.469 0.000

0.429 0.670 0.670 0.766 0.875 0.000 0.000 0.000 0.000 0.531 0.606 0.001

0.571 0.586 0.586 0.670 0.766 0.875 0.000 0.000 0.000 0.569 0.668 0.001

0.714 0.513 0.513 0.586 0.670 0.766 0.875 0.000 0.000 0.533 0.653 0.002

0.857 0.449 0.449 0.513 0.586 0.670 0.766 0.875 0.000 0.431 0.565 0.002

1.000 0.393 0.393 0.449 0.513 0.586 0.670 0.766 0.875 0.273 0.414 0.002

0.094

N  = 16

x  = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

2 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.13215

3 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.12862

4 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.12281

5 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.11482

6 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.10478

7 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.09289

8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.07935

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.06441

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.04831

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.03137

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.01386

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 -0.0039

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 -0.0216

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 -0.0389

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 -0.0555



x Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.067 0.938 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.124 0.129 0.000

0.133 0.879 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.237 0.247 0.000

0.200 0.824 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.337 0.352 0.000

0.267 0.772 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.424 0.445 0.000

0.333 0.724 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.495 0.522 0.000

0.400 0.679 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.552 0.584 0.000

0.467 0.637 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.591 0.630 0.000

0.533 0.597 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.615 0.659 0.000

0.600 0.559 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.622 0.671 0.000

0.667 0.524 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.612 0.666 0.000

0.733 0.492 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.587 0.645 0.000

0.800 0.461 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.547 0.608 0.000

0.867 0.432 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.492 0.557 0.000

0.933 0.405 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.425 0.491 0.000

1.000 0.380 0.380 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.346 0.414 0.000

0.044

N x Error

4 0.333 0.212

8 0.143 0.094

16 0.067 0.044



Problem 5.102 [Difficulty: 3]

New Eq. 5.37:

N  = 4

x  = 0.333

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 3

-1.000 1.333 0.000 0.000 0.18519

0.000 -1.000 1.333 0.000 0.51852

0.000 0.000 -1.000 1.333 1

x Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 3.000 3.000 0.000

0.333 0.750 0.750 0.000 0.000 2.389 2.222 0.007

0.667 0.563 0.563 0.750 0.000 2.181 1.889 0.021

1.000 0.422 0.422 0.563 0.750 2.385 2.000 0.037

0.256

N  = 8

x  = 0.143

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3

-1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.000 0.02624

0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.000 0.06414

0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.000 0.1137

0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.000 0.17493

0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.000 0.24781

0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.000 0.33236

0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.143 0.42857

   iiii xxxuxu  
2

1 21



Inverse Matrix

x 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.000 3.000 0.000

0.143 0.875 0.875 0.000 0.000 0.000 0.000 0.000 0.000 2.648 2.612 0.000

0.286 0.766 0.766 0.875 0.000 0.000 0.000 0.000 0.000 2.373 2.306 0.001

0.429 0.670 0.670 0.766 0.875 0.000 0.000 0.000 0.000 2.176 2.082 0.001

0.571 0.586 0.586 0.670 0.766 0.875 0.000 0.000 0.000 2.057 1.939 0.002

0.714 0.513 0.513 0.586 0.670 0.766 0.875 0.000 0.000 2.017 1.878 0.002

0.857 0.449 0.449 0.513 0.586 0.670 0.766 0.875 0.000 2.055 1.898 0.003

1.000 0.393 0.393 0.449 0.513 0.586 0.670 0.766 0.875 2.174 2.000 0.004

0.113

N  = 16

x  = 0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3

2 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00504

3 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01126

4 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.01867

5 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.02726

6 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.03704

7 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.048

8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.06015

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.07348

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.000 0.088

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.000 0.1037

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.000 0.12059

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.000 0.13867

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.000 0.15793

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.000 0.17837

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.067 0.2



x Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 3.000 3.000 0.000

0.067 0.938 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.817 2.809 0.000

0.133 0.879 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.652 2.636 0.000

0.200 0.824 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.503 2.480 0.000

0.267 0.772 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.373 2.342 0.000

0.333 0.724 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.259 2.222 0.000

0.400 0.679 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.163 2.120 0.000

0.467 0.637 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.084 2.036 0.000

0.533 0.597 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.023 1.969 0.000

0.600 0.559 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 0.000 1.979 1.920 0.000

0.667 0.524 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 0.000 1.952 1.889 0.000

0.733 0.492 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 0.000 1.943 1.876 0.000

0.800 0.461 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 0.000 1.952 1.880 0.000

0.867 0.432 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 0.000 1.978 1.902 0.000

0.933 0.405 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 0.000 2.022 1.942 0.000

1.000 0.380 0.380 0.405 0.432 0.461 0.492 0.524 0.559 0.597 0.637 0.679 0.724 0.772 0.824 0.879 0.938 2.083 2.000 0.000

0.054

N x Error

4 0.333 0.256

8 0.143 0.113

16 0.067 0.054



Problem 5.103 [Difficulty: 3]

Equation of motion:

New Eq. 5.37:

N  = 4 A  = 0.0025 m
2

t  0.333  = 0.5 mm

Eq. 5.34 (LHS) (RHS)  = 0.45 N.s/m
2

1.000 0.000 0.000 0.000 1 M  = 3 kg

-1.000 1.250 0.000 0.000 0 k  = 0.75 s
-1

0.000 -1.000 1.250 0.000 0

0.000 0.000 -1.000 1.250 0

t Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 1.000 1.000 0.0E+00

0.333 0.800 0.800 0.000 0.000 0.800 0.779 1.1E-04

0.667 0.640 0.640 0.800 0.000 0.640 0.607 2.8E-04

1.000 0.512 0.512 0.640 0.800 0.512 0.472 3.9E-04

0.028

N  = 8

t  0.143

Eq. 5.34 (LHS) (RHS)

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1

-1.000 1.107 0.000 0.000 0.000 0.000 0.000 0.000 0

0.000 -1.000 1.107 0.000 0.000 0.000 0.000 0.000 0

0.000 0.000 -1.000 1.107 0.000 0.000 0.000 0.000 0

0.000 0.000 0.000 -1.000 1.107 0.000 0.000 0.000 0

0.000 0.000 0.000 0.000 -1.000 1.107 0.000 0.000 0

0.000 0.000 0.000 0.000 0.000 -1.000 1.107 0.000 0

0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.107 0

  011   ii utku
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Inverse Matrix

t 1 2 3 4 5 6 7 8 Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.0E+00

0.143 0.903 0.903 0.000 0.000 0.000 0.000 0.000 0.000 0.903 0.898 2.9E-06

0.286 0.816 0.816 0.903 0.000 0.000 0.000 0.000 0.000 0.816 0.807 9.5E-06

0.429 0.737 0.737 0.816 0.903 0.000 0.000 0.000 0.000 0.737 0.725 1.7E-05

0.571 0.666 0.666 0.737 0.816 0.903 0.000 0.000 0.000 0.666 0.651 2.5E-05

0.714 0.601 0.601 0.666 0.737 0.816 0.903 0.000 0.000 0.601 0.585 3.2E-05

0.857 0.543 0.543 0.601 0.666 0.737 0.816 0.903 0.000 0.543 0.526 3.7E-05

1.000 0.490 0.490 0.543 0.601 0.666 0.737 0.816 0.903 0.490 0.472 4.1E-05

0.013

N  = 16

t  0.067 Eq. 5.34 (LHS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 (RHS)

1 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1

2 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

3 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

4 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

5 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

6 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

7 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

8 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0.000 0

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0.000 0

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0.000 0

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0.000 0

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0.000 0

15 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0.000 0

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -1.000 1.050 0



t Inverse Matrix Result Exact Error

0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 0.0E+00

0.067 0.952 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.952 0.951 8.3E-08

0.133 0.907 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.907 0.905 3.0E-07

0.200 0.864 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.864 0.861 6.1E-07

0.267 0.823 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.823 0.819 9.9E-07

0.333 0.784 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.784 0.779 1.4E-06

0.400 0.746 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.746 0.741 1.8E-06

0.467 0.711 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.711 0.705 2.2E-06

0.533 0.677 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.677 0.670 2.7E-06

0.600 0.645 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.000 0.645 0.638 3.0E-06

0.667 0.614 0.614 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.000 0.614 0.607 3.4E-06

0.733 0.585 0.585 0.614 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.000 0.585 0.577 3.7E-06

0.800 0.557 0.557 0.585 0.614 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.000 0.557 0.549 4.0E-06

0.867 0.530 0.530 0.557 0.585 0.614 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.000 0.530 0.522 4.3E-06

0.933 0.505 0.505 0.530 0.557 0.585 0.614 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.000 0.505 0.497 4.5E-06

1.000 0.481 0.481 0.505 0.530 0.557 0.585 0.614 0.645 0.677 0.711 0.746 0.784 0.823 0.864 0.907 0.952 0.481 0.472 4.7E-06

0.006

N t Error

4 0.333 0.028

8 0.143 0.013

16 0.067 0.006



Problem 5.104 [Difficulty: 3]

x  0.333

Iteration 0.000 0.333 0.667 1.000

0 1.000 1.000 1.000 1.000 Residuals

1 1.000 0.800 0.800 0.800 0.204

2 1.000 0.791 0.661 0.661 0.127

3 1.000 0.791 0.650 0.560 0.068

4 1.000 0.791 0.650 0.550 0.007

5 1.000 0.791 0.650 0.550 0.000

6 1.000 0.791 0.650 0.550 0.000

Exact 1.000 0.750 0.600 0.500

x

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x

u

Iterations = 2

Iterations = 4

Iterations = 6

Exact Solution
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Problem 5.105 [Difficulty: 3]

x  0.0667

Iteration 0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600 0.667 0.733 0.800 0.867 0.933 1.000

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 1.000 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941 0.941

2 1.000 0.941 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889 0.889

3 1.000 0.941 0.888 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842

4 1.000 0.941 0.888 0.841 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799 0.799

5 1.000 0.941 0.888 0.841 0.799 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761

6 1.000 0.941 0.888 0.841 0.799 0.760 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726 0.726

7 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694

8 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.664 0.664 0.664 0.664 0.664 0.664 0.664

9 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.637 0.637 0.637 0.637 0.637 0.637

10 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.612 0.612 0.612 0.612 0.612

11 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.589 0.589 0.589 0.589

12 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.568 0.568 0.568 0.568

13 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.548 0.548 0.548

14 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.529

15 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.512

16 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

17 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

18 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

19 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

20 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

21 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

22 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

23 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

24 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

25 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

26 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

27 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

28 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

29 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

30 1.000 0.941 0.888 0.841 0.799 0.760 0.725 0.693 0.664 0.637 0.612 0.589 0.567 0.547 0.529 0.511

Exact 1.000 0.938 0.882 0.833 0.789 0.750 0.714 0.682 0.652 0.625 0.600 0.577 0.556 0.536 0.517 0.500
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Problem 5.106 [Difficulty: 3]

x  1.500

Iteration 0.000 1.500 3.000 4.500

0 3.000 3.000 3.000 3.000

1 3.000 2.400 2.400 2.400

2 3.000 2.366 1.555 1.555

3 3.000 2.366 1.151 -0.986

4 3.000 2.366 1.816 -7.737

5 3.000 2.366 1.310 2.260

6 3.000 2.366 0.601 -0.025

Exact 3.000 2.449 1.732 0.000

x  0.300

Iteration 0.000 0.300 0.600 0.900 1.200 1.500 1.800 2.100 2.400 2.700 3.000 3.300 3.600 3.900 4.200 4.500

0 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000 3.000

1 3.000 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897 2.897

2 3.000 2.896 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789 2.789

3 3.000 2.896 2.789 2.677 2.677 2.677 2.677 2.677 2.677 2.677 2.677 2.677 2.677 2.677 2.677 2.677

4 3.000 2.896 2.789 2.677 2.560 2.560 2.560 2.560 2.560 2.560 2.560 2.560 2.560 2.560 2.560 2.560

5 3.000 2.896 2.789 2.677 2.560 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438 2.438

6 3.000 2.896 2.789 2.677 2.560 2.436 2.308 2.308 2.308 2.308 2.308 2.308 2.308 2.308 2.308 2.308

7 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.170 2.170 2.170 2.170 2.170 2.170 2.170 2.170 2.170

8 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.023 2.023 2.023 2.023 2.023 2.023 2.023 2.023

9 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.862 1.862 1.862 1.862 1.862 1.862 1.862

10 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.686 1.686 1.686 1.686 1.686 1.686

11 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.487 1.487 1.487 1.487 1.487

12 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.254 1.254 1.254 1.254

13 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.958 0.958 0.958

14 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.901 0.493 0.493

15 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 1.349 3.091

16 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.544 1.192

17 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 14.403 0.051

18 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.859 -0.024

19 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.338 -0.051
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20 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.538 -0.105

21 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 5.953 -0.239

22 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.805 -1.998

23 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.286 1.195

24 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.450 -0.273

25 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.900 -0.876

26 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.369 2.601

27 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.605 0.145

28 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.517 0.266

29 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -17.059 0.858

30 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.935 -29.971

31 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.392 0.955

32 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.663 -0.352

33 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.020 -1.662

34 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.041 0.383

35 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.088 1.534

36 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.204 -0.549

37 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.621 198.629

38 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 8.435 -0.624

39 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.831 41.087

40 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.313 0.817

41 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.494 -0.765

42 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 1.379 2.623

43 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.551 1.203

44 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -16.722 0.066

45 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.936 0.377

46 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.392 0.591

47 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.664 -4.391

48 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.014 0.813

49 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.029 -1.376

50 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.061 0.483

51 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.135 4.578

52 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.347 -0.270

53 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -1.765 -0.603

54 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 1.371 -4.389

55 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.549 1.532

56 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -40.363 0.180

57 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.914 5.316

58 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.379 0.810

59 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 0.627 -0.668

60 3.000 2.896 2.789 2.677 2.560 2.436 2.306 2.168 2.019 1.858 1.679 1.476 1.233 0.899 -0.243 4.652

Exact 3.000 2.898 2.793 2.683 2.569 2.449 2.324 2.191 2.049 1.897 1.732 1.549 1.342 1.095 0.775 0.000



Here are graphs comparing the numerical and exact solutions.
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Problem 5.107 [Difficulty: 3]

t  1.000 k  = 0.02 lbf.s
2
/ft

2

M  = 0.3 slug

Iteration 0.000 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000 11.000 12.000 13.000 14.000 15.000

0 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000

1 25.000 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385 15.385

2 25.000 13.365 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213 10.213

3 25.000 13.267 8.603 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269 7.269

4 25.000 13.267 8.477 6.158 5.480 5.480 5.480 5.480 5.480 5.480 5.480 5.480 5.480 5.480 5.480 5.480

5 25.000 13.267 8.476 6.043 4.715 4.323 4.323 4.323 4.323 4.323 4.323 4.323 4.323 4.323 4.323 4.323

6 25.000 13.267 8.476 6.042 4.621 3.781 3.533 3.533 3.533 3.533 3.533 3.533 3.533 3.533 3.533 3.533

7 25.000 13.267 8.476 6.042 4.620 3.706 3.136 2.967 2.967 2.967 2.967 2.967 2.967 2.967 2.967 2.967

8 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.668 2.547 2.547 2.547 2.547 2.547 2.547 2.547 2.547

9 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.314 2.224 2.224 2.224 2.224 2.224 2.224 2.224

10 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.274 2.039 1.970 1.970 1.970 1.970 1.970 1.970

11 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.006 1.820 1.765 1.765 1.765 1.765 1.765

12 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.792 1.641 1.597 1.597 1.597 1.597

13 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.493 1.457 1.457 1.457

14 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.473 1.369 1.338 1.338

15 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.263 1.237

16 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.172

17 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

18 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

19 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

20 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

21 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

22 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

23 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

24 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

25 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

26 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

27 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

28 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158
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 

02

2

2










v
M

k

dt

dv

kv
dt

dv
M

dudv

uUv

uUk
dt

du
M  

 

i

ii

ii

ii

g

gg

i

gig
ii

gigi

vt
M

k

vt
M

k
v

v

vvv
M

k

t

vv

vvvv
















21

02

2

2

21

22

1



29 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

30 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

31 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

32 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

33 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

34 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

35 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

36 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

37 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

38 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

39 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

40 25.000 13.267 8.476 6.042 4.620 3.705 3.075 2.618 2.273 2.005 1.791 1.617 1.472 1.351 1.247 1.158

Above values are for v!  To get u we compute u = U - v

Iteration

10 0.000 11.733 16.524 18.958 20.380 21.295 21.925 22.382 22.726 22.961 23.030 23.030 23.030 23.030 23.030 23.030

20 0.000 11.733 16.524 18.958 20.380 21.295 21.925 22.382 22.727 22.995 23.209 23.383 23.528 23.649 23.753 23.842

40 0.000 11.733 16.524 18.958 20.380 21.295 21.925 22.382 22.727 22.995 23.209 23.383 23.528 23.649 23.753 23.842

Exact 0.000 15.625 19.231 20.833 21.739 22.321 22.727 23.026 23.256 23.438 23.585 23.707 23.810 23.897 23.973 24.038

0
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15

20
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30

0 2 4 6 8 10 12 14 16

t (s)

u
 (

ft
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) Iterations = 10

Iterations = 20

Iterations = 40

Exact Solution



Problem 6.1 [Difficulty: 2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (1,1)

Solution:

NOTE: Units of B are s-1 not ft-1s-1

Basic equations

For this flow u x y, ( ) A y
2

x
2

−( )⋅ B x⋅−= v x y, ( ) 2 A⋅ x⋅ y⋅ B y⋅+=

ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= A y

2
x

2
−( )⋅ B x⋅−⎡⎣ ⎤⎦

x
A y

2
x

2
−( )⋅ B x⋅−⎡⎣ ⎤⎦∂

∂
⋅ 2 A⋅ x⋅ y⋅ B y⋅+( )

y
A y

2
x

2
−( )⋅ B x⋅−⎡⎣ ⎤⎦∂

∂
⋅+=

ax B 2 A⋅ x⋅+( ) A x
2

⋅ B x⋅+ A y
2

⋅+( )⋅=

ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= A y

2
x

2
−( )⋅ B x⋅−⎡⎣ ⎤⎦

x
2 A⋅ x⋅ y⋅ B y⋅+( )

∂

∂
⋅ 2 A⋅ x⋅ y⋅ B y⋅+( )

y
2 A⋅ x⋅ y⋅ B y⋅+( )

∂

∂
⋅+=

ay B 2 A⋅ x⋅+( ) B y⋅ 2 A⋅ x⋅ y⋅+( )⋅ 2 A⋅ y⋅ B x⋅ A x
2

y
2

−( )⋅+⎡⎣ ⎤⎦⋅−=

Hence at (1,1) ax 1 2 1⋅ 1⋅+( )
1

s
⋅ 1 1

2
⋅ 1 1⋅+ 1 1

2
⋅+( )×

ft

s
⋅= ax 9

ft

s
2

⋅=

ay 1 2 1⋅ 1⋅+( )
1

s
⋅ 1 1⋅ 2 1⋅ 1⋅ 1⋅+( )×

ft

s
⋅ 2 1⋅ 1⋅

1

s
⋅ 1 1⋅ 1 1

2
1

2
−( )⋅+⎡⎣ ⎤⎦×

ft

s
⋅−= ay 7

ft

s
2

⋅=

a ax
2

ay
2

+= θ atan
ay

ax

⎛
⎜
⎝

⎞

⎠
= a 11.4

ft

s
2

⋅= θ 37.9 deg⋅=

For the pressure gradient

x
p

∂

∂
ρ gx⋅ ρ ax⋅−= 2−

slug

ft
3

⋅ 9×
ft

s
2

⋅
lbf s

2
⋅

slug ft⋅
×=

x
p

∂

∂
18−

lbf

ft
2

ft
⋅= 0.125−

psi

ft
⋅=

y
p

∂

∂
ρ gy⋅ ρ ay⋅−= 2

slug

ft
3

⋅ 32.2− 7−( )×
ft

s
2

⋅
lbf s

2
⋅

slug ft⋅
×=

y
p

∂

∂
78.4−

lbf

ft
2

ft
⋅= 0.544−

psi

ft
⋅=



Problem 6.2 [Difficulty: 2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (2,2)

Solution:

Basic equations

Given data A 1
1

s
⋅= B 3

1

s
⋅= x 2 m⋅= y 2 m⋅= ρ 999

kg

m
3

⋅=

For this flow u x y, ( ) A x⋅ B y⋅+= v x y, ( ) B x⋅ A y⋅−=

ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= A x⋅ B y⋅+( )

x
A x⋅ B y⋅+( )

∂

∂
⋅ B x⋅ A y⋅−( )

y
A x⋅ B y⋅+( )

∂

∂
⋅+= ax A

2
B

2
+( ) x⋅=

ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= A x⋅ B y⋅+( )

x
B x⋅ A y⋅−( )

∂

∂
⋅ B x⋅ A y⋅−( )

y
B x⋅ A y⋅−( )

∂

∂
⋅+= ay A

2
B

2
+( ) y⋅=

Hence at (2,2) ax 1 9+( )
1

s
2× m⋅= ax 20

m

s
= ay 1 9+( )

1

s
2× m⋅= ay 20

m

s
=

a ax
2

ay
2

+= θ atan
ay

ax

⎛
⎜
⎝

⎞

⎠
= a 28.28

m

s
= θ 45 deg⋅=

For the pressure gradient

x
p

∂

∂
ρ gx⋅ ρ ax⋅−= 999−

kg

m
3

⋅ 20×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

x
p

∂

∂
20000−

Pa

m
⋅= 20.0−

kPa

m
⋅=

y
p

∂

∂
ρ− gy⋅ ρ ay⋅−= 999

kg

m
3

⋅ 9.81− 20−( )×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

y
p

∂

∂
29800−

Pa

m
⋅= 29.8−

kPa

m
⋅=



Problem 6.3 [Difficulty: 2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (1,2)

Solution:

Basic equations

Given data A 1
1

s
⋅= B 2

m

s
2

⋅= x 1 m⋅= y 2 m⋅= t 5 s⋅= ρ 999
kg

m
3

⋅=

u x y, t, ( ) A− x⋅ B t⋅+= v x y, t, ( ) A y⋅ B t⋅+=

The acceleration components and values are

axt x y, t, ( )
t
u x y, t, ( )

∂

∂
B== axt x y, t, ( ) B= axt x y, t, ( ) 2

m

s
2

=

axc x y, t, ( ) u x y, t, ( )
x

u x y, t, ( )
∂

∂
⋅ v x y, t, ( )

y
u x y, t, ( )

∂

∂
⋅+= axc x y, t, ( ) A

2
x⋅ A B⋅ t⋅−= axc x y, t, ( ) 9−

m

s
2

=

ayt x y, t, ( )
t
v x y, t, ( )

∂

∂
= ayt x y, t, ( ) B= ayt x y, t, ( ) 2

m

s
2

=

ayc x y, t, ( ) u x y, t, ( )
x

v x y, t, ( )
∂

∂
⋅ v x y, t, ( )

y
v x y, t, ( )

∂

∂
⋅+= ayc x y, t, ( ) y A

2
⋅ B t⋅ A⋅+= ayc x y, t, ( ) 12

m

s
2

=

ax x y, t, ( ) axt x y, t, ( ) axc x y, t, ( )+= ax x y, t, ( ) x A
2

⋅ B t⋅ A⋅− B+= ax x y, t, ( ) 7−
m

s
2

=

ay x y, t, ( ) ayt x y, t, ( ) ayc x y, t, ( )+= ay x y, t, ( ) y A
2

⋅ B t⋅ A⋅+ B+= ay x y, t, ( ) 14
m

s
2

=



For overall acceleration

a x y, t, ( ) ax x y, t, ( )
2

ay x y, t, ( )
2

+= a x y, t, ( ) x A
2

⋅ B t⋅ A⋅− B+( )2

y A
2

⋅ B t⋅ A⋅+ B+( )2

+= a x y, t, ( ) 15.7
m

s
2

=

θ atan
ay x y, t, ( )

ax x y, t, ( )

⎛
⎜
⎝

⎞

⎠
= θ 63.4− deg⋅=

For the pressure gradient we need ρ− ax x y, t, ( )⋅ 6.99
kPa

m
⋅= ρ− ay x y, t, ( )⋅ 13.99−

kPa

m
⋅= ρ− g⋅ 9.80−

kPa

m
⋅=

Hence for the pressure gradient

x
p

∂

∂
ρ gx⋅ ρ ax⋅−= 999

kg

m
3

⋅ 7×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

x
p

∂

∂
6990

Pa

m
⋅= 6.99

kPa

m
⋅=

y
p

∂

∂
ρ− gy⋅ ρ ay⋅−= 999

kg

m
3

⋅ 9.81− 14−( )×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

y
p

∂

∂
23800−

Pa

m
⋅= 23.8−

kPa

m
⋅=



Problem 6.4 [Difficulty: 2]

Given: Velocity field

Find: Pressure gradient at (1,1) at 1 s

Solution:

Basic equations

Given data A 2
1

s
2

⋅= B 1
1

s
2

⋅= x 1 m⋅= y 1 m⋅= t 1 s⋅= ρ 1000
kg

m
3

⋅=

u x y, t, ( ) A− x⋅ B y⋅+( ) t⋅= v x y, t, ( ) A y⋅ B x⋅+( ) t⋅=

The acceleration components and values are

axt x y, t, ( )
t
u x y, t, ( )

∂

∂
B y⋅ A x⋅−== axt x y, t, ( ) B y⋅ A x⋅−= axt x y, t, ( ) 1−

m

s
2

=

axc x y, t, ( ) u x y, t, ( )
x

u x y, t, ( )
∂

∂
⋅ v x y, t, ( )

y
u x y, t, ( )

∂

∂
⋅+= axc x y, t, ( ) t

2
x⋅ A

2
B

2
+( )⋅= axc x y, t, ( ) 5

m

s
2

=

ayt x y, t, ( )
t
v x y, t, ( )

∂

∂
= ayt x y, t, ( ) A y⋅ B x⋅+= ayt x y, t, ( ) 3

m

s
2

=

ayc x y, t, ( ) u x y, t, ( )
x

v x y, t, ( )
∂

∂
⋅ v x y, t, ( )

y
v x y, t, ( )

∂

∂
⋅+= ayc x y, t, ( ) t

2
y⋅ A

2
B

2
+( )⋅= ayc x y, t, ( ) 5

m

s
2

=

ax x y, t, ( ) axt x y, t, ( ) axc x y, t, ( )+= ax x y, t, ( ) x A
2

⋅ t
2

⋅ x A⋅− x B
2

⋅ t
2

⋅+ y B⋅+= ax x y, t, ( ) 4
m

s
2

=

ay x y, t, ( ) ayt x y, t, ( ) ayc x y, t, ( )+= ay x y, t, ( ) y A
2

⋅ t
2

⋅ y A⋅+ y B
2

⋅ t
2

⋅+ x B⋅+= ay x y, t, ( ) 8
m

s
2

=

Hence for the pressure gradient

x
p

∂

∂
ρ− ax⋅= 1000−

kg

m
3

⋅ 4×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

x
p

∂

∂
4000−

Pa

m
⋅= 4−

kPa

m
⋅=

y
p

∂

∂
ρ− ay⋅= 1000−

kg

m
3

⋅ 8×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

y
p

∂

∂
8000−

Pa

m
⋅= 8−

kPa

m
⋅=



Problem 6.5 [Difficulty: 2]

Given: Velocity field

Find: Acceleration of particle and pressure gradient at (1,1)

Solution:

Basic equations

For this flow u x y, ( ) A x
2

y
2

−( )⋅ 3 B⋅ x⋅−= v x y, ( ) 2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+=

ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= A x

2
y

2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦

x
A x

2
y

2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦∂

∂
⋅ 2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )

y
A x

2
y

2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦∂

∂
⋅+=

ax 2 A⋅ x⋅ 3 B⋅−( ) A x
2

⋅ 3 B⋅ x⋅− A y
2

⋅+( )⋅=

ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= A x

2
y

2
−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦

x
2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )

∂

∂
⋅ 2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )

y
2− A⋅ x⋅ y⋅ 3 B⋅ y⋅+( )

∂

∂
⋅+=

ay 3 B⋅ y⋅ 2 A⋅ x⋅ y⋅−( ) 3 B⋅ 2 A⋅ x⋅−( )⋅ 2 A⋅ y⋅ A x
2

y
2

−( )⋅ 3 B⋅ x⋅−⎡⎣ ⎤⎦⋅−=

Hence at (1,1) ax 2 1⋅ 1⋅ 3 1⋅−( )
1

s
⋅ 1 1

2
⋅ 3 1⋅ 1⋅− 1 1

2
⋅+( )×

ft

s
⋅= ax 1

ft

s
2

⋅=

ay 3 1⋅ 1⋅ 2 1⋅ 1⋅ 1⋅−( )
1

s
⋅ 3 1⋅ 2 1⋅ 1⋅−( )×

ft

s
⋅ 2 1⋅ 1⋅

1

s
⋅ 1 1

2
1

2
−( )⋅ 3 1⋅ 1⋅−⎡⎣ ⎤⎦×

ft

s
⋅−= ay 7

ft

s
2

⋅=

a ax
2

ay
2

+= θ atan
ay

ax

⎛
⎜
⎝

⎞

⎠
= a 7.1

ft

s
2

⋅= θ 81.9 deg⋅=

For the pressure gradient

x
p

∂

∂
ρ gx⋅ ρ ax⋅−= 2−

slug

ft
3

⋅ 1×
ft

s
2

⋅
lbf s

2
⋅

slug ft⋅
×=

x
p

∂

∂
2−

lbf

ft
2

ft
⋅= 0.0139−

psi

ft
⋅=

y
p

∂

∂
ρ gy⋅ ρ ay⋅−= 2

slug

ft
3

⋅ 32.2− 7−( )×
ft

s
2

⋅
lbf s

2
⋅

slug ft⋅
×=

y
p

∂

∂
78.4−

lbf

ft
2

ft
⋅= 0.544−

psi

ft
⋅=



Problem 6.6 [Difficulty: 2]

Given: Velocity field

Find: Simplest y component of velocity; Acceleration of particle and pressure gradient at (2,1); pressure on x axis

Solution:

Basic equations

For this flow u x y, ( ) A x⋅=
x

u
∂

∂ y
v

∂

∂
+ 0= so v x y, ( ) y

x
u

∂

∂

⌠
⎮
⎮
⎮
⌡

d−= yA
⌠
⎮
⌡

d−= A− y⋅ c+=

Hence v x y, ( ) A− y⋅= is the simplest y component of velocity

For acceleration ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= A x⋅

x
A x⋅( )

∂

∂
⋅ A− y⋅( )

y
A x⋅( )

∂

∂
⋅+= A

2
x⋅= ax A

2
x⋅=

ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= A x⋅

x
A− y⋅( )

∂

∂
⋅ A− y⋅( )

y
A− y⋅( )

∂

∂
⋅+= ay A

2
y⋅=

Hence at (2,1) ax
2

s

⎛⎜
⎝

⎞
⎠

2

2× m⋅= ay
2

s

⎛⎜
⎝

⎞
⎠

2

1× m⋅= ax 8
m

s
2

= ay 4
m

s
2

=

a ax
2

ay
2

+= θ atan
ay

ax

⎛
⎜
⎝

⎞

⎠
= a 8.94

m

s
2

= θ 26.6 deg⋅=

For the pressure gradient

x
p

∂

∂
ρ gx⋅ ρ ax⋅−= 1.50−

kg

m
3

⋅ 8×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

x
p

∂

∂
12−

Pa

m
⋅=

y
p

∂

∂
ρ gy⋅ ρ ay⋅−= 1.50−

kg

m
3

⋅ 4×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

y
p

∂

∂
6−

Pa

m
⋅=

z
p

∂

∂
ρ gz⋅ ρ az⋅−= 1.50

kg

m
3

× 9.81−( )×
m

s
2

⋅
N s

2
⋅

kg m⋅
×=

y
p

∂

∂
14.7−

Pa

m
⋅=

For the pressure on the x axis dp
x

p
∂

∂
= p p0−

0

x

xρ gx⋅ ρ ax⋅−( )
⌠
⎮
⌡

d=
0

x

xρ− A
2

⋅ x⋅( )⌠
⎮
⌡

d=
1

2
− ρ⋅ A

2
⋅ x

2
⋅=

p x( ) p0
1

2
ρ⋅ A

2
⋅ x

2
⋅−= p x( ) 190 kPa⋅

1

2
1.5⋅

kg

m
3

⋅
2

s

⎛⎜
⎝

⎞
⎠

2

×
N s

2
⋅

kg m⋅
× x

2
×−= p x( ) 190

3

1000
x

2
⋅−= (p in kPa, x in m)



Problem 6.7 [Difficulty: 3]

Given: Velocity field

Find: Expressions for local, convective and total acceleration; evaluate at several points; evaluate pressure gradient

Solution:

The given data is A 2
1

s
 ω 1

1

s
 ρ 2

kg

m
3

 u A x sin 2 π ω t( ) v A y sin 2 π ω t( )

Check for incompressible flow
x

u


 y
v




 0

Hence
x

u


 y
v




 A sin 2 π ω t( ) A sin 2 π ω t( ) 0 Incompressible flow

The governing equation for acceleration is

The local acceleration is then x - component
t
u




2 π A ω x cos 2 π ω t( )

y - component
t
v




2 π A ω y cos 2 π ω t( )

For the present steady, 2D flow, the convective acceleration is

x - component u
x

u



 v

y
u




 A x sin 2 π ω t( ) A sin 2 π ω t( )( ) A y sin 2 π ω t( )( ) 0 A

2
x sin 2 π ω t( )

2


y - component u
x

v



 v

y
v




 A x sin 2 π ω t( ) 0 A y sin 2 π ω t( )( ) A sin 2 π ω t( )( ) A

2
y sin 2 π ω t( )

2


The total acceleration is then x - component
t
u




u

x
u




 v

y
u




 2 π A ω x cos 2 π ω t( ) A

2
x sin 2 π ω t( )

2


y - component
t
v




u

x
v




 v

y
v




 2 π A ω y cos 2 π ω t( ) A

2
y sin 2 π ω t( )

2




Evaluating at point (1,1) at

t 0 s Local 12.6
m

s
2

 and 12.6
m

s
2

 Convective 0
m

s
2

 and 0
m

s
2



Total 12.6
m

s
2

 and 12.6
m

s
2



t 0.5 s Local 12.6
m

s
2

 and 12.6
m

s
2

 Convective 0
m

s
2

 and 0
m

s
2



Total 12.6
m

s
2

 and 12.6
m

s
2



t 1 s Local 12.6
m

s
2

 and 12.6
m

s
2

 Convective 0
m

s
2

 and 0
m

s
2



Total 12.6
m

s
2

 and 12.6
m

s
2



The governing equation (assuming inviscid flow) for computing the pressure gradient is

Hence, the components of pressure gradient (neglecting gravity) are 

x
p




ρ

Du

Dt


x
p




ρ 2 π A ω x cos 2 π ω t( ) A

2
x sin 2 π ω t( )

2
 

y
p




ρ

Dv

Dt


x
p




ρ 2 π A ω y cos 2 π ω t( ) A

2
y sin 2 π ω t( )

2
 

Evaluated at (1,1) and time t 0 s x comp. 25.1
Pa

m
 y comp. 25.1

Pa

m


t 0.5 s x comp. 25.1
Pa

m
 y comp. 25.1

Pa

m


t 1 s x comp. 25.1
Pa

m
 y comp. 25.1

Pa

m




Problem 6.8 [Difficulty: 3]

Given: Velocity field

Find: Expressions for velocity and acceleration along wall; plot; verify vertical components are zero; plot pressure

gradient

Solution:

The given data is q 2

m
3

s

m
⋅= h 1 m⋅= ρ 1000

kg

m
3

⋅=

u
q x⋅

2 π⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦

q x⋅

2 π⋅ x
2

y h+( )
2

+⎡⎣ ⎤⎦
+= v

q y h−( )⋅

2 π⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦

q y h+( )⋅

2 π⋅ x
2

y h+( )
2

+⎡⎣ ⎤⎦
+=

The governing equation for acceleration is

For steady, 2D flow this reduces to (after considerable math!)

x - component ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+=

q
2

x⋅ x
2

y
2

+( )2 h
2

h
2

4 y
2

⋅−( )⋅−
⎡
⎣

⎤
⎦⋅

x
2

y h+( )
2

+⎡⎣ ⎤⎦
2

x
2

y h−( )
2

+⎡⎣ ⎤⎦
2

⋅ π
2

⋅

−=

y - component ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+=

q
2

y⋅ x
2

y
2

+( )2 h
2

h
2

4 x
2

⋅+( )⋅−
⎡
⎣

⎤
⎦⋅

π
2

x
2

y h+( )
2

+⎡⎣ ⎤⎦
2

⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦
2

⋅

−=

For motion along the wall y 0 m⋅=

u
q x⋅

π x
2

h
2

+( )⋅
= v 0= (No normal velocity) ax

q
2

x⋅ x
2

h
2

−( )⋅

π
2

x
2

h
2

+( )3⋅

−= ay 0= (No normal acceleration)



The governing equation (assuming inviscid flow) for computing the pressure gradient is

Hence, the component of pressure gradient (neglecting gravity) along the wall is 

x
p

∂

∂
ρ−

Du

Dt
⋅=

x
p

∂

∂

ρ q
2

⋅ x⋅ x
2

h
2

−( )⋅

π
2

x
2

h
2

+( )3⋅

=

The plots of velocity, acceleration, and pressure gradient are shown below, done in Excel.  From the plots it is clear that the fluid

experiences an adverse pressure gradient from the origin to x = 1 m, then a negative one promoting fluid acceleration.  If flow

separates, it will likely be in the region x = 0 to x = h.

q  = 2 m3/s/m

h  = 1 m

∠ = 1000 kg/m3

x  (m) u  (m/s) a  (m/s2) dp /dx  (Pa/m)

0.0 0.00 0.00000 0.00

1.0 0.32 0.00000 0.00

2.0 0.25 0.01945 -19.45

3.0 0.19 0.00973 -9.73

4.0 0.15 0.00495 -4.95

5.0 0.12 0.00277 -2.77

6.0 0.10 0.00168 -1.68

7.0 0.09 0.00109 -1.09

8.0 0.08 0.00074 -0.74

9.0 0.07 0.00053 -0.53

10.0 0.06 0.00039 -0.39

Velocity Along Wall Near A Source

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

x  (m)

u
 (

m
/s

)

Acceleration Along Wall Near A Source

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0 1 2 3 4 5 6 7 8 9 10

x  (m)

a
 (

m
/s

2
)

Pressure Gradient Along Wall

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

x  (m)

d
p

/d
x

 (
P

a
/m

)



 

Problem 6.9                                                            [Difficulty: 2]



Problem 6.10 [Difficulty: 2]

Given: Velocity field

Find: Expression for pressure field; evaluate at (2,2)

Solution:

Basic equations

Given data A 4
1

s
⋅= B 2

1

s
⋅= x 2 m⋅= y 2 m⋅= ρ 1500

kg

m
3

⋅= p0 200 kPa⋅=

For this flow u x y, ( ) A x⋅ B y⋅+= v x y, ( ) B x⋅ A y⋅−=

Note that
x

u x y, ( )
∂

∂ y
v x y, ( )

∂

∂
+ 0=

x
v x y, ( )

∂

∂ y
u x y, ( )

∂

∂
− 0=

Then ax x y, ( ) u x y, ( )
x

u x y, ( )
∂

∂
⋅ v x y, ( )

y
u x y, ( )

∂

∂
⋅+= ax x y, ( ) x A

2
B

2
+( )⋅= ax x y, ( ) 40

m

s
2

=

ay x y, ( ) u x y, ( )
x

v x y, ( )
∂

∂
⋅ v x y, ( )

y
v x y, ( )

∂

∂
⋅+= ay x y, ( ) y A

2
B

2
+( )⋅= ay x y, ( ) 40

m

s
2

=

The momentum equation becomes
x

p
∂

∂
ρ− ax⋅=

y
p

∂

∂
ρ− ay⋅= and p dx

x
p

∂

∂
⋅ dy

y
p

∂

∂
⋅+=

Integrating

p x y, ( ) p0 ρ

0

x

xax x y, ( )
⌠
⎮
⌡

d⋅− ρ

0

y

yay x y, ( )
⌠
⎮
⌡

d⋅−=

p x y, ( ) p0
ρ A

2
B

2
+( )⋅ y

2
⋅

2
−

ρ A
2

B
2

+( )⋅ x
2

⋅

2
−=

p x y, ( ) 80 kPa⋅=



Problem 6.11 [Difficulty: 2]

Given: Velocity field

Find: Expression for pressure gradient; plot; evaluate pressure at outlet

Solution:

Basic equations

Given data U 15
m

s
⋅= L 5 m⋅= pin 100 kPa⋅= ρ 1250

kg

m
3

⋅=

Here u x( ) U 1
x

L
−⎛⎜

⎝
⎞
⎠

⋅= u 0( ) 15
m

s
= u L( ) 0

m

s
=

The x momentum becomes ρ u⋅
x

u
d

d
⋅ ρ aa⋅=

x
p

d

d
−=

Hence ax x( ) u x( )
x

u x( )
∂

∂
⋅= ax x( )

U
2 x

L
1−⎛⎜

⎝
⎞
⎠

⋅

L
=

The pressure gradient is then
dp

dx
ρ−

U
2

L
⋅

x

L
1−⎛⎜

⎝
⎞
⎠

⋅=

Integrating momentum p x( ) pin ρ

0

x

xax x( )
⌠
⎮
⌡

d⋅−= p x( ) pin
U

2
ρ⋅ x⋅ x 2 L⋅−( )⋅

2 L
2

⋅
−=

Hence p L( )
ρ U

2
⋅

2
pin+= p L( ) 241 kPa⋅=

0 1 2 3 4 5

20

40

60

x (m)

d
p

/d
x

 (
k

P
a/

m
)



Problem 6.12 [Difficulty: 2]

Given: Velocity field

Find: Expression for acceleration and pressure gradient; plot; evaluate pressure at outlet

Solution:

Basic equations

Given data U 20
m

s
⋅= L 2 m⋅= pin 50 kPa⋅= ρ 900

kg

m
3

⋅=

Here u x( ) U e

x

L
−

⋅= u 0( ) 20
m

s
= u L( ) 7.36

m

s
=

The x component of acceleration is then ax x( ) u x( )
x

u x( )
∂

∂
⋅= ax x( )

U
2

e

2 x⋅

L
−

⋅

L
−=

The x momentum becomes ρ u⋅
x

u
d

d
⋅ ρ aa⋅=

x
p

d

d
−=

The pressure gradient is then
dp

dx

ρ

L
U

2
⋅ e

2 x⋅

L
−

⋅=

Integrating momentum p x( ) pin ρ

0

x

xax x( )
⌠
⎮
⌡

d⋅−= p x( ) pin
U

2
ρ⋅ e

2 x⋅

L
−

1−

⎛
⎜
⎝

⎞

⎠⋅

2
−=

Hence p L( ) pin
U

2
ρ⋅ e

2−
1−( )⋅

2
−= p L( ) 206 kPa⋅=
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Problem 6.14 [Difficulty: 3]

Given: Velocity field

Find: The acceleration at several points; evaluate pressure gradient

Solution:

The given data is q 2

m
3

s

m
 K 1

m
3

s

m
 ρ 1000

kg

m
3

 Vr
q

2 π r
 Vθ

K

2 π r


The governing equations for this 2D flow are

The total acceleration for this steady flow is then

r - component ar Vr
r
Vr






Vθ

r θ
Vr






Vθ
2

r
 ar

q
2

K
2



4 π
2

 r
3




θ - component
aθ Vr

r
Vθ






Vθ

r θ
Vθ






Vr Vθ

r
 aθ 0

Evaluating at point (1,0) ar 0.127
m

s
2

 aθ 0

Evaluating at point (1,π/2) ar 0.127
m

s
2

 aθ 0

Evaluating at point (2,0) ar 0.0158
m

s
2

 aθ 0

From Eq. 6.3, pressure gradient is
r
p




ρ ar

r
p





ρ q
2

K
2

 

4 π
2

 r
3




1

r θ
p




 ρ aθ

1

r θ
p




 0

Evaluating at point (1,0)
r
p




127

Pa

m


1

r θ
p




 0

Evaluating at point (1,π/2)
r
p




127

Pa

m


1

r θ
p




 0

Evaluating at point (2,0)
r
p




15.8

Pa

m


1

r θ
p




 0



 

Problem 6.15                                                          [Difficulty: 3]



Problem 6.16 [Difficulty: 3]

Given: Flow in a pipe with variable area

Find: Expression for pressure gradient and pressure; Plot them; exit pressure

Solution:

Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

Basic equations Q V A⋅=

Given data ρ 1.75
slug

ft
3

⋅= pi 35 psi⋅= Ai 15 in
2

⋅= Ae 2.5 in
2

⋅= L 10 ft⋅= ui 5
ft

s
⋅=

For this 1D flow Q ui Ai⋅= u A⋅= A Ai

Ai Ae−( )
L

x⋅−= so u x( ) ui

Ai

A
⋅= ui

Ai

Ai

Ai Ae−( )
L

x⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

⋅=

ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= ui

Ai

Ai

Ai Ae−( )
L

x⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

⋅
x

ui

Ai

Ai

Ai Ae−( )
L

x⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

⋅
⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

∂

∂
⋅=

Ai
2

L
2

⋅ ui
2

⋅ Ae Ai−( )⋅

Ai L⋅ Ae x⋅+ Ai x⋅−( )3
=

For the pressure
x

p
∂

∂
ρ− ax⋅ ρ gx⋅−=

ρ Ai
2

⋅ L
2

⋅ ui
2

⋅ Ae Ai−( )⋅

Ai L⋅ Ae x⋅+ Ai x⋅−( )3
−=

and dp
x

p
∂

∂
dx⋅= p pi−

0

x

x
x

p
∂

∂

⌠
⎮
⎮
⌡

d=

0

x

x
ρ Ai

2
⋅ L

2
⋅ ui

2
⋅ Ae Ai−( )⋅

Ai L⋅ Ae x⋅+ Ai x⋅−( )3
−

⌠
⎮
⎮
⎮
⎮
⌡

d=

This is a tricky integral, so instead consider the following:
x

p
∂

∂
ρ− ax⋅= ρ− u⋅

x
u

∂

∂
⋅=

1

2
− ρ⋅

x
u

2( )∂

∂
⋅=

Hence p pi−

0

x

x
x

p
∂

∂

⌠
⎮
⎮
⌡

d=
ρ

2
−

0

x

x
x

u
2( )∂

∂

⌠
⎮
⎮
⌡

d⋅=
ρ

2
u x 0=( )

2
u x( )

2
−( )⋅=



p x( ) pi
ρ

2
ui

2
u x( )

2
−⎛

⎝
⎞
⎠⋅+= which we recognise as the Bernoulli equation!

Hence p x( ) pi

ρ ui
2

⋅

2
1

Ai

Ai

Ai Ae−( )
L

x⋅
⎡
⎢
⎣

⎤
⎥
⎦

−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

2

−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅+=

At the exit p L( ) 29.7 psi=

The following plots can be done in Excel
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P
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Problem 6.17 [Difficulty: 3]

Given: Flow in a pipe with variable area

Find: Expression for pressure gradient and pressure; Plot them

Solution:

Assumptions: 1) Incompressible flow 2) Flow profile remains unchanged so centerline velocity can represent average velocity

Basic equations Q V A⋅=

Given data ρ 1250
kg

m
3

⋅= A0 0.25 m
2

⋅= a 1.5 m⋅= L 5 m⋅= u0 10
m

s
⋅= p0 300 kPa⋅=

For this 1D flow Q u0 A0⋅= u A⋅= A x( ) A0 1 e

x

a
−

+ e

x

2 a⋅
−

−

⎛
⎜
⎝

⎞

⎠⋅=

so u x( ) u0

A0

A
⋅=

u0

1 e

x

a
−

+ e

x

2 a⋅
−

−

⎛
⎜
⎝

⎞

⎠

=

ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+=

u0

1 e

x

a
−

+ e

x

2 a⋅
−

−

⎛
⎜
⎝

⎞

⎠

x

u0

1 e

x

a
−

+ e

x

2 a⋅
−

−

⎛
⎜
⎝

⎞

⎠

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

∂

∂
⋅=

u0
2

e

x

2 a⋅
−

⋅ 2 e

x

2 a⋅
−

⋅ 1−

⎛
⎜
⎝

⎞

⎠⋅

2 a⋅ e

x

a
−

e

x

2 a⋅
−

− 1+

⎛
⎜
⎝

⎞

⎠

3

⋅

=

For the pressure
x

p
∂

∂
ρ− ax⋅ ρ gx⋅−=

ρ u0
2

⋅ e

x

2 a⋅
−

⋅ 2 e

x

2 a⋅
−

⋅ 1−

⎛
⎜
⎝

⎞

⎠⋅

2 a⋅ e

x

a
−

e

x

2 a⋅
−

− 1+

⎛
⎜
⎝

⎞

⎠

3

⋅

−=



and dp
x

p
∂

∂
dx⋅= p pi−

0

x

x
x

p
∂

∂

⌠
⎮
⎮
⌡

d=

0

x

x
ρ u0

2
⋅ e

x

2 a⋅
−

⋅ 2 e

x

2 a⋅
−

⋅ 1−

⎛
⎜
⎝

⎞

⎠⋅

2 a⋅ e

x

a
−

e

x

2 a⋅
−

− 1+

⎛
⎜
⎝

⎞

⎠

3

⋅

−

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌡

d=

This is a tricky integral, so instead consider the following:
x

p
∂

∂
ρ− ax⋅= ρ− u⋅

x
u

∂

∂
⋅=

1

2
− ρ⋅

x
u

2( )∂

∂
⋅=

Hence p pi−

0

x

x
x

p
∂

∂

⌠
⎮
⎮
⌡

d=
ρ

2
−

0

x

x
x

u
2( )∂

∂

⌠
⎮
⎮
⌡

d⋅=
ρ

2
u x 0=( )

2
u x( )

2
−( )⋅=

p x( ) p0
ρ

2
u0

2
u x( )

2
−⎛

⎝
⎞
⎠⋅+= which we recognise as the Bernoulli equation!

p x( ) p0

ρ u0
2

⋅

2
1

1

1 e

x

a
−

+ e

x

2 a⋅
−

−

⎛
⎜
⎝

⎞

⎠

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

2

−
⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅+=

The following plots can be done in Excel
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Problem 6.18 [Difficulty: 3]

Given: Nozzle geometry

Find: Acceleration of fluid particle; Plot; Plot pressure gradient; find L such that pressure gradient < 5 MPa/m in

absolute value

Solution:

The given data is Di 0.1 m⋅= Do 0.02 m⋅= L 0.5 m⋅= Vi 1
m

s
⋅= ρ 1000

kg

m
3

⋅=

For a linear decrease in diameter D x( ) Di

Do Di−

L
x⋅+=

From continuity Q V A⋅= V
π

4
⋅ D

2
⋅= Vi

π

4
⋅ Di

2
⋅= Q 0.00785

m
3

s
=

Hence V x( )
π

4
⋅ D x( )

2
⋅ Q= V x( )

4 Q⋅

π Di

Do Di−

L
x⋅+

⎛
⎜
⎝

⎞
⎠

2

⋅

=

or V x( )
Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞

⎠

2
=

The governing equation for this flow is

or, for steady 1D flow, in the notation of the problem

ax V
x

V
d

d
⋅=

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞

⎠

2 x

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞

⎠

2

d

d
⋅= ax x( )

2 Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

−=

This is plotted in the associated Excel workbook

From Eq. 6.2a, pressure gradient is

x
p

∂

∂
ρ− ax⋅=

x
p

∂

∂

2 ρ⋅ Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=



This is also plotted in the associated Excel workbook.  Note that the pressure gradient is always negative: separation is unlikely to

occur in the nozzle

At the inlet
x

p
∂

∂
3.2−

kPa

m
⋅= At the exit

x
p

∂

∂
10−

MPa

m
⋅=

To find the length L for which the absolute pressure gradient is no more than 5 MPa/m, we need to solve 

x
p

∂

∂
5

MPa

m
⋅≤

2 ρ⋅ Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=

with x = L m (the largest pressure gradient is at the outlet)

Hence L
2 ρ⋅ Vi

2
⋅ Do Di−( )⋅

Di

Do

Di

⎛
⎜
⎝

⎞

⎠

5

⋅
x

p
∂

∂
⋅

≥ L 1 m⋅≥

This result is also obtained using Goal Seek in the Excel workbook

From Excel

x  (m) a  (m/s2) dp /dx  (kPa/m)

0.000 3.20 -3.20

0.050 4.86 -4.86

0.100 7.65 -7.65 For the length L  required

0.150 12.6 -12.6 for the pressure gradient

0.200 22.0 -22.0 to be  less than 5 MPa/m (abs)

0.250 41.2 -41.2 use Goal Seek

0.300 84.2 -84.2

0.350 194 -194 L  = 1.00 m

0.400 529 -529

0.420 843 -843 x (m) dp /dx (kPa/m)

0.440 1408 -1408 1.00 -5000

0.460 2495 -2495

0.470 3411 -3411

0.480 4761 -4761

0.490 6806 -6806

0.500 10000 -10000
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Problem 6.19 [Difficulty: 3]

Given: Diffuser geometry

Find: Acceleration of a fluid particle; plot it; plot pressure gradient; find L such that pressure gradient is less than

25 kPa/m

Solution:

The given data is Di 0.25 m⋅= Do 0.75 m⋅= L 1 m⋅= Vi 5
m

s
⋅= ρ 1000

kg

m
3

⋅=

For a linear increase in diameter D x( ) Di

Do Di−

L
x⋅+=

From continuity Q V A⋅= V
π

4
⋅ D

2
⋅= Vi

π

4
⋅ Di

2
⋅= Q 0.245

m
3

s
=

Hence V x( )
π

4
⋅ D x( )

2
⋅ Q= V x( )

4 Q⋅

π Di

Do Di−

L
x⋅+

⎛
⎜
⎝

⎞
⎠

2

⋅

= or V x( )
Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞

⎠

2
=

The governing equation for this flow is

or, for steady 1D flow, in the notation of the problem ax V
x
V

d

d
⋅=

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞

⎠

2 x

Vi

1
Do Di−

L Di⋅
x⋅+

⎛
⎜
⎝

⎞

⎠

2

d

d
⋅=

Hence ax x( )
2 Vi

2
⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

−=

This can be plotted in Excel (see below)

From Eq. 6.2a, pressure gradient is
x

p
∂

∂
ρ− ax⋅=

x
p

∂

∂

2 ρ⋅ Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=



This can also plotted in Excel.  Note that the pressure gradient is adverse: separation is likely to occur in the diffuser, and occur

near the entrance

At the inlet
x

p
∂

∂
100

kPa

m
⋅= At the

exit x
p

∂

∂
412

Pa

m
⋅=

To find the length L for which the pressure gradient is no more than 25 kPa/m, we need to solve 

x
p

∂

∂
25

kPa

m
⋅≤

2 ρ⋅ Vi
2

⋅ Do Di−( )⋅

Di L⋅ 1
Do Di−( )

Di L⋅
x⋅+

⎡
⎢
⎣

⎤
⎥
⎦

5

⋅

=

with x = 0 m (the largest pressure gradient is at the inlet)

Hence L
2 ρ⋅ Vi

2
⋅ Do Di−( )⋅

Di
x

p
∂

∂
⋅

≥ L 4 m⋅≥

This result is also obtained using Goal Seek in Excel.

In Excel:

D i  = 0.25 m

D o  = 0.75 m

L  = 1 m

V i  = 5 m/s

(  = 1000 kg/m3

x  (m) a  (m/s2) dp /dx  (kPa/m)

0.00 -100 100

0.05 -62.1 62.1

0.10 -40.2 40.2 For the length L  required

0.15 -26.9 26.93 for the pressure gradient

0.20 -18.59 18.59 to be less than 25 kPa/m

0.25 -13.17 13.17 use Goal Seek

0.30 -9.54 9.54

0.40 -5.29 5.29 L  = 4.00 m

0.50 -3.125 3.125

0.60 -1.940 1.940 x (m) dp /dx (kPa/m)

0.70 -1.256 1.256 0.0 25.0

0.80 -0.842 0.842

0.90 -0.581 0.581

1.00 -0.412 0.412
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Problem 6.22                                                             [Difficulty: 3]



Problem 6.23 [Difficulty: 4]

Given: Rectangular chip flow

Find: Velocity field; acceleration; pressure gradient; net force; required flow rate; plot pressure

Solution:

Basic equations

CS

V
→

A
→
⋅( )∑ 0=

x
u

∂

∂ y
v

∂

∂
+ 0=

The given data is ρ 1.23
kg

m
3

⋅= patm 101 kPa⋅= h 0.5 mm⋅= b 40 mm⋅= Mlength 0.005
kg

m
⋅=

Assuming a CV that is from the centerline to any point x, and noting that q is inflow per unit area, continuity leads to

q x⋅ L⋅ U h⋅ L⋅= or u x( ) U x( )= q
x

h
⋅=

For acceleration we will need the vertical velocity v; we can use

x
u

∂

∂ y
v

∂

∂
+ 0= or

y
v

∂

∂ x
u

∂

∂
−=

du

dx
−=

x
q

x

h
⋅⎛⎜

⎝
⎞
⎠

d

d
−=

q

h
−=

Hence v y y=( ) v y 0=( )−

0

y

y
q

h

⌠
⎮
⎮
⌡

d−= q−
y

h
⋅=

But v y 0=( ) q= so v y( ) q 1
y

h
−⎛⎜

⎝
⎞
⎠

⋅=

For the x acceleration ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= ax q

x

h
⋅

q

h

⎛⎜
⎝

⎞
⎠

⋅ q 1
y

h
−⎛⎜

⎝
⎞
⎠

⋅ 0( )⋅+= ax
q

2

h
2

x⋅=



For the y acceleration ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= ay q

x

h
⋅ 0( )⋅ q 1

y

h
−⎛⎜

⎝
⎞
⎠

⋅
q

h
−⎛⎜
⎝

⎞
⎠

⋅+= ax
q

2

h

y

h
1−⎛⎜

⎝
⎞
⎠

⋅=

For the pressure gradient we use x and y momentum (Euler equation) ρ
Du

Dx
⋅ ρ u

x
u

∂

∂
⋅ v

y
u

∂

∂
⋅+

⎛
⎜
⎝

⎞
⎠

⋅= ρ ax⋅=
x

p
∂

∂
−=

Hence
x

p
∂

∂
ρ−

q
2

h
2

⋅ x⋅=

Also ρ
Dv

Dx
⋅ ρ u

x
v

∂

∂
⋅ v

y
v

∂

∂
⋅+

⎛
⎜
⎝

⎞
⎠

⋅= ρ ay⋅=
y

p
∂

∂
−=

y
p

∂

∂
ρ

q
2

h
⋅ 1

y

h
−⎛⎜

⎝
⎞
⎠

⋅=

For the pressure distribution, integrating from the outside edge (x = b/2) to any point x

p x x=( ) p x
b

2
=⎛⎜

⎝
⎞
⎠

− p x( ) patm−=

b

2

x

x
x

p
∂

∂

⌠
⎮
⎮
⎮
⌡

d=

b

2

x

xρ−
q

2

h
2

⋅ x⋅

⌠
⎮
⎮
⎮
⎮
⌡

d= ρ−
q

2

2 h
2

⋅
⋅ x

2
⋅ ρ

q
2

8 h
2

⋅
⋅ b

2
⋅+=

p x( ) patm ρ
q

2
b

2
⋅

8 h
2

⋅
⋅ 1 4

x

b

⎛⎜
⎝

⎞
⎠

2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

For the net force we need to integrate this ... actually the gage pressure, as this pressure is opposed on the outer surface by patm

pg x( )
ρ q

2
⋅ b

2
⋅

8 h
2

⋅
1 4

x

b

⎛⎜
⎝

⎞
⎠

2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Fnet 2 L⋅

0

b

2

xpg x( )

⌠
⎮
⎮
⌡

d⋅= 2 L⋅

0

b

2

x
ρ q

2
⋅ b

2
⋅

8 h
2

⋅
1 4

x

b

⎛⎜
⎝

⎞
⎠

2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅

⌠
⎮
⎮
⎮
⌡

d⋅=
ρ q

2
⋅ b

2
⋅ L⋅

4 h
2

⋅

b

2

1

3

b

2
⋅−⎛⎜

⎝
⎞
⎠

⋅= Fnet
ρ q

2
⋅ b

3
⋅ L⋅

12 h
2

⋅
=

The weight of the chip must balance this force M g⋅ Mlength L⋅ g⋅= Fnet=
ρ q

2
⋅ b

3
⋅ L⋅

12 h
2

⋅
= or Mlength g⋅

ρ q
2

⋅ b
3

⋅

12 h
2

⋅
=

Solving for q for the given mass/length q
12 h

2
⋅ g⋅ Mlength⋅

ρ b
3

⋅
= q 0.0432

m
3

s

m
2

⋅=

The maximum speed Umax u x
b

2
=⎛⎜

⎝
⎞
⎠

= q

b

2

h
⋅= Umax

b q⋅

2 h⋅
= Umax 1.73

m

s
=

The following plot can be done in Excel pg x( )
ρ q

2
⋅ b

2
⋅

8 h
2

⋅
1 4

x

b

⎛⎜
⎝

⎞
⎠

2

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=
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The net force is such that the chip is floating on air due to a Bernoulli effect: the speed is maximum at the edges and zero at the

center; pressure has the opposite trend - pressure is minimum (patm) at the edges and maximum at the center.



 

Problem 6.24                                                            [Difficulty: 3]



Problem 6.25 [Difficulty: 4]

Given: Velocity field

Find: Constant B for incompressible flow; Acceleration of particle at (2,1); acceleration normal to velocity at (2,1)

Solution:

Basic equations

For this flow u x y, ( ) A x
3

⋅ B x⋅ y
2

⋅+= v x y, ( ) A y
3

⋅ B x
2

⋅ y⋅+=

x
u x y, ( )

∂

∂ y
v x y, ( )

∂

∂
+

x
A x

3
⋅ B x⋅ y

2
⋅+( )∂

∂ y
A y

3
⋅ B x

2
⋅ y⋅+( )∂

∂
+= 0=

x
u x y, ( )

∂

∂ y
v x y, ( )

∂

∂
+ 3 A⋅ B+( ) x

2
y

2
+( )⋅= 0= Hence B 3− A⋅= B 0.6−

1

m
2

s⋅
=

We can write u x y, ( ) A x
3

⋅ 3 A⋅ x⋅ y
2

⋅−= v x y, ( ) A y
3

⋅ 3 A⋅ x
2

⋅ y⋅−=

Hence for ax ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= A x

3
⋅ 3 A⋅ x⋅ y

2
⋅−( )

x
A x

3
⋅ 3 A⋅ x⋅ y

2
⋅−( )∂

∂
⋅ A y

3
⋅ 3 A⋅ x

2
⋅ y⋅−( )

y
A x

3
⋅ 3 A⋅ x⋅ y

2
⋅−( )∂

∂
⋅+=

ax 3 A
2

⋅ x⋅ x
2

y
2

+( )2

⋅=

For ay ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= A x

3
⋅ 3 A⋅ x⋅ y

2
⋅−( )

x
A y

3
⋅ 3 A⋅ x

2
⋅ y⋅−( )∂

∂
⋅ A y

3
⋅ 3 A⋅ x

2
⋅ y⋅−( )

y
A y

3
⋅ 3 A⋅ x

2
⋅ y⋅−( )∂

∂
⋅+=

ay 3 A
2

⋅ y⋅ x
2

y
2

+( )2

⋅=

Hence at (2,1) ax 3
0.2

m
2

s⋅

⎛
⎜
⎝

⎞

⎠

2

⋅ 2× m⋅ 2 m⋅( )
2

1 m⋅( )
2

+⎡⎣ ⎤⎦
2

×= ax 6.00
m

s
2

⋅=

ay 3
0.2

m
2

s⋅

⎛
⎜
⎝

⎞

⎠

2

⋅ 1× m⋅ 2 m⋅( )
2

1 m⋅( )
2

+⎡⎣ ⎤⎦
2

×= ay 3.00
m

s
2

⋅=

a ax
2

ay
2

+= a 6.71
m

s
2

=



We need to find the component of acceleration normal to the velocity vector

∆θ 

V


 

a


 

At (2,1) the velocity vector is at angle θvel atan
v

u

⎛⎜
⎝

⎞
⎠

= atan
A y

3
⋅ 3 A⋅ x

2
⋅ y⋅−

A x
3

⋅ 3 A⋅ x⋅ y
2

⋅−

⎛⎜
⎜
⎝

⎞

⎠
=

θvel atan
1

3
3 2

2
⋅ 1⋅−

2
3

3 2⋅ 1
2

⋅−

⎛⎜
⎜
⎝

⎞

⎠
= θvel 79.7− deg⋅=

At (1,2) the acceleration vector is at angle θaccel atan
ay

ax

⎛
⎜
⎝

⎞

⎠
= θaccel atan

1

2

⎛⎜
⎝

⎞
⎠

= θaccel 26.6 deg⋅=

Hence the angle between the acceleration and velocity vectors is ∆θ θaccel θvel−= ∆θ 106 deg⋅=

The component of acceleration normal to the velocity is then an a sin ∆θ( )⋅= 6.71
m

s
2

⋅ sin 106 deg⋅( )⋅= an 6.45
m

s
2

⋅=
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Problem 6.27 [Difficulty: 5]

Given: Velocity field

Find: Constant B for incompressible flow; Equation for streamline through (1,2); Acceleration of particle; streamline

curvature

Solution:

Basic equations

For this flow u x y, ( ) A x
4

6 x
2

⋅ y
2

⋅− y
4

+( )⋅= v x y, ( ) B x
3

y⋅ x y
3

⋅−( )⋅=

x
u x y, ( )

∂

∂ y
v x y, ( )

∂

∂
+

x
A x

4
6 x

2
⋅ y

2
⋅− y

4
+( )⋅⎡⎣ ⎤⎦∂

∂ y
B x

3
y⋅ x y

3
⋅−( )⋅⎡⎣ ⎤⎦∂

∂
+= 0=

x
u x y, ( )

∂

∂ y
v x y, ( )

∂

∂
+ B x

3
3 x⋅ y

2
⋅−( )⋅ A 4 x

3
⋅ 12 x⋅ y

2
⋅−( )⋅+= 4 A⋅ B+( ) x⋅ x

2
3 y

2
⋅−( )⋅= 0=

Hence B 4− A⋅= B 8−
1

m
3

s⋅
=

Hence for ax

ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+= A x

4
6 x

2
⋅ y

2
⋅− y

4
+( )⋅

x
A x

4
6 x

2
⋅ y

2
⋅− y

4
+( )⋅⎡⎣ ⎤⎦∂

∂
⋅ 4− A⋅ x

3
y⋅ x y

3
⋅−( )⋅⎡⎣ ⎤⎦

y
A x

4
6 x

2
⋅ y

2
⋅− y

4
+( )⋅⎡⎣ ⎤⎦∂

∂
⋅+=

ax 4 A
2

⋅ x⋅ x
2

y
2

+( )3

⋅=

For ay

ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+= A x

4
6 x

2
⋅ y

2
⋅− y

4
+( )⋅

x
4− A⋅ x

3
y⋅ x y

3
⋅−( )⋅⎡⎣ ⎤⎦∂

∂
⋅ 4− A⋅ x

3
y⋅ x y

3
⋅−( )⋅⎡⎣ ⎤⎦

y
4− A⋅ x

3
y⋅ x y

3
⋅−( )⋅⎡⎣ ⎤⎦∂

∂
⋅+=

ay 4 A
2

⋅ y⋅ x
2

y
2

+( )3

⋅=

For a streamline
dy

dx

v

u
= so

dy

dx

4− A⋅ x
3

y⋅ x y
3

⋅−( )⋅

A x
4

6 x
2

⋅ y
2

⋅− y
4

+( )⋅
=

4 x
3

y⋅ x y
3

⋅−( )⋅

x
4

6 x
2

⋅ y
2

⋅− y
4

+( )
−=

Let u
y

x
=

du

dx

d
y

x

⎛⎜
⎝

⎞
⎠

dx
=

1

x

dy

dx
⋅ y

d
1

x

⎛⎜
⎝

⎞
⎠

dx
⋅+=

1

x

dy

dx
⋅

y

x
2

−= so
dy

dx
x

du

dx
⋅ u+=



Hence
dy

dx
x

du

dx
⋅ u+=

4 x
3

y⋅ x y
3

⋅−( )⋅

x
4

6 x
2

⋅ y
2

⋅− y
4

+( )
−=

4 1 u
2

−( )⋅

1

u
6 u⋅− u

3
+⎛⎜

⎝
⎞
⎠

−= u
4 1 u

2
−( )⋅

1

u
6 u⋅− u

3
+⎛⎜

⎝
⎞
⎠

+

x
du

dx
⋅ u

4 1 u
2

−( )⋅

1

u
6 u⋅− u

3
+⎛⎜

⎝
⎞
⎠

+
⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

−=
u u

4
10 u

2
⋅− 5+( )⋅

u
4

6 u
2

⋅− 1+
−=

Separating variables
dx

x

u
4

6 u
2

⋅− 1+

u u
4

10 u
2

⋅− 5+( )⋅
− du⋅= ln x( )

1

5
− ln u

5
10 u

3
⋅− 5 u⋅+( )⋅ C+=

u
5

10 u
3

⋅− 5 u⋅+( ) x
5

⋅ c= y
5

10 y
3

⋅ x
2

⋅− 5 y⋅ x
4

⋅+ const=

For the streamline through (1,2) y
5

10 y
3

⋅ x
2

⋅− 5 y⋅ x
4

⋅+ 38−=

Note that it would be MUCH easier to use the stream function method here!

To find the radius of curvature we use an
V

2

R
−= or R

V
2

an

=

∆θ 

V


 

a


 

We need to find the component of acceleration normal to the velocity vector

At (1,2) the velocity vector is at angle θvel atan
v

u

⎛⎜
⎝

⎞
⎠

= atan
4 x

3
y⋅ x y

3
⋅−( )⋅

x
4

6 x
2

⋅ y
2

⋅− y
4

+( )
−

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

=

θvel atan
4 2 8−( )⋅

1 24− 16+
−⎡⎢

⎣
⎤⎥
⎦

= θvel 73.7− deg⋅=

At (1,2) the acceleration vector is at angle

θaccel atan
ay

ax

⎛
⎜
⎝

⎞

⎠
= atan

4 A
2

⋅ y⋅ x
2

y
2

+( )3

⋅

4 A
2

⋅ x⋅ x
2

y
2

+( )3

⋅

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

= atan
y

x

⎛⎜
⎝

⎞
⎠

= θaccel atan
2

1

⎛⎜
⎝

⎞
⎠

= θaccel 63.4 deg⋅=

Hence the angle between the acceleration and velocity vectors is ∆θ θaccel θvel−= ∆θ 137 deg⋅=

The component of acceleration normal to the velocity is then an a sin ∆θ( )⋅= where a ax
2

ay
2

+=

At (1,2) ax 4 A
2

⋅ x⋅ x
2

y
2

+( )3

⋅= 500 m
7

⋅ A
2

×= 500 m
7

⋅
2

m
3

s⋅

⎛
⎜
⎝

⎞

⎠

2

×= 2000
m

s
2

⋅= ay 4 A
2

⋅ y⋅ x
2

y
2

+( )3

⋅= 4000
m

s
2

⋅=

a 2000
2

4000
2

+
m

s
2

⋅= a 4472
m

s
2

= an a sin ∆θ( )⋅= an 3040
m

s
2

=

u A x
4

6 x
2

⋅ y
2

⋅− y
4

+( )⋅= 14−
m

s
⋅= v B x

3
y⋅ x y

3
⋅−( )⋅= 48

m

s
⋅= V u

2
v

2
+= 50

m

s
⋅=

Then R
V

2

an

= R 50
m

s
⋅⎛⎜

⎝
⎞
⎠

2
1

3040
×

s
2

m
⋅= R 0.822 m=



Problem 6.28 [Difficulty: 2]

Given: Velocity field for doublet

Find: Expression for pressure gradient

Solution:

Basic equations

For this flow Vr r θ, ( )
Λ

r
2

− cos θ( )⋅= Vθ r θ, ( )
Λ

r
2

− sin θ( )⋅= Vz 0=

Hence for r momentum ρ gr⋅
r
p

∂

∂
− ρ Vr

r
Vr

∂

∂
⋅

Vθ

r θ
Vr

∂

∂
⋅+

Vθ
2

r
−

⎛⎜
⎜
⎝

⎞

⎠
⋅=

Ignoring gravity

r
p

∂

∂
ρ−

Λ

r
2

− cos θ( )⋅⎛
⎜
⎝

⎞

⎠ r

Λ

r
2

− cos θ( )⋅⎛
⎜
⎝

⎞

⎠

∂

∂
⋅

Λ

r
2

− sin θ( )⋅⎛
⎜
⎝

⎞

⎠
r θ

Λ

r
2

− cos θ( )⋅⎛
⎜
⎝

⎞

⎠

∂

∂
⋅+

Λ

r
2

− sin θ( )⋅⎛
⎜
⎝

⎞

⎠

2

r
−

⎡⎢
⎢
⎢
⎢⎣

⎤⎥
⎥
⎥
⎥⎦

⋅=
r
p

∂

∂

2 Λ
2

⋅ ρ⋅

r
5

=

For θ momentum ρ gθ⋅
1

r θ
p

∂

∂
⋅− ρ Vr

r
Vθ

∂

∂
⋅

Vθ

r θ
Vθ

∂

∂
⋅+

Vr Vθ⋅

r
+

⎛
⎜
⎝

⎞

⎠
⋅=

Ignoring gravity

θ
p

∂

∂
r− ρ⋅

Λ

r
2

− cos θ( )⋅⎛
⎜
⎝

⎞

⎠ r

Λ

r
2

− sin θ( )⋅⎛
⎜
⎝

⎞

⎠

∂

∂
⋅

Λ

r
2

− sin θ( )⋅⎛
⎜
⎝

⎞

⎠
r θ

Λ

r
2

− sin θ( )⋅⎛
⎜
⎝

⎞

⎠

∂

∂
⋅+

Λ

r
2

− sin θ( )⋅⎛
⎜
⎝

⎞

⎠

Λ

r
2

− cos θ( )⋅⎛
⎜
⎝

⎞

⎠
⋅

r
+

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

⋅=
θ

p
∂

∂
0=

The pressure gradient is purely radial



Problem 6.29 [Diffculty: 4]

Given: Velocity field for flow over a cylinder

Find: Expression for pressure gradient; pressure variation; minimum pressure; plot velocity

Solution:

Basic equations

Given data ρ 1.23
kg

m
3

⋅= a 150 mm⋅= U 75
m

s
⋅=

For this flow Vr U
a

r

⎛⎜
⎝
⎞
⎠

2

1−
⎡
⎢
⎣

⎤
⎥
⎦

⋅ cos θ( )⋅= Vθ U
a

r

⎛⎜
⎝
⎞
⎠

2

1+
⎡
⎢
⎣

⎤
⎥
⎦

⋅ sin θ( )⋅=

On the surface r = a Vr 0= Vθ 2 U⋅ sin θ( )⋅=

Hence on the surface:

For r momentum ρ Vr
r
Vr

∂

∂
⋅

Vθ

r θ
Vr

∂

∂
⋅+

Vθ
2

r
−

⎛⎜
⎜
⎝

⎞

⎠
⋅ ρ

Vθ
2

a
−
⎛⎜
⎜⎝

⎞

⎠
⋅=

r
p

∂

∂
−=

r
p

∂

∂
ρ

Vθ
2

a
⋅= ρ 4⋅ U

2
⋅ sin θ( )

2
⋅=

For θ momentum ρ Vr
r
Vθ

∂

∂
⋅

Vθ

r θ
Vθ

∂

∂
⋅+

Vr Vθ⋅

r
+

⎛
⎜
⎝

⎞

⎠
⋅ ρ

Vθ

a θ
Vθ

∂

∂
⋅

⎛
⎜
⎝

⎞

⎠
⋅= ρ

2 U⋅ sin θ( )⋅

a
⋅ 2⋅ U⋅ cos θ( )⋅=

1

r
−

θ
p

∂

∂
⋅=

θ
p

∂

∂

4 ρ⋅ U
2

⋅

a
− sin θ( )⋅ cos θ( )⋅=

2 ρ⋅ U
2

⋅

a
− sin 2 θ⋅( )⋅=

For the pressure distribution we integrate from θ = 0 to θ = θ, assuming p(0) = patm (a stagnation point)

p θ( ) patm−

0

θ

θ
θ

p
∂

∂

⌠
⎮
⎮
⌡

d=

0

θ

θ
4 ρ⋅ U

2
⋅

a
− sin θ( )⋅ cos θ( )⋅

⌠⎮
⎮
⎮⌡

d=



p θ( ) 4− ρ⋅ U
2

⋅
0

θ

θsin θ( ) cos θ( )⋅
⌠
⎮
⌡

d= p θ( ) 2− U
2

⋅ ρ⋅ sin θ( )
2

⋅= Minimum p: p
π

2

⎛⎜
⎝

⎞
⎠

13.8− kPa⋅=

0 50 100 150

15−

10−

5−

x (m)

P
re

ss
u

re
 (

k
P

a)

For the velocity as a function of radial position at θ = π/2 Vr 0= so V Vθ= Vθ r( ) U
a

r

⎛⎜
⎝
⎞
⎠

2

1+
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

75 100 125 150
1

2

3

4

5

V(r) (m/s)

r/
a

The velocity falls off to V = U as directly above the cylinder we have uniform horizontal as the effect of the cylinder decreases  

Vθ 100 a⋅( ) 75
m

s
=



Problem 6.30 [Difficulty: 2]

Given: Flow in a curved section

Find: Expression for pressure distribution; plot; V for wall static pressure of 35 kPa

Solution:

Basic equation
n

p
∂

∂
ρ

V
2

R
⋅=

Assumptions: Steady; frictionless; no body force; constant speed along streamline

Given data ρ 999
kg

m
3

⋅= V 10
m

s
⋅= L 75 mm⋅= R0 0.2 m⋅= pc 50 kPa⋅=

At the inlet section p p y( )= hence
n

p
∂

∂

dp

dy
−= ρ

V
2

R
⋅= ρ V

2
⋅

2 y⋅

L R0⋅
⋅= dp ρ− V

2
⋅

2 y⋅

L R0⋅
⋅ dy⋅=

Integrating from y = 0 to y = y p y( ) pc

ρ V
2

⋅

R0 L⋅
y

2
⋅−= (1) p 0( ) 50 kPa⋅= p

L

2

⎛⎜
⎝

⎞
⎠

40.6 kPa⋅=

40 42 44 46 48 50

10

20

30

40

p (kPa)

y
 (

m
m

)

For a new wall pressure pwall 35 kPa⋅= solving Eq 1 for V gives V
4 R0⋅ pc pwall−( )⋅

ρ L⋅
= V 12.7

m

s
=



 

Problem 6.31                                                             [Difficulty: 2]



Problem 6.32 [Difficulty: 3]

Given: Velocity field for free vortex flow in elbow

Find: Similar solution to Example 6.1; find k (above)

Solution:

Basic equation
r
p

∂

∂

ρ V
2

⋅

r
= with V Vθ=

c

r
=

Assumptions: 1) Frictionless 2) Incompressible 3) free vortex

For this flow p p θ( )≠ so

r
p

∂

∂ r
p

d

d
=

ρ V
2

⋅

r
=

ρ c
2

⋅

r
3

=

Hence ∆p p2 p1−=

r1

r2

r
ρ c

2
⋅

r
3

⌠
⎮
⎮
⎮
⌡

d=
ρ c

2
⋅

2

1

r1
2

1

r2
2

−⎛⎜
⎜⎝

⎞

⎠

⋅=
ρ c

2
⋅ r2

2
r1

2
−⎛

⎝
⎞
⎠⋅

2 r1
2

⋅ r2
2

⋅
= (1)

Next we obtain c in terms of Q

Q A
→

V
→⌠⎮

⎮⌡
d=

r1

r2

rV w⋅
⌠
⎮
⌡

d=

r1

r2

r
w c⋅

r

⌠
⎮
⎮
⌡

d= w c⋅ ln
r2

r1

⎛
⎜
⎝

⎞

⎠
⋅=

Hence c
Q

w ln
r2

r1

⎛
⎜
⎝

⎞

⎠
⋅

=

Using this in Eq 1 ∆p p2 p1−=
ρ c

2
⋅ r2

2
r1

2
−⎛

⎝
⎞
⎠⋅

2 r1
2

⋅ r2
2

⋅
=

ρ Q
2

⋅ r2
2

r1
2

−⎛
⎝

⎞
⎠⋅

2 w
2

⋅ ln
r2

r1

⎛
⎜
⎝

⎞

⎠

2

⋅ r1
2

⋅ r2
2

⋅

=

Solving for Q Q w ln
r2

r1

⎛
⎜
⎝

⎞

⎠
⋅

2 r1
2

⋅ r2
2

⋅

ρ r2
2

r1
2

−⎛
⎝

⎞
⎠⋅

⋅ ∆p⋅= k w ln
r2

r1

⎛
⎜
⎝

⎞

⎠
⋅

2 r1
2

⋅ r2
2

⋅

ρ r2
2

r1
2

−⎛
⎝

⎞
⎠⋅

⋅=
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Problem 6.34 [Difficulty: 2]

Given: Flow rates in elbow for uniform flow and free vortes

Find: Plot discrepancy

Solution:

For Example 6.1 QUniform V A⋅= w r2 r1−( )⋅
1

ρ ln
r2

r1

⎛
⎜
⎝

⎞

⎠
⋅

⋅ ∆p⋅= or
QUniform ρ⋅

w r1⋅ ∆p⋅

r2

r1

1−
⎛
⎜
⎝

⎞

⎠

ln
r2

r1

⎛
⎜
⎝

⎞

⎠

= (1)

For Problem 6.32 Q w ln
r2

r1

⎛
⎜
⎝

⎞

⎠
⋅

2 r1
2

⋅ r2
2

⋅

ρ r2
2

r1
2

−⎛
⎝

⎞
⎠⋅

⋅ ∆p⋅= or
Q ρ⋅

w r1⋅ ∆p⋅

r2

r1

⎛
⎜
⎝

⎞

⎠
ln

r2

r1

⎛
⎜
⎝

⎞

⎠
⋅

2

r2

r1

⎛
⎜
⎝

⎞

⎠

2

1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= (2)

It is convenient to plot these as functions of r2/r1

r2/r1 Eq. 1 Eq. 2 Error

1.01 0.100 0.100 0.0%

1.05 0.226 0.226 0.0%

1.10 0.324 0.324 0.1%

1.15 0.401 0.400 0.2%

1.20 0.468 0.466 0.4%

1.25 0.529 0.526 0.6%

1.30 0.586 0.581 0.9%

1.35 0.639 0.632 1.1%

1.40 0.690 0.680 1.4%

1.45 0.738 0.726 1.7%

1.50 0.785 0.769 2.1%

1.55 0.831 0.811 2.4%

1.60 0.875 0.851 2.8%

1.65 0.919 0.890 3.2%

1.70 0.961 0.928 3.6%

1.75 1.003 0.964 4.0%

1.80 1.043 1.000 4.4%

1.85 1.084 1.034 4.8%

1.90 1.123 1.068 5.2%

1.95 1.162 1.100 5.7%

2.00 1.201 1.132 6.1%

2.05 1.239 1.163 6.6%

2.10 1.277 1.193 7.0%

2.15 1.314 1.223 7.5%

2.20 1.351 1.252 8.0%

2.25 1.388 1.280 8.4%

2.30 1.424 1.308 8.9%

2.35 1.460 1.335 9.4%

2.40 1.496 1.362 9.9%

2.45 1.532 1.388 10.3%

2.50 1.567 1.414 10.8%

0.0%

2.5%

5.0%

7.5%

10.0%

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

r2/r1

E
rr

o
r
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Problem 6.36 [Difficulty: 4]

Given: x component of velocity field

Find: y component of velocity field; acceleration at several points; estimate radius of curvature; plot streamlines

Solution:

The given data is Λ 2
m

3

s
⋅= u

Λ x
2

y
2

−( )⋅

x
2

y
2

+( )2
−=

The basic equation (continuity) is 
x

u
∂

∂ y
v

∂

∂
+ 0=

The basic equation for acceleration is

Hence v y
du

dx

⌠
⎮
⎮
⌡

d−= y
2 Λ⋅ x⋅ x

2
3 y

2
⋅−( )⋅

x
2

y
2

+( )3
⌠
⎮
⎮
⎮
⎮
⌡

d−=

Integrating (using an integrating factor) v
2 Λ⋅ x⋅ y⋅

x
2

y
2

+( )2
−=

Alternatively, we could check that the given velocities u and v satisfy continuity

u
Λ x

2
y

2
−( )⋅

x
2

y
2

+( )2
−=

x
u

∂

∂

2 Λ⋅ x⋅ x
2

3 y
2

⋅−( )⋅

x
2

y
2

+( )3
= v

2 Λ⋅ x⋅ y⋅

x
2

y
2

+( )2
−=

y
v

∂

∂

2 Λ⋅ x⋅ x
2

3 y
2

⋅−( )⋅

x
2

y
2

+( )3
−=

so
x

u
∂

∂ y
v

∂

∂
+ 0=



For steady, 2D flow the acceleration components reduce to (after considerable math!):

x - component ax u
x

u
∂

∂
⋅ v

y
u

∂

∂
⋅+=

ax
Λ x

2
y

2
−( )⋅

x
2

y
2

+( )2
−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2 Λ⋅ x⋅ x
2

3 y
2

⋅−( )⋅

x
2

y
2

+( )3
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅
2 Λ⋅ x⋅ y⋅

x
2

y
2

+( )2
−⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2 Λ⋅ y⋅ 3 x
2

⋅ y
2

−( )⋅

x
2

y
2

+( )3
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+= ax
2 Λ

2
⋅ x⋅

x
2

y
2

+( )3
−=

y - component ay u
x

v
∂

∂
⋅ v

y
v

∂

∂
⋅+=

ay
Λ x

2
y

2
−( )⋅

x
2

y
2

+( )2
−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2 Λ⋅ y⋅ 3 x
2

⋅ y
2

−( )⋅

x
2

y
2

+( )3
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅
2 Λ⋅ x⋅ y⋅

x
2

y
2

+( )2
−⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2 Λ⋅ y⋅ 3 y
2

⋅ x
2

−( )⋅

x
2

y
2

+( )3
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+= ay
2 Λ

2
⋅ y⋅

x
2

y
2

+( )3
−=

Evaluating at point (0,1) u 2
m

s
⋅= v 0

m

s
⋅= ax 0

m

s
2

⋅= ay 8−
m

s
2

⋅=

Evaluating at point (0,2) u 0.5
m

s
⋅= v 0

m

s
⋅= ax 0

m

s
2

⋅= ay 0.25−
m

s
2

⋅=

Evaluating at point (0,3) u 0.222
m

s
⋅= v 0

m

s
⋅= ax 0

m

s
2

⋅= ay 0.0333−
m

s
2

⋅=

The instantaneous radius of curvature is obtained from aradial ay−=
u

2

r
−= or r

u
2

ay

−=

For the three points y 1 m= r

2
m

s
⋅⎛⎜

⎝
⎞
⎠

2

8
m

s
2

⋅

= r 0.5 m=

y 2 m= r

0.5
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.25
m

s
2

⋅

= r 1 m=

y 3 m= r

0.2222
m

s
⋅⎛⎜

⎝
⎞
⎠

2

0.03333
m

s
2

⋅

= r 1.5 m⋅=

The radius of curvature in each case is 1/2 of the vertical distance from the origin.  The streamlines form circles tangent to the x axis



The streamlines are given by
dy

dx

v

u
=

2 Λ⋅ x⋅ y⋅

x
2

y
2

+( )2
−

Λ x
2

y
2

−( )⋅

x
2

y
2

+( )2
−

=
2 x⋅ y⋅

x
2

y
2

−( )
=

so 2− x⋅ y⋅ dx⋅ x
2

y
2

−( ) dy⋅+ 0=

This is an inexact integral, so an integrating factor is needed

First we try R
1

2− x⋅ y⋅ x
x

2
y

2
−( )d

d y
2− x⋅ y⋅( )

d

d
−⎡

⎢
⎣

⎤
⎥
⎦

⋅=
2

y
−=

Then the integrating factor is F e

y
2

y
−

⌠⎮
⎮
⎮⌡

d

=
1

y
2

=

The equation becomes an exact integral 2−
x

y
⋅ dx⋅

x
2

y
2

−( )
y

2
dy⋅+ 0=

So u x2−
x

y
⋅

⌠
⎮
⎮
⌡

d=
x

2

y
− f y( )+= and u y

x
2

y
2

−( )
y

2

⌠
⎮
⎮
⎮
⌡

d=
x

2

y
− y− g x( )+=

Comparing solutions ψ
x

2

y
y+= (1) or x

2
y

2
+ ψ y⋅= const y⋅=

These form circles that are tangential to the x axis, as can be shown in Excel:

The stream function can be evaluated using Eq 1

0.10 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

2.50 62.6 25.3 13.0 9.08 7.25 6.25 5.67 5.32 5.13 5.03 5.00 5.02 5.08 5.17 5.29 5.42 5.56 5.72 5.89 6.07 6.25

2.25 50.7 20.5 10.6 7.50 6.06 5.30 4.88 4.64 4.53 4.50 4.53 4.59 4.69 4.81 4.95 5.10 5.27 5.44 5.63 5.82 6.01

2.00 40.1 16.3 8.50 6.08 5.00 4.45 4.17 4.04 4.00 4.03 4.10 4.20 4.33 4.48 4.64 4.82 5.00 5.19 5.39 5.59 5.80

1.75 30.7 12.5 6.63 4.83 4.06 3.70 3.54 3.50 3.53 3.61 3.73 3.86 4.02 4.19 4.38 4.57 4.77 4.97 5.18 5.39 5.61

1.50 22.6 9.25 5.00 3.75 3.25 3.05 3.00 3.04 3.13 3.25 3.40 3.57 3.75 3.94 4.14 4.35 4.56 4.78 5.00 5.22 5.45

1.25 15.7 6.50 3.63 2.83 2.56 2.50 2.54 2.64 2.78 2.94 3.13 3.32 3.52 3.73 3.95 4.17 4.39 4.62 4.85 5.08 5.31

1.00 10.1 4.25 2.50 2.08 2.00 2.05 2.17 2.32 2.50 2.69 2.90 3.11 3.33 3.56 3.79 4.02 4.25 4.49 4.72 4.96 5.20

0.75 5.73 2.50 1.63 1.50 1.56 1.70 1.88 2.07 2.28 2.50 2.73 2.95 3.19 3.42 3.66 3.90 4.14 4.38 4.63 4.87 5.11

0.50 2.60 1.25 1.00 1.08 1.25 1.45 1.67 1.89 2.13 2.36 2.60 2.84 3.08 3.33 3.57 3.82 4.06 4.31 4.56 4.80 5.05

0.25 0.73 0.50 0.63 0.83 1.06 1.30 1.54 1.79 2.03 2.28 2.53 2.77 3.02 3.27 3.52 3.77 4.02 4.26 4.51 4.76 5.01

0.00 0.10 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

x
 v

a
lu

e
s

y values

See next page for plot:
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Problem 6.38 [Difficulty: 1]

Given: Water at speed 25 ft/s

Find: Dynamic pressure in in. Hg

Solution:

Basic equations pdynamic
1

2
ρ⋅ V

2
⋅= p ρHg g⋅ ∆h⋅= SGHg ρ⋅ g⋅ ∆h⋅=

Hence ∆h
ρ V

2
⋅

2 SGHg⋅ ρ⋅ g⋅
=

V
2

2 SGHg⋅ g⋅
=

∆h
1

2
25

ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×
1

13.6
×

s
2

32.2 ft⋅
×

12 in⋅

1 ft⋅
×= ∆h 8.56 in⋅=



Problem 6.39 [Difficulty: 1]

Given: Air speed of 100 km/hr

Find: Dynamic pressure in mm water

Solution:

Basic equations pdynamic
1

2
ρair⋅ V

2
⋅= p ρw g⋅ ∆h⋅=

Hence ∆h
ρair

ρw

V
2

2 g⋅
⋅=

∆h

1.23
kg

m
3

⋅

999
kg

m
3

⋅

1

2
× 100

km

hr
⋅⎛⎜

⎝
⎞
⎠

2

×
1000 m⋅

1 km⋅
⎛⎜
⎝

⎞
⎠

2

×
1 hr⋅

3600 s⋅
⎛⎜
⎝

⎞
⎠

2

×
s
2

9.81 m⋅
×= ∆h 48.4 mm⋅=



Problem 6.40 [Difficulty: 2]

Given: Air speed

Find: Plot dynamic pressure in mm Hg

Solution:

Basic equations pdynamic
1

2
ρair V

2
 p ρHg g ∆h SGHg ρw g ∆h

Available data ρw 999
kg

m
3

 ρair 1.23
kg

m
3

 SGHg 13.6

Hence
1

2
ρair V

2
 SGHg ρw g ∆h

Solving for V V ∆h( )
2 SGHg ρw g ∆h

ρair



0 50 100 150 200 250

50

100

150

200

250

Dh (mm)

V
 (

m
/s



Problem 6.41 [Difficulty: 2]

Given: Velocity of automobile

Find: Estimates of aerodynamic force on hand

Solution:

The basic equation is the Bernoulli equation (in coordinates attached to the vehicle) patm
1

2
ρ⋅ V

2
⋅+ pstag=

where V is the free stream velocity

For air ρ 0.00238
slug

ft
3

⋅=

We need an estimate of the area of a typical hand.  Personal inspection indicates that a good approximation is a square of sides 9

cm and 17 cm

A 9 cm⋅ 17× cm⋅= A 153 cm
2

⋅=

Hence, for pstag on the front side of the hand, and patm on the rear, by assumption,

F pstag patm−( ) A⋅=
1

2
ρ⋅ V

2
⋅ A⋅=

(a) V 30 mph⋅=

F
1

2
ρ⋅ V

2
⋅ A⋅=

1

2
0.00238×

slug

ft
3

⋅ 30 mph⋅

22
ft

s
⋅

15 mph⋅
⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

× 153× cm
2

⋅

1

12
ft⋅

2.54 cm⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

×= F 0.379 lbf⋅=

(b) V 60 mph⋅=

F
1

2
ρ⋅ V

2
⋅ A⋅=

1

2
0.00238×

slug

ft
3

⋅ 60 mph⋅

22
ft

s
⋅

15 mph⋅
⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

× 153× cm
2

⋅

1

12
ft⋅

2.54 cm⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

×= F 1.52 lbf⋅=

These values pretty much agree with experience.  However, they overestimate a bit as the entire front of the hand is not at

stagnation pressure - there is flow around the had - so the pressure is less than stagnation over most of the surface.



Problem 6.42 [Difficulty: 2]

Given: Air jet hitting wall generating pressures

Find: Speed of air at two locations

Solution:

Basic equations
p

ρair

V
2

2
+ g z⋅+ const= ρair

p

Rair T⋅
= ∆p ρHg g⋅ ∆h⋅= SGHg ρ⋅ g⋅ ∆h⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data R 287
J

kg K⋅
⋅= T 10− °C= ρ 999

kg

m
3

⋅= p 200 kPa⋅= SGHg 13.6=

For the air ρair
p

R T⋅
= ρair 2.65

kg

m
3

=

Hence, applying Bernoulli between the jet and where it hits the wall directly

patm

ρair

Vj
2

2
+

pwall

ρair

= pwall

ρair Vj
2

⋅

2
= (working in gage pressures)

Hence pwall SGHg ρ⋅ g⋅ ∆h⋅=
ρair Vj

2
⋅

2
= so Vj

2 SGHg⋅ ρ⋅ g⋅ ∆h⋅

ρair

=

∆h 25 mm⋅= hence Vj 2 13.6× 999×
kg

m
3

⋅
1

2.65
×

m
3

kg
⋅ 9.81×

m

s
2

⋅ 25× mm⋅
1 m⋅

1000 mm⋅
×= Vj 50.1

m

s
=

Repeating the analysis for the second point

∆h 5 mm⋅=
patm

ρair

Vj
2

2
+

pwall

ρair

V
2

2
+= V Vj

2
2 pwall⋅

ρair

−= Vj
2

2 SGHg⋅ ρ⋅ g⋅ ∆h⋅

ρair

−=

Hence V 50.1
m

s
⋅⎛⎜

⎝
⎞
⎠

2

2 13.6× 999×
kg

m
3

⋅
1

2.65
×

m
3

kg
⋅ 9.81×

m

s
2

⋅ 5× mm⋅
1 m⋅

1000 mm⋅
×−= V 44.8

m

s
=
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Problem 6.44 [Difficulty: 2]

Given: Wind tunnel with inlet section

Find: Dynamic and static pressures on centerline; compare with Speed of air at two locations

Solution:

Basic equations pdyn
1

2
ρair⋅ U

2
⋅= p0 ps pdyn+= ρair

p

Rair T⋅
= ∆p ρw g⋅ ∆h⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data T 5− °C= U 50
m

s
⋅= R 287

J

kg K⋅
⋅= patm 101 kPa⋅= h0 10− mm⋅= ρw 999

kg

m
3

⋅=

For air ρair

patm

R T⋅
= ρair 1.31

kg

m
3

=

pdyn
1

2
ρair⋅ U

2
⋅= pdyn 1.64 kPa⋅=

Also p0 ρw g⋅ h0⋅= p0 98.0− Pa= (gage)

and p0 ps pdyn+= so ps p0 pdyn−= ps 1.738− kPa= hs

ps

ρw g⋅
= hs 177− mm=

(gage)

Streamlines in the test section are straight so
n

p
∂

∂
0= and pw pcenterline=

In the curved section
n

p
∂

∂
ρair

V
2

R
⋅= so pw pcenterline<
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4.123



Problem 6.48 [Difficulty: 2]

Given: Flow in pipe/nozzle device

Find: Gage pressure needed for flow rate; repeat for inverted

Solution:

Basic equations Q V A⋅=
p

ρ

V
2

2
+ g z⋅+ const=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data D1 1 in⋅= D2 0.5 in⋅= V2 30
ft

s
⋅= z2 10 ft⋅= ρ 1.94

slug

ft
3

⋅=

From continuity Q V1 A1⋅= V2 A2⋅= V1 V2

A2

A1

⋅= or V1 V2

D2

D1

⎛
⎜
⎝

⎞

⎠

2

⋅= V1 7.50
ft

s
=

Hence, applying Bernoulli between locations 1 and 2

p1

ρ

V1
2

2
+ 0+

p2

ρ

V2
2

2
+ g z2⋅+= 0

V2
2

2
+ g z2⋅+= working in gage pressures

Solving for p1 (gage) p1 ρ
V2

2
V1

2
−

2
g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅= p1 10.0 psi⋅=

When it is inverted z2 10− ft⋅=

p2 ρ
V2

2
V1

2
−

2
g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅= p2 1.35 psi⋅=
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Problem 6.50 [Difficulty: 2]

Given: Siphoning of gasoline

Find: Flow rate

Solution:

Basic equation
p

ρgas

V
2

2
 g z const

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the gas tank free surface and the siphon exit

patm

ρgas

patm

ρgas

V
2

2
 g h where we assume the tank free surface is slowly changing so Vtank <<,

and h is the difference in levels 

Hence V 2 g h

The flow rate is then Q V A
π D

2


4
2 g h

Q
π

4
.5 in( )

2


1 ft
2



144 in
2


 2 32.2

ft

s
2

1 ft Q 0.0109
ft

3

s
 Q 4.91

gal

min




Problem 6.51 [Difficulty: 2]

Given: Siphoning of wort

Find: Flow rate; plot; height for a flow of 2 L/min

Solution:

Basic equation
p

ρwort

V
2

2
 g z const

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the open surface of the full tank and tube exit to atmosphere

patm

ρgas

patm

ρgas

V
2

2
 g h where we assume the tank free surface is slowly changing so Vtank <<,

and h is the difference in levels 

Hence V 2 g h

The flow rate is then Q V A
π D

2


4
2 g h

For D 5 mm

0 50 100 150 200 250

1

2

3

h (mm)

Q
 (

L
/m

in
)

For a flow rate of Q 2
L

min
 Q 3.33 10

5


m
3

s
 solving for h h

8 Q
2



π
2

D
4

 g
 h 147 mm



Problem 6.52 [Difficulty: 2]

Given: Ruptured pipe

Find: Height benzene rises from tank

Solution:

Basic equation
p

ρben

V
2

2
 g z const

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data ρ 999
kg

m
3

 pben 50 kPa (gage) From Table A.2 SGben 0.879

Hence, applying Bernoulli between the pipe and the rise height of the benzene

pben

ρben

patm

ρben

g h where we assume Vpipe <<, and h is the rise height

Hence where pben is now the gage pressure
h

pben

SGben ρ g


h 5.81 m



Problem 6.53 [Difficulty: 2]

Given: Ruptured Coke can

Find: Pressure in can

Solution:

Basic equation
p

ρCoke

V
2

2
 g z const

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data ρw 999
kg

m
3

 h 0.5 m From a web search SGDietCoke 1 SGRegularCoke 1.11

Hence, applying Bernoulli between the coke can and the rise height of the coke

pcan

ρCoke

patm

ρCoke

g h where we assume VCoke <<, and h is the rise height

Hence pCoke ρCoke g h SGCoke ρw g h where pCoke is now the gage pressure

pDiet SGDietCoke ρw g h pDiet 4.90 kPa (gage)
Hence

and pRegular SGRegularCoke ρw g h pRegular 5.44 kPa (gage)



Problem 6.54 [Difficulty: 3]

Given: Flow rate through siphon

Find: Maximum height h to avoid cavitation

Solution:

Basic equation
p

ρ

V
2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data Q 5
L

s
⋅= Q 5 10

3−
×

m
3

s
= D 25 mm⋅= ρ 999

kg

m
3

⋅= patm 101 kPa⋅=

From continuity V
Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
0.005×

m
3

s
⋅

1

.025 m⋅
⎛⎜
⎝

⎞
⎠

2

×= V 10.2
m

s
=

Hence, applying Bernoulli between the free surface and point A

patm

ρ

pA

ρ
g h⋅+

V
2

2
+= where we assume VSurface <<

Hence pA patm ρ g⋅ h⋅− ρ
V

2

2
⋅−=

From the steam tables, at 20oC the vapor pressure is pv 2.358 kPa⋅=

This is the lowest permissible value of pA

Hence pA pv= patm ρ g⋅ h⋅− ρ
V

2

2
⋅−= or h

patm pv−

ρ g⋅

V
2

2 g⋅
−=

Hence h 101 2.358−( ) 10
3

×
N

m
2

⋅
1

999
×

m
3

kg
⋅

s
2

9.81 m⋅
×

kg m⋅

N s
2

⋅
×

1

2
10.2

m

s

⎛⎜
⎝

⎞
⎠

2

×
s
2

9.81 m⋅
×−= h 4.76 m=
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Problem 6.56 [Difficulty: 2]

Given: Flow through tank-pipe system

Find: Velocity in pipe; Rate of discharge

Solution:

Basic equations
p

ρ

V
2

2
 g z const ∆p ρ g ∆h Q V A

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the free surface and the manometer location

patm

ρ

p

ρ
g H

V
2

2
 where we assume VSurface <<, and H = 4 m

Hence p patm ρ g H ρ
V

2

2


For the manometer p patm SGHg ρ g h2 ρ g h1 Note that we have water on one side and mercury on

the other of the manometer

Combining equations ρ g H ρ
V

2

2
 SGHg ρ g h2 ρ g h1 or V 2 g H SGHg h2 h2 

Hence V 2 9.81
m

s
2

 4 13.6 0.15 0.75( ) m V 7.29
m

s


The flow rate is Q V
π D

2


4
 Q

π

4
7.29

m

s
 0.05 m( )

2
 Q 0.0143

m
3

s

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Problem 6.58 [Difficulty: 3]

Given: Air flow over a wing

Find: Air speed relative to wing at a point; absolute air speed

Solution:

Basic equation
p

ρ

V
2

2
+ g z⋅+ const= p ρ R⋅ T⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data T 10− °C= p1 65 kPa⋅= V1 200
km

hr
⋅= p2 60 kPa⋅= R 286.9

N m⋅

kg K⋅
⋅=

For air ρ
p1

R T⋅
= ρ 65( ) 10

3
×

N

m
2

⋅
kg K⋅

286.9 N⋅ m⋅
×

1

10− 273+( ) K⋅
×= ρ 0.861

kg

m
3

=

Hence, applying Bernoulli between the upstream point (1) and the point on the wing (2)

p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+= where we ignore gravity effects

Hence V2 V1
2

2
p1 p2−( )

ρ
⋅+=

Then V2 200
km

hr
⋅⎛⎜

⎝
⎞
⎠

2
1000 m⋅

1 km⋅
⎛⎜
⎝

⎞
⎠

2

×
1 hr⋅

3600 s⋅
⎛⎜
⎝

⎞
⎠

2

× 2
m

3

0.861 kg⋅
× 65 60−( )× 10

3
×

N

m
2

⋅
kg m⋅

N s
2

⋅
×+= V2 121

m

s
=

NOTE: At this speed, significant density changes will occur, so this result is not very realistic

The absolute velocity is

V2abs V2 V1−= V2abs 65.7
m

s
=



Problem 6.59 [Difficulty: 3]

Given: Water flow over a hydrofoil

Find: Stagnation pressure; water speed relative to airfoil at a point; absolute value

Solution:

Basic equations
p

ρ

V
2

2
 g z const ∆p ρ g h

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Available data V1 20
m

s
 ρ 999

kg

m
3

 h 3 m p2 75 kPa (gage)

Using coordinates fixed to the hydrofoil, the pressure at depth h is p1 ρ g h p1 29.4 kPa

Applying Bernoulli between the upstream (1) and the stagnation point (at the front of the hydrofoil)

p1

ρ

V1
2

2


p0

ρ
 or p0 p1

1

2
ρ V1

2
 p0 229 kPa

Applying Bernoulli between the upstream point (1) and the point on the hydrofoil (2)

p1

ρ

V1
2

2


p2

ρ

V2
2

2


Hence V2 V1
2

2
p1 p2 

ρ
 V2 24.7

m

s


This is the speed of the water relative to the hydrofoil; in absolute coordinates V2abs V2 V1 V2abs 44.7
m

s




 

Problem 6.60                                                           [Difficulty: 3]



Problem 6.61 [Difficulty: 2]

Given: Flow through fire nozzle

Find: Maximum flow rate

Solution:

Basic equation
p

ρ

V
2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+= where we ignore gravity effects

But we have Q V1 A1⋅= V1
π D

2
⋅

4
⋅= V2 A2⋅=

π d
2

⋅

4
= so V1 V2

d

D

⎛⎜
⎝

⎞
⎠

2

⋅=

V2
2

V2
2 d

D

⎛⎜
⎝

⎞
⎠

4

⋅−
2 p2 p1−( )⋅

ρ
=

Hence V2

2 p1 p2−( )⋅

ρ 1
d

D

⎛⎜
⎝

⎞
⎠

4

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅

=

Then V2 2
ft

3

1.94 slug⋅
× 100 0−( )×

lbf

in
2

⋅
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
1

1
1

3

⎛⎜
⎝

⎞
⎠

3

−

×
slug ft⋅

lbf s
2

⋅
×= V2 124

ft

s
⋅=

Q V2
π d

2
⋅

4
⋅= Q

π

4
124×

ft

s
⋅

1

12
ft⋅⎛⎜

⎝
⎞
⎠

2

×= Q 0.676
ft

3

s
⋅= Q 304

gal

min
⋅=



Problem 6.62 [Difficulty: 2]

Given: Race car on straightaway

Find: Air inlet where speed is 60 mph; static pressure; pressure rise

Solution:

Basic equation
p

ρ

V
2

2
+ g z⋅+ const=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline 5) Standard atmosphere

Available data patm 101 kPa⋅= ρ 0.002377
slug

ft
3

⋅= V1 235 mph⋅= V2 60 mph⋅=

Between location 1 (the upstream flow at 235 mph with respect to the car), and point 2 (on the car where V = 60 mph),

Bernoulli becomes

p1

ρ

V1
2

2
+

patm

ρ

V1
2

2
+=

p2

ρ

V2
2

2
+=

Hence p2 patm
1

2
ρ⋅ V1

2
⋅ 1

V2

V1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅+= p2 15.6 psi=

Note that the pressure rise is ∆p
1

2
ρ⋅ V1

2
⋅ 1

V2

V1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= ∆p 0.917 psi⋅=

The freestream dynamic pressure is q
1

2
ρ⋅ V1

2
⋅= q 0.980 psi⋅=

Then
∆p

q
93.5 %⋅=

Note that at this speed the flow is borderline compressible!



 

Problem 6.63                                                          [Difficulty: 2]



Problem 6.64 [Difficulty: 3]

Given: Velocity field

Find: Pressure distribution along wall; plot distribution; net force on wall

Solution:

The given data is q 2

m
3

s

m
⋅= h 1 m⋅= ρ 1000

kg

m
3

⋅=

u
q x⋅

2 π⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦

q x⋅

2 π⋅ x
2

y h+( )
2

+⎡⎣ ⎤⎦
+= v

q y h−( )⋅

2 π⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦

q y h+( )⋅

2 π⋅ x
2

y h+( )
2

+⎡⎣ ⎤⎦
+=

The governing equation is the Bernoulli equation

p

ρ

1

2
V

2
⋅+ g z⋅+ const= where V u

2
v

2
+=

Apply this to point arbitrary point (x,0) on the wall and at infinity (neglecting gravity)

At x 0→ u 0→ v 0→ V 0→

At point (x,0) u
q x⋅

π x
2

h
2

+( )⋅
= v 0= V

q x⋅

π x
2

h
2

+( )⋅
=

Hence the Bernoulli equation becomes
patm

ρ

p

ρ

1

2

q x⋅

π x
2

h
2

+( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅+=

or (with pressure expressed as gage pressure) p x( )
ρ

2
−

q x⋅

π x
2

h
2

+( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

2

⋅=

(Alternatively, the pressure distribution could have been obtained from Problem 6.8, where the momentum equation was used to find

the pressure gradient 
x

p
∂

∂

ρ q
2

⋅ x⋅ x
2

h
2

−( )⋅

π
2

x
2

h
2

+( )3⋅

=  along the wall.  Integration of this with respect to x leads to the same result for p(x))

The plot of pressure can be done in Excel (see below).  From the plot it is clear that the wall experiences a negative gage pressure

on the upper surface (and zero gage pressure on the lower), so the net force on the wall is upwards, towards the source



The force per width on the wall is given by F

10− h⋅

10 h⋅
xpupper plower−( )

⌠
⎮
⌡

d= F
ρ q

2
⋅

2 π
2

⋅
−

10− h⋅

10 h⋅

x
x

2

x
2

h
2

+( )2
⌠
⎮
⎮
⎮
⎮⌡

d⋅=

The integral is x
x

2

x
2

h
2

+( )2
⌠
⎮
⎮
⎮
⎮
⌡

d

atan
x

h

⎛⎜
⎝

⎞
⎠

2 h⋅

x

2 h
2

⋅ 2 x
2

⋅+
−=

so F
ρ q

2
⋅

2 π
2

⋅ h⋅
−

10

101
− atan 10( )+⎛⎜
⎝

⎞
⎠

⋅=

F
1

2 π
2

⋅
− 1000×

kg

m
3

⋅ 2
m

2

s
⋅

⎛
⎜
⎝

⎞

⎠

2

×
1

1 m⋅
×

10

101
− atan 10( )+⎛⎜
⎝

⎞
⎠

×
N s

2
⋅

kg m⋅
×= F 278−

N

m
⋅=

In Excel:

q  = 2 m3/s/m

h  = 1 m

ℵ = 1000 kg/m3

x  (m) p  (Pa)

0.0 0.00

1.0 -50.66

2.0 -32.42

3.0 -18.24

4.0 -11.22

5.0 -7.49

6.0 -5.33

7.0 -3.97

8.0 -3.07

9.0 -2.44

10.0 -1.99

Pressure Distribution Along Wall

-60

-50

-40

-30

-20

-10

0

0 1 2 3 4 5 6 7 8 9 10

x  (m)

p
 (

P
a
)



Problem 6.65 [Difficulty: 3]

Given: Velocity field for plane doublet

Find: Pressure distribution along x axis; plot distribution

Solution:

The governing equation is the Bernoulli equation
p

ρ

1

2
V

2
⋅+ g z⋅+ const= where V u

2
v

2
+=

The given data is Λ 3
m

3

s
⋅= ρ 1000

kg

m
3

⋅= p0 100 kPa⋅=

From Table 6.1 Vr
Λ

r
2

− cos θ( )⋅= Vθ
Λ

r
2

− sin θ( )⋅=

where Vr and Vθ are the velocity components in cylindrical coordinates (r,θ).  For points along the x axis, r = x, θ = 0, Vr = u and Vθ
= v = 0

u
Λ

x
2

−= v 0=

so (neglecting gravity)
p

ρ

1

2
u

2
⋅+ const=

Apply this to point arbitrary point (x,0) on the x axis and at infinity

At x 0→ u 0→ p p0→ At point (x,0) u
Λ

x
2

−=

Hence the Bernoulli equation becomes
p0

ρ

p

ρ

Λ
2

2 x
4

⋅
+= or p x( ) p0

ρ Λ
2

⋅

2 x
4

⋅
−=

The plot of pressure can be done in Excel:

x  (m) p  (Pa)

0.5 99.892

0.6 99.948

0.7 99.972

0.8 99.984

0.9 99.990

1.0 99.993

1.1 99.995

1.2 99.997

1.3 99.998

1.4 99.998

1.5 99.999

1.6 99.999

1.7 99.999

1.8 99.999

1.9 99.999

2.0 100.000

Pressure Distribution Along x  axis

99.8

99.9

99.9

100.0

100.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

x  (m)

p
 (

k
P

a
)
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Problem 6.67 [Difficulty: 3]

 

Rx 

 


Given: Flow through fire nozzle

Find: Maximum flow rate

Solution:

Basic equation
p

ρ

V
2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+= where we ignore gravity effects

But we have Q V1 A1⋅= V1
π D

2
⋅

4
⋅= V2

π d
2

⋅

4
⋅= so V1 V2

d

D

⎛⎜
⎝

⎞
⎠

2

⋅=

Hence in Bernoulli V2
2

V2
2 d

D

⎛⎜
⎝

⎞
⎠

4

⋅−
2 p2 p1−( )⋅

ρ
= or V2

2 p1 p2−( )⋅

ρ 1
d

D

⎛⎜
⎝

⎞
⎠

4

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅

=

V2 2
m

3

1000 kg⋅
× 700 0−( )× 10

3
×

N

m
2

⋅
1

1
25

75

⎛⎜
⎝

⎞
⎠

4

−

×
kg m⋅

N s
2

⋅
×= V2 37.6

m

s
=

Then Q V2
π d

2
⋅

4
⋅= Q

π

4
37.6×

m

s
⋅ 0.025 m⋅( )

2
×= Q 0.0185

m
3

s
⋅= Q 18.5

L

s
⋅=

From x momentum Rx p1 A1⋅+ u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+= using gage pressures

Hence Rx p1−
π D

2
⋅

4
⋅ ρ Q⋅ V2 V1−( )⋅+= p1−

π D
2

⋅

4
⋅ ρ Q⋅ V2⋅ 1

d

D

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Rx 700− 10
3

×
N

m
2

⋅
π

4
× 0.075 m⋅( )

2
⋅ 1000

kg

m
3

⋅ 0.0185×
m

3

s
⋅ 37.6×

m

s
⋅ 1

25

75

⎛⎜
⎝

⎞
⎠

3

−
⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×+= Rx 2423− N=

This is the force of the nozzle on the fluid; hence the force of the fluid on the nozzle is 2400 N to the right; the nozzle is in tension



 

Problem 6.68                                                         [Difficulty: 3]



Problem 6.69 [Difficulty: 3]

Given: Flow through reducing elbow

Find: Gage pressure at location 1; x component of force

Solution:

Basic equations:
p

ρ

V
2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline 5) Ignore elevation change 6) p2 = patm

Available data: Q 2.5
L

s
⋅= Q 2.5 10

3−
×

m
3

s
= D 45 mm⋅= d 25 mm⋅= ρ 999

kg

m
3

⋅=

From contnuity V1
Q

π D
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= V1 1.57
m

s
= V2

Q

π d
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= V2 5.09
m

s
=

Hence, applying Bernoulli between the inlet (1) and exit (2) p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+=

or, in gage pressures p1g
ρ

2
V2

2
V1

2
−⎛

⎝
⎞
⎠⋅= p1g 11.7 kPa⋅=

From x-momentum Rx p1g A1⋅+ u1 mrate−( )⋅ u2 mrate( )⋅+= mrate− V1⋅= ρ− Q⋅ V1⋅= because u1 V1= u2 0=

Rx p1g−
π D

2
⋅

4
⋅ ρ Q⋅ V1⋅−= Rx 22.6− N=

The force on the supply pipe is then Kx Rx−= Kx 22.6 N= on the pipe to the right



Problem 6.70 [Difficulty: 3]

Given: Flow nozzle

Find: Mass flow rate in terms of Δp, T1 and D1 and D2

Solution:

Basic equation
p

ρ

V
2

2
+ g z⋅+ const= Q V A⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+= where we ignore gravity effects

But we have Q V1 A1⋅= V1

π D1
2

⋅

4
⋅= V2

π D2
2

⋅

4
⋅= so V1 V2

D2

D1

⎛
⎜
⎝

⎞

⎠

2

⋅=

Note that we assume the flow at D2 is at the same pressure as the entire section 2; this will be true if there is turbulent mixing

Hence V2
2

V2
2

D2

D1

⎛
⎜
⎝

⎞

⎠

4

⋅−
2 p2 p1−( )⋅

ρ
= or V2

2 p1 p2−( )⋅

ρ 1
D2

D1

⎛
⎜
⎝

⎞

⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

=

Then the mass flow rate is mflow ρ V2⋅ A2⋅= ρ
π D2

2
⋅

4
⋅

2 p1 p2−( )⋅

ρ 1
D2

D1

⎛
⎜
⎝

⎞

⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⋅=
π D2

2
⋅

2 2⋅

∆p ρ⋅

1
D2

D1

⎛
⎜
⎝

⎞

⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Using p ρ R⋅ T⋅= mflow

π D2
2

⋅

2 2⋅

∆p p1⋅

R T1⋅ 1
D2

D1

⎛
⎜
⎝

⎞

⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⋅=

For a flow nozzle mflow k ∆p⋅= where k
π D2

2
⋅

2 2⋅

p1

R T1⋅ 1
D2

D1

⎛
⎜
⎝

⎞

⎠

4

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

⋅=

We can expect the actual flow will be less because there is actually significant loss in the device.  Also the flow will experience a

vena contracta so that the minimum diameter is actually smaller than D2.  We will discuss this device in Chapter 8.



Problem 6.71 [Difficulty: 4]

Given: Flow through branching blood vessel

Find: Blood pressure in each branch; force at branch

Solution:

Basic equations
p

ρ

V
2

2
+ g z⋅+ const=

CV

Q∑ 0= Q V A⋅= ∆p ρ g⋅ ∆h⋅=

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Given data Q1 4.5
L

min
⋅= Q2 2

L

min
⋅= D1 10 mm⋅= D2 5 mm⋅= D3 3 mm⋅=

SGHg 13.6= ρ 999
kg

m
3

⋅= ρb 1060
kg

m
3

⋅= h1 140 mm⋅= (pressure in in. Hg)

For Q3 we have

CV

Q∑ Q1− Q2+ Q3+= 0= so Q3 Q1 Q2−= Q3 2.50
L

min
⋅=

We will need each velocity V1

Q1

A1

= V1

4 Q1⋅

π D1
2

⋅
= V1 0.955

m

s
=

Similarly V2

4 Q2⋅

π D2
2

⋅
= V2 1.70

m

s
= V3

4 Q3⋅

π D3
2

⋅
= V3 5.89

m

s
=

Hence, applying Bernoulli between the inlet (1) and exit (2)

p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+= where we ignore gravity effects



p2 p1
ρ

2
V1

2
V2

2
−⎛

⎝
⎞
⎠⋅+= and p1 SGHg ρ⋅ g⋅ h1⋅= p1 18.7 kPa⋅=

Hence p2 p1

ρb

2
V1

2
V2

2
−⎛

⎝
⎞
⎠⋅+= p2 17.6 kPa⋅=

In mm Hg h2

p2

SGHg ρ⋅ g⋅
= h2 132 mm⋅=

Similarly for exit (3) p3 p1
ρ

2
V1

2
V3

2
−⎛

⎝
⎞
⎠⋅+= p3 1.75 kPa⋅=

In mm Hg h3

p3

SGHg ρ⋅ g⋅
= h3 13.2 mm⋅=

Note that all pressures are gage.

For x momentum Rx p3 A3⋅ cos 60 deg⋅( )⋅+ p2 A2⋅ cos 45 deg⋅( )⋅− u3 ρ Q3⋅( )⋅ u2 ρ Q2⋅( )⋅+=

Rx p2 A2⋅ cos 45 deg⋅( )⋅ p3 A3⋅ cos 60 deg⋅( )⋅− ρ Q2 V2⋅ cos 45 deg⋅( )⋅ Q3 V3⋅ cos 60 deg⋅( )⋅−( )⋅+=

Rx p2

π D2
2

⋅

4
⋅ cos 45 deg⋅( )⋅ p3

π D3
2

⋅

4
⋅ cos 60 deg⋅( )⋅− ρ Q2 V2⋅ cos 45 deg⋅( )⋅ Q3 V3⋅ cos 60 deg⋅( )⋅−( )⋅+= Rx 0.156 N=

For y momentum Ry p3 A3⋅ sin 60 deg⋅( )⋅− p2 A2⋅ sin 45 deg⋅( )⋅− p1 A1⋅+ v3 ρ Q3⋅( )⋅ v2 ρ Q2⋅( )⋅+=

Ry p2 A2⋅ sin 45 deg⋅( )⋅ p3 A3⋅ sin 60 deg⋅( )⋅+ p1 A1⋅− ρ Q2 V2⋅ sin 45 deg⋅( )⋅ Q3 V3⋅ sin 60 deg⋅( )⋅+( )⋅+=

Ry p2

π D2
2

⋅

4
⋅ sin 45 deg⋅( )⋅ p3

π D3
2

⋅

4
⋅ sin 60 deg⋅( )⋅+ p1

π D1
2

⋅

4
⋅− ρ Q2 V2⋅ sin 45 deg⋅( )⋅ Q3 V3⋅ sin 60 deg⋅( )⋅+( )⋅+=

Ry 0.957− N=
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Problem 6.74 [Difficulty: 3]

CS 

x 
y 

Ry 

V 

 

W 

H 

Given: Flow through kitchen faucet

Find: Area variation with height; force to hold plate as function of height

Solution:

Basic equation
p

ρ

V
2

2
 g z const Q V A

Assumptions: 1) Incompressible flow 2) Inviscid 3) Steady 4) Along a streamline

Hence, applying Bernoulli between the faucet (1) and any height y

V1
2

2
g H

V
2

2
g y where we assume the water is at patm

Hence V y( ) V1
2

2 g H y( )

The problem doesn't require a plot, but it looks like V1 0.815
m

s
 V 0 m( ) 3.08

m

s


0 5 10 15 20 25 30 35 40 45

1

2

3

4

5

y (cm)

V
 (

m
/s

)

The speed increases as y decreases because the fluid particles "trade" potential energy for kinetic, just as a falling solid particle does!

But we have Q V1 A1 V1
π D

2


4
 V A

Hence A
V1 A1

V
 A y( )

π D1
2

 V1

4 V1
2

2 g H y( )





0 0.5 1 1.5

15

30

45

A (cm2)

y
 (

cm
)

The problem doesn't require a plot, but it looks like

A H( ) 1.23 cm
2



A 0( ) 0.325 cm
2



The area decreases as the speed increases.  If the stream falls far enough the flow will change to turbulent.

For the CV above Ry W uin ρ Vin Ain  V ρ Q( )

Ry W ρ V
2

 A W ρ Q V1
2

2 g H y( )

Hence Ry increases in the same way as V as the height y varies; the maximum force is when y = H 

Rymax W ρ Q V1
2

2 g H



Problem 6.75    [Difficulty: 4] 
 

 
 

 

Open-Ended Problem Statement: An old magic trick uses an empty thread spool and a 

playing card. The playing card is placed against the bottom of the spool. Contrary to 

intuition, when one blows downward through the central hole in the spool, the card is not 

blown away. Instead it is ‘‘sucked’’ up against the spool. Explain. 

 

Discussion: The secret to this “parlor trick” lies in the velocity distribution, and hence 

the pressure distribution, that exists between the spool and the playing cards. 

 

Neglect viscous effects for the purposes of discussion.  Consider the space between the 

end of the spool and the playing card as a pair of parallel disks.  Air from the hole in the 

spool enters the annular space surrounding the hole, and then flows radially outward 

between the parallel disks. For a given flow rate of air the edge of the hole is the cross-

section of minimum flow area and therefore the location of maximum air speed. 

 

After entering the space between the parallel disks, air flows radially outward. The flow 

area becomes larger as the radius increases. Thus the air slows and its pressure increases. 

The largest flow area, slowest air speed, and highest pressure between the disks occur at 

the outer periphery of the spool where the air is discharged from an annular area. 

 

The air leaving the annular space between the disk and card must be at atmospheric 

pressure. This is the location of the highest pressure in the space between the parallel 

disks. Therefore pressure at smaller radii between the disks must be lower, and hence the 

pressure between the disks is sub-atmospheric. Pressure above the card is less than 

atmospheric pressure; pressure beneath the card is atmospheric. Each portion of the card 

experiences a pressure difference acting upward. This causes a net pressure force to act 

upward on the whole card. The upward pressure force acting on the card tends to keep it 

from blowing off the spool when air is introduced through the central hole in the spool. 

 

Viscous effects are present in the narrow space between the disk and card. However, they 

only reduce the pressure rise as the air flows outward, they do not dominate the flow 

behavior. 



Problem 6.76 [Difficulty: 4]

Given: Air jet striking disk

Find: Manometer deflection; Force to hold disk; Force assuming p0 on entire disk; plot pressure distribution

Solution:

Basic equations: Hydrostatic pressure,  Bernoulli, and momentum flux in x direction

∆p SG ρ⋅ g⋅ ∆h⋅=
p

ρ

V
2

2
+ g z⋅+ constant=

Assumptions:  1) Steady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying Bernoulli between jet exit and stagnation point

patm

ρair

V
2

2
+

p0

ρair

0+= p0 patm−
1

2
ρair⋅ V

2
⋅=

But from hydrostatics p0 patm− SG ρ⋅ g⋅ ∆h⋅= so ∆h

1

2
ρair⋅ V

2
⋅

SG ρ⋅ g⋅
=

ρair V
2

⋅

2 SG⋅ ρ⋅ g⋅
=

∆h 0.002377
slug

ft
3

⋅ 225
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×
1

2 1.75⋅
×

ft
3

1.94 slug⋅
×

s
2

32.2 ft⋅
×= ∆h 0.55 ft⋅= ∆h 6.60 in⋅=

For x momentum Rx V ρair− A⋅ V⋅( )⋅= ρair− V
2

⋅
π d

2
⋅

4
⋅=

Rx 0.002377−
slug

ft
3

⋅ 225
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×

π
0.4

12
ft⋅⎛⎜

⎝
⎞
⎠

2

⋅

4
×

lbf s
2

⋅

slug ft⋅
×= Rx 0.105− lbf⋅=

The force of the jet on the plate is then F Rx−= F 0.105 lbf⋅=

The stagnation pressure is p0 patm
1

2
ρair⋅ V

2
⋅+=



The force on the plate, assuming stagnation pressure on the front face, is 

F p0 p−( ) A⋅=
1

2
ρair⋅ V

2
⋅

π D
2

⋅

4
⋅=

F
π

8
0.002377×

slug

ft
3

⋅ 225
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×
7.5

12
ft⋅⎛⎜

⎝
⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×= F 18.5 lbf⋅=

Obviously this is a huge overestimate!

For the pressure distribution on the disk, we use Bernoulli between the disk outside edge any radius r for radial flow

patm

ρair

1

2
vedge

2
⋅+

p

ρair

1

2
v

2
⋅+=

We need to obtain the speed v as a function of radius.  If we assume the flow remains constant thickness h, then

Q v 2⋅ π⋅ r⋅ h⋅= V
π d

2
⋅

4
⋅= v r( ) V

d
2

8 h⋅ r⋅
⋅=

We need an estimate for h.  As an approximation, we assume that h = d (this assumption will change the scale of p(r) but not the

basic shape)

Hence v r( ) V
d

8 r⋅
⋅=

Using this in Bernoulli p r( ) patm
1

2
ρair⋅ vedge

2
v r( )

2
−⎛

⎝
⎞
⎠⋅+= patm

ρair V
2

⋅ d
2

⋅

128

4

D
2

1

r
2

−⎛
⎜
⎝

⎞

⎠
⋅+=

Expressed as a gage pressure p r( )
ρair V

2
⋅ d

2
⋅

128

4

D
2

1

r
2

−⎛
⎜
⎝

⎞

⎠
⋅=

0 1 2 3 4

0.3−

0.2−

0.1−

r (in)

p
 (

p
si

)
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Problem 6.80 [Difficulty: 3]

Given: Air flow over "bubble" structure

Find: Net vertical force

Solution: The net force is given by F
→

A
→

p
⌠
⎮
⌡

d= also ∆p ρ g⋅ ∆h⋅=

Available data L 50 ft⋅= R 25ft= V 35 mph⋅= ∆h 0.75 in⋅= ρ 1.94
slug

ft
3

⋅= ρair 0.00238
slug

ft
3

⋅=

The internal pressure is ∆p ρ g⋅ ∆h⋅= ∆p 187 Pa=

Through symmetry only the vertical component of force is no-zero FV

0

π

θpi p−( ) sin θ( )⋅ R⋅ L⋅
⌠
⎮
⌡

d=

where pi is the internal pressure and p the external pi patm ∆p+= p patm
1

2
ρair⋅ V

2
⋅ 1 4 sin θ( )

2
⋅−( )⋅−=

Hence FV

0

π

θ∆p
1

2
ρair⋅ V

2
⋅ 1 4 sin θ( )

2
⋅−( )⋅−⎡⎢

⎣
⎤⎥
⎦

sin θ( )⋅ R⋅ L⋅
⌠
⎮
⎮
⌡

d=

FV R L⋅ ∆p⋅
0

π

θsin θ( )
⌠
⎮
⌡

d⋅ R L⋅
1

2
⋅ ρair⋅ V

2
⋅

0

π

θ1 4 sin θ( )
2

⋅−( ) sin θ( )⋅
⌠
⎮
⌡

d⋅−=

But θsin θ( ) 4 sin θ( )
3

⋅−( )⌠⎮
⎮⌡

d cos θ( )− 4 cos θ( )
1

3
cos θ( )

3
⋅−⎛⎜

⎝
⎞
⎠

⋅+= so

0

π

θsin θ( ) 4 sin θ( )
3

⋅−( )⌠
⎮
⌡

d
10

3
−=

θsin θ( )
⌠
⎮
⌡

d cos θ( )−= so

0

π

θsin θ( )
⌠
⎮
⌡

d 2=

Combining results FV R L⋅ 2 ∆p⋅
5

3
ρair⋅ V

2
⋅+⎛⎜

⎝
⎞
⎠

⋅= FV 2.28 10
4

× lbf⋅= FV 22.8 kip⋅=
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Problem 6.82 [Difficulty: 4]

Given: Water flow out of tube

Find: Pressure indicated by gage; force to hold body in place

Solution:

Basic equations: Bernoulli, and momentum flux in x direction

p

ρ

V
2

2
+ g z⋅+ constant= Q V A⋅=

Assumptions:  1) Steady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0)

Applying Bernoulli between jet exit and stagnation point

p1

ρ

V1
2

2
+

p2

ρ

V2
2

2
+=

V2
2

2
= where we work in gage pressure

p1
ρ

2
V2

2
V1

2
−⎛

⎝
⎞
⎠⋅=

But from continuity Q V1 A1⋅= V2 A2⋅= V2 V1

A1

A2

⋅= V1
D

2

D
2

d
2

−
⋅= where D = 2 in and d = 1.5 in

V2 20
ft

s
⋅

2
2

2
2

1.5
2

−

⎛⎜
⎜
⎝

⎞

⎠
⋅= V2 45.7

ft

s
⋅=

Hence p1
1

2
1.94×

slug

ft
3

⋅ 45.7
2

20
2

−( )×
ft

s

⎛⎜
⎝

⎞
⎠

2

⋅
lbf s

2
⋅

slug ft⋅
×= p1 1638

lbf

ft
2

⋅= p1 11.4 psi⋅= (gage)

The x mometum is F− p1 A1⋅+ p2 A2⋅− u1 ρ− V1⋅ A1⋅( )⋅ u2 ρ V2⋅ A2⋅( )⋅+=

F p1 A1⋅ ρ V1
2

A1⋅ V2
2

A2⋅−⎛
⎝

⎞
⎠⋅+= using gage pressures

F 11.4
lbf

in
2

⋅
π 2 in⋅( )

2
⋅

4
× 1.94

slug

ft
3

⋅ 20
ft

s
⋅⎛⎜

⎝
⎞
⎠

2
π 2 in⋅( )

2
⋅

4
× 45.7

ft

s
⋅⎛⎜

⎝
⎞
⎠

2
π 2 in⋅( )

2
1.5 in⋅( )

2
−⎡⎣ ⎤⎦⋅

4
×−

⎡
⎢
⎣

⎤
⎥
⎦

×
1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×+=

F 14.1 lbf⋅= in the direction shown
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Problem 6.84    [Difficulty: 5] 
 

 
 

 

Open-Ended Problem Statement: Describe the pressure distribution on the exterior of a 

multistory building in a steady wind. Identify the locations of the maximum and 

minimum pressures on the outside of the building.  Discuss the effect of these pressures 

on infiltration of outside air into the building. 

 

Discussion: A multi-story building acts as a bluff-body obstruction in a thick 

atmospheric boundary layer. The boundary-layer velocity profile causes the air speed 

near the top of the building to be highest and that toward the ground to be lower. 

 

Obstruction of air flow by the building causes regions of stagnation pressure on upwind 

surfaces. The stagnation pressure is highest where the air speed is highest. Therefore the 

maximum surface pressure occurs near the roof on the upwind side of the building. 

Minimum pressure on the upwind surface of the building occurs near the ground where 

the air speed is lowest. 

 

The minimum pressure on the entire building will likely be in the low-speed, low-

pressure wake region on the downwind side of the building. 

 

Static pressure inside the building will tend to be an average of all the surface pressures 

that act on the outside of the building. It is never possible to seal all openings completely. 

Therefore air will tend to infiltrate into the building in regions where the outside surface 

pressure is above the interior pressure, and will tend to pass out of the building in regions 

where the outside surface pressure is below the interior pressure. Thus generally air will 

tend to move through the building from the upper floors toward the lower floors, and 

from the upwind side to the downwind side. 



Problem 6.85    [Difficulty: 5] 
 

 
 

 

Open-Ended Problem Statement: Imagine a garden hose with a stream of water 

flowing out through a nozzle. Explain why the end of the hose may be unstable when 

held a half meter or so from the nozzle end. 

 

Discussion:  Water flowing out of the nozzle tends to exert a thrust force on the end of the 

hose. The thrust force is aligned with the flow from the nozzle and is directed toward the 

hose. 

 

Any misalignment of the hose will lead to a tendency for the thrust force to bend the hose 

further. This will quickly become unstable, with the result that the free end of the hose 

will “flail” about, spraying water from the nozzle in all directions. 

 

This instability phenomenon can be demonstrated easily in the backyard. However, it will 

tend to do least damage when the person demonstrating it is wearing a bathing suit! 



Problem 6.86    [Difficulty: 5] 
 

 
 

 

Open-Ended Problem Statement: An aspirator provides suction by using a stream of 

water flowing through a venturi. Analyze the shape and dimensions of such a device. 

Comment on any limitations on its use. 

 

Discussion:  The basic shape of the aspirator channel should be a converging nozzle 

section to reduce pressure followed by a diverging diffuser section to promote pressure 

recovery. The basic shape is that of a venturi flow meter. 

 

If the diffuser exhausts to atmosphere, the exit pressure will be atmospheric. The pressure 

rise in the diffuser will cause the pressure at the diffuser inlet (venturi throat) to be below 

atmospheric. 

 

A small tube can be brought in from the side of the throat to aspirate another liquid or gas 

into the throat as a result of the reduced pressure there. 

 

The following comments can be made about limitations on the aspirator:  

1. It is desirable to minimize the area of the aspirator tube compared to the flow area 

of the venturi throat. This minimizes the disturbance of the main flow through the 

venturi and promotes the best possible pressure recovery in the diffuser. 

2. It is desirable to avoid cavitation in the throat of the venturi. Cavitation alters the 

effective shape of the flow channel and destroys the pressure recovery in the 

diffuser. To avoid cavitation, the reduced pressure must always be above the 

vapor pressure of the driver liquid. 

3. It is desirable to limit the flow rate of gas into the venturi throat. A large amount 

of gas can alter the flow pattern and adversely affect pressure recovery in the 

diffuser. 

 

The best combination of specific dimensions could be determined experimentally by a 

systematic study of aspirator performance. A good starting point probably would be to 

use dimensions similar to those of a commercially available venturi flow meter. 
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Problem 6.89 [Difficulty: 3]

Given: Unsteady water flow out of tube

Find: Pressure in the tank

Solution:

Basic equation: Unsteady Bernoulli

Assumptions:  1) Unsteady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0

Applying unsteady Bernoulli between reservoir and tube exit

p

ρ
g h⋅+

V
2

2

1

2

s
t
V

∂

∂

⌠
⎮
⎮
⌡

d+=
V

2

2

dV

dt
1

2

s1
⌠
⎮
⌡

d⋅+= where we work in gage pressure

Hence p ρ
V

2

2
g h⋅−

dV

dt
L⋅+

⎛
⎜
⎝

⎞

⎠
⋅=

Hence p 1.94
slug

ft
3

⋅
6

2

2
32.2 4.5×− 7.5 35×+

⎛
⎜
⎝

⎞

⎠
×

ft

s

⎛⎜
⎝

⎞
⎠

2

⋅
lbf s

2
⋅

slug ft⋅
×= p 263

lbf

ft
2

⋅= p 1.83 psi⋅= (gage)



Problem 6.90 [Difficulty: 3]

Given: Unsteady water flow out of tube

Find: Initial acceleration

Solution:

Basic equation: Unsteady Bernoulli

Assumptions:  1) Unsteady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0

Applying unsteady Bernoulli between reservoir and tube exit

p

ρ
g h⋅+

1

2

s
t
V

∂

∂

⌠
⎮
⎮
⌡

d=
dV

dt
1

2

s1
⌠
⎮
⌡

d⋅= ax L⋅= where we work in gage pressure

Hence ax
1

L

p

ρ
g h⋅+⎛⎜

⎝
⎞
⎠

⋅=

Hence ax
1

35 ft⋅
3

lbf

in
2

⋅
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
ft

3

1.94 slug⋅
×

slug ft⋅

s
2

lbf⋅
× 32.2

ft

s
2

⋅ 4.5× ft⋅+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×= ax 10.5
ft

s
2

⋅=

Note that we obtain the same result if we treat the water in the pipe as a single body at rest with gage pressure p + ρgh at the left end!
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Problem 6.92 [Difficulty: 4]

Given: Unsteady water flow out of tube

Find: Differential equation for velocity; Integrate; Plot v versus time

Solution:

Basic equation: Unsteady Bernoulli

Assumptions:  1) Unsteady flow   2) Incompressible 3) No friction 4) Flow along streamline 5) Uniform flow 6) Horizontal flow (gx = 0

Applying unsteady Bernoulli between reservoir and tube exit

p

ρ
g h⋅+

V
2

2

1

2

s
t
V

∂

∂

⌠⎮
⎮
⎮⌡

d+=
V

2

2

dV

dt
1

2

s1
⌠
⎮
⌡

d⋅+=
V

2

2

dV

dt
L⋅+= where we work in gage pressure

Hence
dV

dt

V
2

2 L⋅
+

1

L

p

ρ
g h⋅+⎛⎜

⎝
⎞
⎠

⋅= is the differential equation for the flow

Separating variables
L dV⋅

p

ρ
g h⋅+

V
2

2
−

dt=

Integrating and using limits V(0) = 0 and V(t) = V

V t( ) 2
p

ρ
g h⋅+⎛⎜

⎝
⎞
⎠

⋅ tanh

p

ρ
g h⋅+

2 L
2

⋅
t⋅

⎛⎜
⎜
⎜⎝

⎞
⎟

⎠
⋅=
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5

10

15

20

25

t (s)

V
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)

This graph is suitable for plotting in Excel

For large times V 2
p

ρ
g h⋅+⎛⎜

⎝
⎞
⎠

⋅= V 22.6
ft

s
⋅=
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Problem 6.95    [Difficulty: 2] 
 

 
 

 

(a) Note that the effect of friction would be that the EGL would tend to drop: 

suddenly at the contraction, gradually in the large pipe, more steeply in the 

small pipe.  The HGL would then “hang” below the HGL in a manner similar 

to that shown. 
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(b) Note that the effect of friction would be that the EGL would tend to drop: 

suddenly at the contraction, gradually in the large pipe, more steeply in the 

small pipe.  The HGL would then “hang” below the HGL in a manner similar 

to that shown. 
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Problem 6.96    [Difficulty: 2] 
 

 
 

 

(a) Note that the effect of friction would be that the EGL would tend to drop from 

right to left: steeply in the small pipe, gradually in the large pipe, and 

suddenly at the expansion.  The HGL would then “hang” below the HGL in a 

manner similar to that shown. 
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(b) Note that the effect of friction would be that the EGL would tend to drop from 

right to left: steeply in the small pipe, gradually in the large pipe, and 

suddenly at the expansion.  The HGL would then “hang” below the HGL in a 

manner similar to that shown. 
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Problem 6.97                                                                [Difficulty: 2]



Problem 6.98 [Difficulty: 3]

Given: 2D incompressible, inviscid flow field

Find: Relationships among constants; stream function; velocity potential

Solution:

Basic equations Incompressible u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= Irrotational u

x
ϕ

∂

∂
−= v

y
ϕ

∂

∂
−=

u x y, ( ) a x⋅ b y⋅+= v x y, ( ) c x⋅ d y⋅+=

Check incompressibility
x

u x y, ( )
∂

∂ y
v x y, ( )

∂

∂
+ a d+= Hence must have d a−=

x
v x y, ( )

∂

∂ y
u x y, ( )

∂

∂
− c b−= Hence must have c b=

Check irrotational

Hence for the streamfunction ψ x y, ( ) yu x y, ( )
⌠
⎮
⌡

d= a x⋅ y⋅
1

2
b⋅ y

2
⋅+ f x( )+=

ψ x y, ( ) xv x y, ( )
⌠
⎮
⌡

d−=
1

2
− c⋅ x

2
⋅ d x⋅ y⋅− g y( )+=

Comparing ψ x y, ( )
1

2
b⋅ y

2
⋅

1

2
c⋅ x

2
⋅− a x⋅ y⋅+= ψ x y, ( ) a x⋅ y⋅

1

2
b⋅ y

2
x

2
−( )⋅+=

u x y, ( )
y
ψ x y, ( )

∂

∂
a x⋅ b y⋅+== v x y, ( )

x
ψ x y, ( )

∂

∂
− b x⋅ a y⋅−==

Check

Hence for the velocity potential ϕ x y, ( ) xu x y, ( )
⌠
⎮
⌡

d−=
1

2
− a⋅ x

2
⋅ b x⋅ y⋅− f y( )+=

ψ x y, ( ) yv x y, ( )
⌠
⎮
⌡

d−= c− x⋅ y⋅
1

2
d⋅ y

2
⋅− g x( )+=

Comparing ϕ x y, ( )
1

2
− a⋅ x

2
⋅

1

2
d⋅ y

2
⋅− b x⋅ y⋅−= ϕ x y, ( ) b− x⋅ y⋅

1

2
a⋅ x

2
y

2
−( )⋅−=

Check u x y, ( )
x
ϕ x y, ( )

∂

∂
− a x⋅ b y⋅+== v x y, ( )

y
ϕ x y, ( )

∂

∂
− b x⋅ a y⋅−==



Problem 6.99 [Difficulty: 3]

Given: Stream function

Find: If the flow is irrotational; Pressure difference between points (1,4) and (2,1)

Solution:

Basic equations: Incompressibility because ψ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= Irrotationality

x
v

∂

∂ y
u

∂

∂
− 0=

ψ x y, ( ) A x
2

⋅ y⋅=

u x y, ( )
y
ψ x y, ( )

∂

∂
=

y
A x

2
⋅ y⋅( )∂

∂
= u x y, ( ) A x

2
⋅=

v x y, ( )
x
ψ x y, ( )

∂

∂
−=

x
A x

2
⋅ y⋅( )∂

∂
−= v x y, ( ) 2− A⋅ x⋅ y⋅=

Hence
x

v x y, ( )
∂

∂ y
u x y, ( )

∂

∂
− 2− A⋅ y⋅=

x
v

∂

∂ y
u

∂

∂
− 0≠ so flow is NOT IRROTATIONAL

Since flow is rotational, we must be on same streamline to be able to use Bernoulli

At point (1,4) ψ 1 4, ( ) 4 A= and at point (2,1) ψ 2 1, ( ) 4 A=

Hence these points are on same streamline so Bernoulli can be used.  The velocity at a point is V x y, ( ) u x y, ( )
2

v x y, ( )
2

+=

Hence at (1,4) V1
2.5

m s⋅
1 m⋅( )

2
×⎡⎢

⎣
⎤⎥
⎦

2

2−
2.5

m s⋅
× 1× m⋅ 4× m⋅⎛⎜

⎝
⎞
⎠

2

+= V1 20.2
m

s
=

Hence at (2,1) V2
2.5

m s⋅
2 m⋅( )

2
×⎡⎢

⎣
⎤⎥
⎦

2

2−
2.5

m s⋅
× 2× m⋅ 1× m⋅⎛⎜

⎝
⎞
⎠

2

+= V2 14.1
m

s
=

Using Bernoulli
p1

ρ

1

2
V1

2
⋅+

p2

ρ

1

2
V2

2
⋅+= ∆p

ρ

2
V2

2
V1

2
−⎛

⎝
⎞
⎠⋅=

∆p
1

2
1200×

kg

m
3

⋅ 14.1
2

20.2
2

−( )×
m

s

⎛⎜
⎝

⎞
⎠

2

⋅
N s

2
⋅

kg m⋅
×= ∆p 126− kPa⋅=



 

Problem 6.100                                                           [Difficulty: 2]



Problem 6.101 [Difficulty: 3]

Given: Data from Table 6.2

Find: Stream function and velocity potential for a source in a corner; plot; velocity along one plane

Solution:

From Table 6.2, for a source at the origin ψ r θ, ( )
q

2 π⋅
θ⋅= ϕ r θ, ( )

q

2 π⋅
− ln r( )⋅=

Expressed in Cartesian coordinates ψ x y, ( )
q

2 π⋅
atan

y

x

⎛⎜
⎝

⎞
⎠

⋅= ϕ x y, ( )
q

4 π⋅
− ln x

2
y

2
+( )⋅=

To build flow in a corner, we need image sources at three locations so that there is symmetry about both axes.  We need sources at

(h,h), (h,- h), (- h,h), and (- h,- h)

Hence the composite stream function and velocity potential are

ψ x y, ( )
q

2 π⋅
atan

y h−

x h−
⎛⎜
⎝

⎞
⎠

atan
y h+

x h−
⎛⎜
⎝

⎞
⎠

+ atan
y h+

x h+
⎛⎜
⎝

⎞
⎠

+ atan
y h−

x h+
⎛⎜
⎝

⎞
⎠

+⎛⎜
⎝

⎞
⎠

⋅=

ϕ x y, ( )
q

4 π⋅
− ln x h−( )

2
y h−( )

2
+⎡⎣ ⎤⎦ x h−( )

2
y h+( )

2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅

q

4 π⋅
x h+( )

2
y h+( )

2
+⎡⎣ ⎤⎦⋅ x h+( )

2
y h−( )

2
+⎡⎣ ⎤⎦⋅−=

By a similar reasoning the horizontal velocity is given by

u
q x h−( )⋅

2 π⋅ x h−( )
2

y h−( )
2

+⎡⎣ ⎤⎦

q x h−( )⋅

2 π⋅ x h−( )
2

y h+( )
2

+⎡⎣ ⎤⎦
+

q x h+( )⋅

2 π⋅ x h+( )
2

y h+( )
2

+⎡⎣ ⎤⎦
+

q x h+( )⋅

2 π⋅ x h+( )
2

y h+( )
2

+⎡⎣ ⎤⎦
+=

Along the horizontal wall (y = 0)

u
q x h−( )⋅

2 π⋅ x h−( )
2

h
2

+⎡⎣ ⎤⎦

q x h−( )⋅

2 π⋅ x h−( )
2

h
2

+⎡⎣ ⎤⎦
+

q x h+( )⋅

2 π⋅ x h+( )
2

h
2

+⎡⎣ ⎤⎦
+

q x h+( )⋅

2 π⋅ x h+( )
2

h
2

+⎡⎣ ⎤⎦
+=

or u x( )
q

π

x h−

x h−( )
2

h
2

+

x h+

x h+( )
2

h
2

+
+⎡

⎢
⎣

⎤
⎥
⎦

⋅=



x

y

Velocity Potential
The results in Excel are:

y

x

Stream Function



Problem 6.102 [Difficulty: 3]

Given: Velocity field of irrotational and incompressible flow

Find: Stream function and velocity potential; plot

Solution:

The velocity field is u
q x⋅

2 π⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦

q x⋅

2 π⋅ x
2

y h+( )
2

+⎡⎣ ⎤⎦
+= v

q y h−( )⋅

2 π⋅ x
2

y h−( )
2

+⎡⎣ ⎤⎦

q y h+( )⋅

2 π⋅ x
2

y h+( )
2

+⎡⎣
+=

The basic equations are u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
ϕ

∂

∂
−= v

y
ϕ

∂

∂
−=

Hence for the stream function ψ yu x y, ( )
⌠
⎮
⌡

d=
q

2 π⋅
atan

y h−

x

⎛⎜
⎝

⎞
⎠

atan
y h+

x

⎛⎜
⎝

⎞
⎠

+⎛⎜
⎝

⎞
⎠

⋅ f x( )+=

ψ xv x y, ( )
⌠
⎮
⌡

d−=
q

2 π⋅
atan

y h−

x

⎛⎜
⎝

⎞
⎠

atan
y h+

x

⎛⎜
⎝

⎞
⎠

+⎛⎜
⎝

⎞
⎠

⋅ g y( )+=

The simplest expression for ψ is ψ x y, ( )
q

2 π⋅
atan

y h−

x

⎛⎜
⎝

⎞
⎠

atan
y h+

x

⎛⎜
⎝

⎞
⎠

+⎛⎜
⎝

⎞
⎠

⋅=

For the stream function ϕ xu x y, ( )
⌠
⎮
⌡

d−=
q

4 π⋅
− ln x

2
y h−( )

2
+⎡⎣ ⎤⎦ x

2
y h+( )

2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅ f y( )+=

ϕ yv x y, ( )
⌠
⎮
⌡

d−=
q

4 π⋅
− ln x

2
y h−( )

2
+⎡⎣ ⎤⎦ x

2
y h+( )

2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅ g x( )+=

The simplest expression for φ is ϕ x y, ( )
q

4 π⋅
− ln x

2
y h−( )

2
+⎡⎣ ⎤⎦ x

2
y h+( )

2
+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅=



Stream Function
In Excel:

Velocity Potential



Problem 6.103 [Difficulty: 3]

Given: Data from Table 6.2

Find: Stream function and velocity potential for a vortex in a corner; plot; velocity along one plane

Solution:

From Table 6.2, for a vortex at the origin ϕ r θ, ( )
K

2 π⋅
θ⋅= ψ r θ, ( )

K

2 π⋅
− ln r( )⋅=

Expressed in Cartesian coordinates ϕ x y, ( )
q

2 π⋅
atan

y

x

⎛⎜
⎝

⎞
⎠

⋅= ψ x y, ( )
q

4 π⋅
− ln x

2
y

2
+( )⋅=

To build flow in a corner, we need image vortices at three locations so that there is symmetry about both axes.  We need vortices

at (h,h), (h,- h), (- h,h), and (- h,- h).  Note that some of them must have strengths of - K!

Hence the composite velocity potential and stream function are

ϕ x y, ( )
K

2 π⋅
atan

y h−

x h−
⎛⎜
⎝

⎞
⎠

atan
y h+

x h−
⎛⎜
⎝

⎞
⎠

− atan
y h+

x h+
⎛⎜
⎝

⎞
⎠

+ atan
y h−

x h+
⎛⎜
⎝

⎞
⎠

−⎛⎜
⎝

⎞
⎠

⋅=

ψ x y, ( )
K

4 π⋅
− ln

x h−( )
2

y h−( )
2

+

x h−( )
2

y h+( )
2

+

x h+( )
2

y h+( )
2

+

x h+( )
2

y h−( )
2

+
⋅

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

⋅=

By a similar reasoning the horizontal velocity is given by

u
K y h−( )⋅

2 π⋅ x h−( )
2

y h−( )
2

+⎡⎣ ⎤⎦
−

K y h+( )⋅

2 π⋅ x h−( )
2

y h+( )
2

+⎡⎣ ⎤⎦
+

K y h+( )⋅

2 π⋅ x h+( )
2

y h+( )
2

+⎡⎣ ⎤⎦
−

K y h−( )⋅

2 π⋅ x h+( )
2

y h−( )
2

+⎡⎣ ⎤⎦
+=

Along the horizontal wall (y = 0)

u
K h⋅

2 π⋅ x h−( )
2

h
2

+⎡⎣ ⎤⎦

K h⋅

2 π⋅ x h−( )
2

h
2

+⎡⎣ ⎤⎦
+

K h⋅

2 π⋅ x h+( )
2

h
2

+⎡⎣ ⎤⎦
−

K h⋅

2 π⋅ x h+( )
2

h
2

+⎡⎣ ⎤⎦
−=

or u x( )
K h⋅

π

1

x h−( )
2

h
2

+

1

x h+( )
2

h
2

+
−⎡

⎢
⎣

⎤
⎥
⎦

⋅=



In Excel:

y

x

Stream Function

x

y
Velocity Potential



Problem 6.104 [Difficulty: 2]

Given: Stream function

Find: Velocity potential

Solution:

Basic equations: Incompressibility because ψ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Irrotationality
x

v
∂

∂ y
u

∂

∂
− 0=

We have ψ x y, ( ) A x
2

⋅ y⋅ B y
3

⋅−=

Then u x y, ( )
y
ψ x y, ( )

∂

∂
= u x y, ( ) A x

2
⋅ 3 B⋅ y

2
⋅−=

v x y, ( )
x
ψ x y, ( )

∂

∂
−= v x y, ( ) 2− A⋅ x⋅ y⋅=

Then

x
v x y, ( )

∂

∂ y
u x y, ( )

∂

∂
− 6 B⋅ y⋅ 2 A⋅ y⋅−= but 6 B⋅ 2 A⋅− 0

1

m s⋅
= hence flow is IRROTATIONAL

Hence u
x
φ

∂

∂
−= so φ x y, ( ) xu x y, ( )

⌠
⎮
⌡

d− f y( )+= φ x y, ( ) f y( )
A x

3
⋅

3
− 3 B⋅ x⋅ y

2
⋅+=→

v
y
φ

∂

∂
−= so φ x y, ( ) yv x y, ( )

⌠
⎮
⌡

d− g x( )+= φ x y, ( ) A x⋅ y
2

⋅ g x( )+=→

Comparing, the simplest velocity potential is then φ x y, ( ) A x⋅ y
2

⋅
A x

3
⋅

3
−=



Problem 6.105 [Difficulty: 2]

Given: Stream function

Find: Velocity field; Show flow is irrotational; Velocity potential

Solution:

Basic equations: Incompressibility because ψ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Irrotationality
x

v
∂

∂ y
u

∂

∂
− 0=

ψ x y, ( ) x
5

10 x
3

⋅ y
2

⋅− 5 x⋅ y
4

⋅+=

u x y, ( )
y
ψ x y, ( )

∂

∂
= u x y, ( ) 20 x⋅ y

3
⋅ 20 x

3
⋅ y⋅−=

v x y, ( )
x
ψ x y, ( )

∂

∂
−= v x y, ( ) 30 x

2
⋅ y

2
⋅ 5 x

4
⋅− 5 y

4
⋅−=

x
v x y, ( )

∂

∂ y
u x y, ( )

∂

∂
− 0= Hence flow is IRROTATIONAL

Hence u
x
φ

∂

∂
−= so φ x y, ( ) xu x y, ( )

⌠
⎮
⌡

d− f y( )+= 5 x
4

⋅ y⋅ 10 x
2

⋅ y
3

⋅− f y( )+=

v
y
φ

∂

∂
−= so φ x y, ( ) yv x y, ( )

⌠
⎮
⌡

d− g x( )+= 5 x
4

⋅ y⋅ 10 x
2

⋅ y
3

⋅− y
5

+ g x( )+=

Comparing, the simplest velocity potential is then φ x y, ( ) 5 x
4

⋅ y⋅ 10 x
2

⋅ y
3

⋅− y
5

+=



Problem 6.106 [Difficulty: 2]

Given: Stream function

Find: Velocity potential

Solution:

Basic equations: Incompressibility because ψ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Irrotationality
x

v
∂

∂ y
u

∂

∂
− 0=

We have ψ x y, ( ) A x
3

⋅ B x⋅ y
2

⋅−=

Then u x y, ( )
y
ψ x y, ( )

∂

∂
= u x y, ( ) 2− B⋅ x⋅ y⋅=

v x y, ( )
x
ψ x y, ( )

∂

∂
−= v x y, ( ) B y

2
⋅ 3 A⋅ x

2
⋅−=

Then
x

v x y, ( )
∂

∂ y
u x y, ( )

∂

∂
− 2 B⋅ x⋅ 6 A⋅ x⋅−= but 2 B⋅ 6 A⋅− 0

1

m s⋅
= hence flow is IRROTATIONAL

Hence u
x
φ

∂

∂
−= so φ x y, ( ) xu x y, ( )

⌠
⎮
⌡

d− f y( )+= φ x y, ( ) B y⋅ x
2

⋅ f y( )+=→

v
y
φ

∂

∂
−= so φ x y, ( ) yv x y, ( )

⌠
⎮
⌡

d− g x( )+= φ x y, ( ) g x( )
B y

3
⋅

3
− 3 A⋅ x

2
⋅ y⋅+=→

Comparing, the simplest velocity potential is then φ x y, ( ) 3 A⋅ x
2

⋅ y⋅
B y

3
⋅

3
−=



Problem 6.107 [Difficulty: 2]

Given: Stream function

Find: Find A vs B if flow is irrotational; Velocity potential

Solution:

Basic equations: Incompressibility because ψ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Irrotationality
x

v
∂

∂ y
u

∂

∂
− 0=

We have ψ x y, ( ) A x
3

⋅ B x y
2

⋅ x
2

+ y
2

−( )⋅+=

u x y, ( )
y
ψ x y, ( )

∂

∂
= u x y, ( ) B 2 y⋅ 2 x⋅ y⋅−( )⋅−=

v x y, ( )
x
ψ x y, ( )

∂

∂
−= v x y, ( ) 3 A⋅ x

2
⋅− B y

2
2 x⋅+( )⋅−=

x
v x y, ( )

∂

∂ y
u x y, ( )

∂

∂
− 2− x⋅ 3 A⋅ B+( )⋅= Hence flow is IRROTATIONAL if B 3− A⋅=

Hence u
x
φ

∂

∂
−= so φ x y, ( ) xu x y, ( )

⌠
⎮
⌡

d− f y( )+= 2 B⋅ y⋅ x⋅ B y⋅ x
2

⋅− f y( )+=

v
y
φ

∂

∂
−= so φ x y, ( ) yv x y, ( )

⌠
⎮
⌡

d− g x( )+= 3 A⋅ x
2

⋅ y⋅ 2 B⋅ x⋅ y⋅+
B y

3
⋅

3
+ g x( )+=

Comparing, the simplest velocity potential is then φ x y, ( ) 2 B⋅ y⋅ x⋅ B y⋅ x
2

⋅− B
y

3

3
⋅+=



Problem 6.108 [Difficulty: 2]

Given: Stream function

Find: Velocity field; Show flow is irrotational; Velocity potential

Solution:

Basic equations: Incompressibility because ψ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Irrotationality
x

v
∂

∂ y
u

∂

∂
− 0=

We have ψ x y, ( ) x
6

15 x
4

⋅ y
2

⋅− 15 x
2

⋅ y
4

⋅+ y
6

−=

u x y, ( )
y
ψ x y, ( )

∂

∂
= u x y, ( ) 60 x

2
⋅ y

3
⋅ 30 x

4
⋅ y⋅− 6 y

5
⋅−=

v x y, ( )
x
ψ x y, ( )

∂

∂
−= v x y, ( ) 60 x

3
⋅ y

2
⋅ 6 x

5
⋅− 30 x⋅ y

4
⋅−=

x
v x y, ( )

∂

∂ y
u x y, ( )

∂

∂
− 0= Hence flow is IRROTATIONAL

Hence u
x
φ

∂

∂
−= so φ x y, ( ) xu x y, ( )

⌠
⎮
⌡

d− f y( )+= 6 x
5

⋅ y⋅ 20 x
3

⋅ y
3

⋅− 6 x⋅ y
5

⋅+ f y( )+=

v
y
φ

∂

∂
−= so φ x y, ( ) yv x y, ( )

⌠
⎮
⌡

d− g x( )+= 6 x
5

⋅ y⋅ 20 x
3

⋅ y
3

⋅− 6 x⋅ y
5

⋅+ g x( )+=

Comparing, the simplest velocity potential is then φ x y, ( ) 6 x
5

⋅ y⋅ 20 x
3

⋅ y
3

⋅− 6 x⋅ y
5

⋅+=



Problem 6.109 [Difficulty: 2]

Given: Velocity potential

Find: Show flow is incompressible; Stream function

Solution:

Basic equations: Irrotationality because φ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Incompressibility
x

u
∂

∂ y
v

∂

∂
+ 0=

We have φ x y, ( ) A x
2

⋅ B x⋅ y⋅+ A y
2

⋅−=

u x y, ( )
x
φ x y, ( )

∂

∂
−= u x y, ( ) 2 A⋅ x⋅− B y⋅−=

v x y, ( )
y
φ x y, ( )

∂

∂
−= v x y, ( ) 2 A⋅ y⋅ B x⋅−=

Hence
x

u x y, ( )
∂

∂ y
v x y, ( )

∂

∂
+ 0= Hence flow is INCOMPRESSIBLE

Hence u
y
ψ

∂

∂
= so ψ x y, ( ) yu x y, ( )

⌠
⎮
⌡

d f x( )+= 2− A⋅ x⋅ y⋅
1

2
B⋅ y

2
⋅− f x( )+=

v
x
ψ

∂

∂
−= so ψ x y, ( ) xv x y, ( )

⌠
⎮
⌡

d− g y( )+= 2− A⋅ x⋅ y⋅
1

2
B⋅ x

2
⋅+ g y( )+=

Comparing, the simplest stream function is then ψ x y, ( ) 2− A⋅ x⋅ y⋅
1

2
B⋅ x

2
⋅+

1

2
B⋅ y

2
⋅−=



Problem 6.110 [Difficulty: 2]

Given: Velocity potential

Find: Show flow is incompressible; Stream function

Solution:

Basic equations: Irrotationality because φ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Incompressibility
x

u
∂

∂ y
v

∂

∂
+ 0=

We have φ x y, ( ) x
5

10 x
3

⋅ y
2

⋅− 5 x⋅ y
4

⋅+ x
2

− y
2

+=

u x y, ( )
x
φ x y, ( )

∂

∂
−= u x y, ( ) 30 x

2
⋅ y

2
⋅ 5 x

4
⋅− 2 x⋅+ 5 y

4
⋅−=

v x y, ( )
y
φ x y, ( )

∂

∂
−= v x y, ( ) 20 x

3
⋅ y⋅ 20 x⋅ y

3
⋅− 2 y⋅−=

Hence
x

u x y, ( )
∂

∂ y
v x y, ( )

∂

∂
+ 0= Hence flow is INCOMPRESSIBLE

Hence u
y
ψ

∂

∂
= so ψ x y, ( ) yu x y, ( )

⌠
⎮
⌡

d f x( )+= 10 x
2

⋅ y
3

⋅ 5 x
4

⋅ y⋅− 2 x⋅ y⋅+ y
5

− f x( )+=

v
x
ψ

∂

∂
−= so ψ x y, ( ) xv x y, ( )

⌠
⎮
⌡

d− g y( )+= 10 x
2

⋅ y
3

⋅ 5 x
4

⋅ y⋅− 2 x⋅ y⋅+ g y( )+=

Comparing, the simplest stream function is then ψ x y, ( ) 10 x
2

⋅ y
3

⋅ 5 x
4

⋅ y⋅− 2 x⋅ y⋅+ y
5

−=



Problem 6.111 [Difficulty: 2]

Given: Velocity potential

Find: Show flow is incompressible; Stream function

Solution:

Basic equations: Irrotationality because φ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Incompressibility
x

u
∂

∂ y
v

∂

∂
+ 0=

φ x y, ( ) x
6

15 x
4

⋅ y
2

⋅− 15 x
2

⋅ y
4

⋅+ y
6

−=

u x y, ( )
x
φ x y, ( )

∂

∂
−= u x y, ( ) 60 x

3
⋅ y

2
⋅ 6 x

5
⋅− 30 x⋅ y

4
⋅−=

v x y, ( )
y
φ x y, ( )

∂

∂
−= v x y, ( ) 30 x

4
⋅ y⋅ 60 x

2
⋅ y

3
⋅− 6 y

5
⋅+=

Hence

x
u x y, ( )

∂

∂ y
v x y, ( )

∂

∂
+ 0= Hence flow is INCOMPRESSIBLE

Hence u
y
ψ

∂

∂
= so ψ x y, ( ) yu x y, ( )

⌠
⎮
⌡

d f x( )+= 20 x
3

⋅ y
3

⋅ 6 x
5

⋅ y⋅− 6 x⋅ y
5

⋅− f x( )+=

v
x
ψ

∂

∂
−= so ψ x y, ( ) xv x y, ( )

⌠
⎮
⌡

d− g y( )+= 20 x
3

⋅ y
3

⋅ 6 x
5

⋅ y⋅− 6 x⋅ y
5

⋅− g y( )+=

Comparing, the simplest stream function is then ψ x y, ( ) 20 x
3

⋅ y
3

⋅ 6 x
5

⋅ y⋅− 6 x⋅ y
5

⋅−=



Problem 6.112 [Difficulty: 4]

Given: Complex function

Find: Show it leads to velocity potential and stream function of irrotational incompressible flow; Show that df/dz leads

to u and v

Solution:

Basic equations: Irrotationality because φ exists u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

Incompressibility
x

u
∂

∂ y
v

∂

∂
+ 0= Irrotationality

x
v

∂

∂ y
u

∂

∂
− 0=

f z( ) z
6

= x i y⋅+( )
6

= Expanding f z( ) x
6

15 x
4

⋅ y
2

⋅− 15 x
2

⋅ y
4

⋅+ y
6

− i 6 x y
5

⋅⋅ 6 x
5

y⋅⋅+ 20 x
3

⋅ y
3

⋅−( )⋅+=

We are thus to check the following

φ x y, ( ) x
6

15 x
4

⋅ y
2

⋅− 15 x
2

⋅ y
4

⋅+ y
6

−= ψ x y, ( ) 6 x⋅ y
5

⋅ 6 x
5

⋅ y⋅+ 20 x
3

⋅ y
3

⋅−( )−=

u x y, ( )
x
φ x y, ( )

∂

∂
−= so u x y, ( ) 60 x

3
⋅ y

2
⋅ 6 x

5
⋅− 30 x⋅ y

4
⋅−=

v x y, ( )
y
φ x y, ( )

∂

∂
−= so v x y, ( ) 30 x

4
⋅ y⋅ 60 x

2
⋅ y

3
⋅− 6 y

5
⋅+=

An alternative derivation of u and v is

u x y, ( )
y
ψ x y, ( )

∂

∂
= u x y, ( ) 60 x

3
⋅ y

2
⋅ 6 x

5
⋅− 30 x⋅ y

4
⋅−=

v x y, ( )
x
ψ x y, ( )

∂

∂
−= v x y, ( ) 30 x

4
⋅ y⋅ 60 x

2
⋅ y

3
⋅− 6 y

5
⋅+=

Hence
x

v x y, ( )
∂

∂ y
u x y, ( )

∂

∂
− 0= Hence flow is IRROTATIONAL

Hence
x

u x y, ( )
∂

∂ y
v x y, ( )

∂

∂
+ 0= Hence flow is INCOMPRESSIBLE

Next we find
df

dz

d z
6( )

dz
= 6 z

5
⋅= 6 x i y⋅+( )

5
⋅= 6 x

5
⋅ 60 x

3
⋅ y

2
⋅− 30 x⋅ y

4
⋅+( ) i 30 x

4
⋅ y⋅ 6 y

5
⋅+ 60 x

2
y

3
⋅⋅−( )⋅+=

Hence we see
df

dz
u− i v⋅+= Hence the results are verified; u Re

df

dz

⎛⎜
⎝

⎞
⎠

−= and v Im
df

dz

⎛⎜
⎝

⎞
⎠

=

These interesting results are explained in Problem 6.113!



Problem 6.113 [Difficulty: 4]

Given: Complex function

Find: Show it leads to velocity potential and stream function of irrotational incompressible flow; Show that df/dz

leads to u and v

Solution:

Basic equations: u
y
ψ

∂

∂
= v

x
ψ

∂

∂
−= u

x
φ

∂

∂
−= v

y
φ

∂

∂
−=

First consider
x

f
∂

∂ x
z

∂

∂ z
f

d

d
⋅= 1

z
f

d

d
⋅=

z
f

d

d
= (1) and also

y
f

∂

∂ y
z

∂

∂ z
f

d

d
⋅= i

z
f

d

d
⋅= i

z
f

d

d
⋅= (2)

Hence
2

x

f
∂

∂

2

x x
f

∂

∂

⎛
⎜
⎝

⎞
⎠

∂

∂
=

z z
f

d

d

⎛
⎜
⎝

⎞
⎠

d

d
=

2
z

f
d

d

2

= and
2

y

f
∂

∂

2

y y
f

∂

∂

⎛
⎜
⎝

⎞
⎠

∂

∂
= i

z
i

z
f

d

d
⋅⎛⎜

⎝
⎞
⎠

d

d
⋅=

2
z

f
d

d

2

−=

Combining
2

x

f
∂

∂

2

2
y

f
∂

∂

2

+
2

z

f
d

d

2

2
z

f
d

d

2

−= 0= Any differentiable function f(z) automatically satisfies the Laplace

Equation; so do its real and imaginary parts!

We demonstrate derivation of velocities u and v

From Eq 1
z

f
d

d x
f

∂

∂
=

x
φ i ψ⋅−( )

∂

∂
=

x
φ

∂

∂
i

x
ψ

∂

∂
⋅−= u− i v⋅+=

From Eq 2
z

f
d

d

1

i y
f

∂

∂
⋅=

1

i y
φ i ψ⋅−( )

∂

∂
⋅= i−

y
φ

∂

∂
⋅

y
ψ

∂

∂
−= i v⋅ u−=

Hence we have demonstrated that
df

dz
u− i v⋅+=



 

Problem 6.114                                                            [Difficulty: 2]



 

Problem 6.115                                                       [Difficulty: 2]   Part 1/2



 

Problem 6.115                                                          [Difficulty: 2]   Part 2/2



 

Problem 6.116                                                         [Difficulty: 3]



 

Problem 6.117                                                            [Difficulty: 3]



 

Problem 6.118                                                   [Difficulty: 3]   Part 1/2



Problem 6.118                                        [Difficulty: 3]   Part 2/2



Problem 6.119    [Difficulty: 3] 
 

 
 

 

Open-Ended Problem Statement: Consider flow around a circular cylinder with 

freestream velocity from right to left and a counterclockwise free vortex.  Show that the 

lift force on the cylinder can be expressed as FL =  −ρUΓ, as illustrated in Example 6.12. 

 

Discussion:  The only change in this flow from the flow of Example 6.12 is that the 

directions of the freestream velocity and the vortex are changed. This changes the sign of 

the freestream velocity from U to −U and the sign of the vortex strength from K to −K. 

Consequently the signs of both terms in the equation for lift are changed. Therefore the 

direction of the lift force remains unchanged. 

 

The analysis of Example 6.12 shows that only the term involving the vortex strength 

contributes to the lift force. Therefore the expression for lift obtained with the changed 

freestream velocity and vortex strength is identical to that derived in Example 6.12. Thus 

the general solution of Example 6.12 holds for any orientation of the freestream and 

vortex velocities. For the present case, FL = −ρUΓ, as shown for the general case in 

Example 6.12. 



 

Problem 6.120                                                            [Difficulty: 2]



 

Problem 6.121                                                            [Difficulty: 3]



 

Problem 6.122                                                       [Difficulty: 3]



 

Problem 6.123                                                           [Difficulty: 3]



 

Problem 6.124                                                       [Difficulty: 3]   Part 1/2



 

Problem 6.124                                                            [Difficulty: 3]   Part 2/2



 

Problem 6.125                                                            [Difficulty: 4]



 

Problem 6.126                                                      [Difficulty: 3]   Part 1/2



 

Problem 6.126                                                        [Difficulty: 3]   Part 2/2



 

Problem 6.127                                                   [Difficulty: 4]   Part 1/2



Problem 6.127                                      [Difficulty: 4]   Part 2/2



Problem 7.1 [Difficulty: 2] 

Given: Equation describing the propagation speed of surface waves in a region of uniform depth

Find: Nondimensionalization for the equation using length scale L and velocity scale Vo. Obtain the dimensionless

groups that characterize the flow.

Solution: To nondimensionalize the equation all lengths are divided by the reference length and all velocities are divided by

the reference velocity. Denoting the nondimensional quantities by an asterisk:

L

 *

L

h
h *

0

*

V

c
c 

 
L

LhLg

L
Vc

*

**

*

2

0

* 2
tanh

2

2





















Substituting into the governing equation: Simplifying this expression:

*

**

2

0

*2

0

2* 2
tanh

2

2











 h

V

gL

LV
c 










The dimensionless group is
g L

V0
2

which is the reciprocal of the square of the Froude number, and
σ

ρ L V0
2



which is the inverse of the Weber number.



 Problem 7.2 [Difficulty: 2] 
 

 
 

Given: Equation for beam 

Find: Dimensionless groups 

Solution:  

 

Denoting nondimensional quantities by an asterisk 

L

x
x

L

I
Itt

L

y
y

L

A
A  *****

42
  

 

Hence   **
*

** 42 xLxILI
t

tyLyALA 


 

Substituting into the governing equation  0
*

*
*

1

*

*
*

4

4

4

4

2

2
22 








x

y
LI

L
EL

t

y
ALL   

The final dimensionless equation is  0
*

*
*

*

*
*

4

4

222

2


















x

y
I

L

E

t

y
A


 

The dimensionless group is  







22 L

E
 



Problem 7.3 [Difficulty: 2]

Given: Equation describing the slope of a steady wave in a shallow liquid layer

Find: Nondimensionalization for the equation using length scale L and velocity scale V o. Obtain the dimensionless

groups that characterize the flow.

Solution: To nondimensionalize the equation all lengths are divided by the reference length and all velocities are divided by

the reference velocity. Denoting the nondimensional quantities by an asterisk:

L

h
h *

L

x
x *

0

*

V

u
u 

 
 

 
 Lx

Vu

g

Vu

Lx

Lh
*

0

*

0

*

*

*








*

*
*

2

0

*

*

x

u
u

gL

V

x

h






Substituting into the governing equation:

The dimensionless group is
V0

2

g L
which is the square of the Froude number.



Problem 7.4 [Difficulty: 2]

Given: Equation describing one-dimensional unsteady flow in a thin liquid layer

Find: Nondimensionalization for the equation using length scale L and velocity scale Vo. Obtain the dimensionless

groups that characterize the flow.

Solution: To nondimensionalize the equation all lengths are divided by the reference length and all velocities are divided by

the reference velocity. Denoting the nondimensional quantities by an asterisk:

L

x
x *

L

h
h *

0

*

V

u
u 

0

*

VL

t
t 

 
 

 
 

 
 Lx

Lh
g

Lx

Vu
Vu

VLt

Vu
*

*

*

0

*

0

*

0

*

0

*












Substituting into the governing equation: Simplifying this expression:

*

*

*

*
*

2

0

*

*2

0

x

h
g

x

u
u

L

V

t

u

L

V












*

*

2

0

*

*
*

*

*

x

h

V

gL

x

u
u

t

u










Thus:

The dimensionless group is
g L

V0
2

which is the reciprocal of the square of the Froude number.



Problem 7.5 [Difficulty: 2] 

Given: Equation describing two-dimensional steady flow in a liquid

Find: Nondimensionalization for the equation using length scale L and velocity scale V 0. Obtain the dimensionless

groups that characterize the flow.

Solution: To nondimensionalize the equation all lengths are divided by the reference length and all velocities are divided by

the reference velocity. Denoting the nondimensional quantities by an asterisk:

L

x
x *

L

h
h *

0

*

V

u
u 

L

y
y *

Substituting into the governing equation:

 
 

 
 

 
   

 
   






















LyLy

Vu

LxLx

Vu

Lx

Lh
g

Lx

Vu
Vu

**

0

*2

**

0

*2

*

*

*

0

*

0

*




Simplifying this expression:





























2*

*2

2*

*2

2

0

*

*

*

*
*

2

0

y

u

x

u

L

V

x

h
g

x

u
u

L

V
































2*

*2

2*

*2

0

*

*

2

0

*

*
*

y

u

x

u

LVx

h

V

gL

x

u
u




Thus:

The dimensionless groups are
g L

V0
2

which is the reciprocal of the square of the Froude number, and
μ

V0 ρ L
which is the

reciprocal of the Reynolds number.



 Problem 7.6 [Difficulty: 2] 
 

 

 
 

Given: Equations for modeling atmospheric motion 

Find: Non-dimensionalized equation; Dimensionless groups 

Solution:  

 

Recall that the total acceleration is 

 

VV
t

V

Dt

VD 






  

 

Nondimensionalizing the velocity vector, pressure, angular velocity, spatial measure, and time, (using a typical velocity magnitude V 

and angular velocity magnitude ): 

 

L

V
tt

L

x
x

p

p
p

V

V
V 







 *****







 

Hence 

***** t
V

L
txLxpppVVV 


 

 

Substituting into the governing equation 

 

*
1

**2***
*

*
p

L

p
VVVV

L

V
V

t

V

L

V
V 












 

 

The final dimensionless equation is 

**2***
*

*
2

p
V

p
V

V

L
VV

t

V










 









 

 

The dimensionless groups are 

V

L

V

p 
2

 

 

The second term on the left of the governing equation is the Coriolis force due to a rotating coordinate system.  This is a very 

significant term in atmospheric studies, leading to such phenomena as geostrophic flow.  



Problem 7.7 [Difficulty: 4] 

Given: The Prandtl boundary-layer equations for steady, incompressible, two-dimensional flow neglecting gravity

Find: Nondimensionalization for the equation using length scale L and velocity scale V 0. Obtain the dimensionless

groups that characterize the flow.

Solution: To nondimensionalize the equation all lengths are divided by the reference length and all velocities are divided by

the reference velocity. Denoting the nondimensional quantities by an asterisk:

L

x
x *

L

y
y *

0

*

V

u
u 

0

*

V

v
v 

 
 

 
  0

*

0

*

*

0

*









Ly

Vv

Lx

Vu
0

*

*

0

*

*

0 







y

v

L

V

x

u

L

V
Substituting into the continuity equation: Simplifying this expression:

0
*

*

*

*









y

v

x

u

We expand out the second derivative in the momentum equation by writing it as the derivative of the derivative. Upon substitution:

 
 

 
     

 
 Ly

Vu

LyLx

p

Ly

Vu
Vv

Lx

Vu
Vu

*

0

*

***

0

*

0

*

*

0

*

0

* 1






















Simplifying this expression yields:

2*

*2

0

*2

0

*

*
*

*

*
* 1

y

u

LVx

p

Vy

u
v

x

u
u















 


Now every term in this equation has been non-dimensionalized except the

pressure gradient. We define a dimensionless pressure as:

2

0

*

V

p
p


  

2*

*2

0

*

2

0

*

2

0

*

*
*

*

*
* 1

y

u

LVx

Vp

Vy

u
v

x

u
u















 


Substituting this into the momentum equation:

2*

*2

0

*

*

*

*
*

*

*
*

y

u

LVx

p

y

u
v

x

u
u















 Simplifying this expression yields:

The dimensionless group is
ν

V0 L
which is the reciprocal of the Reynolds number.



 Problem 7.8 [Difficulty: 2] 
 

 
 

Given: Equation for unsteady, 2D compressible, inviscid flow 

Find: Dimensionless groups 

Solution:  

 

Denoting nondimensional quantities by an asterisk 

0

0

000

*******
cLL

ct
t

c

c
c

c

v
v

c

u
u

L

y
y

L

x
x

   

Note that the stream function indicates volume flow rate/unit depth! 

 

Hence 

*
*

***** 0

0

000  cL
c

tL
tcccvcvucuyLyxLx   

Substituting into the governing equation 

 

      0
**

*
**2

*

*
**

*

*
**

**

*

* 23

0

2

2
22

3

0

2

2
22

3

0

223

0

2

23

0 































































yx

vu
L

c

y
cv

L

c

x
cu

L

c

t

vu

L

c

tL

c 
 

 

The final dimensionless equation is 

 

      0
**

*
**2

*

*
**

*

*
**

**

*

* 2

2

2
22

2

2
22

22

2

2






















yx
vu

y
cv

x
cu

t

vu

t


 

 

No dimensionless group is needed for this equation! 



 Problem 7.9  [Difficulty: 2] 

 

 
 

Given: Equations Describing pipe flow 

Find: Non-dimensionalized equation; Dimensionless groups 

Solution:  

 

Nondimensionalizing the velocity, pressure, spatial measures, and time: 

 

L

V
tt

L

r
r

L

x
x

p

p
p

V

u
u 


 *****  

Hence 

***** t
V

L
trDrxLxpppuVu   

 

Substituting into the governing equation 
































*

*

*

1

*

*1

*

*11

*

*
2

2

2 r

u

rr

u

D
V

x

p

L
p

t

u

L

V
V

t

u 


 

 

The final dimensionless equation is 

 









































*

*

*

1

*

*

*

*

*

*
2

2

2 r

u

rr

u

D

L

VDx

p

V

p

t

u 


 

 

The dimensionless groups are 

 

D

L

VDV

p 
 2


 



Problem 7.10 [Difficulty: 2]

Given: Functional relationship between pressure drop through orifice plate and physical parameters

Find: Appropriate dimensionless parameters

Solution: We will use the Buckingham pi-theorem.

p   V D d1 n = 6 parameters

2 Select primary dimensions M, L, t:

p   V D d3 

2Lt

M
3L

M

Lt

M

t

L L L
r = 3 dimensions

 V D4 m = r = 3 repeating parameters

5 We have n - m = 3 dimensionless groups. Setting up dimensional equations:

Π1 Δp ρ
a

 V
b

 D
c

 Thus:
M

L t
2











M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents:

M: 1 a 0 The solution to this system is:
Π1

Δp

ρ V
2




L: 1 3 a b c 0 a 1 b 2 c 0

t: 2 b 0

Check using F, L, t primary dimensions:
F

L
2

L
4

F t
2




t
2

L
2

 1 Checks

out.

Π2 μ ρ
a

 V
b

 D
c

 Thus:
M

L t






M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents:

M: 1 a 0 The solution to this system is:
Π2

μ

ρ V D


L: 1 3 a b c 0 a 1 b 1 c 1
(This is the Reynolds number, so it checks out)

t: 1 b 0



Π3 d ρ
a

 V
b

 D
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents:

M: a 0 The solution to this system is:
Π3

d

D


L: 1 c 0 a 0 b 0 c 1
(This checks out)

t: b 0



 Problem 7.11 [Difficulty: 2] 
 

 
 

Given: That drag depends on speed, air density and frontal area 

Find: How drag force depend on speed 

Solution:  

 

Apply the Buckingham  procedure 

 

   F          V                   A   n = 4 parameters 

 

 Select primary dimensions M, L, t 

 

 
2

32
L

L

M

t

L

t

ML

AVF 
  r = 3 primary dimensions 

 

    V                   A    m = r = 3 repeat parameters 

 

  Then n – m = 1 dimensionless groups will result.  Setting up a dimensional equation, 
 

  000

2

2

3

1

tLM
t

ML
L

L

M

t

L

FAV

c
ba

cba

















 
 

 

Summing exponents, 

 

202:

10123:

101:





aat

ccbaL

bbM

 

Hence 

AV

F
21


  

  Check using F, L, t as primary dimensions 

 

 1
2

2

2

4

21 

L
t

L

L

Ft

F
 

 

The relation between drag force F and speed V must then be 
22 VAVF    

The drag is proportional to the square of the speed. 



Problem 7.12 [Difficulty: 2]

Given: At low speeds, drag F on a sphere is only dependent upon speed V, viscosity μ, and diameter D

Find: Appropriate dimensionless parameters

Solution: We will use the Buckingham pi-theorem.

F V  D1 n = 4 parameters

2 Select primary dimensions M, L, t:

F V  D3 n = 4 parameters

2t

ML

t

L

Lt

M L
r = 3 dimensions

V  D4 m = r = 3 repeating parameters

5 We have n - m = 1 dimensionless group. Setting up a dimensional equation:

Π1 F V
a

 μ
b

 D
c

 Thus:
M L

t
2









L

t







a


M

L t






b

 L
c

 M
0

L
0

 t
0



Summing exponents:

M: 1 b 0 The solution to this system is:

L: 1 a b c 0 a 1 b 1 c 1 Π1
F

μ V D


t: 2 a b 0

Check using F, L, t primary dimensions: F
t

L


L
2

F t


1

L
 1 Checks out.

Since the procedure produces only one dimensionless group, it must be a constant. Therefore:
F

μ V D
constant



Problem 7.13 [Difficulty: 2]

Given: Functional relationship between the drag on a satellite and other physical parameters

Find: Expression for FD in terms of the other variables

Solution: We will use the Buckingham pi-theorem.

1 FD λ ρ L c n = 5 parameters

2 Select primary dimensions M, L, t:

3 FD λ ρ L c

M L

t
2

L
M

L
3

L
L

t
r = 3 dimensions

4 ρ L c m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 D ρ
a

 L
b

 c
d

 Thus:
M L

t
2

M

L
3









a

 L
b


L

t







d

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

FD

ρ L
2

 c
2




a 1 b 2 d 2
M: 1 a 0

L: 1 3 a b d 0

t: 2 d 0

Check using F, L, t dimensions: F
L

4

F t
2




1

L
2


t
2

L
2

 1

Π2 λ ρ
a

 L
b

 c
d

 Thus: L
M

L
3









a

 L
b


L

t







d

 M
0

L
0

 t
0



Summing exponents: The solution to this system is: (Π2 is sometimes referred to

as the Knudsen number.)
Π2

λ

L


a 0 b 1 d 0
M: a 0

L: 1 3 a b d 0

t: d 0

Check using F, L, t dimensions: L
1

L
 1

The functional relationship is: Π1 f Π2 
FD

ρ L
2

 c
2


f
λ

L







 FD ρ L
2

 c
2

 f
λ

L











Problem 7.14 [Difficulty: 2]

Given: Functional relationship between buoyant force of a fluid and physical parameters

Find: Buoyant force is proportional to the specific weight as demonstrated in Chapter 3.

Solution: We will use the Buckingham pi-theorem.

1 FB V γ n = 3 parameters

2 Select primary dimensions F, L, t:

FB V γ
3 

F L
3 F

L
3 r = 2 dimensions

4 V γ m = r = 2 repeating parameters

5 We have n - m = 1 dimensionless group. Setting up dimensional equations:

Π1 FB V
a

 γ
b

 Thus: F L
3 a

F

L
3









b

 F
0

L
0



Summing exponents:

F: 1 b 0 The solution to this system is:
Π1

FB

V γ


L: 3 a 3 b 0 a 1 b 1

Check using M, L, t dimensions:
M L

t
2

1

L
3


t
2

L
2



M
 1

The functional relationship is: Π1 C
FB

V γ
C Solving for the buoyant force: FB C V γ Buoyant force is

proportional to γ
(Q.E.D.)



Problem 7.15 [Difficulty: 2]

Given: Functional relationship between drag on an object in a supersonic flow and physical parameters

Find: Functional relationship for this problem using dimensionless parameters

Solution: We will use the Buckingham pi-theorem.

1 FD V ρ A c n = 5 parameters

2 Select primary dimensions M, L, t:

3 FD V ρ A c

M L

t
2

L

t

M

L
3

L
2 L

t r = 3 dimensions

4 V ρ A m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 FD V
a

 ρ
b

 A
c

 Thus:
M L

t
2

L

t







a


M

L
3









b

 L
2 c M

0
L

0
 t

0


Summing exponents:

M: 1 b 0 The solution to this system is: Π1

FD

V
2
ρ A



L: 1 a 3 b 2 c 0 a 2 b 1 c 1

t: 2 a 0

Check using F, L, t dimensions: F
t
2

L
2


L

4

F t
2




1

L
2

 1

Π2 c V
a

 ρ
b

 A
c

 Thus:
L

t

L

t







a


M

L
3









b

 L
2 c M

0
L

0
 t

0


Summing exponents:

M: b 0 The solution to this system is: Π2
c

V
 (The reciprocal of Π2 is also referred

to as the Mach number.)
L: 1 a 3 b 2 c 0 a 1 b 0 c 0

t: 1 a 0

Check using F, L, t dimensions:
L

t

t

L
 1

The functional relationship is: Π1 g Π2 
FD

V
2
ρ A

f
c

V











 Problem 7.16 [Difficulty: 2] 
 

 

Given: That speed of shallow waves depends on depth, density, gravity and surface tension 

Find: Dimensionless groups; Simplest form of V 

Solution:  

 

Apply the Buckingham  procedure 

 

   V          D                   g            n = 5 parameters 

 

 Select primary dimensions M, L, t 

 

            





















223 t

M

t

L

L

M
L

t

L

gDV 
 r = 3 primary dimensions 

 

    g                   D    m = r = 3 repeat parameters 

 

  Then n – m = 2 dimensionless groups will result.  Setting up a dimensional equation, 

 

  000

321 tLM
t

L
L

L

M

t

L
VDg

c

ba

cba 













   

Summing exponents,  

2

1
012:

2

1
013:

00:







aat

ccbaL

bbM

 Hence  
gD

V
1  

  000

2322 tLM
t

M
L

L

M

t

L
Dg

c

ba

cba 













   

Summing exponents,  

1022:

203:

101:





aat

ccbaL

bbM

  Hence  
22

Dg


  

  Check using F, L, t as primary dimensions  1
2

1

2

1 











L
t

L

t

L

    1
2

4

2

2

2 
L

L

Ft

t

L
L

F

 

The relation between drag force speed V is   21  f  









2Dg
f

gD

V




 









2Dg
fgDV




 



Problem 7.17 [Difficulty: 2]

Given: Functional relationship between wall shear stress in a boundary layer and physical parameters

Find: Appropriate dimensionless parameters

Solution: We will use the Buckingham pi-theorem.

w x   U1 n = 5 parameters

2 Select primary dimensions M, L, t:

w x   U3 

2Lt

M L
3L

M

Lt

M

t

L
r = 3 dimensions

 x U4 m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 τw ρ
a

 x
b

 U
c

 Thus:
M

L t
2











M

L
3









a

 L
b


L

t







c

 M
0

L
0

 t
0



Summing exponents:

M: 1 a 0 The solution to this system is:
Π1

τw

ρ U
2




L: 1 3 a b c 0 a 1 b 0 c 2

t: 2 c 0

Check using F, L, t dimensions:
F

L
2









L
4

F t
2












t
2

L









 1

Π2 μ ρ
a

 x
b

 U
c

 Thus:
M

L t






M

L
3









a

 L
b


L

t







c

 M
0

L
0

 t
0



Summing exponents:

M: 1 a 0 The solution to this system is:
Π2

μ

ρ x U


L: 1 3 a b c 0 a 1 b 1 c 1

t: 1 c 0

Check using F, L, t dimensions:
F t

L
2









L
4

F t
2












1

L








t
2

L









 1 The functional relationship is:

Π1 f Π2 



Problem 7.18 [Difficulty: 2] 

Given: Functional relationship between boundary layer thickness and physical parameters

Find: Appropriate dimensionless parameters

Solution: We will use the Buckingham pi-theorem.

 x   U1 n = 5 parameters

2 Select primary dimensions M, L, t:

 x   U3 

L L
3L

M

Lt

M

t

L
r = 3 dimensions

 x U4 m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 δ ρ
a

 x
b

 U
c

 Thus: L
M

L
3









a

 L
b


L

t







c

 M
0

L
0

 t
0



Summing exponents:

M: 0 a 0 The solution to this system is:
Π1

δ

x


L: 1 3 a b c 0 a 0 b 1 c 0

t: 0 c 0

Check using F, L, t dimensions: L( )
1

L







 1

Π2 μ ρ
a

 x
b

 U
c

 Thus:
M

L t






M

L
3









a

 L
b


L

t







c

 M
0

L
0

 t
0



Summing exponents:

M: 1 a 0 The solution to this system is:
Π2

μ

ρ x U


L: 1 3 a b c 0 a 1 b 1 c 1

t: 1 c 0

Check using F, L, t dimensions:
F t

L
2









L
4

F t
2












1

L








t
2

L









 1 The functional relationship is:

Π1 f Π2 



 Problem 7.19 [Difficulty: 2] 
 

 

Given: That light objects can be supported by surface tension 

Find: Dimensionless groups 

Solution:  

 

Apply the Buckingham  procedure 

 

   W          p                   g            n = 5 parameters 

 

 Select primary dimensions M, L, t 

 

            





















2232 t

M

t

L

L

M
L

t

ML

gpW 
 r = 3 primary dimensions 

 

    g                   p    m = r = 3 repeat parameters 

 

  Then n – m = 2 dimensionless groups will result.  Setting up a dimensional equation, 

 

  000

2321 tLM
t

ML
L

L

M

t

L
Wpg

c

ba

cba 













   

Summing exponents,  

1022:

3013:

101:





aat

ccbaL

bbM

 Hence  
31

pg

W


  

  000

2322 tLM
t

M
L

L

M

t

L
pg

c

ba

cba 













   

Summing exponents,  

1022:

203:

101:





aat

ccbaL

bbM

  Hence  
22

pg


  

  Check using F, L, t as primary dimensions  1
3

4

2

2

1 
L

L

Ft

t

L

F
    1

2

4

2

2

2 
L

L

Ft

t

L
L

F

 

Note: Any combination of 1 and 2 is a  group, e.g., 


Wp





2

1
, so  1 and 2 are not unique! 



Problem 7.20 [Difficulty: 2] 

Given: Functional relationship between the speed of a free-surface gravity wave in deep water and physical parameters

Find: The dependence of the speed on the other variables

Solution: We will use the Buckingham pi-theorem.

1 V λ D ρ g n = 5 parameters

2 Select primary dimensions M, L, t:

3 V λ D ρ g

L

t
L L

M

L
3

L

t
2

r = 3 dimensions

4 D ρ g m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 V D
a

 ρ
b

 g
c

 Thus:
L

t
L

a


M

L
3









b


L

t
2









c

 M
0

L
0

 t
0



Summing exponents:

M: b 0 The solution to this system is:
Π1

V

g D


L: 1 a 3 b c 0 a
1

2
 b 0 c

1

2


t: 1 2 c 0

Check using F, L, t dimensions:
L

t







t

L







 1

Π2 λ D
a

 ρ
b

 g
c

 Thus: L L
a


M

L
3









b


L

t
2









c

 M
0

L
0

 t
0



Summing exponents:

M: b 0 The solution to this system is:
Π2

λ

D


L: 1 a 3 b c 0 a 1 b 0 c 0

t: 2 c 0

Check using F, L, t dimensions: L
1

L
 1

The functional relationship is: Π1 f Π2 
V

g D
f
λ

D







 Therefore the velocity is: V g D f
λ

D











Problem 7.21 [Difficulty: 2] 

Given: Functional relationship between mean velocity for turbulent flow in a pipe or boundary layer and physical

parameters

Find: (a) Appropriate dimensionless parameters containing mean velocity and one containing the distance from the

wall that are suitable for organizing experimental data.

(b) Show that the result may be written as:










*

*

yu
f

u

u


 wu *

where is the friction velocity

Solution: We will use the Buckingham pi-theorem.

u w y  1 n = 5 parameters

2 Select primary dimensions M, L, t:

u w y  3 

t

L
2Lt

M L
3L

M

Lt

M
r = 3 dimensions

w y4 m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

c

w

ba yu 1
Thus:

L

t

M

L
3









a

 L
b


M

L t
2











c

 M
0

L
0

 t
0



Summing exponents:

M: a c 0 The solution to this system is:

*

1
u

u
u

w



L: 1 3 a b c 0 a

1

2
 b 0 c

1

2


t: 1 2 c 0

Check using F, L, t dimensions:
L

t







t

L







 1

c

w

ba y 2
Thus:

M

L t

M

L
3









a

 L
b


M

L t
2











c

 M
0

L
0

 t
0





Summing exponents:

M: 1 a c 0 The solution to this system is:

**

2
yuyuyy ww














L: 1 3 a b c 0 a
1

2
 b 1 c

1

2


t: 1 2 c 0

Π2
is the reciprocal of the Reynolds number, so we know that it checks out.











** yu
g

u

u 









*

*

yu
f

u

uThe functional relationship

is:
Π1 g Π2  which may be rewritten as:



Problem 7.22 [Difficulty: 2] 

(The solution to this problem was first devised by G.I. Taylor

in the paper "The formation of a blast wave by a very intense

explosion. I. Theoretical discussion," Proceedings of the Royal

Society of London. Series A, Mathematical and Physical

Sciences, Vol. 201, No. 1065, pages 159 - 174 (22 March 1950).) 

Given: Functional relationship between the energy released by an explosion and other physical parameters

Find: Expression for E in terms of the other variables

Solution: We will use the Buckingham pi-theorem.

1 E t R p ρ n = 5 parameters

2 Select primary dimensions M, L, t:

3 E t R p ρ

M L
2



t
2

t L
M

L t
2



M

L
3

r = 3 dimensions

4 ρ t R m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 E ρ
a

 t
b

 R
c

 Thus:
M L

2


t
2

M

L
3









a

 t
b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

E t
2



ρ R
5




a 1 b 2 c 5
M: 1 a 0

L: 2 3 a c 0

t: 2 b 0

Check using F, L, t dimensions: F L
L

4

F t
2


 t

2


1

L
5

 1

Π2 p ρ
a

 t
b

 R
c

 Thus:
M

L t
2



M

L
3









a

 t
b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

p t
2



ρ R
2




a 1 b 2 c 2
M: 1 a 0

L: 1 3 a c 0

t: 2 b 0

Check using F, L, t dimensions:
F

L
2

L
4

F t
2


 t

2


1

L
2

 1

The functional relationship is: Π1 f Π2 
E t

2


ρ R
5


f

p t
2



ρ R
2











 E
ρ R

5


t
2

f
p t

2


ρ R
2















Problem 7.23 [Difficulty: 2] 

Given: Functional relationship between the speed of a capillary wave and other physical parameters

Find: An expression for V based on the other variables

Solution: We will use the Buckingham pi-theorem.

1 V σ λ ρ n = 4 parameters

2 Select primary dimensions M, L, t:

3 V σ λ ρ

L

t

M

t
2

L
M

L
3

r = 3 dimensions

4 σ λ ρ m = r = 3 repeating parameters

5 We have n - m = 1 dimensionless group. Setting up dimensional equations:

Π1 V σ
a

 λ
b

 ρ
c

 Thus:
L

t

M

t
2









a

 L
b


M

L
3









c

 L
0

t
0



Summing exponents: The solution to this system is:
Π1 V

λ ρ

σ


a
1

2
 b

1

2
 c

1

2


M: a c 0

L: 1 b 3 c 0

t: 1 2 a 0

Check using F, L, t dimensions:
L

t







L
F t

2


L
4


L

F
 1

The functional relationship is: Π1 C V
λ ρ

σ
 C Therefore the velocity is: V C

σ

λ ρ




Problem 7.24 [Difficulty: 2] 

Given: Functional relationship between the flow rate over a weir and physical parameters

Find: An expression for Q based on the other variables

Solution: We will use the Buckingham pi-theorem.

1 Q h g b n = 5 parameters

2 Select primary dimensions L, t:

3 Q h g b

r = 2 dimensionsL
3

t
L

L

t
2

L

4 h g m = r = 2 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 Q h
a

 g
b

 Thus:
L

3

t
L

a


L

t
2









b

 L
0

t
0



Summing exponents: The solution to this system is:
Π1

Q

h
2

g h


a
5

2
 b

1

2


L: 3 a b 0

t: 1 2 b 0

Check:
L

3

t









1

L







2


t

L







 1

Π2 b h
a

 g
b

 Thus: L L
a


L

t
2









b

 L
0

t
0



Summing exponents: The solution to this system is:
Π2

b

h


a 1 b 0
L: 1 a b 0

t: 2 b 0

Check: L
1

L
 1

The functional relationship is: Π1 f Π2 
Q

h
2

g D
f

b

h







 Therefore the flow rate is: Q h
2

g h f
b

h











 Problem 7.25 [Difficulty: 2] 
 

 

Given: That automobile buffer depends on several parameters 

Find: Dimensionless groups 

Solution:  

 

Apply the Buckingham  procedure 

 

   T                   F          e                     n = 6 parameters 

 

 Select primary dimensions M, L, t 

 

            

























222

2 1

t

M

Lt

M
L

t

ML

tt

ML

eFT 
 r = 3 primary dimensions 

 

    F         e              m = r = 3 repeat parameters 

 

  Then n – m = 3 dimensionless groups will result.  Setting up a dimensional equation, 

 

  000

2

2

21

1
tLM

t

ML

t
L

t

ML
TeF

c

b

a

cba 













   

Summing exponents, 

0022:

102:

101:





ccat

bbaL

aaM

 Hence  
Fe

T
1  

  000

22

1
tLM

Lt

M

t
L

t

ML
eF

c

b

a

cba 













   

Summing exponents,  

1012:

201:

101:





ccat

bbaL

aaM

 Hence  
F

e  2

2   

  000

223

1
tLM

t

M

t
L

t

ML
eF

c

b

a

cba 













   

Summing exponents,  

0022:

10:

101:





ccat

bbaL

aaM

 Hence  
F

e
 3  

 

  Check using F, L, t as primary dimensions 



   11 
FL

FL
    1

12

2

2 
F

t
L

L

Ft

   13 
F

L
L

F

 

Note: Any combination of 1, 2 and 3 is a  group, e.g., 
3

2

1

e

T







, so  1, 2 and 3 are not unique!  



 Problem 7.26 [Difficulty: 2] 
 

 

Given: That the power of a vacuum depends on various parameters 

Find: Dimensionless groups 

Solution:  

Apply the Buckingham  procedure 

   P           p         D          d                            di          do   n = 8 parameters 

 

 Select primary dimensions M, L, t 

            


























LL
L

M

t
LL

Lt

M

t

ML

dddDp oi

323

2 1

P

 r = 3 primary dimensions 

 

             D              m = r = 3 repeat parameters 

 

  Then n – m = 5 dimensionless groups will result.  Setting up a dimensional equation, 

  000

3

2

31

1
tLM

t

ML

t
L

L

M
D

c

b

a

cba 













 P  

Summing exponents,  

303:

5023:

101:





cct

bbaL

aaM

 Hence  
351 D

P
  

  000

232

1
tLM

Lt

M

t
L

L

MΔpD

c

b

a

cba 













   

Summing exponents,  

202:

2013:

101:





cct

bbaL

aaM

 Hence  
222 D

p
  

The other  groups can be found by inspection: 
D

d
3  

D

di4  
D

do5  

  Check using F, L, t as primary dimensions 

   1
1
3

5

4

21 

t
L

L

Ft

t

FL

   1
1
2

2

4

2

2

2 

t
L

L

Ft
L

F

   1543 
L

L
 

Note: Any combination of 1, 2 and 3 is a  group, e.g., 
32

1

pD



 P

, so the ’s are not unique!  



Problem 7.27 [Difficulty: 2]

Given: Functional relationship between the load bearing capacity of a journal bearing and other physical parameters

Find: Dimensionless parameters that characterize the problem.

Solution: We will use the Buckingham pi-theorem.

1 W D l c ω μ n = 6 parameters

2 Select primary dimensions F, L, t:

3 W D l c ω μ

F L L L
1

t

F t

L
2

r = 3 dimensions

4 D ω μ m = r = 3 repeating parameters

5 We have n - m = 3 dimensionless groups. Setting up dimensional equations:

Π1 W D
a

 ω
b

 μ
c

 Thus: F L
a


1

t







b


F t

L
2









c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

W

D
2
ω μ


a 2 b 1 c 1

F: 1 c 0

L: a 2 c 0

t: b c 0

Check using M, L, t dimensions:
M L

t
2

1

L
2

 t
L t

M
 1 By inspection, we can see that: Π2

l

D
 Π3

c

D


The functional relationship is: Π1 f Π2 Π3 
W

D
2
ω μ

f
l

D

c

D










Problem 7.28 (In Excel) [Difficulty: 2]

Given: That drain time depends on fluid viscosity and density, orifice diameter, and gravity

Find: Functional dependence of t  on other variables

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 5

The number of primary dimensions is: r = 3

The number of repeat parameters is: m = r = 3

The number of  groups is: n - m = 2

Enter the dimensions (M, L, t) of

the repeating parameters, and of up to

four other parameters (for up to four  groups).

The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose , g , d

M L t

 1 -3

g 1 -2

d 1

 GROUPS:

M L t M L t

t 0 0 1  1 -1 -1

1: a  = 0 2: a  = -1

b  = 0.5 b  = -0.5

c  = -0.5 c = -1.5

The following  groups from Example 7.1 are not used:

M L t M L t

0 0 0 0 0 0

3: a  = 0 4: a  = 0

b  = 0 b  = 0

c  = 0 c = 0

Hence                                    and                                                      with 

 

 

 

 

 

 

The final result is 

d

g
t1 32

2

2

3

2

12
gd

dg






  21  f













32

2

gd
f

g

d
t






Problem 7.29 [Difficulty: 2] 

Given: Functional relationship between the power transmited by a sound wave and other physical parameters

Find: Expression for E in terms of the other variables

Solution: We will use the Buckingham pi-theorem.

1 E V ρ r n n = 5 parameters

2 Select primary dimensions M, L, t:

3 E V ρ r n

M

t
3

L

t

M

L
3

L
1

t
r = 3 dimensions

4 ρ V r m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 E ρ
a

 V
b

 r
c

 Thus:
M

t
3

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

E

ρ V
3




a 1 b 3 c 0
M: 1 a 0

L: 3 a b c 0

t: 3 b 0

Check using F, L, t dimensions:
F

L t

L
4

F t
2




t
3

L
3

 1

Π2 n ρ
a

 V
b

 r
c

 Thus:
1

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing

exponents:

The solution to this system is:
Π2

n r

V


a 0 b 1 c 1
M: a 0

L: 3 a b c 0

t: 1 b 0

Check using F, L, t

dimensions:

1

t
L

t

L
 1

The functional relationship is: Π1 f Π2 
E

ρ V
3


f

n r

V







 E ρ V
3

 f
n r

V











Problem 7.30 [Difficulty: 2]

Given: Functional relationship between the time needed to drain a tank through an orifice plate and other physical

parameters

Find: (a) the number of dimensionless parameters

(b) the number of repeating variables

(c) the Π term which contains the viscosity

Solution: We will use the Buckingham pi-theorem.

1 τ h0 D d g ρ μ n = 7 parameters

2 Select primary dimensions M, L, t:

3 τ h0 D d g ρ μ

T L L L
L

t
2

M

L
3

M

L t
r = 3 dimensions

4 ρ d g m = r = 3 repeating parameters We have n - m = 4 dimensionless groups.

5 Setting up dimensional equation including the viscosity:

Π1 μ ρ
a

 d
b

 g
c

 Thus:
M

L t

M

L
3









a

 L
b


L

t
2









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

μ

ρ d

3

2
 g

1

2



a 1 b

3

2
 c

1

2


M: 1 a 0

L: 1 3 a b c 0

t: 1 2 c 0

Check using F, L, t dimensions:
F t

L
2

L
4

F t
2




1

L

3

2


t

L

1

2

 1



Problem 7.31 [Difficulty: 3]

Given: Functional relationship between the flow rate of viscous liquid dragged out of a bath and other physical

parameters

Find: Expression for Q in terms of the other variables

Solution: We will use the Buckingham pi-theorem.

1 Q μ ρ g h V n = 6 parameters

2 Select primary dimensions M, L, t:

3 Q μ ρ g h V

L
3

t

M

L t

M

L
3

L

t
2

L
L

t
r = 3 dimensions

4 ρ V h m = r = 3 repeating parameters

5 We have n - m = 3 dimensionless groups. Setting up dimensional equations:

Π1 Q ρ
a

 V
b

 h
c

 Thus:
L

3

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

Q

V h
2




a 0 b 1 c 2
M: a 0

L: 3 3 a b c 0

t: 1 b 0

Check using F, L, t dimensions:
L

3

t

t

L


1

L
2

 1

Π2 μ ρ
a

 V
b

 h
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

μ

ρ V h


a 1 b 1 c 1
M: 1 a 0

L: 1 3 a b c 0

t: 1 b 0

Check using F, L, t dimensions:
F t

L
2

L
4

F t
2




t

L


1

L
 1



Π3 g ρ
a

 V
b

 h
c

 Thus:
L

t
2

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

g h

V
2


a 0 b 2 c 1

M: a 0

L: 1 3 a b c 0

t: 2 b 0

Check using F, L, t dimensions:
L

t
2

L
t
2

L
2

 1

The functional relationship is: Π1 f Π2 Π3 
Q

V h
2


f
ρ V h

μ

V
2

g h










 Q V h
2

 f
ρ V h

μ

V
2

g h














Problem 7.32 [Difficulty: 2]

Given: Functional relationship between the power required to drive a fan and other physical parameters

Find: Expression for P in terms of the other variables

Solution: We will use the Buckingham pi-theorem.

1 P ρ Q D ω n = 5 parameters

2 Select primary dimensions M, L, t:

3 P ρ Q D ω

M L
2



t
3

M

L
3

L
3

t
L

1

t
r = 3 dimensions

4 ρ D ω m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 P ρ
a

 D
b

 ω
c

 Thus:
M L

2


t
3

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

P

ρ D
5

 ω
3




a 1 b 5 c 3
M: 1 a 0

L: 2 3 a b 0

t: 3 c 0

Check using F, L, t dimensions:
F L

t

L
4

F t
2




1

L
5

 t
3

 1

Π2 Q ρ
a

 D
b

 ω
c

 Thus:
L

3

t

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0



Summing

exponents:

The solution to this system is:
Π2

Q

D
3
ω


a 0 b 3 c 1

M: a 0

L: 3 3 a b 0

t: 1 c 0

Check using F, L, t

dimensions:

1

t
L

t

L
 1

The functional relationship is: Π1 f Π2 
P

ρ D
5

 ω
3


f

Q

D
3
ω









 P ρ D
5

 ω
3

 f
Q

D
3
ω













Problem 7.33 [Difficulty: 2]

Given: Functional relationship between the mass flow rate exiting a tank through a rounded drain hole and other

physical parameters

Find: (a) Number of dimensionless parameters that will result

(b) Number of repeating parameters

(c) The Π term that contains the viscosity

Solution: We will use the Buckingham pi-theorem.

1 m h0 D d g ρ μ n = 7 parameters

2 Select primary dimensions M, L, t:

3 m h0 D d g ρ μ

M

t
L L L

L

t
2

M

L
3

M

L t r = 3 dimensions

We have n - r = 4 dimensionless groups.

4 ρ d g m = r = 3 repeating parameters

5 Setting up dimensional equation involving the viscosity:

Π1 μ ρ
a

 d
b

 g
c

 Thus:
M

L t

M

L
3









a

 L
b


L

t
2









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

μ

ρ d
3

g


a 1 b

3

2
 c

1

2


M: 1 a 0

L: 1 3 a b c 0

t: 1 2 c 0

Check using F, L, t dimensions:
F t

L
2

L
4

F t
2




1

L

3

2


t

L

1

2

 1



Problem 7.34 [Difficulty: 3] 

Given: Functional relationship between the deflection of the bottom of a cylindrical tank and other physical parameters

Find: Functional relationship between these parameters using dimensionless groups.

Solution: We will use the Buckingham pi-theorem.

1 δ D h d γ E n = 6 parameters

2 Select primary dimensions F, L, t:

3 δ D h d γ E

L L L L
F

L
3

F

L
2

r = 2 dimensions

4 D γ m = r = 2 repeating parameters We have n - m = 4 dimensionless groups.

5 Setting up dimensional equations:

Π1 δ D
a

 γ
b

 Thus: L L
a


F

L
3









b

 F
0

L
0



Summing exponents: The solution to this system is:
Π1

δ

D


F: b 0 a 1 b 0

L: 1 a 3 b 0
Check using M, L, t dimensions: L

1

L
 1

Now since h and d have the same dimensions as δ, it
would follow that the the next two pi terms would be: Π2

h

D
 Π3

d

D


Π4 E D
a

 γ
b

 Thus:
F

L
2

L
a


F

L
3









b

 F
0

L
0



Summing exponents: The solution to this system is:
Π4

E

D γ


F: 1 b 0 a 1 b 1

L: 2 a 3 b 0
Check using M, L, t dimensions:

M

L t
2



1

L


L
2

t
2



M
 1

The functional relationship is: Π1 f Π2 Π3 Π4 
δ

D
f

h

D

d

D


E

D γ








(For further reading, one should consult an appropriate text, such as Advanced Strength of Materials by Cook and Young)



Problem 7.35 [Difficulty: 3]

Given: Functional relationship between the diameter of droplets formed during jet breakup and other physical

parameters

Find: (a) The number of dimensionless parameters needed to characterize the process

(b) The ratios (Π-terms)

Solution: We will use the Buckingham pi-theorem.

1 d ρ μ σ V D n = 6 parameters

2 Select primary dimensions M, L, t:

3 d ρ μ σ V D

L
M

L
3

M

L t

M

t
2

L

t
L r = 3 dimensions

4 ρ V D m = r = 3 repeating parameters We have n - m = 3 dimensionless groups.

5 Setting up dimensional equations:

Π1 d ρ
a

 V
b

 D
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

d

D


a 0 b 0 c 1
M: a 0

L: 1 3 a b c 0
Check using F, L, t dimensions: L

1

L
 1

t: b 0

Π2 μ ρ
a

 V
b

 D
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

μ

ρ V D


a 1 b 1 c 1
M: 1 a 0

L: 1 3 a b c 0
Check using F, L, t dimensions:

F t

L
2

L
4

F t
2




t

L


1

L
 1

t: 1 b 0

Π3 σ ρ
a

 V
b

 D
c

 Thus:
M

t
2

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

σ

ρ V
2

 D


a 1 b 2 c 1
M: 1 a 0

L: 3 a b c 0
Check using F, L, t dimensions:

F

L

L
4

F t
2




t
2

L
2


1

L
 1

t: 2 b 0



Problem 7.36 [Difficulty: 3]

Given: Functional relationship between the height of a ball suported by a vertical air jet and other physical parameters

Find: The Π terms that characterize this phenomenon

Solution: We will use the Buckingham pi-theorem.

1 h D d V ρ μ W n = 7 parameters

2 Select primary dimensions M, L, t:

3 h D d V ρ μ W

L L L
L

t

M

L
3

M

L t

M L

t
2

r = 3 dimensions

4 ρ V d m = r = 3 repeating parameters

5 We have n - m = 4 dimensionless groups. Setting up dimensional equations:

Π1 h ρ
a

 V
b

 d
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

h

d


a 0 b 0 c 1
M: a 0

L: 1 3 a b c 0
Check using F, L, t dimensions: L

1

L
 1

t: b 0

Π2 D ρ
a

 V
b

 d
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

D

d


a 0 b 0 c 1
M: a 0

L: 1 3 a b c 0
Check using F, L, t dimensions: L

1

L
 1

t: b 0



Π3 μ ρ
a

 V
b

 d
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

μ

ρ V d


a 1 b 1 c 1
M: 1 a 0

L: 1 3 a b c 0
Check using F, L, t dimensions:

F t

L
2

L
4

F t
2




t

L


1

L
 1

t: 1 b 0

Π4 W ρ
a

 V
b

 d
c

 Thus:
M L

t
2

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

W

ρ V
2

 d
2




a 1 b 2 c 2
M: 1 a 0

L: 1 3 a b c 0
Check using F, L, t dimensions: F

L
4

F t
2




t
2

L
2


1

L
2

 1
t: 2 b 0



Problem 7.37 (In Excel) [Difficulty: 3]

Given: That dot size depends on ink viscosity, density, and surface tension, and geometry

Find:  groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 7

The number of primary dimensions is: r = 3

The number of repeat parameters is: m = r = 3

The number of  groups is: n - m = 4

Enter the dimensions (M, L, t) of

the repeating parameters, and of up to

four other parameters (for up to four  groups).

The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS:Choose , V , D

M L t

 1 -3

V 1 -1

D 1

 GROUPS:

M L t M L t

d 0 1 0  1 -1 -1

1: a  = 0 2: a  = -1

b  = 0 b  = -1

c  = -1 c  = -1

M L t M L t

 1 0 -2 L 0 1 0

3: a  = -1 4: a  = 0

b  = -2 b  = 0

c  = -1 c  = -1

Note that groups 1 and 4 can be obtained by inspection

Hence                                                                                                                                         
D

d
1





 VD

VD
 2

DV 23




D

L
 4



Problem 7.38 (In Excel) [Difficulty: 3]

Given: Bubble size depends on viscosity, density, surface tension, geometry and pressure

Find:  groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 6

The number of primary dimensions is: r = 3

The number of repeat parameters is: m = r = 3

The number of  groups is: n - m = 3

Enter the dimensions (M, L, t) of

the repeating parameters, and of up to

four other parameters (for up to four  groups).

The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS:Choose , p , D

M L t

 1 -3

p 1 -1 -2

D 1

 GROUPS:

M L t M L t

d 0 1 0  1 -1 -1

1: a  = 0 2: a  = -0.5

b  = 0 b  = -0.5

c  = -1 c  = -1

M L t M L t

 1 0 -2 0 0 0

3: a  = 0 4: a  = 0

b  = -1 b  = 0

c  = -1 c  = 0

Note that the 1 group can be obtained by inspection

Hence                                                                                                                                         
D

d
1 2

2

2

1

2

12
pD

Dp













pD




3



Problem 7.39 (In Excel) [Difficulty: 3]

Given: Speed depends on mass, area, gravity, slope, and air viscosity and thickness

Find:  groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 7

The number of primary dimensions is: r = 3

The number of repeat parameters is: m = r = 3

The number of  groups is: n - m = 4

Enter the dimensions (M, L, t) of

the repeating parameters, and of up to

four other parameters (for up to four  groups).

The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose g , , m

M L t

g 1 -2

 1

m 1

 GROUPS:

M L t M L t

V 0 1 -1  1 -1 -1

1: a  = -0.5 2: a  = -0.5

b  = -0.5 b  = 1.5

c  = 0 c  = -1

M L t M L t

 0 0 0 A 0 2 0

3: a  = 0 4: a  = 0

b  = 0 b  = -2

c  = 0 c  = 0

Note that the 1 , 3 and 4 groups can be obtained by inspection

Hence                                                                                                                                         



g

V

g

V
2

2

1

2

11 
gm

mg

2

32

2

1

2

3

2


  3 24


A





Problem 7.40 [Difficulty: 2] 

Given: Functional relationship between the length of a wake behind an airfoil and other physical parameters

Find: The Π terms that characterize this phenomenon

Solution: We will use the Buckingham pi-theorem.

1 w V L t ρ μ
n = 6 parameters

2 Select primary dimensions M, L, t:

3 w V L t ρ μ

L
L

t
L L

M

L
3

M

L t r = 3 dimensions

4 ρ V L m = r = 3 repeating parameters

5 We have n - m = 3 dimensionless groups. Setting up dimensional equations:

Π1 w ρ
a

 V
b

 L
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

w

L


a 0 b 0 c 1
M: a 0

L: 1 3 a b c 0
Check using F, L, t dimensions: L

1

L
 1

t: b 0

Π2 t ρ
a

 V
b

 L
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

t

L


a 0 b 0 c 1
M: a 0

L: 1 3 a b c 0
Check using F, L, t dimensions: L

1

L
 1

t: b 0

Π3 μ ρ
a

 V
b

 L
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

μ

ρ V L


a 1 b 1 c 1
M: 1 a 0

L: 1 3 a b c 0
Check using F, L, t dimensions:

F t

L
2

L
4

F t
2




t

L


1

L
 1

t: 1 b 0



 Problem 7.41 [Difficulty: 2] 
 

 

Given: That the power of a washing machine agitator depends on various parameters 

Find: Dimensionless groups 

Solution:  

Apply the Buckingham  procedure 

 

   P          H         D          h         max         f                       n = 8 parameters 

 

 Select primary dimensions M, L, t 

            

























Lt

M

L

M

tt
LLL

t

ML

fhDH

33

2

max

11

P

 r = 3 primary dimensions 

             D          max    m = r = 3 repeat parameters 

 

  Then n – m = 5 dimensionless groups will result.  Setting up a dimensional equation, 

  000

3

2

3max1

1
tLM

t

ML

t
L

L

M
D

c

b

a

ba 













 P

c  

Summing exponents,  

303:

5023:

101:





cct

bbaL

aaM

 Hence  
3

max

51 D

P
  

  000

3max2

1
tLM

Lt

M

t
L

L

M
D

c

b

a

ba 













  c

 

Summing exponents,  

101:

2013:

101:





cct

bbaL

aaM

 Hence  

max

22 


D
  

The other  groups can be found by inspection: 
D

H
3  

D

h
4  

max

5 
f

  

  Check using F, L, t as primary dimensions 

   1
1
3

5

4

21 

t
L

L

Ft
t

FL

   1
12

4

2

2

2 

t
L

L

Ft
L

Ft

   1543   

Note: Any combination of ’s is a  group, e.g., 
2

max

3

2

1

D

P





, so the ’s are not unique!  



Problem 7.42 [Difficulty: 3]

Given: Functional relationship between the mass flow rate of gas through a choked-flow nozzle and other physical

parameters

Find: (a) How many independent Π terms that characterize this phenomenon

(b) Find the Π terms

(c) State the functional relationship for the mass flow rate in terms of the Π terms

Solution: We will use the Buckingham pi-theorem.

1 m A p T R (Mathcad can't render dots!) n = 5 parameters

2 Select primary dimensions M, L, t:

3 m A p T R

M

t
L

2 M

L t
2


T

L
2

t
2

T

r = 4 dimensions

4 p A T R m = r = 4 repeating parameters We have n - m = 1 dimensionless group.

5 Setting up dimensional equations:

Π1 m p
a

 A
b

 T
c

 R
d

 Thus:
M

t

M

L t
2











a

 L
2 b T

c


L
2

t
2

T









d

 M
0

L
0

 t
0

 T
0



Summing exponents: The solution to this system is:
Π1

m

p A
R T

a 1 b 1 c
1

2
 d

1

2


M: 1 a 0

L: a 2 b 2 d 0

t: 1 2 a 2 d 0
Check using F, L, t dimensions:

F t

L

L
2

F


1

L
2


L

t T

1

2


 T

1

2
 1

T: c d 0

The functional relationship is: Π1 C
m

p A
R T C So the mass flow rate is: m C

p A

R T




Problem 7.43 (In Excel) [Difficulty: 3]

Given: Time to speed up depends on inertia, speed, torque, oil viscosity and geometry

Find:  groups

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 8

The number of primary dimensions is: r = 3

The number of repeat parameters is: m = r = 3

The number of  groups is: n - m = 5

Enter the dimensions (M, L, t) of

the repeating parameters, and of up to

four other parameters (for up to four  groups).

The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS:Choose , D , T

M L t

 -1

D 1

T 1 2 -2

 GROUPS:
Two  groups can be obtained by inspection: /D and L /D .  The others are obtained below

M L t M L t

t 0 0 1  1 -1 -1

1: a  = 1 2: a  = 1

b  = 0 b  = 3

c  = 0 c  = -1

M L t M L t

I 1 2 0 0 0 0

3: a  = 2 4: a  = 0

b  = 0 b  = 0

c  = -1 c  = 0

Note that the 1 group can also be easily obtained by inspection

Hence the  groups are                                                                                                                         

 

 

 

 

 

t
D



T

D3
T

I 2
D

L



Problem 7.44 [Difficulty: 3]

Given: Functional relationship between the mass flow rate of liquid from a pressurized tank through a contoured nozzle

and other physical parameters

Find: (a) How many independent Π terms that characterize this phenomenon

(b) Find the Π terms

(c) State the functional relationship for the mass flow rate in terms of the Π terms

Solution: We will use the Buckingham pi-theorem.

1 m A ρ h ∆p g n = 6 parameters

2 Select primary dimensions M, L, t:

3 m A ρ h ∆p g

M

t
L

2 M

L
3

L
M

L t
2



L

t
2

r = 3 dimensions

4 ρ A g m = r = 3 repeating parameters We have n - m = 3 dimensionless groups.

5 Setting up dimensional equations:

Π1 m ρ
a

 A
b

 g
c

 Thus:
M

t

M

L
3









a

 L
2 b

L

t
2









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

m

ρ A

5

4
 g

1

2



a 1 b

5

4
 c

1

2


M: 1 a 0

L: 3 a 2 b c 0

t: 1 2 c 0
Check using F, L, t dimensions:

F t

L

L
4

F t
2




1

L

5

2


t

L

1

2

 1

Π2 h ρ
a

 A
b

 g
c

 Thus: L
M

L
3









a

 L
2 b

L

t
2









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

h

A


a 0 b
1

2
 c 0

M: a 0

L: 1 3 a 2 b c 0

t: 2 c 0
Check using F, L, t dimensions: L

1

L
 1



Π3 ∆p ρ
a

 A
b

 g
c

 Thus:
M

L t
2



M

L
3









a

 L
2 b

L

t
2









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

∆p

ρ g A


a 1 b
1

2
 c 1

M: 1 a 0

L: 1 3 a 2 b c 0

t: 2 2 c 0
Check using F, L, t dimensions:

F

L
2

L
4

F t
2




t
2

L


1

L
 1

The functional relationship is: Π1 f Π2 Π3 
m

ρ A

5

4
 g

1

2


f
h

A

∆p

ρ g A









 So the mass flow rate is:

m ρ A

5

4
 g

1

2
 f

h

A

∆p

ρ g A













Problem 7.45 [Difficulty: 3] 

Given: Functional relationship between the aerodynamic torque on a spinning ball and other physical parameters

Find: The Π terms that characterize this phenomenon

Solution: We will use the Buckingham pi-theorem.

1 T V ρ μ D ω d n = 7 parameters

2 Select primary dimensions M, L, t:

3 T V ρ μ D ω d

M L
2



t
2

L

t

M

L
3

M

L t
L

1

t
L r = 3 dimensions

4 ρ V D m = r = 3 repeating parameters

5 We have n - m = 4 dimensionless groups. Setting up dimensional equations:

Π1 T ρ
a

 V
b

 D
c

 Thus:
M L

2


t
2

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

T

ρ V
2

 D
3




a 1 b 2 c 3
M: 1 a 0

L: 2 3 a b c 0

t: 2 b 0
Check using F, L, t dimensions: F L

L
4

F t
2




t
2

L
2


1

L
3

 1

Π2 μ ρ
a

 V
b

 D
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

μ

ρ V D


a 1 b 1 c 1
M: 1 a 0

L: 1 3 a b c 0

t: 1 b 0
Check using F, L, t dimensions:

F t

L
2

L
4

F t
2




t

L


1

L
 1



Π3 ω ρ
a

 V
b

 D
c

 Thus:
1

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

ω D

V


a 0 b 1 c 1
M: a 0

L: 3 a b c 0

t: 1 b 0
Check using F, L, t dimensions:

1

t
L

t

L
 1

Π4 d ρ
a

 V
b

 D
c

 Thus: L
M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

d

D


a 0 b 0 c 1
M: a 0

L: 1 3 a b c 0

t: b 0
Check using F, L, t dimensions:

1

L
L 1

The functional relationship is: Π1 f Π2 Π3 Π4 
T

ρ V
2

 D
3


f

μ

ρ V D

ω D

V


d

D










 Problem 7.46 [Difficulty: 2] 
 

 

Given: Ventilation system of cruise ship clubhouse 

Find: Dimensionless groups 

Solution:  

Apply the Buckingham  procedure 

   c          N         p          D                  p                    g           n = 9 parameters 

 Select primary dimensions M, L, t 

            






















Lt

M

t

L

L

M

L

M

t
L

Lt

M

L

gDpNc p

23323

1
1

1


 r = 3 primary dimensions 

             D              m = r = 3 repeat parameters 

 

  Then n – m = 6 dimensionless groups will result.  Setting up a dimensional equation, 

  000

231

1
tLM

Lt

M

t
L

L

MΔpD

c

b

a

cba 













   

Summing exponents,  

202:

2013:

101:





cct

bbaL

aaM

 Hence  
221 D

p
  

  000

32

1
tLM

Lt

M

t
L

L

M
D

c

b

a

cba 













   

Summing exponents,  

101:

2013:

101:





cct

bbaL

aaM

 Hence  



22

D
  

The other  groups can be found by inspection: 
3

3 cD  N4  

 p5  

26 D

g
  

  Check using F, L, t as primary dimensions 

   1
1
2

2

4

2

2

1 

t
L

L

Ft
L

F

   1
12

4

2

2

2 

t
L

L

Ft
L

Ft

   16543   

Note: Any combination of ’s is a  group, e.g., 


p





2

1
, so the ’s are not unique!  



Problem 7.47 [Difficulty: 3] 

Given: Functional relationship between the mass burning rate of a combustible mixture and other physical parameters

Find: The dependence of mass burning rate

Solution: We will use the Buckingham pi-theorem.

1 m δ ρ α D (Mathcad can't render dots!)

n = 5 parameters
2 Select primary dimensions M, L, t:

3 m δ ρ α D

r = 3 dimensionsM

t
L

M

L
3

L
2

t

L
2

t

4 δ ρ α m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 m δ
a

 ρ
b

 α
c

 Thus:
M

t
L

a


M

L
3









b


L

2

t









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

m

δ ρ α


M: 1 b 0 a 1 b 1 c 1

L: a 3 b 2 c 0

t: 1 c 0

Π2 D δ
a

 ρ
b

 α
c

 Thus:
L

2

t
L

a


M

L
3









b


L

2

t









c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

D

α


M: b 0 a 0 b 0 c 1

L: 2 a 3 b 2 c 0

t: 1 c 0

6 Check using F, L, t dimensions:
F t

L

1

L


L
4

F t
2




t

L
2

 1
L

2

t

t

L
2

 1

The functional relationship is: Π1 f Π2 
m

δ ρ α
f

D

α











Problem 7.48 [Difficulty: 3]

Given: Functional relationship between the power loss in a journal bearing and other physical parameters

Find: The Π terms that characterize this phenomenon and the function form of the dependence of P on these

parameters

Solution: We will use the Buckingham pi-theorem.

1 P l D c ω μ p n = 7 parameters

2 Select primary dimensions F, L, t:

3 P l D c ω μ p

F L

t
L L L

1

t

F t

L
2

F

L
2

r = 3 dimensions

4 D ω p m = r = 3 repeating parameters

5 We have n - m = 4 dimensionless groups. Setting up dimensional equations:

Π1 P D
a

 ω
b

 p
c

 Thus:
F L

t
L

a


1

t







b


F

L
2









c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

P

D
3
ω p


F: 1 c 0 a 3 b 1 c 1

L: 1 a 2 c 0

t: 1 b 0

Π2 l D
a

 ω
b

 p
c

 Thus: L L
a


1

t







b


F

L
2









c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

l

D


F: c 0 a 1 b 0 c 0

L: 1 a 2 c 0

t: b 0

Π3 c D
a

 ω
b

 p
c

 Thus: L L
a


1

t







b


F

L
2









c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

c

D


F: c 0 a 1 b 0 c 0

L: 1 a 2 c 0

t: b 0



Π4 μ D
a

 ω
b

 p
c

 Thus:
F t

L
2

L
a


1

t







b


F

L
2









c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

μ ω

p


F: 1 c 0 a 0 b 1 c 1

L: 2 a 2 c 0

t: 1 b 0

6 Check using M, L, t dimensions:
M L

2


t
3

1

L
3

 t
L t

2


M
 1 L

1

L
 1 L

1

L
 1

M

L t

1

t


L t
2



M
 1

The functional relationship is: Π1 f Π2 Π3 Π4 
P

ω p D
3


f

l

D

c

D


μ ω

p






 P ω p D
3

 f
l

D

c

D


μ ω

p










Problem 7.49 [Difficulty: 4]

Given: Functional relationship between the heat transfer rate in a convection oven and other physical parameters

Find: The number of Π terms that characterize this phenomenon and the Π terms

Solution: We will use the Buckingham pi-theorem.

1 Q cp Θ L ρ μ V n = 7 parameters

2 Select primary dimensions F, L, t, T (temperature):

3 Q cp Θ L ρ μ V

F L

t

L
2

t
2

T
T L

F t
2



L
4

F t

L
2

L

t r = 4 dimensions

4 ρ V L Θ m = r = 4 repeating parameters We have n - m = 3 dimensionless

groups.
5 Setting up dimensional equations:

Π1 Q ρ
a

 V
b

 L
c

 Θ
d

 Thus:
F L

t

F t
2



L
4









a


L

t







b

 L
c

 T
d

 F
0

L
0

 t
0

 T
0



Summing exponents: The solution to this system is:
Π1

Q

ρ V
3

 L
2




F: 1 a 0 a 1 b 3 c 2 d 0

L: 1 4 a b c 0

t: 1 2 a b 0

T: d 0

Π2 cp ρ
a

 V
b

 L
c

 Θ
d

 Thus:
L

2

t
2

T

F t
2



L
4









a


L

t







b

 L
c

 T
d

 F
0

L
0

 t
0

 T
0



Summing exponents: The solution to this system is:
Π2

cp Θ

V
2


F: a 0 a 0 b 2 c 0 d 1

L: 2 4 a b c 0

t: 2 2 a b 0

T: 1 d 0

Π3 μ ρ
a

 V
b

 L
c

 Θ
d

 Thus:
F t

L
2

F t
2



L
4









a


L

t







b

 L
c

 T
d

 F
0

L
0

 t
0

 T
0



Summing exponents: The solution to this system is:
Π3

μ

ρ V L


F: 1 a 0 a 1 b 1 c 1 d 0

L: 2 4 a b c 0

t: 1 2 a b 0

T: d 0



6 Check using M, L, t, T dimensions:
M L

2


t
3

L
3

M


t
2

L
2


1

L
3

 1
L

2

t
2

T

t
2

L
2

 T 1
M

L t

L
3

M


t

L


1

L
 1

The functional relationship is: Π1 f Π2 Π3 
Q

ρ V
3

 L
2


f

cp Θ

V
2

μ

ρ V L








 Q ρ V
3

 L
2

 f
cp Θ

V
2

μ

ρ V L












Problem 7.50 [Difficulty: 3]

Given: Functional relationship between the thrust of a marine propeller and other physical parameters

Find: The Π terms that characterize this phenomenon

Solution: We will use the Buckingham pi-theorem.

1 FT ρ D V g ω p μ n = 8 parameters

2 Select primary dimensions F, L, t:

3 FT ρ D V g ω p μ

M L

t
2

M

L
3

L
L

t

L

t
2

1

t

M

L t
2



M

L t
r = 3 dimensions

4 ρ V D m = r = 3 repeating parameters

5 We have n - m = 5 dimensionless groups. Setting up dimensional equations:

Π1 FT ρ
a

 V
b

 D
c

 Thus:
M L

t
2

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

FT

ρ V
2

 D
2




M: 1 a 0 a 1 b 2 c 2

L: 1 3 a b c 0

t: 2 b 0

Π2 g ρ
a

 V
b

 D
c

 Thus:
L

t
2

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

g D

V
2


M: a 0 a 0 b 2 c 1

L: 1 3 a b c 0

t: 2 b 0

Π3 ω ρ
a

 V
b

 D
c

 Thus:
1

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

ω D

V


M: a 0 a 0 b 1 c 1

L: 3 a b c 0

t: 1 b 0



Π4 p ρ
a

 V
b

 D
c

 Thus:
M

L t
2



M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

p

ρ V
2




M: 1 a 0 a 1 b 2 c 0

L: 1 3 a b c 0

t: 2 b 0

Π5 μ ρ
a

 V
b

 D
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π5

μ

ρ V D


M: 1 a 0 a 1 b 1 c 1

L: 1 3 a b c 0

t: 1 b 0

6 Check using F, L, t dimensions: F
L

4

F t
2




t
2

L
2


1

L
2

 1
L

t
2

L
t
2

L
2

 1
1

t
L

t

L
 1

F

L
2

L
4

F t
2




t
2

L
2

 1
F t

L
2

L
4

F t
2




t

L


1

L
 1



 Problem 7.51 [Difficulty: 3] 
 

 

Given: That the cooling rate depends on rice properties and air properties 

Find: The  groups 

Solution:  

 

Apply the Buckingham  procedure 

 
   dT/dt        c        k        L        cp                     V  n = 8 parameters 

 

 Select primary dimensions M, L, t and T (temperature) 

 

 

t

L

Lt

M

L

M

Tt

L
L

Tt

ML

Tt

L

t

T

VcLkcdtdT p

32

2

22

2


 r = 4 primary dimensions 

 

    V                   L         cp     m = r = 4 repeat parameters 

 

Then n – m = 4 dimensionless groups will result.  By inspection, one  group is c/cp. Setting up a dimensional equation, 

 

  0000

2

2

31 tLMT
t

T

Tt

L
L

L

M

t

L

dt

dT
cLV

d

c

ba

d

p

cba 





















   

 

Summing exponents, 

 

3012:

12023:

00:

101:







adat

ccadcbaL

bbM

ddT

 

 

Hence 
31

V

Lc

dt

dT p  

 

By a similar process, we find 

pcL

k
22


  and 

LV


3  

Hence 

 
















LVcL

k

c

c
f

V

Lc

dt

dT

pp

p





,,

23
 



Problem 7.52 [Difficulty: 3] 

Given: Functional relationship between the power to drive a marine propeller and other physical parameters

Find: (a) The number of Π terms that characterize this phenomenon

(b) The Π terms

Solution: We will use the Buckingham pi-theorem.

1 P ρ D V c ω μ n = 7 parameters

2 Select primary dimensions F, L, t:

3 P ρ D V c ω μ

M L
2



t
3

M

L
3

L
L

t

L

t

1

t

M

L t
r = 3 dimensions

4 ρ V D m = r = 3 repeating parameters

5 We have n - m = 4 dimensionless groups. Setting up dimensional equations:

Π1 P ρ
a

 V
b

 D
c

 Thus:
M L

2


t
3

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

P

ρ V
3

 D
2




M: 1 a 0 a 1 b 3 c 2

L: 2 3 a b c 0

t: 3 b 0

Π2 c ρ
a

 V
b

 D
c

 Thus:
L

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

c

V


M: a 0 a 0 b 1 c 0

L: 1 3 a b c 0

t: 1 b 0

Π3 ω ρ
a

 V
b

 D
c

 Thus:
1

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

ω D

V


M: a 0 a 0 b 1 c 1

L: 3 a b c 0

t: 1 b 0



Π4 μ ρ
a

 V
b

 D
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

μ

ρ V D


M: 1 a 0 a 1 b 1 c 1

L: 1 3 a b c 0

t: 1 b 0

6 Check using F, L, t dimensions:
F L

t

L
4

F t
2




t
3

L
3


1

L
2

 1
L

t

t

L
 1

1

t
L

t

L
 1

F t

L
2

L
4

F t
2




t

L


1

L
 1



 Problem 7.53 [Difficulty: 2] 
 

 

Given: Boundary layer profile 

Find: Two  groups by inspection; One  that is a standard fluid mechanics group; Dimensionless groups 

Solution:  

 

Two obvious  groups are u/U and y/.  A dimensionless group common in fluid mechanics is U (Reynolds number) 

 

Apply the Buckingham  procedure 

 

   u          y         U          dU/dx                     n = 6 parameters 

 

 Select primary dimensions M, L, t 

 

            























L
t

L

tt

L
L

t

L

dxdUUyu

21


 m = r = 3 primary dimensions 

 

    U               m = r = 2 repeat parameters 

 

  Then n – m = 4 dimensionless groups will result.  We can easily do these by inspection 

 

U

u
1  


y

2  
 

U

dydU 
3  

U


4  

 

  Check using F, L, t as primary dimensions, is not really needed here 

 

Note: Any combination of ’s can be used; they are not unique!  



Problem 7.54 [Difficulty: 4] 

Given: Functional relationship between the maximum pressure experienced in a water hammer wave and other physical

parameters

Find: (a) The number of Π terms that characterize this phenomenon

(b) The functional relationship between the Π terms

Solution: We will use the Buckingham pi-theorem.

1 pmax ρ U0 EV
n = 4 parameters

2 Select primary dimensions M, L, t:

3 pmax ρ U0 EV

M

L t
2



M

L
3

L

t

M

L t
2

 r = 3 dimensions

4 ρ U0
m = 2 repeating parameters because pmax

and Ev
have the same dimensions.

We have n - m = 2 dimensionless groups.

5 Setting up dimensional equations:

Π1 pmax ρ
a

 U0
b

 Thus:
M

L t
2



M

L
3









a


L

t







b

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

pmax

ρ U0
2




M: 1 a 0 a 1 b 2

L: 1 3 a b 0

t: 2 b 0

Π2 Ev ρ
a

 U0
b

 Thus:
M

L t
2



M

L
3









a


L

t







b

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

Ev

ρ U0
2




M: 1 a 0 a 1 b 2

L: 1 3 a b 0

t: 2 b 0

6 Check using F, L, t dimensions:
F

L
2

L
4

F t
2




t
2

L
2

 1
F

L
2

L
4

F t
2




t
2

L
2

 1

The functional relationship is: Π1 f Π2  Thus:
pmax

ρ U0
2


f

Ev

ρ U0
2

















Problem 7.55 [Difficulty: 3]

Given: Model scale for on balloon

Find: Required water model water speed; drag on protype based on model drag

Solution:

From Appendix A (inc. Fig. A.2) ρair 1.24
kg

m
3

 μair 1.8 10
5


N s

m
2

 ρw 999
kg

m
3

 μw 10
3 N s

m
2



The given data is Vair 5
m

s
 Lratio 20 Fw 2 kN

For dynamic similarity we assume
ρw Vw Lw

μw

ρair Vair Lair

μair



Then Vw Vair

μw

μair


ρair

ρw


Lair

Lw

 Vair

μw

μair


ρair

ρw

 Lratio 5
m

s


10
3

1.8 10
5












1.24

999







 20 Vw 6.90
m

s


Fair

1

2
ρair Aair Vair

2


Fw

1

2
ρw Aw Vw

2



For the same Reynolds numbers, the drag coefficients will be the same so we have

where
Aair

Aw

Lair

Lw









2

 Lratio
2



Hence the prototype drag is Fair Fw

ρair

ρw

 Lratio
2


Vair

Vw









2

 2000 N
1.24

999







 20
2


5

6.9







2

 Fair 522 N



Problem 7.56 [Difficulty: 3] 

Given: Airship is to operate at 20 m/s in air at standard conditions. A 1/20 scale model is to be tested in a wind tunnel at

the same temperature to determine drag.

Find: (a) Criterion needed to obtain dynamic similarity

(b) Air pressure required if air speed in wind tunnel is 75 m/s

(c) Prototype drag if the drag on the model is 250 N

Solution: Dimensional analysis predicts:
F

ρ V
2

 L
2


f
ρ V L

μ







 Therefore, for dynamic similarity, it would follow that:

ρm Vm Lm

μm

ρp Vp Lp

μp



Since the tests are performed at the same temperature, the viscosities are the same. Solving for the ratio of densities:

ρm

ρp

Vp

Vm

Lp

Lm


μm

μp


20

75
20 1 5.333 Now from the ideal gas equation of state: ρ

p

R T
 Thus:

pm pp

ρm

ρp


Tp

Tm

 pm 101 kPa 5.333 1 pm 5.39 10
5

 Pa

From the force ratios:
Fp

ρp Vp
2

 Lp
2



Fm

ρm Vm
2

 Lm
2


 Thus: Fp Fm

ρp

ρm


Vp

Vm









2


Lp

Lm









2



Substituting known values: Fp 250 N
1

5.333


20

75







2

 20( )
2

 Fp 1.333 kN



Problem 7.57 [Difficulty: 2]

Given: A model is to be subjected to the same Reynolds number in air flow and water flow

Find: (a) Which flow will require the higher flow speed

(b) How much higher the flow speed needs to be

Solution: For dynamic similarity:
ρw Vw Lw

μw

ρa Va La

μa

 We know that Lw La Thus:
Va

Vw

ρw

ρa

μa

μw


νa

νw



From Tables A.8 and A.10 at 20 deg C: νw 1.00 10
6


m

2

s
 and νa 1.51 10

5


m
2

s
 Therefore:

Va

Vw

1.51 10
5



1.00 10
6


 15.1 Air speed must be higher than

water speed.

To match Reynolds number: Va 15.1 Vw



Problem 7.58 [Difficulty: 5] 

Given: Vessel to be powered by a rotating circular cylinder. Model tests are planned to determine the required power

for the prototype.

Find: (a) List of parameters that should be included in the analysis

(b) Perform dimensional analysis to identify the important dimensionless groups

Solution: From an inspection of the physical problem: P f ρ μ V ω D H( )

We will now use the Buckingham pi-theorem to find the dimensionless groups.

1 P ρ μ V ω D H n = 7 parameters

2 Select primary dimensions M, L, t:

3 P ρ μ V ω D H

M L
2



t
3

M

L
3

M

L t

L

t

1

t
L L r = 3 dimensions

4 ρ ω D m = r = 3 repeating parameters

5 We have n - m = 4 dimensionless groups. Setting up dimensional equations:

Π1 P ρ
a

 ω
b

 D
c

 Thus:
M L

2


t
3

M

L
3









a


1

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

P

ρ ω
3

 D
5




M: 1 a 0 a 1 b 3 c 5

L: 2 3 a c 0

t: 3 b 0

Π2 μ ρ
a

 ω
b

 D
c

 Thus:
M

L t

M

L
3









a


1

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

μ

ρ ω D
2




M: 1 a 0 a 1 b 1 c 2

L: 1 3 a c 0

t: 1 b 0

Π3 V ρ
a

 ω
b

 D
c

 Thus:
L

t

M

L
3









a


1

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

V

ω D


M: a 0 a 0 b 1 c 1

L: 1 3 a c 0

t: 1 b 0



Π4 H ρ
a

 ω
b

 D
c

 Thus: L
M

L
3









a


1

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

H

D


M: a 0 a 0 b 0 c 1

L: 1 3 a c 0

t: b 0

6 Check using F, L, t dimensions:
F L

t

L
4

F t
2


 t

3


1

L
5

 1
F t

L
2

L
4

F t
2


 t

1

L
2

 1
L

t
t

1

L
 1 L

1

L
 1

The functional relationship is: Π1 f Π2 Π3 Π4 
P

ρ ω
3

 D
5


f

μ

ρ ω D
2



V

ω D


H

D













Problem 7.59 [Difficulty: 3] 

Given: Measurements of drag are made on a model car in a fresh water tank. The model is 1/5-scale.

Find: (a) Conditions requred to ensure dynamic similarity between the model and the prototype.

(b) Required fraction of speed in air at which the model needs to be tested in water to ensure dynamically similar

conditions.

(c) Drag force on the prototype model traveling at 90 kph in air if the model drag is 182 N traveling at 4 m/s in

water.

Solution: The flows must be geometrically and kinematically similar, and have equal Reynolds numbers to be dynamically

similar:

Geometric similarity requires a true model in all respects.

Kinematic similarity requires the same flow pattern, i.e., no free-surface or cavitation effects.

The problem may be stated as F = f(ρ,V,L,μ)

Dimensional analysis gives this relation:
F

ρ V
2

 L
2


g Re( ) where Re

ρ V L

μ


V L

ν


Matching Reynolds numbers between the model and prototype

flows:

Vm Lm

νm

Vp Lp

νp

 Thus:
Vm

Vp

νm

νp

Lp

Lm



From Tables A.8 and A.10 at 20 deg C: νw 1.00 10
6


m

2

s
 and νa 1.51 10

5


m
2

s
 Therefore:

Vm

Vp

1.00 10
6



1.51 10
5



5

1
 0.331

Vm

Vp

0.331

If the conditions are dynamically similar:
Fm

ρm Vm
2

 Lm
2



Fp

ρp Vp
2

 Lp
2


 Thus: Fp Fm

ρp

ρm


Vp

Vm









2


Lp

Lm









2



Substituting in known values: Fp 182 N
1.20

999
 90

km

hr


1000 m

km


hr

3600 s


s

4 m






2


5

1







2

 Fp 213 N



Problem 7.60 [Difficulty: 2]

Given: Flow around ship's propeller

Find: Model propeller speed using Froude number and Reynolds number

Solution:

Basic equations: Fr
V

g L
 Re

V L

ν


Assumptions: (a) The model and the actual propeller are geometrically similar

(b) The flows about the propellers are kinematically and dynamically similar

Using the Froude number Frm

Vm

g Lm
 Frp

Vp

g Lp
 or

Vm

Vp

Lm

Lp

 (1)

But the angular velocity is given by V L ω so
Vm

Vp

Lm

Lp

ωm

ωp

 (2)

Comparing Eqs. 1 and 2
Lm

Lp

ωm

ωp


Lm

Lp

 ωm

ωp

Lp

Lm



The model rotation speed is then ωm ωp

Lp

Lm


ωm 100 rpm

9

1
 ωm 300 rpm

Using the Reynolds number Rem

Vm Lm

νm

 Rep
Vp Lp

νp

 or
Vm

Vp

Lp

Lm

νm

νp


Lp

Lm

 (3)

(We have assumed the viscosities of the sea water and model water are comparable)

Comparing Eqs. 2 and 3
Lm

Lp

ωm

ωp


Lp

Lm

 ωm

ωp

Lp

Lm









2



The model rotation speed is then ωm ωp

Lp

Lm









2


ωm 100 rpm

9

1







2

 ωm 8100 rpm

Of the two models, the Froude number appears most realistic; at 8100 rpm serious cavitation will occur, which would

invalidate the similarity assumptions.  Both flows will likely have high Reynolds numbers so that the flow becomes

independent of Reynolds number; the Froude number is likely to be a good indicator of static pressure to dynamic

pressure for this (although cavitation number would be better).



Problem 7.61 [Difficulty: 3]

Given: A torpedo with D = 533 mm and L = 6.7 m is to travel at 28 m/s in water. A 1/5 scale model of the torpedo is to be

tested in a wind tunnel. The maximum speed in the tunnel is fixed at 110 m/s, but the pressure can be varied at a

constant temperature of 20 deg C.

Find: (a) Minimum pressure required in the wind tunnel for dynamically similar testing.

(b) The expected drag on the prototype if the model drag is 618 N.

Solution: The problem may be stated as: F f ρ V D μ( ) From the Buckingham pi theorem, we expect 2 Π terms:

F

ρ V
2

 D
2


g Re( ) where Re

ρ V D

μ


Matching Reynolds numbers between the model and prototype flows:
ρm Vm Dm

μm

ρp Vp Dp

μp

 Thus: ρm ρp

Vp

Vm


Dp

Dm


μm

μp



At 20 deg C: μp 1.00 10
3


N s

m
2

 and μm 1.81 10
5


N s

m
2

 So substituting in values yields:

ρm 998
kg

m
3


28

110


5

1


1.81 10
5



1.00 10
3


 ρm 23.0

kg

m
3

 From the ideal gas equation of state: pm ρm R Tm

Substituting in values: pm 23.0
kg

m
3

 287
N m

kg K
 293 K

Pa m
2



N
 pm 1.934 MPa

If the conditions are dynamically similar:
Fm

ρm Vm
2

 Dm
2



Fp

ρp Vp
2

 Dp
2


 Thus: Fp Fm

ρp

ρm


Vp

Vm









2


Dp

Dm









2



Substituting in known values: Fp 618 N
998

23.0


28

110







2


5

1







2

 Fp 43.4 kN



Problem 7.62 [Difficulty: 3] 

Given: A 1/10 scale airfoil was tested in a wind tunnel at known test conditions. Prototype airfoil has a chord length of

6 ft and is to be flown at standard conditions.

Find: (a) Reynolds number at which the model was tested

(b) Corresponding prototype speed

Solution:

Assumptions: (a) The viscosity of air does not vary appreciably between 1 and 5 atmospheres

(b) Geometric, kinematic, and dynamic similarity applies

The problem may be stated as: F f ρ V L μ( ) From the Buckingham pi theorem, we expect 2 Π terms:

F

ρ V
2

 L
2


g Re( ) where Re

ρ V L

μ
 The model chord length is Lm

6 ft

5
1.20 ft

We can calculate the model flow density from the ideal gas equation of state: ρm

pm

R Tm
 Substituting known values:

ρm 5 atm
2116 lbf

atm ft
2











lbm R

53.33 ft lbf


1

519 R


slug

32.2 lbm
 ρm 0.0119

slug

ft
3



At 59 deg F: μm 3.74 10
7


lbf s

ft
2

 Therefore: Rem 0.0119
slug

ft
3

 130
ft

s
 1.2 ft

ft
2

3.74 10
7

 lbf s


lbf s
2



slug ft


Rem 5.0 10
6



Matching Reynolds numbers between the model and prototype flows:
ρm Vm Lm

μm

ρp Vp Lp

μp

 Thus: Vp Vm

ρm

ρp


Lm

Lp


μp

μm



From the ideal gas equation of state:
ρm

ρp

pm

pp

Tp

Tm

 Therefore: Vp Vm

pm

pp


Tp

Tm


Lm

Lp


μp

μm

 So substituting in values yields:

Vp 130
ft

s


5

1


519

519


1

5


3.74 10
7



3.74 10
7


 Vp 130.0

ft

s




Problem 7.63 [Difficulty: 2]

Given: Model of weather balloon

Find: Model test speed; drag force expected on full-scale balloon

Solution:

From Buckingham Π F

ρ V
2

 D
2


f

ν

V D

V

c






 F Re M( )

For similarity Rep Rem and Mp Mm (Mach number criterion

satisified because M<<1)

Hence Rep

Vp Dp

νp

 Rem
Vm Dm

νm



Vm Vp

νm

νp


Dp

Dm



From Table A.7 at 68oF νm 1.08 10
5


ft

2

s
 From Table A.9 at 68oF νp 1.62 10

4


ft
2

s


Vm 5
ft

s


1.08 10
5


ft

2

s


1.62 10
4


ft

2

s

















10 ft

1

6
ft











 Vm 20.0
ft

s


Then
Fm

ρm Vm
2

 Dm
2



Fp

ρp Vp
2

 Dp
2


 Fp Fm

ρp

ρm.


Vp

2

Vm
2


Dp

2

Dm
2



Fp 0.85 lbf

0.00234
slug

ft
3



1.94
slug

ft
3



















5
ft

s

20
ft

s














2


10 ft

1

6
ft











2

 Fp 0.231 lbf



Problem 7.64 [Difficulty: 2]

Given: Model of wing

Find: Model test speed for dynamic similarity; ratio of model to prototype forces

Solution:

We would expect F F l s V ρ μ( ) where F is the force (lift or drag),  l is the chord and s the span

From Buckingham Π F

ρ V
2

 l s
f
ρ V l

μ

l

s








For dynamic similarity
ρm Vm lm

μm

ρp Vp lp

μp



Hence Vm Vp

ρp

ρm


lp

lm


μm

μp



From Table A.8 at 20oC μm 1.01 10
3


N s

m
2

 From Table A.10 at 20oC μp 1.81 10
5


N s

m
2



Vm 7.5
m

s


1.21
kg

m
3



998
kg

m
3


















10

1









1.01 10
3


N s

m
2



1.81 10
5


N s

m
2

















 Vm 5.07
m

s


Then
Fm

ρm Vm
2

 lm sm

Fp

ρp Vp
2

 lp sp


Fm

Fp

ρm

ρp

Vm
2

Vp
2


lm sm

lp sp


998

1.21

5.07

7.5







2


1

10


1

10
 3.77



Problem 7.65 [Difficulty: 3] 

Given: The fluid dynamic charachteristics of a gold ball are the be tested using a model in a wind tunnel. The

dependent variables are the drag and lift forces. Independent variables include the angular speed and dimple

depth. A pro golfer can hit a ball at a speed of 75 m/s and 8100 rpm. Wind tunnel maximum speed is 25 m/s.

Find: (a) Suitable dimensionless parameters and express the functional dependence between them.

(b) Required diameter of model

(c) Required rotational speed of model

Solution:

Assumption: Wind tunnel is at standard conditions

The problem may be stated as: FD FD D V ω d ρ μ( ) FL FL D V ω d ρ μ( ) n = 7 and m = r = 3, so

from the Buckingham pi theorem, we expect two sets of four Π terms. The application of the Buckingham pi theorem will not be

shown here, but the functional dependences would be:
FD

ρ V
2

 D
2


f
ρ V D

μ

ω D

V


d

D







FL

ρ V
2

 D
2


g
ρ V D

μ

ω D

V


d

D








To determine the required model diameter, we match Reynolds numbers between the model and prototype flows:

ρm Vm Dm

μm

ρp Vp Dp

μp

 Thus: Dm Dp

ρp

ρm


Vp

Vm


μm

μp

 Substituting known values: Dm 4.27 cm 1
75

25
 1

Dm 12.81 cm

To determine the required angular speed of the model, we match the dimensionless rotational speed between the flows:

ωm Dm

Vm

ωp Dp

Vp

 Thus: ωm ωp

Dp

Dm


Vm

Vp

 Substituting known values: ωm 8100 rpm
4.27

12.81


25

75
 ωm 900 rpm



Problem 7.66 [Difficulty: 3]

Given: Model of water pump

Find: Model flow rate for dynamic similarity (ignoring Re); Power of prototype

Solution:
Q

ω D
3



and
P

ρ ω
3

 D
5



where Q is flow rate, ω is angular speed, d

is diameter, and ρ is density (these Π
groups will be discussed in Chapter 10)

From Buckingham Π

Qm

ωm Dm
3



Qp

ωp Dp
3




For dynamic similarity

Hence Qm Qp

ωm

ωp


Dm

Dp









3



Qm 15
ft

3

s


2400

750








1

4







3

 Qm 0.750
ft

3

s


From Table A.8 at 68oF ρp 1.94
slug

ft
3

 From Table A.9 at 68oF ρm 0.00234
slug

ft
3



Then
Pm

ρm ωm
3

 Dm
5



Pp

ρp ωp
3

 Dp
5




Pp Pm

ρp

ρm


ωp

ωm









3


Dp

Dm









5



Pp 0.1 hp
1.94

0.00234


750

2400







3


4

1







5

 Pp 2.59 10
3

 hp

Note that if we had used water instead of air as the working fluid for the model pump, it would have drawn 83 hp. Water would have

been an acceptable working fluid for the model, and there would have been less discrepancy in the Reynolds number.



Problem 7.67 [Difficulty: 2]

Given: Model of Frisbee

Find: Dimensionless parameters; Prototype speed and angular speed

Solution:

Assumption: Geometric, kinematic, and dynamic similarity between model and prototype.

The functional dependence is F F D V ω h ρ μ( ) where F represents lift or drag

From Buckingham Π F

ρ V
2

 D
2


f
ρ V D

μ

ω D

V


h

D








For dynamic similarity
ρm Vm Dm

μm

ρp Vp Dp

μp

 Vp Vm

ρm

ρp


Dm

Dp


μp

μm

 Vp 140
ft

s
 1( )

1

7







 1( )

Vp 20
ft

s


Also
ωm Dm

Vm

ωp Dp

Vp

 ωp ωm

Dm

Dp


Vp

Vm

 ωp 5000 rpm
1

7








20

140









ωp 102 rpm



Problem 7.68 [Difficulty: 3]

Given: A 1:20 model of a hydrofoil is to be tested in water at 130 deg F. The prototype operates at a speed of 60 knots

in water at 45 deg F. To model the cavitation, the cavitation number must be duplicated.

Find: Ambient pressure at which the test must be run

Solution: To duplicate the Froude number between the model and the prototype requires:
Vm

g Lm

Vp

g Lp
 Thus:

Vm Vp

Lm

Lp

 Vm 60 knot
1

20
 Vm 13.42 knot

To match the cavitation number between the model and the prototype:
pm pvm

1

2
ρm Vm

2


pp pvp

1

2
ρp Vp

2


 Therefore:

pm pvm pp pvp 
ρm

ρp


Vm

Vp









2

 Assuming that the densities are equal: pm pvm pp pvp 
Vm

Vp









2



From table A.7: at 130 deg F pvm 2.23 psi at 45 deg F pvp 0.15 psi Thus the model pressure is:

pm 2.23 psi 14.7 psi 0.15 psi( )
13.42

60







2

 pm 2.96 psi



Problem 7.69 [Difficulty: 2]

Given: Oil flow in pipe and dynamically similar water flow

Find: Average water speed and pressure drop

Solution:

From Example 7.2
Δp

ρ V
2


f

μ

ρ V D

l

D


e

D








μH2O

ρH2O VH2O DH2O

μOil

ρOil VOil DOil


For dynamic similarity so VH2O

μH2O

ρH2O

ρOil

μOil

 Voil
νH2O

νOil

VOil

From Fig. A.3 at 77oF νOil 10.8 8 10
5


ft

2

s
 8.64 10

4


ft
2

s


From Table A.8 at 60oF νH2O 1.21 10
5


ft

2

s


Hence VH2O

1.21 10
5


ft

2

s


8.64 10
4


ft

2

s


3
ft

s
 VH2O 0.0420

ft

s


Then
ΔpOil

ρOil VOil
2



ΔpH2O

ρH2O VH2O
2


 ΔpH2O

ρH2O VH2O
2



ρOil VOil
2


ΔpOil

From Table A.2 SGOil 0.92

ΔpH2O
1

0.92

0.0420

3







2

 7 psi ΔpH2O 1.49 10
3

 psi



Problem 7.70 [Difficulty: 3] 

Given: The frequency of vortex shedding from the rear of a bluff cylinder is a function of ρ, d, V, and μ. Vortex shedding

occurs in standard air on two cylinders with a diameter ratio of 2.

Find: (a) Functional relationship for f using dimensional analysis

(b) Velocity ratio for vortex shedding

(c) Frequency ratio for vortex shedding

Solution: We will use the Buckingham pi-theorem.

1 f ρ d V μ n = 5 parameters

2 Select primary dimensions F, L, t:

3 f ρ d V μ

1

t

M

L
3

L
L

t

M

L t
r = 3 dimensions

4 ρ V d m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 f ρ
a

 V
b

 d
c

 Thus:
1

t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

f d

V


M: a 0 a 0 b 1 c 1

L: 3 a b c 0

t: 1 b 0

Π2 μ ρ
a

 V
b

 d
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

μ

ρ V d


M: 1 a 0 a 1 b 1 c 1

L: 1 3 a b c 0

t: 1 b 0

6 Check using F, L, t dimensions:
1

t

t

L
 L 1

F t

L
2

L
4

F t
2




t

L


1

L
 1



The functional relationship is: Π1 f Π2 
f d

V
f
ρ V d

μ









To achieve dynamic similarity between geometrically similar flows, we must duplicate all but one of the dimensionless groups:

ρ1 V1 d1

μ1

ρ2 V2 d2

μ2


V1

V2

ρ2

ρ1

d2

d1


μ1

μ2

 1
1

2
 1

V1

V2

1

2


Now if
ρ1 V1 d1

μ1

ρ2 V2 d2

μ2

 it follows that:
f1 d1

V1

f2 d2

V2

 and
f1

f2

d2

d1

V1

V2


1

2

1

2


f1

f2

1

4




Problem 7.71 [Difficulty: 3]

Given: 1/8-scale model of a tractor-trailer rig was tested in a pressurized wind tunnel.

Find: (a) Aerodynamic drag coefficient for the model

(b) Compare the Reynolds numbers for the model and the prototype vehicle at 55 mph

(c) Calculate aerodynamic drag on the prototype at a speed of 55 mph into a headwind of 10 mph

Solution: We will use definitions of the drag coefficient and Reynolds number.

Governing

Equations:
CD

FD

1

2
ρ V

2
 A

 (Drag Coefficient)

Re
ρ V L

μ
 (Reynolds Number)

Assume that the frontal area for the model is: Am Wm Hm Am 0.305 m 0.476 m Am 0.1452 m
2



The drag coefficient would then be: CDm 2 128 N
m

3

3.23 kg


s

75.0 m






2


1

0.1452 m
2




kg m

N s
2


 CDm 0.0970

From the definition of Re:
Rem

Rep

ρm

ρp

Vm

Vp


Lm

Lp


μp

μm

 Assuming standard conditions and equal viscosities:

Rem

Rep

3.23

1.23
75

m

s


hr

55 mi


mi

5280 ft


ft

0.3048 m


3600 s

hr







1

8
 1 1 Rem Rep

Since the Reynolds numbers match, assuming geometric and kinetic similarity we can say that the drag coefficients are equal:

FDp
1

2
CD ρp Vp

2
 Ap Susbstituting known values yields:

FDp
1

2
0.0970 1.23

kg

m
3

 55 10( )
mi

hr

5280 ft

mi


0.3048 m

ft


hr

3600 s






2

 0.1452 m
2

 8
2


N s

2


kg m
 FDp 468 N



Problem 7.72 [Difficulty: 2]

Given: Flow around cruise ship smoke stack

Find: Range of wind tunnel speeds

Solution:

For dynamic similarity
Vm Dm

νm

Vp Dp

νp

 or Vm

Dp

Dm

Vp
15

1
Vp 15 Vp

Since 1 knot 1
nmi

hr
 and 1 nmi 6076.1 ft

Hence for Vp 12
nmi

hr


6076.1 ft

nmi


hr

3600 s
 Vp 20.254

ft

s
 Vm 15 20.254

ft

s
 Vm 304

ft

s


Vp 24
nmi

hr


6076.1 ft

nmi


hr

3600 s
 Vp 40.507

ft

s
 Vm 15 40.507

ft

s
 Vm 608

ft

s


Note that these speeds are very high - compressibility effects may become important, since the Mach number is

no longer much less than 1!



Problem 7.73 [Difficulty: 2]

Given: Model of flying insect

Find: Wind tunnel speed and wing frequency; select a better model fluid

Solution: For dynamic similarity the following dimensionless groups must be the same in the insect and model (these are

Reynolds number and Strouhal number, and can be obtained from a Buckingham Π analysis)

Vinsect Linsect

νair

Vm Lm

νm


ωinsect Linsect

Vinsect

ωm Lm

Vm



From Table A.9 (68oF) ρair 1.21
kg

m
3

 νair 1.50 10
5


m

2

s


The given data is ωinsect 60 Hz Vinsect 1.5
m

s


Linsect

Lm

1

8


Hence in the wind tunnel Vm Vinsect

Linsect

Lm


νm

νair

 Vinsect

Linsect

Lm

 Vm 1.5
m

s


1

8
 Vm 0.1875

m

s


Also ωm ωinsect

Vm

Vinsect


Linsect

Lm

 ωm 60 Hz
0.1875

1.5


1

8
 ωm 0.9375 Hz

It is unlikely measurable wing lift can be measured at such a low wing frequency (unless the measured lift was averaged, using an

integrator circuit, or perhaps a load cell and data acquisition system).  Maybe try hot air (100oC) for the model

For hot air try νhot 2.29 10
5


m

2

s
 instead of νair 1.50 10

5


m
2

s


Hence
Vinsect Linsect

νair

Vm Lm

νhot

 Vm Vinsect

Linsect

Lm


νhot

νair

 Vm 1.5
m

s


1

8


2.29 10
5



1.50 10
5


 Vm 0.286

m

s


Also ωm ωinsect

Vm

Vinsect


Linsect

Lm

 ωm 60 Hz
0.286

1.5


1

8
 ωm 1.43 Hz

Hot air does not improve things much.  Try modeling in water νw 1.01 10
6


m

2

s


Hence
Vinsect Linsect

νair

Vm Lm

νw

 Vm Vinsect

Linsect

Lm


νw

νair

 Vm 1.5
m

s


1

8


1.01 10
6



1.50 10
5


 Vm 0.01262

m

s


Also ωm ωinsect

Vm

Vinsect


Linsect

Lm

 ωinsect

Vm

Vinsect

 Lratio ωm 60 Hz
0.01262

1.5


1

8
 ωm 0.0631 Hz

This is even worse!  It seems the best bet is hot (very hot) air for the wind tunnel.  Alternatively, choose a much

smaller wind tunnel model, e.g., a 2.5 X model would lead to Vm = 0.6 m/s and ωm = 9.6 Hz 



Problem 7.74 [Difficulty: 3]

Given: A model test of a 1:4 scale tractor-trailer rig is performed in standard air. The drag force is a function of A, V, ρ,
and μ.

Find: (a) Dimensionless parameters to characterize the model test results

(b) Conditions for dynamic similarity

(c) Drag force on the prototype vehicle based on test results

(d) Power needed to overcome the drag force

Solution: We will use the Buckingham pi-theorem.

1 FD A V ρ μ n = 5 parameters

2 Select primary dimensions F, L, t:

3 FD A V ρ μ

M L

t
2

L
2 L

t

M

L
3

M

L t
r = 3 dimensions

4 ρ V A m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 F ρ
a

 V
b

 A
c

 Thus:
M L

t
2

M

L
3









a


L

t







b

 L
2 c M

0
L

0
 t

0


Summing exponents: The solution to this system is:
Π1

FD

ρ V
2

 A


M: 1 a 0 a 1 b 2 c 1

L: 1 3 a b 2c 0

t: 2 b 0

Π2 μ ρ
a

 V
b

 A
c

 Thus:
M

L t

M

L
3









a


L

t







b

 L
2 c M

0
L

0
 t

0


Summing exponents: The solution to this system is:
Π2

μ

ρ V A


M: 1 a 0
a 1 b 1 c

1

2


L: 1 3 a b 2 c 0

t: 1 b 0

6 Check using F, L, t dimensions: F
L

4

F t
2




t
2

L
2


1

L
2

 1
F t

L
2

L
4

F t
2




t

L


1

L
 1



For dynamic similarity: We must have geometric and kinematic similarity, and

The Reynolds numbers must match.

Once dynamic similarity is insured, the drag coefficients must be equal:
FDm

1

2
ρm Vm

2
 Am

FDp

1

2
ρp Vp

2
 Ap



So for the prototype: FDp FDm

ρp

ρm


Vp

Vm









2


Ap

Am

 FDp 550 lbf
0.00237

0.00237


75

300







2

 4
2

 FDp 550 lbf

The power requirement would be: P FDp Vp P 550 lbf 75
ft

s


hp s

550 ft lbf
 P 75.0 hp

P 55.9 kW



Problem 7.75 [Difficulty: 2]

Given: Model of boat

Find: Model kinematic viscosity for dynamic similarity

Solution:

For dynamic similarity
Vm Lm

νm

Vp Lp

νp

 (1)
Vm

g Lm

Vp

g Lp
 (2) (from Buckingham Π; the first

is the Reynolds number, the

second the Froude number)

Hence from Eq 2
Vm

Vp

g Lm

g Lp


Lm

Lp



Using this in Eq 1 νm νp

Vm

Vp


Lm

Lp

 νp

Lm

Lp


Lm

Lp

 νp

Lm

Lp









3

2



From Table A.8 at 50oF νp 1.41 10
5


ft

2

s
 νm 1.41 10

5


ft
2

s


1

10







3

2

 νm 4.46 10
7


ft

2

s


Note that there aren't any fluids in Figure A.3 with viscosities that low!



Problem 7.76 [Difficulty: 4]

Given: Model the motion of a glacier using glycerine. Assume ice as Newtonian fluid with density of glycerine but one

million times as viscous. In laboratory test the professor reappears in 9.6 hours.

Find: (a) Dimensionless parameters to characterize the model test results

(b) Time needed for professor to reappear

Solution: We will use the Buckingham pi-theorem.

1 V ρ g μ D H L n = 7 parameters

2 Select primary dimensions F, L, t:

3 V ρ g μ D H L

L

t

M

L
3

L

t
2

M

L t
L L L

r = 3 dimensions

4 ρ g D m = r = 3 repeating parameters

5 We have n - m = 4 dimensionless groups. Setting up dimensional equations:

Π1 V ρ
a

 g
b

 D
c

 Thus:
L

t

M

L
3









a


L

t
2









b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

V

g D


M: a 0 a 0 b
1

2
 c

1

2


L: 1 3 a b c 0

t: 1 2 b 0

Π2 μ ρ
a

 g
b

 D
c

 Thus:
M

L t

M

L
3









a


L

t
2









b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

μ

ρ g D
3



 (This is a gravity-driven

version of Reynolds #)M: 1 a 0 a 1 b
1

2
 c

3

2


L: 1 3 a b c 0

t: 1 2 b 0



Π3 H ρ
a

 g
b

 D
c

 Thus: L
M

L
3









a


L

t
2









b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

H

D


M: a 0 a 0 b 0 c 1

L: 1 3 a b c 0

t: 2 b 0

By inspection we can see that Π4
L

D


6 Check using F, L, t dimensions:
L

t

t

L

1

2


1

L

1

2

 1
F t

L
2

L
4

F t
2




t

L

1

2


1

L

3

2

 1 L
1

L
 1

The functional relationship would be: Π1 f Π2 Π3 Π4  Matching the last two terms insures geometric similarity.

For dynamic similarity:
μm

ρm gm Dm
3



μp

ρp gp Dp
3



 From Tables A.1 and A.2: SGice 0.92 SGglycerine 1.26

Therefore:
Dm

Dp

μm

μp

ρp

ρm










2

3


1

10
6

0.92

1.26









2

3

 8.11 10
5

 Since we have geometric similarity, the last two terms

must match for model and prototype:

So
Lm

Lp

8.11 10
5

 Lm 1850 m 8.11 10
5

 Matching the first Π term:
Vm

Vp

Dm

Dp

 0.00900

Lm 0.1500 m

The time needed to reappear would be: τ
L

V
 Thus: τm

Lm

Vm

 Vm

Lm

τm

 Solving for the actual time:

τp

Lp

Vp


Lm

Vm

Lp

Lm


Vm

Vp

 τm

Lp

Lm


Vm

Vp

 τp 9.6 hr
1

8.11 10
5


 0.00900

day

24 hr
 τp 44.4 day

Your professor will be back before

the end of the semester!



Problem 7.77 [Difficulty: 3]

Given: Model of automobile

Find: Factors for kinematic similarity; Model speed; ratio of protype and model drags; minimum pressure for no cavitation

Solution:

For dynamic similarity
ρm Vm Lm

μm

ρp Vp Lp

μp

 Vm Vp

ρp

ρm


Lp

Lm


μm

μp



For air (Table A.9) and water (Table A.7) at 68oF

ρp 0.00234
slug

ft
3

 μp 3.79 10
7


lbf s

ft
2



ρm 1.94
slug

ft
3

 μm 2.10 10
5


lbf s

ft
2



Vm 60 mph

88
ft

s


60 mph


0.00234

1.94








5

1








2.10 10

5


3.79 10
7











 Vm 29.4
ft

s


Then
Fm

ρm Vm
2

 Lm
2



Fp

ρp Vp
2

 Lp
2




Hence
Fp

Fm

ρp Vp
2

 Lp
2



ρm Vm
2

 Lm
2




0.00234

1.94







88

29.4







2


5

1







2


Fp

Fm

0.270

For Ca = 0.5
pmin pv

1

2
ρ V

2


0.5 so we get pmin pv
1

4
ρ V

2
 for the water tank

From steam tables, for water at 68oF pv 0.339 psi so

pmin 0.339 psi
1

4
1.94

slug

ft
3

 29.4
ft

s






2


lbf s

2


slug ft


1 ft

12 in






2

 pmin 3.25 psi

This is the minimum allowable pressure in the water tank; we can use it to find the required tank pressure

Cp 1.4
pmin ptank

1

2
ρ V

2


 ptank pmin
1.4

2
ρ V

2
 pmin 0.7 ρ V

2


ptank 3.25 psi 0.7 1.94
slug

ft
3

 29.4
ft

s






2


lbf s

2


slug ft


1 ft

12 in






2

 ptank 11.4 psi



Problem 7.78 [Difficulty: 3]

Given: A scale model of a submarine is to be tested in fresh water under two conditions:

1 - on the surface

2 - far below the surface

Find: (a) Speed for the model test on the surface

(b) Speed for the model test submerged

(c) Ratio of full-scale drag to model drag

Solution: On the surface, we need to match Froude numbers:
Vm

g Lm

Vp

g Lp
 or: Vm Vp

Lm

Lp



Thus for 1:50 scale: Vm 24 knot
1

50
 Vm 3.39 knot or Vm 1.75

m

s


When submerged, we need to match Reynolds numbers:
ρm Vm Lm

μm

ρp Vp Lp

μp

 or: Vm Vp

ρp

ρm


Lp

Lm


μm

μp



From Table A.2, SGseawater 1.025 and μseawater 1.08 10
3


N s

m
2

 at 20oC. Thus for 1:50 scale:

Vm 0.35 knot
1.025

0.998


50

1


1.08 10
3



1.00 10
3


 Vm 19.41 knot or Vm 9.99

m

s


Under dynamically similar conditions, the drag coefficients will match:
FDm

1

2
ρm Vm

2
 Am

FDp

1

2
ρp Vp

2
 Ap



Solving for the ratio of forces:
FDp

FDm

ρp

ρm

Vp

Vm









2


Ap

Am


ρp

ρm

Vp

Vm

Lp

Lm










2

 Substituting in known values:

For surface travel:
FDp

FDm

1.025

0.998

24

3.39

50

1






2

 1.29 10
5


FDp

FDm

1.29 10
5

 (on surface)

For submerged travel:
FDp

FDm

1.025

0.998

0.35

19.41

50

1






2

 0.835
FDp

FDm

0.835 (submerged)



 Problem 7.79 [Difficulty: 2] 
 

 

 
 

Given: Model size, model speed, and air temperatures. 

Find: Equivalent speed of the full scale vehicle corresponding to the different air temperatures. 

Solution:  

Governing 
Equation: 


VL

L Re  (Reynolds Number) 

where V is the air velocity, L is the length of the rocket or model, and , ν is the kinematic viscosity of air. 

Subscript m corresponds to the model and r is the rocket. 

Assumption: Modeling follows the Reynolds equivalency. 

 

The given or available data is: in12 Rm LL   mph100TV   mph120RV  

 

    
s

ft
1047.1

2
4

F40


   (Table A.9)  

s

ft
1062.1

2
4

F68


   (Table A.9) 

    
s

ft
1009.2

2
4

F150


   (Table A.9) 

    
s

m
103.8

2
6

2

CO  (Figure A.3 or other source) 

 

Determine the Reynolds Number for expected maximum speed at ambient temperature: 

s

ft
101.62

12in

ft
in12

s3600

hr

mile

5280ft

hr

mile
120

Re
2

4- 




R

RR
L

LV


 

Re-arrange the Reynolds Number Equation for speed equivalents: 

T

F

R

M
TRL

L

L
VV

VL





 68Re   

In this problem, the only term that changes is νT 

Solve for speed at the low temperature: mph110

s

ft
1047.1

s

ft
1062.1

in12

in12
mph100

2
4

2
4

F40

F68 
















R

M
TR

L

L
VV  

61009.1Re L  



Solve for speed at the high temperature: mph5.77

s

ft
1009.2

s

ft
1062.1

in12

in12
mph100

2
4

2
4

F150

F68 
















R

M
TR

L

L
VV  

 

Solve for CO2: mph181

m305.0

ft

s

m
103.8

s

ft
1062.1

in12

in12
mph100

22
6

2
4

F68

2




















COR

M
TR

L

L
VV




 

 

 

 

 

Chilling the air to 40°F increases the model speed, but not enough to achieve the target. Heating the air works against the desired 

outcome. 

This shows that the equivalent speed can be increased by decreasing the kinematic viscosity. An inspection of figure A.3 shows that 

cooling air decreases the kinematic viscosity. It also shows that CO2 has a lower kinematic viscosity than air resulting in much higher 

model speeds. 

 

 

mph110F40@ RV  mph181
2@ CORV  mph5.77F150@ RV  



Problem 7.80 [Difficulty: 3]

Given: The drag force on a circular cylinder immersed in a water flow can be expressed as a function of D, l, V, ρ, and μ.

Static pressure distribution can be expressed in terms of the pressure coefficient. At the minimum static

pressure, the pressure coefficient is equal to -2.4. Cavitation onset occurs at a cavitation number of 0.5.

Find: (a) Drag force in dimensionless form as a function of all relevant variables

(b) Maximum speed at which a cylinder could be towed in water at atmospheric pressure without cavitation

Solution: The functional relationship for drag force is: FD FD D l V ρ μ( ) From the Buckingham Π-theorem, we have

6 variables and 3 repeating parameters. Therefore, we will have 3 dimensionless groups. The functional form of

these groups is:

FD

ρ V
2

 D
2


g

l

D

ρ V D

μ








The pressure coefficient is: CP

p pinf

1

2
ρ V

2


 and the cavitation number is: Ca
p pv

1

2
ρ V

2




At the minimum pressure point pmin pinf
1

2
ρ Vmax

2
 CPmin where CPmin 2.4

At the onset of cavitation pmin pv
1

2
ρ Vmax

2
 Ca where Ca 0.5

Equating these two expressions: pinf
1

2
ρ Vmax

2
 CPmin pv

1

2
ρ Vmax

2
 Ca and if we solve for Vmax:

Vmax

2 pinf pv 
ρ Ca CPmin 

 At room temperature (68 deg F): pv 0.339 psi ρ 1.94
slug

ft
3



Substituting values we get:

Vmax 2 14.7 0.339( )
lbf

in
2


ft

3

1.94 slug


1

0.5 2.4( )[ ]


slug ft

lbf s
2




144 in
2



ft
2

 Vmax 27.1
ft

s




Problem 7.81 [Difficulty: 4] 

Given: A circular container partiall filled with water is rotate about its axis at constant angular velocity ω. Velocity in the

θ direction is a function of r, τ, ω, ρ, and μ.

Find: (a) Dimensionless parameters that characterize this problem

(b) If honey would attain steady motion as quickly as water if rotated at the same angular speed

(c) Why Reynolds number is not an important parameter in scaling the steady-state motion of liquid in the

container.

Solution: The functional relationship for drag force is: Vθ Vθ ω r τ ρ μ( ) From the Buckingham Π-theorem, we have

6 variables and 3 repeating parameters. Therefore, we will have 3 dimensionless groups. The functional form of

these groups is:

Vθ

ω r
g

μ

ρ ω r
2


ω τ










From the above result Π2
μ

ρ ω r
2


 containing the properties μ and ρ, and Π3 ω τ containing the time τ

Π2 Π3
μ

ρ ω r
2


ω τ

μ τ

ρ r
2




ν τ

r
2

 Now for steady flow:
νh τh

r
2

νw τw

r
2

 and at the same radius:

νh τh νw τw τh τw

νw

νh

 Now since honey is more viscous than water, it follows that: τh τw

At steady state, solid body rotation exists. There are no viscous forces, and therefore, the Reynolds number would

not be important.



Problem 7.82 [Difficulty: 3]

Given: Model of tractor-trailer truck

Find: Drag coefficient; Drag on prototype; Model speed for dynamic similarity

Solution

:For kinematic similarity we need to ensure the geometries of model and prototype are similar, as is the incoming flow field

The drag coefficient is CD

Fm

1

2
ρm Vm

2
 Am



For air (Table A.10) at

20oC

ρm 1.21
kg

m
3

 μp 1.81 10
5


N s

m
2



CD 2 350 N
m

3

1.21 kg


s

75 m






2


1

0.1 m
2




N s
2



kg m
 CD 1.028

This is the drag coefficient for model and prototype 

For the rig Fp
1

2
ρp Vp

2
 Ap CD with

Ap

Am

Lp

Lm









2

 100 Ap 10 m
2



Fp
1

2
1.21

kg

m
3

 90
km

hr


1000 m

1 km


1 hr

3600 s






2

 10 m
2

 1.028
N s

2


kg m
 Fp 3.89 kN

For dynamic similarity
ρm Vm Lm

μm

ρp Vp Lp

μp

 Vm Vp

ρp

ρm


Lp

Lm


μm

μp

 Vp

Lp

Lm



Vm 90
km

hr


1000 m

1 km


1 hr

3600 s


10

1
 Vm 250

m

s


For air at standard conditions, the speed of sound is c k R T

c 1.40 286.9
N m

kg K
 20 273( ) K

kg m

s
2

N
 c 343

m

s


Hence we have M
Vm

c


250

343
 0.729 which indicates compressibility is significant - this model

speed is impractical (and unnecessary)



Problem 7.83 [Difficulty: 3]

Given: Recommended procedures for wind tunnel tests of trucks and buses suggest:

-Model frontal area less than 5% of test section area

-Reynolds number based on model width greater than 2,000,000

-Model height less than 30% of test section height

-Model projected width at maximum yaw (20 deg) less than 30% of test section width

-Air speed less than 300 ft/s to avoid compressibility effects

Model of a tractor-trailer to be tested in a tunnel 1.5 ft high x 2 ft wide. Full scale rig is 13'6" high, 8' wide, and 65'

long.

Find: (a) Max scale for tractor-trailer model in this tunnel

(b) If adequate Reynolds number can be achieved in this facility.

Solution: Let s be the scale ratio. Then: hm s hp wm s wp lm s lp

Area criterion: Am 0.05 1.5 ft 2.0 ft Am 0.15 ft
2

 Therefore: s
0.15

13.5 8
 s 0.0373

Height criterion: hm 0.30 1.5 ft hm 0.45 ft Therefore: s
0.45

13.5
 s 0.0333

Width criterion: we need to account for the yaw in the model. We make a relationship for the maximum width as a

function of the model dimensions and the yaw angle and relate that to the full-scale dimensions.

wm20deg wm cos 20 deg( ) lm sin 20 deg( ) s wp cos 20 deg( ) lp sin 20 deg( ) 

wm20deg 0.30 2.0 ft wm20deg 0.60 ft

Therefore: s
0.60

8 cos 20 deg( ) 65 sin 20 deg( )
 s 0.0202

To determine the acceptable scale for the model, we take the smallest of these scale factors: s 0.0202

1

s
49.58 We choose a round number to make the model scale easier to calculate: Model

1

50
Prototype

For the current model conditions: Re
Vm wm

νm

 For standard air: νm 1.57 10
4


ft

2

s
 Substituting known values:

Re 300
ft

s


1

50
8 ft






s

1.57 10
4

 ft
2


 Re 3.06 10

5
 This is less than the minimum stipulated in the problem, thus:

An adequate Reynolds number can not be achieved.



Problem 7.84 [Difficulty: 4] 

Given: Power to drive a fan is a function of ρ, Q, D, and ω.

Condition 1: D1 8 in ω1 2500 rpm Q1 15
ft

3

s
 Condition 2: Q2 88

ft
3

s
 ω2 1800 rpm

Find: Fan diameter for condition 2 to insure dynamic similarity

Solution: We will use the Buckingham pi-theorem.

1 P ρ Q D ω n = 5 parameters

2 Select primary dimensions M, L, t:

3 P ρ Q D ω

M L
2



t
3

M

L
3

L
3

t
L

1

t
r = 3 dimensions

4 ρ D ω m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 P ρ
a

 D
b

 ω
c

 Thus:
M L

2


t
3

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

P

ρ ω
3

 D
5




M: 1 a 0 a 1 b 5 c 3

L: 2 3 a b 0

t: 3 c 0

Π2 Q ρ
a

 D
b

 ω
c

 Thus:
L

3

t

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

Q

ω D
3




M: a 0 a 0 b 3 c 1

L: 3 3 a b 0

t: 1 c 0

6 Check using F, L, t dimensions:
F L

t

L
4

F t
2




1

L
5

 t
3

 1
L

3

t
t

1

L
3

 1 Thus the relationship is:
P

ρ ω
3

 D
5


f

Q

ω D
3













For dynamic similarity we must have geometric and kinematic similarity, and:
Q1

ω1 D1
3



Q2

ω2 D2
3


 Solving for D2

D2 D1

Q2

Q1

ω1

ω2










1

3

 D2 8 in
88

15

2500

1800






1

3


D2 16.10 in



Problem 7.85 (In Excel) [Difficulty: 3]

Given: Data on model of aircraft

Find: Plot of lift vs speed of model; also of prototype

Solution:

V m (m/s) 10 15 20 25 30 35 40 45 50

F m (N) 2.2 4.8 8.7 13.3 19.6 26.5 34.5 43.8 54.0

This data can be fit to

From the trendline, we see that

k m = N/(m/s)
2

(And note that the power is 1.9954 or 2.00 to three signifcant

figures, confirming the relation is quadratic)

Also, k p = 1110 k m

Hence,

k p = 24.3 N/(m/s)
2

F p = k pV m
2

V p (m/s) 75 100 125 150 175 200 225 250

F p (kN) 

(Trendline)
137 243 380 547 744 972 1231 1519

0.0219

Fm
1

2
 Am CD Vm

2 or Fm km Vm
2



Lift vs Speed for an Airplane Model

y = 0.0219x
1.9954

R
2
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Lift vs Speed for an Airplane Model

(Log-Log Plot)

y = 0.0219x
1.9954

R
2
 = 0.9999
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Problem 7.86 [Difficulty: 2] 

Given: Information relating to geometrically similar model test for a centrifugal pump.

Find: The missing values in the table

Solution: We will use the Buckingham pi-theorem.

1 ∆p Q ρ ω D n = 5 parameters

2 Select primary dimensions M, L, t:

3 ∆p Q ρ ω D

M

L t
2



L
3

t

M

L
3

1

t
L

r = 3 dimensions

4 ρ ω D m = r = 3 repeating parameters

5 We have n - m = 2 dimensionless groups. Setting up dimensional equations:

Π1 ∆p ρ
a

 ω
b

 D
c

 Thus:
M

L t
2



M

L
3









a


1

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

∆p

ρ ω
2

 D
2




M: 1 a 0 a 1 b 2 c 2

L: 1 3 a c 0

t: 2 b 0

Π2 Q ρ
a

 ω
b

 D
c

 Thus:
L

3

t

M

L
3









a


1

t







b

 L
c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

Q

ω D
3




M: a 0 a 0 b 1 c 3

L: 3 3 a c 0

t: 1 b 0

6 Check using F, L, t dimensions:
F

L
2

L
4

F t
2


 t

2


1

L
2

 1
L

3

t
t

1

L
3

 1 Thus the relationship is:
∆p

ρ ω
2

 D
2


f

Q

ω D
3















The flows are geometrically similar, and we assume kinematic similarity. Thus, for dynamic similarity:

If
Qm

ωm Dm
3



Qp

ωp Dp
3


 then

∆pm

ρm ωm
2

 Dm
2



∆pp

ρp ωp
2

 Dp
2




From the first relation: Qp Qm

ωp

ωm


Dp

Dm









3

 Qp 0.0928
m

3

min


183

367


150

50







3

 Qp 1.249
m

3

min


From the second relation: ∆pm ∆pp

ρm

ρp


ωm

ωp

Dm

Dp










2

 ∆pm 52.5 kPa
999

800


367

183

50

150






2

 ∆pm 29.3 kPa



Problem 7.87 [Difficulty: 3]

For drag we can use As a suitable scaling area for A we use L
2

Model: L = 3 ft

For water   = 1.94 slug/ft
3

  = 2.10E-05 lbf·s/ft
2

The data is:

V  (ft/s) 10 20 30 40 50 60 70

D Wave  (lbf) 0 0.028 0.112 0.337 0.674 0.899 1.237

D Friction  (lbf) 0.022 0.079 0.169 0.281 0.45 0.618 0.731

Fr 1.017 2.035 3.052 4.070 5.087 6.105 7.122

Re 2.77E+06 5.54E+06 8.31E+06 1.11E+07 1.39E+07 1.66E+07 1.94E+07

C D(Wave) 0.00E+00 8.02E-06 1.43E-05 2.41E-05 3.09E-05 2.86E-05 2.89E-05

C D(Friction) 2.52E-05 2.26E-05 2.15E-05 2.01E-05 2.06E-05 1.97E-05 1.71E-05

The friction drag coefficient becomes a constant, as expected, at high Re .

The wave drag coefficient appears to be linear with Fr , over most values

Ship: L = 150 ft

V  (knot) 15 20

V  (ft/s) 25.32 33.76

Fr 0.364 0.486

Re 3.51E+08 4.68E+08

Hence for the ship we have very high Re , and low Fr .

From the graph we see the friction C D  levels out at about 1.9 x 10
-5

From the graph we see the wave C D  is negligibly small

C D(Wave) 0 0

C D(Friction) 1.90E-05 1.90E-05

D Wave  (lbf) 0 0

D Friction  (lbf) 266 473

D Total  (lbf) 266 473

AV

D
C D

2

2

1 


22

2

1
LV

D
C D




DCLVD 22

2

1 

Wave Drag

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

0 1 2 3 4 5 6 7 8

Fr

CD

Friction Drag

0.0E+00

5.0E-06

1.0E-05

1.5E-05

2.0E-05

2.5E-05

3.0E-05

3.5E-05

0.0.E+00 5.0.E+06 1.0.E+07 1.5.E+07 2.0.E+07 2.5.E+07

Re

CD



Problem 7.88 (In Excel) [Difficulty: 4]

Given: Data on centrifugal water pump

Find:  groups; plot pressure head vs flow rate for range of speeds

Solution:
We will use the workbook of Example 7.1, modified for the current problem

The number of parameters is: n = 5

The number of primary dimensions is: r = 3

The number of repeat parameters is: m = r = 3

The number of  groups is: n - m = 2

Enter the dimensions (M, L, t) of

the repeating parameters, and of up to

four other parameters (for up to four  groups).

The spreadsheet will compute the exponents a , b , and c  for each.

REPEATING PARAMETERS: Choose , g , d

M L t

 1 -3

 -1

D 1

 GROUPS:

M L t M L t

p 1 -1 -2 Q 0 3 -1

1: a  = -1 2: a  = 0

b  = -2 b  = -1

c  = -2 c = -3

The following  groups from Example 7.1 are not used:

M L t M L t

0 0 0 0 0 0

3: a  = 0 4: a  = 0

b  = 0 b  = 0

c  = 0 c = 0

The data is

Q  (ft
3
/min) 0 50 75 100 120 140 150 165

p  (psf) 7.54 7.29 6.85 6.12 4.80 3.03 2.38 1.23

Hence                                      and                            with 1 = f(2). 

 

 

 

Based on the plotted data, it looks like the relation between 1 and 2 may be parabolic 
 

 

Hence 
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 1.94 slug/ft
3

 800 rpm

D  = 1 ft (D  is not given; use D  = 1 ft as a scale)

Q /(D
3
) 0.00000 0.00995 0.01492 0.01989 0.02387 0.02785 0.02984 0.03283

p /(2
D

2
) 0.000554 0.000535 0.000503 0.000449 0.000353 0.000223 0.000175 0.000090

The curve fit result is: p /( 2
D

2
) = -0.6302 (Q /(D

3
))

2
 + 0.006476 (Q /(D

3
)) + 0.0005490

From the Trendline  analysis

a  = 0.000549

b  = 0.006476

c  = -0.6302

and

Finally, data at 500 and 1000 rpm can be calculated and plotted

 600 rpm

Q  (ft
3
/min) 0 20 40 60 80 100 120 132

p  (kPa) 4.20 4.33 4.19 3.77 3.08 2.12 0.89 0.00

 1200 rpm

Q  (ft
3
/min) 0 50 75 100 120 140 150 165

p  (kPa) 16.82 17.29 16.88 16.05 15.09 13.85 13.12 11.91

Centifugal Pump Data and Trendline
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Problem 7.89 [Difficulty: 3]

Given: Model of water pump

Find: Model head, flow rate and diameter

Solution:

From Buckingham Π h

ω
2

D
2


f

Q

ω D
3



ρ ω D
2



μ










 and
P

ω
3

D
5


f

Q

ω D
3



ρ ω D
2



μ












Neglecting viscous effects
Qm

ωm Dm
3



Qp

ωp Dp
3


 then

hm

ωm
2

Dm
2



hp

ωp
2

Dp
2


 and

Pm

ωm
3

Dm
5



Pp

ωp
3

Dp
5




Hence if
Qm

Qp

ωm

ωp

Dm

Dp









3


1000

500

Dm

Dp









3

 2
Dm

Dp









3

 (1)

hm

hp

ωm
2

ωp
2

Dm
2

Dp
2


1000

500







2 Dm
2

Dp
2

 4
Dm

2

Dp
2

 (2)
then

and Pm

Pp

ωm
3

ωp
3

Dm
5

Dp
5


1000

500







3 Dm
5

Dp
5

 8
Dm

5

Dp
5

 (3)

We can find Pp from Pp ρ Q h 1000
kg

m
3

 0.75
m

3

s
 15

J

kg
 11.25 kW

From Eq 3
Pm

Pp

8
Dm

5

Dp
5

 so Dm Dp
1

8

Pm

Pp










1

5

 Dm 0.25 m
1

8

2.25

11.25






1

5

 Dm 0.120 m

From Eq 1
Qm

Qp

2
Dm

Dp









3

 so Qm Qp 2
Dm

Dp









3

 Qm 0.75
m

3

s
 2

0.12

0.25







3

 Qm 0.166
m

3

s


From Eq 2
hm

hp

4
Dm

Dp









2

 so hm hp 4
Dm

Dp









2

 hm 15
J

kg
 4

0.12

0.25







2

 hm 13.8
J

kg




Problem 7.90 [Difficulty: 3]

Given: Data on model propeller

Find: Speed, thrust and torque on prototype

Solution: We will use the Buckingham Pi-theorem to find the functional relationships between these variables. Neglecting the

effects of viscosity:

1 F T ρ V D ω n = 6 parameters

2 Select primary dimensions M, L, t:

3 F T ρ V D ω

M L

t
2

M L
2



t
2

M

L
3

L

t
L

1

t
r = 3 dimensions

4 ρ D ω m = r = 3 repeating parameters

5 We have n - m = 3 dimensionless groups. Setting up dimensional equations:

Π1 F ρ
a

 D
b

 ω
c

 Thus:
M L

t
2

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

F

ρ D
4

 ω
2




a 1 b 4 c 2
M: 1 a 0

L: 1 3 a b 0

t: 2 c 0

Π2 T ρ
a

 D
b

 ω
c

 Thus:
M L

2


t
2

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

T

ρ D
5

 ω
2




a 1 b 5 c 2
M: 1 a 0

L: 2 3 a b 0

t: 2 c 0

Π3 V ρ
a

 D
b

 ω
c

 Thus:
L

t

M

L
3









a

 L
b


1

t







c

 M
0

L
0

 t
0





Summing exponents: The solution to this system is:
Π3

V

D ω


a 0 b 1 c 1
M: 0 a 0

L: 1 3 a b 0

t: 1 c 0

6 Check using F, L, t dimensions: F
L

4

F t
2




1

L
4

 t
2

 1 F L
L

4

F t
2




1

L
5

 t
2

 1
L

t

1

L
 t 1

For dynamically similar conditions:

Vm

Dm ωm

Vp

Dp ωp
 Thus: ωp ωm

Vp

Vm


Dm

Dp

 ωp 1800 rpm
130

50


1

8
 ωp 585 rpm

Fm

ρm Dm
4

 ωm
2



Fp

ρp Dp
4

 ωp
2


 Thus: Fp Fm

ρp

ρm


Dp

Dm









4


ωp

ωm









2

 Fp 100 N
1

1


8

1







4


585

1800







2



Fp 43.3 kN

Tm

ρm Dm
5

 ωm
2



Tp

ρp Dp
5

 ωp
2


 Thus: Tp Tm

ρp

ρm


Dp

Dm









5


ωp

ωm









2

 Tp 10 N m
1

1


8

1







5


585

1800







2



Tp 34.6 kN m



Problem 7.91 [Difficulty: 3] 

Given: For a marine propeller (Problem 7.40) the thrust force is: FT FT ρ D V g ω p μ( )

For ship size propellers viscous and pressure effects can be neglected. Assume that power and torque depend on

the same parameters as thrust.

Find: Scaling laws for propellers that relate thrust, power and torque to other variables

Solution: We will use the Buckingham pi-theorem. Based on the simplifications given above:

1 FT P T ρ D V g ω n = 8 parameters

2 Select primary dimensions F, L, t:

3 FT P T ρ D V g ω

F
F L

t
F L

F t
2



L
4

L
L

t

L

t
2

1

t
r = 3 dimensions

4 ρ ω D m = r = 3 repeating parameters

5 We have n - m = 5 dimensionless groups (3 dependent, 2 independent). Setting up dimensional equations:

Π1 FT ρ
a

 ω
b

 D
c

 Thus: F
F t

2


L
4









a


1

t







b

 L
c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π1

FT

ρ ω
2

 D
4




F: 1 a 0 a 1 b 2 c 2

L: 4 a c 0

t: 2 a b 0

Π2 P ρ
a

 ω
b

 D
c

 Thus:
F L

t

F t
2



L
4









a


1

t







b

 L
c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π2

P

ρ ω
3

 D
5




F: 1 a 0 a 1 b 3 c 5

L: 1 4 a c 0

t: 1 2 a b 0



Π3 T ρ
a

 ω
b

 D
c

 Thus: F L
F t

2


L
4









a


1

t







b

 L
c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π3

T

ρ ω
2

 D
5




F: 1 a 0 a 1 b 2 c 5

L: 1 4 a c 0

t: 2 a b 0

Π4 V ρ
a

 ω
b

 D
c

 Thus:
L

t

F t
2



L
4









a


1

t







b

 L
c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π4

V

ω D


F: a 0 a 0 b 1 c 1

L: 1 4 a c 0

t: 1 2 a b 0

Π5 g ρ
a

 ω
b

 D
c

 Thus:
L

t

F t
2



L
4









a


1

t







b

 L
c

 F
0

L
0

 t
0



Summing exponents: The solution to this system is:
Π5

g

ω
2

D


F: a 0 a 0 b 1 c 1

L: 1 4 a c 0

t: 1 2 a b 0

6 Check using M, L, t dimensions:
M L

t
2

L
3

M
 t

2


1

L
4

 1
M L

2


t
3

L
3

M
 t

3


1

L
5

 1
M L

2


t
2

L
3

M
 t

2


1

L
5

 1

L

t
2

t
2


1

L
2

 1L

t
t

1

L
 1

Based on the dependent and independent variables, the "scaling laws" are:
FT

ρ ω
2

 D
4


f1

V

ω D

g

ω
2

D











P

ρ ω
3

 D
5


f2

V

ω D

g

ω
2

D











T

ρ ω
2

 D
5


f3

V

ω D

g

ω
2

D













Problem 7.92 [Difficulty: 2]

Given: Water drop mechanism

Find: Difference between small and large scale drops

Solution:

d D We( )

3

5


 D
ρ V

2
 D

σ









3

5



Given relation

For dynamic similarity
dm

dp

Dm

ρ Vm
2

 Dm

σ







3

5




Dp

ρ Vp
2

 Dp

σ







3

5





Dm

Dp









2

5
Vm

Vp









6

5


 where dp stands for dprototype not the original

dp!

Hence
dm

dp

1

20







2

5
5

1







6

5



dm

dp

0.044

The small scale droplets are 4.4% of the size of the large scale



Problem 7.93 [Difficulty: 2] 

Given: Kinetic energy ratio for a wind tunnel is the ratio of the kinetic energy flux in the test section to the drive power

Find: Kinetic energy ratio for the 40 ft x 80 ft tunnel at NASA-Ames

Solution: From the text: P 125000 hp Vmax 300
nmi

hr


6080 ft

nmi


hr

3600 s
 Vmax 507

ft

s


Therefore, the kinetic energy ratio is: KEratio

m
V

2

2


P


ρ V A( ) V
2



2 P


ρ A V
3



2 P
 Assuming standard conditions

and substituting values:

KEratio
1

2
0.00238

slug

ft
3

 40 ft 80 ft( ) 507
ft

s






3


1

125000 hp


hp s

550 ft lbf


lbf s
2



slug ft


KEratio 7.22



Problem 7.94 [Difficulty: 3]

Given: A scale model of a truck is tested in a wind tunnel. The axial pressure gradient and frontal area of the prototype

are known. Drag coefficient is 0.85.

Find: (a) Horizontal buoyancy correction

(b) Express this correction as a fraction of the measured drag force.

Solution: The horizontal buoyancy force is the difference in the pressure force between the front and back of the model due

to the pressure gradient in the tunnel:

FB pf pb  A
∆p

∆L
Lm Am where: Lm

Lp

16
 Am

Ap

16
2



Thus: FB 0.07
lbf

ft
2

ft


60 ft

16


110 ft
2



16
2

 FB 0.113 lbf

The horizontal buoyancy correction should be added to the measured drag force on the model. The measured drag

force on the model is given by:

FDm
1

2
ρ V

2
 Am CD

1

2
ρ V

2


Ap

16
2

 CD When we substitute in known values we get:

FDm
1

2
0.00238

slug

ft
3

 250
ft

s






2


110 ft

2


16
2

 0.85
lbf s

2


slug ft
 FDm 27.16 lbf

Therefore the ratio of the forces is: DragRatio
0.113

27.16
 DragRatio 0.42 %



 Problem 7.95 [Difficulty: 4] 

 

 
 

Given: Flapping flag on a flagpole 

Find: Explanation of the flapping 

Solution:  

 

Discussion:  The natural wind contains significant fluctuations in air speed and direction.  These fluctuations tend to disturb the flag 

from an initially plane position. 

  

When the flag is bent or curved from the plane position, the flow nearby must follow its contour.  Flow over a convex surface tends to 

be faster, and have lower pressure, than flow over a concave curved surface.  The resulting pressure forces tend to exaggerate the 

curvature of the flag.  The result is a seemingly random "flapping" motion of the flag. 

  

The rope or chain used to raise the flag may also flap in the wind.  It is much more likely to exhibit a periodic motion than the flag 

itself.  The rope is quite close to the flag pole, where it is influenced by any vortices shed from the pole.  If the Reynolds number is 

such that periodic vortices are shed from the pole, they will tend to make the rope move with the same frequency.  This accounts for 

the periodic thump of a rope or clank of a chain against the pole. 

  

The vortex shedding phenomenon is characterized by the Strouhal number, St = fD/V∞, where f is the vortex shedding frequency, D is 

the pole diameter, and D is the wind speed.  The Strouhal number is constant at approximately 0.2 over a broad range of Reynolds 

numbers. 



Problem 7.96 [Difficulty: 3]

Given: A 1:16 scale model of a bus (152 mm x 200 mm x 762 mm) is tested in a wind tunnel at 26.5 m/s. Drag force is 6.09

N. The axial pressure gradient is -11.8 N/m2/m.

Find: (a) Horizontal buoyancy correction

(b) Drag coefficient for the model

(c) Aerodynamic drag on the prototype at 100 kph on a calm day.

Solution: The horizontal buoyancy force is the difference in the pressure force between the front and back of the model due

to the pressure gradient in the tunnel:

FB pf pb  A
dp

dx
Lm Am where: Am 152 mm 200 mm Am 30400 mm

2


Thus: FB 11.8
N

m
2

m
 762 mm 30400 mm

2


m

1000 mm






3

 FB 0.273 N

So the corrected drag force is: FDc 6.09 N 0.273 N FDc 5.817 N

The corrected model drag coefficient would then be: CDm

FDc

1

2
ρ V

2
 Am

 Substituting in values:

CDm 2 5.82 N
m

3

1.23 kg


s

26.5 m






2


1

30400 mm
2




1000 mm

m







2


kg m

N s
2


 CDm 0.443

If we assume that the test was conducted at high enough Reynolds number, then the drag coefficient should be the

same at both scales, i.e.: CDp CDm

FDp
1

2
ρ V

2
 Ap CDp where Ap 30400 mm

2
 16

2


m

1000 mm






2

 Ap 7.782 m
2



FDp
1

2
1.23

kg

m
3

 100
km

hr


1000 m

km


hr

3600 s






2

 7.782 m
2

 0.443
N s

2


kg m
 FDp 1.636 kN

(The rolling resistance must also be included to obtain the total tractive effort needed to propel the vehicle.)



Problem 7.97 [Difficulty: 5] 

Discussion: The equation given in Problem 7.2 contains three terms. The first term contains surface tension and gives a

speed inversely proportional to wavelength. These terms will be important when small wavelengths are

considered.

The second term contains gravity and gives a speed proportional to wavelength. This term will be important

when long wavelengths are considered.

The argument of the hyperbolic tangent is proportional to water depth and inversely proportional to

wavelength. For small wavelengths this term should approach unity since the hyperbolic tangent of a large

number approaches one.

The governing equation is: c
2 σ

ρ

2 π

λ


g λ

2 π






tanh
2 π h

λ









The relevant physical parameters are: g 9.81
m

s
2

 ρ 999
kg

m
3

 σ 0.0728
N

m


A plot of the wave speed versus wavelength at different depths is shown here:
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Problem 8.1 [Difficulty: 1]

Given: Air entering duct

Find: Flow rate for turbulence; Entrance length

Solution:

The basic equations are Re
V D

ν
 Recrit 2300 Q

π

4
D

2
 V

The given data is D 125 mm From Table A.10 ν 2.29 10
5


m

2

s


Llaminar 0.06 Recrit D or, for turbulent, Lturb = 25D to 40D

Hence Recrit

Q

π

4
D

2


D

ν
 or Q

Recrit π ν D

4
 Q 5.171 10

3


m
3

s


For laminar flow Llaminar 0.06 Recrit D Llaminar 17.3 m

For turbulent flow Lmin 25 D Lmin 3.13 m Lmax 40 D Lmax 5.00 m



 

Problem 8.2                                                             [Difficulty: 2]



Problem 8.3 [Difficulty: 3]

Given: Air entering pipe system

Find: Flow rate for turbulence in each section; Which become fully developed

Solution:

From Table A.10 ν 1.69 10
5−

×
m

2

s
⋅=

The given data is L 2 m⋅= D1 25 mm⋅= D2 15 mm⋅= D3 10 mm⋅=

The critical Reynolds number is Recrit 2300=

Writing the Reynolds number as a function of flow rate

Re
V D⋅

ν
=

Q

π

4
D

2
⋅

D

ν
⋅= or Q

Re π⋅ ν⋅ D⋅

4
=

Then the flow rates for turbulence to begin in each section of pipe are 

Q1

Recrit π⋅ ν⋅ D1⋅

4
=

Q1 7.63 10
4−

×
m

3

s
=

Q2

Recrit π⋅ ν⋅ D2⋅

4
=

Q2 4.58 10
4−

×
m

3

s
=

Q3

Recrit π⋅ ν⋅ D3⋅

4
=

Q3 3.05 10
4−

×
m

3

s
=

Hence, smallest pipe becomes turbulent first, then second, then the largest.

For the smallest pipe transitioning to turbulence (Q3)

For pipe 3 Re3 2300= Llaminar 0.06 Re3⋅ D3⋅= Llaminar 1.38 m= Llaminar < L: Fully developed

or, for turbulent, Lmin 25 D3⋅= Lmin 0.25 m= Lmax 40 D3⋅= Lmax 0.4 m= Lmax/min  < L: Fully developed

For pipes 1 and 2 Llaminar 0.06
4 Q3⋅

π ν⋅ D1⋅

⎛
⎜
⎝

⎞

⎠
⋅ D1⋅= Llaminar 1.38 m= Llaminar < L: Fully developed



Llaminar 0.06
4 Q3⋅

π ν⋅ D2⋅

⎛
⎜
⎝

⎞

⎠
⋅ D2⋅= Llaminar 1.38 m= Llaminar < L: Fully developed

For the middle pipe transitioning to turbulence (Q2)

For pipe 2 Re2 2300= Llaminar 0.06 Re2⋅ D2⋅= Llaminar 2.07 m= Llaminar > L: Not fully developed

or, for turbulent, Lmin 25 D2⋅= Lmin 1.23 ft⋅= Lmax 40 D2⋅= Lmax 0.6 m=

Lmax/min  < L: Fully developed

For pipes 1 and 3 L1 0.06
4 Q2⋅

π ν⋅ D1⋅

⎛
⎜
⎝

⎞

⎠
⋅ D1⋅= L1 2.07 m⋅= Llaminar > L: Not fully developed

L3min 25 D3⋅= L3min 0.25 m⋅= L3max 40 D3⋅= L3max 0.4 m=

Lmax/min  < L: Fully developed

For the large pipe transitioning to turbulence (Q1)

For pipe 1 Re1 2300= Llaminar 0.06 Re1⋅ D1⋅= Llaminar 3.45 m= Llaminar > L: Not fully developed

or, for turbulent, Lmin 25 D1⋅= Lmin 2.05 ft⋅= Lmax 40 D1⋅= Lmax 1.00 m=

Lmax/min  < L: Fully developed

For pipes 2 and 3 L2min 25 D2⋅= L2min 1.23 ft⋅= L2max 40 D2⋅= L2max 0.6 m=

Lmax/min  < L: Fully developed

L3min 25 D3⋅= L3min 0.82 ft⋅= L3max 40 D3⋅= L3max 0.4 m=

Lmax/min  < L: Fully developed



Problem 8.4 [Difficulty: 2]

Given: That transition to turbulence occurs at about Re = 2300

Find: Plots of average velocity and volume and mass flow rates for turbulence for air and water

Solution:

The basic equations are Re
V D⋅

ν
= Recrit 2300=

From Tables A.8 and A.10 ρair 1.23
kg

m
3

⋅= νair 1.45 10
5−

×
m

2

s
⋅= ρw 999

kg

m
3

⋅= νw 1.14 10
6−

×
m

2

s
⋅=

For the average velocity V
Recrit ν⋅

D
=

Hence for air Vair

2300 1.45× 10
5−

×
m

2

s
⋅

D
= Vair

0.0334
m

2

s
⋅

D
=

For water Vw

2300 1.14× 10
6−

×
m

2

s
⋅

D
= Vw

0.00262
m

2

s
⋅

D
=

For the volume flow rates Q A V⋅=
π

4
D

2
⋅ V⋅=

π

4
D

2
⋅

Recrit ν⋅

D
⋅=

π Recrit⋅ ν⋅

4
D⋅=

Hence for air Qair
π

4
2300× 1.45× 10

5−
⋅

m
2

s
⋅ D⋅= Qair 0.0262

m
2

s
⋅ D×=

For water Qw
π

4
2300× 1.14× 10

6−
⋅

m
2

s
⋅ D⋅= Qw 0.00206

m
2

s
⋅ D×=

Finally, the mass flow rates are obtained from volume flow rates

mair ρair Qair⋅= mair 0.0322
kg

m s⋅
⋅ D×=

mw ρw Qw⋅= mw 2.06
kg

m s⋅
⋅ D×=

These results can be plotted in Excel as shown below in the next two pages



From Tables A.8 and A.10 the data required is

◊air = 1.23 kg/m3 ◊air = 1.45E-05 m2/s

◊w = 999 kg/m
3 ◊w = 1.14E-06 m

2
/s

D  (m) 0.0001 0.001 0.01 0.05 1.0 2.5 5.0 7.5 10.0

V air (m/s) 333.500 33.350 3.335 0.667 3.34E-02 1.33E-02 6.67E-03 4.45E-03 3.34E-03

V w (m/s) 26.2 2.62 0.262 5.24E-02 2.62E-03 1.05E-03 5.24E-04 3.50E-04 2.62E-04

Q air (m3/s) 2.62E-06 2.62E-05 2.62E-04 1.31E-03 2.62E-02 6.55E-02 1.31E-01 1.96E-01 2.62E-01

Q w (m3/s) 2.06E-07 2.06E-06 2.06E-05 1.03E-04 2.06E-03 5.15E-03 1.03E-02 1.54E-02 2.06E-02

m air (kg/s) 3.22E-06 3.22E-05 3.22E-04 1.61E-03 3.22E-02 8.05E-02 1.61E-01 2.42E-01 3.22E-01

m w (kg/s) 2.06E-04 2.06E-03 2.06E-02 1.03E-01 2.06E+00 5.14E+00 1.03E+01 1.54E+01 2.06E+01

Average Velocity for Turbulence in a Pipe

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

V
 (

m
/s

)

Velocity  (Air)

Velocity  (Water)



Flow Rate for Turbulence in a Pipe

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

Q
 (

m
3
/s

)

Flow Rate (Air)

Flow Rate (Water)

Mass Flow Rate for Turbulence in a Pipe

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01

D  (m)

m
fl

o
w

 (
k

g
/s

)

Mass Flow Rate (Air)

Mass Flow Rate (Water)



 

Problem 8.5                                                          [Difficulty: 4]   Part 1/2



 

Problem 8.5                                                         [Difficulty: 4]   Part 2/2



 

Problem 8.6                                                    [Difficulty: 2]



 

Problem 8.7                                                           [Difficulty: 2]



 

Problem 8.8                                                         [Difficulty: 3]



Problem 8.9 [Difficulty: 3]

F 

p1 D 

L 

a 

Given: Piston cylinder assembly

Find: Rate of oil leak

Solution:

Basic equation
Q

l

a
3
∆p⋅

12 μ⋅ L⋅
= Q

π D⋅ a
3

⋅ ∆p⋅

12 μ⋅ L⋅
= (from Eq. 8.6c; we assume laminar flow and verify

this is correct after solving)

For the system ∆p p1 patm−=
F

A
=

4 F⋅

π D
2

⋅
=

∆p
4

π
4500× lbf⋅

1

4 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

2

×= ∆p 358 psi⋅=

At 120oF (about 50oC), from Fig. A.2 μ 0.06 0.0209×
lbf s⋅

ft
2

⋅= μ 1.25 10
3−

×
lbf s⋅

ft
2

⋅=

Q
π

12
4× in⋅ 0.001 in⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

3

× 358×
lbf

in
2

⋅
144 in

2
⋅

1 ft
2

⋅
×

ft
2

1.25 10
3−

× lbf s⋅
×

1

2 in⋅
×= Q 1.25 10

5−
×

ft
3

s
⋅= Q 0.0216

in
3

s
⋅=

Check Re: V
Q

A
=

Q

a π⋅ D⋅
= V

1

π
1.25× 10

5−
×

ft
3

s

1

.001 in⋅
×

1

4 in⋅
×

12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×= V 0.143
ft

s
⋅=

Re
V a⋅

ν
= ν 6 10

5−
× 10.8×

ft
2

s
= ν 6.48 10

4−
×

ft
2

s
⋅= (at 120oF, from Fig. A.3)

Re 0.143
ft

s
⋅ 0.001× in⋅

1 ft⋅

12 in⋅
×

s

6.48 10
4−

× ft
2

×= Re 0.0184= so flow is very much laminar

The speed of the piston is approximately

Vp
Q

π D
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= Vp
4

π
1.25× 10

5−
×

ft
3

s

1

4 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

2

×= Vp 1.432 10
4−

×
ft

s
⋅=

The piston motion is negligible so our assumption of flow between parallel plates is reasonable



 

Problem 8.10                                                         [Difficulty: 2]



Problem 8.11 [Difficulty: 2]

 

x 

y 
2h 

Given: Laminar flow between flat plates

Find: Shear stress on upper plate; Volume flow rate per width

Solution:

Basic equation τyx μ
du

dy
⋅= u y( )

h
2

2 μ⋅
−

dp

dx
⋅ 1

y

h

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅= (from Eq. 8.7)

τyx
h

2
−

2

dp

dx
⋅

2 y⋅

h
2

−⎛⎜
⎝

⎞

⎠
⋅= y−

dp

dx
⋅=

Then

At the upper surface y h= τyx 1.5− mm⋅
1 m⋅

1000 mm⋅
× 1.25× 10

3
×

N

m
2

m⋅
⋅= τyx 1.88− Pa=

The volume flow rate is Q Au
⌠
⎮
⌡

d=
h−

h

yu b⋅
⌠
⎮
⌡

d=
h

2
b⋅

2 μ⋅
−

dp

dx
⋅

h−

h

y1
y

h

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

⌠⎮
⎮
⎮⌡

d⋅= Q
2 h

3
⋅ b⋅

3 μ⋅
−

dp

dx
⋅=

Q

b

2

3
− 1.5 mm⋅

1 m⋅

1000 mm⋅
×⎛⎜

⎝
⎞
⎠

3

× 1.25× 10
3

×
N

m
2

m⋅
⋅

m
2

0.5 N⋅ s⋅
×=

Q

b
5.63− 10

6−
×

m
2

s
=



Problem 8.12 [Difficulty: 3]

Given: Piston-cylinder assembly

Find: Mass supported by piston

Solution:

Basic equation
Q

l

a
3
∆p

12 μ L
 This is the equation for pressure-driven flow between parallel plates; for a small gap a,

the flow between the piston and cylinder can be modeled this way, with l = πD

Available data L 4 in D 4 in a 0.001 in Q 0.1 gpm 68 °F 20 °C

From Fig. A.2, SAE10 oil at 20oF is μ 0.1
N s

m
2

 or μ 2.089 10
3


lbf s

ft
2



Hence, solving for ∆p ∆p
12 μ L Q

π D a
3


 ∆p 2.133 10

4
 psi

A force balance for the piston involves the net pressure force F ∆p A ∆p
π

4
 D

2
 and the weight W M g

Hence M
π D

2


4

∆p

g
 M 8331 slug M 2.68 10

5
 lb

Note the following Vave
Q

a π D
 Vave 2.55

ft

s
 ν 10

4 m
2

s
 ν 1.076 10

3


ft
2

s


Hence an estimate of the Reynolds number in the gap is Re
a Vave

ν
 Re 0.198

This is a highly viscous flow; it can be shown that the force on the piston due to this motion is much less than that due to ∆p!

Note also that the piston speed is Vpiston
4 Q

π D
2


 Vpiston 0.00255

ft

s


so the approximation of stationary walls is validVpiston

Vave

0.1 %
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Problem 8.15 [Difficulty: 3]

Given: Hydrostatic bearing

Find: Required pad width; Pressure gradient; Gap height

Solution:

Basic equation Q

l

h
3

12 μ


dp

dx









Available data F 1000 lbf l 1 ft (F is the load on width l) pi 35 psi Q 2.5
gal

hr
 per ft

212 °F 100 °C At 100oC from Fig. A.2, for SAE 10-30 μ 0.01
N s

m
2

 μ 2.089 10
4


lbf s

ft
2



For a laminar flow (we will verify this assumption later), the pressure gradient is constant

p x( ) pi 1
2 x

W






 where pi = 35 psi is the inlet pressure (gage), and x = 0 to W/2

Hence the total force in the y direction due to pressure is F l xp




d where b is the pad width into the paper

F 2 l

0

W

2

xpi 1
2 x

W













d F
1

2
pi l W

This must be equal to the applied load F.  Hence W
2

pi

F

l
 W 0.397 ft

The pressure gradient is then
dp

dx

∆p

W

2


2 ∆p

W
 2

35 lbf

in
2


1

0.397 ft
 176

psia

ft


From  the basic equation
Q

l

h
3

12 μ


dp

dx







 we can solve for h

12 μ
Q

l


dp

dx















1

3

 h 2.51 10
3

 in

Check Re: Re
V D

ν


D

ν

Q

A


h

ν

Q

l h


From Fig. A.3 ν 1.2 10
5


m

2

s
 ν 1.29 10

4


ft
2

s
 Re

Q

ν l
 Re 0.72

so flow is very laminar
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Problem 8.17      [Difficulty: 2] 
 

 
 

Given: Navier-Stokes Equations 

Find: Derivation of Eq. 8.5 

Solution:  

 

The Navier-Stokes equations are 

 

0=
∂
∂

+
∂
∂

+
∂
∂

z

w

y

v

x

u
                                                     (5.1c) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z

u

y

u

x

u

x

p
g

z

u
w

y

u
v

x

u
u

t

u
x µρρ              (5.27a) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z

v

y

v

x

v

y

p
g

z

v
w

y

v
v

x

v
u

t

v
y µρρ              (5.27b) 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

z

w

y

w

x

w

z

p
g

z

w
w

y

w
v

x

w
u

t

w
z µρρ              (5.27c) 

 

The following assumptions have been applied: 

 

(1) Steady flow (given). 

(2) Incompressible flow; ρ = constant. 

(3) No flow or variation of properties in the z direction; w= 0 and ∂/∂z = 0. 

(4) Fully developed flow, so no properties except pressure p vary in the x direction; ∂/∂x = 0. 

(5) See analysis below. 

(6) No body force in the x direction; gx = 0 

 

Assumption (1) eliminates time variations in any fluid property.  Assumption (2) eliminates space variations in density.  Assumption 

(3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the 

Navier–Stokes equation cancel.  After assumption (4) is applied, the continuity equation reduces to ∂v/∂y = 0. Assumptions (3) and (4) 

also indicate that ∂v/∂z = 0 and ∂v/∂x = 0. Therefore v must be constant. Since v is zero at the solid surface, then v must be zero 

everywhere.  The fact that v = 0 reduces the Navier–Stokes equations further, as indicated by (5). Hence for the y direction 

 

g
y

p ρ=
∂
∂

 

 

which indicates a hydrostatic variation of pressure.  In the x direction, after assumption (6) we obtain 

 

0
2

2

=
∂
∂

−
∂
∂

x

p

y

uµ  

6 

4 

4 

4 4 

4 3 

3 

3 3 

3 3 3 3 3 3 3 

1 

1 

1 

5 

5 5 

3 

3 



Integrating twice 

 

2
12

2

1
cy

c
y

x

p
u ++

∂
∂

=
µµ

 

 

To evaluate the constants, c1 and c2, we must apply the boundary conditions. At y = 0, u = 0.  Consequently, c2 = 0.  At y = a, u = 0.  

Hence 

 

a
c

a
x

p

µµ
12

2

1
0 +

∂
∂

=  

which gives 

a
x

p
c

∂
∂

−=
µ2

1
1  

and finally 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=
a

y

a

y

x

pa
u

22

2µ
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Problem 8.21 [Difficulty: 3]

Given: Laminar velocity profile of power-law fluid flow between parallel plates

Find: Expression for flow rate; from data determine the type of fluid

Solution:

The velocity profile is u
h

k

∆p

L
⋅⎛⎜

⎝
⎞
⎠

1

n
n h⋅

n 1+
⋅ 1

y

h

⎛⎜
⎝

⎞
⎠

n 1+

n

−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅=

The flow rate is then Q w

h−

h

yu
⌠
⎮
⌡

d⋅= or, because the flow is symmetric Q 2 w⋅
0

h

yu
⌠
⎮
⌡

d⋅=

The integral is computed as y1
y

h

⎛⎜
⎝

⎞
⎠

n 1+

n

−

⌠
⎮
⎮
⎮
⎮
⌡

d y 1
n

2 n⋅ 1+

y

h

⎛⎜
⎝

⎞
⎠

2 n⋅ 1+

n

⋅−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅=

Using this with the limits Q 2 w⋅
h

k

∆p

L
⋅⎛⎜

⎝
⎞
⎠

1

n

⋅
n h⋅

n 1+
⋅ h⋅ 1

n

2 n⋅ 1+
1( )

2 n⋅ 1+

n
⋅−

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= Q
h

k

∆p

L
⋅⎛⎜

⎝
⎞
⎠

1

n
2 n⋅ w⋅ h

2
⋅

2 n⋅ 1+
⋅=

An Excel spreadsheet can be used for computation of n.

The data is

dp  (kPa) 10 20 30 40 50 60 70 80 90 100

Q  (L/min) 0.451 0.759 1.01 1.15 1.41 1.57 1.66 1.85 2.05 2.25

This must be fitted to Q
h

k

∆p

L
⋅⎛⎜

⎝
⎞
⎠

1

n
2 n⋅ w⋅ h

2
⋅

2 n⋅ 1+
⋅= or Q k ∆p

1

n
⋅=



We can fit a power curve to the data

Hence 1/n  = 0.677 n  = 1.48

Flow Rate vs Applied Pressure for a

Non-Newtonian Fluid

Q = 0.0974dp
0.677

R
2
 = 0.997

0.1

1.0

10.0

10 100dp  (kPa)

Q
 (

L
/m

in
)

Data

Power Curve Fit

It's a dilatant fluid



Problem 8.22 [Difficulty: 2]

Given: Laminar flow between moving plates

Find: Expression for velocity; Volume flow rate per depth

Solution:

Given data d 0.2 in⋅= U1 5
ft

s
⋅= U2 2

ft

s
⋅=

Using the analysis of Section 8.2, the sum of forces in the x direction is

τ
y
τ

∂

∂

dy

2
⋅+ τ

y
τ

∂

∂

dy

2
⋅−

⎛
⎜
⎝

⎞

⎠
−

⎡
⎢
⎣

⎤
⎥
⎦

b⋅ dx⋅ p
x

p
∂

∂

dx

2
⋅− p−

x
p

∂

∂

dx

2
⋅+

⎛
⎜
⎝

⎞

⎠
b⋅ dy⋅+ 0=

Simplifying
dτ

dy

dp

dx
= 0= or μ

d
2
u

dy
2

⋅ 0=

Integrating twice u c1 y⋅ c2+=

Boundary conditions: u 0( ) U1−= c2 U1−= c2 5−
ft

s
= u y d=( ) U2= c1

U1 U2+

d
= c1 420 s

1−
=

Hence u y( ) U1 U2+( ) y

d
⋅ U1−= u y( ) 420 y⋅ 5−= u in ft/s, y in ft

The volume flow rate is Q Au
⌠
⎮
⌡

d= b yu
⌠
⎮
⌡

d⋅= Q b

0

d

xU1 U2+( ) y

d
⋅ U1−⎡⎢

⎣
⎤⎥
⎦

⌠
⎮
⎮
⌡

d⋅= b
U1 U2+

d

d
2

2
⋅ U1 d⋅−

⎛
⎜
⎝

⎞

⎠
⋅=

Hence Q b d⋅
U2 U1−( )

2
⋅=

Q

b
d

U2 U1−( )
2

⋅=

Q

b
0.2 in⋅

1 ft⋅

12 in⋅
×

1

2
× 2 5−( )×

ft

s
×=

Q

b
.025−

ft
3

s

ft
⋅=

Q

b
.025−

ft
3

s

ft
⋅

7.48 gal⋅

1 ft
3

⋅
×

60 s⋅

1 min⋅
×=

Q

b
11.2−

gpm

ft
⋅=
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Problem 8.24 [Difficulty: 3]

Given: Properties of two fluids flowing between parallel plates; applied pressure gradient

Find: Velocity at the interface; maximum velocity; plot velocity distribution

Solution:

Given data
dp

dx
k= k 50−

kPa

m
⋅= h 5 mm⋅= μ1 0.1

N s⋅

m
2

⋅= μ2 4 μ1⋅= μ2 0.4
N s⋅

m
2

⋅=

(Lower fluid is fluid 1; upper is fluid 2)

Following the analysis of Section 8.2, analyse the forces on a differential CV of either fluid

The net force is zero for steady flow, so

τ
dτ

dy

dy

2
⋅+ τ

dτ

dy

dy

2
⋅−⎛⎜

⎝
⎞
⎠

−⎡⎢
⎣

⎤⎥
⎦

dx⋅ dz⋅ p
dp

dx

dx

2
⋅− p

dp

dx

dx

2
⋅+⎛⎜

⎝
⎞
⎠

−⎡⎢
⎣

⎤⎥
⎦

dy⋅ dz⋅+ 0=

Simplifying
dτ

dy

dp

dx
= k= so for each fluid μ

2
y

u
d

d

2

⋅ k=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

u1
k

2 μ1⋅
y

2
⋅ c1 y⋅+ c2+= u2

k

2 μ2⋅
y

2
⋅ c3 y⋅+ c4+=

For convenience the origin of coordinates is placed at the centerline

We need four BCs.  Three are obvious y h−= u1 0= (1) y 0= u1 u2= (2) y h= u2 0= (3)

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

y 0= μ1

du1

dy
⋅ μ2

du2

dy
⋅= (4)

Using these four BCs 0
k

2 μ1⋅
h

2
⋅ c1 h⋅− c2+= c2 c4= 0

k

2 μ2⋅
h

2
⋅ c3 h⋅+ c4+= μ1 c1⋅ μ2 c3⋅=

Hence, after some algebra

c1
k h⋅

2 μ1⋅

μ2 μ1−( )
μ2 μ1+( )

⋅= c4
k h

2
⋅

μ2 μ1+
−= c2 c4= c3

k h⋅

2 μ2⋅

μ2 μ1−( )
μ2 μ1+( )

⋅=



c1 750−
1

s
= c2 2.5

m

s
= c3 187.5−

1

s
= c4 2.5

m

s
=

The velocity distributions are then

u1 y( )
k

2 μ1⋅
y

2
y h⋅

μ2 μ1−( )
μ2 μ1+( )

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅
k h

2
⋅

μ2 μ1+
−= u2 y( )

k

2 μ2⋅
y

2
y h⋅

μ2 μ1−( )
μ2 μ1+( )

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅
k h

2
⋅

μ2 μ1+
−=

Evaluating either velocity at y =  0, gives the velocity at the interface

uinterface
k h

2
⋅

μ2 μ1+
−= uinterface 2.5

m

s
=

The plots of these velocity distributions can be done in Excel. Typical curves are shown below

0 0.5 1 1.5 2 2.5 3 3.5

5−

2.5−

2.5

5

u (m/s)

y
 (

m
m

)

Clearly, u1 has the maximum velocity, when 
du1

dy
0= or 2 ymax⋅ h

μ2 μ1−( )
μ2 μ1+( )

⋅+ 0=

ymax
h

2
−

μ2 μ1−( )
μ2 μ1+( )

⋅= ymax 1.5− mm= umax u1 ymax( )= umax 3.06
m

s
=

(We could also have used Excel's Solver for this.)



Problem 8.25 [Difficulty: 3]

Given: Laminar flow of two fluids between plates

Find: Velocity at the interface

Solution:

Using the analysis of Section 8.2, the sum of forces in the x direction is

τ
y
τ

∂

∂

dy

2
⋅+ τ

y
τ

∂

∂

dy

2
⋅−

⎛
⎜
⎝

⎞
⎠

−
⎡
⎢
⎣

⎤
⎥
⎦

b⋅ dx⋅ p
x

p
∂

∂

dx

2
⋅− p−

x
p

∂

∂

dx

2
⋅+

⎛
⎜
⎝

⎞
⎠

b⋅ dy⋅+ 0=

Simplifying
dτ

dy

dp

dx
= 0= or μ

d
2
u

dy
2

⋅ 0=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields u1 c1 y⋅ c2+= u2 c3 y⋅ c4+=

We need four BCs.  Three are obvious y 0= u1 0= y h= u1 u2= y 2 h⋅= u2 U=

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

y h= μ1

du1

dy
⋅ μ2

du2

dy
⋅=

Using these four BCs 0 c2= c1 h⋅ c2+ c3 h⋅ c4+= U c3 2⋅ h⋅ c4+= μ1 c1⋅ μ2 c3⋅=

Hence c2 0=

From the 2nd and 3rd equations c1 h⋅ U− c3− h⋅= and μ1 c1⋅ μ2 c3⋅=

Hence c1 h⋅ U− c3− h⋅=
μ1

μ2

− h⋅ c1⋅= c1
U

h 1
μ1

μ2

+
⎛
⎜
⎝

⎞

⎠
⋅

=

Hence for fluid 1 (we do not need to complete the analysis for fluid 2) u1
U

h 1
μ1

μ2

+
⎛
⎜
⎝

⎞

⎠
⋅

y⋅=

Evaluating this at y = h, where u1 = uinterface uinterface

20
ft

s
⋅

1
1

3
+⎛⎜

⎝
⎞
⎠

= uinterface 15
ft

s
⋅=



Problem 8.26 [Difficulty: 2]

Given: Computer disk drive

Find: Flow Reynolds number; Shear stress; Power required

Solution:

For a distance R from the center of a disk spinning at speed ω

V R ω V 25 mm
1 m

1000 mm
 8500 rpm

2 π rad

rev


1 min

60 s
 V 22.3

m

s


The gap Reynolds number is Re
ρ V a

μ


V a

ν
 ν 1.45 10

5


m
2

s
 from Table A.10 at 15oC

Re 22.3
m

s
 0.25 10

6
 m

s

1.45 10
5

 m
2


 Re 0.384

The flow is definitely laminar

The shear stress is then τ μ
du

dy
 μ

V

a
 μ 1.79 10

5


N s

m
2

 from Table A.10 at 15oC

τ 1.79 10
5


N s

m
2

 22.3
m

s


1

0.25 10
6

 m
 τ 1.60 kPa

The power required is P T ω where torque T is given by

T τ A R with A 5 mm( )
2

 A 2.5 10
5

 m
2



P τ A R ω P 1600
N

m
2

 2.5 10
5

 m
2

 25 mm
1 m

1000 mm
 8500 rpm

2 π rad

rev


1 min

60 s
 P 0.890 W



Problem 8.27 [Difficulty: 2]

Given: Velocity profile between parallel plates

Find: Pressure gradients for zero stress at upper/lower plates; plot

Solution:

From Eq. 8.8, the velocity distribution is u
U y⋅

a

a
2

2 μ⋅ x
p

∂

∂

⎛
⎜
⎝

⎞
⎠

⋅
y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

The shear stress is τyx μ
du

dy
⋅= μ

U

a
⋅

a
2

2 x
p

∂

∂

⎛
⎜
⎝

⎞
⎠

⋅ 2
y

a
2

⋅
1

a
−⎛

⎜
⎝

⎞

⎠
⋅+=

(a)   For τyx = 0 at y = a 0 μ
U

a
⋅

a

2 x
p

∂

∂
⋅+=

x
p

∂

∂

2 U⋅ μ⋅

a
2

−=

The velocity distribution is then u
U y⋅

a

a
2

2 μ⋅

2 U⋅ μ⋅

a
2

⋅
y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅−=
u

U
2

y

a
⋅

y

a

⎛⎜
⎝

⎞
⎠

2

−=

(b)   For τyx = 0 at y = 0 0 μ
U

a
⋅

a

2 x
p

∂

∂
⋅−=

x
p

∂

∂

2 U⋅ μ⋅

a
2

=

The velocity distribution is then u
U y⋅

a

a
2

2 μ⋅

2 U⋅ μ⋅

a
2

⋅
y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=
u

U

y

a

⎛⎜
⎝

⎞
⎠

2

=

The velocity distributions can be plotted in Excel.



y /a (a) u /U (b) u /U

0.0 0.000 0.000

0.1 0.190 0.010

0.2 0.360 0.040

0.3 0.510 0.090

0.4 0.640 0.160

0.5 0.750 0.250

0.6 0.840 0.360

0.7 0.910 0.490

0.8 0.960 0.640

0.9 0.990 0.810

1.0 1.00 1.000

Zero-Stress Velocity Distributions

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

u /U

y
/a

Zero Stress Upper Plate

Zero Stress Lower Plate



 

Problem 8.28                                                        [Difficulty: 2]



 

Problem 8.29                                                         [Difficulty: 2]



Problem 8.30 [Difficulty: 3]

Given: Data on flow of liquids down an incline

Find: Velocity at interface; velocity at free surface; plot

Solution:

Given data h 10 mm⋅= θ 60 deg⋅= ν1 0.01
m

2

s
⋅= ν2

ν1

5
= ν2 2 10

3−
×

m
2

s
=

(The lower fluid is designated fluid 1, the upper fluid 2)

From Example 5.9 (or Exanple 8.3 with g replaced with gsinθ), a free body analysis leads to (for either fluid)

2
y

u
d

d

2 ρ g⋅ sin θ( )⋅

μ
−=

Applying this to fluid 1 (lower fluid) and fluid 2 (upper fluid), integrating twice yields

u1
ρ g⋅ sin θ( )⋅

2 μ1⋅
− y

2
⋅ c1 y⋅+ c2+= u2

ρ g⋅ sin θ( )⋅

2 μ2⋅
− y

2
⋅ c3 y⋅+ c4+=

We need four BCs.  Two are

obvious
y 0= u1 0= (1)

y h= u1 u2= (2)

The third BC comes from the fact that there is no shear stress at the free surface 

y 2 h⋅= μ2

du2

dy
⋅ 0= (3)

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

y h= μ1

du1

dy
⋅ μ2

du2

dy
⋅= (4)

Using these four BCs c2 0=

ρ g⋅ sin θ( )⋅

2 μ1⋅
− h

2
⋅ c1 h⋅+ c2+

ρ g⋅ sin θ( )⋅

2 μ2⋅
− h

2
⋅ c3 h⋅+ c4+=

ρ− g⋅ sin θ( )⋅ 2⋅ h⋅ μ2 c3⋅+ 0= ρ− g⋅ sin θ( )⋅ h⋅ μ1 c1⋅+ ρ− g⋅ sin θ( )⋅ h⋅ μ2 c3⋅+=

Hence, after some algebra c1
2 ρ⋅ g⋅ sin θ( )⋅ h⋅

μ1

= c2 0= c3
2 ρ⋅ g⋅ sin θ( )⋅ h⋅

μ2

= c4 3 ρ⋅ g⋅ sin θ( )⋅ h
2

⋅
μ2 μ1−( )
2 μ1⋅ μ2⋅

⋅=



The velocity distributions are then u1
ρ g⋅ sin θ( )⋅

2 μ1⋅
4 y⋅ h⋅ y

2
−( )⋅= u2

ρ g⋅ sin θ( )⋅

2 μ2⋅
3 h

2
⋅

μ2 μ1−( )
μ1

⋅ 4 y⋅ h⋅+ y
2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Rewriting in terms of ν1 and ν2 (ρ is constant and equal for both fluids)

u1
g sin θ( )⋅

2 ν1⋅
4 y⋅ h⋅ y

2
−( )⋅= u2

g sin θ( )⋅

2 ν2⋅
3 h

2
⋅

ν2 ν1−( )
ν1

⋅ 4 y⋅ h⋅+ y
2

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

(Note that these result in the same expression if ν1 = ν2, i.e., if we have one fluid)

Evaluating either velocity at y =  h, gives the velocity at the interface uinterface
3 g⋅ h

2
⋅ sin θ( )⋅

2 ν1⋅
= uinterface 0.127

m

s
=

Evaluating u2 at y = 2h gives the velocity at the free surface ufreesurface g h
2

⋅ sin θ( )⋅
3 ν2⋅ ν1+( )
2 ν1⋅ ν2⋅

⋅= ufreesurface 0.340
m

s
=

Note that a Reynolds number based on the free surface velocity is
ufreesurface h⋅

ν2

1.70= indicating laminar flow

The velocity distributions can be plotted in Excel.

Velocity Distributions down an Incline

0

4

8

12

16

20

24

0.0 0.1 0.2 0.3 0.4

u  (m/s)

y
 (

m
m

)

Lower Velocity

Upper Velocity

y  (mm) u 1 (m/s) u 2 (m/s)

0.000 0.000

1.000 0.0166

2.000 0.0323

3.000 0.0472

4.000 0.061

5.000 0.074

6.000 0.087

7.000 0.098

8.000 0.109

9.000 0.119

10.000 0.127 0.127

11.000 0.168

12.000 0.204

13.000 0.236

14.000 0.263

15.000 0.287

16.000 0.306

17.000 0.321

18.000 0.331

19.000 0.338

20.000 0.340



Problem 8.31 [Difficulty: 2]

Given: Velocity distribution on incline

Find: Expression for shear stress; Maximum shear; volume flow rate/mm width; Reynolds number

Solution:

From Example 5.9 u y( )
ρ g⋅ sin θ( )⋅

μ
h y⋅

y
2

2
−

⎛
⎜
⎝

⎞

⎠
⋅=

For the shear stress τ μ
du

dy
⋅= ρ g⋅ sin θ( )⋅ h y−( )⋅=

τ is a maximum at y = 0 τmax ρ g⋅ sin θ( )⋅ h⋅= SG ρH2O⋅ g⋅ sin θ( )⋅ h⋅=

τmax 1.2 1000×
kg

m
3

9.81×
m

s
2

⋅ sin 15 deg⋅( )× 0.007× m⋅
N s

2
⋅

kg m⋅
×= τmax 21.3 Pa=

This stress is in the x direction on the wall

The flow rate is
Q Au

⌠
⎮
⌡

d= w

0

h

yu y( )
⌠
⎮
⌡

d⋅= w

0

h

y
ρ g⋅ sin θ( )⋅

μ
h y⋅

y
2

2
−

⎛
⎜
⎝

⎞

⎠
⋅

⌠⎮
⎮
⎮⌡

d⋅= Q
ρ g⋅ sin θ( )⋅ w⋅ h

3
⋅

3 μ⋅
=

Q

w

1

3
1.2× 1000×

kg

m
3

9.81×
m

s
2

⋅ sin 15 deg⋅( )× 0.007 m⋅( )
3

×
m

2

1.60 N⋅ s⋅
×

N s
2

⋅

kg m⋅
⋅= 2.18 10

4−
×

m
3

s

m
=

Q

w
217

mm
3

s

mm
=

The average velocity is V
Q

A
=

Q

w h⋅
= V 217

mm
3

s

mm
⋅

1

7 mm⋅
×= V 31.0

mm

s
⋅=

The gap Reynolds number is Re
ρ V⋅ h⋅

μ
=

Re 1.2 1000×
kg

m
3

31×
mm

s
⋅ 7× mm⋅

m
2

1.60 N⋅ s⋅
×

1 m⋅

1000 mm⋅
⎛⎜
⎝

⎞
⎠

2

×= Re 0.163=

The flow is definitely laminar



Problem 8.32 [Difficulty: 3]

Given: Flow between parallel plates

Find: Shear stress on lower plate; Plot shear stress; Flow rate for pressure gradient; Pressure gradient for zero shear; Plot

Solution:

From Section 8-2 u y( )
U y⋅

a

a
2

2 μ⋅

dp

dx
⋅

y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

For dp/dx = 0 u U
y

a
⋅=

Q

l
0

a

yu y( )
⌠
⎮
⌡

d= w

0

a

yU
y

a
⋅

⌠
⎮
⎮
⌡

d⋅=
U a⋅

2
= Q

1

2
5×

ft

s
⋅

0.1

12
× ft⋅= Q 0.0208

ft
3

s

ft
⋅=

For the shear stress τ μ
du

dy
⋅=

μ U⋅

a
= when dp/dx =

0
μ 3.79 10

7−
×

lbf s⋅

ft
2

⋅= (Table A.9)

The shear stress is constant - no need to plot!

τ 3.79 10
7−

×
lbf s⋅

ft
2

⋅ 5×
ft

s
⋅

12

0.1 ft⋅
×

1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×= τ 1.58 10
6−

× psi⋅=

Q will decrease if dp/dx > 0; it will increase if dp/dx < 0.

For non- zero dp/dx: τ μ
du

dy
⋅=

μ U⋅

a
a

dp

dx
⋅

y

a

1

2
−⎛⎜

⎝
⎞
⎠

⋅+=

At y = 0.25a, we get τ y 0.25 a⋅=( ) μ
U

a
⋅ a

dp

dx
⋅

1

4

1

2
−⎛⎜

⎝
⎞
⎠

⋅+= μ
U

a
⋅

a

4

dp

dx
⋅−=

Hence this stress is zero when
dp

dx

4 μ⋅ U⋅

a
2

= 4 3.79× 10
7−

×
lbf s⋅

ft
2

⋅ 5×
ft

s
⋅

12

0.1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×= 0.109

lbf

ft
2

ft
⋅= 7.58 10

4−
×

psi

ft
=

1− 10
4−× 0 1 10

4−× 2 10
4−× 3 10

4−×

0.025

0.05

0.075

0.1

Shear Stress (lbf/ft3)

y
 (

in
)



Problem 8.33 [Difficulty: 3]

Given: Flow between parallel plates

Find: Location and magnitude of maximum velocity; Volume flow in 10 s; Plot velocity and shear stress

Solution:

From Section 8.2 u y( )
U y⋅

b

b
2

2 μ⋅

dp

dx
⋅

y

b

⎛⎜
⎝

⎞
⎠

2
y

b
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

For umax set du/dx = 0
du

dy
0=

U

b

b
2

2 μ⋅

dp

dx
⋅

2 y⋅

b
2

1

a
−⎛

⎜
⎝

⎞

⎠
⋅+=

U

b

1

2 μ⋅

dp

dx
⋅ 2 y⋅ b−( )⋅+=

Hence u umax= at y
b

2

μ U⋅

b
dp

dx
⋅

−=

From Fig. A.2 at 59 °F 15 °C⋅= μ 4
N s⋅

m
2

⋅= μ 0.0835
lbf s⋅

ft
2

⋅=

y
0.1 in⋅

2
0.0835

lbf s⋅

ft
2

⋅ 2×
ft

s
⋅

1

0.1 in⋅
×

in
2

ft⋅

50 lbf⋅
×+= y 0.0834 in⋅=

Hence umax
U y⋅

b

b
2

2 μ⋅

dp

dx
⋅

y

b

⎛⎜
⎝

⎞
⎠

2
y

b
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+= with y 0.0834 in⋅=

umax 2
ft

s
⋅

.0834

0.1

⎛⎜
⎝

⎞
⎠

×
1

2

0.1

12
ft⋅⎛⎜

⎝
⎞
⎠

2

×
ft

2

.0835 lbf⋅ s⋅
×

50 psi⋅

ft
−×

12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
.0834

0.1

⎛⎜
⎝

⎞
⎠

2
.0834

0.1

⎛⎜
⎝

⎞
⎠

−
⎡
⎢
⎣

⎤
⎥
⎦

×+=

umax 2.083
ft

s
⋅=

Q

w
0

b

yu y( )
⌠
⎮
⌡

d= w

0

b

y
U y⋅

b

b
2

2 μ⋅

dp

dx
⋅

y

b

⎛⎜
⎝

⎞
⎠

2
y

b
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⌠⎮
⎮
⎮⌡

d⋅=
U b⋅

2

b
3

12 μ⋅

dp

dx
⋅−=

Q

w

1

2
2×

ft

s
⋅

0.1

12
× ft⋅

1

12

0.1

12
ft⋅⎛⎜

⎝
⎞
⎠

3

×
ft

2

.0835 lbf⋅ s⋅
×

50 psi⋅

ft
−⎛⎜
⎝

⎞
⎠

×
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×−=

Q

w
0.0125

ft
3

s

ft
=

Q

w
5.61

gpm

ft
⋅=



Flow
Q

w
∆t⋅= 5.61

gpm

ft
⋅

1 min⋅

60 s⋅
× 10× s⋅= Flow 0.935

gal

ft
⋅=

The velocity profile is
u

U

y

b

b
2

2 μ⋅ U⋅

dp

dx
⋅

y

b

⎛⎜
⎝

⎞
⎠

2
y

b
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+= For the shear stress τ μ
du

dy
⋅= μ

U

b
⋅

b

2

dp

dx
⋅ 2

y

b

⎛⎜
⎝

⎞
⎠

⋅ 1−⎡⎢
⎣

⎤⎥
⎦

⋅+=

The graphs below can be plotted in Excel

0 0.2 0.4 0.6 0.8 1 1.2

0.2

0.4

0.6

0.8

1

u/U

y
/b

500− 0 500 1 10
3× 1.5 10

3× 2 10
3× 2.5 10

3×

0.2

0.4

0.6

0.8

1

Shear Stress (Pa)

y
/b



Problem 8.34 [Difficulty: 3]

Given: Flow between parallel plates

Find: Pressure gradient for no flow; plot velocity and stress distributions; also plot for u = U at y = a/2

Solution:

Basic equations u y( )
U y⋅

a

a
2

2 μ⋅

dp

dx
⋅

y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+= (1)
Q

l

U a⋅

2

a
3

12 μ⋅

dp

dx
⋅−= (2) τ μ

U

a
⋅ a

dp

dx
⋅

y

a

1

2
−⎛⎜

⎝
⎞
⎠

⋅+= (3)

Available data U 1.5
m

s
⋅= a 5 mm⋅= From Fig. A.2 for castor oil at 20oC μ 1

N s⋅

m
2

⋅=

From Eq 2 for Q = 0
dp

dx

6 μ⋅ U⋅

a
2

= 6 1×
N s⋅

m
2

⋅ 1.5×
m

s
⋅

1

0.005 m⋅( )
2

×=
dp

dx
360

kPa

m
⋅=

The graphs below, using Eqs. 1 and 3, can be plotted in Excel

0.5− 0 0.5 1 1.5

0.25

0.5

0.75

1

u (m/s)

y
/a

1− 0.5− 0 0.5 1 1.5

0.25

0.5

0.75

1

Shear Stress (kPa)

y
/a

The pressure gradient is adverse, to counteract the flow generated by the upper plate motion



For u = U at y = a/2 we need to adjust the pressure gradient.  From Eq. 1 u y( )
U y⋅

a

a
2

2 μ⋅

dp

dx
⋅

y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

Hence U

U
a

2
⋅

a

a
2

2 μ⋅

dp

dx
⋅

a

2

a

⎛
⎜
⎜
⎝

⎞

⎠

2
a

2

a
−

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

⋅+= or
dp

dx

4 U⋅ μ⋅

a
2

−= 4− 1×
N s⋅

m
2

⋅ 1.5×
m

s
⋅

1

0.005 m⋅( )
2

×=

dp

dx
240−

kPa

m
⋅=

0 0.5 1 1.5 2

0.25

0.5

0.75

1

u (m/s)

y
/a

1− 0.5− 0 0.5 1 1.5

0.25

0.5

0.75

1

Shear Stress (kPa)

y
/a

The pressure gradient is positive to provide the "bulge" needed to satisfy the velocity requirement



Problem 8.35 [Difficulty: 3]

Given: Flow between parallel plates

Find: Shear stress on lower plate; pressure gradient for zero shear stress at y/a = 0.25; plot velocity and shear stress

Solution:

Basic equations u y( )
U y⋅

a

a
2

2 μ⋅

dp

dx
⋅

y

a

⎛⎜
⎝

⎞
⎠

2
y

a
−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+= (1)
Q

l

U a⋅

2

a
3

12 μ⋅

dp

dx
⋅−= (2) τ μ

U

a
⋅ a

dp

dx
⋅

y

a

1

2
−⎛⎜

⎝
⎞
⎠

⋅+= (3)

Available data q 1.5
gpm

ft
⋅= a 0.05 in⋅= 68°F 20°C=

From Fig. A.2, Carbon tetrachloride at 20oC μ 0.001
N s⋅

m
2

⋅= μ 2.089 10
5−

×
lbf s⋅

ft
2

⋅=

From Eq. 2, for zero pressure gradient U
2 Q⋅

a l⋅
= or U

2 q⋅

a
= U 1.60

ft

s
⋅=

From Eq. 3, when y = 0, with U 1.60
ft

s
= τyx

μ U⋅

a
= τyx 5.58 10

5−
× psi⋅=

A mild adverse pressure gradient would reduce the flow rate.

For zero shear stress at y/a = 0.25, from Eq. 3 0 μ
U

a
⋅ a

dp

dx
⋅

1

4

1

2
−⎛⎜

⎝
⎞
⎠

⋅+= or
dp

dx

4 μ⋅ U⋅

a
2

=
dp

dx
0.0536

psi

ft
⋅=

1− 10
4−× 0 1 10

4−× 2 10
4−×

0.25

0.5

0.75

1

Shear Stress (psi)

y
/a

0.5− 0 0.5 1 1.5 2

0.25

0.5

0.75

1

u (ft/s)

y
/a

Note that the location of zero shear is also where u is maximum!



 

Problem 8.36                                                      [Difficulty: 3]

 

Using the result for average velocity from Example 8.3



 

Problem 8.37                                                        [Difficulty: 3]



 

Problem 8.38                                                          [Difficulty: 5]



 

Problem 8.39                                                           [Difficulty: 5]



Problem 8.40 [Difficulty: 2]

Given: Expression for efficiency

Find: Plot; find flow rate for maximum efficiency; explain curve

Solution:

q η
0.00 0.0%

0.05 7.30%

0.10 14.1%

0.15 20.3%

0.20 25.7%

0.25 30.0%

0.30 32.7%

0.35 33.2%

0.40 30.0%

0.45 20.8%

0.50 0.0%

For the maximum efficiency point we can use Solver  (or alternatively differentiate)

q η The efficiency is zero at zero flow rate because there is no output at all

0.333 33.3% The efficiency is zero at maximum flow rate ∆p  = 0 so there is no output

The efficiency must therefore peak somewhere between these extremes

Efficiency of a Viscous Pump

0%

5%

10%

15%

20%

25%

30%

35%

0.00 0.10 0.20 0.30 0.40 0.50

q

η



 

Problem 8.41                                                          [Difficulty: 5]

Problem 2.66



Problem 8.42                                                       [Difficulty: 5]   Part 1/2



 

Problem 8.42                                                     [Difficulty: 5]   Part 2/2



Problem 8.43 [Difficulty: 3]

Given: Data on a journal bearing

Find: Time for the bearing to slow to 100 rpm; visocity of new fluid

Solution:

The given data is D 35 mm⋅= L 50 mm⋅= δ 1 mm⋅= I 0.125 kg⋅ m
2

⋅=

ωi 500 rpm⋅= ωf 100 rpm⋅= μ 0.1
N s⋅

m
2

⋅=

The equation of motion for the slowing bearing is I α⋅ Torque= τ− A⋅
D

2
⋅=

where α is the angular acceleration and τ is the viscous stress, and A π D⋅ L⋅=  is the surface area of the bearing

As in Example 8.2 the stress is given by τ μ
U

δ
⋅=

μ D⋅ ω⋅

2 δ⋅
=

where U and ω are the instantaneous linear and angular velocities.

Hence I α⋅ I
dω

dt
⋅=

μ D⋅ ω⋅

2 δ⋅
− π⋅ D⋅ L⋅

D

2
⋅=

μ π⋅ D
3

⋅ L⋅

4 δ⋅
− ω⋅=

Separating variables
dω

ω

μ π⋅ D
3

⋅ L⋅

4 δ⋅ I⋅
− dt⋅=

Integrating and using IC ω = ω0 ω t( ) ωi e

μ π⋅ D
3⋅ L⋅

4 δ⋅ I⋅
− t⋅

⋅=

The time to slow down to ωf = 10 rpm is obtained from solving ωf ωi e

μ π⋅ D
3⋅ L⋅

4 δ⋅ I⋅
− t⋅

⋅=

so t
4 δ⋅ I⋅

μ π⋅ D
3

⋅ L⋅
− ln

ωf

ωi

⎛
⎜
⎝

⎞

⎠
⋅= Hence t 1.19 10

3
× s= t 19.9 min⋅=

For the new fluid, the time to slow down is t 10 min⋅=

Rearranging the equation μ
4 δ⋅ I⋅

π D
3

⋅ L⋅ t⋅
− ln

ωf

ωi

⎛
⎜
⎝

⎞

⎠
⋅=

μ 0.199
kg

m s⋅
= It is more viscous as it slows

down the rotation in a

shorter time



Problem 8.44      [Difficulty: 2] 
 

 
 

Given: Navier-Stokes Equations 

Find: Derivation of Example 8.3 result 

Solution:  

 

The Navier-Stokes equations are (using the coordinates of Example 8.3, so that x is vertical, y is horizontal) 
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The following assumptions have been applied: 

 

(1) Steady flow (given). 

(2) Incompressible flow; ρ = constant. 

(3) No flow or variation of properties in the z direction; w= 0 and ∂/∂z = 0. 

(4) Fully developed flow, so no properties except possibly pressure p vary in the x direction; ∂/∂x = 0. 

(5) See analysis below. 

(6) No body force in the y direction; gy = 0 

 

Assumption (1) eliminates time variations in any fluid property.  Assumption (2) eliminates space variations in density.  Assumption 

(3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the 

Navier–Stokes equation cancel.  After assumption (4) is applied, the continuity equation reduces to ∂v/∂y = 0. Assumptions (3) and (4) 

also indicate that ∂v/∂z = 0 and ∂v/∂x = 0. Therefore v must be constant. Since v is zero at the solid surface, then v must be zero 

everywhere.  The fact that v = 0 reduces the Navier–Stokes equations further, as indicated by (5). Hence for the y direction 

 

0=
∂
∂

y

p
 

 

which indicates the pressure is a constant across the layer.  However, at the free surface p = patm = constant.  Hence we conclude that p 

= constant throughout the fluid, and so 
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0=
∂
∂

x

p
 

In the x direction, we obtain 

 

0
2

2

=+
∂
∂

g
y

u ρµ  

Integrating twice 

 

2
12
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1
cy

c
gyu ++−=

µ
ρ

µ
 

 

To evaluate the constants, c1 and c2, we must apply the boundary conditions. At y = 0, u = 0.  Consequently, c2 = 0.  At y = a, du/dy = 

0 (we assume air friction is negligible).  Hence 

 

( ) 0
1 1 =+−===

= µ
δρ

µ
µδτ

δ

c
g

dy

du
y

y

 

which gives 

δρgc =1  

and finally 

⎥
⎥
⎦

⎤

⎢
⎢
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⎟
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Problem 8.45                                                           [Difficulty: 3]



Problem 8.46 [Difficulty: 3]

Given: Paint flow (Bingham fluid)

Find: Maximum thickness of paint film before flow occur

Solution:

Basic equations: Bingham fluid: τyx τy μp
du

dy
⋅+=

Use the analysis of Example 8.3, where we obtain a force balance between gravity and shear stresses:
dτyx

dy
ρ− g⋅=

The given data is τy 40 Pa⋅= ρ 1000
kg

m
3

⋅=

From the force balance equation, itegrating τyx ρ− g⋅ y⋅ c+= and we have boundary condition τyx y δ=( ) 0=

Hence τyx ρ− g⋅ δ y−( )⋅= and this is a maximum at the wall τmax ρ g⋅ δ⋅=

Motion occurs when τmax τy≥ or ρ g⋅ δ⋅ τy≥

Hence the maximum thickness is δ
τy

ρ g⋅
= δ 4.08 10

3−
× m= δ 4.08 mm=



Problem 8.47      [Difficulty: 4] 
 

 
 

 

Given: Equation for fluid motion in the x-direction. 

Find: Expression for peak pressure 

Solution: Begin with the steady-state Navier-Stokes equation – x-direction 

 

 

Governing equation:  
The Navier-Stokes equations are 
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The following assumptions have been applied: 

 

(1) Steady flow (given). 

(2) Incompressible flow; ρ = constant. 

(3) No flow or variation of properties in the z direction; w= 0 and ∂/∂z = 0. 

(4) Fully developed flow, so no properties except possibly pressure p vary in the x direction; ∂/∂x = 0. 

(5) See analysis below. 

(6) No body force in the y direction; gy = 0 

 

Assumption (1) eliminates time variations in any fluid property.  Assumption (2) eliminates space variations in density.  Assumption 

(3) states that there is no z component of velocity and no property variations in the z direction. All terms in the z component of the 

Navier–Stokes equation cancel.  After assumption (4) is applied, the continuity equation reduces to ∂v/∂y = 0. Assumptions (3) and (4) 

also indicate that ∂v/∂z = 0 and ∂v/∂x = 0. Therefore v must be constant (except of course in a more realistic model v ≠ 0 near the 
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transition. Since v is zero at the solid surface, then v must be zero everywhere.  The fact that v = 0 reduces the Navier–Stokes 

equations further, as indicated by (5). Hence for the y direction 

 

0=
∂
∂

y

p
 

 

which indicates the pressure is a constant across the flow. Hence we conclude that p is a function at most of x. 

 

In the x direction, we obtain 

 

2

2

0
y

u

x
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∂
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−= µ       (1) 

Integrating this twice for the first region 

 

2
12

1

1
2

1
cy

c
y

dx

dp
u ++=

µµ
 

 

where 

1dx

dp
denotes the pressure gradient in region 1.  Note that we change to regular derivative as p is a function of x only.  Note that 

Eq 1 implies that we have a function of x only ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

x

p
and a function of y only ⎟⎟

⎠

⎞
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⎛
∂
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2

2

y

u
 that must add up to be a constant (0); hence 

EACH is a constant!  This means that 
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dp s==  

 

using the notation of the figure. 

 

To evaluate the constants, c1 and c2, we must apply the boundary conditions.  We do this separately for each region. 

 

In the first region, at y = 0, u = U.  Consequently, c2 = U.  At y = h1, u = 0.  Hence 
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Hence, combining results 
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Exactly the same reasoning applies to the second region, so 
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where 
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What connects these flow is the flow rate Q. 
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Solving for ps, 
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Problem 8.48                                                       [Difficulty: 2]



 

Problem 8.49                                                      [Difficulty: 2]



Problem 8.50 [Difficulty: 3]

Given: Data on water temperature and tube

Find: Maximum laminar flow; plot

Solution: From Appendix A A 2.414 10
5


N s

m
2

 B 247.8 K C 140 K in μ T( ) A 10

B

T C


D 7.5 mm ρ 1000
kg

m
3

 Recrit 2300

T1 20 °C T1 253 K μ T1  3.74 10
3


N s

m
2

 T2 120 °C T2 393 K μ T2  2.3 10
4


N s

m
2



The plot of viscosity is

20 0 20 40 60 80 100 120
1 10

4

1 10
3

0.01

T (C)

μ
N s

m
2

For the flow rate Recrit

ρ Vcrit D

μ


ρ Qmax D

μ
π

4
 D

2



4 ρ Qmax

μ π D
 Qmax T( )

π μ T( ) D Recrit

4 ρ


Qmax T1  5.07 10
5


m

3.00

s
 Qmax T1  182

L

hr
 Qmax T2  3.12 10

6


m
3

s
 Qmax T2  11.2

L

hr


20 0 20 40 60 80 100 120

50

100

150

200

T (C)

Q
 (

L
/h

r)



Problem 8.51 [Difficulty: 2]

F 

p1 D 

L 

d 

Given: Hyperdermic needle

Find: Volume flow rate of saline

Solution:

Basic equation Q
π ∆p⋅ d

4
⋅

128 μ⋅ L⋅
= (Eq. 8.13c; we assume laminar flow and verify this is correct after solving)

For the system ∆p p1 patm−=
F

A
=

4 F⋅

π D
2

⋅
=

∆p
4

π
7.5× lbf⋅

1

0.375 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

2

×= ∆p 67.9 psi⋅=

At 68oF, from Table A.7 μH2O 2.1 10
5−

×
lbf s⋅

ft
2

⋅= μ 5 μH2O⋅= μ 1.05 10
4−

×
lbf s⋅

ft
2

⋅=

Q
π

128
67.9×

lbf

in
2

⋅
144 in

2
⋅

1 ft
2

⋅
× 0.005 in⋅

1 ft⋅

12 in⋅
×⎛⎜

⎝
⎞
⎠

4

×
ft

2

1.05 10
4−

× lbf s⋅
×

1

1 in⋅
×

12 in⋅

1 ft⋅
×=

Q 8.27 10
7−

×
ft

3

s
⋅= Q 1.43 10

3−
×

in
3

s
⋅= Q 0.0857

in
3

min
⋅=

Check Re: V
Q

A
=

Q

π d
2⋅

4

= V
4

π
8.27× 10

7−
×

ft
3

s

1

.005 in⋅
⎛⎜
⎝

⎞
⎠

2

×
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×= V 6.07
ft

s
⋅=

Re
ρ V⋅ d⋅

μ
= ρ 1.94

slug

ft
3

⋅= (assuming saline is close to water)

Re 1.94
slug

ft
3

⋅ 6.07×
ft

s
⋅ 0.005× in⋅

1 ft⋅

12 in⋅
×

ft
2

1.05 10
4−

× lbf⋅ s⋅
×

slug ft⋅

s
2

lbf⋅
×= Re 46.7=

Flow is laminar



Problem 8.52 [Difficulty: 3]

Given: Data on a tube

Find: "Resistance" of tube; maximum flow rate and pressure difference for which electrical analogy holds for

(a) kerosine and (b) castor oil

Solution:

The given data is L 250 mm⋅= D 7.5 mm⋅=

From Fig. A.2 and Table A.2

Kerosene: μ 1.1 10
3−

×
N s⋅

m
2

⋅= ρ 0.82 990×
kg

m
3

⋅= 812
kg

m
3

⋅=

Castor oil: μ 0.25
N s⋅

m
2

⋅= ρ 2.11 990×
kg

m
3

⋅= 2090
kg

m
3

⋅=

For an electrical resistor V R I⋅= (1)

The governing equation for the flow rate for laminar flow in a tube is Eq. 8.13c

Q
π ∆p⋅ D

4
⋅

128 μ⋅ L⋅
=

or ∆p
128 μ⋅ L⋅

π D
4

⋅
Q⋅= (2)

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp.

Comparing Eqs. (1) and (2), the "resistance" of the tube is

R
128 μ⋅ L⋅

π D
4

⋅
=

The "resistance" of a tube is directly proportional to fluid viscosity and pipe length, and strongly dependent on the inverse

of diameter

The analogy is only valid for Re 2300< or
ρ V⋅ D⋅

μ
2300<

Writing this constraint in terms of flow rate

ρ
Q

π

4
D

2
⋅

⋅ D⋅

μ
2300< or Qmax

2300 μ⋅ π⋅ D⋅

4 ρ⋅
=



The corresponding maximum pressure gradient is then obtained from Eq. (2)

∆pmax
128 μ⋅ L⋅

π D
4

⋅
Qmax⋅=

32 2300⋅ μ
2

⋅ L⋅

ρ D
3

⋅
=

Substituting values

(a)  For kerosine Qmax 1.84 10
5−

×
m

3

s
= Qmax 1.10

l

min
⋅= ∆pmax 65.0 Pa⋅=

(b)  For castor oil Qmax 1.62 10
3−

×
m

3

s
= Qmax 97.3

l

min
⋅= ∆pmax 1.30 MPa⋅=

The analogy fails when Re > 2300 because the flow becomes turbulent, and "resistance" to flow is then no longer linear with flow

rate
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Problem 8.56                                                 [Difficulty: 4]   Part 1/2



 

Problem 8.56                                                 [Difficulty: 4]   Part 2/2



 

Problem 8.57                                                     [Difficulty: 4]

Problem 8.52

8.56



Problem 8.58     [Difficulty: 2] 

 

 

 

 

 

 

 

 

 

 

Given: Tube dimensions and volumetric flow rate 

Find: Pressure difference and hydraulic resistance 

Solution:  

The flow rate of a fully developed pressure-driven flow in a pipe is 
L

pR
Q

µ
π

8

4∆
= . Rearranging it, one obtains 

4

8

R

LQ
p

π
µ

=∆ . For a 

flow rate min/10 lQ µ= , L=1 cm, sPa.100.1 3−×=µ , and R = 1 mm, 

 

PasPa
m

m

s

m
p 00424.0.100.1

101

01.0

60

10108 3

412

39

=×××
×

××
×

×=∆ −
−

−

π
 

 

Similarly, the required pressure drop for other values of R can be obtained. 

 

The hydraulic resistance 
4

8

R

L

Q

p
Rhyd π

µ
=

∆
= . Substituting the values of the viscosity, length and radius of the tube, one obtains the 

value of the hydraulic resistance. 

 

R (mm) ∆p Rhyd (Pa.s/m
3
) 

1 0.00424 Pa 2.55 x 107 

10-1 42.4 Pa 2.55 x 1011 

10-2 424 kPa 2.55 x 1015 

10-3 4.24 GPa 2.55 x 1019 

10-4 4.24 x 104 GPa 2.55 x 1023 

 

(3) To achieve a reasonable flow rate in microscale or nanoscale channel, a very high pressure difference is required since ∆p is 

proportional to R−4. Therefore, the widely used pressure-driven flow in large scale systems is not appropriate in microscale or 

nanoscale channel applications. Other means to manipulate fluids in microscale or nanoscale channel applications are required.

 

 



Problem 8.59      [Difficulty: 2] 
 

 

.  

 

 

 

 

 

 

 

 

 
 

Given: Definition of hydraulic resistance 

Find: Hydraulic resistance in a diffuser 

Solution:  

 

Basic equation: 
Q

p
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∆
=          

 

])[(
3

8
)(

3

18

)(
)(

18

)(

1818

33

0

3

0 4

44

2

1

2

1

−−− −+−=+−=

+
+

=

+
==

∆
=

∫

∫∫

ii

z

i

i

z

i

z

z
i

z

z
hyd

rzrzr

zrd
zr

dz
zr

dz
rQ

p
R

α
πα
µα

πα
µ

α
απ

µ
απ

µ
π
µ

 

 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

+
−=

33

1

)(

1

3

8

ii

hyd
rzr

R
απα

µ
 

 



Problem 8.60      [Difficulty: 4] 

 

 

 

    

 

Given: Relationship between shear stress and deformation rate; fully developed flow in a cylindrical blood vessel 

 

Find:  Velocity profile; flow rate 

 

Solution: 
 

Similar to the Example Problem described in Section 8.3, based on the force balance, one obtains 

 

dx

dpr
rx

2
=τ                                              (1) 

This result is valid for all types of fluids, since it is based on a simple force balance without any assumptions about fluid rheology. 

Since the axial pressure gradient in a steady fully developed flow is a constant, Equation (1) shows that τ = 0 < τc at r = 0. Therefore, 

there must be a small region near the center line of the blood vessel for which τ < τc. If we call Rc the radial location at which τ = τc, 

the flow can then be divided into two regions: 

 

r > Rc: The shear stress vs. shear rate is governed by 

 

dr

du
c µττ +=                                    (2)

 

r < Rc:  τ = 0 < τc.  

 

We first determine the velocity profile in the region r > Rc. Substituting (1) into (2), one obtains: 

 

dr

du

dx

dpr
c µτ +=

2
                              (3) 

 

Using equation (3) and the fact that du/dr at r = Rc is zero, the critical shear stress can be written as 

 

c
c

dx

dpR τ=
2

.                                      (4) 

Rearranging eq. (4), Rc  is 

dx

dp
R cc /2τ= .                                         (5)    

 

Inserting (4) into (3), rearranging, and squaring both sides, one obtains 

 



]2[
2

1
cc RrRr

dx

dp

dr

du
+−=µ               (6) 

 

Integrating the above first-order differential equation using the non-slip boundary condition, u = 0 at r = R: 

 

RrRrRRrRRrR
dx

dp
u cccc ≤≤⎥⎦

⎤
⎢⎣
⎡ −+−−−−= for   )(2)(

3

8
)(

4

1 2/32/322

µ
                (7)   

 

In the region r < Rc, since the shear stress is zero, fluid travels as a plug with a plug velocity. Since the plug velocity must match the 

velocity at r = Rc,  we set r = Rc in equation (7) to obtain the plug velocity: 

 

[ ] cccc RrRRRRR
dx

dp
u ≤−+−−= for   )(2)(

4

1 22

µ
         (8) 

The flow rate is obtained by integrating u(r) across the vessel cross section: 
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⎥
⎦

⎤
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c

µ
π

πππ

                   (9) 

 

Given R = 1mm = 10-3 m, µ = 3.5 cP = 3.5×10-3 Pa⋅s, and τc = 0.05 dynes/cm2 = 0.05×10-1 Pa, and mPa
dx

dp
/100−= .  

From eq. (5), 
dx

dp
R cc /2τ=  

  

mm
mPa

mN
Rc 1.0

/

/1010

100

05.02 26

=
××

=
−

 

 

Substituting the values of R, µ, Rc, and  
dp

dx
into eq. (9), 
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Problem 8.61       [Difficulty: 4] 
 

 

 

 

 

 

 

 

 

Given: Fully developed flow, Navier-Stokes equations; Non-Newtonian fluid 

 

Find:  Velocity profile, flow rate and average velocity 

 

Solution: 
 

According to equation (8.10), we can write the governing equation for Non-Newtonian fluid velocity in a circular tube 

 

r

c

x

pr

dr

du
k

n

rx
1

2
+

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛=τ        

(1)
 

 

However, as for the Newtonian fluid case, we must set c1 = 0 as otherwise we’d have infinite stress at r = 0.  Hence, equation (1) 

becomes 

 

x

pr

dr

du
k

n

∂
∂
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⎠
⎞

⎜
⎝
⎛

2
        

(2)
 

 

 

The general solution for equation (2), obtained by integrating, is given by 
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Apply the no slip boundary condition at r = R into equation (3), we get  

 

n
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The fluid velocity then is given as 
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(5) 

The volume flow rate is 

 

( )∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

+
===

++
R

n

n

n

n
n

A
drRr

x

p

kn

n
rdAuQ

0

11
1

2

1

1
2π     

(6) 

 

Hence 
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Simplifying 
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(8) 

 

When n = 1, then k = µ, and  x

pa
Q

∂
∂

−=
µ

π
8

4

, just like equation (8.13b) in the textbook.
 

 

The average velocity is given by 
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Based on Eq. (7), the pressure gradient is  
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(10) 

 

Substituting Q = 1µL/min= 1 × 10-9/60 m3/s,  R = 1mm = 10-3 m, and n = 0.5 into eq.(10): 
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Similarly, the required pressure gradients for n = 1 and n = 1.5 can be obtained: 

 

1for  Pa/m, 4.42 =−=
∂
∂

nk
x

p
        

(12) 

 

5.1for  Pa/m, 42.5 =−≈
∂
∂

nk
x

p
       

(12) 

 

Obviously, the magnitude of the required pressure gradient increases as n decreases. Among the three types of fluids (pseudoplastic 

for n = 0.5, Newtonian for n = 1, and dilatant for n = 1.5), the dilatant fluid requires the lowest pressure pump for the same pipe 

length. 



Problem 8.62      [Difficulty: 2] 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Given: Fully developed flow in a pipe; slip boundary condition on the wall 

 

Find:  Velocity profile and flow rate 

 

Solution: 
 

Similar to the example described in Section 8.3, one obtained 

 

2

2

4
c

x
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u +

∂
∂

=
µ

          (1)
 

 

The constant c2 will be determined by the slip velocity boundary condition at r = R: 

  

r

u
lu
∂
∂

=                             (2)       
 

 and one obtains 
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Substituting c2 into Eq.(1), one obtains 
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The volume flow rate is 
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Substituting R = 10 µm, µ = 1.84 x 10-5 N⋅s/m2, mean free path l = 68 nm, and 
p

x

∂
−
∂

 = 1.0×106 Pa/m into eq. (5), 
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Problem 8.63      [Difficulty: 3] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given: Fully developed flow, velocity profile, and expression to calculate the flow rate 

 

Find:  Velocity and flow rate  

 

Solution: 

For the fully developed flow, the N-S equations can be simplified to          constant
2
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Substituting the trial solution in equation (1), one obtains                             
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Rearrange it and one obtains                                                                              
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The flow rate is                                                                           ∫ ∫ ∫==
π
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0
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Substituting )1(),( 2

0 ρφρ −= uu  into Eq. (4) and integrating twice:    0
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Substituting u0 into (5), one obtains                                   x
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For a pipe radius R, a = b = R, from equation (6),  
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which is the same as equation (8.13b) in the book.
 

 

For a channel with an elliptic cross-section with a = R and b = 1.5R, from equation (6), one has 
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Problem 8.64     [Difficulty: 2] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given: The expression of hydraulic resistance of straight channels with different cross sectional shapes   

Find: Hydraulic resistance 

Solution: 
 

 

 

Based on the expressions of hydraulic resistance listed in the table, one obtains 

 

Using the circle as the example, 
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π
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The results are 

 

Shape Rhyd (10
12

 Pa·s/m
3
) 

Circle 0.25 

Ellipse 3.93 

Triangle 18.48 

Two plates 0.40 

Rectangle 0.51 

Square 3.24 

 

Comparing the values of the hydraulic resistances, a straight channel with a circular cross section is the most energy efficient to pump 

fluid with a fixed volumetric flow rate; the triangle is the worst. 

 



Problem 8.65 [Difficulty: 3]

Given: Two-fluid flow in tube

Find: Velocity distribution; Plot

Solution:

Given data D 5 mm⋅= L 5 m⋅= ∆p 5− MPa⋅= μ1 0.5
N s⋅

m
2

⋅= μ2 5
N s⋅

m
2

⋅=

From Section 8-3 for flow in a pipe, Eq. 8.11 can be applied to either fluid

u
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∂
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μ
ln r( )⋅+ c2+=

Applying this to fluid 1 (inner fluid) and fluid 2 (outer fluid)
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We need four BCs.  Two are obvious r
D

2
= u2 0= (1) r

D

4
= u1 u2= (2)

The third BC comes from the fact that the axis is a line of symmetry

r 0=
du1

dr
0= (3)

The fourth BC comes from the fact that the stress at the interface generated by each fluid is the same

r
D

4
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⋅= (4)

Using these four BCs
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Hence, after some algebra

c1 0= (To avoid singularity) c2
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μ2 3 μ1⋅+( )
μ1 μ2⋅
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The velocity distributions are then u1 r( )
∆p
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(Note that these result in the same expression if µ1 = µ2, i.e., if we have one fluid)

Evaluating either velocity at r =  D/4 gives the velocity at the interface
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Evaluating u1 at r = 0 gives the maximum velocity
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The velocity distributions can be plotted in Excel



Problem 8.66 [Difficulty: 2]

Given: Turbulent pipe flow

Find: Wall shear stress

Solution:

Basic equation (Eq. 4.18a)

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

With these assumptions the x momentum equation becomes

p1
π D

2


4
 τw π D L p2

π D
2



4
 0 or τw

p2 p1  D

4 L


∆p D

4 L


τw
1

4
 750 psi

3

12

15
 τw 3.13 psi

Since τw is negative it acts to the left on the fluid, to the right on the pipe wall



Problem 8.67 [Difficulty: 2]

Given: Pipe glued to tank

Find: Force glue must hold when cap is on and off

Solution:

Basic equation (Eq. 4.18a)

First solve when the cap is on.  In this static case

Fglue
π D

2


4
p1 where p1 is the tank pressure

Second, solve for when flow is occuring:

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

With these assumptions the x momentum equation becomes

p1
π D

2


4
 τw π D L p2

π D
2



4
 0

Here p1 is again the tank pressure and p2 is the pressure at the pipe exit; the pipe exit pressure is patm = 0 kPa gage. Hence

Fpipe Fglue τw π D L
π D

2


4
p1

We conclude that in each case the force on the glue is the same!  When the cap is on the glue has to withstand the tank pressure;

when the cap is off, the glue has to hold the pipe in place against the friction of the fluid on the pipe, which is equal in magnitude

to the pressure drop.

Fglue
π

4
3 in( )

2
 30

lbf

in
2

 Fglue 212 lbf



Problem 8.68 [Difficulty: 2]

Given: Data on pressure drops in flow in a tube

Find: Which pressure drop is laminar flow, which turbulent 

Solution:

Given data
x

p1
∂

∂
4.5−

kPa

m
⋅=

x
p2

∂

∂
11−

kPa

m
⋅= D 30 mm⋅=

From Section 8-4, a force balance on a section of fluid leads to

τw
R

2
−

x
p

∂

∂
⋅=

D

4
−

x
p

∂

∂
⋅=

Hence for the two cases

τw1
D

4
−

x
p1

∂

∂
⋅= τw1 33.8 Pa=

τw2
D

4
−

x
p2

∂

∂
⋅= τw2 82.5 Pa=

Because both flows are at the same nominal flow rate, the higher pressure drop must correspond to the turbulent flow, because, as

indicated in Section 8-4, turbulent flows experience additional stresses.  Also indicated in Section 8-4 is that for both flows the

shear stress varies from zero at the centerline to the maximums computed above at the walls.

The stress distributions are linear in both cases: Maximum at the walls and zero at the centerline.



Problem 8.69 [Difficulty: 2]

Given: Flow through channel

Find: Average wall stress

Solution:

Basic equation (Eq. 4.18a)

Assumptions 1) Horizontal pipe 2) Steady flow 3) Fully developed flow

With these assumptions the x momentum equation becomes

p1 W H τw 2 L W H( ) p2 W H 0 or τw p2 p1  W H

2 W H( ) L
 τw ∆p
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2 1
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W
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



τw
1

2
 1

lbf

in
2


144 in

2


ft
2



1 in
1 ft

12 in


30 ft


1

1

9.5 in
1 ft

12 in


30 ft














 τw 0.195
lbf

ft
2

 τw 1.35 10
3

 psi

Since τw < 0, it acts to the left on the fluid, to the right on the channel wall



 

Problem 8.70                                                             [Difficulty: 3]



 

Problem 8.71       [Difficulty: 1] 
 

 

 

 

 

 

 

 

 

 

 

 

Given: Data from a funnel viscometer filled with pitch. 

Find: Viscosity of pitch. 

Solution:  

 

Basic equation: ⎟
⎠
⎞

⎜
⎝
⎛ +==

L

hgD

t

V
Q 1

128

4

µ
ρπ

 (Volume flow rate) 

where Q is the volumetric flow rate, V  flow volume, t is the time of flow, D is the diameter of the funnel stem, ρ is the density of the 

pitch, µ is the viscosity of the pitch, h is the depth of the pitch in the funnel body, and L is the length of the funnel stem. 

 

Assumption:  Viscous effects above the stem are negligible and the stem has a uniform diameter. 

 

 

The given or available data is: 
35 m107.4 −×=V   days708,17=t   mm4.9=D  

 

    mm75=h    mm29=L    
3

3

m

kg
101.1 ×=ρ  

         

Calculate the flow rate:   
s

m
10702.3

hour

3600

day

24hour
day17708

m107.4 3
14

35
−

−

×=
××

×
==

st

V
Q  

 

Solve the governing equation for viscosity: 

 

⎟
⎠
⎞

⎜
⎝
⎛ +=

L

h

Q

gD
1

128

4ρπµ  

 

    

( )

mkg

sN

mm29

mm75
1

s

m
10702.3128

s

m
81.9

m

kg
101.1

mm1000

m
mm4.9

2

3
14

23

3

4

4

×
×

×⎟
⎠
⎞

⎜
⎝
⎛ +

××

×××⎟
⎠
⎞

⎜
⎝
⎛××

=
−

π
µ  

2

8

m

sN
1041.2

⋅
×=µ  

 

Compare this to the viscosity of water, which is 10-3 N·s/m2! 



 

Relate this equation to 8.13c for flow driven by a pressure gradient: 

 

L

pD

L

pD
Q

∆
×=

∆
=

µ
π

µ
π

128128

44

. 

 

For this problem, the pressure (Δp) is replaced by the hydrostatic force of the pitch. 

Consider the pressure variation in a static fluid. 

 

hL

p

z

p
gg

dz

dp

+
∆

=
∆
∆

=−=−= ρρ . 

 

Replacing the term in 8.13c 

( )
⎟
⎠
⎞

⎜
⎝
⎛ +××=

+×
×=

∆
×=

L

h
g

D

L

hLgD

L

pD
Q 1

128128128

444

ρ
µ

πρ
µ

π
µ

π
 

 

 

Hence     ⎟
⎠
⎞

⎜
⎝
⎛ +==

L

hgD

t

V
Q 1

128

4

µ
ρπ

 

 

which is the same as the given equation. 

 

 



 

Problem 8.72                                                          [Difficulty: 3]



Problem 8.73 [Difficulty: 3]

Given: Data on mean velocity in fully developed turbulent flow

Find: Trendlines for each set; values of n  for each set; plot

Solution:

y/R u/U y/R u/U Equation 8.22 is

0.898 0.996 0.898 0.997

0.794 0.981 0.794 0.998

0.691 0.963 0.691 0.975

0.588 0.937 0.588 0.959

0.486 0.907 0.486 0.934

0.383 0.866 0.383 0.908

0.280 0.831 0.280 0.874

0.216 0.792 0.216 0.847

0.154 0.742 0.154 0.818

0.093 0.700 0.093 0.771

0.062 0.650 0.062 0.736

0.041 0.619 0.037 0.690

0.024 0.551

Applying the Trendline  analysis to each set of data:

At Re  = 50,000 At Re  = 500,000

u/U  = 1.017(y/R )
0.161

u/U  = 1.017(y/R )
0.117

with R
2
 = 0.998 (high confidence) with R

2
 = 0.999 (high confidence)

Hence 1/n  = 0.161 Hence 1/n  = 0.117

n  = 6.21 n  = 8.55

Both sets of data tend to confirm the validity of Eq. 8.22

Mean Velocity Distributions in a Pipe

0.1

1.0

0.01 0.10 1.00

y/R

u
/U

Re = 50,000 Re = 500,000 Power (Re = 500,000) Power (Re = 50,000)
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Problem 8.75                                                  [Difficulty: 3]   Part 1/2



 

Problem 8.75                                       [Difficulty: 3]   Part 2/2



Problem 8.76      [Difficulty: 3] 
 

 
 

Given: Laminar flow between parallel plates 

Find: Kinetic energy coefficient, α 

Solution:  

 

Basic Equation: The kinetic energy coefficient, α is given by 

 

2

3

Vm

dAV
A



∫=
ρ

α                                                      (8.26b) 

From Section 8-2, for flow between parallel plates 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−=

22

max

2

1
2

3

2

1
a

y
V

a

y
uu  

since Vu
2

3
max = . 

Substituting 

∫∫∫∫∫
⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛===

−

2

0

32

2

33

2

3

2

3

211

aa

a
A

AA dy
V

u

a
wdy

V

u

wa
dA

V

u

AVAV

dAu

Vm

dAV

ρ

ρρ
α


 

Then 

( )∫∫ −⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

0

32

31

0

3

max

3

max

1
2

3

2
2

2 ηηα d
a

y
d

V

u

u

ua

a
 

where 

2
a

y
=η  

Evaluating, 

 

( ) 64232 3311 ηηηη −+−=−  

The integral is then 

 

( ) 54.1
35

16

8

27

7

1

5

3

2

3
331

2

3
1

0

753

31

0

642

3

==⎥⎦
⎤

⎢⎣
⎡ −+−⎟

⎠
⎞

⎜
⎝
⎛=−+−⎟

⎠
⎞

⎜
⎝
⎛= ∫ ηηηηηηηηα d  
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Problem 8.78 [Difficulty: 3]

Given: Definition of kinetic energy correction coefficient α

Find: α for the power-law velocity profile; plot

Solution:

Equation 8.26b is α

Aρ V
3

⋅
⌠⎮
⎮⌡

d

mrate Vav
2

⋅
=

where V is the velocity, mrate is the mass flow rate and Vav is the average velocity

For the power-law profile (Eq. 8.22) V U 1
r

R
−⎛⎜

⎝
⎞
⎠

1

n

⋅=

For the mass flow rate mrate ρ π⋅ R
2.

⋅ Vav⋅=

Hence the denominator of Eq. 8.26b is mrate Vav
2

⋅ ρ π⋅ R
2

⋅ Vav
3

⋅=

We next must evaluate the numerator of Eq. 8.26b Aρ V
3

⋅
⌠⎮
⎮⌡

d rρ 2⋅ π⋅ r⋅ U
3

⋅ 1
r

R
−⎛⎜

⎝
⎞
⎠

3

n

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d=

0

R

rρ 2⋅ π⋅ r⋅ U
3

⋅ 1
r

R
−⎛⎜

⎝
⎞
⎠

3

n

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d
2 π⋅ ρ⋅ R

2
⋅ n

2
⋅ U

3
⋅

3 n+( ) 3 2 n⋅+( )⋅
=

To integrate substitute m 1
r

R
−= dm

dr

R
−=

Then r R 1 m−( )⋅= dr R− dm⋅=

0

R

rρ 2⋅ π⋅ r⋅ U
3

⋅ 1
r

R
−⎛⎜

⎝
⎞
⎠

3

n

⋅

⌠
⎮
⎮
⎮
⎮
⌡

d

1

0

mρ 2⋅ π⋅ R⋅ 1 m−( )⋅ m

3

n
⋅ R⋅

⌠
⎮
⎮
⎮⌡

d−=



Hence Aρ V
3

⋅
⌠⎮
⎮⌡

d

0

1

mρ 2⋅ π⋅ R⋅ m

3

n
m

3

n
1+

−

⎛
⎜
⎝

⎞

⎠⋅ R⋅

⌠
⎮
⎮
⎮⌡

d=

Aρ V
3

⋅
⌠⎮
⎮⌡

d
2 R

2
⋅ n

2
⋅ ρ⋅ π⋅ U

3
⋅

3 n+( ) 3 2 n⋅+( )⋅
=

Putting all these results together α

Aρ V
3

⋅
⌠⎮
⎮⌡

d

mrate Vav
2

⋅
=

2 R
2⋅ n

2⋅ ρ⋅ π⋅ U
3⋅

3 n+( ) 3 2 n⋅+( )⋅

ρ π⋅ R
2

⋅ Vav
3

⋅
=

α
U

Vav

⎛
⎜
⎝

⎞
⎠

3
2 n

2
⋅

3 n+( ) 3 2 n⋅+( )⋅
⋅=

To plot α versus ReVav we use the following parametric relations

n 1.7− 1.8 log Reu( )⋅+= (Eq. 8.23)

Vav

U

2 n
2

⋅

n 1+( ) 2 n⋅ 1+( )⋅
= (Eq. 8.24)

ReVav

Vav

U
ReU⋅=

α
U

Vav

⎛
⎜
⎝

⎞
⎠

3
2 n

2
⋅

3 n+( ) 3 2 n⋅+( )⋅
⋅= (Eq. 8.27)

A value of ReU leads to a value for n; this leads to a value for Vav/U; these lead to a value for ReVav and α

The plots of α, and the error in assuming α = 1, versus ReVav can be done in Excel.

Re U n V av/U Re Vav Alpha Error

1.00E+04 5.50 0.776 7.76E+03 1.09 8.2%

2.50E+04 6.22 0.797 1.99E+04 1.07 6.7%

5.00E+04 6.76 0.811 4.06E+04 1.06 5.9%

7.50E+04 7.08 0.818 6.14E+04 1.06 5.4%

1.00E+05 7.30 0.823 8.23E+04 1.05 5.1%

2.50E+05 8.02 0.837 2.09E+05 1.05 4.4%

5.00E+05 8.56 0.846 4.23E+05 1.04 3.9%

7.50E+05 8.88 0.851 6.38E+05 1.04 3.7%

1.00E+06 9.10 0.854 8.54E+05 1.04 3.5%

2.50E+06 9.82 0.864 2.16E+06 1.03 3.1%

5.00E+06 10.4 0.870 4.35E+06 1.03 2.8%

7.50E+06 10.7 0.873 6.55E+06 1.03 2.6%

1.00E+07 10.9 0.876 8.76E+06 1.03 2.5%



Kinetic Energy Coefficient

vs Reynolds Number
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Problem 8.79 [Difficulty: 2]

Given: Data on flow through elbow

Find: Head loss

Solution:

Basic equation
p1

ρ g⋅
α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ g⋅
α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞

⎠
−

hlT

g
= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Then HlT

p1 p2−

ρ g⋅

V1
2

V2
2

−

2 g⋅
+ z1+ z2−=

HlT 70 45−( ) 10
3

×
N

m
2

⋅
m

3

1000 kg⋅
×

kg m⋅

s
2

N⋅
×

s
2

9.81 m⋅
×

1

2
1.75

2
3.5

2
−( )×

m

s

⎛⎜
⎝

⎞
⎠

2

⋅
s
2

9.81 m⋅
×+ 2.25 3−( ) m⋅+= HlT 1.33 m=

In terms of energy/mass hlT g HlT⋅= hlT 9.81
m

s
2

⋅ 1.33× m⋅
N s

2
⋅

kg m⋅
×= hlT 13.0

N m⋅

kg
⋅=



Problem 8.80 [Difficulty: 2]

Given: Data on flow in a pipe

Find: Head loss for horizontal pipe; inlet pressure for different alignments; slope for gravity feed

Solution:

The basic equation between inlet (1) and exit (2) is
p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= (8.29)

Given or available data D 75 mm⋅= V 5
m

s
⋅= ρ 999

kg

m
3

⋅= μ 0.001
N s⋅

m
2

⋅=

Horizontal pipe data p1 275 kPa⋅= p2 0 kPa⋅= (Gage pressures) z1 z2= V1 V2=

Equation 8.29 becomes hlT

p1 p2−

ρ
= hlT 275

J

kg
⋅=

For an inclined pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

z1 0 m⋅= z2 15 m⋅=

Equation 8.29 becomes p1 p2 ρ g⋅ z2 z1−( )⋅+ ρ hlT⋅+= p1 422 kPa⋅=

For a declining pipe with the same flow rate, the head loss will be the same as above; in addition we have the following new data

z1 0 m⋅= z2 15− m⋅=

Equation 8.29 becomes p1 p2 ρ g⋅ z2 z1−( )⋅+ ρ hlT⋅+= p1 128 kPa⋅=

For a gravity feed with the same flow rate, the head loss will be the same as above; in addition we have the following new data

p1 0 kPa⋅= (Gage)

Equation 8.29 becomes z2 z1

hlT

g
−= z2 28.1− m=



Problem 8.81 [Difficulty: 2]

Given: Data on flow through elbow

Find: Inlet velocity

Solution:

Basic equation
p1

ρ g⋅
α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ g⋅
α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞

⎠
−

hlT

g
= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Then V2
2

V1
2

− 2 V1⋅( )2 V1
2

−= 3 V1
2

⋅=
2 p1 p2−( )⋅

ρ
2 g⋅ z1 z2−( )⋅+ 2 g⋅ HlT⋅−=

V1
2

3

p1 p2−( )
ρ

g z1 z2−( )⋅+ g HlT⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

V1
2

3
50 10

3
×

N

m
2

⋅
m

3

1000 kg⋅
×

kg m⋅

s
2

N⋅
×

9.81 m⋅

s
2

2−( )× m⋅+ 9.81
m

s
2

⋅ 1× m⋅−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×= V1 3.70
m

s
=



Problem 8.82      [Difficulty: 2] 
 

 
 

Given: A given piping system and volume flow rate with two liquid choices. 

Find: Which liquid has greater pressure loss 

Solution:  

 

Governing equation:  
Tl

hgz
VP

gz
VP

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ 2

2

2
2

2
1

2

1
1

1

22
α

ρ
α

ρ
 

22

22 V
K

V

D

L
fhhh

mT lll +=+=  

     

     

Assumption:  1) Steady flow  2) Incompressible  3) Neglect elevation effects  4)Neglect velocity effects 

 

  

22

22 V
K

V

D

L
fP ρρ +=∆  

 

From Table A.8 it is seen that hot water has a lower density and lower kinematic viscosity than cold water.   

 

The lower density means that for a constant minor loss coefficient (K) and velocity the pressure loss due to minor losses will be less 

for hot water.   

 

The lower kinematic viscosity means that for a constant diameter and velocity the Reynolds number will increase.  From Figure 8.13 it 

is seen that increasing the Reynolds number will either result in a decreased friction factor (f) or no change in the friction factor.  This 

potential decrease in friction factor combined with a lower density for hot water means that the pressure loss due to major losses will 

be less for hot water as well. 

 

Cold water has a greater pressure drop 

 

 

 

 

 



Problem 8.83 [Difficulty: 2]

Given: Increased friction factor for water tower flow

Find: How much flow is decreased

Solution:

Basic equation from Example 8.7 V2

2 g⋅ z1 z2−( )⋅

f
L

D
8+⎛⎜

⎝
⎞
⎠

⋅ 1+

=

where L 680 ft⋅= D 4 in⋅= z1 z2− 80 ft⋅=

With f = 0.0308, we obtain V2 8.97
ft

s
⋅= and Q = 351 gpm

We need to recompute with f = 0.035 V2 2 32.2×
ft

s
2

⋅ 80× ft⋅
1

0.035
680

4

12

8+⎛
⎜
⎜
⎝

⎞

⎠

⋅ 1+

×= V2 8.42
ft

s
⋅=

Hence Q V2 A⋅= V2
π D

2
⋅

4
⋅=

Q 8.42
ft

s
⋅

π

4
×

4

12
ft⋅⎛⎜

⎝
⎞
⎠

2

×
7.48 gal⋅

1 ft
3

⋅
×

60 s⋅

1 min⋅
×= Q 330 gpm⋅=

(From Table G.2 1 ft3 = 7.48 gal)

Hence the flow is decreased by 330 309−( ) gpm⋅ 21 gpm⋅=



Problem 8.84 [Difficulty: 2]

Given: Increased friction factor for water tower flow, and reduced length

Find: How much flow is decreased

Solution:

Basic equation from Example 8.7 V2

2 g⋅ z1 z2−( )⋅

f
L

D
8+⎛⎜

⎝
⎞
⎠

⋅ 1+

=

where now we have L 530 ft⋅= D 4 in⋅= z1 z2− 80 ft⋅=

We need to recompute with f = 0.04 V2 2 32.2×
ft

s
2

⋅ 80× ft⋅
1

0.035
530

4

12

8+⎛
⎜
⎜
⎝

⎞

⎠

⋅ 1+

×= V2 9.51
ft

s
⋅=

Hence Q V2 A⋅= V2
π D

2
⋅

4
⋅=

Q 9.51
ft

s
⋅

π

4
×

4

12
ft⋅⎛⎜

⎝
⎞
⎠

2

×
7.48 gal⋅

1 ft
3

⋅
×

60 s⋅

1 min⋅
×= Q 372 gpm⋅=

(From Table G.2 1 ft3 = 7.48 gal)



 

Problem 8.85                                                        [Difficulty: 2]



Problem 8.86 [Difficulty: 2]

Given: Data on flow through Alaskan pipeline

Find: Head loss

Solution:

Basic equation
p1

ρoil g⋅
α

V1
2

2 g⋅
⋅+ z1+

⎛
⎜
⎜
⎝

⎞

⎠

p2

ρoil g⋅
α

V2
2

2 g⋅
⋅+ z2+

⎛
⎜
⎜
⎝

⎞

⎠
−

hlT

g
= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) SG = 0.9 (Table A.2)

Then HlT

p1 p2−

SGoil ρH2O⋅ g⋅
z1+ z2−=

HlT 8250 350−( ) 10
3

×
N

m
2

⋅
1

0.9
×

m
3

1000 kg⋅
×

kg m⋅

s
2

N⋅
×

s
2

9.81 m⋅
× 45 115−( ) m⋅+= HlT 825 m=

In terms of energy/mass hlT g HlT⋅= hlT 9.81
m

s
2

⋅ 825× m⋅
N s

2
⋅

kg m⋅
×= hlT 8.09

kN m⋅

kg
⋅=



 

Problem 8.87                                                    [Difficulty: 2]



Problem 8.88 [Difficulty: 2]

Given: Data on flow through a tube

Find: Head loss

Solution:

Basic equation
p1

ρ g⋅
α

V1
2

2 g⋅
⋅+ z1+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ g⋅
α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞

⎠
−

hlT

g
= HlT=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1

Given or available data Q 10
L

min
⋅= D 15 mm⋅= ∆p 85 kPa⋅= ρ 999

kg

m
3

⋅=

The basic equation reduces to hlT
∆p

ρ
= hlT 85.1

m
2

s
2

= HlT

hlT

g
= HlT 8.68 m=
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Problem 8.90 [Difficulty: 3]

Given: Data on flow from reservoir

Find: Head from pump; head loss

Solution:

Basic equations
p3

ρ g⋅
α

V3
2

2 g⋅
⋅+ z3+

⎛⎜
⎜⎝

⎞

⎠

p4

ρ g⋅
α

V4
2

2 g⋅
⋅+ z4+

⎛⎜
⎜⎝

⎞

⎠
−

hlT

g
= HlT= for flow from 3 to 4

p3

ρ g⋅
α

V3
2

2 g⋅
⋅+ z3+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ g⋅
α

V2
2

2 g⋅
⋅+ z2+

⎛⎜
⎜⎝

⎞

⎠
−

∆hpump

g
= Hpump= for flow from 2 to 3

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) V2 = V3 = V4 (constant area pipe)

Then for the pump Hpump

p3 p2−

ρ g⋅
=

Hpump 450 150−( ) 10
3

×
N

m
2

⋅
m

3

1000 kg⋅
×

kg m⋅

s
2

N⋅
×

s
2

9.81 m⋅
×= Hpump 30.6 m=

In terms of energy/mass hpump g Hpump⋅= hpump 9.81
m

s
2

⋅ 30.6× m⋅
N s

2
⋅

kg m⋅
×= hpump 300

N m⋅

kg
⋅=

For the head loss from 3 to 4 HlT

p3 p4−

ρ g⋅
z3+ z4−=

HlT 450 0−( ) 10
3

×
N

m
2

⋅
m

3

1000 kg⋅
×

kg m⋅

s
2

N⋅
×

s
2

9.81 m⋅
× 0 35−( ) m⋅+=

HlT 10.9 m=

In terms of energy/mass hlT g HlT⋅= hlT 9.81
m

s
2

⋅ 10.9× m⋅
N s

2
⋅

kg m⋅
×= hlT 107

N m⋅

kg
⋅=



Problem 8.91 [Difficulty: 2]

Given: Data on flow in a pipe

Find: Friction factor; Reynolds number; if flow is laminar or turbulent

Solution:

Given data D 75 mm⋅=
∆p

L
0.075

Pa

m
⋅= mrate 0.075

kg

s
⋅=

From Appendix A ρ 1000
kg

m
3

⋅= μ 4 10
4−

⋅
N s⋅

m
2

⋅=

The governing equations between inlet (1) and exit (2) are

p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= (8.29)

hl f
L

D
⋅

V
2

2
⋅= (8.34)

For a constant area pipe V1 V2= V=

Hence Eqs. 8.29 and 8.34 become f
2 D⋅

L V
2

⋅

p1 p2−( )
ρ

⋅=
2 D⋅

ρ V
2

⋅

∆p

L
⋅=

For the velocity V
mrate

ρ
π

4
⋅ D

2
⋅

= V 0.017
m

s
=

Hence f
2 D⋅

ρ V
2

⋅

∆p

L
⋅= f 0.0390=

The Reynolds number is Re
ρ V⋅ D⋅

μ
= Re 3183=

This Reynolds number indicates the flow is turbulent.

(From Eq. 8.37, at this Reynolds number the friction factor for a smooth pipe is f = 0.043; the friction factor computed above thus

indicates that, within experimental error, the flow corresponds to turbulent flow in a smooth pipe)
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Problem 8.93 [Difficulty: 3]

Using the above formula for f 0, and Eq. 8.37 for f 1

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re

1.00E+04 0.0310 0.0311 0.0313 0.0318 0.0327 0.0342 0.0383 0.0440 0.0534 0.0750

2.50E+04 0.0244 0.0247 0.0250 0.0258 0.0270 0.0291 0.0342 0.0407 0.0508 0.0731

5.00E+04 0.0208 0.0212 0.0216 0.0226 0.0242 0.0268 0.0325 0.0395 0.0498 0.0724

7.50E+04 0.0190 0.0195 0.0200 0.0212 0.0230 0.0258 0.0319 0.0390 0.0494 0.0721

1.00E+05 0.0179 0.0185 0.0190 0.0204 0.0223 0.0253 0.0316 0.0388 0.0493 0.0720

2.50E+05 0.0149 0.0158 0.0167 0.0186 0.0209 0.0243 0.0309 0.0383 0.0489 0.0717

5.00E+05 0.0131 0.0145 0.0155 0.0178 0.0204 0.0239 0.0307 0.0381 0.0488 0.0717

7.50E+05 0.0122 0.0139 0.0150 0.0175 0.0201 0.0238 0.0306 0.0380 0.0487 0.0716

1.00E+06 0.0116 0.0135 0.0148 0.0173 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716

5.00E+06 0.0090 0.0124 0.0140 0.0168 0.0197 0.0235 0.0304 0.0379 0.0487 0.0716

1.00E+07 0.0081 0.0122 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716

5.00E+07 0.0066 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

1.00E+08 0.0060 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

Using the add-in function Friction factor  from the Web

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re

1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0738

2.50E+04 0.0245 0.0248 0.0250 0.0257 0.0268 0.0288 0.0337 0.0402 0.0502 0.0725

5.00E+04 0.0209 0.0212 0.0216 0.0226 0.0240 0.0265 0.0322 0.0391 0.0494 0.0720

7.50E+04 0.0191 0.0196 0.0200 0.0212 0.0228 0.0256 0.0316 0.0387 0.0492 0.0719

1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0718

2.50E+05 0.0150 0.0158 0.0166 0.0185 0.0208 0.0241 0.0308 0.0381 0.0488 0.0716

5.00E+05 0.0132 0.0144 0.0154 0.0177 0.0202 0.0238 0.0306 0.0380 0.0487 0.0716

7.50E+05 0.0122 0.0138 0.0150 0.0174 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716

1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0716

5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716

1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0716

5.00E+07 0.0065 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

The error can now be computed

f

f 0



e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re

1.00E+04 0.29% 0.36% 0.43% 0.61% 0.88% 1.27% 1.86% 2.12% 2.08% 1.68%

2.50E+04 0.39% 0.24% 0.11% 0.21% 0.60% 1.04% 1.42% 1.41% 1.21% 0.87%

5.00E+04 0.63% 0.39% 0.19% 0.25% 0.67% 1.00% 1.11% 0.98% 0.77% 0.52%

7.50E+04 0.69% 0.38% 0.13% 0.35% 0.73% 0.95% 0.93% 0.77% 0.58% 0.38%

1.00E+05 0.71% 0.33% 0.06% 0.43% 0.76% 0.90% 0.81% 0.64% 0.47% 0.30%

2.50E+05 0.65% 0.04% 0.28% 0.64% 0.72% 0.66% 0.48% 0.35% 0.24% 0.14%

5.00E+05 0.52% 0.26% 0.51% 0.64% 0.59% 0.47% 0.31% 0.21% 0.14% 0.08%

7.50E+05 0.41% 0.41% 0.58% 0.59% 0.50% 0.37% 0.23% 0.15% 0.10% 0.06%

1.00E+06 0.33% 0.49% 0.60% 0.54% 0.43% 0.31% 0.19% 0.12% 0.08% 0.05%

5.00E+06 0.22% 0.51% 0.39% 0.24% 0.16% 0.10% 0.06% 0.03% 0.02% 0.01%

1.00E+07 0.49% 0.39% 0.27% 0.15% 0.10% 0.06% 0.03% 0.02% 0.01% 0.01%

5.00E+07 1.15% 0.15% 0.09% 0.05% 0.03% 0.02% 0.01% 0.01% 0.00% 0.00%

1.00E+08 1.44% 0.09% 0.06% 0.03% 0.02% 0.01% 0.00% 0.00% 0.00% 0.00%

The maximum discrepancy is 2.12% at Re  = 10,000 and e/D  = 0.01

Error (%)

0.001

0.010

0.100

1E+04 1E+05 1E+06 1E+07 1E+08

Re

f0

e/D = 0

e/D = 0.0001

e/D = 0.0002

e/D = 0.0005

e/D = 0.001

e/D = 0.002

e/D = 0.005

e/D = 0.01

e/D = 0.02

e/D = 0.05



Problem 8.94 [Difficulty: 3]

Solution:

Using the add-in function Friction factor  from the web site

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.04

Re

500 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280 0.1280

1.00E+03 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640 0.0640

1.50E+03 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427 0.0427

2.30E+03 0.0473 0.0474 0.0474 0.0477 0.0481 0.0489 0.0512 0.0549 0.0619 0.0747

1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0672

1.50E+04 0.0278 0.0280 0.0282 0.0287 0.0296 0.0313 0.0356 0.0415 0.0511 0.0664

1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0649

1.50E+05 0.0166 0.0172 0.0178 0.0194 0.0214 0.0246 0.0310 0.0383 0.0489 0.0648

1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0647

1.50E+06 0.0109 0.0130 0.0144 0.0170 0.0198 0.0235 0.0304 0.0379 0.0487 0.0647

1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0647

1.50E+07 0.0076 0.0121 0.0138 0.0167 0.0197 0.0234 0.0304 0.0379 0.0486 0.0647

1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0647

f

Friction Factor vs Reynolds Number

0.001

0.010

0.100

1.000

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07 1.0E+08

Re

f

0 0.0001

0.0002 0.0005

0.001 0.002

0.005 0.01

0.02 0.04

e/D  =
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Problem 8.96 [Difficulty: 3]

Using the above formula for f 0, and Eq. 8.37 for f 1

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re

1.00E+04 0.0309 0.0310 0.0311 0.0315 0.0322 0.0335 0.0374 0.0430 0.0524 0.0741

2.50E+04 0.0244 0.0245 0.0248 0.0254 0.0265 0.0285 0.0336 0.0401 0.0502 0.0727

5.00E+04 0.0207 0.0210 0.0213 0.0223 0.0237 0.0263 0.0321 0.0391 0.0495 0.0722

7.50E+04 0.0189 0.0193 0.0197 0.0209 0.0226 0.0254 0.0316 0.0387 0.0492 0.0720

1.00E+05 0.0178 0.0183 0.0187 0.0201 0.0220 0.0250 0.0313 0.0385 0.0491 0.0719

2.50E+05 0.0148 0.0156 0.0164 0.0183 0.0207 0.0241 0.0308 0.0382 0.0489 0.0718

5.00E+05 0.0131 0.0143 0.0153 0.0176 0.0202 0.0238 0.0306 0.0381 0.0488 0.0717

7.50E+05 0.0122 0.0137 0.0148 0.0173 0.0200 0.0237 0.0305 0.0381 0.0488 0.0717

1.00E+06 0.0116 0.0133 0.0146 0.0172 0.0199 0.0236 0.0305 0.0380 0.0488 0.0717

5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717

1.00E+07 0.0081 0.0122 0.0139 0.0168 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717

5.00E+07 0.0066 0.0120 0.0138 0.0167 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717

1.00E+08 0.0060 0.0120 0.0138 0.0167 0.0197 0.0235 0.0304 0.0380 0.0487 0.0717

Using the add-in function Friction factor  from the Web

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re

1.00E+04 0.0309 0.0310 0.0312 0.0316 0.0324 0.0338 0.0376 0.0431 0.0523 0.0738

2.50E+04 0.0245 0.0248 0.0250 0.0257 0.0268 0.0288 0.0337 0.0402 0.0502 0.0725

5.00E+04 0.0209 0.0212 0.0216 0.0226 0.0240 0.0265 0.0322 0.0391 0.0494 0.0720

7.50E+04 0.0191 0.0196 0.0200 0.0212 0.0228 0.0256 0.0316 0.0387 0.0492 0.0719

1.00E+05 0.0180 0.0185 0.0190 0.0203 0.0222 0.0251 0.0313 0.0385 0.0490 0.0718

2.50E+05 0.0150 0.0158 0.0166 0.0185 0.0208 0.0241 0.0308 0.0381 0.0488 0.0716

5.00E+05 0.0132 0.0144 0.0154 0.0177 0.0202 0.0238 0.0306 0.0380 0.0487 0.0716

7.50E+05 0.0122 0.0138 0.0150 0.0174 0.0200 0.0237 0.0305 0.0380 0.0487 0.0716

1.00E+06 0.0116 0.0134 0.0147 0.0172 0.0199 0.0236 0.0305 0.0380 0.0487 0.0716

5.00E+06 0.0090 0.0123 0.0139 0.0168 0.0197 0.0235 0.0304 0.0379 0.0486 0.0716

1.00E+07 0.0081 0.0122 0.0138 0.0168 0.0197 0.0234 0.0304 0.0379 0.0486 0.0716

5.00E+07 0.0065 0.0120 0.0138 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

1.00E+08 0.0059 0.0120 0.0137 0.0167 0.0196 0.0234 0.0304 0.0379 0.0486 0.0716

f

f 0



The error can now be computed

e/D = 0 0.0001 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.05

Re

1.00E+04 0.01% 0.15% 0.26% 0.46% 0.64% 0.73% 0.55% 0.19% 0.17% 0.43%

2.50E+04 0.63% 0.88% 1.02% 1.20% 1.22% 1.03% 0.51% 0.11% 0.14% 0.29%

5.00E+04 0.85% 1.19% 1.32% 1.38% 1.21% 0.84% 0.28% 0.00% 0.16% 0.24%

7.50E+04 0.90% 1.30% 1.40% 1.35% 1.07% 0.65% 0.16% 0.06% 0.17% 0.23%

1.00E+05 0.92% 1.34% 1.42% 1.28% 0.94% 0.52% 0.09% 0.09% 0.18% 0.22%

2.50E+05 0.84% 1.33% 1.25% 0.85% 0.47% 0.16% 0.07% 0.15% 0.19% 0.21%

5.00E+05 0.70% 1.16% 0.93% 0.48% 0.19% 0.00% 0.13% 0.18% 0.20% 0.20%

7.50E+05 0.59% 0.99% 0.72% 0.30% 0.07% 0.07% 0.16% 0.18% 0.20% 0.20%

1.00E+06 0.50% 0.86% 0.57% 0.20% 0.01% 0.10% 0.17% 0.19% 0.20% 0.20%

5.00E+06 0.07% 0.17% 0.01% 0.11% 0.15% 0.18% 0.19% 0.20% 0.20% 0.20%

1.00E+07 0.35% 0.00% 0.09% 0.15% 0.18% 0.19% 0.20% 0.20% 0.20% 0.20%

5.00E+07 1.02% 0.16% 0.18% 0.19% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20%

1.00E+08 1.31% 0.18% 0.19% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20% 0.20%

The maximum discrepancy is 1.42% at Re  = 100,000 and e/D  = 0.0002

Error (%)

0.001

0.010

0.100

1E+04 1E+05 1E+06 1E+07 1E+08

Re

f
e/D = 0

e/D = 0.0001

e/D = 0.0002

e/D = 0.0005

e/D = 0.001

e/D = 0.002

e/D = 0.005

e/D = 0.01

e/D = 0.02

e/D = 0.05



Problem 8.97 [Difficulty: 3]

Given: Flow through gradual contraction

Find: Pressure after contraction; compare to sudden contraction

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlm= hlm K

V2
2

2
⋅= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal

Available data Q 25
L

s
⋅= Q 0.025

m
3

s
= D1 75 mm⋅= D2 37.5 mm⋅= p1 500 kPa⋅= ρ 999

kg

m
3

⋅=

For an included angle of 150
o

 and an area ratio 
A2

A1

D2

D1

⎛
⎜
⎝

⎞

⎠

2

=
37.5

75

⎛⎜
⎝

⎞
⎠

2

= 0.25=  we find from Table 8.3 K 0.35=

Hence the energy equation becomes
p1

ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞

⎠
− K

V2
2

2
⋅= with V1

4 Q⋅

π D1
2

⋅
= V2

4 Q⋅

π D2
2

⋅
=

p2 p1
ρ

2
1 K+( ) V2

2
⋅ V1

2
−⎡

⎣
⎤
⎦⋅−= p2

8 ρ⋅ Q
2

⋅

π
2

1 K+( )

D2
4

1

D1
4

−⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅−=

p2 500 10
3

×
N

m
2

⋅
8

π
2

999×
kg

m
3

⋅ 0.025
m

3

s
⋅

⎛
⎜
⎝

⎞

⎠

2

× 1 0.35+( )
1

0.0375 m⋅( )
4

×
1

0.075 m⋅( )
4

−⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×−= p2 170 kPa⋅=

Repeating the above analysis for an included angle of 180o (sudden contraction) K 0.41=

p2 500 10
3

×
N

m
2

⋅
8

π
2

999×
kg

m
3

⋅ 0.025
m

3

s
⋅

⎛
⎜
⎝

⎞

⎠

2

× 1 0.41+( )
1

0.0375 m⋅( )
4

×
1

0.075 m⋅( )
4

−⎡
⎢
⎣

⎤
⎥
⎦

×
N s

2
⋅

kg m⋅
×−= p2 155 kPa⋅=



 

Problem 8.98                                                      [Difficulty: 3]



Problem 8.99 [Difficulty: 3]

Given: Flow through sudden contraction

Find: Volume flow rate

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlm= hlm K

V2
2

2
⋅= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal

Hence the energy equation becomes

p1

ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞

⎠
− K

V2
2

2
⋅=

From continuity V1 V2

A2

A1

⋅= V2 AR⋅=

Hence p1

ρ

V2
2

AR
2

⋅

2
+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞

⎠
− K

V2
2

2
⋅=

Solving for V2 V2

2 p1 p2−( )⋅

ρ 1 AR
2

− K+( )⋅
= AR

D2

D1

⎛
⎜
⎝

⎞

⎠

2

=
1

2

⎛⎜
⎝

⎞
⎠

2

= 0.25= so from Fig. 8.14 K 0.4=

Hence V2 2 0.5×
lbf

in
2

⋅
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
ft

3

1.94 slug⋅
×

1

1 0.25
2

− 0.4+( )
×

slug ft⋅

lbf s
2

⋅
×= V2 7.45

ft

s
⋅=

Q V2 A2⋅=
π D2

2
⋅

4
V2⋅=

Q
π

4

1

12
ft⋅⎛⎜

⎝
⎞
⎠

2

× 7.45×
ft

s
⋅= Q 0.0406

ft
3

s
⋅= Q 2.44

ft
3

min
⋅= Q 18.2 gpm⋅=



Problem 8.100 [Difficulty: 3]

Given: Flow through sudden expansion

Find: Inlet speed; Volume flow rate

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlm= hlm K

V1
2

2
⋅= Q V A⋅= ∆p ρH2O g⋅ ∆h⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Horizontal

Hence the energy equation becomes

p1

ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞

⎠
− K

V1
2

2
⋅=

From continuity V2 V1

A1

A2

⋅= V1 AR⋅=

Hence p1

ρ

V1
2

2
+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ

V1
2

AR
2

⋅

2
+

⎛⎜
⎜⎝

⎞

⎠
− K

V1
2

2
⋅=

Solving for V1 V1

2 p2 p1−( )⋅

ρ 1 AR
2

− K−( )⋅
= AR

D1

D2

⎛
⎜
⎝

⎞

⎠

2

=
75

225

⎛⎜
⎝

⎞
⎠

2

= 0.111= so from Fig. 8.14 K 0.8=

Also p2 p1− ρH2O g⋅ ∆h⋅= 1000
kg

m
3

⋅ 9.81×
m

s
2

⋅
5

1000
× m⋅

N s
2

⋅

kg m⋅
×= 49.1 Pa⋅=

Hence V1 2 49.1×
N

m
2

⋅
m

3

1.23 kg⋅
×

1

1 0.111
2

− 0.8−( )
×

kg m⋅

N s
2

⋅
×= V1 20.6

m

s
=

Q V1 A1⋅=
π D1

2
⋅

4
V1⋅= Q

π

4

75

1000
m⋅⎛⎜

⎝
⎞
⎠

2

× 20.6×
m

s
⋅= Q 0.0910

m
3

s
⋅= Q 5.46

m
3

min
⋅=



Problem 8.101 [Difficulty: 4]

Given: Data on a pipe sudden contraction

Find: Theoretical calibration constant; plot

Solution:

Given data D1 45 mm⋅= D2 22.5 mm⋅=

The governing equations between inlet (1) and exit (2) are

p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= (8.29)

where hl K
V2

2

2
⋅= (8.40a)

Hence the pressure drop is (assuming α = 1)

∆p p1 p2−= ρ
V2

2

2

V1
2

2
− K

V2
2

2
⋅+

⎛⎜
⎜⎝

⎞

⎠
⋅=

For the sudden contraction V1
π

4
⋅ D1

2
⋅ V2

π

4
⋅ D2

2
⋅= Q=

or V2 V1

D1

D2

⎛
⎜
⎝

⎞

⎠

2

⋅=

so ∆p
ρ V1

2
⋅

2

D1

D2

⎛
⎜
⎝

⎞

⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

For the pressure drop we can use the manometer equation

∆p ρ g⋅ ∆h⋅=

Hence ρ g⋅ ∆h⋅
ρ V1

2
⋅

2

D1

D2

⎛
⎜
⎝

⎞

⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

In terms of flow rate Q ρ g⋅ ∆h⋅
ρ

2

Q
2

π

4
D1

2
⋅⎛⎜

⎝
⎞
⎠

2
⋅

D1

D2

⎛
⎜
⎝

⎞

⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=



or g ∆h⋅
8 Q

2
⋅

π
2

D1
4

⋅

D1

D2

⎛
⎜
⎝

⎞

⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

Hence for flow rate Q we find Q k ∆h⋅=

where k
g π

2
⋅ D1

4
⋅

8
D1

D2

⎛
⎜
⎝

⎞

⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

=

For K, we need the aspect ratio AR AR
D2

D1

⎛
⎜
⎝

⎞

⎠

2

= AR 0.25=

From Fig. 8.15 K 0.4=

Using this in the expression for k, with the other given values k
g π

2
⋅ D1

4
⋅

8
D1

D2

⎛
⎜
⎝

⎞

⎠

4

1 K+( ) 1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅

= k 1.52 10
3−

×
m

5

2

s
⋅=

For Δh in mm and Q in L/min k 2.89

L

min

mm

1

2

⋅=

The plot of theoretical Q versus flow rate Δh can be done in Excel.

Calibration Curve for a

Sudden Contraction Flow Meter

0
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20

30

40

50

60

0 50 100 150 200 250 300 350

Dh (mm)

Q
 (

L
/m

m
)

It is a practical device, but is a) Nonlinear and b) has a large energy loss



Problem 8.102 [Difficulty: 3]

Given: Flow through a reentrant device

Find: Head loss

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) L << so ignore hl 5) Reentrant

Available data D1 100 mm⋅= D2 50 mm⋅= Q 0.01
m

3

s
⋅= and from Table 8.2 K 0.78=

A1
π

4
D1

2
⋅= A1 7.85 10

3
× mm

2
= A2

π

4
D2

2
⋅= A2 1.96 10

3
× mm

2
=

Hence between the free surface (Point 1) and the exit (2) the energy equation becomes

p1

ρ

V1
2

2
+

V2
2

2
−

p2

ρ
− K

V2
2

2
⋅=

From continuity Q V1 A1⋅= V2 A2⋅= and also
p1 p2−

ρ

ρ g⋅ h⋅

ρ
= g h⋅= where h is the head loss

Hence g h⋅
1

2

Q

A1

⎛
⎜
⎝

⎞
⎠

2

⋅+
1

2

Q

A2

⎛
⎜
⎝

⎞
⎠

2

⋅− K
1

2
⋅

Q

A2

⎛
⎜
⎝

⎞
⎠

2

⋅=

Solving for h h

Q

A2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
1 K+

A2

A1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= h 2.27 m=



Problem 8.103 [Difficulty: 4]

Given: Contraction coefficient for sudden contraction

Find: Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

We analyse the loss at the "sudden expansion" at the vena contracta

The governing CV equations (mass, momentum, and energy) are

Assume: 1) Steady flow  2) Incompressible flow  3) Uniform flow at each section  4) Horizontal: no body force  5) No

shaft work  6) Neglect viscous friction  7) Neglect gravity

The mass equation becomes Vc Ac⋅ V2 A2⋅= (1)

The momentum equation becomes pc A2⋅ p2 A2⋅− Vc ρ− Vc⋅ Ac⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) pc p2− ρ Vc⋅
Ac

A2

⋅ V2 Vc−( )⋅= (2)

The energy equation becomes Qrate uc

pc

ρ
+ Vc

2
+

⎛
⎜
⎝

⎞
⎠

ρ− Vc⋅ Ac⋅( )⋅ u2

p2

ρ
+ V2

2
+

⎛
⎜
⎝

⎞
⎠
ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) hlm u2 uc−
Qrate

mrate

−=
Vc

2
V2

2
−

2

pc p2−

ρ
+= (3)



Combining Eqs. 2 and 3 hlm

Vc
2

V2
2

−

2
Vc

Ac

A2

⋅ V2 Vc−( )⋅+=

hlm

Vc
2

2
1

V2

Vc

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ Vc
2

Ac

A2

⋅
V2

Vc

⎛
⎜
⎝

⎞

⎠
1−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=

From Eq. 1 Cc

Ac

A2

=
V2

Vc

=

Hence hlm

Vc
2

2
1 Cc

2
−⎛

⎝
⎞
⎠⋅ Vc

2
Cc⋅ Cc 1−( )⋅+=

hlm

Vc
2

2
1 Cc

2
− 2 Cc

2
⋅+ 2 Cc⋅−⎛

⎝
⎞
⎠⋅=

hlm

Vc
2

2
1 Cc−( )2⋅= (4)

But we have hlm K
V2

2

2
⋅= K

Vc
2

2
⋅

V2

Vc

⎛
⎜
⎝

⎞

⎠

2

⋅= K
Vc

2

2
⋅ Cc

2
⋅= (5)

Hence, comparing Eqs. 4 and 5 K
1 Cc−( )2

Cc
2

=

So, finally K
1

Cc

1−⎛
⎜
⎝

⎞
⎠

2

=

where Cc 0.62 0.38
A2

A1

⎛
⎜
⎝

⎞

⎠

3

⋅+=

This result,can be plotted in Excel.  The agreement with Fig. 8.15 is reasonable.
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K



Problem 8.104 [Difficulty: 3]

Given: Flow through short pipe

Find: Volume flow rate; How to improve flow rate

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) L << so ignore hl 5) Reentrant

Hence between the free surface (Point 1) and the exit (2) the energy equation becomes

V1
2

2
g z1⋅+

V2
2

2
− K

V2
2

2
⋅=

From continuity V1 V2

A2

A1

⋅=

Hence
V2

2

2

A2

A1

⎛
⎜
⎝

⎞

⎠

2

⋅ g h⋅+
V2

2

2
− K

V2
2

2
⋅=

Solving for V2 V2
2 g⋅ h⋅

1 K+
A2

A1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

= and from Table 8.2 K 0.78=

Hence V2 2 9.81×
m

s
2

⋅ 1× m⋅
1

1 0.78+
350

3500

⎛⎜
⎝

⎞
⎠

2

−
⎡
⎢
⎣

⎤
⎥
⎦

×= V2 3.33
m

s
=

Q V2 A2⋅= Q 3.33
m

s
⋅ 350× mm

2
⋅

1 m⋅

1000 mm⋅
⎛⎜
⎝

⎞
⎠

2

×= Q 1.17 10
3−

×
m

3

s
= Q 0.070

m
3

min
⋅=

The flow rate could be increased by (1) rounding the entrance and/or (2) adding a diffuser (both somewhat expensive)



 

Problem 8.105                                                    [Difficulty: 3]



 

Problem 8.106                                                      [Difficulty: 3]



Problem 8.107 [Difficulty: 3]

Given: Flow out of water tank

Find: Volume flow rate using hole; Using short pipe section; Using rounded edge

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Vl << 5) L << so hl = 0

Available data D 25 mm⋅= r 5 mm⋅= h 5 m⋅=

Hence for all three cases, between the free surface (Point 1) and the exit (2) the energy equation becomes

g z1⋅
V2

2

2
− K

V2
2

2
⋅= and solving for V2 V2

2 g⋅ h⋅

1 K+( )
=

From Table 8.2 Khole 0.5= for a hole (assumed to be square-edged) Kpipe 0.78= for a short pipe (rentrant)

Also, for a rounded edge
r

D

5 mm⋅

25 mm⋅
= 0.2 0.15>= so from Table 8.2 Kround 0.04=

Hence for the hole V2 2 9.81×
m

s
2

⋅ 5× m⋅
1

1 0.5+( )
×= V2 8.09

m

s
=

Q V2 A2⋅= Q 8.09
m

s
⋅

π

4
× 0.025 m⋅( )

2
×= Q 3.97 10

3−
×

m
3

s
= Q 3.97

L

s
⋅=

Hence for the pipe V2 2 9.81×
m

s
2

⋅ 5× m⋅
1

1 0.78+( )
×= V2 7.42

m

s
=

Q V2 A2⋅= Q 7.42
m

s
⋅

π

4
× 0.025 m⋅( )

2
×= Q 3.64 10

3−
×

m
3

s
= Q 3.64

L

s
⋅=

Hence the change in flow rate is 3.64 3.97− 0.33−
L

s
⋅= The pipe leads to a LOWER flow rate

Hence for the rounded V2 2 9.81×
m

s
2

⋅ 5× m⋅
1

1 0.04+( )
×= V2 9.71

m

s
= Q V2 A2⋅= Q 4.77

L

s
⋅=

Hence the change in flow rate is 4.77 3.97− 0.8
L

s
⋅= The rounded edge leads to a HIGHER flow rate



Problem 8.108 [Difficulty: 2]

Given: Data on inlet and exit diameters of diffuser

Find: Minimum lengths to satisfy requirements

Solution:

Given data D1 100 mm⋅= D2 150 mm⋅=

The governing equations for the diffuser are

hlm K
V1

2

2
⋅= Cpi Cp−( )

V1
2

2
⋅= (8.44)

and Cpi 1
1

AR
2

−= (8.42)

Combining these we obtain an expression for the loss coefficient K

K 1
1

AR
2

− Cp−= (1)

The area ratio AR is AR
D2

D1

⎛
⎜
⎝

⎞

⎠

2

= AR 2.25=

The pressure recovery coefficient Cp is obtained from Eq. 1 above once we select K; then, with Cp and AR specified, the minimum

value of N/R1 (where N is the length and R1 is the inlet radius) can be read from Fig. 8.15

(a) K 0.2= Cp 1
1

AR
2

− K−= Cp 0.602=

From Fig. 8.15
N

R1

5.5= R1

D1

2
= R1 50 mm⋅=

N 5.5 R1⋅= N 275 mm⋅=

(b) K 0.35= Cp 1
1

AR
2

− K−= Cp 0.452=

From Fig. 8.15
N

R1

3=

N 3 R1⋅= N 150 mm⋅=



Problem 8.109 [Difficulty: 3]

Given: Data on geometry of conical diffuser; flow rate

Find: Static pressure rise; loss coefficient

Solution:

Basic equations Cp

p2 p1−

1

2
ρ⋅ V1

2
⋅

= (8.41) hlm K
V1

2

2
⋅= Cpi Cp−( )

V1
2

2
⋅= (8.44) Cpi 1

1

AR
2

−= (8.42)

Given data D1 2 in⋅= D2 3.5 in⋅= N 6 in⋅= (N = length) Q 750 gpm⋅=

From Eq. 8.41 ∆p p2 p1−=
1

2
ρ⋅ V1

2
⋅ Cp⋅= (1)

Combining Eqs. 8.44 and 8.42 we obtain an expression for the loss coefficient K K 1
1

AR
2

− Cp−= (2)

The pressure recovery coefficient Cp for use in Eqs. 1 and 2 above is obtained from Fig. 8.15 once compute AR and the

dimensionless length N/R1 (where R1 is the inlet radius)

The aspect ratio AR is AR
D2

D1

⎛
⎜
⎝

⎞

⎠

2

= AR
3.5

2

⎛⎜
⎝

⎞
⎠

2

= AR 3.06=

R1

D1

2
= R1 1 in⋅= Hence

N

R1

6=

From Fig. 8.15, with AR = 3.06 and the dimensionless length N/R1 = 6, we find Cp 0.6=

To complete the calculations we need V1 V1
Q

π

4
D1

2
⋅

= V1
4

π
750×

gal

min
⋅

1 ft
3

⋅

7.48 gal⋅
×

1 min⋅

60 s⋅
×

1

2

12
ft⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

×= V1 76.6
ft

s
⋅=

We can now compute the pressure rise and loss coefficient from Eqs. 1 and 2 ∆p
1

2
ρ⋅ V1

2
⋅ Cp⋅=

∆p
1

2
1.94×

slug

ft
3

⋅ 76.6
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.6×
lbf s

2
⋅

slug ft⋅
×

1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×= ∆p 23.7 psi⋅=

K 1
1

AR
2

− Cp−= K 1
1

3.06
2

− 0.6−= K 0.293=



 

Problem 8.110                                                           [Difficulty: 4]



Problem 8.111 [Difficulty: 4]

Given: Sudden expansion

Find: Expression for minor head loss; compare with Fig. 8.15; plot

Solution:

The governing CV equations (mass, momentum, and energy) are

Assume: 1) Steady flow  2) Incompressible flow  3) Uniform flow at each section  4) Horizontal: no body force  5) No

shaft work  6) Neglect viscous friction  7) Neglect gravity

The mass equation becomes V1 A1⋅ V2 A2⋅= (1)

The momentum equation becomes p1 A2⋅ p2 A2⋅− V1 ρ− V1⋅ A1⋅( )⋅ V2 ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) p1 p2− ρ V1⋅
A1

A2

⋅ V2 V1−( )⋅= (2)

The energy equation becomes Qrate u1

p1

ρ
+ V1

2
+

⎛
⎜
⎝

⎞
⎠

ρ− V1⋅ A1⋅( )⋅ u2

p2

ρ
+ V2

2
+

⎛
⎜
⎝

⎞
⎠
ρ V2⋅ A2⋅( )⋅+=

or (using Eq. 1) hlm u2 u1−
Qrate

mrate

−=
V1

2
V2

2
−

2

p1 p2−

ρ
+= (3)

Combining Eqs. 2 and 3 hlm

V1
2

V2
2

−

2
V1

A1

A2

⋅ V2 V1−( )⋅+=

hlm

V1
2

2
1

V2

V1

⎛
⎜
⎝

⎞

⎠

2

−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅ V1
2

A1

A2

⋅
V2

V1

⎛
⎜
⎝

⎞

⎠
1−

⎡
⎢
⎣

⎤
⎥
⎦

⋅+=



From Eq. 1 AR
A1

A2

=
V2

V1

=

Hence hlm

V1
2

2
1 AR

2
−( )⋅ V1

2
AR⋅ AR 1−( )⋅+=

hlm

V1
2

2
1 AR

2
− 2 AR

2
⋅+ 2 AR⋅−( )⋅=

hlm K
V1

2

2
⋅= 1 AR−( )

2
V1

2

2
⋅=

Finally K 1 AR−( )
2

=

This result, and the curve of Fig. 8.15, are shown below as computed in Excel.  The agreement is excellent.

AR K CV K Fig. 8.15

0.0 1.00 1.00

0.1 0.81

0.2 0.64 0.60

0.3 0.49

0.4 0.36 0.38

0.5 0.25 0.25

0.6 0.16

0.7 0.09 0.10

0.8 0.04

0.9 0.01 0.01

1.0 0.00 0.00

(Data from Fig. 8.15

is "eyeballed")

Loss Coefficient for a

Sudden Expansion

0.0

0.3

0.5

0.8

1.0

0.00 0.25 0.50 0.75 1.00

Area Ratio AR

K

Theoretical Curve

Fig. 8.15



 

Problem 8.112                                                      [Difficulty: 3]



Problem 8.113 [Difficulty: 2]

Given: Sudden expansion

Find: Expression for upstream average velocity

Solution:

The basic equation is
p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= (8.29)

hlT hl K
V

2

2
⋅+=

Assume: 1) Steady flow 2) Incompressible flow 3) hl = 0 4) α1 = α2 = 1  5) Neglect gravity

The mass equation is V1 A1⋅ V2 A2⋅= so V2 V1

A1

A2

⋅=

V2 AR V1⋅= (1)

Equation 8.29 becomes
p1

ρ

V1
2

2
+

p1

ρ

V1
2

2
+ K

V1
2

2
⋅+=

or (using Eq. 1)
∆p

ρ

p2 p1−

ρ
=

V1
2

2
1 AR

2
− K−( )⋅=

Solving for V1 V1
2 ∆p⋅

ρ 1 AR
2

− K−( )⋅
=

If the flow were frictionless, K = 0, so Vinviscid
2 ∆p⋅

ρ 1 AR
2

−( )⋅
V1<=

Hence the flow rate indicated by a given Δp would be lower

If the flow were frictionless, K = 0, so ∆pinvscid

V1
2

2
1 AR

2
−( )⋅=

compared to ∆p
V1

2

2
1 AR

2
− K−( )⋅=

Hence a given flow rate would generate a larger Δp for inviscid flow



Problem 8.114 [Difficulty: 4]

Flow 

 

Nozzle Short pipe 

Given: Flow out of water tank through a nozzle

Find: Change in flow rate when short pipe section is added; Minimum pressure; Effect of frictionless flow

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V2
2

2
⋅ K

V2
2

2
⋅+= Q V A⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Vl << 5) L << so hl = 0

Available data D2 25 mm⋅= r 0.02 D2⋅= D3 50 mm⋅= r 0.5 mm⋅= z1 2.5 m⋅= ρ 999
kg

m
3

⋅=

For a rounded edge, we choose the first value from Table 8.2 Knozzle 0.28=

Hence for the nozzle case, between the free surface (Point 1) and the exit (2) the energy equation becomes

g z1⋅
V2

2

2
− Knozzle

V2
2

2
⋅=

Solving for V2 V2

2 g⋅ z1⋅

1 Knozzle+( )
=

Hence V2 2 9.81×
m

s
2

⋅ 2.5× m⋅
1

1 0.28+( )
×= V2 6.19

m

s
=

Q V2 A2⋅= Q 6.19
m

s
⋅

π

4
× 0.025 m⋅( )

2
×= Q 3.04 10

3−
×

m
3

s
= Q 3.04

L

s
=

When a small piece of pipe is added the energy equation between the free surface (Point 1) and the exit (3) becomes

g z1⋅
V3

2

2
− Knozzle

V2
2

2
⋅ Ke

V2
2

2
⋅+=

From continuity V3 V2

A2

A3

⋅= V2 AR⋅=



Solving for V2 V2

2 g⋅ z1⋅

AR
2

Knozzle+ Ke+⎛
⎝

⎞
⎠

=

We need the AR for the sudden expansion AR
A2

A3

=
D2

D3

⎛
⎜
⎝

⎞

⎠

2

=
25

50

⎛⎜
⎝

⎞
⎠

2

= 0.25= AR 0.25=

From Fig. 8.15 for AR = 0.25 Ke 0.6=

V2

2 g⋅ z1⋅

AR
2

Knozzle+ Ke+⎛
⎝

⎞
⎠

=

Hence V2 2 9.81×
m

s
2

⋅ 2.5× m⋅
1

0.25
2

0.28+ 0.6+( )
×= V2 7.21

m

s
=

Q V2 A2⋅= Q 7.21
m

s
⋅

π

4
× 0.025 m⋅( )

2
×= Q 3.54 10

3−
×

m
3

s
= Q 3.54

L

s
=

Comparing results we see the flow increases from 3.04 L/s to 3.54 L/s
∆Q

Q

3.54 3.04−

3.04
= 16.4 %⋅=

The flow increases because the effect of the pipe is to allow an exit pressure at the nozzle LESS than atmospheric!

The minimum pressure point will now be at Point 2 (it was atmospheric before adding the small pipe).  The energy equation

between 1 and 2 is

g z1⋅
p2

ρ

V2
2

2
+

⎛⎜
⎜⎝

⎞

⎠
− Knozzle

V2
2

2
⋅=

Solving for p2 p2 ρ g z1⋅
V2

2

2
Knozzle 1+( )⋅−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

Hence p2 999
kg

m
3

⋅ 9.81
m

s
2

⋅ 2.5× m⋅
1

2
7.21

m

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.28 1+( )×−
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×= p2 8.736− kPa⋅=

If the flow were frictionless the the two loss coeffcients would be zero.  Instead of

Instead of V2

2 g⋅ z1⋅

AR
2

Knozzle+ Ke+⎛
⎝

⎞
⎠

= we'd have V2

2 g⋅ z1⋅

AR
2

= which is larger

If V2 is larger, then p2, through Bernoulli, would be lower (more negative)



 

Problem 8.115                                                      [Difficulty: 2]



 

Problem 8.116                                                    [Difficulty: 4]



Problem 8.117 [Difficulty: 3]

Given: Data on water flow from a tank/tubing system

Find: Minimum tank level for turbulent flow

Solution:

Basic equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes g d⋅ α
V

2

2
⋅− f

L

D
⋅

V
2

2
⋅ K

V
2

2
⋅+=

This can be solved expicitly for height d, or solved using Solver



 

Problem 8.118                                                 [Difficulty: 2]



Problem 8.119 [Difficulty: 3]

Given: Data on water flow from a tank/tubing system

Find: Minimum tank level for turbulent flow

Solution:

Basic equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Velocity at free surface is <<

The available data is D 7.5 mm⋅= L 500 mm⋅= From Table A.8 at 10oC ρ 1000
kg

m
3

= μ 1.3 10
3−

⋅
N s⋅

m
2

⋅=

Re 10000= Kent 0.5= (Table 8.2) Kexit 1=

From Re
ρ V⋅ D⋅

μ
= Re

ρ Q⋅ D⋅

π

4
D

2
⋅

= or Q
π μ⋅ D⋅ Re⋅

4 ρ⋅
= Q 7.66 10

5−
×

m
3

s
= Q 0.0766

l

s
⋅=

Hence V
Q

π D
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= V 1.73
m

s
=

Assuming a smooth tube
1

f
2− log

2.51

Re f⋅
⎛
⎜
⎝

⎞
⎠

⋅= so f 0.0309=

The energy equation (Eq. 8.29) becomes g d⋅ f
L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+ Kexit

V
2

2
⋅+=

Solving for d d
V

2

2 g⋅
f

L

D
⋅ Kent+ Kexit+⎛⎜

⎝
⎞
⎠

⋅= d 545 mm⋅=

FOR r > 0.15D) Kent 0.04= (Table 8.2) d 475 mm⋅=



Problem 8.120 [Difficulty: 4]

Given: Data on a tube

Find: "Resistance" of tube for flow of kerosine; plot

Solution:

The basic equations for turbulent flow are

p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= (8.29)

hl f
L

D
⋅

V
2

2
⋅= (8.34)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37)

The given data is L 250 mm⋅= D 7.5 mm⋅=

From Fig. A.2 and Table A.2 μ 1.1 10
3−

×
N s⋅

m
2

⋅= ρ 0.82 990×
kg

m
3

⋅= 812
kg

m
3

⋅= (Kerosene)

For an electrical resistor V R I⋅= (1)

Simplifying Eqs. 8.29 and 8.34 for a horizontal, constant-area pipe

p1 p2−

ρ
f

L

D
⋅

V
2

2
⋅= f

L

D
⋅

Q

π

4
D

2
⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

2
⋅= or ∆p

8 ρ⋅ f⋅ L⋅

π
2

D
5

⋅
Q

2
⋅= (2)

By analogy, current I is represented by flow rate Q, and voltage V by pressure drop Δp. Comparing Eqs. (1) and (2), the

"resistance" of the tube is

R
∆p

Q
=

8 ρ⋅ f⋅ L⋅ Q⋅

π
2

D
5

⋅
=

The "resistance" of a tube is not constant, but is proportional to the "current" Q!  Actually, the dependence is not quite linear,

because f decreases slightly (and nonlinearly) with Q.  The analogy fails!

The analogy is hence invalid for Re 2300> or
ρ V⋅ D⋅

μ
2300>



Writing this constraint in terms of flow rate

ρ
Q

π

4
D

2
⋅

⋅ D⋅

μ
2300> or Q

2300 μ⋅ π⋅ D⋅

4 ρ⋅
>

Flow rate above which analogy fails Q 1.84 10
5−

×
m

3

s
=

The plot of "resistance" versus flow rate cab be done in Excel.

"Resistance" of a Tube versus Flow Rate

1.E-03

1.E-01

1.E+01

1.0E-05 1.0E-04 1.0E-03 1.0E-02

Q  (m
3
/s)

"
R

"

(1
0

9
 P

a
/m

3
/s

)



Problem 8.121 [Difficulty: 3]

Given: Data on tube geometry

Find: Plot of reservoir depth as a function of flow rate

Solution:

Basic equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes g d⋅ α
V

2

2
⋅− f

L

D
⋅

V
2

2
⋅ K

V
2

2
⋅+=

This can be solved expicitly for height d, or solved using Solver

d
V

2

2 g⋅
α f

L

D
⋅+ K+⎛⎜

⎝
⎞
⎠

⋅=

In Excel:



Required Reservoir Head versus Flow Rate

0

25

50

75

0 2 4 6 8 10 12

Q  (L/min)

d  (m)



Problem 8.122 [Difficulty: 3]

Given: Flow of oil in a pipe

Find: Percentage change in loss if diameter is reduced

Solution:

Basic equations hl f
L

D
⋅

V
2

2
⋅= f

64

Re
= Laminar

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= Turbulent

Available data ν 7.5 10
4−

⋅
ft

2

s
⋅= L 100 ft⋅= D 1 in⋅= Q 45 gpm⋅= Q 0.100

ft
3

s
=

Here V
Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
0.1×

ft
3

s
⋅

12

1

1

ft
⋅⎛⎜

⎝
⎞
⎠

2

×= V 18.3
ft

s
⋅=

Then Re
V D⋅

ν
= Re 18.3

ft

s
⋅

1

12
× ft⋅

s

7.5 10
4−

× ft
2

⋅
×= Re 2033=

The flow is LAMINAR hl f
L

D
⋅

V
2

2
⋅= hl

64

Re

L

D
⋅

V
2

2
⋅= hl

64

2033

100

1

12

×

18.3
ft

s

⎛⎜
⎝

⎞
⎠

2

2
×= hl 6326

ft
2

s
2

⋅=

When the diameter is reduced to D 0.75 in⋅=

V
Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
0.1×

ft
3

s
⋅

12

0.75

1

ft
⋅⎛⎜

⎝
⎞
⎠

2

×= V 32.6
ft

s
⋅=

Re
V D⋅

ν
= Re 32.6

ft

s
⋅

0.75

12
× ft⋅

s

7.5 10
4−

× ft
2

⋅
×= Re 2717=

The flow is TURBULENT For drawn tubing, from Table 8.1 e 0.000005 ft⋅=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0449=

hl f
L

D
⋅

V
2

2
⋅= hl .0449

100

0.75

12

×

32.6
ft

s

⎛⎜
⎝

⎞
⎠

2

2
×= hl 3.82 10

4
×

ft
2

s
2

⋅=

The increase in loss is
3.82 10

4
× 6326−

6326
504 %⋅= This is a HUGH increase!  The main increase is because the

diameter reduction causes the velocity to increase; the loss

goes as V2, and 1/D, so it increases very rapidly



Problem 8.123 [Difficulty: 4]

Given: Data on water system

Find: Minimum tank height; equivalent pressure

Solution:

Basic equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

Available data D 7.5 mm⋅= L 1 m⋅= Re 100000= and so f 0.0180= at this Re

From Section 8.7 Kent 0.5= Lelbow45 16 D⋅= Lelbow90 30 D⋅= LGV 8 D⋅=

Lelbow45 0.12 m= Lelbow90 0.225 m= LGV 0.06 m=

From Table A.8 at 10oC ρ 1000
kg

m
3

= μ 1.3 10
3−

⋅
N s⋅

m
2

⋅=

Then Q
π μ⋅ D⋅ Re⋅

4 ρ⋅
= Q 7.66 10

4−
×

m
3

s
= Q 0.766

l

s
= V

Q

π D
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= V 17.3
m

s
=

The energy equation becomes
d

V
2

2 g⋅
−

V
2

2 g⋅
f

L

D
⋅ 2 f⋅

Lelbow90

D
⋅+ 2 f⋅

Lelbow45

D
⋅+ f

LGV

D
⋅+

⎛
⎜
⎝

⎞
⎠

⋅=

Hence d
V

2

2 g⋅
1 f

L

D
⋅+ 2 f⋅

Lelbow90

D
⋅+ 2 f⋅

Lelbow45

D
⋅+ f

LGV

D
⋅+

⎛
⎜
⎝

⎞
⎠

⋅= d 79.6 m⋅=

Unrealistic!

IF INSTEAD the reservoir was pressurized ∆p ρ g⋅ d⋅= ∆p 781 kPa⋅= which is feasible



Problem 8.124 [Difficulty: 2]

Given: Flow from pump to reservoir

Find: Pressure at pump discharge

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V1
2

2
⋅ Kexit

V1
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) V2 <<

Hence the energy equation between Point 1 and the free surface (Point 2) becomes

p1

ρ

V
2

2
+

⎛
⎜
⎝

⎞

⎠
g z2⋅( )− f

L

D
⋅

V
2

2
⋅ Kexit

V
2

2
⋅+=

Solving for p1 p1 ρ g z2⋅
V

2

2
− f

L

D
⋅

V
2

2
⋅+ Kexit

V
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅=

From Table A.7 (68oF) ρ 1.94
slug

ft
3

⋅= ν 1.08 10
5−

×
ft

2

s
⋅=

Re
V D⋅

ν
= Re 10

ft

s
⋅

9

12
× ft⋅

s

1.08 10
5−

× ft
2

⋅
×= Re 6.94 10

5
×= Turbulent

For commercial steel pipe e 0.00015 ft⋅= (Table 8.1) so
e

D
0.000200=

Flow is turbulent: Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0150=

For the exit Kexit 1.0= so we find p1 ρ g z2⋅ f
L

D
⋅

V
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅=

p1 1.94
slug

ft
3

⋅ 32.2
ft

s
2

⋅ 50× ft⋅ .0150
4 mile⋅

0.75 ft⋅
×

5280 ft⋅

1mile
×

1

2
× 10

ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×
lbf s

2
⋅

slug ft⋅
×= p1 4.41 10

4
×

lbf

ft
2

⋅= p1 306 psi⋅=



Problem 8.125 [Difficulty: 3]

Given: Data on reservoir/pipe system

Find: Plot elevation as a function of flow rate; fraction due to minor losses

Solution:

L  = 250 m

D  = 50 mm

e/D  = 0.003

K ent = 0.5

K exit = 1.0

 = 1.01E-06 m
2
/s

Q  (m
3
/s) V  (m/s) Re f z  (m) h lm /h lT

0.0000 0.000 0.00E+00 0.000

0.0005 0.255 1.26E+04 0.0337 0.562 0.882%

0.0010 0.509 2.52E+04 0.0306 2.04 0.972%

0.0015 0.764 3.78E+04 0.0293 4.40 1.01%

0.0020 1.02 5.04E+04 0.0286 7.64 1.04%

0.0025 1.27 6.30E+04 0.0282 11.8 1.05%

0.0030 1.53 7.56E+04 0.0279 16.7 1.07%

0.0035 1.78 8.82E+04 0.0276 22.6 1.07%

0.0040 2.04 1.01E+05 0.0275 29.4 1.08%

0.0045 2.29 1.13E+05 0.0273 37.0 1.09%

0.0050 2.55 1.26E+05 0.0272 45.5 1.09%

0.0055 2.80 1.39E+05 0.0271 54.8 1.09%

0.0060 3.06 1.51E+05 0.0270 65.1 1.10%

0.0065 3.31 1.64E+05 0.0270 76.2 1.10%

0.0070 3.57 1.76E+05 0.0269 88.2 1.10%

0.0075 3.82 1.89E+05 0.0269 101 1.10%

0.0080 4.07 2.02E+05 0.0268 115 1.11%

0.0085 4.33 2.14E+05 0.0268 129 1.11%

0.0090 4.58 2.27E+05 0.0268 145 1.11%

0.0095 4.84 2.40E+05 0.0267 161 1.11%

0.0100 5.09 2.52E+05 0.0267 179 1.11%

Required Head versus Flow Rate
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0.0000 0.0025 0.0050 0.0075 0.0100

Q  (m
3
/s)

h lm /h lT



Problem 8.126 [Difficulty: 3]

Given: Flow through three different layouts

Find: Which has minimum loss

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V
2

2
⋅

Minor

f
Le

D
⋅

V
2

2
⋅

⎛
⎜
⎝

⎞

⎠∑+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1  4) Ignore additional length of elbows

For a flow rate of Q 350
L

min
⋅= V

Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
350×

L

min
⋅

0.001 m
3

⋅

1 L⋅
×

1 min⋅

60 s⋅
×

1

0.05 m⋅
⎛⎜
⎝

⎞
⎠

2

×= V 2.97
m

s
=

For water at 20oC ν 1.01 10
6−

×
m

2

s
⋅= Re

V D⋅

ν
= Re 2.97

m

s
⋅ 0.05× m⋅

s

1.01 10
6−

× m
2

⋅
×= Re 1.47 10

5
×=

Flow is turbulent.  From Table 8.1 e 0.15 mm⋅=
e

D
6.56 10

4−
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0201=

For Case (a) L 5.25
2

2.5
2

+ m⋅= L 5.81 m= Two 45o miter bends (Fig. 8.16), for each
Le

D
13=

Hence the energy equation is
p1

ρ

p2

ρ
− f

L

D
⋅

V
2

2
⋅ 2 f⋅

Le

D
⋅

V
2

2
⋅+=

Solving for Δp ∆p p1 p2−= ρ f⋅
V

2

2
⋅

L

D
2

Le

D
⋅+

⎛
⎜
⎝

⎞
⎠

⋅=

∆p 1000
kg

m
3

⋅ .0201× 2.97
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
5.81

0.05
2 13⋅+⎛⎜

⎝
⎞
⎠

×
N s

2
⋅

kg m⋅
×= ∆p 25.2 kPa⋅=

For Case (b) L 5.25 2.5+( ) m⋅= L 7.75 m= One standard 90o elbow (Table 8.4)
Le

D
30=

Hence the energy equation is
p1

ρ

p2

ρ
− f

L

D
⋅

V
2

2
⋅ f

Le

D
⋅

V
2

2
⋅+=



Solving for Δp ∆p p1 p2−= ρ f⋅
V

2

2
⋅

L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅=

∆p 1000
kg

m
3

⋅ .0201× 2.97
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
7.75

0.05
30+⎛⎜

⎝
⎞
⎠

×
N s

2
⋅

kg m⋅
×= ∆p 32.8 kPa⋅=

For Case (c) L 5.25 2.5+( ) m⋅= L 7.75 m= Three standard 90o elbows, for each
Le

D
30=

Hence the energy equation is
p1

ρ

p2

ρ
− f

L

D
⋅

V
2

2
⋅ 3 f⋅

Le

D
⋅

V
2

2
⋅+=

Solving for Δp ∆p p1 p2−= ρ f⋅
V

2

2
⋅

L

D
3

Le

D
⋅+

⎛
⎜
⎝

⎞
⎠

⋅=

∆p 1000
kg

m
3

⋅ .0201× 2.97
m

s
⋅⎛⎜

⎝
⎞
⎠

2

×
7.75

0.05
3 30×+⎛⎜

⎝
⎞
⎠

×
N s

2
⋅

kg m⋅
×= ∆p 43.4 kPa⋅=

Hence we conclude Case (a) is the best and Case (c) is the worst



Problem 8.127 [Difficulty: 2]

Given: Flow through rectangular duct

Find: Pressure drop

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V
2

2
⋅

Minor

f
Le

D
⋅

V
2

2
⋅

⎛
⎜
⎝

⎞

⎠∑+=

Dh
4 a⋅ b⋅

2 a b+( )⋅
=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data Q 1750 cfm⋅= L 1000 ft⋅= b 2.5 ft⋅= a 0.75 ft⋅=

At 50oF, from Table A.9 ρ 0.00242
slug

ft
3

⋅= μ 3.69 10
7−

⋅
lbf s⋅

ft
2

⋅= ρw 1.94
slug

ft
3

⋅=

Hence V
Q

a b⋅
= V 15.6

ft

s
⋅= and Dh

4 a⋅ b⋅

2 a b+( )⋅
= Dh 1.15 ft⋅=

Re
ρ V⋅ Dh⋅

μ
= Re 1.18 10

5
×=

For a smooth duct
1

f
2− log

2.51

Re f⋅
⎛
⎜
⎝

⎞
⎠

⋅= so f 0.017=

Hence ∆p f
L

Dh

⋅ ρ⋅
V

2

2
⋅= ∆p 0.031 psi⋅=

or, in in water h
∆p

ρw g⋅
= h 0.848 in⋅=



Problem 8.128 [Difficulty: 3]

Given: Data on circuit

Find: Plot pressure difference for a range of flow rates

Solution:

Basic equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for the circuit ( 1 = pump inlet, 2 = pump outlet)

p1 p2−

ρ
f

L

D
⋅

V
2

2
⋅ 4 f Lelbow⋅⋅

V
2

2
⋅+ f Lvalve⋅

V
2

2
⋅+= or ∆p ρ f⋅

V
2

2
⋅

L

D
4

Lelbow

D
⋅+

Lvalve

D
+

⎛
⎜
⎝

⎞
⎠

⋅=

In Excel:



Required Pressure Head for a Circuit
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Problem 8.129 [Difficulty: 3]

 

LA 

LB 

 

h 

Given: Pipe friction experiment

Find: Required average speed; Estimate feasibility of constant head tank; Pressure drop over 5 m

Solution:

Basic equations
p1

ρ
α

V1
2

2
 g z1








p2

ρ
α

V2
2

2
 g z2







 hlT hlT hA hB fA

LA

DA


VA

2

2
 fB

LB

DB


VB

2

2


Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1  4) Ignore minor losses

We wish to have ReB 10
5



Hence, from ReB

VB DB

ν
 VB

ReB ν

DB

 and for water at 20oC ν 1.01 10
6


m

2

s


VB 10
5

1.01 10
6


m

2

s


1

0.025 m
 VB 4.04

m

s


We will also need VA VB

DB

DA









2

 VA 4.04
m

s


2.5

5







2

 VA 1.01
m

s


ReA

VA DA

ν
 ReA 1.01

m

s
 0.05 m

s

1.01 10
6

 m
2


 ReA 5 10

4


Both tubes have turbulent flow

For PVC pipe (from Googling!) e 0.0015 mm

For tube A Given
1

fA

2.0 log

e

DA

3.7

2.51

ReA fA












 fA 0.0210

For tube B Given
1

fB

2.0 log

e

DB

3.7

2.51

ReB fB












 fB 0.0183



Applying the energy equation between Points 1 and 3

g LA h 
VB

2

2
 fA

LA

DA


VA

2

2
 fB

LB

DB


VB

2

2


Solving for LA LA

VB
2

2
1 fB

LB

DB









 g h

g
fA

DA

VA
2

2













LA

1

2
4.04

m

s






2

 1 0.0183
20

0.025






 9.81
m

s
2

 0.5 m

9.81
m

s
2


0.0210

2

1

0.05 m
 1.01

m

s






2



 LA 12.8 m

Most ceilings are about 3.5 m or 4 m, so this height is IMPRACTICAL 

Applying the energy equation between Points 2 and 3

p2

ρ

VB
2

2









p3

ρ

VB
2

2








 fB

L

DB


VB

2

2
 or ∆p ρ fB

L

DB


VB

2

2


∆p 1000
kg

m
3


0.0183

2


5 m

0.025 m
 4.04

m

s






2


N s

2


kg m
 ∆p 29.9 kPa



 

Problem 8.130                                                 [Difficulty: 3]   Part 1/2



 

Problem 8.130                                       [Difficulty: 3]   Part 2/2



Problem 8.131 [Difficulty; 3]

Given: Same flow rate in various ducts

Find: Pressure drops of each compared to round duct

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= Dh

4 A⋅

Pw

= e 0= (Smooth)

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1  4) Ignore minor losses

The energy equation simplifies to

∆p p1 p2−= ρ f⋅
L

Dh

⋅
V

2

2
⋅= or

∆p

L
ρ

f

Dh

⋅
V

2

2
⋅=

But we have V
Q

A
= V 1250

ft
3

min
⋅

1 min⋅

60 s⋅
×

1

1 ft
2

⋅
×= V 20.8

ft

s
⋅=

From Table A.9 ν 1.62 10
4−

×
ft

2

s
⋅= ρ 0.00234

slug

ft
3

⋅= at 68oF

Hence Re
V Dh⋅

ν
= Re 20.8

ft

s
⋅

s

1.62 10
4−

× ft
2

⋅
× Dh×= 1.284 10

5
× Dh⋅= (Dh in ft)

For a round duct Dh D=
4 A⋅

π
= Dh

4

π
1× ft

2
⋅= Dh 1.13 ft⋅=

For a rectangular duct Dh
4 A⋅

Pw

=
4 b⋅ h⋅

2 b h+( )⋅
=

2 h⋅ ar⋅

1 ar+
= where ar

b

h
=

But h
b

ar
= so h

2 b h⋅

ar
=

A

ar
= or h

A

ar
= and Dh

2 ar⋅

1 ar+
A⋅=

The results are:

Round Dh 1.13 ft⋅= Re 1.284 10
5

×
1

ft
⋅ Dh⋅= Re 1.45 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0167=

∆p

L
ρ

f

Dh

⋅
V

2

2
⋅=

∆p

L
7.51 10

3−
×

lbf

ft
3

⋅=

ar 1= Dh
2 ar⋅

1 ar+
A⋅= Dh 1 ft⋅= Re 1.284 10

5
×

1

ft
⋅ Dh⋅= Re 1.28 10

5
×=



Given 1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0171=

∆p

L
ρ

f

Dh

⋅
V

2

2
⋅=

∆p

L
8.68 10

3−
×

lbf

ft
3

⋅=

Hence the square duct experiences a percentage increase in pressure drop of
8.68 10

3−
× 7.51 10

3−
×−

7.51 10
3−

×
15.6 %⋅=

ar 2= Dh
2 ar⋅

1 ar+
A⋅= Dh 0.943 ft⋅= Re 1.284 10

5
×

1

ft
⋅ Dh⋅= Re 1.21 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0173=

∆p

L
ρ

f

Dh

⋅
V

2

2
⋅=

∆p

L
9.32 10

3−
×

lbf

ft
3

⋅=

Hence the 2 x 1 duct experiences a percentage increase in pressure drop of
9.32 10

3−
× 7.51 10

3−
×−

7.51 10
3−

×
24.1 %⋅=

ar 3= Dh
2 ar⋅

1 ar+
A⋅= Dh 0.866 ft⋅= Re 1.284 10

5
×

1

ft
⋅ Dh⋅= Re 1.11 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0176=

∆p

L
ρ

f

Dh

⋅
V

2

2
⋅=

∆p

L
0.01

lbf

ft
3

⋅=

Hence the 3 x 1 duct experiences a percentage increase in pressure drop of
0.01 7.51 10

3−
×−

7.51 10
3−

×
33.2 %⋅=

Note that f varies only about 7%; the large change in Δp/L is primarily due to the 1/Dh factor



Problem 8.132 [Difficulty: 4]

Given: Flow down corroded iron pipe

Find: Pipe roughness; Power savings with new pipe

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Available data D 50 mm⋅= ∆z 40 m⋅= L ∆z= p1 750 kPa⋅= p2 250 kPa⋅= Q 0.015
m

3

s
⋅= ρ 999

kg

m
3

⋅=

Hence the energy equation becomes

p1

ρ
g z1⋅+

⎛
⎜
⎝

⎞
⎠

p2

ρ
g z2⋅+

⎛
⎜
⎝

⎞
⎠

− f
L

D
⋅

V
2

2
⋅=

Here V
Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
0.015×

m
3

s
⋅

1

0.05 m⋅( )
2

×= V 7.64
m

s
=

In this problem we can compute directly f and Re, and hence obtain e/D

Solving for f f
2 D⋅

L V
2

⋅

p1 p2−

ρ
g z1 z2−( )+

⎛
⎜
⎝

⎞
⎠

⋅=

f 2
0.05

40
×

s

7.64 m⋅
⎛⎜
⎝

⎞
⎠

2

× 750 250−( ) 10
3

×
N

m
2

⋅
m

3

1000 kg⋅
×

kg m⋅

s
2

N⋅
× 9.81

m

s
2

⋅ 40× m⋅+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×= f 0.0382=

From Table A.8 (20oF) ν 1.01 10
6−

×
m

2

s
⋅= Re

V D⋅

ν
= Re 7.64

m

s
⋅ 0.05× m⋅

s

1.01 10
6−

× m
2

⋅
×= Re 3.78 10

5
×=

Flow is turbulent:
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=



Solving for e e 3.7 D⋅ 10

1

2 f⋅
−

2.51

Re f⋅
−

⎛
⎜
⎜
⎝

⎞

⎠
⋅= e 0.507 mm=

e

D
0.0101=

New pipe (Table 8.1) e 0.15 mm⋅=
e

D
0.003=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

f 0.0326=

In this problem ∆p p1 p2−= ρ g z2 z1−( )⋅ f
L

D
⋅

V
2

2
⋅+

⎡
⎢
⎣

⎤
⎥
⎦

⋅=

Hence
∆pnew 1000

kg

m
3

⋅ 9.81
m

s
2

⋅ 40− m⋅( )×
0.0326

2

40

0.05
× 7.64

m

s
⋅⎛⎜

⎝
⎞
⎠

2

×+
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×
N s

2
⋅

kg m⋅
×= ∆pnew 369 kPa⋅=

∆pold p1 p2−= ∆pold 500 kPa=

Compared to ∆pold 500 kPa⋅=  we find ∆pold ∆pnew−

∆pold

26.3 %⋅=

As power is ΔpQ and Q is constant, the power reduction is the same as the above percentage!



Problem 8.133 [Difficulty: 3]

Given: Flow through fire hose and nozzle

Find: Supply pressure

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V
2

2
⋅

Minor

K
V

2

2
⋅

⎛
⎜
⎝

⎞

⎠∑+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) p2 = patm so p2 = 0 gage

Hence the energy equation between Point 1 at the supply and the nozzle exit (Point n); let the velocity in the hose be V

p1

ρ

Vn
2

2
− f

L

D
⋅

V
2

2
⋅ Ke 4 Kc⋅+( ) V

2

2
⋅+ Kn

Vn
2

2
⋅+=

From continuity Vn
D

D2

⎛
⎜
⎝

⎞
⎠

2

V⋅= and V
Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
0.75×

ft
3

s
⋅

1

1

4
ft⋅⎛⎜

⎝
⎞
⎠

2
×= V 15.3

ft

s
⋅=

Solving for p1 p1
ρ V

2
⋅

2
f

L

D
⋅ Ke+ 4 Kc⋅+

D

D2

⎛
⎜
⎝

⎞
⎠

4

1 Kn+( )⋅+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

⋅=

From Table A.7 (68oF) ρ 1.94
slug

ft
3

⋅= ν 1.08 10
5−

×
ft

2

s
⋅=

Re
V D⋅

ν
= Re 15.3

ft

s
⋅

3

12
× ft⋅

s

1.08 10
5−

× ft
2

⋅
×= Re 3.54 10

5
×= Turbulent

For the hose
e

D
0.004=

Flow is turbulent: Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0287=

p1
1

2
1.94×

slug

ft
3

⋅ 15.3
ft

s
⋅⎛⎜

⎝
⎞
⎠

2

× 0.0287
250

1

4

× 0.5+ 4 0.5×+
3

1

⎛⎜
⎝

⎞
⎠

4

1 0.02+( )×+
⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

×
lbf s

2
⋅

slug ft⋅
×=

p1 2.58 10
4

×
lbf

ft
2

⋅= p1 179 psi⋅=



Problem 8.134 [Difficulty: 4]

Given: Proposal for bench top experiment

Find: Design it; Plot tank depth versus Re

Solution:

Basic equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes

g H⋅ α
V

2

2
⋅− f

L

D
⋅

V
2

2
⋅ K

V
2

2
⋅+=

This can be solved explicity for reservoir height H

H
V

2

2 g⋅
α f

L

D
⋅+ K+⎛⎜

⎝
⎞
⎠

⋅=

In Excel:



Computed results:

Q  (L/min) V  (m/s) Re Regime f H (m)

0.200 0.472 1413 Laminar 0.0453 0.199

0.225 0.531 1590 Laminar 0.0403 0.228

0.250 0.589 1767 Laminar 0.0362 0.258

0.275 0.648 1943 Laminar 0.0329 0.289

0.300 0.707 2120 Laminar 0.0302 0.320

0.325 0.766 2297 Laminar 0.0279 0.353

0.350 0.825 2473 Turbulent 0.0462 0.587

0.375 0.884 2650 Turbulent 0.0452 0.660

0.400 0.943 2827 Turbulent 0.0443 0.738

0.425 1.002 3003 Turbulent 0.0435 0.819

0.450 1.061 3180 Turbulent 0.0428 0.904

The flow rates are realistic, and could easily be measured using a tank/timer system

The head required is also realistic for a small-scale laboratory experiment

Around Re  = 2300 the flow may oscillate between laminar and turbulent:

Once turbulence is triggered (when H  > 0.353 m), the resistance to flow increases

requiring H  >0.587 m to maintain; hence the flow reverts to laminar, only to trip over

again to turbulent!  This behavior will be visible: the exit flow will switch back and

forth between smooth (laminar) and chaotic (turbulent)

Required Reservoir Head

versus Reynolds Number

0.00

0.25

0.50

0.75

1.00

1000 1500 2000 2500 3000 3500
Re

H  (m)

Laminar

Turbulent



 

Problem 8.135                                                      [Difficulty: 3]



Problem 8.136 [Difficulty: 3]

Given: Drinking of a beverage

Find: Fraction of effort of drinking of friction and gravity

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Hence the energy equation becomes, between the bottom of the straw (Point 1) and top (Point 2)

g z1⋅
p2

ρ
g z2⋅+

⎛
⎜
⎝

⎞
⎠

− f
L

D
⋅

V
2

2
⋅= where p2 is the gage pressure in the mouth

The negative gage pressure the mouth must create is therefore due to two parts

pgrav ρ− g⋅ z2 z1−( )⋅= pfric ρ− f⋅
L

D
⋅

V
2

2
⋅=

Assuming a person can drink 12 fluid ounces in 5 s Q

12

128
gal⋅

5 s⋅

1 ft
3

⋅

7.48 gal⋅
×= Q 2.51 10

3−
×

ft
3

s
⋅=

Assuming a straw is 6 in long diameter 0.2 in, with roughness e 5 10
5−

× in= (from Googling!)

V
4 Q⋅

π D
2

⋅
= V

4

π
2.51× 10

3−
×

ft
3

s

1

0.2 in⋅

12 in⋅

1 ft⋅
×⎛⎜

⎝
⎞
⎠

2

×= V 11.5
ft

s
⋅=

From Table A.7 (68oF) ν 1.08 10
5−

×
ft

2

s
⋅= (for water, but close enough)

Re
V D⋅

ν
= Re 11.5

ft

s
⋅

0.2

12
× ft⋅

s

1.08 10
5−

× ft
2

×= Re 1.775 10
4

×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0272=

Then pgrav 1.94−
slug

ft
3

⋅ 32.2×
ft

s
2

⋅
1

2
× ft⋅

lbf s
2

⋅

slug ft⋅
×= pgrav 31.2−

lbf

ft
2

⋅= pgrav 0.217− psi⋅=

and pfric 1.94−
slug

ft
3

⋅ 0.0272×
6

0.2
×

1

2
× 11.5

ft

s
⋅⎛⎜

⎝
⎞
⎠

2

×
lbf s

2
⋅

slug ft⋅
×= pfric 105−

lbf

ft
2

⋅= pfric 0.727− psi⋅=

Hence the fraction due to friction is
pfric

pfric pgrav+
77 %⋅= and gravity is

pgrav

pfric pgrav+
23 %⋅=

These results will vary depending on assumptions, but it seems friction is significant!



Problem 8.137 [Difficulty: 4]

Given: Draining of swimming pool with larger hose

Find: Flow rate and average velocity

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅= hlm Kent

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Available data D 25 mm⋅= L 30 m⋅= e 0.2 mm⋅= h 3 m⋅= ∆z 1.5 m⋅= Kent 0.5= ν 1 10
6−

⋅
m

2

s
⋅=

Hence the energy equation becomes g ∆z h+( )⋅ f
L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+

V
2

2
+=

Solving for V V
2 g⋅ ∆z h+( )⋅

f
L

D
⋅ Kent+ 1+

= (1)

We also have Re
V D⋅

ν
= (2) In addition

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (3)

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f, which we can solve iteratively

Make a guess for f f 0.1= then V
2 g⋅ ∆z h+( )⋅

f
L

D
⋅ Kent+ 1+

= V 0.852
m

s
= Re

V D⋅

ν
= Re 2.13 10

4
×=

using Eq 3, at this Re f 0.0382=

Then, repeating V
2 g⋅ ∆z h+( )⋅

f
L

D
⋅ Kent+ 1+

= V 1.37
m

s
= Re

V D⋅

ν
= Re 3.41 10

4
×=

using Eq 3, at this Re f 0.0371=

Then, repeating V
2 g⋅ ∆z h+( )⋅

f
L

D
⋅ Kent+ 1+

= V 1.38
m

s
= Re

V D⋅

ν
= Re 3.46 10

4
×=

Using Eq 3, at this Re f 0.0371= which is the same as before, so we have convergence

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 6.79 10

4−
×

m
3

s
= Q 0.679

l

s
=

Note that we could use Excel's Solver for this problem



Problem 8.138 [Difficulty: 4]

Given: Flow in horizontal pipe

Find: Flow rate

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Available data L 200 m⋅= D 75 mm⋅= e 2.5 mm⋅= ∆p 425 kPa⋅= ρ 1000
kg

m
3

⋅= μ 1.76 10
3−

⋅
N s⋅

m
2

⋅=

Hence the energy equation becomes

p1

ρ

p2

ρ
−

∆p

ρ
= f

L

D
⋅

V
2

2
⋅=

Solving for V V
2 D⋅ ∆p⋅

L ρ⋅ f⋅
= V

k

f
= (1) k

2 D⋅ ∆p⋅

L ρ⋅
= k 0.565

m

s
=

We also have Re
ρ V⋅ D⋅

μ
= or Re c V⋅= (2) where c

ρ D⋅

μ
= c 4.26 10

4
×

s

m
=

(3)
In addition

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.1= then V
k

f
= V 5.86

ft

s
⋅= Re c V⋅= Re 7.61 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0573= V

k

f
= V 7.74

ft

s
⋅= Re c V⋅= Re 1.01 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0573= V

k

f
= V

ft

s
⋅= Re c V⋅= Re 1.01 10

5
×=

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0104

m
3

s
= Q 10.42

l

s
= Q 165 gpm⋅=

Note that we could use Excel's Solver for this problem



Problem 8.139                                                    [Difficulty: 2]



Problem 8.140      [Difficulty: 4] 
 

. 

 

 

 

 

 

 

 

Given: Two potential solutions to improve flowrate. 

Find: Which solution provides higher flowrate 

Solution:  

Basic equations:  
Tl

hgz
Vp

gz
Vp

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ 2

2

2
2

2
1

2

1
1

1

22
α

ρ
α

ρ
 

22

22 V
K

V

D

L
fhhh

mT lll +=+=  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

f

De

f Re

51.2

7.3

/
log0.2

1
 VAQ =  

 

Assumptions:  1) Steady flow  2) Incompressible  3) Neglect minor losses  4) 
22

2

2
2

2

1
1

VV
αα =   

Option 1:  let gage kPa 0       0 21 === atmppz  

Given data gage kPa 2001 =p  m 019.0=D   m 152 =z   0=
D

e
 m 23=L  

 

The energy equation becomes:   
2

2

2
1 V

D

L
fgz

p
=−

ρ
 

 

Solving for V:  
Lf

zg
p

D

V
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅

=
2

12
ρ

  
f

k
V =      (1) 

 



 

 
m 23

1
m 15

s

m
81.9

sN

mkg

kg 999

m
 

m

N
200,000 m 019.02

2

22

3

2

2
1

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

⋅
⋅

××××=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅

=
L

zg
p

D

k
ρ

 

 

 
s

m
296.0=k  

 

We also have 
µ

ρ DV ⋅⋅
=Re  or Vc ⋅=Re   (2)  where 

µ
ρ D

c
⋅

=  

 

Assuming water at 20oC (ρ = 999 kg/m3, µ = 1 x 10-3 kg/(m·s)): 
m

s
18981

kg 101

sm
m 019.0

m

kg
999

3-3
=

×
⋅

××=c  

   

In addition:  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
    (3) 

 

Equations 1, 2 and 3 form a set of simultaneous equations for fV  and Re,  

 

 

Make a guess for f     015.0=f  then  
s

m
42.2==

f

k
V   

41059.4Re ×=⋅= Vc  

 

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
      0213.0=f  

s

m
03.2==

f

k
V   

41085.3Re ×=⋅= Vc  

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
      0222.0=f  

s

m
99.1==

f

k
V   

41077.3Re ×=⋅= Vc  

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
      0223.0=f  

s

m
98.1==

f

k
V   

41076.3Re ×=⋅= Vc  

 

The flowrate is then: ( ) =××=
s

m
98.1m019.0

4

22

1

π
Q   

Option 2:  let gage kPa 0       0 21 === atmppz  

Given data gage kPa 3001 =p  m 0127.0=D   m 152 =z   05.0=
D

e
 m 16=L  

 

The analysis for Option 2 is identical to Option 1: 

 

The energy equation becomes:   
2

2

2
1 V

D

L
fgz

p
=−

ρ
 

 

s

m
1061.5

3
4−×



Solving for V:  
Lf

zg
p

D

V
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅

=
2

12
ρ

  
f

k
V =      (4) 

 

 

 
m 16

1
m 15

s

m
81.9

sN

mkg

kg 999

m
 

m

N
300,000 m 0127.02

2

22

3

2

2
1

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

⋅
⋅

××××=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅

=
L

zg
p

D

k
ρ

 

 

 
s

m
493.0=k  

 

We also have 
µ

ρ DV ⋅⋅
=Re  or Vc ⋅=Re   (5)  where 

µ
ρ D

c
⋅

=  

 

  
m

s
3.12687

kg 101

sm
m 0127.0

m

kg
999

3-3
=

×
⋅

××=c     

 

In addition: ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

ff

De

f Re

51.2

7.3

05.0
log0.2

Re

51.2

7.3

/
log0.2

1
    (6) 

 

Equations 4, 5 and 6 form a set of simultaneous equations for fV  and Re,  

 

 

Make a guess for f     07.0=f  then   
s

m
86.1==

f

k
V  

41036.2Re ×=⋅= Vc  

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

ff Re

51.2

7.3

05.0
log0.2

1
      0725.0=f  

s

m
83.1==

f

k
V  

41032.2Re ×=⋅= Vc  

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

ff Re

51.2

7.3

05.0
log0.2

1
      0725.0=f  

s

m
83.1==

f

k
V  

41032.2Re ×=⋅= Vc  

 

The flowrate is then: ( ) =××=
s

m
83.1m0127.0

4

22

2

π
Q        Option 1 is 2.42 times more effective! 

 

This problem can also be solved explicitly: 

 

The energy equation becomes:   
2

2

2
1 V

D

L
fgz

p
=−

ρ
 

 

or:    
L

gz
p

D

V
f

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
2

12
1 ρ

 

 

Plugging this into the Colebrook equation: 

s

m
1032.2

3
4−×
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2
1 2
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7.3

/
log0.2

2

1

gz
p

D

L
V
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p

D

L
V

f

ρ
ρ

µ

ρ

 

 

Noting that the V s on the right hand side cancel provides: 
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L

gz
p

D
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D

L

D

De
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2
1

2
1

2

2

51.2

7.3

/
log0.2

ρ

ρ
ρ

µ
 

 

Assuming water at 20oC (ρ = 999 kg/m3, µ = 1 x 10-3 kg/(m·s)) gives the remaining information needed to perform the calculation. 

 

For Option 1: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝
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⎟⎟
⎠
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−

m 15
s

m
81.9

sN
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m
 

m

N
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m 23

m 019.02

m 15
s

m
81.9

sN

mkg

kg 999

m
 

m

N
200,000

1

m 0.0192

m 23

m 019.0

1

kg 999

m

sm

kg
10151.2

log0.2

22

3

2

22

3

2

3
3

V

 

s

m
98.1=V  

and: 

( ) =××=
s

m
98.1m019.0

4

22

1

π
Q  

Option 2:  let gage kPa 0       0 21 === atmppz  

Given data gage kPa 3001 =p  m 0127.0=D   m 152 =z   05.0=
D

e
 m 16=L  

 

The analysis for Option 2 results in the same equations as used in Option 1 once again giving: 
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D
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D
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D
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2
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s

m
1061.5

3
4−×
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m
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m
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1

m 0.01272

m 16
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1
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m

sm
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log0.2
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2
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3
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s

m
83.1=V  

 

The flowrate is then: ( ) =××=
s

m
83.1m0127.0

4

22

2

π
Q           

 
s

m
1032.2

3
4−×



Problem 8.141     [Difficulty: 3] 
 

 
 

Given: Kiddy pool on a porch. 

Find: Time to fill pool with a hose. 

Solution:  

 

Basic equations:  
Tl

hgz
Vp

gz
Vp

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ 2

2

2
2

2
1

2

1
1

1

22
α

ρ
α

ρ
 

22

22 V
K

V

D

L
fhhh

mT lll +=+=  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=

f

De

f Re

51.2

7.3

/
log0.2

1
 VAQ =  

 

Assumptions:  1) Steady flow  2) Incompressible  3) Neglect minor losses  4) 
22

2

2
2

2

1
1

VV
αα =   

 

 

Given data gage
in

lbf
 60

21 =p    ft 01 =z  in 625.0=D      gage
in

lbf
 0

22 =p   

 ft 5.202 =z    0=
D

e
 ft 50=L  

 

The energy equation becomes:   
2

2

2
1 V

D

L
fgz

p
=−

ρ
 

 

Solving for V:  
Lf

zg
p

D

V
⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅

=
2

12
ρ

  
f

k
V =      (1) 

 

ft 50

1
ft 5.20

s

ft
2.32

slbf

ftslug

slug 94.1

ft

ft

in 144
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lbf
60  

in 12

ft
in 625.02

2
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2

2

2

2
1

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×−

⋅
⋅

××××××=
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⎠

⎞
⎜⎜
⎝

⎛
⋅−⋅⋅

=
L
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p

D

k
ρ

 

s

ft
81.2=k  

 



We also have 
µ

ρ DV ⋅⋅
=Re  or Vc ⋅=Re   (2)  where 

µ
ρ D

c
⋅

=  

 

Assuming water at 68oF (ρ = 1.94 slug/ft3, µ = 2.1 x 10-5 lbf·s/ft2): 

   

ft

s
5.4811

ftslug

slbf

slbf 102.1

ft

in 12

ft
in 625.0

ft

slug
94.1

2

5-

2

3
=

⋅
⋅

×
⋅×

×××=c     

 

In addition:  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
    (3) 

 

Equations 1, 2 and 3 form a set of simultaneous equations for fV  and Re,  

 

Make a guess for f     015.0=f  then  
s

ft
94.22==

f

k
V   

5101.1Re ×=⋅= Vc  

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
      0177.0=f  

s

ft
12.21==

f

k
V   

51002.1Re ×=⋅= Vc  

Given  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

ff Re

51.2
log0.2

1
      0179.0=f  

s

ft
0.21==

f

k
V   

51001.1Re ×=⋅= Vc  

 

The flowrate is then:  
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s

Q
3

2

2
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 0447.0
s

ft
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in144

ft
in625.0

4
=×××=

π
 

 

( ) 322
ft 1.49ft5

4
ft 5.2 =××=

π
poolVolume  

 

====  s 1097

s
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Q

Volume
time
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This problem can also be solved explicitly in the following manner: 

 

The energy equation becomes:   
2

2

2
1 V

D

L
fgz

p
=−

ρ
 

 

or:    
L

gz
p

D

V
f

⎟⎟
⎠

⎞
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⎝

⎛
−

=
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Plugging this into the Colebrook equation: 
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Noting that the V s on the right hand side cancel provides: 
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Assuming water at 68oF (ρ = 1.94 slug/ft3, µ = 2 x 10-5 lbf·s/ft2) and g = 32.2 ft/s2 gives the remaining information needed to perform 

the calculation finding:  
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Problem 8.142                                                  [Difficulty: 3]



 

Problem 8.143                                                           [Difficulty: 3]



 

Problem 8.144                                                       [Difficulty: 3]



 

Problem 8.145                                                    [Difficulty: 3]



Problem 8.146 [Difficulty: 4]

Given: Flow from large reservoir

Find: Flow rates in two pipes

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅= hlm Kent

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data D 50 mm⋅= H 10 m⋅= L 10 m⋅=

e 0.15 mm⋅= (Table 8.1) ν 1 10
6−

⋅
m

2

s
⋅= (Table A.8) Kent 0.5=

The energy equation becomes

g z1 z2−( )⋅
1

2
V2

2
⋅− f

L

D
⋅

V2
2

2
⋅ Kent

V2
2

2
⋅+= and V2 V= z1 z2− H=

Solving for V
V

2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

=
(1)

We also have
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (2) Re

V D⋅

ν
= (3)

We must solve Eqs. 1, 2 and 3 iteratively.

Make a guess for V V 1
m

s
⋅= Then Re

V D⋅

ν
= Re 5.00 10

4
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0286=

Then V
2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

= V 5.21
m

s
=



Repeating Re
V D⋅

ν
= Re 2.61 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0267=

Then V
2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

= V 5.36
m

s
=

Repeating Re
V D⋅

ν
= Re 2.68 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0267=

Then V
2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

= V 5.36
m

s
=

Hence Q
π

4
D

2
⋅ V⋅= Q 0.0105

m
3

s
= Q 10.5

l

s
⋅=

We repeat the analysis for the second pipe, using 2L instead of L:

Make a guess for V V 1
m

s
⋅= Then Re

V D⋅

ν
= Re 5.00 10

4
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0286=

Then V
2 g⋅ H⋅

f
2 L⋅

D
⋅ Kent+ 1+

= V 3.89
m

s
=

Repeating Re
V D⋅

ν
= Re 1.95 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0269=

Then V
2 g⋅ H⋅

f
2 L⋅

D
⋅ Kent+ 1+

= V 4.00
m

s
=



Repeating Re
V D⋅

ν
= Re 2.00 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0268=

Then V
2 g⋅ H⋅

f
2 L⋅

D
⋅ Kent+ 1+

= V 4.00
m

s
=

Hence Q
π

4
D

2
⋅ V⋅= Q 7.861 10

3−
×

m
3

s
= Q 7.86

l

s
⋅=

As expected, the flow is considerably less in the longer pipe.



Problem 8.147 [Difficulty: 3]

Given: Galvanized drainpipe

Find: Maximum downpour it can handle

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) No minor losses

Available data D 50 mm⋅= e 0.15 mm⋅= (Table 8.1) h L= From Table A.7 (20oC) ν 1.01 10
6−

×
m

2

s
⋅=

The energy equation becomes g z1⋅ g z2⋅− g z1 z2−( )⋅= g h⋅= f
L

D
⋅

V
2

2
⋅=

Solving for V V
2 D⋅ g⋅ h⋅

L f⋅
=

2 D⋅ g⋅

f
= V

k

f
= (1)

k 2 D⋅ g⋅= k 2 0.05× m⋅ 9.81×
m

s
2

⋅= k 0.99
m

s
=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D

ν
=

c 0.05 m⋅
s

1.01 10
6−

× m
2

⋅
×= c 4.95 10

4
×

s

m
⋅=

(3)
In addition

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.01= then V
k

f
= V 9.90

m

s
= Re c V⋅= Re 4.9 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

f 0.0264= V
k

f
= V 6.09

m

s
= Re c V⋅= Re 3.01 10

5
×=



Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

f 0.0266= V
k

f
= V 6.07

m

s
= Re c V⋅= Re 3.00 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

f 0.0266= V
k

f
= V 6.07

m

s
= Re c V⋅= Re 3.00 10

5
×=

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0119

m
3

s
⋅=

The downpour rate is then
Q

Aroof

0.0119
m

3

s
⋅

500 m
2

⋅

100 cm⋅

1 m⋅
×

60 s⋅

1 min⋅
×= 0.143

cm

min
⋅= The drain can handle 0.143 cm/min

Note that we could use Excel's Solver for this problem
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Problem 8.149 [Difficulty: 3]

Given: Flow in a tube

Find: Effect of tube roughness on flow rate; Plot

Solution:

Governing equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube

p1 p2− ∆p= ρ f⋅
L

D
⋅

V
2

2
⋅=

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given relative

roughness e/D requires iteration (or use of Solver)



Flow Rate versus Tube Relative Roughness

for fixed Dp

0
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4

6

8
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4

It is not possible to roughen the tube sufficiently to slow the flow down to a laminar flow for this Δp.  Even a relative roughness of

0.5 (a physical impossibility!) would not work.



Problem 8.150 [Difficulty: 3]

Given: Flow in a tube

Find: Effect of tube length on flow rate; Plot

Solution:

Governing equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube

p1 p2− ∆p= ρ f⋅
L

D
⋅

V
2

2
⋅=

This cannot be solved explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given L requires

iteration (or use of Solver)



Flow Rate vs Tube Length for Fixed Dp
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The "critical" length of tube is between 15 and 20 km. For this range, the fluid is making a transition between laminar and

turbulent flow, and is quite unstable.  In this range the flow oscillates between laminar and turbulent; no consistent solution is

found (i.e., an Re corresponding to turbulent flow needs an f assuming laminar to produce the Δp required, and vice versa!)  More

realistic numbers (e.g., tube length) are obtained for a fluid such as SAE 10W oil (The graph will remain the same except for scale)



Problem 8.151 [Difficulty: 5]

Given: Flow from a reservoir

Find: Effect of pipe roughness and pipe length on flow rate; Plot

Solution:

Governing equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for this flow (see Example 8.5)

ppump ∆p= ρ g d⋅ f
L

D
⋅

V
2

2
⋅+

⎛
⎜
⎝

⎞

⎠
⋅=

We need to solve this for velocity V, (and hence flow rate Q) as a function of roughness e, then length L.  This cannot be solved

explicitly for velocity V, (and hence flow rate Q) because f depends on V; solution for a given relative roughness e/D  or length L

requires iteration (or use of Solver)

It is not possible to roughen the tube sufficiently to slow

the flow down to a laminar flow for this Δp.



Flow Rate versus Tube Relative Roughness for fixed Dp
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Problem 8.152 [Difficulty: 4]

Given: System for fire protection

Find: Height of water tower; Maximum flow rate; Pressure gage reading

Solution:

Governing equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm 0.1 hl⋅= hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

For no flow the energy equation (Eq. 8.29) applied between the water tower free surface (state 1; height H) and pressure gage is

g H⋅
p2

ρ
= or H

p2

ρ g⋅
= (1)

The energy equation (Eq. 8.29) becomes, for maximum flow (and α = 1)

g H⋅
V

2

2
− hlT= 1 0.1+( ) hl⋅= or g H⋅

V
2

2
1 1.1 f⋅

L

D
⋅+⎛⎜

⎝
⎞
⎠

⋅= (2)

This can be solved for V (and hence Q) by iterating, or by using Solver

The energy equation (Eq. 8.29) becomes, for restricted flow

g H⋅
p2

ρ
−

V
2

2
+ hlT= 1 0.1+( ) hl⋅= p2 ρ g⋅ H⋅ ρ

V
2

2
⋅ 1 1.1 ρ⋅ f⋅

L

D
⋅+⎛⎜

⎝
⎞
⎠

⋅−= (3)

The results in Excel are shown below:





Problem 8.153 [Difficulty: 4]

Given: Syphon system

Find: Flow rate; Minimum pressure

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT f

L

D
⋅

V
2

2
⋅ hlm+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Hence the energy equation applied between the tank free surface (Point 1) and the tube exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V
2

2
−= f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+ f

Le

D
⋅

V
2

2
⋅+=

From Table 8.2 for reentrant entrance Kent 0.78=

For the bend
R

D
9= so from Fig. 8.16

Le

D
28= for a 90o bend so for a 180o bend

Le

D
56=

Solving for V V
2 g⋅ h⋅

1 Kent+ f
L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= (1) and h 2.5 m⋅=

The two lengths are Le 56 D⋅= Le 2.8 m= L 0.6 π 0.45⋅+ 2.5+( ) m⋅= L 4.51 m=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D

ν
=

From Table A.7 (15oC) ν 1.14 10
6−

×
m

2

s
⋅= c 0.05 m⋅

s

1.14 10
6−

× m
2

⋅
×= c 4.39 10

4
×

s

m
⋅=

(3) e 0.0015 mm⋅= (Table 8.1)
In addition

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.01= then



V
2 g⋅ h⋅

1 Kent+ f
L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

=
V 3.89

m

s
= Re c V⋅= Re 1.71 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0164=

V
2 g⋅ h⋅

1 Kent+ f
L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= V 3.43
m

s
= Re c V⋅= Re 1.50 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0168=

V
2 g⋅ h⋅

1 Kent+ f
L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= V 3.40
m

s
= Re c V⋅= Re 1.49 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0168=

V
2 g⋅ h⋅

1 Kent+ f
L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

= V 3.40
m

s
= Re c V⋅= Re 1.49 10

5
×=

Note that we could use Excel's Solver for this problem.

The flow rate is then Q
π D

2
⋅

4
V⋅= Q 6.68 10

3−
×

m
3

s
=

The minimum pressure occurs at the top of the curve (Point 3).  Applying the energy equation between Points 1 and 3

g z1⋅
p3

ρ

V3
2

2
+ g z3⋅+

⎛⎜
⎜⎝

⎞

⎠
− g z1⋅

p3

ρ

V
2

2
+ g z3⋅+

⎛
⎜
⎝

⎞

⎠
−= f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+ f

Le

D
⋅

V
2

2
⋅+=

where we have
Le

D
28= for the first 90o of the bend, and L 0.6

π 0.45×

2
+⎛⎜

⎝
⎞
⎠

m⋅= L 1.31 m=

p3 ρ g z1 z3−( )⋅
V

2

2
1 Kent+ f

L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−
⎡
⎢
⎣

⎤
⎥
⎦

⋅=

p3 1000
kg

m
3

⋅ 9.81
m

s
2

⋅ 0.45− m⋅( )×

3.4
m

s
⋅⎛⎜

⎝
⎞
⎠

2

2
1 0.78+ 0.0168

1.31

0.05
28+⎛⎜

⎝
⎞
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

⋅−

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

×
N s

2
⋅

kg m⋅
×= p3 20.0− kPa⋅=



Problem 8.154 [Difficulty: 4]

Given: Tank with drainpipe

Find: Flow rate for rentrant, square-edged, and rounded entrances

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data D 1 in⋅= L 2 ft⋅= e 0.00085 ft⋅= (Table 8.1) h 3 ft⋅= r 0.2 in⋅=

Hence the energy equation applied between the tank free surface (Point 1) and the pipe exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V
2

2
−= f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+=

Solving for V V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= (1)

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D

ν
=

From Table A.7 (20oC) ν 1.01 10
6−

×
m

2

s
⋅= ν 1.09 10

5−
×

ft
2

s
= c

D

ν
= c 7665

s

ft
⋅=

(3)
In addition

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

For a reentrant entrance, from Table 8.2 Kent 0.78=

Make a guess for f f 0.01= then V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.98
m

s
=

Re c V⋅= Re 7.49 10
4

×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0389=



V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.57
m

s
= Re c V⋅= Re 6.46 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0391=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.57
m

s
= Re c V⋅= Re 6.46 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0391=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.57
m

s
= Re c V⋅= Re 6.46 10

4
×=

Note that we could use Excel's Solver for this problem

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0460

ft
3

s
= Q 20.6 gpm⋅=

For a square-edged entrance, from Table 8.2 Kent 0.5=

Make a guess for f f 0.01= then V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.21
m

s
= Re c V⋅= Re 8.07 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.71
m

s
= Re c V⋅= Re 6.83 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0390=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.71
m

s
= Re c V⋅= Re 6.82 10

4
×=

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0485

ft
3

s
= Q 21.8 gpm⋅=

For a rounded entrance, from Table 8.2
r

D
0.2= Kent 0.04=



Make a guess for f f 0.01= then V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

=

V 3.74
m

s
= Re c V⋅= Re 9.41 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0388=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.02
m

s
= Re c V⋅= Re 7.59 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.01
m

s
= Re c V⋅= Re 7.58 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0389=

V
2 g⋅ h⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.01
m

s
= Re c V⋅= Re 7.58 10

4
×=

Note that we could use Excel's Solver for this problem

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0539

ft
3

s
= Q 24.2 gpm⋅=

In summary: Renentrant: Q 20.6 gpm⋅= Square-edged: Q 21.8 gpm⋅= Rounded: Q 24.2 gpm⋅=



Problem 8.155 [Difficulty: 4]

Given: Tank with drainpipe

Find: Flow rate for rentrant, square-edged, and rounded entrances

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data D 1 in⋅= L 2 ft⋅= e 0.00085 ft⋅= (Table 8.1) h 3 ft⋅= r 0.2 in⋅=

Hence the energy equation applied between the tank free surface (Point 1) and the pipe exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V
2

2
−= f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+=

Solving for V V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= (1)

where now we have H h L+= H 5 ft=

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D

ν
=

From Table A.7 (20oC) ν 1.01 10
6−

×
m

2

s
⋅= ν 1.09 10

5−
×

ft
2

s
= c

D

ν
= c 7665

s

ft
⋅=

(3)
In addition

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅=

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

For a reentrant entrance, from Table 8.2 Kent 0.78=

Make a guess for f f 0.01= then V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.85
m

s
=

Re c V⋅= Re 9.67 10
4

×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0388=



V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.32
m

s
= Re c V⋅= Re 8.35 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0389=

V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.32
m

s
= Re c V⋅= Re 8.35 10

4
×=

Note that we could use Excel's Solver for this problem

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0594

ft
3

s
= Q 26.7 gpm⋅=

For a square-edged entrance, from Table 8.2 Kent 0.5=

Make a guess for f f 0.01= then V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 4.14
m

s
= Re c V⋅= Re 1.04 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0387=

V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.51
m

s
= Re c V⋅= Re 8.82 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0388=

V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.51
m

s
= Re c V⋅= Re 8.82 10

4
×=

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0627

ft
3

s
= Q 28.2 gpm⋅=

For a rounded entrance, from Table 8.2
r

D
0.2= Kent 0.04=

Make a guess for f f 0.01= then V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

=

V 4.83
m

s
= Re c V⋅= Re 1.22 10

5
×=



Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0386=

V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.90
m

s
= Re c V⋅= Re 9.80 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0388=

V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.89
m

s
= Re c V⋅= Re 9.80 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0388=

V
2 g⋅ H⋅

1 Kent+ f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 3.89
m

s
= Re c V⋅= Re 9.80 10

4
×=

Note that we could use Excel's Solver for this problem

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 0.0697

ft
3

s
= Q 31.3 gpm⋅=

In summary: Renentrant: Q 26.7 gpm⋅= Square-edged: Q 28.2 gpm⋅= Rounded: Q 31.3 gpm⋅=



Problem 8.156 [Difficulty: 5]

Given: Tank with drain hose

Find: Flow rate at different instants; Estimate of drain time

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1 4) Ignore minor loss at entrance (L >>; verify later)

Available data L 1 m⋅= D 15 mm⋅= e 0.2 mm⋅= Vol 30 m
3

⋅=

Hence the energy equation applied between the tank free surface (Point 1) and the hose exit (Point 2, z = 0) becomes

g z1⋅
V2

2

2
− g z1⋅

V
2

2
−= f

L

D
⋅

V
2

2
⋅=

Solving for V V
2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= (1) and h 10 m⋅= initially

We also have Re
V D⋅

ν
= or Re c V⋅= (2) where c

D

ν
=

From Fig. A.2 (20oC) ν 1.8 10
6−

×
m

2

s
⋅= c

D

ν
= c 8333

s

m
=

In addition
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (3)

Equations 1, 2 and 3 form a set of simultaneous equations for V, Re and f

Make a guess for f f 0.01= then

V
2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

=
V 10.8

m

s
= Re c V⋅= Re 9.04 10

4
×=



Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0427= V

2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 7.14
m

s
= Re c V⋅= Re 5.95 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0427= V

2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 7.14
m

s
= Re c V⋅= Re 5.95 10

4
×=

Note that we could use Excel's Solver for this problem Note: f
L

D
⋅ 2.8= Ke 0.5= hlm hl<

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 1.26 10

3−
×

m
3

s
= Q 1.26

l

s
⋅=

Next we recompute everything for h 5 m⋅=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0430= V

2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 5.04
m

s
= Re c V⋅= Re 4.20 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0430= V

2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 5.04
m

s
= Re c V⋅= Re 4.20 10

4
×=

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 8.9 10

4−
×

m
3

s
= Q 0.890

l

s
⋅=

Next we recompute everything for h 1 m⋅=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0444= V

2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.23
m

s
= Re c V⋅= Re 1.85 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0444= V

2 g⋅ h⋅

1 f
L

D
⋅+⎛⎜

⎝
⎞
⎠

= V 2.23
m

s
= Re c V⋅= Re 1.85 10

4
×=

The flow rate is then Q V
π D

2
⋅

4
⋅= Q 3.93 10

4−
×

m
3

s
= Q 0.393

l

s
⋅=

Initially we have dQ/dt = -1.26L/s, then -.890 L/s, then -0.393 L/s.  These occur at h = 10 m, 5 m and 1 m.  The corresponding

volumes in the tank are then Q = 30,000 L, 15,000 L, and 3,000 L3.  Using Excel we can fit a power trendline to the dQ/dt versus Q

data to find, approximately

dQ

dt
0.00683− Q

1

2
⋅= where dQ/dt is in L/s and t is s.  Solving this with initial condition Q = -1.26 L/s when t = 0 gives

t 293 30 Q−( )⋅= Hence, when Q = 3000 L (h = 1 m) t 293 30000 3000−( )⋅ s⋅= t 3.47 10
4

× s= t 9.64 hr⋅=
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Problem 8.160 [Difficulty: 5]

Applying the energy equation between inlet and exit:

or

D = 1 in

e = 0.00015 ft

"Old school": ν  = 1.08E-05 ft
2
/s

ρ  = 1.94 slug/ft
3

Q  (gpm) Q  (ft
3
/s) V  (ft/s) Re f

∆p (old 

school) (psi)
∆p (psi/ft)

1.25 0.00279 0.511 3940 0.0401 0.00085 0.00085

1.50 0.00334 0.613 4728 0.0380 0.00122 0.00115

1.75 0.00390 0.715 5516 0.0364 0.00166 0.00150

2.00 0.00446 0.817 6304 0.0350 0.00216 0.00189

2.25 0.00501 0.919 7092 0.0339 0.00274 0.00232

2.50 0.00557 1.021 7881 0.0329 0.00338 0.00278

2.75 0.00613 1.123 8669 0.0321 0.00409 0.00328

3.00 0.00668 1.226 9457 0.0314 0.00487 0.00381

3.25 0.00724 1.328 10245 0.0307 0.00571 0.00438

3.50 0.00780 1.430 11033 0.0301 0.00663 0.00498

3.75 0.00836 1.532 11821 0.0296 0.00761 0.00561

4.00 0.00891 1.634 12609 0.0291 0.00865 0.00628

4.25 0.00947 1.736 13397 0.0286 0.00977 0.00698

4.50 0.01003 1.838 14185 0.0282 0.01095 0.00771

4.75 0.01058 1.940 14973 0.0278 0.01220 0.00847

5.00 0.01114 2.043 15761 0.0275 0.01352 0.00927

5.25 0.01170 2.145 16549 0.0272 0.01491 0.01010

5.50 0.01225 2.247 17337 0.0268 0.01636 0.01095

5.75 0.01281 2.349 18125 0.0265 0.01788 0.01184

6.00 0.01337 2.451 18913 0.0263 0.01947 0.01276

6.25 0.01393 2.553 19701 0.0260 0.02113 0.01370

6.50 0.01448 2.655 20489 0.0258 0.02285 0.01468

6.75 0.01504 2.758 21277 0.0255 0.02465 0.01569

7.00 0.01560 2.860 22065 0.0253 0.02651 0.01672

7.25 0.01615 2.962 22854 0.0251 0.02843 0.01779

7.50 0.01671 3.064 23642 0.0249 0.03043 0.01888

7.75 0.01727 3.166 24430 0.0247 0.03249 0.02000

8.00 0.01783 3.268 25218 0.0245 0.03462 0.02115

8.25 0.01838 3.370 26006 0.0243 0.03682 0.02233

8.50 0.01894 3.472 26794 0.0242 0.03908 0.02354

8.75 0.01950 3.575 27582 0.0240 0.04142 0.02477

Your boss was wrong! 9.00 0.02005 3.677 28370 0.0238 0.04382 0.02604

2

2V

D

L
f

p
=

∆
ρ 2

2V

D

f

L

p ρ
=

∆
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Problem 8.161 [Difficulty: 5]

Given: Flow from large reservoir

Find: Diameter for flow rates in two pipes to be same

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅= hlm Kent

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data D 50 mm⋅= H 10 m⋅= L 10 m⋅=

e 0.15 mm⋅= (Table 8.1) ν 1 10
6−

⋅
m

2

s
⋅= (Table A.8) Kent 0.5=

For the pipe of length L the energy equation becomes

g z1 z2−( )⋅
1

2
V2

2
⋅− f

L

D
⋅

V2
2

2
⋅ Kent

V2
2

2
⋅+= and V2 V= z1 z2− H=

Solving for V
V

2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

=
(1)

We also have
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (2) Re

V D⋅

ν
= (3)

We must solve Eqs. 1, 2 and 3 iteratively.

Make a guess for V V 1
m

s
⋅= Then Re

V D⋅

ν
= Re 5.00 10

4
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0286=

Then V
2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

= V 5.21
m

s
=

Repeating Re
V D⋅

ν
= Re 2.61 10

5
×=



and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0267=

Then V
2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

= V 5.36
m

s
=

Repeating Re
V D⋅

ν
= Re 2.68 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0267=

Then V
2 g⋅ H⋅

f
L

D
⋅ Kent+ 1+

= V 5.36
m

s
=

Hence Q
π

4
D

2
⋅ V⋅= Q 0.0105

m
3

s
= Q 10.5

l

s
⋅=

This is the flow rate we require in the second pipe (of length 2L)

For the pipe of length 2L the energy equation becomes

g z1 z2−( )⋅
1

2
V2

2
⋅− f

2 L⋅

D
⋅

V2
2

2
⋅ Kent

V2
2

2
⋅+= and V2 V= z1 z2− H= Q 0.0105

m
3

s
=

Hence H
V

2

2 g⋅
f

2 L⋅

D
⋅ Kent+ 1+⎛⎜

⎝
⎞
⎠

⋅= (4)

We must make a guess for D (larger than the other pipe) D 0.06 m⋅= Then we have V
Q

π

4
D

2
⋅

= V 3.72
m

s
=

Then Re
V D⋅

ν
= Re 2.23 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0256=

Using Eq 4 to find H Hiterate
V

2

2 g⋅
f

2 L⋅

D
⋅ Kent+ 1+⎛⎜

⎝
⎞
⎠

⋅= Hiterate 7.07 m= But H 10 m=

Hence the diameter is too large: Only a head of Hiterate 7.07 m= would be needed to generate the flow.  We make D smaller



Try D 0.055 m⋅= Then we have V
Q

π

4
D

2
⋅

= V 4.43
m

s
=

Then Re
V D⋅

ν
= Re 2.43 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0261=

Using Eq 4 to find H Hiterate
V

2

2 g⋅
f

2 L⋅

D
⋅ Kent+ 1+⎛⎜

⎝
⎞
⎠

⋅= Hiterate 10.97 m= But H 10 m=

Hence the diameter is too small: A head of Hiterate 10.97 m= would be needed.  We make D slightly larger

Try D 0.056 m⋅= Then we have V
Q

π

4
D

2
⋅

= V 4.27
m

s
=

Then Re
V D⋅

ν
= Re 2.39 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0260=

Using Eq 4 to find H Hiterate
V

2

2 g⋅
f

2 L⋅

D
⋅ Kent+ 1+⎛⎜

⎝
⎞
⎠

⋅= Hiterate 10.02 m= But H 10 m=

Hence the diameter is too large A head of Hiterate 10.02 m= would be needed.  We can make D smaller

Try D 0.05602 m⋅= Then we have V
Q

π

4
D

2
⋅

= V 4.27
m

s
=

Then Re
V D⋅

ν
= Re 2.39 10

5
×=

and
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0260=

Using Eq 4 to find H Hiterate
V

2

2 g⋅
f

2 L⋅

D
⋅ Kent+ 1+⎛⎜

⎝
⎞
⎠

⋅= Hiterate 10 m= But H 10 m=

Hence we have D 0.05602 m= D 56.02 mm⋅= V 4.27
m

s
=

Check Q 0.0105
m

3

s
=

π

4
D

2
⋅ V⋅ 0.0105

m
3

s
=



Problem 8.162 [Difficulty: 3]

Given: Hydraulic press system

Find: Minimum required diameter of tubing

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V2
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

The flow rate is low and it's oil, so try assuming laminar flow.  Then, from Eq. 8.13c

∆p
128 μ⋅ Q⋅ L⋅

π D
4

⋅
= or D

128 μ⋅ Q⋅ L⋅

π ∆p⋅
⎛⎜
⎝

⎞
⎠

1

4

=

For SAE 10W oil at 100oF (Fig. A.2, 38oC) μ 3.5 10
2−

×
N s⋅

m
2

⋅

0.0209
lbf s⋅

ft
2

⋅

1
N s⋅

m
2

⋅

×= μ 7.32 10
4−

×
lbf s⋅

ft
2

⋅=

Hence D
128

π
7.32× 10

4−
×

lbf s⋅

ft
2

0.02×
ft

3

s
⋅ 165× ft⋅

in
2

3000 2750−( ) lbf⋅
×

1 ft⋅

12 in⋅
⎛⎜
⎝

⎞
⎠

2

×
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

1

4

= D 0.0407 ft⋅= D 0.488 in⋅=

Check Re to assure flow is laminar V
Q

A
=

4 Q⋅

π D
2

⋅
= V

4

π
0.02×

ft
3

s
⋅

12

0.488

1

ft
⋅⎛⎜

⎝
⎞
⎠

2

×= V 15.4
ft

s
⋅=

From Table A.2 SGoil 0.92= so Re
SGoil ρH2O⋅ V⋅ D⋅

μ
=

Re 0.92 1.94×
slug

ft
3

⋅ 15.4×
ft

s
⋅

0.488

12
× ft⋅

ft
2

7.32 10
4−

× lbf s⋅
×

lbf s
2

⋅

slug ft⋅
×= Re 1527=

Hence the flow is laminar, Re < 2300.  The minimum diameter is 0.488 in, so 0.5 in ID tube should be chosen



Problem 8.163 [Difficulty: 4]

Given: Flow out of reservoir by pump

Find: Smallest pipe needed

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hlT hl hlm+= f

L

D
⋅

V2
2

2
⋅ Kent

V2
2

2
⋅+ f

Le

D
⋅

V2
2

2
⋅+=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Vl <<

Hence for flow between the free surface (Point 1) and the pump inlet (2) the energy equation becomes

p2

ρ
− g z2⋅−

V2
2

2
−

p2

ρ
− g z2⋅−

V
2

2
−= f

L

D
⋅

V
2

2
⋅ Kent

V
2

2
⋅+ f

Le

D
⋅

V
2

2
⋅+= and p ρ g⋅ h⋅=

Solving for h2 = p2/ρg h2 z2−
V

2

2 g⋅
f

L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= (1)

From Table 8.2 Kent 0.78= for rentrant, and from Table 8.4 two standard elbows lead to
Le

D
2 30×= 60=

We also have e 0.046 mm⋅= (Table 8.1) ν 1.51 10
6−

×
m

2

s
⋅= (Table A.8)

and we are given Q 6
L

s
⋅= Q 6 10

3−
×

m
3

s
= z2 3.5 m⋅= L 3.5 4.5+( ) m⋅= L 8 m= h2 6− m⋅=

Equation 1 is tricky because D is unknown, so V is unknown (even though Q is known), L/D and Le/D are unknown, and Re and

hence f are unknown!  We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simultaneously by varying D, but here

we try guesses:

D 2.5 cm⋅= V
4 Q⋅

π D
2

⋅
= V 12.2

m

s
= Re

V D⋅

ν
= Re 2.02 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0238=

h2 z2−
V

2

2 g⋅
f

L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= h2 78.45− m= but we need -6 m!



D 5 cm⋅= V
4 Q⋅

π D
2

⋅
= V 3.06

m

s
= Re

V D⋅

ν
= Re 1.01 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0219=

h2 z2−
V

2

2 g⋅
f

L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= h2 6.16− m= but we need -6 m!

D 5.1 cm⋅= V
4 Q⋅

π D
2

⋅
= V 2.94

m

s
= Re

V D⋅

ν
= Re 9.92 10

4
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0219=

h2 z2−
V

2

2 g⋅
f

L

D

Le

D
+

⎛
⎜
⎝

⎞
⎠

⋅ Kent+
⎡
⎢
⎣

⎤
⎥
⎦

⋅−= h2 5.93− m=

To within 1%, we can use 5-5.1 cm tubing; this corresponds to standard 2 in pipe.



Problem 8.164 [Difficulty: 4]

Given: Flow of air in rectangular duct

Find: Minimum required size

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

Dh

⋅
V

2

2
⋅= Dh

4 A⋅

Pw

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

Available data Q 1
m

3

s
⋅= L 100 m⋅= ∆h 25 mm⋅= ar 3= e 0 m⋅=

ρH2O 999
kg

m
3

⋅= ρ 1.25
kg

m
3

⋅= ν 1.41 10
5−

⋅
m

2

s
⋅=

(Table A.10)

Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

p1

ρ

p2

ρ
−

∆p

ρ
= f

L

Dh

⋅
V

2

2
⋅=

and ∆p ρH2O g⋅ ∆h⋅= ∆p 245 Pa=

For a rectangular duct Dh
4 b⋅ h⋅

2 b h+( )⋅
=

2 h
2

⋅ ar⋅

h 1 ar+( )⋅
=

2 h⋅ ar⋅

1 ar+
= and also A b h⋅= h

2 b

h
⋅= h

2
ar⋅=

Hence ∆p ρ f⋅ L⋅
V

2

2
⋅

1 ar+( )

2 h⋅ ar⋅
⋅= ρ f⋅ L⋅

Q
2

2 A
2

⋅
⋅

1 ar+( )

2 h⋅ ar⋅
⋅=

ρ f⋅ L⋅ Q
2

⋅

4

1 ar+( )

ar
3

⋅
1

h
5

⋅=

Solving for h h
ρ f⋅ L⋅ Q

2
⋅

4 ∆p⋅

1 ar+( )

ar
3

⋅
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

1

5

= (1)

Equation 1 is tricky because h is unknown, so Dh is unknown, hence V is unknown (even though Q is known), and Re and hence f

are unknown!  We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simmultaneously by varying h, but here we try

guesses:

f 0.01= h
ρ f⋅ L⋅ Q

2
⋅

4 ∆p⋅

1 ar+( )

ar
3

⋅
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

1

5

= h 0.180 m= V
Q

h
2

ar⋅
= V 10.3

m

s
=



Dh
2 h⋅ ar⋅

1 ar+
= Dh 0.270 m= Re

V Dh⋅

ν
= Re 1.97 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0157=

h
ρ f⋅ L⋅ Q

2
⋅

4 ∆p⋅

1 ar+( )

ar
3

⋅
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

1

5

= h 0.197 m= V
Q

h
2

ar⋅
= V 8.59

m

s
=

Dh
2 h⋅ ar⋅

1 ar+
= Dh 0.295 m= Re

V Dh⋅

ν
= Re 1.8 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0160=

h
ρ f⋅ L⋅ Q

2
⋅

4 ∆p⋅

1 ar+( )

ar
3

⋅
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

1

5

= h 0.198 m= V
Q

h
2

ar⋅
= V 8.53

m

s
=

Dh
2 h⋅ ar⋅

1 ar+
= Dh 0.297 m= Re

V Dh⋅

ν
= Re 1.79 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0160=

Hence h 0.198 m= h 198 mm= b 2 h⋅= b 395 mm⋅= V
Q

h
2

ar⋅
= V 8.53

m

s
=

Dh
2 h⋅ ar⋅

1 ar+
= Dh 0.297 m= Re

V Dh⋅

ν
= Re 1.79 10

5
×=

In this process h and f have converged to a solution.  The minimum dimensions are 198 mm by 395 mm



 

Problem 8.165                                                 [Difficulty: 4]



Problem 8.166 [Difficulty: 4]

Given: Flow of air in square duct

Find: Minimum required size

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

Dh

⋅
V

2

2
⋅= Dh

4 A⋅

Pw

=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) Ignore minor losses

Available data Q 1500 cfm⋅= L 1000 ft⋅= e 0.00015 ft⋅= (Table 8.1) ∆h 0.75 in⋅=

ρH2O 1.94
slug

ft
3

⋅= ν 1.47 10
4−

⋅
ft

2

s
⋅= ρ 0.00247

slug

ft
3

⋅= (Table A.9)

Hence for flow between the inlet (Point 1) and the exit (2) the energy equation becomes

p1

ρ

p2

ρ
−

∆p

ρ
= f

L

Dh

⋅
V

2

2
⋅= and ∆p ρH2O g⋅ ∆h⋅= ∆p 3.90

lbf

ft
2

= ∆p 0.0271 psi⋅=

For a square duct Dh
4 h⋅ h⋅

2 h h+( )⋅
= h= and also A h h⋅= h

2
=

Hence ∆p ρ f⋅ L⋅
V

2

2 h⋅
⋅= ρ f⋅ L⋅

Q
2

2 h⋅ A
2

⋅
⋅=

ρ f⋅ L⋅ Q
2

⋅

2 h
5

⋅
=

Solving for h h
ρ f⋅ L⋅ Q

2
⋅

2 ∆p⋅

⎛
⎜
⎝

⎞

⎠

1

5

= (1)

Equation 1 is tricky because h is unknown, so Dh is unknown, hence V is unknown (even though Q is known), and Re and hence f

are unknown!  We COULD set up Excel to solve Eq 1, the Reynolds number, and f, simmultaneously by varying h, but here we try

guesses:

f 0.01= h
ρ f⋅ L⋅ Q

2
⋅

2 ∆p⋅

⎛
⎜
⎝

⎞

⎠

1

5

= h 1.15 ft⋅= V
Q

h
2

= V 19.0
ft

s
⋅=

Dh h= Dh 1.15 ft⋅= Re
V Dh⋅

ν
= Re 1.48 10

5
×=



Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0174=

h
ρ f⋅ L⋅ Q

2
⋅

2 ∆p⋅

⎛
⎜
⎝

⎞

⎠

1

5

= h 1.28 ft⋅= V
Q

h
2

= V 15.2
ft

s
⋅=

Dh h= Dh 1.28 ft⋅= Re
V Dh⋅

ν
= Re 1.33 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0177=

h
ρ f⋅ L⋅ Q

2
⋅

2 ∆p⋅

⎛
⎜
⎝

⎞

⎠

1

5

= h 1.28 ft⋅= V
Q

h
2

= V 15.1
ft

s
⋅=

Dh h= Dh 1.28 ft⋅= Re
V Dh⋅

ν
= Re 1.32 10

5
×=

Given
1

f
2.0− log

e

Dh

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0177=

Hence h 1.28 ft⋅= Dh h= Dh 1.28 ft⋅= V
Q

h
2

= V 15.1
ft

s
⋅=

Re
V Dh⋅

ν
= Re 1.32 10

5
×=

In this process h and f have converged to a solution.  The minimum dimensions are 1.28 ft square (15.4 in square)



Problem 8.167 [Difficulty: 3]

Given: Flow in a tube

Find: Effect of diameter; Plot flow rate versus diameter

Solution:

Basic equations:
(8.29)p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl=

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for flow in a tube

p1 p2− ∆p= ρ f⋅
L

D
⋅

V
2

2
⋅=

This cannot be solved explicitly for velocity V (and hence flow rate Q), because f depends on V; solution for a given diameter D

requires iteration (or use of Solver)



Flow Rate versus Tube Diameter for Fixed Dp

0.0

0.2

0.4

0.6

0.8

0.0 2.5 5.0 7.5 10.0
D  (mm)

Q  (m
3
/s)

x 10
4

Laminar

Turbulent
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Problem 8.151



 

Problem 8.172                                  [Difficulty: 5]   Part 2/2



Problem 8.173 [Difficulty: 2]

Given: Flow through water pump

Find: Power required

Solution:

Basic equations hpump

pd

ρ

Vd
2

2
+ g zd⋅+

⎛⎜
⎜⎝

⎞

⎠

ps

ρ

Vs
2

2
+ g zs⋅+

⎛⎜
⎜⎝

⎞

⎠
−= V

Q

A
=

4 Q⋅

π D
2

⋅
=

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow

Hence for the inlet Vs
4

π
25×

lbm

s
⋅

1 slug⋅

32.2 lbm⋅
×

ft
3

1.94 slug⋅
×

12

3

1

ft
⋅⎛⎜

⎝
⎞
⎠

2

×= Vs 8.15
ft

s
⋅= ps 2.5− psi⋅=

For the outlet Vd
4

π
25×

lbm

s
⋅

1 slug⋅

32.2 lbm⋅
×

ft
3

1.94 slug⋅
×

12

2

1

ft
⋅⎛⎜

⎝
⎞
⎠

2

×= Vd 18.3
ft

s
⋅= pd 50 psi⋅=

Then hpump

pd ps−

ρ

Vd
2

Vs
2

−

2
+= and Wpump mpump hpump⋅=

Wpump mpump

pd ps−

ρ

Vd
2

Vs
2

−

2
+

⎛⎜
⎜⎝

⎞

⎠
⋅=

Note that the software cannot render a dot, so the power is Wpump and mass flow rate is mpump!

Wpump 25
lbm

s
⋅

1 slug⋅

32.2 lbm⋅
× 50 2.5−−( )

lbf

in
2

⋅
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
ft

3

1.94 slug⋅
×

1

2
18.3

2
8.15

2
−( )×

ft

s

⎛⎜
⎝

⎞
⎠

2

⋅
lbf s

2
⋅

slug ft⋅
×+

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

×
1 hp⋅

550
ft lbf⋅

s
⋅

×=

Wpump 5.69 hp⋅= For an efficiency

of
η 70 %⋅= Wrequired

Wpump

η
= Wrequired 8.13 hp⋅=



Problem 8.174 [Difficulty: 1]

Given: Flow through water pump

Find: Power required

Solution:

Basic equations hpump

pd

ρ

Vd
2

2
+ g zd⋅+

⎛⎜
⎜⎝

⎞

⎠

ps

ρ

Vs
2

2
+ g zs⋅+

⎛⎜
⎜⎝

⎞

⎠
−=

Assumptions: 1) Steady flow 2) Incompressible flow 3) Uniform flow

In this case we assume Ds Dd= so Vs Vd=

The available data is ∆p 35 psi⋅= Q 500 gpm⋅= η 80 %⋅=

Then hpump

pd ps−

ρ
=

∆p

ρ
= and Wpump mpump hpump⋅=

Wpump mpump
∆p

ρ
⋅= ρ Q⋅

∆p

ρ
⋅=

Wpump Q ∆p⋅= Wpump 5615
ft lbf⋅

s
= Wpump 10.2 hp⋅=

Note that the software cannot render a dot, so the power is Wpump and mass flow rate is mpump!

For an efficiency of η 80 %= Wrequired

Wpump

η
= Wrequired 12.8 hp⋅=



Problem 8.175 [Difficulty: 3]

Given: Flow in pipeline with pump

Find: Pump pressure Δp

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
−

∆ppump

ρ
+ hlT=

hl f
L

D
⋅

V
2

2
⋅= hlm f

Le

D
⋅

V
2

2
⋅= hlm K

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data L 50 m⋅= D 125 mm⋅= Q 50
l

s
⋅= e 0.15 mm⋅=

p1 150 kPa⋅= p2 0 kPa⋅= z1 15 m⋅= z2 30 m⋅=

From Section 8.8 Kent 0.5= Lelbow90 30 D⋅= Lelbow90 3.75 m= LGV 8 D⋅= LGV 1 m=

LAV 150 D⋅= LAV 18.75 m= ρ 1000
kg

m
3

= μ 1.3 10
3−

⋅
N s⋅

m
2

⋅= (Table A.8)

Hence V
Q

π D
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= V 4.07
m

s
= Re

ρ V⋅ D⋅

μ
= Re 3.918 10

5
×=

and Given
1

f
2− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0212=

The loss is then

hlT
V

2

2
f

L

D
⋅ 7 f⋅

Lelbow90

D
⋅+ 5 f⋅

LGV

D
⋅+ f

LAV

D
⋅+ Kent+

⎛
⎜
⎝

⎞
⎠

⋅= hlT 145
m

2

s
2

=

The energy equation becomes
p1 p2−

ρ
g z1 z2−( )⋅+

V
2

2
−

∆ppump

ρ
+ hlT=

∆ppump ρ hlT⋅ ρ g⋅ z2 z1−( )⋅+ ρ
V

2

2
⋅+ p2 p1−( )+= ∆ppump 150 kPa⋅=



 

Problem 8.176                                                     [Difficulty: 3]
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Problem 8.178 [Difficulty: 3]

Given: Flow in air conditioning system

Find: Pressure drop; cost

Solution:

Basic equations
p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V
2

2
⋅=

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data L 5 km⋅= D 0.75 m⋅= e 0.046 mm⋅= Q 0.65
m

3

s
⋅= ηp 85 %⋅= ηm 85 %⋅=

ρ 1000
kg

m
3

= μ 1.3 10
3−

⋅
N s⋅

m
2

⋅= (Table A.8) cost
0.14

kW hr⋅
= (dollars)

Then V
Q

π D
2

⋅

4

⎛
⎜
⎝

⎞

⎠

= V 1.47
m

s
= Re

ρ V⋅ D⋅

μ
= Re 8.49 10

5
×=

so Given
1

f
2− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0131=

The energy equation becomes ∆p f
L

D
⋅ ρ⋅

V
2

2
⋅= ∆p 94.4 kPa⋅=

and Wpump Q ∆p⋅= Wpump 61.3 kW⋅=

The required power is Power
Wpump

ηp ηm⋅
= Power 84.9 kW⋅=

The daily cost is then C cost Power⋅ day⋅= C 285= dollars



Problem 8.179 [Difficulty: 4]

   


Given: Fire nozzle/pump system

Find: Design flow rate; nozzle exit velocity; pump power needed

Solution:

Basic equations
p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠

p3

ρ
α

V3
2

2
⋅+ g z3⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hl f

L

D
⋅

V2
2

2
⋅= for the hose

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 2 and 3 is approximately 1 4) No minor loss

p3

ρ

V3
2

2
+ g z3⋅+

p4

ρ

V4
2

2
+ g z4⋅+= for the nozzle (assuming Bernoulli applies)

p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠

p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠
− hpump= for the pump

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) No minor loss

Hence for the hose
∆p

ρ

p2 p3−

ρ
= f

L

D
⋅

V
2

2
⋅= or V

2 ∆p⋅ D⋅

ρ f⋅ L⋅
=

We need to iterate to solve this for V because f is unknown until Re is known.  This can be done using Excel's Solver, but here:

∆p 750 kPa⋅= L 100 m⋅= e 0= D 3.5 cm⋅= ρ 1000
kg

m
3

⋅= ν 1.01 10
6−

×
m

2

s
⋅=

Make a guess for f f 0.01= V
2 ∆p⋅ D⋅

ρ f⋅ L⋅
= V 7.25

m

s
= Re

V D⋅

ν
= Re 2.51 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0150=

V
2 ∆p⋅ D⋅

ρ f⋅ L⋅
= V 5.92

m

s
= Re

V D⋅

ν
= Re 2.05 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0156=



V
2 ∆p⋅ D⋅

ρ f⋅ L⋅
= V 5.81

m

s
= Re

V D⋅

ν
= Re 2.01 10

5
×=

Given
1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= f 0.0156=

V
2 ∆p⋅ D⋅

ρ f⋅ L⋅
= V 5.80

m

s
= Re

V D⋅

ν
= Re 2.01 10

5
×=

Q V A⋅=
π D

2
⋅

4
V⋅= Q

π

4
0.035 m⋅( )

2
× 5.80×

m

s
⋅= Q 5.58 10

3−
×

m
3

s
= Q 0.335

m
3

min
⋅=

For the nozzle
p3

ρ

V3
2

2
+ g z3⋅+

p4

ρ

V4
2

2
+ g z4⋅+= so V4

2 p3 p4−( )⋅

ρ
V3

2
+=

V4 2 700× 10
3

×
N

m
2

⋅
m

3

1000 kg⋅
×

kg m⋅

s
2

N⋅
× 5.80

m

s
⋅⎛⎜

⎝
⎞
⎠

2

+= V4 37.9
m

s
=

For the pump p2

ρ
α

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠

p1

ρ
α

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠
− hpump= so hpump

p2 p1−

ρ
=

p1 350 kPa⋅= p2 700 kPa⋅ 750 kPa⋅+= p2 1450 kPa⋅=

The pump power is Ppump mpump hpump⋅=  Ppump and mpump are pump power and mass flow rate (software can't do a dot!)

Ppump ρ Q⋅
p2 p1−( )

ρ
⋅= Q p2 p1−( )⋅= Ppump 5.58 10

3−
×

m
3

s
⋅ 1450 350−( )× 10

3
×

N

m
2

⋅= Ppump 6.14 kW⋅=

Prequired

Ppump

η
= Prequired

6.14 kW⋅

70 %⋅
= Prequired 8.77 kW⋅=



 

Problem 8.180                                          [Difficulty: 4]   Part 1/2



Problem 8.180                                              [Difficulty: 4]   Part 2/2



Problem 8.181 [Difficulty: 2]

Given: Flow in water fountain

Find: Daily cost

Solution:

Basic equations Wpump Q ∆p ∆p ρ g H

Assumptions: 1) Steady flow 2) Incompressible flow 3) α is approximately 1

Available data Q 0.075
m

3

s
 H 10 m ηp 85 % ηm 85 %

ρ 999
kg

m
3

 Cost
0.14

kW hr
 (dollars)

Hence ∆p ρ g H ∆p 98 kPa

Wpump Q ∆p Wpump 7.35 kW

Power
Wpump

ηp ηm
 Power 10.2 kW

C Cost Power day C 34.17 (dollars)



 

Problem 8.182                                                        [Difficulty: 3]



Problem 8.183 [Difficulty: 4]

Given: Flow in a pump testing system

Find: Flow rate; Pressure difference; Power

Solution:

Governing equations: p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT=

major

hl∑
minor

hlm∑+= (8.29)

Re
ρ V⋅ D⋅

μ
= hl f

L

D
⋅

V
2

2
⋅= (8.34) hlm f

Le

D
⋅

V
2

2
⋅= (8.40b)

f
64

Re
= (8.36) (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (8.37) (Turbulent)

The energy equation (Eq. 8.29) becomes for the circuit (1 = pump outlet, 2 = pump inlet)

p1 p2−

ρ
f

L

D
⋅

V
2

2
⋅ 4 f Lelbow⋅⋅

V
2

2
⋅+ f Lvalve⋅

V
2

2
⋅+=

or ∆p ρ f⋅
V

2

2
⋅

L

D
4

Lelbow

D
⋅+

Lvalve

D
+

⎛
⎜
⎝

⎞
⎠

⋅= (1)

This must be matched to the pump characteristic equation; at steady state, the pressure generated by the pump just equals that

lost to friction in the circuit

∆p 750 15 10
4

× Q
2

⋅−= (2)

Finally, the power supplied to the pump, efficiency η, is

Power
Q ∆p⋅

η
= (3)

In Excel:
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Problem 8.184 Equations [Difficulty: 4]

Given: Pump/pipe system

Find: Flow rate, pressure drop, and power supplied; Effect of roughness

Solution:

Re
ρ V⋅ D⋅

μ
=

p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT ∆hpump−= hlT f

L

D
⋅

V
2

2
⋅=

f
64

Re
= (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (Turbulent)

The energy equation becomes for the system (1 = pipe inlet, 2 = pipe outlet)

∆hpump f
L

D
⋅

V
2

2
⋅= or ∆ppump ρ f⋅

L

D
⋅

V
2

2
⋅= (1)

This must be matched to the pump characteristic equation; at steady state, the pressure generated by the pump just equals that

lost to friction in the circuit

∆ppump 145 0.1 Q
2

⋅−= (2)

Finally, the power supplied to the pump, efficiency η, is

Power
Q ∆p⋅

η
= (3)

In Excel:
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Problem 8.185 [Difficulty: 3]

Given: Fan/duct system

Find: Flow rate

Solution:

p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT ∆hfan−= hlT f

L

Dh

⋅
V

2

2
⋅ K

V
2

2
⋅+=

The energy equation becomes for the system (1 = duct inlet, 2 = duct outlet)

∆hfan f
L

Dh

⋅
V

2

2
⋅ K

V
2

2
⋅+=

or ∆ppump
ρ V

2
⋅

2
f

L

Dh

⋅ K+⎛
⎜
⎝

⎞
⎠

⋅= (1) where Dh
4 A⋅

Pw

=
4 h

2
⋅

4 h⋅
= h=

This must be matched to the fan characteristic equation; at steady state, the pressure generated by the  fan just equals that lost to

friction in the circuit

∆pfan 1020 25 Q⋅− 30 Q
2

⋅−= (2)

In Excel:
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Problem 8.186                                                     [Difficulty: 4]   Part 1/2



 

Problem 8.186                                               [Difficulty: 4]   Part 2/2



Problem 8.187 [Difficulty: 5]

Given: Pipe system

Find: Flow in each branch

Solution:

Governing equations:
p1

ρ
α1

V1
2

2
 g z1








p2

ρ
α2

V2
2

2
 g z2







 hl (8.29) hlT f

L

D


V
2

2
 (8.34)

f
64

Re
 (Laminar) (8.36)

1

f
0.5

2.0 log

e

D

3.7

2.51

Re f
0.5












 (Turbulent) (8.37)

The energy equation (Eq. 8.29) can be simplified to ∆p ρ f
L

D


V
2

2


This can be written for each pipe section

In addition we have the following contraints

Q0 Q1 Q4 (1) Q4 Q2 Q3 (2)

∆p ∆p0 ∆p1 (3) ∆p ∆p0 ∆p4 ∆p2 (4)

∆p2 ∆p3 (5)

We have 5 unknown flow rates (or, equivalently, velocities) and five equations

In Excel:





Problem 8.188 [Difficulty: 5]

Given: Pipe system

Find: Flow in each branch if pipe 3 is blocked

Solution:

Governing equations:
p1

ρ
α1

V1
2

2
 g z1








p2

ρ
α2

V2
2

2
 g z2







 hl (8.29) hlT f

L

D


V
2

2
 (8.34)

f
64

Re
 (Laminar) (8.36)

1

f
0.5

2.0 log

e

D

3.7

2.51

Re f
0.5












 (Turbulent) (8.37)

The energy equation (Eq. 8.29) can be simplified to ∆p ρ f
L

D


V
2

2


This can be written for each pipe section

In addition we have the following contraints

Q0 Q1 Q4 (1) Q4 Q2 (2)

∆p ∆p0 ∆p1 (3) ∆p ∆p0 ∆p4 ∆p2 (4)

We have 4 unknown flow rates (or, equivalently, velocities) and four equations

In Excel:





Problem 8.189 [Difficulty: 5]

Given: Water pipe system

Find: Flow rates

Solution:

Basic equations
p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hl= hlT f

L

D
⋅

V
2

2
⋅=

f
64

Re
= (Laminar)

1

f
2.0− log

e

D

3.7

2.51

Re f⋅
+

⎛
⎜
⎜
⎝

⎞

⎠
⋅= (Turbulent)

The energy equation can be simplified to ∆p ρ f⋅
L

D
⋅

V
2

2
⋅=

This can be written for each pipe section

Pipe A (first section) ∆pA ρ fA⋅
LA

DA

⋅
VA

2

2
⋅= (1)

Pipe B (1.5 in branch) ∆pB ρ fB⋅
LB

DB

⋅
VB

2

2
⋅= (2)

Pipe C (1 in branch) ∆pC ρ fC⋅
LC

DC

⋅
VC

2

2
⋅= (3)

Pipe D (last section) ∆pD ρ fD⋅
LD

DD

⋅
VD

2

2
⋅= (4)

In addition we have the following contraints

QA QD= (5)

QA QB QC+= (6)

∆p ∆pA ∆pB+ ∆pD+= (7)

∆pB ∆pC= (8)

We have 4 unknown flow rates (or velocities) and four equations (5 - 8); Eqs 1 - 4 relate pressure drops to flow rates (velocities)



In Excel:



 

Problem 8.190                                                     [Difficulty: 4]



 

Problem 8.191                                                         [Difficulty: 5]   Part 1/2



 

Problem 8.191                                                    [Difficulty: 5]   Part 2/2



 

Problem 8.192                                                      [Difficulty: 2]



Problem 8.193 [Difficulty: 2]

Given: Flow through an orifice

Find: Pressure drop

Solution:

Basic equation mactual K At⋅ 2 ρ⋅ p1 p2−( )⋅⋅= K At⋅ 2 ρ⋅ ∆p⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

For the flow coefficient K K ReD1

Dt

D1

, 
⎛
⎜
⎝

⎞

⎠
=

At 65oC,(Table A.8) ρ 980
kg

m
3

⋅= ν 4.40 10
7−

×
m

2

s
⋅=

V
Q

A
= V

4

π

1

0.15 m⋅( )
2

× 20×
L

s
⋅

0.001 m
3

⋅

1 L⋅
×= V 1.13

m

s
=

ReD1
V D⋅

ν
= ReD1 1.13

m

s
⋅ 0.15× m⋅

s

4.40 10
7−

× m
2

⋅
×= ReD1 3.85 10

5
×=

β
Dt

D1

= β
75

150
= β 0.5=

From Fig. 8.20 K 0.624=

Then ∆p
mactual

K At⋅

⎛
⎜
⎝

⎞

⎠

2
1

2 ρ⋅
⋅=

ρ Q⋅

K At⋅
⎛
⎜
⎝

⎞
⎠

2
1

2 ρ⋅
⋅=

ρ

2

Q

K At⋅
⎛
⎜
⎝

⎞
⎠

2

⋅=

∆p
1

2
980×

kg

m
3

⋅ 20
L

s
⋅

0.001 m
3

⋅

1 L⋅
×

1

0.624
×

4

π
×

1

0.075 m⋅( )
2

×
⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

2

×= ∆p 25.8 kPa⋅=



Problem 8.194 [Difficulty: 3]

Given: Reservoir-pipe system

Find: Orifice plate pressure difference; Flow rate

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
⋅+ g z1⋅+

⎛⎜
⎜⎝

⎞

⎠

p2

ρ
α2

V2
2

2
⋅+ g z2⋅+

⎛⎜
⎜⎝

⎞

⎠
− hlT= hl Σhlm+= (8.29)

hl f
L

D
⋅

V
2

2
⋅= (8.34) hlm K

V
2

2
⋅= (8.40a)

f
64

Re
= (Laminar) (8.36)

1

f
0.5

2.0− log

e

D

3.7

2.51

Re f
0.5

⋅
+

⎛⎜
⎜
⎜⎝

⎞
⎟
⎠

⋅= (Turbulent) (8.37)

There are three minor losses: at the entrance; at the orifice plate; at the exit.  For each hlm K
V

2

2
⋅=

The energy equation (Eq. 8.29) becomes (α = 1) g ∆H⋅
V

2

2
f

L

D
⋅ Kent+ Korifice+ Kexit+⎛⎜

⎝
⎞
⎠

⋅= (1)

(ΔH is the difference in reservoir heights)

This cannot be solved for V (and hence Q) because f depends on V; we can solve by manually iterating, or by using Solver

The tricky part to this problem is that the orifice loss coefficient Korifice is given in Fig. 8.23 as a percentage of pressure differential

∆p across the orifice, which is unknown until V is known!

The mass flow rate is given by mrate K At⋅ 2 ρ⋅ ∆p⋅⋅= (2)

where K is the orifice flow coefficient, At is the orifice area, and Δp is the pressure drop across the orifice

Equations 1 and 2 form a set for solving for TWO unknowns: the pressure drop Δp across the orifice (leading to a value for Korifice)

and the velocity V.  The easiest way to do this is by using Solver



In Excel:



Problem 8.195 [Difficulty: 2]

Given: Flow through a venturi meter (NOTE: Throat is obviously 3 in not 30 in!)

Find: Flow rate

Solution:

Basic equation mactual

C At⋅

1 β
4

−

2 ρ⋅ p1 p2−( )⋅⋅=
C At⋅

1 β
4

−

2 ρ⋅ ∆p⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

β
Dt

D1

= β
3

6
= β 0.5=

Also ∆p ρHg g⋅ ∆h⋅= SGHg ρ⋅ g⋅ ∆h⋅=

Then Q
mactual

ρ
=

C At⋅

ρ 1 β
4

−⋅

2 ρ⋅ ∆p⋅⋅=
π C⋅ Dt

2
⋅

4 ρ⋅ 1 β
4

−⋅

2 ρ⋅ SGHg⋅ ρ⋅ g⋅ ∆h⋅⋅=
π C⋅ Dt

2
⋅

4 1 β
4

−⋅

2 SGHg⋅ g⋅ ∆h⋅⋅=

Q
π

4 1 0.5
4

−×

0.99×
1

4
ft⋅⎛⎜

⎝
⎞
⎠

2

× 2 13.6× 32.2×
ft

s
2

⋅ 1× ft⋅×= Q 1.49
ft

3

s
⋅=

Hence V
Q

A
=

4 Q⋅

π D1
2

⋅
= V

4

π

1

1

2
ft⋅⎛⎜

⎝
⎞
⎠

2
× 1.49×

ft
3

s
⋅= V 7.59

ft

s
⋅=

At 75oF,(Table A.7) ν 9.96 10
6−

×
ft

2

s
⋅=

ReD1

V D1⋅

ν
= ReD1 7.59

ft

s
⋅

1

2
× ft⋅

s

9.96 10
6−

× ft
2

⋅
×= ReD1 3.81 10

5
×=

Thus ReD1 > 2 x 105. The volume flow rate is Q 1.49
ft

3

s
⋅=



Problem 8.196 [Difficulty: 2]

Given: Flow through an venturi meter

Find: Flow rate

Solution:

Basic equation mactual

C At

1 β
4



2 ρ p1 p2 
C At

1 β
4



2 ρ ∆p Note that mactual is mass flow rate (the

software cannot render a dot!)

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

Available data D1 2 in Dt 1 in ∆p 25 psi ρ 1.94
slug

ft
3



β
Dt

D1

 β 0.5 and assume C 0.99

Then Q
mactual

ρ


C At

ρ 1 β
4



2 ρ ∆p

Q
π C Dt

2


4 1 β
4



2 ∆p

ρ
 Q 0.340

ft
3

s
 Q 152 gpm

Hence V
Q

A
 V

4 Q

π D1
2


 V 15.6

ft

s


At 68oF(Table A.7) ν 1.08 10
5


ft

2

s
 ReD1

V D1

ν
 ReD1 2.403 10

5


Thus ReD1 > 2 x 105. The volume flow rate is Q 152 gpm



 

Problem 8.197                                                        [Difficulty: 2]



Problem 8.198 [Difficulty: 3]

Given: Flow through a venturi meter

Find: Maximum flow rate for incompressible flow; Pressure reading

Solution:

Basic equation mactual

C At⋅

1 β
4

−

2 ρ⋅ p1 p2−( )⋅⋅=
C At⋅

1 β
4

−

2 ρ⋅ ∆p⋅⋅= Note that mactual is mass flow rate (the

software cannot render a dot!)

Assumptions: 1) Neglect density change 2) Use ideal gas equation for density

Then ρ
p

Rair T⋅
= ρ 60

lbf

in
2

⋅
12 in⋅

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
lbm R⋅

53.33 ft⋅ lbf⋅
×

1 slug⋅

32.2 lbm⋅
×

1

68 460+( ) R⋅
⋅= ρ 9.53 10

3−
×

slug

ft
3

⋅=

For incompressible flow V must be less than about 100 m/s or 330 ft/s at the throat.  Hence

mactual ρ V2⋅ A2⋅= mactual 9.53 10
3−

×
slug

ft
3

330×
ft

s
⋅

π

4
×

1

4
ft⋅⎛⎜

⎝
⎞
⎠

2

×= mactual 0.154
slug

s
⋅=

β
Dt

D1

= β
3

6
= β 0.5=

Also ∆p ρHg g⋅ ∆h⋅= ∆h
∆p

ρHg g⋅
=

and in addition ∆p
1

2 ρ⋅

mactual

C At⋅

⎛
⎜
⎝

⎞

⎠

2

⋅ 1 β
4

−( )⋅= so ∆h
1 β

4
−( )

2 ρ⋅ ρHg⋅ g⋅

mactual

C At⋅

⎛
⎜
⎝

⎞

⎠

2

⋅=

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

∆h
1 0.5

4
−( )

2

ft
3

9.53 10
3−

× slug

×
ft

3

13.6 1.94⋅ slug⋅
×

s
2

32.2 ft⋅
× 0.154

slug

s

1

0.99
×

4

π
×

4

1 ft⋅
⎛⎜
⎝

⎞
⎠

2

×
⎡
⎢
⎣

⎤
⎥
⎦

2

×= ∆h 6.98 in⋅=

Hence V
Q

A
=

4 mactual⋅

π ρ⋅ D1
2

⋅
= V

4

π

ft
3

9.53 10
3−

× slug

×
1

1

2
ft⋅⎛⎜

⎝
⎞
⎠

2
× 0.154×

slug

s
= V 82.3

ft

s
⋅=

At 68oF,(Table A.7) ν 1.08 10
5−

×
ft

2

s
⋅=

ReD1

V D1⋅

ν
= ReD1 82.3

ft

s
⋅

1

2
× ft⋅

s

1.08 10
5−

× ft
2

⋅
×= ReD1 3.81 10

6
×=

Thus ReD1 > 2 x 105. The mass flow rate is mactual 0.154
slug

s
⋅= and pressure ∆h 6.98 in⋅= Hg



 

Problem 8.199                                                      [Difficulty: 3]



Problem 8.200 [Difficulty: 3]

Given: Flow through venturi

Find: Maximum flow rate before cavitation

Solution:

Note that mactual is mass flow rate (the

software cannot render a dot!)
Basic equation mactual

C At

1 β
4



2 ρ p1 p2 
C At

1 β
4



2 ρ ∆p

For ReD1 > 2 x 105, 0.980 < C < 0.995.  Assume C = 0.99, then check Re

Available data D1 100 mm Dt 50 mm p1g 200 kPa C 0.99 (Asumption - verify later)

patm 101 kPa pv 1.23 kPa Steam tables - saturation pressure at 10oC

ρ 1000
kg

m
3

 ν 1.3 10
6


m

2

s
 (Table A.8)

Then At

π Dt
2



4
 At 1963 mm

2
 A1

π D1
2



4
 A1 7854 mm

2


β
Dt

D1

 β 0.5

p1 patm p1g p1 301 kPa

The smallest allowable throat pressure is the saturation pressure pt pv pt 1.23 kPa

Hence the largest Δp is ∆p p1 pt ∆p 300 kPa

Then mrate

C At

1 β
4



2 ρ ∆p mrate 49.2
kg

s


Q
mrate

ρ
 Q 0.0492

m
3

s


V1
Q

A1

 V1 6.26
m

s


Check the Re Re1

V1 D1

ν
 Re1 4.81 10

5


Thus ReD1 > 2 x 105. The volume flow rate is Q 0.0492
m

3

s
 Q 49.2

L

s




Problem 8.201 [Difficulty: 1]

V1, A1 V2, A2 

Given: Flow through a diffuser

Find: Derivation of Eq. 8.42

Solution:

Basic equations Cp

p2 p1−

1

2
ρ⋅ V1

2
⋅

=
p1

ρ

V1
2

2
+ g z1⋅+

p2

ρ

V2
2

2
+ g z2⋅+= Q V A⋅=

Assumptions:  1) All the assumptions of the Bernoulli equation 2) Horizontal flow 3) No flow separation

From Bernoulli
p2 p1−

ρ

V1
2

2

V2
2

2
−=

V1
2

2

V1
2

2

A1

A2

⎛
⎜
⎝

⎞

⎠

2

⋅−= using continuity

Hence Cp

p2 p1−

1

2
ρ⋅ V1

2
⋅

=
1

1

2
V1

2
⋅

V1
2

2

V1
2

2

A1

A2

⎛
⎜
⎝

⎞

⎠

2

⋅−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅= 1
A1

A2

⎛
⎜
⎝

⎞

⎠

2

−=

Finally Cp 1
1

AR
2

−= which is Eq. 8.42.

This result is not realistic as a real diffuser is very likely to have flow separation



 

Problem 8.202                                                    [Difficulty: 4]   Part 1/2



Problem 8.202                                              [Difficulty: 4] Part 2/2



 

Problem 8.203                                                [Difficulty: 3]



 

Problem 8.204                                                  [Difficulty: 5]   Part 1/2



 

Problem 8.204                                                      [Difficulty: 5]   Part 2/2



 

Problem 8.205                                                         [Difficulty: 5]   Part 1/2



 

Problem 8.205                                                       [Difficulty: 5]   Part 2/2



Problem 9.1 [Difficulty: 2]

Given: Minivan traveling at various speeds

Find: Plot of boundary layer length as function of speed

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

Re crit = VL crit/ =500000

The critical length is then

L crit = 500000/V 

Tabulated or graphical data:

 = 3.79E-07 lbf.s/ft
2

 = 0.00234 slug/ft
3

(Table A.9, 68
o
F)

Computed results:

V  (mph) L crit (ft)

10 5.52

13 4.42

15 3.68

18 3.16

20 2.76

30 1.84

40 1.38

50 1.10

60 0.920

70 0.789

80 0.690

90 0.614

Length of Laminar Boundary Layer

on the Roof of a Minivan

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90 100

V  (mph)

L crit (ft)



Problem 9.2 [Difficulty: 2]

Given: Model of riverboat

Find: Distance at which transition occurs

Solution:

Basic equation Rex
ρ U x

μ


U x

ν
 and transition occurs at about Rex 5 10

5


For water at 10oC ν 1.30 10
6


m

2

s
 (Table A.8) and we are given U 3.5

m

s


Hence xp

ν Rex

U
 xp 0.186 m xp 18.6 cm

For the model xm

xp

18
 xm 0.0103 m xm 10.3 mm



Problem 9.3 [Difficulty: 3]

Given: Boeing 757

Find: Point at which BL transition occurs during takeoff and at cruise

Solution:

Basic equation Rex
ρ U x

μ


U x

ν
 and transition occurs at about Rex 5 10

5


For air at 68oF ν 1.62 10
4


ft

2

s
 (Table A.9) and we are given U 160

mi

hr
 234.7

ft

s


Hence xp

ν Rex

U
 xp 0.345 ft xp 4.14 in

At 33,000 ft T 401.9 R (Intepolating from Table A.3) T 57.8 °F

We need to estimate  or  at this temperature.  From Appendix A-3

μ
b T

1
S

T


 b 1.458 10
6


kg

m s K

1

2


 S 110.4 K

Hence μ
b T

1
S

T


 μ 1.458 10
5


N s

m
2

 μ 3.045 10
7


lbf s

ft
2



For air at 10,000 m (Table A.3)

ρ

ρSL

0.3376 ρSL 0.002377
slug

ft
3

 ρ 0.3376 ρSL ρ 8.025 10
4


slug

ft
3



ν
μ

ρ
 ν 3.79 10

4


ft
2

s
 and we are given U 530

mi

hr


Hence xp

ν Rex

U
 xp 0.244 ft xp 2.93 in



Problem 9.4 [Difficulty: 2]

Given: Experiment with 1 cm diameter sphere in SAE 10 oil

Find: Reasonableness of two flow extremes

Solution:

Basic equation ReD
ρ U D

μ


U D

ν
 and transition occurs at about ReD 2.5 10

5


For SAE 10 ν 1.1 10
4


m

2

s
 (Fig. A.3 at 20oC) and D 1 cm

For ReD 1 we find U
ν ReD

D
 U 0.011

m

s
 U 1.10

cm

s
 which is reasonable

For ReD 2.5 10
5

 U
ν ReD

D
 U 2750

m

s
 which is much too high!

Note that for ReD 2.5 10
5

 we need to increase the sphere diameter D by a factor of about 1000, or reduce the

viscosity ν by the same factor, or some combination of these.  One possible solution is

For water ν 1.01 10
6


m

2

s
 (Table A.8 at 20oC) and D 10 cm

For ReD 2.5 10
5

 we find U
ν ReD

D
 U 2.52

m

s
 which is reasonable

Hence one solution is to use a 10 cm diameter sphere in a water tank.



Problem 9.5 [Difficulty: 2]

Given: Flow around American and British golf balls, and soccer ball

Find: Speed at which boundary layer becomes turbulent

Solution:

Basic equation ReD
ρ U D

μ


U D

ν
 and transition occurs at about ReD 2.5 10

5


For air ν 1.62 10
4


ft

2

s
 (Table A.9)

For the American golf ball D 1.68 in Hence U
ν ReD

D
 U 289

ft

s
 U 197 mph U 88.2

m

s


For the British golf ball D 41.1 mm Hence U
ν ReD

D
 U 300

ft

s
 U 205 mph U 91.5

m

s


For soccer ball D 8.75 in Hence U
ν ReD

D
 U 55.5

ft

s
 U 37.9 mph U 16.9

m

s




Problem 9.6 [Difficulty: 2]

Given: Sheet of plywood attached to the roof of a car

Find: Speed at which boundary layer becomes turbulent; Speed at which 90% is turbulent

Solution:

Basic equation Rex
ρ U x

μ


U x

ν
 and transition occurs at about Rex 5 10

5


For air ν 1.50 10
5


m

2

s
 (Table A.10)

Now if we assume that we orient the plywood such that the longer dimension is parallel to the motion of the car, we can say: x 2 m

Hence U
ν Rex

x
 U 3.8

m

s
 U 13.50

km

hr


When 90% of the boundary layer is turbulent x 0.1 2 m Hence U
ν Rex

x
 U 37.5

m

s
 U 135.0

km

hr




Problem 9.7 [Difficulty: 2]

Given: Laminar boundary layer (air & water)

Find: Plot of boundary layer length as function of speed (at various altitudes for air)

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

Re crit = UL crit/ = 500000

The critical length is then

L crit = 500000/U 

For air at sea level and 10 km, we can use tabulated data for density  from Table A.3.

For the viscosity , use the Sutherland correlation (Eq. A.1)

 = bT
1/2

/(1+S /T )

b  = 1.46E-06 kg/m.s.K
1/2

S  = 110.4 K

Air (sea level, T  = 288.2 K): Air (10 km, T  = 223.3 K): Water (20
o
C):

 = 1.225 kg/m
3  = 0.414 kg/m

3  = 998 slug/ft
3

(Table A.3) (Table A.3)  = 1.01E-03 N.s/m
2

 = 1.79E-05 N.s/m
2  = 1.46E-05 N.s/m

2
(Table A.8)

(Sutherland) (Sutherland)



Computed results:

Water Air (Sea level) Air (10 km)

L crit (m) L crit (m) L crit (m)

0.05 10.12 146.09 352.53

0.10 5.06 73.05 176.26

0.5 1.01 14.61 35.25

1.0 0.506 7.30 17.63

5.0 0.101 1.46 3.53

15 0.0337 0.487 1.18

20 0.0253 0.365 0.881

25 0.0202 0.292 0.705

30 0.0169 0.243 0.588

50 0.0101 0.146 0.353

100 0.00506 0.0730 0.176

200 0.00253 0.0365 0.0881

1000 0.00051 0.0073 0.0176

U  (m/s)

Length of Laminar Boundary Layer

for Water and Air

0.0

0.0

1.0

100.0

1.E-02 1.E+00 1.E+02 1.E+04

U  (m/s)

L crit (m)

Water

Air (Sea level)

Air (10 km)



Problem 9.8 [Difficulty: 2]

Given: Aircraft or missile at various altitudes

Find: Plot of boundary layer length as function of altitude

Solution:

Governing equations:

The critical Reynolds number for transition to turbulence is

Re crit = UL crit/ = 500000

The critical length is then

L crit = 500000/U 

Let L 0 be the length at sea level (density 0 and viscosity 0).  Then

L crit/L 0 = (/0)/(/0)

The viscosity of air increases with temperature so generally decreases with elevation;

the density also decreases with elevation, but much more rapidly.

Hence we expect that the length ratio increases with elevation

For the density , we use data from Table A.3.

For the viscosity , we use the Sutherland correlation (Eq. A.1)

 = bT
1/2

/(1+S /T )

b  = 1.46E-06 kg/m.s.K
1/2

S  = 110.4 K



Computed results:

z  (km) T  (K) /0 /0 L crit/L 0

0.0 288.2 1.0000 1.000 1.000

0.5 284.9 0.9529 0.991 1.04

1.0 281.7 0.9075 0.982 1.08

1.5 278.4 0.8638 0.973 1.13

2.0 275.2 0.8217 0.965 1.17

2.5 271.9 0.7812 0.955 1.22

3.0 268.7 0.7423 0.947 1.28

3.5 265.4 0.7048 0.937 1.33

4.0 262.2 0.6689 0.928 1.39

4.5 258.9 0.6343 0.919 1.45

5.0 255.7 0.6012 0.910 1.51

6.0 249.2 0.5389 0.891 1.65

7.0 242.7 0.4817 0.872 1.81

8.0 236.2 0.4292 0.853 1.99

9.0 229.7 0.3813 0.834 2.19

10.0 223.3 0.3376 0.815 2.41

11.0 216.8 0.2978 0.795 2.67

12.0 216.7 0.2546 0.795 3.12

13.0 216.7 0.2176 0.795 3.65

14.0 216.7 0.1860 0.795 4.27

15.0 216.7 0.1590 0.795 5.00

16.0 216.7 0.1359 0.795 5.85

17.0 216.7 0.1162 0.795 6.84

18.0 216.7 0.0993 0.795 8.00

19.0 216.7 0.0849 0.795 9.36

20.0 216.7 0.0726 0.795 10.9

22.0 218.6 0.0527 0.800 15.2

24.0 220.6 0.0383 0.806 21.0

26.0 222.5 0.0280 0.812 29.0

28.0 224.5 0.0205 0.818 40.0

30.0 226.5 0.0150 0.824 54.8

Length of Laminar Boundary Layer

versus Elevation

0
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20

30

40
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Problem 9.9 [Difficulty: 2]

Given: Sinusoidal velocity profile for laminar boundary layer:

u A sin B y( ) C

Find: (a) Three boundary conditions applicable to this profile
(b) Constants A, B, and C.

Solution: For the boundary layer, the following conditions apply:

u 0 at y 0 (no slip condition)

u U at y δ (continuity with freestream)

y
u




0 at y δ (no shear stress at freestream)

Applying these boundary conditions:

1( ) u 0( ) A sin 0( ) C 0 C 0

2( ) u δ( ) A sin B δ( ) U

3( )
y

u



A B cos B y( ) Thus:

y
u δ( )




A B cos B δ( ) 0 Therefore: B δ

π

2
 or B

π

2 δ


Back into (2): A sin
π

2δ
δ





 U Therefore: A U

So the expression for the velocity profile is: u U sin
π

2

y

δ










Problem 9.10 [Difficulty: 2]

Given: Linear, sinusoidal, and parabolic velocity profiles

Find: Plots of y/δ vs u/U for all three profiles

Solution: Here are the profiles:
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 Problem 9.11 [Difficulty: 2] 
 

 
 

Given: Laminar boundary layer profile 

Find: If it satisfies BC’s; Evaluate */ and / 

Solution:  
 

The boundary layer equation is  

3

2

1

2

3








yy

U

u
  for which u = U at y =  

The BC’s are      000 
y

dy

du
u  

At y = 0         00
2

1
0

2

3 3 
U

u
 

At y =      0
2

31

2

3

2

31

2

3
3

2

3

2



























U
y

U
dy

du

y

 

 

For *:      





 






 

 


00

11* dy
U

u
dy

U

u
 

Then      





 














 






 

1

0

1

00

111
1* 


 

d
U

uy
d

U

u
dy

U

u
 

with     
3

2

1

2

3  
U

u
 

Hence     375.0
8

3

8

1

4

3

2

1

2

3
11

*
1

0

42

1

0

3

1

0





 






 






   




dd
U

u
 

 

For :      





 






 

 


00

11 dy
U

u

U

u
dy

U

u

U

u
 

Then      





 














 






 

1

0

1

00

111
1 


 

d
U

u

U

uy
d

U

u

U

u
dy

U

u

U

u
 

Hence  





 






 





 






 

1

0

6432

1

0

33

1

0
4

1

2

3

2

1

4

9

2

3

2

1

2

3
1

2

1

2

3
1 




ddd
U

u

U

u
 

139.0
280

39

28

1

10

3

8

1

4

3

4

3
1

0

75432 



  




 



 Problem 9.12 [Difficulty: 2] 
 

 

Given: Laminar boundary layer profile 

Find: If it satisfies BC’s; Evaluate */ and / 

Solution:  
 

The boundary layer equation is  

43

22 















yyy

U

u
  for which u = U at y =  

 

The BC’s are      000 
y

dy

du
u  

At y = 0           000202
43 

U

u
 

At y =      046
1

246
1

2
4

3

3

2

4

3

3

2






























U
yy

U
dy

du

y

 

For *:      





 






 

 


00

11* dy
U

u
dy

U

u
 

Then      





 














 






 

1

0

1

00

111
1* 


 

d
U

uy
d

U

u
dy

U

u
 

with     
4322  

U

u
 

Hence    3.0
10

3

5

1

2

1
2211

*
1

0

542

1

0

43

1

0





 






   




dd
U

u
 

 

For :      





 






 

 


00

11 dy
U

u

U

u
dy

U

u

U

u
 

Then      





 














 






 

1

0

1

00

111
1 


 

d
U

u

U

uy
d

U

u

U

u
dy

U

u

U

u
 

Hence
 

     





 

1

0

8765432

1

0

4343

1

0

44492422121 



ddd
U

u

U

u
 

117.0
315

37

9

1

2

1

7

4

5

9

2

1

3

4
1

0

9875432 



  




 



 Problem 9.13 [Difficulty: 3] 
 

 
 

Given: Laminar boundary layer profile 

Find: If it satisfies BC’s; Evaluate */ and / 

Solution:  
 

The boundary layer equation is 
2

02



 y

y

U

u
 

    


 y
y

U

u

2
1222   for which u = U at y =  

 

The BC’s are     000 
y

dy

du
u  

At y = 0      002 
U

u
 

At y =       0
1

22 



 


y

U
dy

du
  so it fails the outer BC. 

This simplistic distribution is a piecewise linear profile: The first half of the layer has velocity gradient 

UU

414.12  , and the 

second half has velocity gradient  

UU

586.022  .  At y = , we make another transition to zero velocity gradient. 

For *:     





 






 

 


00

11* dy
U

u
dy

U

u
 

Then     





 














 






 

1

0

1

00

111
1* 


 

d
U

uy
d

U

u
dy

U

u
 

with    
2

1
02  

U

u
 

        1
2

1
1222  

U

u
  

Hence 
 

            
1

21

2

21

0

2
1

21

21

0

1

0

221
2

1
12

22

1
12221211

*




 



 






   




ddd
U

u
 



396.0
4

2

4

3

8

2

4

1

8

2

2

1*























  

 

For :     





 






 

 


00

11 dy
U

u

U

u
dy

U

u

U

u
 

Then     





 














 






 

1

0

1

00

111
1 


 

d
U

u

U

uy
d

U

u

U

u
dy

U

u

U

u
 

Hence, after a LOT of work  
 

             





 

1

21

21

0

1

0

1222112222121 



ddd
U

u

U

u

      152.0
12

1

6

2

24

2

12

1

8

2
122

2

1
122

3

1

2

1

3

2
2

1

21

2

21

0

2 














 




















 




 

 



Problem 9.14 [Difficulty: 2]

Given: Power law velocity profiles

Find: Plots of y/δ vs u/U for this profile and the parabolic profile of Problem 9.10

Solution: Here are the profiles:

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Power

Parabolic

Boundary Layer Velocity Profiles

Dimensionless Velocity u/U

D
im

en
si

o
n

le
ss

 D
is

ta
n

ce
 y

/δ

Note that the power law profile gives and infinite value of du/dy as y approaches zero:

 
  0

7

7

6











yas
yU

yd

UudU

dy

du





Problem 9.15 [Difficulty: 2]

Given: Linear, sinusoidal, and parabolic velocity profiles

Find: The momentum thickness expressed as ș/δ for each profile

Solution: We will apply the definition of the momentum thickness to each profile.

Governing

Equation:
θ

0

δ

y
u

U
1

u

U












d (Definition of momentum thickness)

If we divide both sides of the equation by δ, we get:
θ

δ

1

δ
0

δ

y
u

U
1

u

U












d However, we can change

the variable of integration to Ș = y/δ, resulting in: dη
1

δ
dy Therefore:

θ

δ
0

1

η
u

U
1

u

U












d

For the linear profile:
u

U
η Into the momentum thickness:

θ

δ
0

1

ηη 1 η( )




d
0

1

ηη η
2

 



d Evaluating this integral:
θ

δ

1

2

1

3


1

6


θ

δ
0.1667

For the sinusoidal profile:
u

U
sin

π

2
η





 Into the momentum thickness:

θ

δ
0

1

ηsin
π

2
η





1 sin
π

2
η

















d

0

1

ηsin
π

2
η





sin
π

2
η











2














d

Evaluating this integral:
θ

δ

2

π

2

π

π

4


θ

δ
0.1366

For the parabolic profile:
u

U
2 η η

2
 Into the momentum thickness:

θ

δ
0

1

η2 η η
2

  1 2 η η
2

  




d
0

1

η2 η 5 η
2

 4 η
3

 η
4

 



d

Evaluating this integral:
θ

δ
1

5

3
 1

1

5


2

15


θ

δ
0.1333



Problem 9.16 [Difficulty: 2]

Given: Linear, sinusoidal, and parabolic velocity profiles

Find: The displacement thickness expressed as δ*/δ for each profile

Solution: We will apply the definition of the displacement thickness to each profile.

Governing

Equation:
δdisp

0

infinity

y1
u

U











d

0

δ

y1
u

U











d (Definition of displacement thickness)

If we divide both sides of the equation by δ, we get:
δdisp

δ

1

δ
0

δ

y1
u

U











d However, we can change

the variable of integration to η = y/δ, resulting in: dη
1

δ
dy Therefore:

δdisp

δ
0

1

η1
u

U











d

For the linear profile:
u

U
η Into the displacement thickness:

δdisp

δ
0

1

η1 η( )




d Evaluating this integral:
δdisp

δ
1

1

2


1

2


δdisp

δ
0.5000

For the sinusoidal profile:
u

U
sin

π

2
η





 Into the displacement thickness:

δdisp

δ
0

1

η1 sin
π

2
η
















d Evaluating this integral:
δdisp

δ
1

2

π


δdisp

δ
0.3634

For the parabolic profile:
u

U
2 η η

2
 Into the displacement thickness:

δdisp

δ
0

1

η1 2 η η
2

  




d
0

1

η1 2 η η
2

 



d

Evaluating this integral:
δdisp

δ
1 1

1

3


1

3


δdisp

δ
0.3333



Problem 9.17 [Difficulty: 2]

Given: Power law and parabolic velocity profiles

Find: The displacement and momentum thicknesses expressed as δ*/δ and ș/δ for each

profile

Solution: We will apply the definition of the displacement and momentum thickness to each profile.

Governing

Equations:
δdisp

0

infinity

y1
u

U











d

0

δ

y1
u

U











d (Definition of displacement thickness)

θ

0

δ

y
u

U
1

u

U












d (Definition of momentum thickness)

If we divide both sides of the equations by δ, we get:
δdisp

δ

1

δ
0

δ

y1
u

U











d
θ

δ

1

δ
0

δ

y
u

U
1

u

U












d

However, we can change the variable of integration to Ș = y/δ, resulting in: dη
1

δ
dy Therefore:

δdisp

δ
0

1

η1
u

U











d
θ

δ
0

1

η
u

U
1

u

U












d

For the power law profile:
u

U
η

1

7
 Into the displacement thickness:

δdisp

δ
0

1

η1 η

1

7















d

Evaluating this integral:
δdisp

δ
1

7

8


1

8


δdisp

δ
0.1250

Into the momentum thickness:
θ

δ
0

1

ηη

1

7
1 η

1

7















d
0

1

ηη

1

7
η

2

7















d Evaluating this integral:
θ

δ

7

8

7

9


7

72


θ

δ
0.0972

For the parabolic profile:
u

U
2 η η

2


Into the displacement thickness:
δdisp

δ
0

1

η1 2 η η
2

  




d
0

1

η1 2 η η
2

 



d



Evaluating this integral:
δdisp

δ
1 1

1

3


1

3


δdisp

δ
0.3333

Into the momentum thickness:
θ

δ
0

1

η2 η η
2

  1 2 η η
2

  




d
0

1

η2 η 5 η
2

 4 η
3

 η
4

 



d

Evaluating this integral:
θ

δ
1

5

3
 1

1

5


2

15


θ

δ
0.1333

Profile δdisp θ

Power Law 0.1250 δ 0.0972 δ

Parabolic 0.3333 δ 0.1333 δ



Rx 

CV 

c d 

Problem 9.18 [Difficulty: 3]

Given: Data on fluid and boundary layer geometry

Find: Mass flow rate across ab; Drag

Solution:

The given data is ρ 1.5
slug

ft
3

 U 10
ft

s
 L 10 ft δ 1 in b 3 ft

Governing

equations: Mass

Momentum

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction (4) Uniform flow at a

Applying these to the CV abcd

Mass ρ U b δ( )

0

δ

yρ u b




d mab 0

For the boundary layer
u

U

y

δ
 η

dy

δ
dη

Hence mab ρ U b δ
0

1

yρ U η δ




d ρ U b δ
1

2
ρ U b δ

mab
1

2
ρ U b δ mab 1.875

slug

s


Momentum Rx U ρ U δ( ) mab uab
0

δ

yu ρ u b




d

Note that uab U and

0

δ

yu ρ u b




d

0

1

ηρ U
2

 b δ η
2






d

Rx ρ U
2

 b δ
1

2
ρ U b δ U

0

1

yρ U
2

 b δ η
2






d

Rx ρ U
2

 b δ
1

2
ρ U

2
 δ

1

3
ρ U

2
 δ Rx

1

6
 ρ U

2
 b δ Rx 6.25 lbf

We are able to compute the boundary layer drag even though we do not know the viscosity because it is the viscosity
that creates the boundary layer in the first place



Problem 9.19 [Difficulty: 3]

Given: Data on fluid and boundary layer geometry

Find: Mass flow rate across ab; Drag; Compare to Problem 9.18

Solution:

The given data is ρ 1.5
slug

ft
3

 U 10
ft

s
 L 3 ft δ 0.6 in b 10 ft

Governing

equations: Mass

Momentum

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction (4) Uniform flow at a

Applying these to the CV abcd

Mass ρ U b δ( )

0

δ

yρ u b




d mab 0

For the boundary layer
u

U

y

δ
 η

dy

δ
dη

Hence mab ρ U b δ
0

1

yρ U η δ




d ρ U b δ
1

2
ρ U b δ

mab
1

2
ρ U b δ mab 3.75

slug

s


Momentum Rx U ρ U δ( ) mab uab
0

δ

yu ρ u b




d

Note that uab U and

0

δ

yu ρ u b




d

0

1

ηρ U
2

 b δ η
2






d

Rx ρ U
2

 b δ
1

2
ρ U b δ U

0

1

yρ U
2

 b δ η
2






d

Rx ρ U
2

 b δ
1

2
ρ U

2
 δ

1

3
ρ U

2
 δ

Rx
1

6
 ρ U

2
 b δ Rx 12.50 lbf

We should expect the drag to be larger than for Problem 9.18 because the viscous friction is mostly concentrated near the leading

edge (which is only 3 ft wide in Problem 9.18 but 10 ft here).  The reason viscous stress is highest at the front region is that the

boundary layer is very small (δ <<) so τ = μdu/dy ~ μU/δ >>



Problem 9.20 [Difficulty: 3]

  δ = 1 in  

Given: Flow over a flat plate with parabolic laminar boundary layer profile

Find: (a) Mass flow rate across ab

(b) x component (and direction) of force needed to hold the plate in place

Solution: We will apply the continuity and x-momentum equations to this system.

0



 CSCV
AdVVd

t




Governing

Equations:
(Continuity)

bxsx
CSCV

FFAdVuVud
t










Rx 

CV 

c d 

(x- Momentum)

Assumptions: (1) Steady flow

(2) No net pressure forces

(3) No body forces in the x-direction

(4) Uniform flow at da

From the assumptions, the continuity equation becomes: ρ U b δ
0

δ

yρ u b




d mab 0 The integral can be written as:

0

δ

yρ u b




d ρ b
0

δ

yu




d ρ U b δ
0

1

η2 η η
2

 



d where η
y

δ
 This integral is equal to: ρ U b δ 1

1

3







2

3
ρ U b δ

Solving continuity for the mass flux through ab we get: mab ρ U b δ
2

3
ρ U b δ

1

3
ρ U b δ Substituting known values:

mab
1

3
1.5

slug

ft
3

 10
ft

s
 3.0 ft 1 in

ft

12 in
 mab 1.250

slug

s


From the assumptions, the momentum equation becomes: Rx uda ρ U b δ( ) uab mab
0

δ

yu ρ u b




d where uda uab U

Thus: Rx ρ U
2

 b δ
1

3
ρ U

2
 b δ

0

δ

yu ρ u b




d
2

3
 ρ U

2
 b δ

0

δ

yu ρ u b




d The integral can be written as:

0

δ

yu ρ u b




d ρ b
0

δ

yu
2




d ρ U
2

 b δ
0

1

η2 η η
2

 2





d ρ U
2

 b δ
0

1

η4 η
2

 4 η
3

 η
4

 



d This integral is equal to:

ρ U
2

 b δ
4

3
1

1

5







8

15
ρ U b δ Therefore the force on the plate is: Rx

8

15

2

3





ρ U

2
 b δ

2

15
 ρ U

2
 b δ

Substituting known values: Rx
2

15
 1.5

slug

ft
3

 10
ft

s






2

 3.0 ft 1 in
ft

12 in


lbf s
2



slug ft
 Rx 5.00 lbf

(to the left)

This force must be applied to the control volume by the plate.



Problem 9.21 [Difficulty: 2]

Given: Data on wind tunnel and boundary layers

Find: Displacement thickness at exit; Percent change in uniform velocity through test section

Solution

:The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary
layer grows it reduces the size of the core.  One approach would be to integrate the 1/7 law velocity profile to
compute the mass flow in the boundary layer; an easier approach is to simply use the displacement thickness!

Basic
equations

(4.12) δdisp

0

δ

y1
u

U











d

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U A const and
u

U

y

δ







1

7



The design data is Udesign 160
ft

s
 w 1 ft h 1 ft Adesign w h Adesign 1 ft

2


The volume flow rate is Q Udesign Adesign Q 160
ft

3

s


We also have δin 0.4 in δexit 1 in

Hence δdisp

0

δ

y1
u

U











d

0

δ

y1
y

δ







1

7


















d δ

0

1

η1 η

1

7















d where η
y

δ
 δdisp

δ

8


Hence at the inlet and exit

δdispin

δin

8
 δdispin 0.05 in δdispexit

δexit

8
 δdispexit 0.125 in



Hence the areas are Ain w 2 δdispin  h 2 δdispin  Ain 0.9834 ft
2



Aexit w 2 δdispexit  h 2 δdispexit  Aexit 0.9588 ft
2



Applying mass conservation between "design" conditions and the inlet

ρ Udesign Adesign  ρ Uin Ain  0

or Uin Udesign

Adesign

Ain

 Uin 162.7
ft

s


Also Uexit Udesign

Adesign

Aexit

 Uexit 166.9
ft

s


The percent change in uniform velocity is then
Uexit Uin

Uin

2.57 % The exit displacement thickness is δdispexit 0.125 in



Problem 9.22 [Difficulty: 2]

Given: Data on boundary layer in a cylindrical duct

Find: Velocity U2 in the inviscid core at location 2; Pressure drop

Solution:

The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it
reduces the size of the core.  One approach would be to integrate the 1/7 law velocity profile to compute the mass flow in the
boundary layer; an easier approach is to simply use the displacement thickness!

The given or available data (from Appendix A) is

ρ 1.23
kg

m
3

 U1 12.5
m

s
 D 100 mm δ1 5.25 mm δ2 24 mm

Governing

equations: Mass

Bernoulli
p

ρ

V
2

2
 g z constant (4.24)

The displacement thicknesses can be computed from boundary layer thicknesses using  Eq. 9.1

δdisp

0

δ

y1
u

U











d δ

0

1

η1 η

1

7















d
δ

8


Hence at locations 1 and 2 δdisp1

δ1

8
 δdisp1 0.656 mm δdisp2

δ2

8
 δdisp2 3 mm

Applying mass conservation at locations 1 and 2 ρ U1 A1  ρ U2 A2  0 or U2 U1

A1

A2



The two areas are given by the duct cross section area minus the displacement boundary layer

A1
π

4
D 2 δdisp1 2 A1 7.65 10

3
 m

2
 A2

π

4
D 2 δdisp2 2 A2 6.94 10

3
 m

2


Hence U2 U1

A1

A2

 U2 13.8
m

s


For the pressure drop we can apply Bernoulli to locations 1 and 2 to find p1 p2 ∆p
ρ

2
U2

2
U1

2




 ∆p 20.6 Pa



Problem 9.23 [Difficulty: 2]

Given: Data on wind tunnel and boundary layers

Find: Uniform velocity at exit; Change in static pressure through the test section

Solution:

Basic

equations

(4.12) δdisp

0

δ

y1
u

U











d
p

ρ

V
2

2
 g z const

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U A const an
d

u

U

y

δ







1

7



The given data is U1 25
m

s
 h 25 cm A h

2
 A 625 cm

2


We also have δ1 20 mm δ2 30 mm

Hence δdisp

0

δ

y1
u

U











d

0

δ

y1
y

δ







1

7


















d δ

0

1

η1 η

1

7















d wher
e

η
y

δ
 δdisp

δ

8


Hence at the inlet and exit

δdisp1

δ1

8
 δdisp1 2.5 mm δdisp2

δ2

8
 δdisp2 3.75 mm

Hence the areas are A1 h 2 δdisp1 2 A1 600 cm
2



A2 h 2 δdisp2 2 A2 588 cm
2



Applying mass conservation between Points 1 and 2

ρ U1 A1  ρ U2 A2  0 or U2 U1

A1

A2

 U2 25.52
m

s


The pressure change is found from Bernoulli
p1

ρ

U1
2

2


p2

ρ

U2
2

2
 with ρ 1.21

kg

m
3



Hence ∆p
ρ

2
U1

2
U2

2




 ∆p 15.8 Pa The pressure drops slightly through the test section



Problem 9.24 [Difficulty: 2]

Given: Data on wind tunnel and boundary layers

Find: Uniform velocity at Point 2; Change in static pressure through the test section

Solution:

Basic

equations

(4.12) δdisp

0

δ

y1
u

U











d
p

ρ

V
2

2
 g z const

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U A const and
u

U

y

δ







1

7



The given data is U1 20
m

s
 W 40 cm A W

2
 A 0.1600 m

2


We also have δ1 1 cm δ2 1.3 cm

Hence δdisp

0

δ

y1
u

U











d

0

δ

y1
y

δ







1

7


















d δ

0

1

η1 η

1

7















d where η
y

δ
 δdisp

δ

8


Hence at the inlet and exit

δdisp1

δ1

8
 δdisp1 0.125 cm δdisp2

δ2

8
 δdisp2 0.1625 cm

Hence the areas are A1 W 2 δdisp1 2 A1 0.1580 m
2



A2 W 2 δdisp2 2 A2 0.1574 m
2



Applying mass conservation between Points 1 and 2

ρ U1 A1  ρ U2 A2  0 or U2 U1

A1

A2

 U2 20.1
m

s


The pressure change is found from Bernoulli
p1

ρ

U1
2

2


p2

ρ

U2
2

2
 with ρ 1.21

kg

m
3



Hence ∆p
ρ

2
U1

2
U2

2




 ∆p 2.66 10

4
 psi ∆p 1.835 Pa



Problem 9.25 [Difficulty: 2]

Given: Data on wind tunnel and boundary layers

Find: Pressure change between points 1 and 2

Solution:

Basic

equations

(4.12)
p

ρ

V
2

2
 g z const

Assumptions: 1) Steady flow 2) Incompressible 3) No friction outside boundary layer 4) Flow along streamline 5) Horizontal

For this flow ρ U A const

The given data is U0 100
ft

s
 U1 U0 h 3 in A1 h

2
 A1 9 in

2


We also have δdisp2 0.035 in

Hence at the Point 2 A2 h 2 δdisp2 2 A2 8.58 in
2



Applying mass conservation between Points 1
and 2

ρ U1 A1  ρ U2 A2  0 o
r

U2 U1

A1

A2

 U2 105
ft

s


The pressure change is found from Bernoulli
p1

ρ

U1
2

2


p2

ρ

U2
2

2
 wit

h
ρ 0.00234

slug

ft
3



Hence ∆p
ρ

2
U1

2
U2

2




 ∆p 8.05 10

3
 psi ∆p 1.16

lbf

ft
2



The pressure drops by a small amount as the air accelerates 



Problem 9.26 [Difficulty: 3]

Given: Developing flow of air in flat horizontal duct. Assume 1/7-power law velocity profile in boundary layer.

Find: (a) Displacement thickness is 1/8 times boundary layer thickness

(b) Static gage pressure at section 1.

(c) Average wall shear stress between entrance and section 2.

Solution: We will apply the continuity and x-momentum equations to this problem.

Governing

Equations:
δdisp

0

infinity

y1
u

U











d

0

δ

y1
u

U











d (Definition of displacement thickness)

0



 CSCV
AdVVd

t


 (Continuity)

bxsx
CSCV

FFAdVuVud
t








 (x- Momentum)

Assumptions: (1) Steady, incompressible flow

(2) No body forces in the x-direction

(3) No viscous forces outside boundary layer

(4) Boundary layers only grow on horizontal walls

   L = 20 ft   

   H = 1 ft              

V1 = 40 ft/s               

                     δ2 = 4 in

If we divide both sides of the displacement thickness definition by δ, we get:
δdisp

δ

1

δ
0

δ

y1
u

U











d

However, we can change the variable of integration to η = y/δ, resulting in: dη
1

δ
dy Therefore:

δdisp

δ
0

1

η1
u

U











d

For the power law profile:
u

U
η

1

7
 Into the displacement thickness:

δdisp

δ
0

1

η1 η

1

7















d

Evaluating this integral:
δdisp

δ
1

7

8


1

8


δdisp

δ

1

8




After applying the assumptions from above, continuity reduces to: V1 A1 V2 A2 or V1 w H V2 w H 2 δdisp2 

Solving for the velocity at 2: V2 V1
H

H 2 δdisp2
 V1

H

H
δ2

4


 Substituting known values:

V2 40
ft

s
 1 ft

1

1
1

4

4

12













1

ft
 V2 43.6

ft

s


From Bernoulli equation, since z = constant:
p0

ρ

p

ρ

V
2

2
 along a streamline. Therefore:

p1g p1 p0
1

2
 ρ V1

2
 p1g

1

2
 0.00234

slug

ft
3

 40
ft

s






2


lbf s

2


slug ft


ft

12 in






2

 p1g 0.01300 psi

p2g p2 p0
1

2
 ρ V2

2
 p2g

1

2
 0.00234

slug

ft
3

 43.6
ft

s






2


lbf s

2


slug ft


ft

12 in






2

 p2g 0.01545 psi

 
CS

sx AdVuF


Now if we apply the momentum equation to the control volume (considering the assumptions shown):

p1 p2  w
H

2
 τ w L V1 ρ V1

H

2
 w



 0

δ2

yu ρ u w




d V2 ρ V2
H

2
δ2





 w







The integral is equal to: ρ w
0

δ2

yu
2




d ρ V2
2

 δ2 w
0

1

ηη

2

7






d ρ V2
2


7

9
 δ2 w Therefore the momentum equation becomes:

p1 p2  w
H

2
 τ w L ρ V1

2


H

2
 w ρ V2

2


H

2

2

9
δ2





 w Simplifying and solving for the shear stress we get:

τ
1

L
p1 p2  H

2
 ρ V1

2 H

2
 V2

2 H

2

2

9
δ2

















 Substituting in known values we get:

τ
1

20 ft
0.01328( ) 0.01578( )[ ]

lbf

in
2


1 ft

2
 0.00234

slug

ft
3

 40
ft

s






2
1 ft

2
 43.6

ft

s






2
1

2

2

9

4

12






 ft









lbf s

2


slug ft


ft

12 in






2












τ 5.46 10
5

 psi



Problem 9.27 [Difficulty: 3]

Given: Air flow in laboratory wind tunnel test section.

Find: (a) Freestream speed at exit

(b) Pressure at exit

Solution: We will apply the continuity and Bernoulli equations to this problem.

Governing

Equations:
δdisp

0

infinity

y1
u

U











d

0

δ

y1
u

U











d (Definition of displacement thickness)

0



 CSCV
AdVVd

t


 (Continuity)

constgz
Vp


2

2


(Bernoulli)

Assumptions: (1) Steady, incompressible flow

(2) No body forces in the x-direction

(3) No viscous forces outside boundary layer

(4) Streamline exists between stations 1 and 2

(5) Uniform flow outside boundary layer

(6) Boundary layer is the same on all walls

(7) Neglect corner effects

(8) Constant elevation between 1 and 2

If we divide both sides of the displacement thickness 

definition by δ, we get:
U1 = 80 ft/s                  W = 1 ft    

δdisp

δ

1

δ
0

δ

y1
u

U











d

L = 2 ft                

However, we can change the variable of integration 

to η = y/δ, resulting in:

dη
1

δ
dy

Therefore:
δdisp

δ
0

1

η1
u

U











d
For the power law profile:

u

U
η

1

7


Into the displacement thickness:

δdisp

δ
0

1

η1 η

1

7















d Evaluating this integral:
δdisp

δ
1

7

8


1

8
 So the displacement thicknesses are:

δdisp1
1

8
0.8 in δdisp1 0.100 in δdisp2

1

8
1 in δdisp2 0.125 in



After applying the assumptions from above, continuity reduces to: U1 A1 U2 A2 or U1 W 2 δdisp1 2 U2 W 2 δdisp2 2

Solving for the speed at 2: U2 U1

W 2 δdisp1

W 2 δdisp2









2

 Substituting known values: U2 80
ft

s


1 2 0.100

1 2 0.125






2



U2 91.0
ft

s


From Bernoulli equation, since z = constant:
p1

ρ

U1
2

2


p2

ρ

U2
2

2
 along a streamline. Therefore:

∆p12
ρ

2
U1

2
U2

2




 ∆p12

1

2
0.00239

slug

ft
3

 80
2

91
2

 
ft

2

s
2

lbf s
2



slug ft


ft

12 in






2

 ∆p12 0.01561 psi

From ambient to station 1 we see a loss at the tunnel entrance:

p0

ρ

U0
2

2








p1

ρ

U1
2

2








 hlT Since U0 0 and p0 patm 0 we can solve for the pressure at 1:

p1 ρ hlT
1

2
ρ U1

2
 where ρhlT

0.3

12
 ft 1.94

slug

ft
3

 32.2
ft

s
2


lbf s

2


slug ft


ft

12 in






2

 ρhlT 0.01085 psi

Therefore: p1 0.01085
lbf

in
2


1

2
0.00239

slug

ft
3

 80
ft

s






2


lbf s

2


slug ft


ft

12 in






2

 0.0640 psi So the pressure at 2 is:

p2 p1 ∆p12 p2 0.0640 psi 0.01561 psi 0.0796 psi Since the pressure drop can be expressed as p2 ρ g h2

it follows that: h2

p2

ρ g
 So in terms of water height: h2 0.0796

lbf

in
2


12 in

ft







2


ft

3

1.94 slug


s
2

32.2 ft


slug ft

lbf s
2




12 in

ft


p2 0.0796 psi

h2 2.20 in



Problem 9.28 [Difficulty: 3]

Given: Data on fluid and boundary layer geometry

Find: Gage pressure at location 2; average wall stress

Solution:

The solution involves using mass conservation in the inviscid core, allowing for the fact that as the boundary layer grows it
reduces the size of the core.  One approach would be to integrate the 1/7 law velocity profile to compute the mass flow in the
boundary layer; an easier approach is to simply use the displacement thickness!

The average wall stress can be estimated using the momentum equation for a CV

The given and available (from Appendix A) data is

ρ 0.00234
slug

ft
3

 U1 50
ft

s
 L 20 ft D 15 in δ2 4 in

Governing equations:

Mass

Momentum

Bernoulli
p

ρ

V
2

2
 g z constant (4.24)

Assumptions: (1) Steady flow (2) No pressure force (3) No body force in x direction

The displacement thickness at location 2 can be computed from boundary layer thickness using  Eq. 9.1

δdisp2

0

δ2

y1
u

U











d δ2
0

1

η1 η

1

7















d
δ2

8


Hence δdisp2

δ2

8
 δdisp2 0.500 in

Applying mass conservation at locations 1 and 2 ρ U1 A1  ρ U2 A2  0 or U2 U1

A1

A2



A1
π

4
D

2
 A1 1.227 ft

2


The area at location 2 is given by the duct cross section area minus the displacement boundary layer

A2
π

4
D 2 δdisp2 2 A2 1.069 ft

2




Hence U2 U1

A1

A2

 U2 57.4
ft

s


For the pressure change we can apply Bernoulli to locations 1 and 2 to find

p1 p2 ∆p
ρ

2
U2

2
U1

2




 ∆p 6.46 10

3
 psi p2 ∆p

Hence p2 gage( ) p1 gage( ) ∆p p2 6.46 10
3

 psi

For the average wall shear stress we use the momentum equation, simplified for this problem

∆p A1 τ π D L ρ U1
2

 A1 ρ U2
2


π

4
 D 2 δ2 2 ρ

D

2
δ2

D

2

r2 π r u
2







d

where u r( ) U2
y

δ2









1

7

 and r
D

2
y dr dy

The integral is ρ

D

2
δ2

D

2

r2 π r u
2







d 2 π ρ U2
2



δ2

0

y
D

2
y





y

δ2









2

7









d

ρ

D

2
δ2

D

2

r2 π r u
2







d 7 π ρ U2
2

 δ2
D

9

δ2

8












Hence τ

∆p A1 ρ U1
2

 A1 ρ U2
2


π

4
 D 2 δ2 2 7 π ρ U2

2
 δ2

D

9

δ2

8












π D L


τ 6.767 10
5

 psi



Problem 9.29 [Difficulty: 5]

Given: Air flow in laboratory wind tunnel test section.

Find: (a) Displacement thickness at station 2

(b) Pressure drop between 1 and 2

(c) Total drag force caused by friction on each wall

Solution: We will apply the continuity, x-momentum, and Bernoulli equations to this problem.

Governing

Equations:
δdisp

0

infinity

y1
u

U











d

0

δ

y1
u

U











d (Definition of displacement thickness)

0



 CSCV
AdVVd

t


 (Continuity)

constgz
Vp


2

2


(Bernoulli)

bxsx
CSCV

FFAdVuVud
t








 (x- Momentum)

Assumptions: (1) Steady, incompressible flow

(2) No body forces in the x-direction

(3) No viscous forces outside boundary layer

(4) Streamline exists between stations 1 and 2

(5) Uniform flow outside boundary layer

(6) Boundary layer is the same on all walls

(7) Neglect corner effects

(8) Constant elevation between 1 and 2

If we divide both sides of the displacement thickness definition by δ, we get:
δdisp

δ

1

δ
0

δ

y1
u

U











d

However, we can change the variable of integration to η = y/δ, resulting in: dη
1

δ
dy Therefore:

δdisp

δ
0

1

η1
u

U











d



If we assume the power law profile (turbulent BL):
u

U
η

1

7
 Into the displacement thickness: δdisp

δ
0

1

η1 η

1

7















d

Evaluating this integral:
δdisp

δ
1

7

8


1

8
 So the displacement thickness is: δdisp2

1

8
20.3 mm δdisp2 2.54 mm

After applying the assumptions from above, continuity reduces to: U1 A1 U2 A2 or U1 H
2

 U2 H 2 δdisp2 2

Solving for the speed at 2: U2 U1
H

H 2 δdisp2








2

 Substituting known values: U2 50.2
m

s


305

305 2 2.54






2



U2 51.9
m

s


From Bernoulli equation, since z = constant:
p1

ρ

U1
2

2


p2

ρ

U2
2

2
 along a streamline. Therefore:

∆p12
ρ

2
U1

2
U2

2




 ∆p12

1

2
1.23

kg

m
3

 50.2
2

51.9
2

 
m

2

s
2

N s
2



kg m
 ∆p12 106.7 Pa

To determine the drag on the walls, we choose the control volume shown above and apply the x-momentum equation.

sx
CS

FAdVu 


From the assumptions, the equation reduces to: Applying this to the control volume:

p1 H δ2 FD p2 H δ2 U1 ρ U1 H δ2  Uavg mtop
0

δ2

yu ρ u H




d The mass flow rate through the top of the CV

can be determined using the continuity equation across the control volume: mtop m1 m2 ρ U1 H δ2
0

δ2

yρ u H




d

This integral can be evaluated using the power law profile:

0

δ2

yρ u H




d ρ U2 H δ2
0

1

ηη

1

7






d
7

8
ρ U2 H δ2 Therefore:

mtop ρ H δ2 U1
7

8
U2






The average speed can be approximated as the mean of the speeds at 1 and 2: Uavg

U1 U2

2


Finally the integral in the momentum equation may also be evaluated using the power law profile:

0

δ2

yu ρ u H




d ρ U2
2

 H δ2
0

1

ηη

2

7






d
7

9
ρ U2

2
 H δ2 Thus, the momentum equation may be rewritten as:

p1 H δ2 FD p2 H δ2 U1 ρ U1 H δ2 
U1 U2

2
ρ H δ2 U1

7

8
U2






7

9
ρ U2

2
 H δ2 Solving for the drag force:



FD p1 p2  ρ U1
2

U1 U2

2









U1
7

8
U2






7

9
U2

2



















H δ2 Substituting in all known values yields:

FD 106.7
N

m
2

 1.23
kg

m
3

 50.2
m

s






2
50.2 51.9( )

2
50.2

7

8
51.9






m

2

s
2


7

9
51.9

m

s






2











N s

2


kg m










0.305 m 0.020

FD 2.04 N

The viscous drag force acts on the CV in the direction shown. The viscous

drag force on the wall of the test section is equal and opposite:



Problem 9.30 [Difficulty: 2]

Given: Blasius exact solution for laminar boundary layer flow

Find: Plot and compare to parabolic velocity profile:
u

U
2

y

δ







y

δ







2



Solution: The Blasius solution is given in Table 9.1; it is plotted below.
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Problem 9.31 [Difficulty: 3]

Given: Blasius exact solution for laminar boundary layer flow

Find: (a) Evaluate shear stress distribution

(b) Plot τ/τw versus y/δ
(c) Compare with results from sinusoidal velocity profile:

u

U
sin

π

2

y

δ








Solution: We will apply the shear stress definition to both velocity profiles.

Governing

Equation:
τ μ

y
u




 (Shear stress in Newtonian fluid)

For Blasius: u U f' η( ) and η y
U

ν x
 The shear stress is: τ μ

y
U f' η( )( )




 U μ f'' η( )( )

y
η













 U μ f'' η( )
U

ν x


Therefore:
τ

ρ U
2



μ

ρ U
f'' η( )

U

ν x


f'' η( )

Rex

 τ is proportional to f''(η)

From the above equation:
τ

τw

f'' η( )

f'' 0( )


f'' η( )

0.33206
 Since y δ at η 5 it follows that

y

δ

η

5


For the sinusoidal profile: τ
μ U

δ y

δ







u

U







d

d












μ U

δ

π

2
 cos

π

2

y

δ






 τw
μ U

δ

π

2
 Thus:

τ

τw

cos
π

2

y

δ








0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Sinusoidal

Blasius

Dimensionless Shear Stress τ/τw

D
im

en
si

o
n

le
ss

 H
ei

g
h

t 
y

/δ

Both profiles are plotted here:



Problem 9.32 [Difficulty: 3]

Given: Blasius exact solution for laminar boundary layer flow

Find: (a) Evaluate shear stress distribution

(b) Plot τ/τw versus y/δ
(c) Compare with results from sinusoidal velocity profile: u

U
2

y

δ


y

δ







2



Solution: We will apply the shear stress definition to both velocity profiles.

Governing

Equation:
τ μ

y
u




 (Shear stress in Newtonian fluid)

For Blasius: u U f' η( ) and η y
U

ν x
 The shear stress is: τ μ

y
U f' η( )( )




 U μ f'' η( )( )

y
η













 U μ f'' η( )
U

ν x


Therefore:
τ

ρ U
2



μ

ρ U
f'' η( )

U

ν x


f'' η( )

Rex

 τ is proportional to f''(η)

From the above equation:
τ

τw

f'' η( )

f'' 0( )


f'' η( )

0.33206
 Since y δ at η 5 it follows that

y

δ

η

5


For the parabolic profile: τ
μ U

δ y

δ







u

U







d

d












μ U

δ
2 2

y

δ






 τw
μ U

δ
2 Thus:

τ

τw

1
y

δ

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Both profiles are plotted here:



Problem 9.33 [Difficulty: 3]

Given: Blasius exact solution for laminar boundary layer flow

Find: Plot v/U versus y/δ for Rex 10
5



Solution: We will apply the stream function definition to the Blasius solution.

For Blasius: u U f' η( ) and η y
U

ν x
 The stream function is: ψ U ν x f η( )

From the stream function: v
x
ψ






1

2

ν U

x
 f η( ) ν U x

η
f

d

d










x
η






















 But
x
η





1

2


y

x


U

ν x


1

2


η

x


Thus v
1

2

ν U

x
 f η( ) ν U x

η
f

d

d










1

2


η

x
















1

2

ν U

x
 η f' η( ) f η( )( ) and

v

U

1

2

ν

U x
 η f' η( ) f η( )( )

v

U

η f' η( ) f η( )

2 Rex



Since y δ at η 5 it follows that
y

δ

η

5
 Plotting v/U as a function of y/δ:
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Problem 9.34 [Difficulty: 3]

Given: Blasius exact solution for laminar boundary layer flow

Find: (a) Prove that the y component of velocity in the solution is given by Eq. 9.10.

(b) Algebraic expression for the x component of a fluid particle in the BL

(c) Plot ax vs η to determine the maximum x component of acceleration at a given x

Solution: We will apply the stream function definition to the Blasius solution.

For Blasius: u U f' η( ) and η y
U

ν x
 The stream function is: ψ U ν x f η( )

From the stream function: v
x
ψ






1

2

ν U

x
 f η( ) ν U x

η
f

d

d










x
η






















 But
x
η





1

2


y

x


U

ν x


1

2


η

x


Thus v
1

2

ν U

x
 f η( ) ν U x

η
f

d

d










1

2


η

x
















1

2

ν U

x
 η f' η( ) f η( )( ) which is Eq. 9.10.

v
1

2

ν U

x
 η f' η( ) f η( )( )

The acceleration in the x-direction is given by: ax u
x

u



 v

y
u




 where u U f' η( ) Evaluating the partial derivatives:

x
u




U

η
f' η( )

d

d


x
η

d

d









 U f'' η( )
η

2 x







1

2


η U f'' η( )

x


y
u




U

η
f' η( )

d

d


y
η

d

d









 U f'' η( )
U

ν x
 Therefore:

ax U f' η( )
1

2


η U f''

x







1

2

ν U

x
 η f' f( )









U f''
U

ν x











1

2


U
2

x
 η f' f''

1

2

U
2

x
 η f' f'' f f''( ) Simplifying yields:

ax
U

2

2x
 f η( ) f'' η( )

If we plot f(η)f''(η) as a function of η:

0 1 2 3 4 5
0

0.1

0.2

η

f(
η

)f
''(
η

)

The maximum value of this function is

0.23 at η of approximately 3.

axmax 0.115
U

2

x




Problem 9.35 [Difficulty: 4]

Given: Blasius solution for laminar boundary layer

Find: Point at which u = 0.95U; Slope of streamline; expression for skin friction coefficient and total drag; Momentum

thickness

Solution:

Basic equation: Use results of Blasius solution (Table 9.1 on the web), and η y
ν x

U


f'
u

U
 0.9130 at η 3.5

f'
u

U
 0.9555 at η 4.0

Hence by linear interpolation,

when
f' 0.95 η 3.5

4 3.5( )

0.9555 0.9130( )
0.95 0.9130( ) η 3.94

From Table A.10 at 20oC ν 1.50 10
5


m

2

s
 and U 5

m

s
 x 20 cm

Hence y η
ν x

U
 y 0.305 cm

The streamline slope is given by
dy

dx

v

u
 where u U f' and v

1

2

ν U

x
 η f' f( )

dy

dx

1

2

ν U

x
 η f' f( )

1

U f'


1

2

ν

U x


η f' f( )

f'


1

2 Rex

η f' f( )

f'


We have Rex
U x

ν
 Rex 6.67 10

4


From the Blasius solution (Table 9.1 on the web)

f 1.8377 at η 3.5

f 2.3057 at η 4.0

Hence by linear

interpolation
f 1.8377

2.3057 1.8377( )

4.0 3.5( )
3.94 3.5( ) f 2.25

dy

dx

1

2 Rex

η f' f( )

f'
 0.00326

The shear stress is τw μ
y

u


 x
v














 μ
y

u



 at y = 0 (v = 0 at the wall for all x, so the derivative is zero there)

τw μ U
U

ν x


d
2
f

dη
2

 and at η = 0
d

2
f

dη
2

0.3321 (from Table 9.1)



τw 0.3321 U
ρ U μ

x
 τw 0.3321 ρ U

2


μ

ρ U x
 0.3321

ρ U
2



Rex



The friction drag is FD Aτw





d

0

L

xτw b




d where b is the plate width

FD

0

L

x0.3321
ρ U

2


Rex

 b







d 0.3321 ρ U
2


ν

U


0

L

x
1

x

1

2








d

FD 0.3321 ρ U
2


ν

U
 b 2 L

1

2
 FD ρ U

2
 b L

0.6642

ReL



For the momentum integral
τw

ρ U
2



dθ

dx
 or dθ

τw

ρ U
2


dx

θL
1

ρ U
2

 0

L

xτw





d
1

ρ U
2



FD

b


0.6642 L

ReL



We have L 1 m ReL
U L

ν
 ReL 3.33 10

5


θL
0.6642 L

ReL

 θL 0.115 cm



Problem 9.36 [Difficulty: 2]

Given: Data on flow over flat plate

Find: Plot of laminar thickness at various speeds

Solution:

Given or available data: ν 1.5 10
5


m

2

s
 (from Table A.10 at 20oC)

Governing

Equations:

δ

x

5.48

Rex

 (9.21) and Rex
U x

ν
 so δ 5.48

ν x

U


The critical Reynolds number is Recrit 500000

Hence, for velocity U the critical length xcrit is xcrit 500000
ν

U


The calculations and plot were generated in Excel and are shown below:

U  (m/s) 1 2 3 4 5 10

x crit (m) 7.5 3.8 2.5 1.9 1.5 0.75

x  (m) δ  (mm) δ  (mm) δ (mm) δ (mm) δ (mm) δ  (mm)

0.000 0.00 0.00 0.00 0.00 0.00 0.00

0.025 3.36 2.37 1.94 1.68 1.50 1.06

0.050 4.75 3.36 2.74 2.37 2.12 1.50

0.075 5.81 4.11 3.36 2.91 2.60 1.84

0.100 6.71 4.75 3.87 3.36 3.00

0.2 9.49 6.71 5.48 4.75 4.24

0.5 15.01 10.61 8.66 7.50 6.71

1.5 25.99 18.38 15.01 13.00 11.62

1.9 29.26 20.69 16.89 14.63

2.5 33.56 23.73 19.37

3.8 41.37 29.26

5.0 47.46

6.0 51.99

7.5 58.12
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Problem 9.37 [Difficulty: 5]

Given: Blasius nonlinear equation

Find: Blasius solution using Excel

Solution:

The equation to be solved is 

02
2

2

3

3


 d

fd
f

d

fd
                                                        (9.11)

The boundary conditions are 

0at        0   and   0  
d

df
f  

 

 


at        1
d

df
f                                                    (9.12)

Recall that these somewhat abstract variables are related to physically meaningful variables: 
 

f
U

u   

and 


 y

x

U
y   

 
Using Euler’s numerical method 
 

nnn fff  1                                                                   (1)

 

nnn fff  1                                                                  (2)

 

nnn fff  1  

 
h



Computations (only the first few lines of 1000 are shown):

 = 0.01

Make a guess for the first f ''; use Solver to vary it until f 'N = 1

Count  f f' f''

0 0.00 0.0000 0.0000 0.3303

1 0.01 0.0000 0.0033 0.3303

2 0.02 0.0000 0.0066 0.3303

3 0.03 0.0001 0.0099 0.3303

4 0.04 0.0002 0.0132 0.3303

5 0.05 0.0003 0.0165 0.3303

6 0.06 0.0005 0.0198 0.3303

7 0.07 0.0007 0.0231 0.3303

8 0.08 0.0009 0.0264 0.3303

9 0.09 0.0012 0.0297 0.3303

10 0.10 0.0015 0.0330 0.3303

11 0.11 0.0018 0.0363 0.3303

12 0.12 0.0022 0.0396 0.3303

13 0.13 0.0026 0.0429 0.3303

14 0.14 0.0030 0.0462 0.3303

15 0.15 0.0035 0.0495 0.3303

16 0.16 0.0040 0.0528 0.3303

17 0.17 0.0045 0.0562 0.3303

18 0.18 0.0051 0.0595 0.3303

19 0.19 0.0056 0.0628 0.3303

20 0.20 0.0063 0.0661 0.3302

21 0.21 0.0069 0.0694 0.3302

22 0.22 0.0076 0.0727 0.3302

Blasius Velocity Profile

0

2
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8

10

0.0 0.2 0.4 0.6 0.8 1.0

u/U  = f '



 

In these equations, the subscripts refer to the nth discrete value of the variables, and  = 10/N is the step

size for  (N is the total number of steps). 
 
But from Eq. 9.11 

fff 
2

1
 

 
so the last of the three equations is 
 







  nnnn ffff

2

1
1                                                               (3)

 

Equations 1 through 3 form a complete set for computing fff ,, .  All we need is the starting condition

for each.  From Eqs. 9.12 
 

0   and   0 00  ff  

 

We do NOT have a starting condition for f  !  Instead we must choose (using Solver) 0f   so that the last

condition of Eqs. 9.12 is met: 

1
Nf  

 



Problem 9.38 [Difficulty: 2]

Given: Parabolic solution for laminar boundary layer

Find: Plot of δ, δ*, and τw versus x/L

Solution:

Given or available data: ν 1.08 10
5


ft

2

s
 (From Table A.8 at 68oF) L 9 in U 5

ft

s


Basic

equations:

u

U
2

y

δ








y

δ







2


δ

x

5.48

Rex

 cf

τw

1

2
ρ U

2



0.730

Rex



 
33

1
2111*

1

0

32
1

0

2
1

00













 














 






   d

y
d

U

u
dy

U

u
Hence:

The computed results are from Excel, shown below:

x  (in) Re x δ  (in) δ * (in) τ w  (psi)

0.00 0.00.E+00 0.000 0.000

0.45 1.74.E+04 0.019 0.006 0.1344

0.90 3.47.E+04 0.026 0.009 0.0950

1.35 5.21.E+04 0.032 0.011 0.0776

1.80 6.94.E+04 0.037 0.012 0.0672

2.25 8.68.E+04 0.042 0.014 0.0601

2.70 1.04.E+05 0.046 0.015 0.0548

3.15 1.22.E+05 0.050 0.017 0.0508

3.60 1.39.E+05 0.053 0.018 0.0475

4.05 1.56.E+05 0.056 0.019 0.0448

4.50 1.74.E+05 0.059 0.020 0.0425

4.95 1.91.E+05 0.062 0.021 0.0405

5.40 2.08.E+05 0.065 0.022 0.0388

5.85 2.26.E+05 0.067 0.022 0.0373

6.30 2.43.E+05 0.070 0.023 0.0359

6.75 2.60.E+05 0.072 0.024 0.0347

7.20 2.78.E+05 0.075 0.025 0.0336

7.65 2.95.E+05 0.077 0.026 0.0326

8.10 3.13.E+05 0.079 0.026 0.0317

8.55 3.30.E+05 0.082 0.027 0.0308

9.00 3.47.E+05 0.084 0.028 0.0300

Laminar Boundary Layer Profiles
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Problem 9.39 [Difficulty: 2]

Given: Parabolic solution for laminar boundary layer

Find: Derivation of FD; Evaluate FD and θL

Solution:

Basic

equations:

u

U
2

y

δ








y

δ







2


δ

x

5.48

Rex



L 9 in b 3 ft U 5
ft

s
 ρ 1.94

slug

ft
3



Assumptions: 1) Flat plate so 
x

p



0 , and U = const

2) δ is a function of x only

3) Incompressible

4) Steady flow

The momentum integral equation then simplifies to
τw

ρ

d

dx
U

2
θ  where θ

0

δ

y
u

U
1

u

U












d

For U = const τw ρ U
2


dθ

dx


The drag force is then FD Aτw





d

0

L

xτw b




d

0

L

xρ U
2


dθ

dx
 b






d ρ U
2

 b
0

θL

θ1




d FD ρ U
2

 b θL

For the given profile
θ

δ
0

1

η
u

U
1

u

U












d
0

1

η2 η η
2

  1 2 η η
2

 




d
0

1

η2 η 5 η
2

 4 η
3

 η
4

 



d
2

15


θ
2

15
δ

From Table A.7 at 68oF ν 1.08 10
5


ft

2

s
 ReL

U L

ν
 ReL 3.47 10

5


δL L
5.48

ReL

 δL 0.0837 in

θL
2

15
δL θL 0.01116 in

FD ρ U
2

 b θL FD 0.1353 lbf



Problem 9.40 [Difficulty: 3]

Given: Thin flat plate installed in a water tunnel. Laminar BL's with parabolic profiles form on both sides of the plate.

L 0.3 m b 1 m U 1.6
m

s
 ν 1 10

6


m
2

s


u

U
2

y

δ








y

δ







2



Find: Total viscous drag force acting on the plate.

Solution: We will determine the drag force from the shear stress at the wall

First we will check the Reynolds number of the flow: ReL
U L

ν
4.8 10

5


Therefore the flow is laminar throughout.

The viscous drag for the two sides of the plate is: FD 2

0

L

xτw b




d The wall shear stress τw is:

τw μ
y

u












 at y = 0, which for the parabolic profile yields: τw μ U
2

δ

2 0

δ
2










2 μ U

δ
 The BL thickness δ is:

δ 5.48
ν

U
 x

1

2
 Therefore: FD 2 b

0

L

x
2 μ U

5.48
ν

U
 x

1

2










d
4

5.48
b μ U

U

ν


0

L

xx

1

2







d

Evaluating this integral: FD
8 b μ U

5.48

U L

ν
 FD 1.617 N



Problem 9.41 [Difficulty: 2]

Given: Data on fluid and plate geometry

Find: Drag at both orientations using boundary layer equation

Solution:

The given data is ρ 1.5
slug

ft
3

 μ 0.0004
lbf s

ft
2

 U 10
ft

s
 L 10 ft b 3 ft

First determine the nature of the boundary layer ReL
ρ U L

μ
 ReL 3.75 10

5


The maximum Reynolds number is less than the critical value of 5 x 105

Hence:

Governing equations: cf

τw

1

2
ρ U

2


 (9.22) cf
0.730

Rex

 (9.23)

The drag (one side) is FD
0

L

xτw b




d

Using Eqs. 9.22 and 9.23 FD
1

2
ρ U

2
 b

0

L

x
0.73

ρ U x

μ






d

FD 0.73 b μ L ρ U
3

 FD 5.36 lbf (Compare to 6.25 lbf for Problem 9.18)

Repeating for L 3 ft b 10 ft

FD 0.73 b μ L ρ U
3

 FD 9.79 lbf (Compare to 12.5 lbf for Problem 9.19)



Problem 9.42 [Difficulty: 3]

Given: Triangular plate

Find: Drag

Solution:

Basic

equations:
cf

τw

1

2
ρ U

2


 cf
0.730

Rex



L 2 ft
3

2
 L 1.732 ft W 2 ft U 15

ft

s


Assumptions: (1) Parabolic boundary layer profile
(2) Boundary layer thickness is based on distance from leading edge (the "point" of the triangle).

From Table A.9 at 70oF ν 1.63 10
4


ft

2

s
 ρ 0.00233

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 2 10

5
 so definitely laminar

The drag (one side) is FD Aτw





d FD
0

L

xτw w x( )




d w x( ) W
x

L


We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.730

Rex



Hence FD
1

2
ρ U

2


W

L


0

L

x
0.730 x

U x

ν






d
0.730

2
ρ U

3

2


W

L
 ν

0

L

xx

1

2






d

The integral is

0

L

xx

1

2






d
2

3
L

3

2
 so FD 0.243 ρ W ν L U

3
 FD 1.11 10

3
 lbf

Note: For two-sided solution 2 FD 2.21 10
3

 lbf



Problem 9.43 [Difficulty: 3]

Plate is reversed from

this!

Given: Triangular plate

Find: Drag

Solution:

Basic equations: cf

τw

1

2
ρ U

2


 cf
0.730

Rex



L 2 ft
3

2
 L 1.732 ft W 2 ft U 15

ft

s


From Table A.9 at 70oF ν 1.63 10
4


ft

2

s
 ρ 0.00233

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 2 10

5
 so definitely laminar

The drag (one side) is FD Aτw





d FD

0

L

xτw w x( )




d w x( ) W 1
x

L








We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.730

Rex



Hence FD
1

2
ρ U

2
 W

0

L

x

0.730 1
x

L








U x

ν









d
0.730

2
ρ U

3

2
 W ν

0

L

xx

1

2


x

1

2

L

















d

The integral is

0

L

xx

1

2


x

1

2

L

















d 2 L

1

2


2

3

L

3

2

L


4

3
L

FD 0.487 ρ W ν L U
3

 FD 2.22 10
3

 lbf

Note: For two-sided solution 2 FD 4.43 10
3

 lbf

The drag is much higher (twice as much) compared to Problem 9.42.  This is because τw is largest

near the leading edge and falls off rapidly; in this problem the widest area is also at the front



Problem 9.44 [Difficulty: 3]

Given: Parabolic plate

Find: Drag

Solution:

Basic equations: cf

τw

1

2
ρ U

2


 cf
0.730

Rex



W 1 ft L

W

2







2

1 ft
 L 0.25 ft U 15

ft

s


Note: "y" is the equation of the upper and lower surfaces, so y = W/2 at x = L

From Table A.9 at 70oF ν 1.63 10
4


ft

2

s
 ρ 0.00233

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 2.3 10

4
 so just laminar

The drag (one side) is FD Aτw





d FD
0

L

xτw w x( )




d w x( ) W
x

L


We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.730

Rex



Hence FD
1

2
ρ U

2
 W

0

L

x

0.730
x

L


U x

ν









d
0.730

2
ρ U

3

2
 W

ν

L


0

L

x1




d

FD 0.365 ρ W ν L U
3

 FD 3.15 10
4

 lbf

Note: For two-sided solution 2 FD 6.31 10
4

 lbf



Problem 9.45 [Difficulty: 4]

Note: Plate is now reversed!

Given: Parabolic plate

Find: Drag

Solution:

Basic

equations:
cf

τw

1

2
ρ U

2


 cf
0.730

Rex



W 1 ft L

W

2







2

1 ft
 L 0.25 ft U 15

ft

s


Note: "y" is the equation of the upper and lower surfaces, so y = W/2 at x = 0

From Table A.10 at 70oF ν 1.63 10
4


ft

2

s
 ρ 0.00234

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 2.3 10

4
 so just laminar

The drag (one side) is FD Aτw





d FD

0

L

xτw w x( )




d w x( ) W 1
x

L


We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.730

Rex



Hence FD
1

2
ρ U

2
 W

0

L

x

0.730 1
x

L


U x

ν









d
0.730

2
ρ U

3

2
 W ν

0

L

x
1

x

1

L







d

The tricky integral is (this might

be easier to do numerically!) x
1

x

1

L







d x
x

2

L


i

2
L ln

L x x

L x x









 so

0

L

x
1

x

1

L







d 0.434 m

FD
0.730

2
ρ U

3

2
 W ν

0

L

x
1

x

1

L







d FD 4.98 10
4

 lbf

Note: For two-sided solution 2 FD 9.95 10
4

 lbf

The drag is much higher compared to Problem 9.44.  This is because τw is largest near the leading

edge and falls off rapidly; in this problem the widest area is also at the front



Problem 9.46 [Difficulty: 3]

Given: Pattern of flat plates

Find: Drag on separate and composite plates

Solution:

Basic

equations:
cf

τw

1

2
ρ U

2


 cf
0.730

Rex



Assumption: Parabolic boundary layer profile

ρ 1.93
slug

ft
3


For separate plates L 3 in W 3 in U 3

ft

s
 From Table A.7 at 70oF ν 1.06 10

5


ft
2

s


First determine the nature of the boundary layer ReL
U L

ν
 ReL 7.08 10

4
 so definitely laminar

The drag (one side) is FD Aτw





d FD

0

L

xτw W




d

We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.730

Rex



Hence FD
1

2
ρ U

2
 W

0

L

x
0.730

U x

ν






d
0.730

2
ρ U

3

2
 W ν

0

L

xx

1

2







d

The integral is

0

L

xx

1

2







d 2 L

1

2
 so FD 0.730 ρ W ν L U

3
 FD 0.0030 lbf

This is the drag on one plate.  The total drag is then FTotal 4 FD FTotal 0.0119 lbf

For both sides: 2 FTotal 0.0238 lbf

For the composite plate L 4 3 in L 1.00 ft ReL
U L

ν
2.83 10

5
 so still laminar

FComposite 0.730 ρ W ν L U
3

 FComposite 0.0060 lbf

For both sides: 2 FComposite 0.0119 lbf

The drag is much lower on the composite compared to the separate plates.  This is because τw is largest near the

leading edges and falls off rapidly; in this problem the separate plates experience leading edges four times!



Problem 9.47 [Difficulty: 3]

Given: Laminar boundary layer flow with linear velocity profile:
u

U

y

δ
 η

Find: Expressions for δ/x and Cf using the momentum integral equation

Solution: We will apply the momentum integral equation

Governing

Equations:

τw

ρ x
U

2
θ d

d
δdisp U

x
U

d

d









 (Momentum integral equation)

Cf

τw

1

2
ρ U

2


 (Skin friction coefficient)

Assumptions: (1) Zero pressure gradient, so U is constant and dp/dx = 0

(2) δ is a function of x only, and δ = 0 at x = 0

(3) Incompressible flow

Applying the assumptions to the momentum integral equation yields: τw ρ U
2


x
θ

d

d









 ρ U
2


x
δ

0

1

η
u

U
1

u

U












d










d

d













Substituting for the velocity profile: τw ρ U
2


x
δ

0

1

ηη η
2

 



d








d

d









 ρ U
2


1

6


x
δ

d

d











Now the wall shear stress is also: τw μ
y

u












 at y = 0 Substituting the velocity profile: τw
μ U

δ


Setting both expressions for the wall shear stress equal: ρ U
2


1

6


x
δ

d

d










μ U

δ
 Separating variables: δ dδ

6 μ

ρ U
dx

Integrating this expression:
δ
2

2

6 μ

ρ U
x C However, we know that C = 0 since δ = 0 when x = 0. Therefore:

δ
2

2

6 μ

ρ U
x

Solving for the boundary layer thickness: δ
12 μ

ρ U
x or 

δ

x

12 μ

ρ U x


δ

x

3.46

Rex



From the definition for skin friction coefficient: Cf

τw

1

2
ρ U

2



μ U

δ

2

ρ U
2




2 μ

ρ U δ
 2

μ

ρ U x


x

δ


2

Rex

Rex

3.46


Upon simplification: Cf
0.577

Rex





Problem 9.48 [Difficulty: 2]

Given: Horizontal surface immersed in a stream of standard air. Laminar BL with sinusoidal profile forms.

L 1.8 m b 0.9 m U 3.2
m

s
 ν 1.46 10

5


m
2

s


u

U
sin

π

2

y

δ








Find: Plot δ, δ*, and τw versus x/L for the plate

Solution: We will determine the drag force from the shear stress at the wall

Governing

Equations:
τw ρ U

2


x
θ

d

d









 μ
y

u












 at y = 0 (Wall shear stress)

δdisp

δ
0

1

η1
u

U











d (Displacement thickness)

θ

δ
0

1

η
u

U
1

u

U












d (Momentum thickness)

For the sinusoidal velocity profile:
θ

δ
0

1

ηsin
π

2
η





1 sin
π

2
η

















d

0

1

ηsin
π

2
η





sin
π

2
η











2














d

Evaluating this integral:
θ

δ

4 π

2 π
 0.1366 Therefore it follows that

x
θ

d

d δ
θ

d

d x
δ














4 π

2 π x
δ















To determine the wall shear stress: τw μ U cos
π

2

0

δ







π

2 δ


π μ U

2 δ
 ρ U

2


4 π

2 π


x
δ















Separating variables yields:
π μ U

2 ρ U
2



2 π

4 π
 dx δ dδ or δ dδ

π
2

4 π

μ

ρ U
 dx Integrating yields:

δ
2

2

π
2

4 π

μ

ρ U
 x

Solving this expression for δ/x:
δ

x

π
2

4 π

μ

ρ U x


δ

x

4.80

Rex



Also,
δdisp

δ
0

1

η1 sin
π

2
η
















d Evaluating this integral:
δdisp

δ
1

2

π
 0.363

δdisp

δ
0.363

The Reynolds number is related to x through: Rex 2.19 10
5

 x where x is measured in meters.

Plots of δ, δdisp and τw as functions of x are shown on the next page.
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Problem 9.49 [Difficulty: 3]

Given: Water flow over flat plate

Find: Drag on plate for linear boundary layer

Solution:

Basic

equations:
FD 2 Aτw





d τw μ
du

dy
 at y = 0, and also τw ρ U

2


dδ

dx


0

1

η
u

U
1

u

U












d

L 0.35 m W 1 m U 0.8
m

s


From Table A.8 at 10oC ν 1.30 10
6


m

2

s
 ρ 1000

kg

m
3



First determine the nature of the boundary

layer
ReL

U L

ν
 ReL 2.15 10

5
 so laminar

The velocity profile is u U
y

δ
 U η

Hence τw μ
du

dy
 μ

U

δ
 (1) but we need δ(x)

We also have
τw ρ U

2


dδ

dx


0

1

η
u

U
1

u

U












d ρ U
2


dδ

dx


0

1

ηη 1 η( )




d

The integral is

0

1

xη η
2

 



d
1

6
 so τw ρ U

2


dδ

dx


1

6
ρ U

2


dδ

dx
 (2)

Comparing Eqs 1 and 2 τw μ
U

δ


1

6
ρ U

2


dδ

dx


Separating variables δ dδ
6 μ

ρ U
dx or

δ
2

2

6 μ

ρ U
x c but δ(0) = 0 so c = 0

Hence δ
12 μ

ρ U
x or

δ

x

12

Rex


3.46

Rex



Then FD 2 Aτw





d 2 W

0

L

xμ
U

δ







d 2 W

0

L

xμ U
ρ U

12 μ
 x

1

2










d
μ W U

3

U

ν


0

L

xx

1

2







d

The integral is

0

L

xx

1

2







d 2 L so FD
2 μ W U

3

U L

ν


FD
2

3
ρ W ν L U

3
 FD 0.557N



Problem 9.50 [Difficulty: 2]

Given: Horizontal surface immersed in a stream of standard air. Laminar BL with linear profile forms.

L 0.8 m b 1.9 m U 5.3
m

s
 ν 1.46 10

5


m
2

s


u

U

y

δ


Find: Plot δ, δ*, and τw versus x/L for the plate

Solution: We will determine the drag force from the shear stress at the wall

Governing

Equations:
τw ρ U

2


x
θ

d

d









 μ
y

u












 at y = 0 (Wall shear stress)

δdisp

δ
0

1

η1
u

U











d (Displacement thickness)

θ

δ
0

1

η
u

U
1

u

U












d (Momentum thickness)

For the linear velocity profile:
θ

δ
0

1

ηη 1 η( )




d
0

1

ηη η
2

 



d Evaluating this integral:
θ

δ

1

6
 0.1667

Therefore it follows that
x
θ

d

d δ
θ

d

d x
δ














1

6 x
δ













 To determine the wall shear stress: τw
μ U

δ


ρ U
2



6 x
δ















Separating variables yields:
6 μ

ρ U
dx δ dδ Integrating yields:

δ
2

2

6 μ

ρ U
x

Solving this expression for δ/x:
δ

x

3.46

Rex



Also,
δdisp

δ
0

1

η1 η( )




d Evaluating this integral:
δdisp

δ

1

2


δdisp

δ

1

2


The Reynolds number is related to x through: Rex 3.63 10
5

 x where x is measured in meters.

Plots of δ, δdisp and τw as functions of x are shown on the next page.
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Problem 9.51 [Difficulty: 2]

Given: Horizontal surface immersed in a stream of standard air. Laminar BL with linear profile forms.

L 0.8 m b 1.9 m U 5.3
m

s
 ν 1.46 10

5


m
2

s


u

U

y

δ


Find: Algebraic expressions for wall shear stress and drag; evaluate at given conditions

Solution: We will determine the drag force from the shear stress at the wall

Governing

Equations:
τw ρ U

2


x
θ

d

d









 μ
y

u












 at y = 0 (Wall shear stress)

θ

δ
0

1

η
u

U
1

u

U












d (Momentum thickness)

For the linear velocity profile:
θ

δ
0

1

ηη 1 η( )




d
0

1

ηη η
2

 



d Evaluating this integral:
θ

δ

1

6
 0.1667

Therefore it follows that
x
θ

d

d δ
θ

d

d x
δ














1

6 x
δ













 To determine the wall shear stress: τw
μ U

δ


ρ U
2



6 x
δ















Separating variables yields:
6 μ

ρ U
dx δ dδ Integrating yields:

δ
2

2

6 μ

ρ U
x

Solving this expression for δ/x:
δ

x

12

Rex



Substituting this back into the expression for wall shear stress: τw
μ U

δ


μ U

x
12

Rex




1

12

μ U

x
 Rex τw 0.289

μ U

x
 Rex

The drag force is given by: FD Aτw





d

0

L

xτw b




d

0

L

xρ U
2


dθ

dx
 b






d b

0

θL

θρ U
2






d FD ρ U
2

 b θL

For the given conditions: ReL
U L

ν
2.90 10

5


δL L
12

ReL

 5.14 mm

θL

δL

6
0.857 mm

FD ρ U
2

 b θL 0.0563 N
FD 0.0563 N



Problem 9.52 [Difficulty: 3]

Given: Data on flow in a channel

Find: Static pressures; plot of stagnation pressure

Solution:

The given data is h 1.2 in δ2 0.4 in U2 75
ft

s
 w 6 in

Appendix A ρ 0.00239
slug

ft
3



Governing

equations:
Mass

Before entering the duct, and in the the inviscid core, the Bernoulli
equation holds

p

ρ

V
2

2
 g z constant (4.24)

Assumptions: (1) Steady flow
(2) No body force in x direction

For a linear velocity profile, from Table 9.2 the displacement thickness at location 2 is

δdisp2

δ2

2
 δdisp2 0.2 in

From the definition of the displacement thickness, to compute the flow rate, the uniform flow at location 2 is
assumed to take place in the entire duct, minus the displacement thicknesses at top and bottom

A2 w h 2 δdisp2  A2 4.80 in
2



Then Q A2 U2 Q 2.50
ft

3

s


Mass conservation (Eq. 4.12) leads to U2

U1 A1 U2 A2 where A1 w h A1 7.2 in
2



U1

A2

A1

U2 U1 50
ft

s




The Bernoull equation applied between atmosphere and location 1 is

patm

ρ

p1

ρ

U1
2

2


or, working in gage pressures

p1
1

2
 ρ U1

2
 p1 0.0207 psi

(Static pressure)

Similarly, between atmosphere and location 2 (gage pressures)

p2
1

2
 ρ U2

2
 p2 0.0467 psi

(Static pressure)

The static pressure falls continuously in the entrance region as the fluid in the central core accelerates into a decreasing core.
The stagnation pressure at location 2 (measured, e.g., with a Pitot tube as in Eq. 6.12), is indicated by an application of the
Bernoulli equation at a point

pt

ρ

p

ρ

u
2

2


where pt is the total or stagnation pressure, p =  p2 is the static pressure, and u is the local velocity, given by

u

U2

y

δ2

 y δ2

u U2 δ2 y
h

2


(Flow and pressure distibutions are symmetric about centerline)

Hence pt p2
1

2
ρ u

2
 The plot of stagnation pressure is shown in the Excel sheet below

y  (in) u (ft/s) p t (psi)

0.00 0.00 0.000

0.04 7.50 0.000

0.08 15.00 0.002

0.12 22.50 0.004

0.16 30.00 0.007

0.20 37.50 0.012

0.24 45.00 0.017

0.28 52.50 0.023

0.32 60.00 0.030

0.36 67.50 0.038

0.40 75.00 0.047

0.44 75.00 0.047

0.48 75.00 0.047

0.52 75.00 0.047

0.56 75.00 0.047

0.60 75.00 0.047

The stagnation pressure indicates total mechanical energy - the curve indicates significant loss close to the walls

and no loss of energy in the central core.

Stagnation Pressure Distibution in a Duct

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.01 0.02 0.03 0.04 0.05

p t (psi gage)

y  (in)



Problem 9.53 [Difficulty: 3]

Given: Turbulent boundary layer flow of water, 1/7-power profile

The given or available data (Table A.9) is

U 1
m

s
 L 1 m ν 1.00 10

6


m
2

s
 ρ 999

kg

m
3



Find: (a) Expression for wall shear stress
(b) Integrate to obtain expression for skin friction drag
(c) Evaluate for conditions shown

Solution:

Basic

Equation:
Cf

τw

1

2
ρ U

2



0.0594

Rex

1

5

 (Skin friction factor)

Assumptions: 1) Steady flow
2) No pressure force
3) No body force in x direction
4) Uniform flow at ab

Solving the above expression for the wall shear stress: τw 0.0594
1

2
ρ U

2






 Rex

1

5


 τw 0.0594
1

2
ρ U

2







U

ν







1

5


 x

1

5




Integrating to find the drag: FD
0

L

xτw b




d

0

L

x0.0594
1

2
ρ U

2







U

ν







1

5


 x

1

5


 b








d c b
0

L

xx

1

5







d where c is defined:

c 0.0594
1

2
ρ U

2







U

ν







1

5


 Therefore the drag is: FD
5

4
c b L

4

5


5

4
0.0594

1

2
 ρ U

2
 b L

U L

ν







1

5




Upon simplification: FD
1

2
ρ U

2
 b L

0.0721

ReL

1

5



Evaluating, with b 1 m ReL
U L

ν
1 10

6
 FD

1

2
ρ U

2
 b L

0.0721

ReL

1

5

 FD 2.27 N



Problem 9.54 [Difficulty: 3]

Note: Figure data applies to problem 9.18 only

Given: Data on fluid and turbulent boundary layer

Find: Mass flow rate across ab; Momentum flux across bc; Distance at which turbulence occurs

Rx 

CV 

c d 

Solution:

Basic

equations:

Mass

Momentum

Assumptions: 1) Steady flow 2) No pressure force 3) No body force in x direction 4) Uniform flow at ab

The given or available data (Table A.10) is

U 50
m

s
 δ 19 mm b 3 m ρ 1.23

kg

m
3

 ν 1.50 10
5


m

2

s


Consider CV abcd mad ρ U b δ mad 3.51
kg

s
 (Note: Software cannot render a dot)

Mass mad
0

δ

yρ u b




d mab 0 and in the boundary layer
u

U

y

δ







1

7

 η

1

7
 dy dη δ

Hence mab ρ U b δ
0

1

ηρ U η

1

7
 δ






d ρ U b δ
7

8
ρ U b δ mab

1

8
ρ U b δ mab 0.438

kg

s


The momentum flux
across bc is

mfbc
0

δ

A


u ρ V







d
0

δ

yu ρ u b




d
0

1

ηρ U
2

 b δ η

2

7







d ρ U
2

 b δ
7

9


mfbc
7

9
ρ U

2
 b δ mfbc 136.3

kg m

s
2



From momentum Rx U ρ U δ( ) mab uab mfbc Rx ρ U
2

 b δ mab U mfbc Rx 17.04 N

Transition occurs at Rex 5 10
5

 and Rex
U x

ν
 xtrans

Rex ν

U
 xtrans 0.1500 m



Problem 9.55 [Difficulty: 3]

Given: Data on flow over a flat plate U 10
m

s
 L 5 m ν 1.45 10

5


m
2

s
 (from Table A.10)

Find: Plot of laminar and turbulent boundary layer; Speeds for transition at trailing edge

Solution:

Governing

Equations:
For laminar flow

δ

x

5.48

Rex

 (9.21) and Rex
U x

ν
 so δ 5.48

ν x

U
 (1)

The critical Reynolds number is Recrit 500000 Hence, for velocity U the critical length xcrit is xcrit 500000
ν

U
 (2)

For turbulent flow
δ

x

0.382

Rex

1

5

 (9.26) so δ 0.382
ν

U







1

5

 x

4

5
 (3)

For (a) completely laminar flow Eq. 1 holds; for (b) completely turbulent flow Eq. 3 holds; for (c)
transitional flow Eq.1 or 3 holds depending on xcrit in Eq. 2. Results are shown below from Excel.

(a) Laminar (b) Turbulent (c) Transition

δ (mm) δ (mm) δ (mm) 

0.00 0.00E+00 0.00 0.00 0.00

0.125 8.62E+04 2.33 4.92 2.33

0.250 1.72E+05 3.30 8.56 3.30

0.375 2.59E+05 4.04 11.8 4.04

0.500 3.45E+05 4.67 14.9 4.67

0.700 4.83E+05 5.52 19.5 5.5

0.75 5.17E+05 5.71 20.6 20.6

1.00 6.90E+05 6.60 26.0 26.0

1.50 1.03E+06 8.08 35.9 35.9

2.00 1.38E+06 9.3 45.2 45.2

3.00 2.07E+06 11.4 62.5 62.5

4.00 2.76E+06 13.2 78.7 78.7

5.00 3.45E+06 14.8 94.1 94.1

Re xx  (m)



The speeds U  at which transition occurs at specific points are shown below

x trans 

(m)
U (m/s)

5 1.45

4 1.81

3 2.42

2 3.63

1 7.25

Boundary Layer Profiles on a Flat Plate

0

25

50

75

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x  (m)

δ (mm) Laminar

Turbulent

Transitional



Problem 9.56 [Difficulty: 2]

Given: Turbulent boundary layer flow of water

L 1 m U 1
m

s
 ν 1.00 10

6


m
2

s


u

U

y

δ







1

7



Find: Plot δ, δ*, and τw versus x/L for the plate

Solution: We will determine the drag force from the shear stress at the wall

Governing

Equations:

δ

x

0.382

Rex

1

5

 (Boundary layer thickness)

δdisp

δ

1

8
 (Displacement thickness)

Cf

τw

1

2
ρ U

2



0.0594

Rex

1

5

 (Skin friction factor)

Assumption: Boundary layer is turbulent from x = 0

For the conditions given: ReL
U L

ν
1.0 10

6
 q

1

2
ρ U

2
 500 Pa τw

0.0594

Rex

1

5

q 29.7 Pa Rex

1

5




0 0.5 1
0
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Here is the plot of boundary layer thickness

and wall shear stress: 



Problem 9.57 [Difficulty: 3]

Given: Triangular plate

Find: Drag

Solution:

Basic
equations:

cf

τw

1

2
ρ U

2


 cf
0.0594

Rex

1

5



L 2 ft
3

2
 L 1.732 ft W 2 ft U 80

ft

s


From Table A.10 at 70oF ν 1.62 10
4


ft

2

s
 ρ 0.00234

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 9 10

5
 so definitely still laminar over a

significant portion of the plate,
but we are told to assume
turbulent!

The drag (one side) is FD Aτw





d FD
0

L

xτw w x( )




d w x( ) W
x

L


We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.0594

Rex

1

5



Hence FD
1

2
ρ U

2


W

L


0

L

x
0.0594 x

U x

ν







1

5









d
0.0594

2
ρ U

9

5


W

L
 ν

1

5


0

L

xx

4

5






d

The integral is

0

L

xx

4

5






d
5

9
L

9

5
 so FD 0.0165 ρ W L

4
ν U

9
 

1

5

 FD 0.0557 lbf

Note: For two-sided solution 2 FD 0.1114 lbf



Problem 9.58 [Difficulty: 3]

Given: Parabolic plate

Find: Drag

Solution:

Basic

equations:
cf

τw

1

2
ρ U

2


 cf
0.0594

Rex

1

5



W 1 ft L

W

2







2

1 ft
 L 3 in U 80

ft

s


Note: "y" is the equation of the upper and lower surfaces, so y = W/2 at x = L

From Table A.9 at 70oF ν 1.63 10
4


ft

2

s
 ρ 0.00233

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 1.23 10

5
 so still laminar, but we are

told to assume turbulent!

The drag (one side) is FD Aτw





d FD
0

L

xτw w x( )




d w x( ) W
x

L


We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.0594

Rex

1

5



Hence FD
1

2
ρ U

2
 W

0

L

x

0.0594
x

L


U x

ν







1

5











d
0.0594

2
ρ U

9

5
 W L

1

2


 ν

1

5


0

L

xx

3

10






d

FD 0.0228 ρ W ν L
4

 U
9

 
1

5

 FD 0.00816 lbf

Note: For two-sided solution 2 FD 0.01632 lbf



Problem 9.59 [Difficulty: 3]

Given: Pattern of flat plates

Find: Drag on separate and composite plates

Solution:

Basic

equations:
cf

τw

1

2
ρ U

2


 cf
0.0594

Rex

1

5



For separate plates L 3 in W 3 in U 80
ft

s


From Table A.7 at 70oF ν 1.06 10
5


ft

2

s
 ρ 1.93

slug

ft
3



First determine the nature of the boundary layer ReL
U L

ν
 ReL 1.89 10

6
 so turbulent

The drag (one side) is FD Aτw





d FD

0

L

xτw W




d

We also have τw cf
1

2
 ρ U

2


1

2
ρ U

2


0.0594

Rex

1

5



Hence FD
1

2
ρ U

2
 W

0

L

x
0.0594

U x

ν







1

5









d
0.0594

2
ρ U

9

5
 W ν

1

5


0

L

xx

1

5







d

The integral is

0

L

xx

1

5







d
5

4
L

4

5
 so FD 0.0371 ρ W ν L

4
 U

9
 

1

5

 FD 1.59 lbf

This is the drag on one plate.  The total drag is then FTotal 4 FD FTotal 6.37 lbf

For both sides: 2 FTotal 12.73 lbf



For the composite plate L 4 3 in L 12.00 in and since the Reynolds number for the single plate was turbulent, we

know that the flow around the composite plate will be turbulent as well.

FComposite 0.0371 ρ W ν L
4

 U
9

 
1

5

 FComposite 4.82 lbf

For both sides: 2 FComposite 9.65 lbf

The drag is much lower on the composite compared to the separate plates.  This is because τw is largest

near the leading edges and falls off rapidly; in this problem the separate plates experience leading edges

four times!



Problem 9.60 [Difficulty: 3]

Given: Turbulent boundary layer flow with 1/6 power velocity profile:
u

U

y

δ







1

6

 η

1

6


Find: Expressions for δ/x and Cf using the momentum integral equation; compare to 1/7-power rule results.

Solution: We will apply the momentum integral equation

Governing

Equations:

τw

ρ x
U

2
θ d

d
δdisp U

x
U

d

d









 (Momentum integral equation)

Cf

τw

1

2
ρ U

2


 (Skin friction coefficient)

Assumptions: (1) Zero pressure gradient, so U is constant and dp/dx = 0

(2) δ is a function of x only, and δ = 0 at x = 0

(3) Incompressible flow

(4) Wall shear stress is: τw 0.0233 ρ U
2


ν

U δ






0.25



Applying the assumptions to the momentum integral equation yields: τw ρ U
2


x
θ

d

d









 ρ U
2


x
δ

0

1

η
u

U
1

u

U












d










d

d













Substituting for the velocity profile: τw ρ U
2


x
δ

0

1

ηη

1

6
η

2

6















d













d

d













 ρ U
2


6

56


x
δ

d

d









 Setting our two τw's equal:

0.0233 ρ U
2


ν

U δ






0.25

 ρ U
2


6

56


x
δ

d

d









 Simplifying and separating variables: δ

1

4
dδ 0.0233

56

6


ν

U







1

4

 dx

Integrating both sides:
4

5
δ

5

4
 0.0233

56

6


ν

U







1

4

 x C but C = 0 since δ = 0 at x = 0. Therefore: δ
5

4
0.0233

56

6


ν

U







1

4

 x









4

5





In terms of the Reynolds number:
δ

x

0.353

Rex

1

5



For the skin friction factor:

Cf

τw

1

2
ρ U

2




0.0233 ρ U
2


ν

U δ






1

4



1

2
ρ U

2


 0.0466
ν

U x






1

4


x

δ







1

4

 0.0466 Rex

1

4



Rex

1

5

0.353











1

4

 Upon simplification:

Cf
0.0605

Rex

1

5



These results compare to 
δ

x

0.353

Rex

1

5

 and Cf
0.0605

Rex

1

5

 for the 1/7-power profile.



Problem 9.61 [Difficulty: 3]

Given: Turbulent boundary layer flow with 1/6 power velocity profile:
u

U

y

δ







1

6

 η

1

6


The given or available data (Table A.9) is U 1
m

s
 L 1 m ν 1.00 10

6


m
2

s
 ρ 999

kg

m
3



Find: Expressions for δ/x and Cf using the momentum integral equation; evaluate drag for the conditions given

Solution: We will apply the momentum integral equation

Governing

Equations:

τw

ρ x
U

2
θ d

d
δdisp U

x
U

d

d









 (Momentum integral equation)

Cf

τw

1

2
ρ U

2


 (Skin friction coefficient)

Assumptions: (1) Zero pressure gradient, so U is constant and dp/dx = 0

(2) δ is a function of x only, and δ = 0 at x = 0

(3) Incompressible flow

(4) Wall shear stress is: τw 0.0233 ρ U
2


ν

U δ






0.25



Applying the assumptions to the momentum integral equation yields: τw ρ U
2


x
θ

d

d









 ρ U
2


x
δ

0

1

η
u

U
1

u

U












d










d

d













Substituting for the velocity profile: τw ρ U
2


x
δ

0

1

ηη

1

6
η

2

6















d













d

d













 ρ U
2


6

56


x
δ

d

d









 Setting our two τw's equal:

0.0233 ρ U
2


ν

U δ






0.25

 ρ U
2


6

56


x
δ

d

d









 Simplifying and separating variables: δ

1

4
dδ 0.0233

56

6


ν

U







1

4

 dx

Integrating both sides:
4

5
δ

5

4
 0.0233

56

6


ν

U







1

4

 x C but C = 0 since δ = 0 at x = 0. Therefore: δ
5

4
0.0233

56

6


ν

U







1

4

 x









4

5





In terms of the Reynolds number:
δ

x

0.353

Rex

1

5



For the skin friction factor:

Cf

τw

1

2
ρ U

2




0.0233 ρ U
2


ν

U δ






1

4



1

2
ρ U

2


 0.0466
ν

U x






1

4


x

δ







1

4

 0.0466 Rex

1

4



Rex

1

5

0.353











1

4

 Upon simplification:

Cf
0.0605

Rex

1

5



The drag force is: FD

0

L

xτw b




d

0

L

x0.0605
1

2
 ρ U

2


ν

U







1

5

 x

1

5


 b








d
0.0605

2
ρ U

2


ν

U







1

5

 b
0

L

xx

1

5







d

Evaluating the integral: FD
0.0605

2
ρ U

2


ν

U







1

5

 b
5

4
 L

4

5
 In terms of the Reynolds number: FD

0.0378 ρ U
2

 b L

ReL

1

5



For the given conditions and assuming that b = 1 m: ReL 1.0 10
6

 and therefore:

FD 2.38 N



Problem 9.62 [Difficulty: 3]

Given: Turbulent boundary layer flow with 1/8 power velocity profile:
u

U

y

δ







1

8

 η

1

8


Find: Expressions for δ/x and Cf using the momentum integral equation; compare to 1/7-power rule results.

Solution: We will apply the momentum integral equation

Governing

Equations:

τw

ρ x
U

2
θ d

d
δdisp U

x
U

d

d









 (Momentum integral equation)

Cf

τw

1

2
ρ U

2


 (Skin friction coefficient)

Assumptions: (1) Zero pressure gradient, so U is constant and dp/dx = 0

(2) δ is a function of x only, and δ = 0 at x = 0

(3) Incompressible flow

(4) Wall shear stress is: τw 0.0233 ρ U
2


ν

U δ






0.25



Applying the assumptions to the momentum integral equation yields: τw ρ U
2


x
θ

d

d









 ρ U
2


x
δ

0

1

η
u

U
1

u

U












d










d

d













Substituting for the velocity profile: τw ρ U
2


x
δ

0

1

ηη

1

8
η

2

8















d













d

d













 ρ U
2


8

90


x
δ

d

d









 Setting our two τw's equal:

0.0233 ρ U
2


ν

U δ






0.25

 ρ U
2


6

56


x
δ

d

d









 Simplifying and separating variables: δ

1

4
dδ 0.262

ν

U







1

4

 dx

Integrating both sides:
4

5
δ

5

4
 0.262

ν

U







1

4

 x C but C = 0 since δ = 0 at x = 0. Therefore: δ
5

4
0.262

ν

U







1

4

 x









4

5



In terms of the Reynolds number:
δ

x

0.410

Rex

1

5





For the skin friction factor:

Cf

τw

1

2
ρ U

2




0.0233 ρ U
2


ν

U δ






1

4



1

2
ρ U

2


 0.0466
ν

U x






1

4


x

δ







1

4

 0.0466 Rex

1

4



Rex

1

5

0.410











1

4

 Upon simplification:

Cf
0.0582

Rex

1

5



These results compare to 
δ

x

0.353

Rex

1

5

 and Cf
0.0605

Rex

1

5

 for the 1/7-power profile.



Problem 9.63 [Difficulty: 3]

Given: Turbulent boundary layer flow of water, 1/7-power profile

The given or available data (Table A.9) is

U 20
m

s
 L 1.5 m b 0.8 m ν 1.46 10

5


m
2

s
 ρ 1.23

kg

m
3

 x1 0.5 m

Find: (a) δ at x = L

(b) τw at x = L

(c) Drag force on the portion 0.5 m < x < L

Solution:

Basic

equations:

δ

x

0.382

Rex

1

5

 (Boundary Layer Thickness)

Cf

τw

1

2
ρ U

2



0.0594

Rex

1

5

 (Skin friction factor)

Assumptions: 1) Steady flow

2) No pressure force

3) No body force in x direction

At the trailing edge of the plate: ReL
U L

ν
2.05 10

6
 Therefore δL L

0.382

ReL

1

5

 δL 31.3 mm

Similarly, the wall shear stress is: τwL
1

2
ρ U

2


0.0594

ReL

1

5

 τwL 0.798 Pa

To find the drag: FD

x1

L

xτw b



d

x1

L

x0.0594
1

2
ρ U

2







U

ν







1

5


 x

1

5


 b








d c b
0

L

xx

1

5







d where c is defined:

c 0.0594
1

2
ρ U

2







U

ν







1

5


 Therefore the drag is: FD
5

4
c b L

4

5


5

4

1

2
 ρ U

2
 b L CfL x1 Cfx1 



At x = x1: Rex1

U x1

ν
6.849 10

5
 Cfx1

0.0594

Rex1

1

5

4.043 10
3

 and at x = L CfL
0.0594

ReL

1

5

3.245 10
3



Therefore the drag is: FD 0.700 N

Alternately, we could solve for the drag using the momentum thickness: FD ρ U
2

 b θL θx1  where θ
7

72
δ

At x = L δL 31.304 mm θL
7

72
δL 3.043 mm At x = x1: δx1 x1

0.382

Rex1

1

5

 12.999 mm θx1
7

72
δx1 1.264 mm

Therefore the drag is: FD 0.700 N



Problem 9.64 [Difficulty: 3]

Given: Air at standard conditions flowing over a flat plate

The given or available data (Table A.10) is

U 30
ft

s
 x 3 ft ν 1.57 10

4


ft
2

s
 ρ 0.00238

slug

ft
3



Find: δ and  τw at x assuming:

(a) completely laminar flow (parabolic velocity profile)

(b) completely turbulent flow (1/7-power velocity profile)

Solution:
(Laminar Flow) (Turbulent Flow)

Basic

equations:

δ

x

5.48

Rex


δ

x

0.382

Rex

1

5

 (Boundary Layer Thickness)

Cf

τw

1

2
ρ U

2



0.730

Rex

 Cf

τw

1

2
ρ U

2



0.0594

Rex

1

5

 (Skin friction factor)

The Reynolds number is: Rex
U x

ν
5.73 10

5


For laminar flow: δlam x
5.48

Rex

 δlam 0.261 in

τwlam
1

2
ρ U

2


0.730

Rex


τwlam 7.17 10

6
 psi

For turbulent flow:
δturb x

0.382

Rex

1

5

 δturb 0.970 in

τwturb
1

2
ρ U

2


0.0594

Rex

1

5

 τwturb 3.12 10
5

 psi

Comparing results:
δturb

δlam

3.72
The turbulent boundary layer has a much larger skin friction, which causes it to

grow more rapidly than the laminar boundary layer.
τwturb

τwlam

4.34



Problem 9.65 [Difficulty: 3]

Given: Air at standard conditions flowing through a plane-wall diffuser with negligible
BL thickness. Walls diverge slightly to accomodate BL growth, so p = constant.

The given or available data (Table A.9) is

U 60
m

s
 L 1.2 m W1 75 mm ν 1.46 10

5


m
2

s
 ρ 1.23

kg

m
3



Find: (a) why Bernoulli is applicable to this flow.
(b) diffuser width W2 at x = L

Solution:

Basic

equations:

p1

ρ

V1
2

2
 g z1

p2

ρ

V2
2

2
 g z2 (Bernoulli Equation)

t
Vρ





d



A


ρ V






d 0
(Continuity)

Assumptions: (1) Steady flow
(2) Turbulent, 1/7-power velocity profile in boundary layer
(3) z = constant
(4) p = constant

The Bernoulli equation may be applied along a streamline in any steady, incompressible flow in the absence of
friction. The given flow is steady and incompressible. Frictional effects are confined to the thin wall boundary
layers. Therefore, the Bernoulli equation may be applied along any streamline in the core flow outside the boundary
layers. (In addition, since there is no streamline curvature, the pressure is uniform across sections 1 and 2.

From the assumptions, Bernoulli reduces to: V1 V2 and from continuity: ρ V1 A1 ρ V2 A2eff 0

or A2eff W2 2 δdisp2  b W1 b Therefore: W2 W1 2 δdisp2

The Reynolds number is: ReL
U L

ν
4.932 10

6
 From turbulent BL theory: δ2 L

0.382

ReL

1

5

 21.02 mm



The displacement thickness is determined from: δdisp2 δ2

0

1

η1
u

U











d where
u

U
η

1

7
 η

y

δ


Substituting the velocity profile and valuating the integral: δdisp2 δ2
0

1

η1 η

1

7















d
δ2

8
 δdisp2 2.628 mm

Therefore: W2 W1 2 δdisp2 W2 80.3 mm



Problem 9.66 [Difficulty: 3]

Given: Laboratory wind tunnel has flexible wall to accomodate BL growth. BL's are well
represented by 1/7-power profile. Information at two stations are known:

The given or available data (Table A.9) is

U 90
ft

s
 H1 1 ft W1 1 ft δ1 0.5 in δ6 0.65 in ν 1.57 10

4


ft
2

s
 ρ 0.00238

slug

ft
3



Find: (a) Height of tunnel walls at section 6.
(b) Equivalent length of flat plate that would produce the inlet BL
(c) Estimate length of tunnel between stations 1 and 6.

Solution:

Basic

equations: t
Vρ





d



A


ρ V






d 0
(Continuity)

Assumptions: (1) Steady flow
(2) Turbulent, 1/7-power velocity profile in boundary layer
(3) z = constant
(4) p = constant

Applying continuity between 1 and 6: A1 U1 A6 U6 where A is the effective flow area. The velocities at 1 and 6 must be
equal since pressure is constant. In terms of the duct dimensions:

W1 2 δdisp1  H1 2 δdisp1  W1 2 δdisp6  H6 2 δdisp6 

solving for the height at 6: H6

W1 2 δdisp1  H1 2 δdisp1 
W1 2 δdisp6 

2 δdisp6

The displacement thickness is determined from: δdisp δ

0

1

η1
u

U











d where
u

U
η

1

7
 η

y

δ


δdisp1 0.0625 in

Substituting the velocity profile and valuating the integral: δdisp δ

0

1

η1 η

1

7















d
δ

8
 Therefore:

δdisp6 0.0813 in

We may now determine the height at 6: H6 1.006 ft



For a flat plate turbulent boundary layer with 1/7-power law profile: δ1 L1
0.382

Re1

1

5

 0.382
ν

U







1

5

 L1

4

5
 Solving for L1:

L1

δ1

0.382









5

4
U

ν







1

4


L1 1.725 ft

To estimate the length between 1 and 6, we determine length necessary to build the BL at section 6:

L6

δ6

0.382









5

4
U

ν







1

4

 2.394 ft Therefore, the distance between 1 and 6 is: L L6 L1

L 0.669 ft



Problem 9.67 [Difficulty: 3]

Given: Laboratory wind tunnel has fixed walls. BL's are well represented by 1/7-power
profile. Information at two stations are known:

The given or available data (Table A.9) is

U1 26.1
m

s
 H 305 mm W 305 mm δ1 12.2 mm δ2 16.6 mm ν 1.46 10

5


m
2

s
 ρ 1.23

kg

m
3



Find: (a) Change in static pressure between 1 and 2
(b) Estimate length of tunnel between stations 1 and 2.

Solution:

Basic

equations: t
Vρ





d



A


ρ V






d 0
(Continuity)

Assumptions: (1) Steady flow
(2) Turbulent, 1/7-power velocity profile in boundary layer
(3) z = constant

Applying continuity between 1 and 6: A1 U1 A2 U2 where A is the effective flow area.  In terms of the duct dimensions:

W 2 δdisp1  H 2 δdisp1  U1 W 2 δdisp2  H 2 δdisp2  U2

solving for the speed at 2: U2 U1

W 2 δdisp1  H 2 δdisp1 
W 2 δdisp2  H 2 δdisp2 



The displacement thickness is determined from: δdisp δ

0

1

η1
u

U











d where
u

U
η

1

7
 η

y

δ


δdisp1 1.525 mm

Substituting the velocity profile and valuating the integral: δdisp δ

0

1

η1 η

1

7















d
δ

8
 Therefore:

δdisp2 2.075 mm

We may now determine the speed at 2: U2 26.3
m

s


Applying Bernoulli between 1 and 2:
p1

ρ

U1
2

2


p2

ρ

U2
2

2
 Solving for the pressure change: ∆p

1

2
ρ U1

2
U2

2






Substituting given values: ∆p 6.16 Pa



For a flat plate turbulent boundary layer with 1/7-power law profile: δ x
0.382

Rex

1

5

 0.382
ν

U







1

5

 x

4

5
 Solving for location at 1:

x1

δ1

0.382









5

4
U1

ν









1

4

 0.494 m

To estimate the length between 1 and 6, we determine length necessary to build the BL at section 2:

x2

δ2

0.382









5

4
U2

ν









1

4

 0.727 m Therefore, the distance between 1 and 2 is: L x2 x1

L 0.233 m



Problem 9.68 [Difficulty: 3]

Given: Data on flow in a duct

Find: Velocity at location 2; pressure drop; length of duct; position at which boundary layer is 20 mm

Solution:

The given data is D 6 in δ1 0.4 in δ2 1.2 in U1 80
ft

s


Table A.9 ρ 0.00234
slug

ft
3

 ν 1.56 10
4


ft

2

s


Governing

equations

Mass

In the boundary layer
δ

x

0.382

Rex

1

5

 (9.26)

In the the inviscid core, the Bernoulli equation holds

p

ρ

V
2

2
 g z constant (4.24)

Assumptions: (1) Steady flow

(2) No body force (gravity) in x direction

For a 1/7-power law profile, from Example 9.4 the displacement thickness is δdisp
δ

8


Hence δdisp1

δ1

8
 δdisp1 0.0500 in

δdisp2

δ2

8
 δdisp2 0.1500 in

From the definition of the displacement thickness, to compute the flow rate, the uniform flow at locations 1

and 2 is assumed to take place in the entire duct, minus the displacement thicknesses

A1
π

4
D 2 δdisp1 2 A1 0.1899 ft

2




A2
π

4
D 2 δdisp2 2 A2 0.1772 ft

2


Mass conservation (Eq. 4.12) leads to U2

ρ U1 A1  ρ U2 A2  0 or U2 U1

A1

A2

 U2 85.7
ft

s


The Bernoulli equation applied between locations 1 and 2 is

p1

ρ

U1
2

2


p2

ρ

U2
2

2


or the pressure drop is p1 p2 ∆p
ρ

2
U2

2
U1

2




 ∆p 7.69 10

3
 psi (Depends on ρ value selected) 

The static pressure falls continuously in the entrance region as the fluid in the central core accelerates into a decreasing core.

If we assume the stagnation pressure is atmospheric, a change in pressure of about 0.008 psi is not significant; in addition, the

velocity changes by about 5%, again not a large change to within engineering accuracy

To compute distances corresponding to boundary layer thicknesses, rearrange Eq.9.26 

δ

x

0.382

Rex

1

5

 0.382
ν

U x






1

5

 so x
δ

0.382







5

4
U

ν







1

4



Applying this equation to locations 1 and 2 (using U = U1 or U2 as approximations)

x1

δ1

0.382









5

4
U1

ν









1

4

 x1 1.269 ft

x2

δ2

0.382









5

4
U2

ν









1

4

 x2 5.098 ft

x2 x1 3.83 ft (Depends on ν value selected) 

For location 3 δ3 0.6 in δdisp3

δ3

8
 δdisp3 0.075 in

A3
π

4
D 2 δdisp3 2 A3 0.187 ft

2


U3 U1

A1

A3

 U3 81.4
ft

s


x3

δ3

0.382









5

4
U2

ν









1

4

 x3 2.143 ft

x3 x1 0.874 ft (Depends on ν value selected) 



Problem 9.69 [Difficulty: 3]

Given: Linear, sinusoidal and parabolic velocity profiles

Find: Momentum fluxes

Solution:

The momentum flux is given by mf

0

δ

yρ u
2

 w




d

where w is the width of the boundary layer

For a linear velocity profile
u

U

y

δ
 η (1)

For a sinusoidal velocity profile
u

U
sin

π

2

y

δ






 sin
π

2
η





 (2)

For a parabolic velocity profile
u

U
2

y

δ








y

δ







2

 2 η η( )
2

 (3)

For each of these u U f η( ) y δ η

Using these in the momentum flux equation mf ρ U
2

 δ w
0

1

ηf η( )
2




d (4)

For the linear profile Eqs. 1 and 4 give mf ρ U
2

 δ w
0

1

ηη
2




d mf
1

3
ρ U

2
 δ w

For the sinusoidal profile Eqs. 2 and 4 give mf ρ U
2

 δ w

0

1

ηsin
π

2
η





2



d mf
1

2
ρ U

2
 δ w

For the parabolic profile Eqs. 3 and 4 give mf ρ U
2

 δ w
0

1

η2 η η( )
2

 
2





d mf
8

15
ρ U

2
 δ w

The linear profile has the smallest momentum, so would be most likely to separate



Problem 9.70 [Difficulty: 3]

Given: Data on a large tanker

Find: Cost effectiveness of tanker; compare to Alaska pipeline

Solution:

The given data is L 360 m B 70 m D 25 m ρ 1020
kg

m
3

 U 6.69
m

s
 x 2000 mi

P 9.7 MW P 1.30 10
4

 hp (Power consumed by drag)

The power to the propeller is Pprop
P

70 %
 Pprop 1.86 10

4
 hp

The shaft power is Ps 120% Pprop Ps 2.23 10
4

 hp

The efficiency of the engines is η 40 %

Hence the heat supplied to the engines is Q
Ps

η
 Q 1.42 10

8


BTU

hr


The journey time is t
x

U
 t 134 hr

The total energy consumed is Qtotal Q t Qtotal 1.9 10
10

 BTU

From buoyancy the total ship weight equals the displaced seawater volume

Mship g ρ g L B D Mship ρ L B D Mship 1.42 10
9

 lb

Hence the mass of oil is Moil 75% Mship Moil 1.06 10
9

 lb

The chemical energy stored in the petroleum is q 20000
BTU

lb


The total chemical energy is E q Moil E 2.13 10
13

 BTU

The equivalent percentage of petroleum cargo used is then
Qtotal

E
0.089 %

The Alaska pipeline uses epipeline 120
BTU

ton mi
 but for the

ship
eship

Qtotal

Moil x
 eship 17.8

BTU

ton mi


The ship uses only about 15% of the energy of the pipeline!



Problem 9.71 [Difficulty: 2]

Given: Plane-wall diffuser

Find: (a) For inviscid flow, describe flow pattern and pressure distribution as φ is increased from zero

(b) Redo part (a) for a viscous fluid

(c) Which fluid will have the higher exit pressure?

Solution:

For the inviscid fluid:

With φ = 0 (straight channel) there will be no change in the velocity, and hence no pressure gradient.

With φ > 0 (diverging channel) the velocity will decrease, and hence the pressure will increase.

For the viscous fluid:

With φ = 0 (straight channel) the boundary layer will grow, decreasing the effective flow area. As a result, velocity

will increase, and the pressure will drop.

With φ > 0 (diverging channel) the pressure increase due to the flow divergence will cause in increase in the rate of

boundary layer growth. If φ is too large, the flow will separate from one or both walls.

The inviscid fluid will have the higher exit pressure. (The pressure gradient with the real fluid is reduced by the

boundary layer development for all values of φ.)



Problem 9.72 [Difficulty: 4]

Given: Laminar (Blasius) and turbulent (1/7-power) velocity distributions

Find: Plot of distributions; momentum fluxes

Solution:

The momentum flux is given by mf

0

δ

yρ u
2






d per unit width of the boundary layer

Using the substitutions
u

U
f η( )

y

δ
η

the momentum flux becomes mf ρ U
2

 δ
0

1

ηf η( )
2




d

For the Blasius solution a numerical evaluation (a Simpson's rule) of the integral is needed

mflam ρ U
2

 δ
∆η

3
 f η0 2 4 f η1 2 2 f η2 2 f ηN 2





where Δη is the step size and N the number of steps

The result for the Blasius profile is mflam 0.525 ρ U
2

 δ

For a 1/7 power velocity profile mfturb ρ U
2

 δ
0

1

ηη

2

7






d mfturb
7

9
ρ U

2
 δ

The laminar boundary has less momentum, so will separate first when encountering an adverse pressure gradient. The

computed results were generated in Excel and are shown below:



(Table 9.1) (Simpsons Rule)

Laminar Weight Weight x t

u/U w (u/U )
2

u/U

0.0 0.000 1 0.00 0.0 0.00

0.5 0.166 4 0.11 0.0125 0.53

1.0 0.330 2 0.22 0.025 0.59

1.5 0.487 4 0.95 0.050 0.65

2.0 0.630 2 0.79 0.10 0.72

2.5 0.751 4 2.26 0.15 0.76

3.0 0.846 2 1.43 0.2 0.79

3.5 0.913 4 3.33 0.4 0.88

4.0 0.956 2 1.83 0.6 0.93

4.5 0.980 4 3.84 0.8 0.97

5.0 0.992 1 0.98 1.0 1.00

Simpsons': 0.525

η y /δ = η

Laminar and Turbulent Boundary Layer

Velocity Profiles

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

u/U

y /δ Laminar

Turbulent



Problem 9.73 [Difficulty: 5]

Given: Channel flow with laminar boundary layers

Find: Maximum inlet speed for laminar exit; Pressure drop for parabolic velocity in boundary layers

Solution:

Basic
equations:

Retrans 5 10
5


δ

x

5.48

Rex


p

ρ

V
2

2
 g z const

Assumptions: 1) Steady flow 2) Incompressible 3) z = constant

From Table A.10 at 20oC ν 1.50 10
5


m

2

s
 ρ 1.21

kg

m
3

 L 3 m h 15 cm

Then Retrans

Umax L

ν
 Umax

Retrans ν

L
 Umax 2.50

m

s
 U1 Umax U1 2.50

m

s


For Retrans 5 10
5

 δ2 L
5.48

Retrans

 δ2 0.0232 m

For a parabolic profile
δdisp

δ
0

1

λ1
u

U











d
0

1

λ1 2 λ λ
2

 



d
1

3
 where δtrans  is the displacement

thickness

δdisp2
1

3
δ2 δdisp2 0.00775 m

From continuity U1 w h U2 w h 2 δdisp2  U2 U1
h

h 2 δdisp2
 U2 2.79

m

s


Since the boundary layers do not meet Bernoulli applies in the core

p1

ρ

U1
2

2


p2

ρ

U2
2

2
 ∆p p1 p2

ρ

2
U2

2
U1

2






∆p
ρ

2
U2

2
U1

2




 ∆p 0.922 Pa

From hydrostatics ∆p ρH2O g ∆h with ρH2O 1000
kg

m
3



∆h
∆p

ρH2O g
 ∆h 0.0940 mm ∆h 0.00370 in



Problem 9.74 [Difficulty: 3]

Given: Laminar boundary layer with velocity profile
u

U
a b λ c λ

2
 d λ

3
 λ

y

δ


Separation occurs when shear stress at the surface becomes zero.

Find: (a) Boundary conditions on the velocity profile at separation
(b) Appropriate constants a, b, c, d for the profile
(c) Shape factor H at separation
(d) Plot the profile and compare with the parabolic approximate profile

Solution:

Basic

equations:

u

U
2

y

δ








y

δ







2


(Parabolic profile)

The boundary conditions for the separation profile are: at y 0 u 0 τ μ
du

dy
 0

Four boundary
conditions for four
coefficients a, b, c, d

at y δ u U τ μ
du

dy
 0

The velocity gradient is defined as:
du

dy

U

δ λ

u

U







d

d










U

δ
b 2 c λ 3 d λ

2
 

Applying the boundary conditions: y 0 λ 0
u

U
a b 0 c 0

2
 d 0

3
 0 Therefore: a 0

du

dy

U

δ
b 2 c 0 3 d 0

2
  0 Therefore: b 0

The velocity profile and gradient may now be written as:
u

U
c λ

2
 d λ

3


du

dy

U

δ
2 c λ 3 d λ

2
 

Applying the other boundary conditions:

Solving this system
of equations yields:y δ λ 1

u

U
c 1

2
 d 1

3
 1 c d 1

du

dy

U

δ
2 c 1 3 d 1

2
  0 2 c 3 d 0 c 3 d 2

The velocity profile is:
u

U
3 λ

2
 2 λ

3
 The shape parameter is defined as: H

δdisp

θ


δdisp

δ

δ

θ


δdisp

δ
0

1

λ1 3 λ
2

 2 λ
3

 



d 1 1
1

2


1

2


θ

δ
0

1

λ3 λ
2

 2 λ
3

  1 3 λ
2

 2 λ
3

 




d Expanding out the
integrand yields:

θ

δ
0

1

λ3 λ
2

 2 λ
3

 9 λ
4

 12 λ
5

 4 λ
6

 



d 1
1

2


9

5
 2

4

7


9

70
 Thus H

1

2

70

9
 H 3.89



The two velocity profiles are plotted here:
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Problem 9.75 [Difficulty: 4]

Discussion: Shear stress decreases along the plate because the freestream flow speed remains constant while the

boundary-layer thickness increases.

The momentum flux decreases as the flow proceeds along the plate. Momentum thickness θ (actually proportional

to the defect in momentum within the boundary layer) increases, showing that momentum flux decreases. The

forct that must be applied to hold the plate stationary reduces the momentum flux of the stream and boundary

layer.

The laminar boundary layer has less shear stress than the turbulent boundary layer. Therefore laminar boundary

layer flow from the leading edge produces a thinner boundary layer and less shear stress everywhere along the

plate than a turbulent boundary layer from the leading edge.

Since both boundary layers continue to grow with increasing distance from the leading edge, and the turbulent

boundary layer continues to grow more rapidly because of its higher shear stress, this comparison will be the

same no matter the distance from the leading edge.



Problem 9.76 [Difficulty: 5]

Given: Laboratory wind tunnel has fixed walls. BL's

are well represented by 1/7-power profile.

Information at two stations are known:

The given or available data (Table A.9) is

U1 80
ft

s
 H1 1 ft W1 1 ft δ1 0.4 in

dp

dx
0.035

in H2 O

in
 L 10 in ν 1.62 10

4


ft
2

s
 ρ 0.00234

slug

ft
3



Find: (a) Reduction in effective flow area at section 1

(b) dθ/dx at section 1

(c) θ at section 2

Solution:

Basic

equations: t
Vρ





d



A


ρ V






d 0
(Continuity)

τw

ρ x
U

2
θ d

d
δdisp U

x
U

d

d









 (Momentum integral equation)

Assumptions: (1) Steady flow

(2) Turbulent, 1/7-power velocity profile in boundary layer

(3) z = constant

The percent reduction in flow area at 1 is given as:
Aeff A

A

W1 2 δdisp  H1 2 δdisp  W1 H1

W1 H1


The displacement thickness is determined from: δdisp δ

0

1

η1
u

U











d where
u

U
η

1

7
 η

y

δ


Substituting the velocity profile and valuating the integral: δdisp δ

0

1

η1 η

1

7















d
δ

8
 Therefore: δdisp1 0.0500 in

Thus:
Aeff A

A
1.66 %



Solving the momentum integral equation for the momentum thickness gradient:
dθ

dx

τw

ρ U
2


H 2( )

θ

U


dU

dx


At station 1:
τw1

ρ U1
2


0.0233

ν

U1 δ1








1

4

 0.0233
ν

U1 δ1








1

4

 2.057 10
3



θ

δ
0

1

η
u

U
1

u

U












d
0

L

ηη

1

7
η

2

7















d
7

8

7

9


7

72
 Thus: θ1

7

72
δ1 0.0389 in H

δdisp1

θ1

1.286

Now outside the boundary layer p
1

2
ρ U

2
 constant from the Bernoulli equation. Then:

dp

dx
ρ U

dU

dx


Solving for the velocity gradient:
1

U

dU

dx


1

ρ U
2




dp

dx
 0.1458

1

ft
 Substituting all of this information into the above expression:

dθ

dx
4.89 10

4
 0.00587

in

ft


We approximate the momentum thickness at 2 from: θ2 θ1
dθ

dx
L

θ2 0.0438 in



Problem 9.77 [Difficulty: 5]

Given: Laboratory wind tunnel of Problem 9.76 with a movable top wall:

The given or available data (Table A.9) is

U1 80
ft

s
 H1 1 ft W 1 ft δ 0.4 in L 10 in ν 1.57 10

4


ft
2

s
 ρ 0.00234

slug

ft
3



Find: (a) Velocity distribution needed for constant boundary layer thickness

(b) Tunnel height distribution h(x) from 0 to L

Solution:

Basic

equations: t
Vρ





d



A


ρ V






d 0
(Continuity)

τw

ρ x
U

2
θ d

d
δdisp U

x
U

d

d









 (Momentum integral equation)

Assumptions: (1) Steady flow

(2) Incompressible flow

(3) Turbulent, 1/7-power velocity profile in boundary layer

(4) δ = constant

From the 1/7-power profile: δdisp
δ

8
 θ

7

72
δ H

72

56


After applying assumptions, the momentum integral equation is:
τw

ρ U
2


H 2( )

θ

U


x
U

d

d











To integrate, we need to make an assumption about the wall shear stress:

Case 1: assume constant τw: U dU
τw

ρ θ H 2( )
dx Integrating:

U
2

U1
2



2

τw

ρ θ H 2( )
x

U

U1

1
2 τw

ρ U1
2



x

θ H 2( )
 which may be rewritten as:

U

U1

1
Cf

θ H 2( )
x

Case 2: assume τw has the form: τw 0.0233 ρ U
2


ν

U δ






1

4

 Substituting and rearranging yields the following expression:



τw

ρ U
2


0.0233

ν

U δ






1

4

 H 2( )
θ

U


x
U

d

d









 or
dU

U
0.75

0.0233
ν

δ







0.25


dx

H 2( ) θ
 Integrating this yields:

4 U
0.25

U1
0.25





 0.0233

ν

δ







0.25


x

H 2( ) θ
 or:

U

U1

1 0.00583
ν

U1 δ








0.25


x

H 2( ) θ








4



From continuity: U1 A1 U A which may be rewritten as: U1 W 2 δdisp  H1 2 δdisp  U W 2.δdisp  h 2 δdisp 

Thus:
A

A1

U

U1









1
 and

h 2 δdisp

H1 2 δdisp

U1

U
 solving for h:

h

W
1 2

δdisp

H1










U1

U
 2

δdisp

H1



Evaluating using the given data: δdisp
δ

8
0.0500 in θ

7

72
δ 0.0389 in Reδ1

U1 δ

ν
1.699 10

4


Cf 0.0466 Reδ1
0.25

 4.082 10
3



The results for both wall profiles are shown in the plot here:
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Problem 9.78 [Difficulty: 3]

Given: Barge pushed upriver

L 80 ft B 35 ft D 5 ft From Table A.7: ν 1.321 10
5


ft

2

s
 ρ 1.94

slug

ft
3



Find: Power required to overcome friction; Plot power versus speed

Solution:

Basic

equations:
CD

FD

1

2
ρ U

2
 A

 (9.32) CD
0.455

log ReL  2.58

1610

ReL

 (9.37b) ReL
U L

ν


From Eq. 9.32 FD CD A
1

2
 ρ U

2
 and A L B 2 D( ) A 3600 ft

2


The power consumed is P FD U P CD A
1

2
 ρ U

3
 The calculated results and the plot were generated in Excel:

U  (mph) Re L C D
P (hp)

1 9.70E+06 0.00285 0.0571

2 1.94E+07 0.00262 0.421

3 2.91E+07 0.00249 1.35

4 3.88E+07 0.00240 3.1

5 4.85E+07 0.00233 5.8

6 5.82E+07 0.00227 9.8

7 6.79E+07 0.00222 15

8 7.76E+07 0.00219 22

9 8.73E+07 0.00215 31

10 9.70E+07 0.00212 42

11 1.07E+08 0.00209 56

12 1.16E+08 0.00207 72

13 1.26E+08 0.00205 90

14 1.36E+08 0.00203 111

15 1.45E+08 0.00201 136

Power Consumed by Friction on a Barge
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Problem 9.79 [Difficulty: 3]

Given: Pattern of flat plates

Find: Drag on separate and composite plates

Solution:

Basic

equations:
CD

FD

1

2
ρ V

2
 A



For separate plates L 3 in W 3 in A W L A 9.000 in
2

 V 30
ft

s


From Table A.8 at 70oF ν 1.06 10
5


ft

2

s
 ρ 1.93

slug

ft
3



First determine the Reynolds number ReL
V L

ν
 ReL 7.08 10

5
 so use Eq. 9.34

CD
0.0742

ReL

1

5

 CD 0.00502

The drag (one side) is then FD CD
1

2
 ρ V

2
 A FD 0.272 lbf

This is the drag on one plate.  The total drag is then FTotal 4 FD FTotal 1.09 lbf

For both sides: 2 FTotal 2.18 lbf

For the composite plate L 4 3 in L 12.000 in A W L A 36 in
2



First determine the Reylolds number ReL
V L

ν
 ReL 2.83 10

6
 so use Eq. 9.34

CD
0.0742

ReL

1

5

 CD 0.00380

The drag (one side) is

then
FD CD

1

2
 ρ V

2
 A FD 0.826 lbf For both

sides:
2 FD 1.651 lbf

The drag is much lower on the composite compared to the separate plates.  This is because τw is largest

near the leading edges and falls off rapidly; in this problem the separate plates experience leading edges

four times!



Problem 9.80 [Difficulty: 3]

Given: Towboat model at 1:13.5 scale to be tested in towing tank.

Lm 3.5 m Bm 1 m dm 0.2 m Up 7 knot 3.601
m

s
 Dispm 5500 N

Find: (a) Estimate average length of wetted surface on the hull
(b) Calculate skin friction drag force on the prototype

Solution:

Basic

equations:
FD CD

1

2
 ρ U

2
 A

(Drag)

CD
0.455

log ReL  2.58

1610

ReL

 (Drag Coefficient)

We will represent the towboat as a rectangular solid of length Lav, with the displacement of the boat. From buoyancy:

W ρ g V ρ g Lav Bm dm thus: Lav
W

ρ g Bm dm
 Lav 2.80 m

For the prototype: Lp 13.5 Lav Lp 37.9 m

The Reynolds number is: ReL

Up Lp

ν


ReL 1.36 10
8



This flow is predominantly turbulent, so we will use a turbulent analysis.

The drag coefficient is: CD
0.455

log ReL  2.58

1610

ReL

 0.00203

The area is: A 13.5
2

Lav Bm 2 dm  716 m
2



The drag force would then be: FD CD
1

2
 ρ Up

2
 A FD 9.41 kN

This is skin friction only.



Problem 9.81 [Difficulty: 3]

Given: Aircraft cruising at 12 km

Find: Skin friction drag force; Power required

Solution:

Basic
equations:

CD

FD

1

2
ρ V

2
 A



We "unwrap" the cylinder to obtain an equivalent flat plate

L 38 m D 4 m A L π D A 478 m
2

 V 800
km

hr


ρSL 1.225
kg

m
3


From Table A.3, with z 12000 m

ρ

ρSL

0.2546

ρ 0.2546 ρSL ρ 0.3119
kg

m
3

 and also T 216.7 K

From Appendix A-3 μ
b T

1

2


1
S

T


 with b 1.458 10
6


kg

m s K

1

2


 S 110.4 K

Hence μ
b T

1

2


1
S

T


 μ 1.42 10
5


N s

m
2



Next we need the Reynolds number ReL
ρ V L

μ
 ReL 1.85 10

8
 so use Eq. 9.35

CD
0.455

log ReL 2.58
 CD 0.00196

The drag is then FD CD
1

2
 ρ V

2
 A FD 7189 N

The power consumed is P FD V P 1.598 MW



Problem 9.82 [Difficulty: 3]

Given: Towboat model at 1:13.5 scale to be tested in towing tank.

Lm 7.00 m Bm 1.4 m dm 0.2 m Vp 10 knot

Find: (a) Model speed in order to exhibit similar wave drag  behavior
(b) Type of boundary layer on the prototype
(c) Where to place BL trips on the model
(d) Estimate skin friction drag on prototype

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

The test should be conducted to match Froude numbers:
Vm

g Lm

Vp

g Lp
 Vm Vp

Lm

Lp

 Vm 2.72 knot

The Reynolds number is: Rep

Vp Lp

ν


Rep 4.85 10
8



Therefore the boundary layer is turbulent. Transition occurs at Ret 5 10
5

 so 
xt

L

Ret

Rep

 0.00155

Thus the location of transition would be: xt 0.00155 Lm xt 0.0109 m

The wetted area is: A L B 2 d( ) We calculate the drag coefficient from turbulent BL theory:

CD 1.25 Cf 1.25
0.0594

ReL
0.2


0.0743

ReL
0.2

 For the model: Lm 7 m Rem

Vm Lm

ν
9.77 10

6
 Am 12.6 m

2


Therefore CDm
0.0743

Rem
0.2

2.97 10
3

 and the drag force is: FDm CDm
1

2
 ρ Vm

2
 Am FDm 36.70 N

For the prototype: CDp
0.455

log Rep  2.56

1610

Rep

 CDp 1.7944 10
3

 Ap 2.30 10
3

 m
2



FDp CDp
1

2
 ρ Vp

2
 Ap FDp 54.5 kN



Problem 9.83 [Difficulty: 2]

Given: Stabilizing fin on Bonneville land speed record auto

z 1340 m V 560
km

hr
 H 0.785 m L 1.65 m

Find: (a) Evaluate Reynolds number of fin
(b) Estimate of location for transition in the boundary layer
(c) Power required to overcome skin friction drag

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Assumptions: (1) Standard atmosphere (use table A.3)

At this elevation: T 279 K ρ 0.877 1.23
kg

m
3

 1.079
kg

m
3

 μ 1.79 10
5


kg

m s


The Reynolds number on the fin is: ReL
ρ V L

μ
 ReL 1.547 10

7


Assume transition occurs at: Ret 5 10
5

 The location for transition would then be: xt

Ret μ

ρ V
 xt 53.3 mm

From Figure 9.8, the drag coefficient is: CD 0.0029 The area is: A 2 L H 2.591 m
2

 (both sides of the fin)

The drag force would then be: FD CD
1

2
 ρ V

2
 A FD 98.0 N

The power required would then be: P FD V P 15.3 kW

If we check the drag coefficient using Eq. 9.37b: CD
0.455

log ReL  2.58

1610

ReL

 0.0027

This is slightly less than the graph, but still reasonable agreement.



Problem 9.84 [Difficulty: 4]

Given: Nuclear submarine cruising submerged. Hull approximated by circular cylinder

L 107 m D 11.0 m V 27 knot

Find: (a) Percentage of hull length for which BL is laminar
(b) Skin friction drag on hull
(c) Power consumed

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Transition occurs at Ret 5 10
5

 so the location of transition would be:
xt

L

Ret ν

V L


xt

L
0.0353%

We will therefore assume that the BL is completely turbulent.

The Reynolds number at x = L is: ReL
V L

ν
1.42 10

9
 For this Reynolds number: CD

0.455

log ReL  2.58
1.50 10

3


The wetted area of the hull is: A π D L 3698 m
2



So the drag force is: FD CD
1

2
 ρ V

2
 A FD 5.36 10

5
 N

The power consumed is: P FD V P 7.45 MW



Problem 9.85 [Difficulty: 3]

Given: Racing shell for crew approximated by half-cylinder:

L 7.32 m D 457 mm V 6.71
m

s


Find: (a) Location of transition on hull
(b) Thickness of turbulent BL at the rear of the hull
(c) Skin friction drag on hull

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Transition occurs at Ret 5 10
5

 so the location of transition would be: xt

Ret ν

V
 xt 0.0745 m

For the turbulent boundary layer
δ

x

0.382

Rex
0.2

 Therefore δ
0.382 L

ReL
0.2



The Reynolds number at x = L is: ReL
V L

ν
4.91 10

7
 so the BL thickness is: δ

0.382 L

ReL
0.2

 δ 0.0810 m

The wetted area of the hull is: A
π D

2
L 5.2547 m

2
 For this Reynolds number: CD

0.455

log ReL  2.58
2.36 10

3


So the drag force is: FD CD
1

2
 ρ V

2
 A FD 278 N

Note that the rowers must produce an average power of P FD V 1.868 kW to move the shell at this speed.



Problem 9.86 [Difficulty: 3]

Given: Plastic sheet falling in water

Find: Terminal speed both ways

Solution:

Basic

equations:
ΣFy 0 for terminal

speed
CD

FD

1

2
ρ V

2
 A

 CD
0.0742

ReL

1

5

 (9.34) (assuming 5 x 105 < ReL < 107)

h 0.5 in W 4 ft L 2 ft SG 1.7 From Table A.8 at 70oF ν 1.06 10
5


ft

2

s
 ρ 1.94

slug

ft
3



A W L

 

V 

x 

y 

Fb FD 

Wsheet 

A free body diagram of the sheet is shown here. Summing the forces in the vertical (y) direction:

FD Fb Wsheet 0 FD Wsheet Fb ρ g h A SG 1( )

Also, we can generate an expression for the drag coefficient in terms of the geometry of the sheet

and the water properties:

FD 2 CD A
1

2
 ρ V

2
 2

0.0742

ReL

1

5

 A
1

2
 ρ V

2


0.0742

V L

ν







1

5

W L ρ V
2

 0.0742 W L

4

5
 ν

1

5
 ρ V

9

5


(Note that we double FD because drag

acts on both sides of the sheet.)

Hence ρH2O g h W SG 1( ) 0.0742 W L

1

5


 ν

1

5
 ρ V

9

5
 Solving for V V

g h SG 1( )

0.0742

L

ν







1

5











5

9

 V 15.79
ft

s


Check the Reynolds number ReL
V L

ν
 ReL 2.98 10

6
 Hence Eq. 9.34 is reasonable

Repeating for L 4 ft V
g h SG 1( )

0.0742

L

ν







1

5











5

9

 V 17.06
ft

s


Check the Reynolds number ReL
V L

ν
 ReL 6.44 10

6
 Eq. 9.34 is still reasonable

The short side vertical orientation falls more slowly because the largest friction is at the region of the leading edge (τ tails

off as the boundary layer progresses); its leading edge area is larger.  Note that neither orientation is likely - the plate will

flip around in a chaotic manner.



Problem 9.87 [Difficulty: 4]

Given: 600-seat jet transport to operate 14 hr/day, 6 day/wk

L 240 ft D 25 ft V 575 mph z 12 km TSFC 0.6
lbm

hr lbf


Find: (a) Skin friction drag on fuselage at cruise
(b) Annual fuel savings if drag is reduced by 1%

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

From the atmosphere model: T 216.7 K 390.1 R ρ 0.2546 0.002377
slug

ft
3

 6.0518 10
4


slug

ft
3



From the Sutherland model for viscosity: μ
b T

1
S

T


1.422 10
5


kg

m s
 So the Reynolds number is

ReL
ρ V L

μ
4.1247 10

8
 For this Reynolds number: CD

0.455

log ReL  2.58
1.76 10

3


The wetted area of the fuselage is: A π D L 1.885 10
4

 ft
2



So the drag force is: FD CD
1

2
 ρ V

2
 A FD 7.13 10

3
 lbf

If there were a 1% savings in drag, the drop in drag force would be: ΔFD 1 % FD 71.31 lbf

The savings in fuel would be: Δmfuel TSFC ΔFD 14
hr

day


6

7
52






day

yr
 Δmfuel 2.670 10

4


lbm

yr


If jet fuel costs $1 per gallon, this would mean
a savings of over $4,400 per aircraft per year.



Problem 9.88 [Difficulty: 4]

Given: Supertanker in seawater at 40oF

L 1000 ft B 270 ft D 80 ft V 15 knot 25.32
ft

s
 SG 1.025

ν 1.05 1.65 10
5


ft

2

s
 1.73 10

5


ft
2

s
 ρ 1.9888

slug

ft
3



Find: (a) Thickness of the boundary layer at the stern of the ship
(b) Skin friction drag on the ship
(b) Power required to overcome the drag force

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

The Reynolds number is ReL
V L

ν
1.4613 10

9
 So the BL is turbulent. The BL thickness is calculated using:

δ

x

0.382

Rex
0.20

 At the stern of the ship: δ L
0.382

ReL
0.20

 δ 5.61 ft

The wetted area of the hull is: A L B 2 D( ) 4.30 10
5

 ft
2

 For this Reynolds number: CD
0.455

log ReL  2.58
1.50 10

3


So the drag force is: FD CD
1

2
 ρ V

2
 A FD 4.11 10

5
 lbf

The power consumed to overcome the skin friction drag is: P FD V P 1.891 10
4

 hp

P 1.040 10
7


ft lbf

s




Problem 9.89 [Difficulty: 4]

Given: "Resistance" data on a ship

ρ 1023
kg

m
3

 μ 1.08 10
3


N s

m
2


Lp 130 m Ap 1800 m

2


Lm

Lp

80
1.625 m Am

Ap

80
2

0.281 m
2



Find: Plot of wave, viscous and total drag (prototype and model); power required by prototype

Solution:

Basic

equations:
CD

FD

1

2
ρ U

2
 A

 (9.32) Fr
U

gL


From Eq. 9.32 FD CD A
1

2
 ρ U

2


This applies to each component of the drag (wave and viscous) as well as to the total

The power consumed is P FD U P CD A
1

2
 ρ U

3


From the Froude number U Fr gL

The solution technique is: For each speed Fr value from the graph, compute U; compute the drag from
the corresponding "resistance" value from the graph. The results were generated in Excel and are shown
below:



Model

Fr
Wave 

"Resistance"

Viscous 

"Resistance"

Total 

"Resistance"
U  (m/s)

Wave 

Drag (N)

Viscous 

Drag (N)

Total 

Drag (N)
Power (W)

0.10 0.00050 0.0052 0.0057 0.40 0.0057 0.0596 0.0654 0.0261

0.20 0.00075 0.0045 0.0053 0.80 0.0344 0.2064 0.2408 0.1923

0.30 0.00120 0.0040 0.0052 1.20 0.1238 0.4128 0.5366 0.6427

0.35 0.00150 0.0038 0.0053 1.40 0.2107 0.5337 0.7444 1.0403

0.40 0.00200 0.0038 0.0058 1.60 0.3669 0.6971 1.0640 1.6993

0.45 0.00300 0.0036 0.0066 1.80 0.6966 0.8359 1.5324 2.7533

0.50 0.00350 0.0035 0.0070 2.00 1.0033 1.0033 2.0065 4.0057

0.60 0.00320 0.0035 0.0067 2.40 1.3209 1.4447 2.7656 6.6252

Drag on a Model Ship
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Prototype

Fr
Wave 

"Resistance"

Viscous 

"Resistance"

Total 

"Resistance"
U  (m/s)

Wave 

Drag    

(MN)

Viscous 

Drag    (MN)

Total   

Drag      

(MN)

Power 

(kW)

Power 

(hp)

0.10 0.00050 0.0017 0.0022 3.6 0.0029 0.0100 0.0129 46.1 61.8

0.20 0.00075 0.0016 0.0024 7.1 0.0176 0.0376 0.0552 394.1 528.5

0.30 0.00120 0.0015 0.0027 10.7 0.0634 0.0793 0.1427 1528.3 2049.5

0.35 0.00150 0.0015 0.0030 12.5 0.1079 0.1079 0.2157 2696.6 3616.1

0.40 0.00200 0.0013 0.0033 14.3 0.1879 0.1221 0.3100 4427.7 5937.6

0.45 0.00300 0.0013 0.0043 16.1 0.3566 0.1545 0.5112 8214.7 11015.9

0.50 0.00350 0.0013 0.0048 17.9 0.5137 0.1908 0.7045 12578.7 16868.1

0.60 0.00320 0.0013 0.0045 21.4 0.6763 0.2747 0.9510 20377.5 27326.3

For the prototype wave resistance is a much more significant factor at high speeds! However, note that for

both scales, the primary source of drag changes with speed. At low speeds, viscous effects dominate, and so

the primary source of drag is viscous drag. At higher speeds, inertial effects dominate, and so the wave drag

is the primary source of drag.

Drag on a Prototype Ship
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Problem 9.90 [Difficulty: 2]

Given: Flag mounted vertically

H 194 ft W 367 ft V 10 mph 14.67
ft

s
 ρ 0.00234

slug

ft
3

 ν 1.62 10
4


ft

2

s


Find: Force acting on the flag. Was failure a surprise?

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

We should check the Reynolds number to be sure that the data of Fig. 9.10 are applicable: ReW
V W

ν
3.32 10

7


(We used W as our length scale here since it is the lesser of the two dimensions of the flag.) Since the Reynolds number is less than
1000, we may use Figure 9.10 to find the drag coefficient.

The area of the flag is: A H W 7.12 10
4

 ft
2

 AR
W

H
1.89 From Fig. 9.10: CD 1.15

So the drag force is: FD CD
1

2
 ρ V

2
 A FD 2.06 10

4
 lbf

This is a large force.
Failure should have
been expected.



Problem 9.91 [Difficulty: 3]

Given: Fishing net

Find: Drag; Power to maintain motion
3

8
in 9.525 mm

Solution:

Basic equations: CD

FD

1

2
ρ V

2
 A



We convert the net into an equivalent cylinder (we assume each segment does not interfere with its neighbors)

L 12 m W 2 m d 0.75 mm Spacing: D 1 cm V 6 knot V 3.09
m

s


Total number of threads of length L is n1
W

D
 n1 200 Total length L1 n1 L L1 2400 m

Total number of threads of length W is n2
L

D
 n2 1200 Total length L2 n2 W L2 2400 m

Total length of thread LT L1 L2 LT 4800 m LT 2.98 mile A lot!

The frontal area is then A LT d A 3.60 m
2

 Note that L W 24.00 m
2



From Table A.8 ρ 999
kg

m
3

 ν 1.01 10
6


m

2

s


The Reynolds number is Red
V d

ν
 Red 2292

For a cylinder in a crossflow at this Reynolds number, from Fig. 9.13, approximately CD 0.8

Hence FD CD
1

2
 ρ V

2
 A FD 13.71 kN

The power required is P FD V P 42.3 kW



Problem 9.92 [Difficulty: 2]

Given: Rotary mixer rotated in a brine solution

R 0.6 m ω 60 rpm d 100 mm SG 1.1 ρ ρw SG ρ 1100
kg

m
3



ν 1.05 1.55 10
6


m

2

s
 1.63 10

6


m
2

s


Find: (a) Torque on mixer
(b) Horsepower required to drive mixer

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

T 2 R FD (Torque)

P T ω (Power)

Assumptions: Drag on rods and motion induced in the brine can be neglected.

The speed of the disks through the brine is: V R ω 3.77
m

s
 From Table 9.2: CD 1.17 for a disk.

The area of one disk is: A
π

4
d

2
 0.00785 m

2


So the drag force is: FD CD
1

2
 ρ V

2
 A 71.8 N and the torque is: T 2 R FD T 86.2 N m

The power consumed to run the mixer is: P T ω 542 W P 0.726 hp



Problem 9.93 [Difficulty: 3]

Given: Data on a rotary mixer

Find: New design dimensions

Solution:

The given data or available data is

R 0.6 m P 350 W ω 60 rpm ρ 1099
kg

m
3



For a ring, from Table 9.3 CD 1.2

The torque at the specified power and speed is

T
P

ω
 T 55.7 N m

The drag on each ring is then FD
1

2

T

R
 FD 46.4 N

The linear velocity of each ring is V R ω V 3.77
m

s


The drag and velocity of each ring are related using the definition of drag coefficient

CD

FD

1

2
ρ A V

2




Solving for the ring area A
FD

1

2
ρ V

2
 CD

 A 4.95 10
3

 m
2



But A
π

4
do

2
di

2






The outer diameter is do 125 mm

Hence the inner diameter is di do
2 4 A

π
 di 96.5 mm



Problem 9.94 [Difficulty: 2]

V 
x 

y 

FD 

W 

Given: Man with parachute

W 250 lbf⋅= V 20
ft

s
⋅= ρ 0.00234

slug

ft
3

⋅=

Find: Minimum diameter of parachute

Solution:

Basic

equations:
FD CD

1

2
⋅ ρ⋅ V

2
⋅ A⋅=

(Drag)

Assumptions: (1) Standard air
(2) Parachute behaves as open hemisphere
(3) Vertical speed is constant

For constant speed: ΣFy M g⋅ FD−= 0= Therefore: FD W=

In terms of the drag coefficient: CD
1

2
⋅ ρ⋅ V

2
⋅ A⋅ W=

Solving for the area: A
2 W⋅

CD ρ⋅ V
2

⋅
= From Table 9.2: CD 1.42= for an open hemisphere. The area is: A

π

4
D

2
⋅=

Setting both areas equal:
π

4
D

2
⋅

2 W⋅

CD ρ⋅ V
2

⋅
= Solving for the diameter of the parachute: D

8

π

W

CD ρ⋅ V
2

⋅
⋅=

Therefore the diameter is: D 21.9 ft⋅=



Problem 9.95 [Difficulty: 3]

Given: Data on airplane landing

M 9500 kg Vi 350
km

hr
 Vf 100

km

hr
 xf 1200 m CD 1.43 (Table 9.3) ρ 1.23

kg

m
3



Find: Single and three-parachute sizes; plot speed against distance and time; maximum "g''s

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Assumptions: (1) Standard air
(2) Parachute behaves as open hemisphere
(3) Vertical speed is constant

Newton's second law for the aircraft is M
dV

dt
 CD

1

2
 ρ A V

2


where A and CD are the single parachute area and drag coefficient

Separating variables
dV

V
2

CD ρ A

2 M
 dt

Integrating, with IC V = Vi V t( )
Vi

1
CD ρ A

2 M
Vi t

 (1)

Integrating again with respect to t x t( )
2 M

CD ρ A
ln 1

CD ρ A

2 M
Vi t









 (2)

Eliminating t from Eqs. 1 and 2 x
2 M

CD ρ A
ln

Vi

V









 (3)

To find the minimum parachute area we must solve Eq 3 for A with x = xf when V = Vf

A
2 M

CD ρ xf
ln

Vi

Vf









 (4)

For three parachutes, the analysis is the same except A is replaced with 3A, leading to 

A
2 M

3 CD ρ xf
ln

Vi

Vf









 (5)



The "g"'s are given by 

dV

dt

g

CD ρ A V
2



2 M g
 which has a maximum at the initial instant (V = Vi)

The results generated in Excel are shown below:

Single: Triple:

A  = 11.4 m2
A  = 3.8 m2

D  = 3.80 m D  = 2.20 m

"g "'s = -1.01 Max

t  (s) x  (m) V  (km/hr)

0.00 0.0 350

2.50 216.6 279

5.00 393.2 232

7.50 542.2 199

10.0 671.1 174

12.5 784.7 154

15.0 886.3 139

17.5 978.1 126

20.0 1061.9 116

22.5 1138.9 107

24.6 1200.0 100
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Problem 9.96 [Difficulty: 3]

Given: Data on airplane and parachute

Find: Time and distance to slow down; plot speed against distance and time; maximum "g"'s

Solution:

The given data or available data is

M 8500 kg Vi 400
km

hr
 Vf 100

km

hr
 CD 1.42 ρ 1.23

kg

m
3

 Dsingle 6 m Dtriple 3.75 m

Asingle
π

4
Dsingle

2
 28.274 m

2
 Atriple

π

4
Dtriple

2
 11.045 m

2


Newton's second law for the aircraft is M
dV

dt
 CD

1

2
 ρ A V

2


where A and CD are the single parachute area and drag coefficient

Separating variables
dV

V
2

CD ρ A

2 M
 dt

Integrating, with IC V = Vi V t( )
Vi

1
CD ρ A

2 M
Vi t

 (1)

Integrating again with respect to t x t( )
2 M

CD ρ A
ln 1

CD ρ A

2 M
Vi t









 (2)

Eliminating t from Eqs. 1 and 2 x
2 M

CD ρ A
ln

Vi

V









 (3)

To find the time and distance to slow down to 100 km/hr, Eqs. 1 and 3 are solved with V = 100
km/hr (or use Goal Seek)

The "g"'s are given by 

dV

dt

g

CD ρ A V
2



2 M g
 which has a maximum at the initial instant (V = Vi)



For three parachutes, the analysis is the same except A is replaced with 3A.  leading to 

V t( )
Vi

1
3 CD ρ A

2 M
Vi t



x t( )
2 M

3 CD ρ A
ln 1

3 CD ρ A

2 M
Vi t











The results generated in Excel are shown here:

t  (s) x  (m) V  (km/hr) t (s) x (m) V (km/hr)

0.0 0.0 400 0.0 0.0 400

1.0 96.3 302 1.0 94.2 290

2.0 171 243 2.0 165 228

3.0 233 203 3.0 223 187

4.0 285 175 4.0 271 159

5.0 331 153 5.0 312 138

6.0 371 136 6.0 348 122

7.0 407 123 7.0 380 110

8.0 439 112 7.93 407 100

9.0 469 102 9.0 436 91

9.29 477 100 9.3 443 89

"g "'s = -3.66 Max
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Problem 9.97 [Difficulty: 2]

Given: Windmills are to be made from surplus 55 gallon oil drums

D 24 in H 29 in

Find: Which configuration would be better, why, and by how much

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Assumptions: (1) Standard air
(2) Neglect friction in the pivot
(3) Neglect interference between the flow over the two halves

For the first configuration:

ΣM
D

2
Fu

D

2
Fd

D

2
Fu Fd  Where Fu is the force on the half "catching" the wind and Fd is the

force on the half "spilling" the wind.

ΣM
D

2
CDu

1

2
 ρ V

2
 A CDd

1

2
 ρ V

2
 A






D

2
CDu CDd 

1

2
ρ V

2
 A







For the second configuration:

ΣM
H

2
Fu

H

2
Fd

H

2
Fu Fd 

ΣM
H

2
CDu

1

2
 ρ V

2
 A CDd

1

2
 ρ V

2
 A






H

2
CDu CDd 

1

2
ρ V

2
 A







Since H > D, the second
configuration will be superior.

The improvement will be:
H D

D
20.8 %



Problem 9.98 [Difficulty: 2]

Given: Bike and rider at terminal speed on hill with 8% grade.

W 210 lbf A 5 ft
2

 Vt 50
ft

s
 CD 1.25

Find: (a) Verify drag coefficient
(b) Estimate distance needed for bike and rider to decelerate to 10 m/s after reaching level road

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Assumptions: (1) Standard air
(2) Neglect all losses other than aerodynamic drag

The angle of incline is: θ atan 9 %( ) 5.143 deg Summing forces in the x-direction: ΣFx FG FD 0

Expanding out both force terms: M g sin θ( ) CD
1

2
 ρ Vt

2
 A Solving this expression for the drag coefficient:

CD
2 W sin θ( )

ρ Vt
2

 A
 CD 1.26

The original estimate for the
drag coefficient was good.

Once on the flat surface: ΣFx FD
W

g t
V

d

d










W

g
V

s
V

d

d









 Therefore:
W

g
V

s
V

d

d









 CD
1

2
 ρ V

2
 A

Separating variables: ds
2 W

CD ρ g A


dV

V
 Integrating both sides yields: ∆s

2 W

CD ρ g A
 ln

V2

V1









 ∆s 447 ft



Problem 9.99 [Difficulty: 2]

Given: Data on cyclist performance on a calm day

Find: Performance hindered and aided by wind

Solution:

The given data or available data is

FR 7.5 N M 65 kg A 0.25 m
2



CD 1.2 ρ 1.23
kg

m
3

 V 30
km

hr


The governing equation is FD
1

2
ρ A V

2
 CD FD 12.8 N

The power steady power generated by the cyclist is

P FD FR  V P 169 W P 0.227 hp

Now, with a headwind we have Vw 10
km

hr
 V 24

km

hr


The aerodynamic drag is greater because of the greater effective wind speed

FD
1

2
ρ A V Vw 2 CD FD 16.5 N

The power required is that needed to overcome the total force FD + FR, moving at the cyclist's speed

P V FD FR  P 160 W

This is less than the power she can generate She wins the bet!

With the wind supporting her the effective wind speed is substantially lower

VW 10
km

hr
 V 40

km

hr


FD
1

2
ρ A V VW 2 CD FD 12.8 N

The power required is that needed to overcome the total force FD + FR, moving at the cyclist's speed

P V FD FR  P 226 W

This is more than the power she can generate She loses the bet



Problem 9.100 [Difficulty: 2]

Given: Ballistic data for .44 magnum revolver bullet

Vi 250
m

s
 Vf 210

m

s
 ∆x 150 m M 15.6 gm D 11.2 mm

Find: Average drag coefficient

Solution:

Basic

equations:
FD CD

1

2
 ρ V

2
 A

(Drag)

Assumptions: (1) Standard air
(2) Neglect all losses other than aerodynamic drag

Newton's 2nd law: ΣFx FD M
t
V

d

d









 M V
s
V

d

d









 Therefore: M V
x

V
d

d









 CD
1

2
 ρ V

2
 A

Separating variables: dx
2 M

CD ρ A


dV

V
 Integrating both sides yields: ∆x

2 M

CD ρ A
 ln

Vf

Vi











Solving this expression for the drag coefficient: CD
2 M

∆x ρ A
 ln

Vf

Vi









 The area is: A
π

4
D

2
 98.52 mm

2


Therefore the drag coefficent is: CD 0.299



Problem 9.101 [Difficulty: 3]

Given: Data on cyclist performance on a calm day

Find: Performance on a hill with and without wind

Solution:

The given data or available
data is

FR 7.5 N M 65 kg A 0.25 m
2



CD 1.2 ρ 1.23
kg

m
3

 V 30
km

hr


The governing equation is FD
1

2
ρ A V

2
 CD FD 12.8 N

Power steady power generated by the cyclist is P FD FR  V P 169 W P 0.227 hp

Riding up the hill (no wind) θ 5 deg

For steady speed the cyclist's power is consumed by working against the net force (rolling resistance, drag, and gravity)

Cycling up the
hill:

P FR
1

2
ρ A V

2
 CD M g sin θ( )





V

This is a cubic equation for the speed which can be solved analytically, or by iteration, or using Excel's
Goal Seek or Solver.  The solution is obtained from the associated Excel workbook

From Solver V 9.47
km

hr


Now, with a headwind we have Vw 10
km

hr


The aerodynamic drag is greater because of the greater effective wind speed

FD
1

2
ρ A V Vw 2 CD

The power required is that needed to overcome the total force (rolling resistance, drag, and gravity) moving at the cyclist's speed is

Uphill against the wind: P FR
1

2
ρ A V Vw 2 CD M g sin θ( )





V

This is again a cubic equation for V

From Solver V 8.94
km

hr




Pedalling downhill (no wind) gravity helps increase the speed; the maximum speed is obtained from

Cycling down the hill: P FR
1

2
ρ A V

2
 CD M g sin θ( )





V

This cubic equation for V is solved in the associated Excel workbook

From Solver V 63.6
km

hr


Pedalling downhill (wind assisted) gravity helps increase the speed; the maximum speed is obtained from

Wind-assisted downhill: P FR
1

2
ρ A V Vw 2 CD M g sin θ( )





V

This cubic equation for V is solved in the associated Excel workbook

From Solver V 73.0
km

hr


Freewheeling downhill, the maximum speed is obtained from the fact that the net force is zero

Freewheeling downhill: FR
1

2
ρ A V

2
 CD M g sin θ( ) 0

V
M g sin θ( ) FR

1

2
ρ A CD

 V 58.1
km

hr


Wind assisted: FR
1

2
ρ A V Vw 2 CD M g sin θ( ) 0

V Vw

M g sin θ( ) FR

1

2
ρ A CD

 V 68.1
km

hr




Problem 9.102 [Difficulty: 3]

Given: Data on cyclist performance on a calm day

Find: Performance hindered and aided by wind; repeat with high-tech tires; with fairing

Solution:

The given data or available data is

FR 7.5 N M 65 kg A 0.25 m
2



CD 1.2 ρ 1.23
kg

m
3

 V 30
km

hr


The governing equation is FD
1

2
ρ A V

2
 CD FD 12.8 N

Power steady power generated by the cyclist is P FD FR  V P 169 W P 0.227 hp

Now, with a headwind we have Vw 10
km

hr


The aerodynamic drag is greater because of the greater effective wind speed

FD
1

2
ρ A V Vw 2 CD (1)

The power required is that needed to overcome the total force FD + FR, moving at the cyclist's speed is

P V FD FR  (2)

Combining Eqs 1 and 2 we obtain an expression for the cyclist's maximum speed V cycling into a
headwind (where P = 169 W is the cyclist's power)

Cycling into the wind: P FR
1

2
ρ A V Vw 2 CD





V (3)

This is a cubic equation for V; it can be solved analytically, or by iterating.  It is convenient to use Excel's
Goal Seek (or Solver).  From the associated Excel workbook

From Solver V 24.7
km

hr


By a similar reasoning:

Cycling with the wind: P FR
1

2
ρ A V Vw 2 CD





V (4)



From Solver V 35.8
km

hr


With improved tires FR 3.5 N

Maximum speed on a calm day is obtained from P FR
1

2
ρ A V

2
 CD





V

This is a again a cubic equation for V; it can be solved analytically, or by iterating.  It is convenient to use
Excel's Goal Seek (or Solver).  From the associated Excel workbook

From Solver V 32.6
km

hr


Equations 3 and 4 are repeated for the case of improved tires

From Solver Against the wind V 26.8
km

hr
 With the wind V 39.1

km

hr


For improved tires and fairing, from Solver

V 35.7
km

hr
 Against the wind V 29.8

km

hr
 With the wind V 42.1

km

hr




Problem 9.103 [Difficulty: 3]

 

T 

 

V 

x 

y 

FBnet 

FD 

Wlatex 

Given: Series of party balloons

Find: Wind velocity profile; Plot

Solution:

Basic equations: CD

FD

1

2
ρ V

2
 A

 FB ρair g Vol Σ F


0 This problem is ideal for computing and
plotting in Excel, but we will go through
the details here.

The above figure applies to each balloon

For the horizontal forces FD T sin θ( ) 0 (1)

For the vertical forces T cos θ( ) FBnet Wlatex 0 (2)

Here FBnet FB W ρair ρHe  g
π D

3


6


D 20 cm Mlatex 3 gm Wlatex Mlatex g Wlatex 0.02942 N

We have (Table A.6) RHe 2077
N m

kg K
 pHe 111 kPa THe 293 K ρHe

pHe

RHe THe
 ρHe 0.1824

kg

m
3



Rair 287
N m

kg K
 pair 101 kPa Tair 293 K ρair

pair

Rair Tair
 ρair 1.201

kg

m
3



FBnet ρair ρHe  g
π D

3


6
 FBnet 0.0418 N

Applying Eqs 1 and 2 to the top balloon, for which θ 65 deg

FD T sin θ( )
FBnet Wlatex

cos θ( )
sin θ( )

Hence FD FBnet Wlatex  tan θ( ) FD 0.0266 N

But we have FD CD
1

2
 ρair V

2
 A CD

1

2
 ρair V

2


π D
2



4
 with CD 0.4 from Fig. 9.11 (we will

check Re later)

V
8 FD

CD ρair π D
2


 V 1.88

m

s


From Table A.9 ν 1.50 10
5


m

2

s
 The Reynolds number is Red

V D

ν
 Red 2.51 10

4
 We are okay!



For the next balloon θ 60 deg FD FBnet Wlatex  tan θ( ) FD 0.0215 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 1.69

m

s


The Reynolds number is Red
V D

ν
 Red 2.25 10

4
 We are okay!

For the next balloon θ 50 deg FD FBnet Wlatex  tan θ( ) FD 0.01481 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 1.40

m

s


The Reynolds number is Red
V D

ν
 Red 1.87 10

4
 We are okay!

For the next balloon θ 45 deg FD FBnet Wlatex  tan θ( ) FD 0.01243 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 1.28

m

s


The Reynolds number is Red
V D

ν
 Red 1.71 10

4
 We are okay!

For the next balloon θ 40 deg FD FBnet Wlatex  tan θ( ) FD 0.01043 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 1.18

m

s


The Reynolds number is Red
V D

ν
 Red 1.57 10

4
 We are okay!

For the next balloon θ 35 deg FD FBnet Wlatex  tan θ( ) FD 0.00870 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 1.07

m

s


The Reynolds number is Red
V D

ν
 Red 1.43 10

4
 We are okay!

For the next balloon θ 30 deg FD FBnet Wlatex  tan θ( ) FD 0.00717 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 0.97

m

s


The Reynolds number is Red
V D

ν
 Red 1.30 10

4
 We are okay!

For the next balloon θ 20 deg FD FBnet Wlatex  tan θ( ) FD 0.00452 N with CD 0.4

V
8 FD

CD ρair π D
2


 V 0.77

m

s


The Reynolds number is Red
V D

ν
 Red 1.03 10

4
 We are okay!

For the next balloon θ 10 deg FD FBnet Wlatex  tan θ( ) FD 0.002191 N with CD 0.4



V
8 FD

CD ρair π D
2


 V 0.54

m

s


The Reynolds number is Red
V D

ν
 Red 7184.21 We are okay!

In summary we have V 0.54 0.77 0.97 1.07 1.18 1.28 1.40 1.69 1.88( )
m

s


h 1 2 3 4 5 6 7 8 9( ) m

0 0.5 1 1.5 2

2

4

6

8

10

V (m/s)

h
 (

m
)

This does not seem like an unreasonable profile for the lowest portion of an atmospheric boundary layer - over cities or rough terrain
the atmospheric boundary layer is typically 300-400 meters, so a near-linear profile over a small fraction of that distance is not out of
the question.



Problem 9.104 [Difficulty: 2]

 

T  

V 

x 

y 

FB 

FD 

W 

Given: Sphere dragged through river

Find: Relative velocity of sphere

Solution:

Basic

equations:
CD

FD

1

2
ρ V

2
 A

 FB ρ g Vol Σ F


0

The above figure applies to the sphere

For the horizontal forces FD T sin θ( ) 0 (1)

For the vertical forces T cos θ( ) FB W 0 (2)

Here V 5
m

s
 D 0.5 m SG 0.30 and from Table A.8 ν 1.30 10

6


m
2

s
 ρ 1000

kg

m
3



The Reynolds number is Red
V D

ν
 Red 1.92 10

6
 Therefore we estimate the drag coefficient: CD 0.15 (Fig 9.11)

FD T sin θ( )
FB W

cos θ( )
sin θ( ) ρ g Vol 1 SG( ) tan θ( )

Hence FD ρ g
π D

3


6
 1 SG( ) tan θ( ) But we have FD CD

1

2
 ρ V

2
 A CD

1

2
 ρ V

2


π D
2



4


Therefore CD
1

2
 ρ V

2


π D
2



4
 ρ g

π D
3



6
 1 SG( ) tan θ( )

Solving for θ: tan θ( )
3

4

CD V
2



g D 1 SG( )


θ atan
3

4

CD V
2



g D 1 SG( )








 The angle with the horizontal is: α 90 deg θ α 50.7 deg



 

Problem 9.105                                                              [Difficulty: 2]



Problem 9.106 [Difficulty: 3]

Given: Data on dimensions of anemometer

Find: Calibration constant; compare to actual with friction

Solution:

The given data or available data is D 2 in R 3 in ρ 0.00234
slug

ft
3



The drag coefficients for a cup with open end facing the airflow and a cup with open end facing downstream are, respectively,

from Table 9.3

CDopen 1.42 CDnotopen 0.38

The equation for computing drag is FD
1

2
ρ A V

2
 CD (1)

where A
π D

2


4
 A 0.0218 ft

2


Assuming steady speed ω at steady wind speed V the sum of moments will be zero.  The two cups that are momentarily parallel

to the flow will exert no moment; the two cups with open end facing and not facing the flow will exert a moment beacuse of their

drag forces.  For each, the drag is based on Eq. 1 (with the relative velocity used!).  In addition, friction of the anemometer is

neglected

ΣM 0
1

2
ρ A V R ω( )

2
 CDopen





R
1

2
ρ A V R ω( )

2
 CDnotopen





R

or V R ω( )
2

CDopen V R ω( )
2

CDnotopen

This indicates that the anemometer reaches a steady speed even in the abscence of friction because it is the

relative velocity on each cup that matters: the cup that has a higher drag coefficient has a lower relative

velocity

Rearranging for k
V

ω


V

ω
R





2

CDopen
V

ω
R





2

CDnotopen



Hence k

1
CDnotopen

CDopen








1
CDnotopen

CDopen








R k 9.43 in k 0.0561
mph

rpm


For the actual anemometer (with friction), we first need to determine the torque produced when the anemometer is

stationary but about to rotate

Minimum wind for rotation is Vmin 0.5 mph

The torque produced at this wind speed is

Tf
1

2
ρ A Vmin

2
 CDopen





R
1

2
ρ A Vmin

2
 CDnotopen





R

Tf 3.57 10
6

 ft lbf

A moment balance at wind speed V, including this friction, is

ΣM 0
1

2
ρ A V R ω( )

2
 CDopen





R
1

2
ρ A V R ω( )

2
 CDnotopen





R Tf

or V R ω( )
2

CDopen V R ω( )
2

CDnotopen
2 Tf

R ρ A


This quadratic equation is to be solved for ω when V 20 mph

After considerable calculations ω 356.20 rpm

This must be compared to the rotation for a frictionless model, given by

ωfrictionless
V

k
 ωfrictionless 356.44 rpm

The error in neglecting friction is
ω ωfrictionless

ω
0.07 %



Problem 9.107 [Difficulty: 2]

Given: Circular disk in wind

Find: Mass of disk; Plot α versus V

Solution:

Basic

equations:
CD

FD

1

2
ρ V

2
 A

 ΣM


0

Summing moments at the pivotW L sin α( ) Fn L 0 and Fn
1

2
ρ Vn

2
 A CD

Hence M g sin α( )
1

2
ρ V cos α( )( )

2


π D
2



4
 CD

The data is ρ 1.225
kg

m
3

 V 15
m

s
 D 25 mm α 10 deg CD 1.17 (Table 9.3)

M
π ρ V

2
 cos α( )

2
 D

2
 CD

8 g sin α( )
 M 0.0451 kg

Rearranging V
8 M g

π ρ D
2

 CD

tan α( )

cos α( )
 V 35.5

m

s


tan α( )

cos α( )


We can plot this by choosing α and computing V

0 10 20 30 40 50 60 70

20

40

60

80

Angle (deg)

V
 (

m
/s

)

This graph can be easily plotted in Excel



Problem 9.108 [Difficulty: 2]

Given: Mass, maximum and minimum drag areas for a skydiver

Find: (a) Terminal speeds for skydiver in each position 
(b) Time and distance needed to reach percentage of terminal speed from given altitude

Solution:

Basic equation CD

FD

1

2
ρ U

2
 A



The given or available data are: W 170 lbf ACDmin 1.2 ft
2

 ACDmax 9.1 ft
2

 H 9800 ft 2987 m

From Table A.3 we can find the density:
ρ

ρSL

0.7433 ρ 0.002377
slug

ft
3

 0.7433 1.767 10
3


slug

ft
3



To find terminal speed, we take FBD of the skydiver: ΣFy 0 M g FD 0 FD
1

2
ρ U

2
 A CD M g W

Solving for the speed: For the minimum drag area:Ut
2 W

ρ A CD
 Utmax

2 W

ρ ACDmin
 Utmax 400

ft

s


For the maximum drag area: Utmin
2 W

ρ ACDmax
 Utmin 145.4

ft

s


To find the time needed to reach a fraction of the terminal velocity, we re-write the force balance:

ΣFy M ay M g FD M ay M g
1

2
ρ U

2
 A CD M

dU

dt
 M U

dU

dy


In terms of the weight: To normalize the derivatives by the terminal speed:W
1

2
ρ U

2
 A CD

W

g

dU

dt


W

g
U

dU

dy


and We may now re-write the above equation as:
W

g

dU

dt


W Ut

g t

U

Ut









d

d


W

g
U

dU

dy


W Ut
2



g

U

Ut










y

U

Ut









d

d


where we have substituted for the terminal
speed.

W
1

2
ρ

U

Ut









2

 A CD
2 W

ρ A CD









W Ut

g t

U

Ut









d

d


W Ut
2



g

U

Ut










y

U

Ut









d

d


Simplifying this expression: Now we can integrate with respect to time and
distance:

1
U

Ut









2


Ut

g t

U

Ut









d

d


Ut
2

g

U

Ut










y

U

Ut









d

d




If we let Un
U

Ut

 we can rewrite the equations:

Separating variables: Integrating we get:1 Un
2


Ut

g

dUn

dt


0

t

t
g

Ut






d

0

0.90

Un
1

1 Un
2









d
g t

Ut

atanh 0.9( ) atanh 0( )

Evaluating the inverse hyperbolic tangents: so:t
1.472 Ut

g
 tmin

1.472 Utmin

g
6.65 s tmax

1.472 Utmax

g
18.32 s

Now to find the distance: Separating variables:1 Un
2


Ut

2

g
Un

dUn

dy


0

y

y
g

Ut
2







d

0

0.9

Un

Un

1 Un
2









d

Integrating we get: Solving for the distance:
g y

Ut
2

1

2
 ln

1 0.9
2



1 0









 0.8304 y
0.8304 Ut

2


g


so: ymin

0.8304 Utmin
2



g
166.4 m ymax

0.8304 Utmax
2



g
1262 m



 

Problem 9.109                                                              [Difficulty: 3]
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Problem 9.111                                                               [Difficulty: 3]



Problem 9.112 [Difficulty: 3]

Given: Data on a bus

Find: Power to overcome drag; Maximum speed; Recompute with new fairing; Time for fairing to pay for itself

Solution:

Basic
equation:

FD
1

2
ρ A V

2
 CD P FD V

The given data or available data is V 80
km

hr
 V 22.2

m

s
 A 7.5 m

2
 CD 0.92 ρ 1.23

kg

m
3



FD
1

2
ρ A V

2
 CD FD 2096 N P FD V P 46.57 kW The power available is Pmax 465 hp 346.75 kW

The maximum speed corresponding to this maximum power is obtained from

Pmax
1

2
ρ A Vmax

2
 CD





Vmax or Vmax

Pmax

1

2
ρ A CD











1

3

 Vmax 43.4
m

s
 Vmax 156.2

km

hr


We repeat these calculations with the new fairing, for which CD 0.86

FD
1

2
ρ A V

2
 CD FD 1959 N Pnew FD V Pnew 43.53 kW

The maximum speed is now Vmax

Pmax

1

2
ρ A CD











1

3

 Vmax 44.4
m

s
 Vmax 159.8

km

hr


The initial cost of the fairing is Cost 4500 dollars The fuel cost is Costday 300
dollars

day


The cost per day is reduced by improvement in the bus performance at 80 km/h Gain
Pnew

P
 Gain 93.5 %

The new cost per day is then Costdaynew Gain Costday Costdaynew 280
dollars

day


Hence the savings per day is Saving Costday Costdaynew Saving 19.6
dollars

day


The initial cost will be paid for in τ
Cost

Saving
 τ 7.56 month



Problem 9.113 [Difficulty: 2]

Given: Data on 1970's and current sedans

Find: Plot of power versus speed; Speeds at which aerodynamic drag exceeds rolling drag

Solution:

Basic equation: CD

FD

1

2
ρ V

2
 A



The aerodynamic drag is FD CD
1

2
ρ V

2
 A The rolling resistance is FR 0.015 W

Total resistance FT FD FR The results generated in Excel are shown below:

ρ  = 0.00234 slug/ft
3

(Table A.9)

Computed results:

V  (mph) F D  (lbf) F T  (lbf) P (hp) F D (lbf) F T  (lbf) P (hp)

20 12.1 79.6 4.24 6.04 58.5 3.12

25 18.9 86.4 5.76 9.44 61.9 4.13

30 27.2 94.7 7.57 13.6 66.1 5.29

35 37.0 104 9.75 18.5 71.0 6.63

40 48.3 116 12.4 24.2 76.7 8.18

45 61.2 129 15.4 30.6 83.1 10.0

50 75.5 143 19.1 37.8 90.3 12.0

55 91.4 159 23.3 45.7 98.2 14.4

60 109 176 28.2 54.4 107 17.1

65 128 195 33.8 63.8 116 20.2

70 148 215 40.2 74.0 126 23.6

75 170 237 47.5 84.9 137 27.5

80 193 261 55.6 96.6 149 31.8

85 218 286 64.8 109 162 36.6

90 245 312 74.9 122 175 42.0

95 273 340 86.2 136 189 47.8

100 302 370 98.5 151 204 54.3

V  (mph) F D  (lbf) F R  (lbf) V (mph) F D  (lbf) F R (lbf)

47.3 67.5 67.5 59.0 52.5 52.5

The two speeds above were obtained using Solver

1970's Sedan Current Sedan



Power Consumed by Old and New Sedans
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Problem 9.114 [Difficulty: 4]

Given: Data on a sports car

Find: Speed for aerodynamic drag to exceed rolling resistance; maximum speed & acceleration at 100
km/h; Redesign change that has greatest effect

Solution:

Basic equation: FD
1

2
ρ A V

2
 CD P FD V

The given data or available data is M 1250 kg A 1.72 m
2

 CD 0.31

Pengine 180 hp 134.23 kW FR 0.012 M g ρ 1.23
kg

m
3



The rolling resistance is then FR 147.1 N

To find the speed at which aerodynamic drag first equals rolling resistance, set the two forces equal
1

2
ρ V

2
 A CD FR

Hence V
2 FR

ρ A CD
 V 21.2

m

s
 V 76.2

km

hr


To find the drive train efficiency we use the data at a speed of V 100
km

hr
 V 27.8

m

s
 Pengine 17 hp 12.677 kW

The aerodynamic drag at this speed is FD
1

2
ρ V

2
 A CD FD 253 N

The power consumed by drag and rolling resistance at this speed is Pused FD FR  V Pused 11.1 kW

Hence the drive train efficiency is η
Pused

Pengine

 η 87.7 %

The acceleration is obtained from Newton's second law M a ΣF T FR FD

where T is the thrust produced by the engine, given by T
P

V


The maximum acceleration at 100 km/h is when full engine power is used. Pengine 180 hp 134.2 kW

Because of drive train inefficiencies the maximum power at the wheels is Pmax η Pengine Pmax 118 kW

Hence the maximum thrust is Tmax

Pmax

V
 Tmax 4237 N

The maximum acceleration is then amax

Tmax FD FR

M
 amax 3.07

m

s
2





The maximum speed is obtained when the maximum engine power is just balanced by power consumed by drag and rolling resistance

For maximum speed: Pmax
1

2
ρ Vmax

2
 A CD FR





Vmax

This is a cubic equation that can be solved by iteration or by using Excel's Goal Seek or Solver Vmax 248
km

hr


We are to evaluate several possible improvements:

For improved drive train η η 6 % η 93.7 % Pmax η Pengine Pmax 126 kW

Pmax
1

2
ρ Vmax

2
 A CD FR





Vmax

Solving the cubic (using Solver) Vmax 254
km

hr


Improved drag coefficient: CDnew 0.29
Pmax 118 kW

Pmax
1

2
ρ Vmax

2
 A CDnew FR





Vmax

Solving the cubic (using Solver) Vmax 254
km

hr
 This is the

best option!

Reduced rolling resistance: FRnew 0.91 % M g FRnew 111.6 N

Pmax
1

2
ρ Vmax

2
 A CD FRnew





Vmax

Solving the cubic (using Solver) Vmax 250
km

hr


The improved drag coefficient is the best option.



 Problem 9.115 [Difficulty: 3] 
 

 
 
 

Given: zero net force acting on the particle; drag force and electrostatic force 

Find: 

Solution: 

(a) Under steady-state, the net force acting on the particle is zero. The forces 
acting on the particle contain the electrostatic force FE and the drag force FD 

(Page 418, the first equation right after Fig.8.11). 

060   aQs UEFF dE               (1)               
where U is the particle velocity relative to the stationary liquid. 

Then one obtains    a

Qs

6


E
U                               (2) 

 

(b) From the solution, we can know that the particle velocity depends on its size. Smaller particles run faster 
than larger ones, and thus they can be separated. 

(c) Substituting the values of a, Qs, E, and  into equation (2), we obtains the velocity for a=1 m 
 

m/s053.0
msPa

N
053.0

m

V/m

101

1000

sPa

C

106

10
63

12











 




U  

 

and U = 0.0053 m/s for a = 10 m. 
 
The negatively charged particle moves in the direction opposite to that of the electric field applied. 

V 

x 

y 
Qs 

FD FE 



Problem 9.116 [Difficulty: 5]

Given: Data on dimensions of anemometer

Find: Calibration constant

Solution:

The given data or available data is D 2 in R 3 in ρ 0.00234
slug

ft
3



The drag coefficients for a cup with open end facing the airflow and a cup with open end facing downstream are, respectively,

from Table 9.3

CDopen 1.42 CDnotopen 0.38

Assume the anemometer achieves steady speed ω due to steady wind speed V

The goal is to find the calibration constant k, defined by k
V

ω


We will analyze each cup separately, with the following assumptions

1) Drag is based on the instantaneous normal component of velocity (we ignore possible effects on drag

coefficient of velocity component parallel to the cup)

2) Each cup is assumed unaffected by the others - as if it were the only object present

3) Swirl is neglected

4) Effects of struts is neglected

 

Vcos 

V 

R 

 

Relative velocity  

= Vcos - R 



In this more sophisticated analysis we need to compute the instantaneous normal relative velocity.  From the

sketch, when a cup is at angle θ, the normal component of relative velocity is 

Vn V cos θ( ) ω R (1)

The relative velocity is sometimes positive, and sometimes negatiive.  From Eq. 1, this is determined by 

θc acos
ω R

V







 (2)

For 0 θ θc Vn 0

θc θ 2 π θc Vn 0

θc θ 2 π Vn 0

0 90 180 270 360
Vn θ( )

θ

The equation for computing drag is FD
1

2
ρ A Vn

2
 CD (3)

where A
π D

2


4
 A 3.14 in

2


In Eq. 3, the drag coefficient, and whether the drag is postive or negative, depend on the sign of the relative velocity

For 0 θ θc CD CDopen FD 0

θc θ 2 π θc CD CDnotopen FD 0

θc θ 2 π CD CDopen FD 0

The torque is T FD R
1

2
ρ A Vn

2
 CD R

The average torque is Tav
1

2 π
0

2 π
θT





d
1

π
0

π

θT




d

where we have taken advantage of symmetry

Evaluating this, allowing for changes when θ = θc Tav
1

π
0

θc

θ
1

2
ρ A Vn

2
 CDopen R






d
1

π
θc

π

θ
1

2
ρ A Vn

2
 CDnotopen R






d



Using Eq. 1 Tav
ρ A R

2 π
CDopen

0

θc

θV cos θ( ) ω R( )
2




d CDnotopen
θc

π

θV cos θ( ) ω R( )
2




d













Tav
ρ A R ω

2


2 π
CDopen

0

θc

θ
V

ω
cos θ( ) R





2




d CDnotopen

θc

π

θ
V

ω
cos θ( ) R





2





d















and note that
V

ω
k

The integral is θk cos θ( ) R( )
2




d k
2 1

2
cos θ( ) sin θ( )

1

2
θ





 2 k R sin θ( ) R
2
θ

For convenience define f θ( ) k
2 1

2
cos θ( ) sin θ( )

1

2
θ





 2 k R sin θ( ) R
2
θ

Hence Tav
ρ A R

2 π
CDopen f θc  CDnotopen f π( ) f θc   

For steady state conditions the torque (of each cup, and of all the cups) is zero.  Hence

CDopen f θc  CDnotopen f π( ) f θc   0

or f θc 
CDnotopen

CDopen CDnotopen
f π( )

Hence k
2 1

2
cos θc  sin θc 

1

2
θc





 2 k R sin θc  R
2
θc

CDnotopen

CDopen CDnotopen
k

2 π

2
 R

2
π







Recall from Eq 2 that θc acos
ω R

V







 or θc acos
R

k









Hence k
2 1

2

R

k
 sin acos

R

k














1

2
acos

R

k













 2 k R sin acos
R

k













 R
2

acos
R

k








CDnotopen

CDopen CDnotopen
k

2 π

2
 R

2
π




This equation is to be solved for the coefficient k.  The equation is highly nonlinear; it can be solved by

iteration or using Excel's Goal Seek or Solver

From the associated Excel workbook

k 0.990 ft k 0.0707
mph

rpm


The result from Problem 9.106 was k 0.0561
mph

rpm
 This represents a difference of 20.6%. The difference can be attributed 

to the fact that we had originally averaged the flow velocity, rather than integrated over a complete revolution.



 

Problem 9.117                                                               [Difficulty: 4]



Problem 9.118                                                             [Difficulty: 4]



 

Problem 9.119                                                              [Difficulty: 4]



Problem 9.120 [Difficulty: 2]

Given: Data on advertising banner

Find: Power to tow banner; Compare to flat plate; Explain discrepancy

Solution:

Basic equation: FD
1

2
ρ A V

2
 CD P FD V

The given data or available data is V 55 mph V 80.7
ft

s
 L 45 ft h 4 ft ρ 0.00234

slug

ft
3



A L h A 180 ft
2

 CD 0.05
L

h
 CD 0.563

FD
1

2
ρ A V

2
 CD FD 771 lbf P FD V P 6.22 10

4


ft lbf

s
 P 113 hp

For a flate plate, check Re ν 1.62 10
4


ft

2

s
 (Table A.9, 69oF)

ReL
V L

ν
 ReL 2.241 10

7
 so flow is fully turbulent.  Hence use Eq 9.37b

CD
0.455

log ReL 2.58

1610

ReL

 CD 0.00258

FD
1

2
ρ A V

2
 CD FD 3.53 lbf

This is the drag on one side.  The total drag is then 2 FD 7.06 lbf .  This is VERY much less than the banner drag.

The banner drag allows for banner flutter and other secondary motion which induces significant form drag.



 

Problem 9.121                                                              [Difficulty: 5]



Problem 9.122 [Difficulty: 1]

 

V 

x 

y 

FD 

M 

Given: Data on car antenna

Find: Bending moment

Solution:

Basic equation: FD
1

2
ρ A V

2
 CD

The given or available data is V 120
km

hr
 33.333

m

s
 L 1.8 m D 10 mm

A L D A 0.018 m
2



ρ 1.225
kg

m
3

 ν 1.50 10
5


m

2

s
 (Table A.10, 20oC)

For a cylinder, check Re Re
V D

ν
 Re 2.22 10

4


From Fig. 9.13 CD 1.0 FD
1

2
ρ A V

2
 CD FD 12.3 N

The bending moment is then M FD
L

2
 M 11.0 N m



Problem 9.123 [Difficulty: 1]

 

V 

x 

y 

FD 

M 

Given: Data on wind turbine blade

Find: Bending moment

Solution:

Basic equation: FD
1

2
ρ A V

2
 CD

The given or available data is V 85 knot 143.464
ft

s
 L 1.5 ft W 115 ft

A L W A 172.5 ft
2



ρ 0.00233
slug

ft
3

 ν 1.63 10
4


ft

2

s
 (Table A.9, 70oF)

For a flat plate, check Re ReL
V L

ν
 ReL 1.32 10

6
 so use Eq. 9.37a

CD
0.0742

ReL

1

5

1740

ReL

 CD 0.00311

FD 2
1

2
 ρ A V

2
 CD FD 25.7 lbf

The bending moment is then M FD
W

2
 M 1480 ft lbf



Problem 9.124 [Difficulty: 4]

Given: Data on wind turbine blade

Find: Power required to maintain operating speed

Solution:

Basic equation: FD
1

2
ρ A V

2
 CD

The given or available data is ω 25 rpm L 1.5 ft W 115 ft

ρ 0.00233
slug

ft
3

 ν 1.63 10
4


ft

2

s
 (Table A.9, 70oF)

The velocity is a function of radial position, V r( ) r ω , so Re varies from 0 to Remax
V W( ) L

ν
 Remax 2.77 10

6


The transition Reynolds number is 500,000 which therefore occurs at about 1/4 of the maximum radial distance; the
boundary layer is laminar for the first quarter of the blade.  We approximate the entire blade as turbulent - the first 1/4 of
the blade will not exert much moment in any event

Hence Re r( )
L

ν
V r( )

L ω

ν
r

Using Eq. 9.37a CD
0.0742

ReL

1

5

1740

ReL


0.0742

L ω

ν
r





1

5

1740

L ω

ν
r

 0.0742
ν

L ω






1

5

 r

1

5


 1740
ν

L ω






 r
1



The drag on a differential area is dFD
1

2
ρ dA V

2
 CD

1

2
ρ L V

2
 CD dr The bending moment is then dM dFD r

Hence M M1




d

0

W

r
1

2
ρ L V

2
 CD r






d
M

0

W

r
1

2
ρ L ω

2
 r

3
 0.0742

ν

L ω






1

5

 r

1

5


 1740
ν

L ω






 r
1




















d

M
1

2
ρ L ω

2


0

W

r0.0742
ν

L ω






1

5

 r

14

5
 1740

ν

L ω






 r
2


















d M
1

2
ρ L ω

2


5 0.0742

19

ν

L ω






1

5

 W

19

5


1740

3

ν

L ω






 W
3













M 1666 ft lbf Hence the power is P M ω P 7.93 hp



 Problem 9.125 [Difficulty: 2] 
 

  
 

Given: A runner running during different wind conditions. 

Find: Calories burned for the two different cases 

Solution:  
 
Governing equation:   
     
     

    

AV

F
C D

D
2

2

1 
     AVCF DD

2

2

1   

 
 
Assumption:  1) CDA = 9 ft2  2) Runner maintains speed of 7.5 mph regardless of wind conditions  
 
 
No wind: 

 ft/s 11 mph  7.5 V   
3slug/ft 0.00238     

 

The drag force on the runner is:    lbf 296.1
s

ft
11

ft

slug
00238.0ft 9

2

1
2

2
2

3

2 DF   

 

Energy burned: timeVFtimePowerE runnerD     

 

Where   s 1920  
hr

s 3600

mi 7.5

hr
mi  4 time  

 

Hence 
lbfft

kcal 0003238.0
s 1920

s

11f
lbf 296.1


E   

 
With 5 mph wind:  
 

Going upwind:   
s

ft
 18.33 mph  12.5 relV  

 The drag force on the runner is:    lbf 598.3
s

ft
33.18

ft

slug
00238.0ft 9

2

1
2

2
2

3

2 DF  

 s 960  
hr

s 3600

mi 7.5

hr
mi  2 time  

kcal 86.8E  



 kcal 30.12
lbfft

kcal 0003238.0
s 960

s

11f
lbf 598.3 


upwindE  

 
 

Going downwind:   
s

ft
 3.67 mph  2.5 relV  

 The drag force on the runner is:    lbf 144.0
s

ft
67.3

ft

slug
00238.0ft 9

2

1
2

2
2

3

2 DF  

 s 960  
hr

s 3600

mi 7.5

hr
mi  2 time  

 kcal 49.0
lbfft

kcal 0003238.0
s 960

s

11f
lbf 144.0 


downwindE  

 
 
Hence the total energy burned to overcome drag when the wind is 5 mph is: 
 

 
      this is 44% higher 

 
 

kcal 12.79  kcal 0.49kcal 30.12 E  



 

Problem 9.126                                                              [Difficulty: 2]
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Problem 9.128 [Difficulty: 2]

 

T 

 

V 

x 

y 

FB 

FD 

Given: Data on helium-filled balloon, angle balloon string makes when subjected to wind

Find: Drag coefficient for the balloon

Solution:

Basic equations: FD
1

2
ρ A V

2
 CD ΣFy 0

The given or available data is D 20 in FB 0.3 lbf V 10
ft

s
 θ 55 deg

ρ 0.00233
slug

ft
3

 ν 1.63 10
4


ft

2

s
 (Table A.9, 70oF)

Based on a free body diagram of the balloon, FD FB tan 90 deg θ( ) 0.2101 lbf

The reference area for the balloon is: A
π

4
D

2
 2.182 ft

2
 so the drag coefficient is: CD

FD

1

2
ρ V

2
 A

0.826



 

Problem 9.129                                                              [Difficulty: 2][



Problem 9.130 [Difficulty: 2]

Given: 3 mm raindrop

Find: Terminal speed

Solution:

Basic equation: FD
1

2
ρ A V

2
 CD ΣF 0

Given or available data is D 3 mm ρH2O 1000
kg

m
3

 ρair 1.225
kg

m
3

 ν 1.50 10
5


m

2

s
 (Table A.10, 20oC)

Summing vertical forces M g FD M g
1

2
ρair A V

2
 CD 0 Buoyancy is negligible

M ρH2O
π D

3


6
 M 1.41 10

5
 kg A

π D
2



4
 A 7.07 10

6
 m

2


Assume the drag coefficient is in the flat region of Fig. 9.11 and verify Re later CD 0.4

V
2 M g

CD ρair A
 V 8.95

m

s


Check Re Re
V D

ν
 Re 1.79 10

3
 which does place us in the flat region of the curve

Actual raindrops are not quite spherical, so their speed will only be approximated by this result



 

Problem 9.131                                                              [Difficulty: 3]



Problem 9.132                                                             [Difficulty: 3]



Problem 9.133 [Difficulty: 3]

 

Fn1 

W 

Fn2 

Given: Circular disk in wind

Find: Mass of disk; Plot α versus V

Solution:

Basic equations: CD

FD

1

2
ρ V

2
 A

 ΣM


0

Summing moments at the pivot W L sin α( ) Fn1 L
1

2
L

D

2






 Fn2 0 (1)  and for each normal drag Fn
1

2
ρ Vn

2
 A CD

Assume 1) No pivot friction 2) CD is valid for Vn = Vcos(α)

The data is ρ 1.225
kg

m
3

 μ 1.8 10
5


N s

m
2

 V 15
m

s


D 25 mm d 3 mm L 40 mm α 10 deg

CD1 1.17 (Table

9.3)
Red

ρ V d

μ
 Red 3063 so from Fig. 9.13 CD2 0.9

Hence Fn1
1

2
ρ V cos α( )( )

2


π D
2



4
 CD1 Fn1 0.077 N

Fn2
1

2
ρ V cos α( )( )

2
 L

D

2






 d CD2 Fn2 0.00992 N

The drag on the support is much less than on the disk (and moment even less), so results will not be much different from those of

Problem 9.105

Hence Eq. 1 becomes M L g sin α( ) L
1

2
 ρ V cos α( )( )

2


π D
2



4
 CD1

1

2
L

D

2







1

2
ρ V cos α( )( )

2
 L

D

2






 d CD2







M
ρ V

2
 cos α( )

2


4 g sin α( )

1

2
π D

2
 CD1 1

D

2 L






L
D

2






 d CD2





 M 0.0471 kg



Rearranging V
4 M g

ρ

tan α( )

cos α( )


1

1

2
π D

2
 CD1 1

D

2 L






L
D

2






 d CD2





 V 35.5
m

s


tan α( )

cos α( )


We can plot this by choosing α and computing V

0 10 20 30 40 50 60 70

20

40

60

80

Angle (deg)

V
 (

m
/s

)

This graph can be easily plotted in Excel



Problem 9.134 [Difficulty: 3]

Given: Data on a tennis ball

Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:

The given data or available data is M 57 gm D 64 mm ν 1.45 10
5


m

2

s
 ρ 1.23

kg

m
3



Then A
π D

2


4
 A 3.22 10

3
 m

2


Assuming high Reynolds number CD 0.5 (from Fig. 9.11)

At terminal speed drag equals weight FD M g

The drag at speed V is given by FD
1

2
ρ A V

2
 CD

Hence the terminal speed is Vt
M g

1

2
ρ A CD

 Vt 23.8
m

s


Check the Reynolds number Re
Vt D

ν
 Re 1.05 10

5
 Check!

For motion before terminal speed Newton's second law applies

M a M
dV

dt
 M g

1

2
 ρ V

2
 A CD or

t
V

d

d
g k V

2
 where k

ρ A CD

2 M
 k 0.0174

1

m


Separating variables

0

V

V
1

g k V
2







d t V
1

g k V
2









d
1

g k
atanh

k

g
V











Hence V t( )
g

k
tanh g k t 

Evaluating at V = 0.95Vt 0.95 Vt
g

k
tanh g k t  t

1

g k
atanh 0.95 Vt

k

g










 t 4.44 s

For distance x versus time, integrate
dx

dt

g

k
tanh g k t  x

0

t

t
g

k
tanh g k t 






d



Note that ttanh a t( )




d
1

a
ln cosh a t( )( )

Hence x t( )
1

k
ln cosh g k t  

Evaluating at V = 0.95Vt t 4.44 s so x t( ) 67.1 m



 

Problem 9.135                                                              [Difficulty: 4]



 

Problem 9.136                                                               [Difficulty: 3]



Problem 9.137 [Difficulty: 3]

Given: Data on model airfoil

Find: Lift and drag coefficients

Solution:

Basic equation: CD

FD

1

2
ρ A V

2


 CL

FL

1

2
ρ A V

2


 where A is plan area for airfoil, frontal area for rod

Given or available data is D 2 cm L 25 cm (Rod) b 60 cm c 15 cm (Airfoil)

V 30
m

s
 FL 50 N FH 6 N

Note that the horizontal force FH is due to drag on the airfoil AND on the rod

ρ 1.225
kg

m
3

 ν 1.50 10
5


m

2

s
 (Table A.10, 20oC)

For the rod Rerod
V D

ν
 Rerod 4 10

4
 so from Fig. 9.13 CDrod 1.0

Arod L D Arod 5 10
3

 m
2



FDrod CDrod
1

2
ρ Arod V

2
 FDrod 2.76 N

Hence for the airfoil A b c FD FH FDrod FD 3.24 N

CD

FD

1

2
ρ A V

2


 CD 0.0654 CL

FL

1

2
ρ A V

2


 CL 1.01
CL

CD

15.4



Problem 9.138                                                             [Difficulty: 3]
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Problem 9.140                                                              [Difficulty: 4]



Problem 9.141 [Difficulty: 4]

Given: Data on a tennis ball

Find: Terminal speed time and distance to reach 95% of terminal speed

Solution:

The given data or available data is M 57 gm D 64 mm ν 1.45 10
5


m

2

s
 ρ 1.23

kg

m
3



Then A
π D

2


4
 A 3.22 10

3
 m

2


From Problem 9.132 CD
24

Re
 Re 1

CD
24

Re
0.646

 1 Re 400

CD 0.5 400 Re 3 10
5



CD 0.000366 Re
0.4275

 3 10
5

 Re 2 10
6



CD 0.18 Re 2 10
6



At terminal speed drag equals weight FD M g

The drag at speed V is given by FD
1

2
ρ A V

2
 CD

Assume CD 0.5

Hence the terminal speed is Vt
2 M g

ρ A CD
 Vt 23.8

m

s


Check the Reynolds number Re
Vt D

ν
 Re 1.05 10

5


This is consistent with the tabulated CD values!



For motion before terminal speed, Newton's second law is M a M
dV

dt
 M g

1

2
 ρ V

2
 A CD

Hence the time to reach 95% of terminal speed is obtained by separating variables and integrating

t

0

0.95 Vt

V
1

g
ρ A CD

2 M
V

2








d

For the distance to reach terminal speed Newton's second law is written in the form

M a M V
dV

dx
 M g

1

2
 ρ V

2
 A CD

Hence the distance to reach 95% of terminal speed is obtained by separating variables and

integrating

x

0

0.95 Vt

V
V

g
ρ A CD

2 M
V

2








d

These integrals are quite difficult because the drag coefficient varies with Reynolds number, which

varies with speed.  They are best evaluated numerically.  A form of Simpson's Rule is

Vf V( )




d
∆V

3
f V0  4 f V1  2 f V2  4 f V3  f VN  

where ΔV is the step size, and V0, V1 etc., are the velocities at points 0, 1, ... N.

Here V0 0 VN 0.95 Vt ∆V
0.95 Vt

N


From the associated Excel

calculations (shown below):
t 4.69 s x 70.9 m

These results compare to 4.44 s and 67.1 m from Problem 9.132, which assumed the drag coefficient was constant and

analytically integrated.  Note that the drag coefficient IS essentially constant, so numerical integration was not really necessary!



For the time: For the distance:

V  (m/s) Re C D W f (V ) W xf (V ) f (V ) W xf (V )

0 0 5438 1 0.102 0.102 0.00 0.000

1.13 4985 0.500 4 0.102 0.409 0.115 0.462

2.26 9969 0.500 2 0.103 0.206 0.232 0.465

3.39 14954 0.500 4 0.104 0.416 0.353 1.41

4.52 19938 0.500 2 0.106 0.212 0.478 0.955

5.65 24923 0.500 4 0.108 0.432 0.610 2.44

6.78 29908 0.500 2 0.111 0.222 0.752 1.50

7.91 34892 0.500 4 0.115 0.458 0.906 3.62

9.03 39877 0.500 2 0.119 0.238 1.08 2.15

10.2 44861 0.500 4 0.125 0.499 1.27 5.07

11.3 49846 0.500 2 0.132 0.263 1.49 2.97

12.4 54831 0.500 4 0.140 0.561 1.74 6.97

13.6 59815 0.500 2 0.151 0.302 2.05 4.09

14.7 64800 0.500 4 0.165 0.659 2.42 9.68

15.8 69784 0.500 2 0.183 0.366 2.89 5.78

16.9 74769 0.500 4 0.207 0.828 3.51 14.03

18.1 79754 0.500 2 0.241 0.483 4.36 8.72

19.2 84738 0.500 4 0.293 1.17 5.62 22.5

20.3 89723 0.500 2 0.379 0.758 7.70 15.4

21.5 94707 0.500 4 0.550 2.20 11.8 47.2

22.6 99692 0.500 1 1.05 1.05 23.6 23.6

Total time: 4.69 s Total distance: 70.9 m



Problem 9.142 [Difficulty: 4]

Given: Data on an air bubble

Find: Time to reach surface

Solution:

The given data or available data is

h 100 ft 30.48 m ρ 1025
kg

m
3

 (Table A.2) CD 0.5 (Fig. 9.11) patm 101 kPa

To find the location we have to integrate the velocity over time: dx V dt where V
4 g d0

3 CD

patm ρ g h

patm ρ g h x( )









1

6



The results (generated in Excel) for each bubble diameter are shown below:

d 0 = 0.3 in

d 0 = 7.62 mm d 0 = 5 mm d 0 = 15 mm

t  (s) x  (m) V  (m/s) t (s) x (m) V (m/s) t (s) x (m) V  (m/s)

0 0 0.446 0 0 0.362 0.0 0 0.626

5 2.23 0.451 5 1.81 0.364 5.0 3.13 0.635

10 4.49 0.455 10 3.63 0.367 10.0 6.31 0.644

15 6.76 0.460 15 5.47 0.371 15.0 9.53 0.655

20 9.1 0.466 20 7.32 0.374 20.0 12.8 0.667

25 11.4 0.472 25 9.19 0.377 25.0 16.1 0.682

30 13.8 0.478 30 11.1 0.381 30.0 19.5 0.699

35 16.1 0.486 35 13.0 0.386 35.0 23.0 0.721

40 18.6 0.494 40 14.9 0.390 40.0 26.6 0.749

45 21.0 0.504 45 16.9 0.396 45.1 30.5 0.790

50 23.6 0.516 50 18.8 0.401

63.4 30.5 0.563 55 20.8 0.408

60 22.9 0.415

65 25.0 0.424

70 27.1 0.435

75 29.3 0.448

77.8 30.5 0.456

Use Goal Seek for the last time step to make x = h !

Depth of Air Bubbles versus Time

0

5
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15

20

25

30

0 10 20 30 40 50 60 70 80

t  (s)

x  (m)

Initial Diameter = 5 mm

Initial Diameter = 0.3 in

Initial Diameter = 15 mm



Problem 9.143 [Difficulty: 4]

Given: Data on a tennis ball

Find: Maximum height

Solution:

The given data or available data is M 57 gm D 64 mm Vi 50
m

s
 ν 1.45 10

5


m
2

s
 ρ 1.23

kg

m
3



Then A
π D

2


4
 A 3.22 10

3
 m

2


From Problem 9.132 CD
24

Re
 Re 1

CD
24

Re
0.646

 1 Re 400

CD 0.5 400 Re 3 10
5



CD 0.000366 Re
0.4275

 3 10
5

 Re 2 10
6



CD 0.18 Re 2 10
6



The drag at speed V is given by FD
1

2
ρ A V

2
 CD

For motion before terminal speed, Newton's second law (x upwards) is M a M
dV

dt


1

2
 ρ V

2
 A CD M g

For the maximum height Newton's second law is written in the form M a M V
dV

dx


1

2
 ρ V

2
 A CD M g

Hence the maximum height is xmax

Vi

0

V
V

ρ A CD

2 M
 V

2
 g








d

0

Vi

V
V

ρ A CD

2 M
V

2
 g







d

This integral is quite difficult because the drag coefficient varies with Reynolds number, which

varies with speed.  It is best evaluated numerically.  A form of Simpson's Rule is

Vf V( )




d
∆V

3
f V0  4 f V1  2 f V2  4 f V3  f VN  

where ΔV is the step size, and V0, V1 etc., are the velocities at points 0, 1, ... N.



Here V0 0 VN Vi ∆V
Vi

N


V (m/s) Re C D W f (V ) W xf (V )

0.0 0 0.000 1 0.000 0.000

2.5 11034 0.500 4 0.252 1.01

5.0 22069 0.500 2 0.488 0.976

7.5 33103 0.500 4 0.695 2.78

10.0 44138 0.500 2 0.866 1.73

12.5 55172 0.500 4 1.00 3.99

15.0 66207 0.500 2 1.09 2.19

17.5 77241 0.500 4 1.16 4.63

20.0 88276 0.500 2 1.19 2.39

22.5 99310 0.500 4 1.21 4.84

25.0 110345 0.500 2 1.21 2.42

27.5 121379 0.500 4 1.20 4.80

30.0 132414 0.500 2 1.18 2.36

32.5 143448 0.500 4 1.15 4.62

35.0 154483 0.500 2 1.13 2.25

37.5 165517 0.500 4 1.10 4.38

40.0 176552 0.500 2 1.06 2.13

42.5 187586 0.500 4 1.03 4.13

45.0 198621 0.500 2 1.00 2.00

47.5 209655 0.500 4 0.970 3.88

50.0 220690 0.500 1 0.940 0.940

From the associated Excel workbook

(shown here)
xmax 48.7 m

If we assume CD 0.5

the integral xmax

0

Vi

V
V

ρ A CD

2 M
V

2
 g







d

xmax
M

ρ A CD
ln

ρ A CD

2 M g
Vi

2
 1









 xmax 48.7 m
becomes

The two results agree very closely!  This is because the integrand does not vary much after the first few steps so

the numerical integral is accurate, and the analytic solution assumes CD = 0.5, which it essentially does!



Problem 9.144                                                              [Difficulty: 4]



Problem 9.145 [Difficulty: 3]

Given: Data on rooftop carrier

Find: Drag on carrier; Additional fuel used; Effect on economy; Effect of "cheaper" carrier

Solution:

Basic equation: CD

FD

1

2
ρ A V

2




Given or available data is w 1 m h 50 cm r 10 cm ηd 85 %

V 100
km

hr
 V 27.8

m

s
 FE 12.75

km

L
 FE 30.0

mi

gal


ρH2O 1000
kg

m
3

 A w h A 0.5 m
2

 BSFC 0.3
kg

kW hr


ρ 1.225
kg

m
3

 ν 1.50 10
5


m

2

s
 (Table A.10,

20oF)

From the diagram
r

h
0.2 s

o
CD 0.25 FD CD

1

2
 ρ A V

2
 FD 59.1 N

Additional power is ∆P
FD V

ηd

 ∆P 1.93 kW

Additional fuel is ∆FC BSFC ∆P ∆FC 1.61 10
4


kg

s
 ∆FC 0.00965

kg

min


Fuel consumption of the car only is (with SGgas 0.72   from Table A.2)

FC
V

FE
SGgas ρH2O FC 1.57 10

3


kg

s
 FC 0.0941

kg

min


The total fuel consumption is then FCT FC ∆FC FCT 1.73 10
3


kg

s
 FCT 0.104

kg

min


Fuel economy with the carrier is FE
V

FCT

SGgas ρH2O FE 11.6
km

L
 FE 27.2

mi

gal


For the square-edged:
r

h
0 s

o
CD 0.9 FD CD

1

2
 ρ A V

2
 FD 213 N

Additional power is ∆P
FD V

ηd

 ∆P 6.95 kW



Additional fuel is ∆FC BSFC ∆P ∆FC 5.79 10
4


kg

s
 ∆FC 0.0348

kg

min


The total fuel consumption is then FCT FC ∆FC FCT 2.148 10
3


kg

s
 FCT 0.129

kg

min


Fuel economy withy the carrier is now FE
V

FCT

SGgas ρH2O FE 9.3
km

L
 FE 21.9

mi

gal


The cost of the trip of distance d 750 km  for fuel costing p
$ 3.50

gal
  with a rental discount $ 5  less than the rounded carrier is

then

Cost
d

FE
p discount Cost 69.47 plus the rental fee

The cost of the trip of with the rounded carrier ( FE 11.6
km

L
 ) is then

Cost
d

FE
p Cost 59.78 plus the rental fee

Hence the "cheaper" carrier is more expensive (AND the environment is significantly more damaged!)



Problem 9.146 [Difficulty: 4]

Given: Data on barge and river current

Find: Speed and direction of barge

Solution:

Basic

equation:
CD

FD

1

2
ρ A V

2




Given or available data is W 8820 kN w 10 m L 30 m h 7 m Vriver 1
m

s
 Vwind 10

m

s
 CDw 1.3

(Water data from Table A.8, air

data from Table A.10, 20oC)
CDa 1.3 ρw 998

kg

m
3

 νw 1.01 10
6


m

2

s
 ρa 1.21

kg

m
3

 νa 1.50 10
5


m

2

s


First we need to calculate the amount of the barge submerged in the water. From Archimedes' Principle: W ρw g Vsub

The submerged volume can be expressed as: Vsub w L hsub Combining these expressions and solving for the depth:

hsub
W

ρw g w L
3.00 m Therefore the height of barge exposed to the wind is: hair h hsub 4.00 m

Assuming the barge is floating downstream, the velocities of the water and air relative to the barge is:

Vw Vriver Vbarge Va Vwind Vbarge

Assuming that the barge is rectangular, the areas exposed to the air and water are: Aa L w 2 L w( ) hair 620 m
2



Aw L w 2 L w( ) hsub 540 m
2



In order for the barge to be traveling at a constant speed, the drag forces due to the air and water must match:

1

2
CDw ρw Vw

2
 Aw

1

2
CDa ρa Va

2
 Aa Since the drag coefficients are equal, we can simplify: ρw Vw

2
 Aw ρa Va

2
 Aa

Solving for the speed relative to the water: Vw
2

Va
2
ρa

ρw


Aa

Aw

 Since the speeds must be in opposite directions:

Vw Va
ρa

ρw

Aa

Aw

 In terms of the barge speed: Vriver Vbarge Vwind Vbarge 
ρa

ρw

Aa

Aw



Vbarge

Vriver Vwind

ρa

ρw

Aa

Aw



1
ρa

ρw

Aa

Aw



 Vbarge 1.426
m

s
 downstream

So solving for the barge speed:



 

Problem 9.147                                                              [Difficulty: 4]



Problem 9.148 [Difficulty: 4]

Given: Data on sonar transducer

Find: Drag force at required towing speed; minimum depth necessary to avoid cavitation

Solution:

Basic equation: CD

FD

1

2
ρ A V

2


 CP

p pinf

1

2
ρ V

2


 p patm ρ g h

Given or available data is D 15 in V 55
ft

s
 pmin 5 psi ρ 1.93

slug

ft
3

 ν 1.06 10
5


ft

2

s
 (Table A.7, 70oF)

The Reynolds number of the flow is: Re
V D

ν
6.486 10

6
 From Fig. 9.11, we estimate the drag coefficient: CD 0.18

The area is: A
π

4
D

2
 1.227 ft

2
 Therefore the drag force is: FD

1

2
CD ρ V

2
 A FD 645 lbf

From Fig. 9.12 the minimum pressure occurs where CP 1.2 Therefore: pinf pmin
1

2
CP ρ V

2
 29.326 psi

Solving for the required depth: h
pinf patm

ρ g
 h 33.9 ft



 

Problem 9.149                                                              [Difficulty: 4]



Problem 9.150 [Difficulty: 4]

Given: Data on a rocket

Find: Plot of rocket speed with and without drag

Solution:

From Example 4.12, with the addition of drag the momentum equation becomes 
 

 




CVCVCV

AdVvVdv
t

VdaFF xyzxyzxyzrfSB yyy


  

 
where the surface force is 

D
2

2

1
CAVF

yS   

 
Following the analysis of the example problem, we end up with 
 

g
tmM

CAVmV

dt

dV

e

ee 









0

D
2

CV2
1

CV


 

 
This can be written (dropping the subscript for convenience) 
 

 tVf
dt

dV
,                                                          (1)

 
where 

  g
tmM

CAVmV
tVf

e

ee 









0

D
2

2
1

,


                                             (2)

 
Equation 1 is a differential equation for speed V. 
 
It can be solved using Euler’s numerical method 
 

nn1n ftVV   

 
where Vn+1 and Vn  are the n + 1th and nth values of V, fn is the function given by Eq. 2 evaluated at the nth

step, and t is the time step. 
 

The initial condition is   0at      00  tV  



Given or available data:

M 0 = 400 kg

m e  = 5 kg/s

V e  = 3500 m/s

 = 1.23 kg/m
3

D  = 700 mm

C D = 0.3

Computed results:

A  = 0.38 m
2

N  = 20

t  = 0.50 s

With drag: Without drag:

n t n (s) V n (m/s) f n V n+1 (m/s) V n (m/s) f n V n+1 (m/s)

0 0.0 0.0 33.9 17.0 0.0 33.9 17.0

1 0.5 17.0 34.2 34.1 17.0 34.2 34.1

2 1.0 34.1 34.3 51.2 34.1 34.5 51.3

3 1.5 51.2 34.3 68.3 51.3 34.8 68.7

4 2.0 68.3 34.2 85.5 68.7 35.1 86.2

5 2.5 85.5 34.0 102 86.2 35.4 104

6 3.0 102 33.7 119 104 35.6 122

7 3.5 119 33.3 136 122 35.9 140

8 4.0 136 32.8 152 140 36.2 158

9 4.5 152 32.2 168 158 36.5 176

10 5.0 168 31.5 184 176 36.9 195

11 5.5 184 30.7 200 195 37.2 213

12 6.0 200 29.8 214 213 37.5 232

13 6.5 214 28.9 229 232 37.8 251

14 7.0 229 27.9 243 251 38.1 270

15 7.5 243 26.9 256 270 38.5 289

16 8.0 256 25.8 269 289 38.8 308

17 8.5 269 24.7 282 308 39.1 328

18 9.0 282 23.6 293 328 39.5 348

19 9.5 293 22.5 305 348 39.8 368

20 10.0 305 21.4 315 368 40.2 388

Trajectory of a Rocket
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0 2 4 6 8 10 12
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Problem 9.151 [Difficulty: 4]

Given: Baseball popped up, drag estimates based on Reynolds number

Find: Time of flight and maximum height

Solution:

Basic equation: CD

FD

1

2
ρ A V

2


 ΣFy M ay ay

dVy

dt


Given or available data is M 0.143 kg V0y 25
m

s
 D 0.073 m

We solve this problem by discretizing the flight of the ball: ∆Vy ay ∆t
ΣFy

M
∆t ∆y Vy ∆t

Here are the calculations performed in Excel:

Given or available data:

M  = 0.143 kg

V 0y  = 25 m/s

D  = 0.073 m

ρ  = 1.21 kg/m
3

ν  = 1.50E-05 m
2
/s

Computed results:

A  = 0.00419 m
2

Δt  = 0.25 s

t n (s) y  (m) V y (m/s) Re C D a y (m/s
2
) V ynew (m/s)

0.00 0.0 25.0 1.22E+05 0.10 -10.917 22.3

0.25 5.9 22.3 1.08E+05 0.10 -10.688 19.6

0.50 11.1 19.6 9.54E+04 0.10 -10.490 17.0

0.75 15.7 17.0 8.26E+04 0.10 -10.320 14.4

1.00 19.6 14.4 7.01E+04 0.10 -10.177 11.9 The results are plotted below.

1.25 22.9 11.9 5.77E+04 0.10 -10.059 9.3 The answers are:

1.50 25.6 9.3 4.54E+04 0.10 -9.964 6.8 height = 30.0 m

1.75 27.6 6.8 3.33E+04 0.10 -9.893 4.4 time = 4.93 s

2.00 29.0 4.4 2.13E+04 0.10 -9.844 1.9

2.25 29.8 1.9 9.30E+03 0.47 -9.840 0.0

2.44 30.0 0.0 0.00E+00 0.47 -9.810 -2.5

2.69 29.7 -2.5 1.19E+04 0.10 -9.799 -4.9

2.94 28.7 -4.9 2.39E+04 0.10 -9.767 -7.3

3.19 27.2 -7.3 3.57E+04 0.10 -9.714 -9.8

3.44 25.1 -9.8 4.76E+04 0.10 -9.641 -12.2

3.69 22.3 -12.2 5.93E+04 0.10 -9.547 -14.6

3.94 19.0 -14.6 7.09E+04 0.10 -9.434 -16.9

4.19 15.0 -16.9 8.24E+04 0.10 -9.303 -19.3

4.44 10.5 -19.3 9.37E+04 0.10 -9.154 -21.5

4.69 5.4 -21.5 1.05E+05 0.10 -8.988 -23.7

4.93 0.0 -23.7 1.15E+05 0.10 -8.816



Trajectory of Baseball
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Problem 9.154                                                             [Difficulty: 5]   Part 1/2
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Problem 9.155                                                              [Difficulty: 5]   Part 1/2



 

Problem 9.155                                                              [Difficulty: 5]   Part 2/2



Problem 9.156 [Difficulty: 3]

 

V 

x 

y 

FD 

FL Given: Data on airfoil and support in wind tunnel, lift and drag measurements

Find: Lift and drag coefficients of airfoil

Solution:

Basic equations: CD

FD

1

2
ρ A V

2


 CL

FL

1

2
ρ A V

2




The given or available data is L 6 in W 30 in V 100
ft

s
 Dcyl 1 in Lcyl 10 in

FL 10 lbf FD 1.5 lbf ρ 0.00233
slug

ft
3

 ν 1.63 10
4


ft

2

s


We need to determine the cylindrical support's contribution to the total drag force: FD FDcyl FDairfoil

Compute the Reynolds number Re
V Dcyl

ν
 Re 5.112 10

4
 Therefore: CDcyl 1

So the drag force on the support is: FDcyl
1

2
CDcyl ρ V

2
 Lcyl Dcyl 0.809 lbf

So the airfoil drag is: FDairfoil FD FDcyl 0.691 lbf The reference area for the airfoil is: A L W 1.25 ft
2



The lift and drag coefficients are:
CL

FL

1

2
ρ V

2
 A

 CL 0.687

CD

FDairfoil

1

2
ρ V

2
 A


CD 0.0474



Problem 9.157 [Difficulty: 2]

Given: Antique airplane guy wires

Find: Maximum power saving using optimum streamlining

Solution:

Basic equation: CD

FD

1

2
ρ A V

2


 P FD V

Given or available data is L 50 m D 5 mm V 175
km

hr
 V 48.6

m

s


A L D A 0.25 m
2



ρ 1.21
kg

m
3

 ν 1.50 10
5


m

2

s
 (Table A.10, 20oC)

The Reynolds number is Re
V D

ν
 Re 1.62 10

4
 so from Fig. 9.13 CD 1.0

Hence P CD
1

2
 ρ A V

2






V P 17.4 kW with standard wires

Figure 9.19 suggests we could reduce the drag coefficient to CD 0.06

Hence Pfaired CD
1

2
 ρ A V

2






V Pfaired 1.04 kW

The maximum power saving is then ∆P P Pfaired ∆P 16.3 kW

Thus
∆P

P
94 % which is a HUGE savings! It's amazing the antique planes flew!



 

Problem 9.158                                                              [Difficulty: 4]
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Problem 9.160                                                              [Difficulty: 1]



Problem 9.161 [Difficulty: 1]

Given: Aircraft in level flight

Find: Effective lift area; Engine thrust and power

Solution:

Basic equation: CD

FD

1

2
ρ A V

2


 CL

FL

1

2
ρ A V

2


 P T V

For level, constant speed FD T FL W

Given or available data is V 225
km

hr
 V 62.5

m

s
 CL 0.45 CD 0.065 M 900 kg

ρ 1.21
kg

m
3

 (Table A.10, 20oC)

Hence FL CL
1

2
 ρ A V

2
 M g A

2 M g

CL ρ V
2


 A 8.30 m

2


Also
FL

FD

CL

CD

 FL M g FL 8826 N FD FL

CD

CL

 FD 1275 N

T FD T 1275 N

The power required is then P T V P 79.7 kW



Problem 9.162 [Difficulty: 2]

 
V 

x 

y FD 

FL 

W 

Given: Data on a hydrofoil

Find: Minimum speed, power required, top speed

Solution:

Assumption: The drag on the hydrofoil is much greater than any other drag force on the craft once the foil supports the craft.

The given data or available data is ρ 1.94
slug

ft
3

 A 7.5 ft
2

 CL 1.5 CD 0.63 W 4000 lbf Pmax 150 hp

To support the hydrofoil, the lift force must equal the weight: FL W 4000 lbf

Based on the required lift force, the speed must be: Vmin

2 FL

ρ A CL
 Vmin 19.1

ft

s


The drag force at this speed is FD
1

2
ρ A Vmin

2
 CD FD 1680 lbf

Engine thrust required T FD T 1680 lbf

The power required is P T Vmin P 58.5 hp

As the speed increases, the lift will increase such that the lift and weight are still balanced. Therefore:

Pmax

CD

CL

W Vmax Solving for the maximum speed: Vmax

Pmax

W

CL

CD

 Vmax 49.1
ft

s




Problem 9.163 [Difficulty: 2]

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:

The given data or available data is ρ 0.00234
slug

ft
3

 L 5 ft w 7 ft V 40
ft

s
 CL 0.75 CD 0.19

Then A w L A 35 ft
2



The governing equations for steady flight are W FL and T FD

where W is the model total weight and T is the thrust

The lift is given by FL
1

2
ρ A V

2
 CL FL 49.1 lbf

The payload is then given by W M g FL

or M
FL

g
 M 49.1 lb

The drag is given by FD
1

2
ρ A V

2
 CD FD 12.4 lbf

Engine thrust required T FD T 12.4 lbf

The power required is P T V P 498
ft lbf

s
 P 0.905 hp

The ultralight model is just feasible: it is possible to find an engine that can produce about 1 hp that weighs less than about 50 lb.



Problem 9.164 [Difficulty: 3]

Given: Data on F-16 fighter

Find: Minimum speed at which pilot can produce 5g acceleration; flight radius, effect of altitude on results

Solution:

The given data or available data is ρ 0.00234
slug

ft
3

 A 300 ft
2

 CL 1.6 W 26000 lbf

At 5g acceleration, the corresponding force is:

FL 5 W 130000 lbf

The minimum velocity corresponds to the maximum lift coefficient:

Vmin

2 FL

ρ A CL
481

ft

s
 Vmin 481

ft

s


To find the flight radius, we perform a vertical force balance: FL sin 90 deg β( ) W 0 β 90 deg asin
W

FL









 78.5 deg

Now set the horizontal force equal to the centripetal acceleration: FL cos 90 deg β( )
W

g
ac

ac g
FL

W
 cos 90 deg β( ) ac 157.6

ft

s
2



The flight radius corresponding to this acceleration is: R
Vmin

2

ac

 R 1469 ft

As altitude increases, the density decreases, and both the velocity and radius will increase.



Problem 9.165 [Difficulty: 3]

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:

The given data or available data is V 40
ft

s
 ρ 0.00234

slug

ft
3

 c 5 ft b 7 ft

Then the area is A b c A 35.00 ft
2



and the aspect ratio is ar
b

c
 ar 1.4

The governing equations for steady flight are

W FL and T FD

where W is the model total weight and T is the thrust

At a 10o angle of attack, from Fig. 9.17 CL 1.2 CDi 0.010

where CDi is the section drag coefficient 

The wing drag coefficient is given by Eq. 9.42 CD CDi

CL
2

π ar
 CD 0.337

The lift is given by FL
1

2
ρ A V

2
 CL FL 78.6 lbf

The payload is then given by W M g FL

or M
FL

g
 M 78.6 lb

The drag is given by FD
1

2
ρ A V

2
 CD FD 22.1 lbf

Engine thrust required T FD T 22.1 lbf

The power required is P T V P 1.61 hp

NOTE: Strictly speaking we have TWO extremely stubby wings, so a recalculation of drag effects (lift is unaffected) gives

b 3.5 ft c 5.00 ft

and A b c A 1.63 m
2.00

 ar
b

c
 ar 0.70



so the wing drag coefficient is CD CDi

CL
2

π ar
 CD 0.665

The drag is FD 2
1

2
ρ A V

2
 CD FD 43.6 lbf

Engine thrust is T FD T 43.6 lbf

The power required is P T V P 3.17 hp

In this particular case it would seem that the ultralight model makes more sense - we need a smaller engine and smaller lift
requirements. However, on a per unit weight basis, the motor required for this aircraft is actually smaller. In other words, it should
probably be easier to find a 3.5 hp engine that weighs less than 80 lb (22.9 lb/hp) than a 1 hp engine that weighs less than 50 lb (50
lb/hp).



Problem 9.166 [Difficulty: 3]

Given: Data on a light airplane

Find: Angle of attack of wing; power required; maximum "g" force

Solution:

The given data or available data is ρ 1.23
kg

m
3

⋅= M 1000 kg⋅= A 10 m
2

⋅=

V 63
m

s
⋅= CL 0.72= CD 0.17=

The governing equations for steady flight are W M g⋅= FL= T FD=

where W is the weight T is the engine thrust

The lift coeffcient is given by FL
1

2
ρ⋅ A⋅ V

2
⋅ Cd⋅=

Hence the required lift coefficient is CL
M g⋅

1

2
ρ⋅ A⋅ V

2
⋅

= CL 0.402=

From Fig 9.17, for at this lift coefficient α 3 deg⋅=

and the drag coefficient at this angle of attack is CD 0.0065=

(Note that this does NOT allow for aspect ratio effects on lift and drag!)

Hence the drag is FD
1

2
ρ⋅ A⋅ V

2
⋅ CD⋅= FD 159 N=

and T FD= T 159 N=

The power required is then P T V⋅= P 10 kW⋅=

The maximum "g"'s occur when the angle of attack is suddenly increased to produce the maximum lift

From Fig. 9.17 CL.max 1.72=

FLmax
1

2
ρ⋅ A⋅ V

2
⋅ CL.max⋅= FLmax 42 kN⋅=

The maximum "g"s are given by application of Newton's second law

M aperp⋅ FLmax=

where aperp is the acceleration perpendicular to the flight direction



Hence aperp

FLmax

M
= aperp 42

m

s
2

=

In terms of "g"s
aperp

g
4.28=

Note that this result occurs when the airplane is banking at 90o, i.e, when the airplane is flying momentarily in a
circular flight path in the horizontal plane.  For a straight horizontal flight path Newton's second law is

M aperp⋅ FLmax M g⋅−=

Hence aperp

FLmax

M
g−= aperp 32.2

m

s
2

=

In terms of "g"s
aperp

g
3.28=



Problem 9.167 [Difficulty: 3]

Given: Data on a light airplane

Find: Cruising speed achieved using a new airfoil design

Solution:

The given data or available data is V 150 mph 220.00
ft

s
 ρ 0.00234

slug

ft
3

 c 5.5 ft b 35 ft

Then the area is A b c A 192.50 ft
2



and the aspect ratio is ar
b

c
 ar 6.36

The governing equations for steady flight are

W FL and T FD

where W is the total weight and T is the thrust

For the NACA 23015 airfoil: CL 0.3 CDi 0.0062

where CDi is the section drag coefficient 

The wing drag coefficient is given by Eq. 9.42 CD CDi

CL
2

π ar
 CD 0.011

The drag is given by FD
1

2
ρ A V

2
 CD FD 116.7 lbf

Engine thrust required T FD T 116.7 lbf

The power required is P T V P 46.66 hp

CL 0.2 CDi 0.0031
For the NACA 662-215 airfoil:

The wing drag coefficient is given by Eq. 9.42 CD CDi

CL
2

π ar
 CD 5.101 10

3


The power is: P
1

2
ρ A V

3
 CD so the new speed is: Vnew

3
2 P

ρ A CD


Vnew 282
ft

s
 Vnew 192.0 mph



Problem 9.168 [Difficulty: 3]

Given: Data on an airfoil

Find: Maximum payload; power required

Solution:

The given data or available data is Vold 150 mph ρ 0.00234
slug

ft
3

 A 192.5 ft
2

 arold
35

5.5
 arold 6.36

Assuming the old airfoil operates at close to design lift, from Fig. 9.19 CL 0.3 CDi 0.0062 (CDi is the old airfoil's

section drag coefficient)

Then CDold CDi

CL
2

π arold
 CDold 0.0107

The new wing aspect ratio is arnew 8

Hence CDnew CDi

CL
2

π arnew
 CDnew 0.00978

The power required is P T V FD V
1

2
ρ A V

2
 CD V

If the old and new designs have the same available power, then

1

2
ρ A Vnew

2
 CDnew Vnew

1

2
ρ A Vold

2
 CDold Vold

or Vnew Vold

3
CDold

CDnew

 Vnew 227
ft

s




 

Problem 9.169                                                              [Difficulty: 3]



Problem 9.170 [Difficulty: 3]

Given: Aircraft in circular flight

Find: Drag and power

Solution:

Basic equations: CD

FD

1

2
ρ A V

2


 CL

FL

1

2
ρ A V

2


 P FD V Σ F

 M a




The given data or available data are

ρ 0.002377
slug

ft
3

 R 3250 ft M 10000 lbm M 311 slug

V 150 mph V 220
ft

s
 A 225 ft

2
 ar 7

Assuming the aircraft is flying banked at angle β, the vertical force balance is

FL cos β( ) M g 0 or
1

2
ρ A V

2
 CL cos β( ) M g (1)

The horizontal force balance is

FL sin β( ) M ar
M V

2


R
 or

1

2
ρ A V

2
 CL sin β( )

M V
2



R
 (2)

Equations 1 and 2 enable the bank angle β to be found tan β( )
V

2

R g
 β atan

V
2

R g









 β 24.8 deg

Then from Eq 1 FL
M g

cos β( )
 FL 1.10 10

4
 lbf

Hence CL

FL

1

2
ρ A V

2


 CL 0.851

For the section, CDinf 0.0075  at CL 0.851 (from Fig. 9.19), so CD CDinf

CL
2

π ar
 CD 0.040

Hence FD FL

CD

CL

 FD 524 lbf

The power is P FD V P 1.15 10
5


ft lbf

s
 P 209 hp



Problem 9.171 [Difficulty: 4]

Given: Aircraft in circular flight

Find: Maximum and minimum speeds; Drag and power at these extremes

Solution:

Basic equations: CD

FD

1

2
ρ A V

2


 CL

FL

1

2
ρ A V

2


 P FD V Σ F

 M a




The given data or available data are

ρ 0.002377
slug

ft
3

 R 3250 ft M 10000 lbm M 311 slug

A 225 ft
2

 ar 7

The minimum velocity will be when the wing is at its maximum lift condition.  From Fig . 9. 17 or Fig. 9.19

CL 1.72 CDinf 0.02

where CDinf is the section drag coefficient

The wing drag coefficient is then CD CDinf

CL
2

π ar
 CD 0.155

Assuming the aircraft is flying banked at angle β, the vertical force balance is

FL cos β( ) M g 0 or
1

2
ρ A V

2
 CL cos β( ) M g (1)

The horizontal force balance is

FL sin β( ) M ar
M V

2


R
 or

1

2
ρ A V

2
 CL sin β( )

M V
2



R
 (2)

Equations 1 and 2 enable the bank angle β and the velocity V to be determined

sin β( )
2

cos β( )
2



M V
2

R

1

2
ρ A V

2
 CL











2

M g

1

2
ρ A V

2
 CL











2

 1

or
M

2
V

4


R
2

M
2

g
2


ρ

2
A

2
 V

4
 CL

2


4


V

4

M
2

g
2



ρ
2

A
2

 CL
2



4

M
2

R
2



 V 149
ft

s
 V 102 mph

tan β( )
V

2

R g
 β atan

V
2

R g









 β 12.0 deg



The drag is then FD
1

2
ρ A V

2
 CD FD 918 lbf

The power required to overcome drag is P FD V P 1.37 10
5


ft lbf

s
 P 249 hp

The analysis is repeated for the maximum speed case, when the lift/drag coefficient is at its

minimum value.  From Fig. 9.19, reasonable values are

CL 0.3 CDinf

CL

47.6
 corresponding to α = 2o (Fig. 9.17)

The wing drag coefficient is then CD CDinf

CL
2

π ar
 CD 0.0104

From Eqs. 1 and 2 V

4

M
2

g
2



ρ
2

A
2

 CL
2



4

M
2

R
2



 V 309.9 309.9i( )
ft

s
 Obviously unrealistic (lift is just too

low, and angle of attack is too low

to generate sufficient lift)

We try instead a larger, more reasonable, angle of attack

CL 0.55 CDinf 0.0065 corresponding to α = 4o (Fig. 9.17)

The wing drag coefficient is then CD CDinf

CL
2

π ar
 CD 0.0203

From Eqs. 1 and 2 V

4

M
2

g
2



ρ
2

A
2

 CL
2



4

M
2

R
2



 V 91.2
m

s
 V 204 mph

tan β( )
V

2

R g
 β atan

V
2

R g









 β 40.6 deg

The drag is then FD
1

2
ρ A V

2
 CD FD 485 lbf

The power required to overcome drag is P FD V P 1.45 10
5


ft lbf

s
 P 264 hp



 

Problem 9.172                                                              [Difficulty: 3]



 

Problem 9.173                                                              [Difficulty: 4]



 

Problem 9.174                                                              [Difficulty: 5]   Part 1/2



 

Problem 9.174                                                               [Difficulty: 5]   Part 2/2



Problem 9.175 [Difficulty: 4]

Given: Car spoiler

Find: Whether they are effective

Solution:

To perform the investigation, consider some typical data

For the spoiler, assume b 4 ft c 6 in ρ 1.23
kg

m
3

 A b c A 2 ft
2



From Fig. 9.17 a reasonable lift coefficient for a conventional airfoil section is CL 1.4

Assume the car speed is V 55 mph

Hence the "negative lift" is FL
1

2
ρ A V

2
 CL FL 21.7 lbf

This is a relatively minor negative lift force (about four bags of sugar); it is not likely to produce a noticeable
difference in car traction

The picture gets worse at 30 mph: FL 6.5 lbf

For a race car, such as that shown on the cover of the text, typical data might be

b 5 ft c 18 in A b c A 7.5 ft
2

 V 200 mph

In this case: FL 1078 lbf

Hence, for a race car, a spoiler can generate very significant negative lift!



 

Problem 9.176                                                              [Difficulty: 5]



 

Problem 9.177                                                              [Difficulty: 5]



 

Problem 9.178                                                               [Difficulty: 2]



 

Problem 9.179                                                               [Difficulty: 5]



Problem 9.180 [Difficulty: 2]

Given: Data on rotating cylinder

Find: Lift force on cylinder

Solution:

Basic equations: CL

FL

1

2
ρ⋅ A⋅ V

2
⋅

=

The given or available data is ρ 1.21
kg

m
3

⋅= ν 1.50 10
5−

⋅
m

2

s
⋅= L 30 cm⋅= D 5 cm⋅= ω 240 rpm⋅= V 1.5

m

s
⋅=

The spin ratio is:
ω D⋅

2 V⋅
0.419= From Fig. 9.29, we can estimate the maximum lift coefficient: CL 1.0=

The area is A D L⋅ 0.015 m
2

== Therefore, the lift force is: FL
1

2
CL⋅ ρ⋅ A⋅ V

2
⋅= FL 0.0204 N=



 

Problem 9.181                                                               [Difficulty: 2]



Problem 9.182 [Difficulty: 2]

Given: Data on original Flettner rotor ship

Find: Maximum lift and drag forces, optimal force at same wind speed, power requirement

Solution:

Basic equations: CL

FL

1

2
ρ A V

2




The given or available data is ρ 0.00234
slug

ft
3

 L 50 ft D 10 ft ω 800 rpm V 30 mph 44
ft

s


ν 1.62 10
4


ft

2

s


The spin ratio is:
ω D

2 V
9.52 From Fig. 9.29, we can estimate the lift and drag coefficients: CL 9.5 CD 3.5

The area is A D L 500 ft
2

 Therefore, the lift force is: FL
1

2
CL ρ A V

2
 FL 1.076 10

4
 lbf

The drag force is: FD
1

2
CD ρ A V

2
 FD 3.964 10

3
 lbf

This appears to be close to the optimum L/D ratio. The total force is: F FL
2

FD
2

 F 1.147 10
4

 lbf

To determine the power requirement, we need to estimate the torque on the cylinder. T τ A R τ π L D
D

2


π τ D
2

 L

2


In this expression τ is the average wall shear stress. We can estimate this stress using the flat plate approximation:

Re

V ω
D

2






D

ν
2.857 10

7
 For a cylinder at this Reynolds number: CD 0.003 Therefore, the shear stress is:

τ
FD

A
 τ

1

2
ρ V

2
 CD 6.795 10

3


lbf

ft
2

 So the torque is: T
π τ D

2
 L

2
53.371 ft lbf

The power is: P T ω 4471
ft lbf

s
 P 8.13 hp



Problem 9.183 [Difficulty: 4]

 

 

x 

L 
R 

Given: Baseball pitch

Find: Spin on the ball

Solution:

Basic equations: CL

FL

1

2
ρ A V

2


 Σ F

 M a




The given or available data is ρ 0.00234
slug

ft
3

 ν 1.62 10
4


ft

2

s
 L 60 ft

M 5 oz C 9 in D
C

π
 D 2.86 in A

π D
2



4
 A 6.45 in

2
 V 80 mph

Compute the Reynolds number Re
V D

ν
 Re 1.73 10

5


This Reynolds number is slightly beyond the range of Fig. 9.27; we use Fig. 9.27 as a rough estimate

The ball follows a trajectory defined by Newton's second law.  In the horizontal plane (x coordinate)

FL M aR M ax M
V

2

R
 and FL

1

2
ρ A V

2
 CL

where R is the instantaneous radius of curvature of the trajectory

From Eq 1 we see the ball trajectory has the smallest radius (i.e. it curves the most) when CL is as large as

possible.  From Fig. 9.27 we see this is when CL 0.4

Solving for R R
2 M

CL A ρ
 (1) R 463.6 ft

Also, from Fig. 9.27
ω D

2 V
1.5 to

ω D

2 V
1.8 defines the best range

Hence ω 1.5
2 V

D
 ω 14080 rpm ω 1.8

2 V

D
 ω 16896 rpm

From the trajectory geometry x R cos θ( ) R where sin θ( )
L

R


Hence x R 1
L

R







2

 R

Solving for x x R R 1
L

R







2

 x 3.90 ft



 

Problem 9.184                                                               [Difficulty: 3]



Problem 9.185 [Difficulty: 4]

 

 

x 

L 
R 

Given: Soccer free kick

Find: Spin on the ball

Solution:

Basic equations: CL

FL

1

2
ρ A V

2


 Σ F

 M a




The given or available data is ρ 1.21
kg

m
3

 ν 1.50 10
5


m

2

s
 L 10 m x 1 m

M 420 gm C 70 cm D
C

π
 D 22.3 cm A

π D
2



4
 A 0.0390 m

2
 V 30

m

s


Compute the Reynolds number Re
V D

ν
 Re 4.46 10

5


This Reynolds number is beyond the range of Fig. 9.27; however, we use Fig. 9.27 as a rough estimate

The ball follows a trajectory defined by Newton's second law.  In the horizontal plane (x coordinate)

FL M aR M ax M
V

2

R
 and FL

1

2
ρ A V

2
 CL

where R is the instantaneous radius of curvature of the trajectory

Hence, solving for R R
2 M

CL A ρ
 (1)

From the trajectory geometry x R cos θ( ) R where sin θ( )
L

R


Hence x R 1
L

R







2

 R

Solving for R R
L

2
x

2
 

2 x
 R 50.5 m

Hence, from Eq 1 CL
2 M

R A ρ
 CL 0.353

For this lift coefficient, from Fig. 9.27
ω D

2 V
1.2

Hence ω 1.2
2 V

D
 ω 3086 rpm

(And of course, Beckham still kind of rules!)



 

Problem 10.1                                                              [Difficulty: 2]



Problem 10.2 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Estimate discharge for axial entry; Head

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 999
kg

m
3

 r1 10 cm r2 20 cm b1 4 cm b2 4 cm

ω 1600 rpm β1 30 deg β2 15 deg

From continuity Vn
Q

2 π r b
 w sin β( ) w

Vn

sin β( )


From geometry Vt U w cos β( ) U
Vn

sin β( )
cos β( ) U

Q

2 π r b
cot β( )

For an axial entry Vt1 0 so U1
Q

2 π r1 b1
cot β1  0

Using given data U1 ω r1 U1 16.755
m

s


Hence Q 2 π r1 b1 U1 tan β1  Q 0.2431
m

3

s


To find the power we need U2, Vt2, and mrate

The mass flow rate is mrate ρ Q mrate 242.9
kg

s


U2 ω r2 U2 33.5
m

s


Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 15.5

m

s


Hence Wm U2 Vt2 U1 Vt1  mrate Wm 1.258 10
5


J

s
 Wm 126 kW

The head is H
Wm

mrate g
 H 52.8 m



Problem 10.3 [Difficulty: 2]

Given: Data on centrifugal pump

Find: Estimate basic dimensions

Solution:

Basic equations: (Eq. 10.2b, directly derived from the Euler turbomachine equation) 

The given or available data is

ρ 999
kg

m
3

 Q 0.6
m

3

min
 Q 0.0100

m
3

s
 Win 5 kW η 72 %

ω 3000 rpm w2 5.4
m

s
 β2 90 deg

For an axial inlet Vt1 0

From the outlet geometry Vt2 U2 Vrb2 cos β2  U2 and U2 r2 ω

Hence, in Eq. 10.2b Wm U2
2

mrate r2
2
ω

2
 mrate

with Wm η Win Wm 3.6 kW

and mrate ρ Q mrate 9.99
kg

s


Hence r2

Wm

mrate ω
2


 r2 0.06043 m r2 6.04 cm

Also Vn2 w2 sin β2  Vn2 5.40
m

s


From continuity Vn2
Q

2 π r2 b2


Hence b2
Q

2 π r2 Vn2
 b2 4.8776 10

3
 m b2 0.488 cm



 

Problem 10.4                                                              [Difficulty: 2]



Problem 10.5 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft
3

 r1 15 in r2 45 in b1 4.75 in b2 3.25 in

ω 575 rpm β1 40 deg β2 60 deg Q 80000 gpm Q 178
ft

3

s


From continuity Vn
Q

2 π r b
 Vrb sin β( ) Vrb

Vn

sin β( )


From geometry Vt U Vrb cos β( ) U
Vn

sin β( )
cos β( ) U

Q

2 π r b
cot β( )

Using given data U1 ω r1 U1 75.3
ft

s
 U2 ω r2 U2 226

ft

s


Vt1 U1
Q

2 π r1 b1
cot β1  Vt1 6.94

ft

s


Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 210

ft

s


The mass flow rate is mrate ρ Q mrate 346
slug

s


Hence Wm U2 Vt2 U1 Vt1  mrate Wm 1.62 10
7


ft lbf

s
 Wm 2.94 10

4
 hp

The head is H
Wm

mrate g
 H 1455 ft



Problem 10.6 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft
3

 r1 3 in r2 9.75 in b1 1.5 in b2 1.125 in

ω 1250 rpm β1 60 deg β2 70 deg Q 1500 gpm Q 3.34
ft

3

s


From continuity Vn
Q

2 π r b
 Vrb sin β( ) Vrb

Vn

sin β( )


From geometry Vt U Vrb cos β( ) U
Vn

sin β( )
cos β( ) U

Q

2 π r b
cot β( )

Using given data U1 ω r1 U1 32.7
ft

s
 U2 ω r2 U2 106.4

ft

s


Vt1 U1
Q

2 π r1 b1
cot β1  Vt1 22.9

ft

s


Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 104

ft

s


The mass flow rate is mrate ρ Q mrate 6.48
slug

s


Hence Wm U2 Vt2 U1 Vt1  mrate Wm 66728
ft lbf

s
 Wm 121 hp

The head is H
Wm

mrate g
 H 320 ft



Problem 10.7 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Rotational speed for zero inlet velocity; Theoretical head; Power input

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft
3

 r1 3 in r2 9.75 in b1 1.5 in b2 1.125 in

β1 60 deg β2 70 deg Q 4000 gpm Q 8.91
ft

3

s


From continuity Vn
Q

2 π r b
 Vrb sin β( ) Vrb

Vn

sin β( )


From geometry Vt U Vrb cos β( ) U
Vn

sin β( )
cos β( ) U

Q

2 π r b
cot β( )

For Vt1 0  we get U1
Q

2 π r1 b1
cot β1  0 or ω r1

Q

2 π r1 b1
cot β1  0

Hence, solving for ω ω
Q

2 π r1
2

 b1
cot β1  ω 105

rad

s
 ω 1001 rpm

We can now find U2 U2 ω r2 U2 85.2
ft

s


Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 78.4

ft

s


The mass flow rate is mrate ρ Q mrate 17.3
slug

s


Hence Eq 10.2b becomes Wm U2 Vt2 mrate Wm 1.15 10
5


ft lbf

s
 Wm 210 hp

The head is H
Wm

mrate g
 H 208 ft



Problem 10.8 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Theoretical head; Power input for given flow rate

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1000
kg

m
3

 r2 7.5 cm b2 2 cm β2 65 deg

ω 1750 rpm Q 225
m

3

hr
 Q 0.0625

m
3

s


From continuity Vn2
Q

2 π r2 b2
 Vn2 6.63

m

s


From geometry Vt2 U2 Vrb2 cos β2  U2

Vn2

sin β2 
cos β2 

Using given data U2 ω r2 U2 13.7
m

s


Hence Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 10.7

m

s
 Vt1 0 (axial inlet)

The mass flow rate is mrate ρ Q mrate 62.5
kg

s


Hence Wm U2 Vt2 mrate Wm 9.15 kW

The head is H
Wm

mrate g
 H 14.9 m



 

Problem 10.9                                                                 [Difficulty: 2]



Problem 10.10 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Draw inlet and exit velocity diagrams; Inlet blade angle; Power

Solution:

Vn
Q

2 π r b


Basic equations:

The given or available data is

R1 1 in R2 7.5 in b2 0.375 in ω 2000 rpm

ρ 1.94
slug

ft
3

 Q 800 gpm Q 1.8
ft

3

s


β2 75 deg

U1 ω R1 U1 17.5
ft

s
 U2 ω R2 U2 131

ft

s


Vn2
Q

2 π R2 b2
 Vn2 14.5

ft

s
 Vn1

R2

R1

Vn2 Vn1 109
ft

s


 

1 

Vrb1 

U1 

Vn1 = V1 (Vt1 = 0) 

 

2 

Vrb2 

U2 

Vt2 

Vn2 2 

V2 Velocity diagrams:

Then β1 atan
Vn1

U1









 β1 80.9 deg (Essentially radial entry)

From geometry Vt1 U1 Vn1 cos β1  Vt1 0.2198
ft

s
 Vt2 U2 Vn2 cos β2  Vt2 127.1

ft

s


Then Wm U2 Vt2 U1 Vt1  ρ Q Wm 5.75 10
4


ft lbf

s
 Wm 105 hp



Problem 10.11 [Difficulty: 3]

Given: Geometry of centrifugal pump

Find: Shutoff head; Absolute and relative exit velocitiesTheoretical head; Power input

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 999
kg

m
3

 R1 2.5 cm R2 18 cm b2 1 cm

ω 1800 rpm β2 75 deg Q 30
m

3

min
 Q 0.500

m
3

s


At the exit U2 ω R2 U2 33.9
m

s


At shutoff Vt2 U2 Vt2 33.9
m

s
 H0

1

g
U2 Vt2  H0 117 m

At design. from continuity Vn2
Q

2 π R2 b2
 Vn2 44.2

m

s


From the velocity diagram Vn2 w2 sin β2  w2

Vn2

sin β2 
 w2 45.8

m

s


Vt2 U2 Vn2 cot β2  Vt2 22.1
m

s


Hence we obtain V2 Vn2
2

Vt2
2

 V2 49.4
m

s


with α2 atan
Vt2

Vn2









 α2 26.5 deg

For Vt1 0  we get Wm U2 Vt2 ρ Q 374 kW H
Wm

ρ Q g
76.4 m



 

Problem 10.12                                                              [Difficulty: 3]



Problem 10.13 [Difficulty: 2]

Given: Geometry of centrifugal pump

Find: Inlet blade angle for no tangential inlet velocity at 125,000 gpm; Head; Power

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1.94
slug

ft
3

 r1 15 in r2 45 in b1 4.75 in b2 3.25 in

ω 575 rpm β2 60 deg Q 125000 gpm Q 279
ft

3

s


From continuity Vn
Q

2 π r b
 Vrb sin β( ) Vrb

Vn

sin β( )


From geometry Vt U Vrb cos β( ) U
Vn

sin β( )
cos β( ) U

Q

2 π r b
cot β( )

For Vt1 0   we obtain U1
Q

2 π r1 b1
cot β1  0 or cot β1 

2 π r1 b1 U1

Q


Using given data U1 ω r1 U1 75.3
ft

s


Hence β1 acot
2 π r1 b1 U1

Q









 β1 50 deg

Also U2 ω r2 U2 226
ft

s


Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 201

ft

s


The mass flow rate is mrate ρ Q mrate 540
slug

s


Hence Wm U2 Vt2 U1 Vt1  mrate Wm 2.45 10
7


ft lbf

s
 Wm 44497 hp

The head is H
Wm

mrate g
 H 1408 ft



 

Problem 10.14                                                              [Difficulty: 3]



Problem 10.15 [Difficulty: 3]

Given: Data on a centrifugal pump

Find: Estimate exit angle of impeller blades

Solution:

The given or available data is ρ 999
kg

m
3

 Q 50
L

s
 Win 45 kW η 75 %

ω 1750 rpm b2 10 mm D 300 mm

The governing equation (derived directly from the Euler turbomachine

equation) is

For an axial inlet Vt1 0 hence Vt2

Wm

U2 ρ Q


We have U2
D

2
ω U2 27.5

m

s
 an

d
Wm η Win Wm 33.8 kW

Hence Vt2

Wm

U2 ρ Q
 Vt2 24.6

m

s


Vn2
Q

π D b2


From continuity Vn2 5.31
m

s


With the exit velocities determined, β can be determined from exit geometry

tan β( )
Vn2

U2 Vt2
 or β atan

Vn2

U2 Vt2









 β 61.3 deg



Problem 10.16 [Difficulty: 3]

Given: Data on a centrifugal pump

Find: Flow rate for zero inlet tangential velocity; outlet flow angle; power; head

developed

Solution:

The given or available data is ρ 999
kg

m
3

 ω 1200 rpm η 70 %

r1 90 mm b1 10 mm β1 25 deg r2 150 mm b2 7.5 mm β2 45 deg

The governing equations (derived directly from the Euler turbomachine equation) are

We also have from geometry α2 atan
Vt2

Vn2









 (1)

From geometry Vt1 0 U1 Vrb1 cos β1  r1 ω
Vn1

sin β1 
 cos β1 

and from continuity Vn1
Q

2 π r1 b1


Hence r1 ω
Q

2 π r1 b1 tan β1 
 0 Q 2 π r1

2
 b1 ω tan β1  Q 29.8

L

s
 Q 0.0298

m
3

s


The power, head and absolute angle α at the exit are obtained from direct computation using Eqs. 10.2b, 10.2c, and 1 above

U1 r1 ω U1 11.3
m

s
 U2 r2 ω U2 18.8

m

s
 Vt1 0

m

s


From geometry Vt2 U2 Vrb2 cos β2  r2 ω
Vn2

sin β2 
 cos β2 

and from continuity Vn2
Q

2 π r2 b2
 Vn2 4.22

m

s




Hence Vt2 r2 ω
Vn2

tan β2 
 Vt2 14.6

m

s


Using these results in Eq. 1 α2 atan
Vt2

Vn2









 α2 73.9 deg

Using them in Eq. 10.2b Wm U2 Vt2 U1 Vt1  ρ Q Wm 8.22 kW

Using them in Eq. 10.2c H
1

g
U2 Vt2 U1 Vt1  H 28.1 m

This is the power and head assuming no inefficiency; with η = 70%, we have (from Eq. 10.4c)

Wh η Wm Wh 5.75 kW

Hp η H Hp 19.7 m

(This last result can also be obtained from Eq. 10.4a Wh ρ Q g Hp )



Problem 10.17 [Difficulty: 1]

Given: Impulse turbibe

Find: Optimum speed using the Euler turbomachine equation

Solution:

The governing equation is the Euler turbomachine equation

In terms of the notation of Example 10.13, for a stationary CV

r1 r2= R= U1 U2= U= Vt1 V U−= Vt2 V U−( ) cos θ( )⋅= and mflow ρ Q⋅=

Hence Tshaft R V U−( )⋅ cos θ( )⋅ R V U−( )⋅−[ ] ρ⋅ Q⋅= Tout Tshaft= ρ Q⋅ R⋅ V U−( )⋅ 1 cos θ( )−( )⋅=

The power is Wout ω Tout⋅= ρ Q⋅ R⋅ ω⋅ V U−( )⋅ 1 cos θ( )−( )⋅= Wout ρ Q⋅ U⋅ V U−( )⋅ 1 cos θ( )−( )⋅=

These results are identical to those of Example 10.13.  The proof that maximum power is when U = V/2 is hence also the same

and will not be repeated here.



Problem 10.18 [Difficulty: 1]

Given: Data on centrifugal pump

Find: Pressure rise; Express as ft of water and kerosene

Solution:

Basic equations: η
ρ Q g H

Wm



The given or available data is ρw 1.94
slug

ft
3

 Q 350 gpm Q 0.780
ft

3

s


Wm 18 hp η 82 %

Solving for H H
η Wm

ρw Q g
 H 166.8 ft

For kerosene, from Table A.2 SG 0.82 Hk

η Wm

SG ρw Q g
 Hk 203 ft



Problem 10.19 [Difficulty: 3]

Given: Geometry of centrifugal pump

Find: Draw inlet velocity diagram; Design speed for no inlet tangential velocity; Outlet angle; Head; Power

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

r1 4 in r2 7 in b1 0.4 in b2 0.3 in β1 20 deg β2 45 deg

ρ 1.94
slug

ft
3

 Q 70 cfm Q 1.167
ft

3

s


 

1 

w1 

U1 

Vn1 = V1 (Vt1 = 0) 

2 

w2 

U2 

Vt2 

Vn2 2 

V2 Velocity diagrams:

From continuity Vn
Q

2 π r b
 w sin β( ) w

Vn

sin β( )


Vn1

Vn2

A2

A1


r2 b2

r1 b1


From geometry Vt U Vrb cos β( ) U
Vn

sin β( )
cos β( ) U

Q

2 π r b
cot β( )

For Vt1 0   we obtain U1
Q

2 π r1 b1
cot β1  0 or ω r1

Q

2 π r1 b1
cot β1  0

Solving for ω ω
Q

2 π r1
2

 b1
cot β1  ω 138

rad

s
 ω 1315 rpm

Hence U1 ω r1 U1 45.9
ft

s
 U2 ω r2 U2 80.3

ft

s




Vn2
Q

2 π r2 b2
 Vn2 12.73

ft

s
 Vt2 U2

Q

2 π r2 b2
cot β2  Vt2 67.6

ft

s


From the sketch α2 atan
Vt2

Vn2









 α2 79.3 deg

Hence Wm U2 Vt2 ρ Q Wm 1.230 10
4


ft lbf

s
 Wm 22.4 hp

The head is H
Wm

ρ Q g
 H 169 ft



Problem 10.20 [Difficulty: 4]

Given: Geometry of centrifugal pump with diffuser casing

Find: Flow rate; Theoretical head; Power; Pump efficiency at maximum efficiency point

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 1000
kg

m
3

 r2 7.5 cm b2 2 cm β2 65 deg

ω 1750 rpm ω 183
rad

s


Using given data U2 ω r2 U2 13.7
m

s


Illustrate the procedure with Q 0.065
m

3

s


From continuity Vn2
Q

2 π r2 b2
 Vn2 6.9

m

s


From geometry Vt2 U2 Vrb2 cos β2  U2

Vn2

sin β2 
cos β2 

Hence Vt2 U2
Q

2 π r2 b2
cot β2  Vt2 10.5

m

s
 Vt1 0 (axial inlet)

V2 Vn2
2

Vt2
2

 V2 12.6
m

s


Hideal

U2 Vt2

g
 Hideal 14.8 m

Tfriction 10 %
Wmideal

ω
 10 %

ρ Q Hideal

ω


Tfriction 10 %
Q ρ g Hideal

ω
 Tfriction 5.13 N m



Hactual 60 %
V2

2

2 g
 0.75

Vn2
2

2 g
 Hactual 3.03 m

η
Q ρ g Hactual

Q ρ g Hideal ω Tfriction
 η 18.7 %

0 0.02 0.04 0.06 0.08 0.1

5

10

15
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25

Q (cubic meter/s)

E
ff

ic
ie

n
cy

 (
%

)

The above graph can be plotted in Excel.  In addition, Solver can be used to vary Q to maximize η.  The results are

Q 0.0282
m

3

s
 η 22.2 % Hideal 17.3 m Hactual 4.60 m

Wm Q ρ g Hideal ω Tfriction Wm 5.72 kW



Problem 10.21                                                             [Difficulty: 4]



 

Problem 10.22                                                              [Difficulty: 2]



Problem 10.23                                                              [Difficulty: 2]



Problem 10.24 [Difficulty: 3]

Given: Data on suction pump

Find: Plot of performance curves; Best effiiciency point

Solution:

Basic equations: ηp

Ph

Pm

 Ph ρ Q g H (Note: Software cannot render a dot!)

ρ  = 1.94 slug/ft
3

Fitting a 2nd order polynomial to each set of data we find

H=-0.00759Q
2
 + 0.390Q  + 189.1

Q  (cfm) H  (ft) Pm (hp) Ph (hp) η  (%) η=-6.31x10
-5
Q

2
 + 0.01113Q  + 0.207

36 190 25 12.9 51.7%

50 195 30 18.4 61.5% Finally, we use Solver to maximize η  by varying Q :

74 176 35 24.6 70.4%

88 162 40 27.0 67.4% Q (cfm) H (ft) η (%)

125 120 46 28.4 61.7% 88.2 164.5 69.8%

Pump Performance Curve
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Problem 10.25 [Difficulty: 3]

Given: Data on suction pump

Find: Plot of performance curves; Best effiiciency point

Solution:

Basic equations: ηp

Ph

Pm

 Ph ρ Q g H Ns
N Q

g H( )
0.75

 (Note: Software cannot render a dot!)

ρ  = 1.94 slug/ft
3

Fitting a 2nd order polynomial to each set of data we find

H=-1.062x10
-5
Q

2
 + 6.39x10

-4
Q  + 22.8

Q  (cfm) H  (ft) Pm (hp) Ph (hp) η  (%) η=-1.752x10
-6
Q

2
 + 0.00237Q  + 0.0246

0 23.0 15.2 0.0 0.0%

200 22.3 17.2 8.4 49.0% Finally, we use Solver to maximize η  by varying Q :

400 21.0 24.4 15.9 65.1%

600 19.5 27.0 22.1 82.0%

800 17.0 32.2 25.7 79.9% Q (cfm) H (ft) η (%)

1000 12.5 36.4 23.6 65.0% 676 18.4 82.6%

The Specific Speed for this pump is: 2.639

Pump Performance Curve
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Problem 10.26 [Difficulty: 3]

Given: Data on axial flow fan

Find: Volumetric flow rate, horsepower, flow exit angle

Solution:

Basic equations: (Eq. 10.2b) 

(Eq. 10.2c) 

The given or available data is

ρ 0.002377
slug

ft
3

 ω 1350 rpm dtip 3 ft droot 2.5 ft α1 55 deg β1 30 deg β2 60 deg

The mean radius would be half the mean diameter: r
1

2

dtip droot

2
 r 1.375 ft

Therefore, the blade speed is: U r ω U 194.39
ft

s


From velocity triangles we can generate the following two equations: V1 cos α1  w1 sin β1  (axial component)

V1 sin α1  w1 cos β1  U (tangential component)

Combining the two equations: V1
U

sin α1 
cos α1 
tan β1 



 V1 107.241
ft

s
 w1 V1

cos α1 
sin β1 
 w1 123.021

ft

s


So the entrance velocity components are: Vn1 V1 cos α1  Vn1 61.511
ft

s
 Vt1 V1 sin α1  Vt1 87.846

ft

s


The volumetric flow rate would then be: Q Vn1
π

4
 dtip

2
droot

2




 Q 132.9

ft
3

s


Since axial velocity does not change: Vn2 Vn1

The exit speed relative to the blade is: w2

Vn2

sin β2 
 w2 71.026

ft

s
 so the tangential component of absolute velocity is:

Vt2 U w2 cos β2  Vt2 158.873
ft

s
 Into the expression for power: Wm U Vt2 Vt1  ρ Q Wm 7.93 hp

The flow exit angle is: α2 atan
Vt2

Vn2










α2 68.8 deg



 

Problem 10.27                                                               [Difficulty: 2]



Problem 10.28 [Difficulty: 3]

Given: Data on centrifugal pump

Find: Electric power required; gage pressure at exit

Solution:

Basic equations:
(Eq. 10.8a) 

(Eq. 10.8b) (Eq. 10.8c) 

The given or available data is

ρ 1.94
slug

ft
3

 ω 3000 rpm ηp 75 % ηe 85 % Q 65 gpm Q 0.145
ft

3

s


T 4.75 lbf ft p1 12.5 psi z1 6.5 ft V1 6.5
ft

s
 z2 32.5 ft V2 15

ft

s


From Eq. 10.8c Hp

ω T ηp

ρ Q g
 Hp 124 ft

Hence, from Eq. 10.8b p2 p1
ρ

2
V1

2
V2

2




 ρ g z1 z2  ρ g Hp p2 53.7 psi

Also Wh ρ g Q Hp Wh 1119
ft lbf

s
 Wh 2.03 hp

The shaft work is then Wm

Wh

ηp

 Wm 1492
ft lbf

s
 Wm 2.71 hp

Hence, electrical input is We

Wm

ηe

 We 1756
ft lbf

s
 We 2.38 kW



 

Problem 10.29                                                               [Difficulty: 2]



 

Problem 10.30                                                              [Difficulty: 2]



Problem 10.31 [Difficulty: 2]

Given: Data on small centrifugal pump

Find: Specific speed; Sketch impeller shape; Required power input

Solution:

Basic equation: (Eq. 7.22a) (Eq. 10.3c) 

The given or available data is

ρ 1000
kg

m
3

 ω 2875 rpm ηp 70 % Q 0.016
m

3

s
 H 40 m

Hence h g H h 392
m

2

s
2

 (H is energy/weight. h is energy/mass)

Then NS
ω Q

1

2


h

3

4

 NS 0.432

From the figure we see the impeller will be centrifugal

The power input is (from Eq. 10.3c) Wm

Wh

ηp

 Wm
ρ Q g H

ηp

 Wm 8.97 kW



 

Problem 10.32                                                              [Difficulty: 2]

 



Problem 10.33 [Difficulty: 3]

Given: Data on a pump

Find: Shutoff head; best efficiency; type of pump; flow rate, head, shutoff head and power at 900 rpm

Solution:

The given or available data is

ρ 999
kg

m
3

 Ns 1.74 D 500 mm Q 0.725
m

3

s
 H 10 m Wm 90 kW ω' 900 rpm

The governing equations are Wh ρ Q g H Ns
ω Q

1

2


h

3

4

 H0 C1
U2

2

g


Similarity rules:
Q1

ω1 D1
3



Q2

ω2 D2
3




h1

ω1
2

D1
2



h2

ω2
2

D2
2




P1

ρ1 ω1
3

 D1
5



P2

ρ2 ω2
3

 D2
5




h g H 98.1
J

kg
 Hence ω

Ns h

3

4


Q

1

2

 ω 63.7
rad

s
 Wh ρ Q g H 71.0 kW ηp

Wh

Wm

78.9 %

The shutoff head is given by H0

U2
2

g
 U2

D

2
ω U2 15.9

m

s
 Hence H0

U2
2

g
 H0 25.8 m

with D1 = D2:

Q1

ω1

Q2

ω2

 or
Q

ω

Q'

ω'
 Q' Q

ω'

ω
 1.073

m
3

s


h1

ω1
2

h2

ω2
2

 or
H

ω
2

H'

ω'
2

 H' H
ω'

ω







2

 21.9 m

Also
H0

ω
2

H'0

ω'
2

 H'0 H0
ω'

ω







2

 H'0 56.6 m

P1

ρ ω1
3



P2

ρ ω2
3


 or

Wm

ω
3

W'm

ω'
3

 W'm Wm
ω'

ω







3

 W'm 292 kW



Problem 10.34 [Difficulty: 3]

Given: Data on a pump at BEP

Find: (a) Specific Speed

(b) Required power input

(c) Curve fit parameters for the pump performance curve.

(d) Performance of pump at 820 rpm

Solution:

The given or available data is

ρ 1.94
slug

ft
3

 η 87% D 16 in Q 2500 cfm H 140 ft ω 1350 rpm ω' 820 rpm

The governing equations are Ns
ω Q

g H( )
0.75

 Wh ρ Q g H W
Wh

η
 H0

U2
2

g


The specific speed is: Ns 1.66

The power is: W 761 hp

At shutoff U2
D

2
ω U2 94.248

ft

s
 Therefore: H0

U2
2

g
 H0 276.1 ft

Since H H0 A Q
2

 it follows that A
H0 H

Q
2

 A 2.18 10
5


min

2

ft
5



Another way to write this is: H ft( ) 276.1 2.18 10
5

 Q cfm( )
2



ω' 820 rpm H'0 H0
ω'

ω







2

 and A' A Thus: H'0 101.9 ft A' 2.18 10
5


min

2

ft
5



At BEP: Q' Q
ω'

ω







 Q' 1519 cfm H' H
ω'

ω







2

 H' 51.7 ft η' η 87 %

Wm W
ω'

ω







3

 Wm 170.5 hp

At



Problem 10.35 [Difficulty: 3]

Given: Data on pumping system

Find: Number of pumps needed; Operating speed

Solution:

Basic equations: Wh ρ Q g H ηp

Wh

Wm



The given or available data is

ρ 1000
kg

m
3

 Qtotal 110 10
6


L

day
 Qtotal 1.273

m
3

s
 H 10 m η 65 %

Then for the system Wh ρ Qtotal g H Wh 125 kW

The required total power is Wm

Wh

η
 Wm 192 kW

Hence the total number of pumps must be 
192

37.5
5.12 , or at least six pumps

The flow rate per pump will then be Q
Qtotal

6
 Q 0.212

m
3

s
 Q 212

L

s


From Fig. 10.15 the peak effiiciency is at

a specific speed of about

NScu 2000

We also need H 32.8 ft Q 3363 gpm

Hence N NScu
H

3

4

Q

1

2

 N 473

The nearest standard speed to N 473 rpm should be used



Problem 10.36 [Difficulty: 2]

Given: Data on centrifugal pump

Find: Head at 1150 rpm

Solution:

Basic equation: (Eq. 10.2c)

The given or available data is

ρ 1000
kg

m
3

 Q 0.025
m

3

s
 β2 60 deg b2 1.25 cm

ω 1750 rpm ω' 1150 rpm Vn2 3.5
m

s


From continuity Vn2
Q

2 π r2 b2


Hence r2
Q

2 π b2 Vn2
 r2 0.0909 m r2 9.09 cm

Then V'n2
ω'

ω
Vn2 V'n2 2.30

m

s


Also U'2 ω' r2 U'2 11.0
m

s


From the outlet geometry V't2 U'2 V'n2 cos β2  V't2 9.80
m

s


Finally H'
U'2 V't2

g
 H' 10.9 m



Problem 10.37 [Difficulty: 3]

Given: Data on pumping system

Find: Total delivery; Operating speed

Solution:

Basic equations: Wh ρ Q g H ηp

Wh

Wm



The given or available data is

ρ 1000
kg

m
3

 Wm 30 kW H 30 m H 98.425 ft η 65 %

Then for the system WmTotal 8 Wm WmTotal 240 kW

The hydraulic total power is WhTotal WmTotal η WhTotal 156 kW

The total flow rate will then be QTotal

WhTotal

ρ g H
 QTotal 0.53

m
3

s
 QTotal 4.58 10

7


L

day


The flow rate per pump is Q
QTotal

8
 Q 0.066

m
3

s
 Q 1051 gpm

From Fig. 10.15 the peak effiiciency is at a specific speed of

about

NScu 2500

Hence N NScu
H

3

4

Q

1

2

 N 2410

The nearest standard speed to N 2410 rpm should be used



 

Problem 10.38                                                              [Difficulty: 2]



Problem 10.39 [Difficulty: 3]

Given: Data on Peerless Type 10AE12 pump at 1720 rpm

Find: Data at speeds of 1000, 1200, 1400, and 1600 rpm

Solution:

The governing equations are the similarity rules:
Q1

ω1 D1
3



Q2

ω2 D2
3




h1

ω1
2

D1
2



h2

ω2
2

D2
2


 where h g H

For scaling from speed ω1 to speed ω2: Q2 Q1

ω2

ω1

 H2 H1

ω2

ω1









2

 Here are the results generated in Excel:

Speed (rpm) = 1760 Speed (rpm) = 1000 Speed (rpm) = 1200 Speed (rpm) = 1400 Speed (rpm) = 1600

Q  (gal/min) Q
2

H  (ft) H  (fit) Q  (gal/min) H  (ft) Q  (gal/min) H  (ft) Q  (gal/min) H  (ft) Q  (gal/min) H  (ft)

0 0 170 161 0 52.0 0 74.9 0 102.0 0 133.2

500 250000 160 160 284 51.7 341 74.5 398 101.3 455 132.4

1000 1000000 155 157 568 50.7 682 73.0 795 99.3 909 129.7

1500 2250000 148 152 852 49.0 1023 70.5 1193 96.0 1364 125.4

2000 4000000 140 144 1136 46.6 1364 67.1 1591 91.3 1818 119.2

2500 6250000 135 135 1420 43.5 1705 62.6 1989 85.3 2273 111.4

3000 9000000 123 123 1705 39.7 2045 57.2 2386 77.9 2727 101.7

3500 12250000 110 109 1989 35.3 2386 50.8 2784 69.2 3182 90.4

4000 16000000 95 93 2273 30.2 2727 43.5 3182 59.1 3636 77.2

Data from Fig. D.8 is "eyeballed"

The fit to data is obtained from a least squares fit to H  = H 0 - AQ
2

H 0 = 161 ft

A  = 4.23E-06 ft/(gal/min)

Performance Curves for Pump at various Speeds
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Problem 10.40                                                              [Difficulty: 3]



Problem 10.41                                                             [Difficulty: 3]
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Problem 10.47 [Difficulty: 3]

Given: Data on a model fan, smaller scale similar fan

Find: Scale factor and volumetric flow rate of similar fan

Solution:

Basic equations:
Q1

ω1 D1
3



Q2

ω2 D2
3




H1

ω1
2

D1
2



H2

ω2
2

D2
2




The given or available data is ω1 1440 rpm ω2 1800 rpm

Q1 6.3
m

3

s
 H1 0.15 m H2 H1 0.15 m

Solving the head equation for the scale D2/D1:
D2

D1

ω1

ω2

H2

H1

 0.8
D2

D1

0.8

We can use this to find the new flowrate: Q2 Q1

ω2

ω1


D2

D1









3

 Q2 4.03
m

3

s




Problem 10.48 [Difficulty: 3]

Given: Data on a model pump

Find: Prototype flow rate, head, and power at 125 rpm

Solution:

Basic equation: Wh ρ Q g H and similarity rules

Q1

ω1 D1
3



Q2

ω2 D2
3


 (10.19a)

h1

ω1
2

D1
2



h2

ω2
2

D2
2


 (10.19b)

P1

ρ1 ω1
3

 D1
5



P2

ρ2 ω2
3

 D2
5


 (10.19a)

The given or available data is Nm 100 rpm Np 125 rpm ρ 1000
kg

m
3



Qm 1
m

3

s
 Hm 4.5 m

From Eq. 10.8a Whm ρ Qm g Hm Whm 44.1 kW

From Eq. 10.19a (with Dm/Dp = 1/3)
Qp

ωp Dp
3



Qm

ωm Dm
3


 or Qp Qm

ωp

ωm


Dp

Dm









3

 3
3

Qm
ωp

ωm



Qp 27 Qm
Np

Nm

 Qp 33.8
m

3

s


From Eq. 10.19b (with Dm/Dp = 1/3)
hp

ωp
2

Dp
2



hm

ωm
2

Dm
2


 or

g Hp

ωp
2

Dp
2



g Hm

ωm
2

Dpm
2




Hp Hm

ωp

ωm









2


Dp

Dm









2

 3
2

Hm
ωp

ωm









2

 Hp 9 Hm
Np

Nm









2

 Hp 63.3 m

From Eq. 10.19c (with Dm/Dp = 1/3)
Pp

ρ ωp
3

 Dp
5



Pm

ρ ωm
3

 Dm
5


 or Whp Whm

ωp

ωm









3


Dp

Dm









5

 3
5

Whm
ωp

ωm









3



Whp 243 Whm
Np

Nm









3

 Whp 20.9 MW



Problem 10.49 [Difficulty: 2]

Given: Data on a model pump

Find: Temperature for dynamically similar operation at 1800 rpm; Flow rate and head; Comment on NPSH

Solution:

Basic equation: Re1 Re2 and similarity

rules

Q1

ω1 D1
3



Q2

ω2 D2
3




H1

ω1
2

D1
2



H2

ω2
2

D2
2




The given or available data is ω1 3600 rpm ω2 1800 rpm Q1 0.1
m

3

s
 H1 27 m

From Table A.8 at 15oC ν1 1.14 10
6


m

2

s


For D = constant Re1

V1 D

ν1


ω1 D D

ν1

 Re2
ω2 D D

ν2

 or ν2 ν1

ω2

ω1

 ν2 5.7 10
7


m

2

s


From Table A.8, at ν2 5.7 10
7


m

2

s
 , we find, by linear interpolation

T2 45
50 45( )

5.52 6.02( )
5.70 6.02( ) T2 48 degrees C

From similar operation
Q1

ω1 D
3



Q2

ω2 D
3


 or Q2 Q1

ω2

ω1

 Q2 0.0500
m

3

s


and also
H1

ω1
2

D
2



H2

ω2
2

D
2


 or H2 H1

ω2

ω1









2

 H2 6.75 m

The water at 48oC is closer to boiling.  The inlet pressure would have to be changed to avoid cavitation.  The increase between

runs 1 and 2 would have to be ∆p pv2 pv1  where p
v2

 and p
v1

 are the vapor pressures at T
2
 and T

1
.  From the steam tables:  

pv1 1.71 kPa pv2 11.276 kPa ∆p pv2 pv1 ∆p 9.57 kPa
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Problem 10.51 [Difficulty: 2]

Given: Data on a NPSHR for a pump

Find: Curve fit; Maximum allowable flow rate

Solution: The results were generated in Excel:

Q  (cfm) Q
2

NPSHR  (ft) NPSHR  (fit)

20 4.00E+02 7.1 7.2

40 1.60E+03 8.0 7.8

60 3.60E+03 8.9 8.8

80 6.40E+03 10.3 10.2

100 1.00E+04 11.8 12.0

120 1.44E+04 14.3 14.2

140 1.96E+04 16.9 16.9

The fit to data is obtained from a least squares fit to NPSHR  = a  + bQ
2

a  = 7.04 ft Q  (cfm) NPSHR  (ft)

b  = 5.01E-04 ft/(cfm)
2

160.9 20.00 Use Goal Seek  to find Q !

NPSHR Curve for a Pump
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3
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3
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Data at 1450 rpm

Curve Fit



Problem 10.52 [Difficulty: 3]

Given: Data on a boiler feed pump

Find: NPSHA at inlet for field temperature water; Suction head to duplicate field conditions

Solution:

Basic equation: NPSHA pt pv pg patm
1

2
ρ V

2
 pv

Given or available data is Ds 10 cm Dd 7.5 cm H 125 m Q 0.025
m

3

s


pinlet 150 kPa patm 101 kPa zinlet 50 cm ρ 1000
kg

m
3

 ω 3500 rpm

For field conditions pg pinlet ρ g zinlet pg 145 kPa

From continuity Vs
4 Q

π Ds
2


 Vs 3.18

m

s


From steam tables (try Googling!) at 115oC pv 169 kPa

Hence NPSHA pg patm
1

2
ρ Vs

2
 pv NPSHA 82.2 kPa

Expressed in meters or feet of water
NPSHA

ρ g
8.38m

NPSHA

ρ g
27.5 ft

In the laboratory we must have the same NPSHA. From Table A.8 (or steam tables - try Googling!) at 27oC pv 3.57 kPa

Hence pg NPSHA patm
1

2
ρ Vs

2
 pv pg 20.3 kPa

The absolute pressure is pg patm 80.7 kPa



Problem 10.53 [Difficulty: 3]

 

H 

 



Given: Pump and supply pipe system

Find: Maximum operational flow rate

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT

hlT f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2
 Le for the elbow, and K for the square entrance

NPSHA
pt pv

ρ g
 Hr H0 A Q

2


Assumptions: 1) p1 = 0 2) V1 = 0 3) α2 = 1 4) z2 = 0

We must match the NPSHR (=Hr)  and NPSHA From the energy equation

g H
p2

ρ

V
2

2










 f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2


p2

ρ g
H

V
2

2 g
1 f

L

D

Le

D










 K










NPSHA
pt pv

ρ g


p2

ρ g

patm

ρ g


V2
2

2 g


pv

ρ g
 NPSHA H

V
2

2 g
f

L

D

Le

D










 K









patm pv 

ρ g


Calculated results and plot were generated using Excel:

Given data: Computed results:

L  = 20 ft Q  (cfs) V  (ft/s) Re f NPSHA  (ft) NPSHR  (ft)

e  = 0.00085 ft 0.2 1.00 4.75E+04 0.0259 55.21 10.32

D  = 6.065 in 0.4 1.99 9.51E+04 0.0243 55.11 11.26

K ent = 0.5 0.6 2.99 1.43E+05 0.0237 54.95 12.84

L e /D  = 30 0.8 3.99 1.90E+05 0.0234 54.72 15.06

H 0 = 10 ft 1.0 4.98 2.38E+05 0.0232 54.43 17.90

A  = 7.9 ft/(cfs)
2

1.2 5.98 2.85E+05 0.0231 54.08 21.38

H  = 22 ft 1.4 6.98 3.33E+05 0.0230 53.66 25.48

p atm = 14.7 psia 1.6 7.98 3.80E+05 0.0229 53.18 30.22

p v = 0.363 psia 1.8 8.97 4.28E+05 0.0229 52.63 35.60

 = 1.93 slug/ft
3

2.0 9.97 4.75E+05 0.0228 52.02 41.60

 = 1.06E-05 ft
2
/s 2.2 10.97 5.23E+05 0.0228 51.35 48.24

2.4 11.96 5.70E+05 0.0227 50.62 55.50

2.6 12.96 6.18E+05 0.0227 49.82 63.40

Error

Crossover point: 2.28 11.36 5.42E+05 0.0228 51.07 51.07 0.00
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Problem 10.55 [Difficulty: 5]

 

H 

 



Given: Pump and supply pipe system

Find: Maximum operational flow rate as a function of temperature

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hlT f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2


Le for the elbow, and K for the square

entrance

NPSHA
pt pv

ρ g
 Hr H0 A Q

2


Assumptions: 1) p1 = 0 2) V1 = 0 3) α2 = 0 4) z2 = 0

We must match the NPSHR (=Hr)  and NPSHA

From the energy equation g H
p2

ρ

V
2

2










 f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2


p2

ρ g
H

V
2

2 g
1 f

L

D

Le

D










 K










NPSHA
pt pv

ρ g


p2

ρ g

patm

ρ g


V2
2

2 g


pv

ρ g
 NPSHA H

V
2

2 g
f

L

D

Le

D










 K









patm pv 

ρ g


The results generated using Excel are shown on the next page.

Given data: Computed results:



Given data: Computed results:

L  = 6 m T  (
o
C) p v (kPa) ρ  (kg/m

3
) ν  (m

3
/s) Q  (m

3
/s) V  (m/s) Re f NPSHA  (m)NPSHR (m) Error

e  = 0.26 mm 0 0.661 1000 1.76E-06 0.06290 3.56 3.03E+05 0.0232 14.87 14.87 0.00

D  = 15 cm 5 0.872 1000 1.51E-06 0.06286 3.56 3.53E+05 0.0231 14.85 14.85 0.00

K ent = 0.5 10 1.23 1000 1.30E-06 0.06278 3.55 4.10E+05 0.0230 14.82 14.82 0.00

L e /D  = 30 15 1.71 999 1.14E-06 0.06269 3.55 4.67E+05 0.0230 14.79 14.79 0.00

H 0 = 3 m 20 2.34 998 1.01E-06 0.06257 3.54 5.26E+05 0.0229 14.75 14.75 0.00

A  = 3000 m/(m
3
/s)

2
25 3.17 997 8.96E-07 0.06240 3.53 5.91E+05 0.0229 14.68 14.68 0.00

H  = 6 m 30 4.25 996 8.03E-07 0.06216 3.52 6.57E+05 0.0229 14.59 14.59 0.00

p atm = 101 kPa 35 5.63 994 7.25E-07 0.06187 3.50 7.24E+05 0.0228 14.48 14.48 0.00

 = 1000 kg/m
3

40 7.38 992 6.59E-07 0.06148 3.48 7.92E+05 0.0228 14.34 14.34 0.00

 = 1.01E-06 m
2
/s 45 9.59 990 6.02E-07 0.06097 3.45 8.60E+05 0.0228 14.15 14.15 0.00

50 12.4 988 5.52E-07 0.06031 3.41 9.27E+05 0.0228 13.91 13.91 0.00

55 15.8 986 5.09E-07 0.05948 3.37 9.92E+05 0.0228 13.61 13.61 0.00

60 19.9 983 4.72E-07 0.05846 3.31 1.05E+06 0.0228 13.25 13.25 0.00

65 25.0 980 4.40E-07 0.05716 3.23 1.10E+06 0.0227 12.80 12.80 0.00

70 31.2 978 4.10E-07 0.05548 3.14 1.15E+06 0.0227 12.24 12.24 0.00

75 38.6 975 3.85E-07 0.05342 3.02 1.18E+06 0.0227 11.56 11.56 0.00

80 47.4 972 3.62E-07 0.05082 2.88 1.19E+06 0.0227 10.75 10.75 0.00

85 57.8 969 3.41E-07 0.04754 2.69 1.18E+06 0.0227 9.78 9.78 0.00

90 70.1 965 3.23E-07 0.04332 2.45 1.14E+06 0.0227 8.63 8.63 0.00

95 84.6 962 3.06E-07 0.03767 2.13 1.05E+06 0.0228 7.26 7.26 0.00

100 101 958 2.92E-07 0.02998 1.70 8.71E+05 0.0228 5.70 5.70 0.00

Use Solver  to make the sum of absolute errors between NPSHA  and NPSHR  zero by varying the Q 's 0.00

NPSHR increases with temperature because the p v increases; NPHSA decreases because ρ  decreases and p v increases

Maximum Flow Rate Versus Water temperature
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Problem 10.56 [Difficulty: 3]

Given: Pump and reservoir system

Find: System head curve; Flow rate when pump off; Loss, Power required and cost for 1 m3/s flow rate

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp hlT f
L

D


V
2

2
 Σ K

V
2

2
 (K for the exit)

where points 1 and 2 are the reservoir free surfaces, and hp is the pump head

Note also H
h

g
 Pump efficiency: ηp

Wh

Wm



Assumptions: 1) p
1
 = p

2
 = p

atm
 2) V

1
 = V

2
 = 0 3) α

2
 = 0 4) z1 0 , z2 15 m   4) K Kent Kent 1.5

From the energy equation g z2 f
L

D


V
2

2
 hp K

V
2

2
 hp g z2 f

L

D


V
2

2
 K

V
2

2
 Hp z2 f

L

D


V
2

2 g
 K

V
2

2 g


Given or available data L 300 m D 40 cm e 0.26 mm (Table 8.1)

ρ 1000
kg

m
3

 ν 1.01 10
6


m

2

s
 (Table A.8)

The set of equations to solve for each flow rate Q are

V
4 Q

π D
2


 Re

V D

ν


1

f
2.0 log

e

D

3.7

2.51

Re f












 Hp z2 f
L

D


V
2

2 g
 K

V
2

2 g


For example, for Q 1
m

3

s
 V 7.96

m

s
 Re 3.15 10

6
 f 0.0179 Hp 33.1 m

0 0.2 0.4 0.6 0.8 1

20

10

10

20

30

40

Q (cubic meter/s)

H
ea

d
 (

m
)



The above graph can be plotted in Excel.  In Excel, Solver can be used to find Q for H p = 0 Q 0.557
m

3

s
 (Zero power rate)

At Q 1
m

3

s
 we saw that Hp 33.1 m

Assuming optimum efficiency at Q 1.59 10
4

 gpm  from Fig.

10.15 

ηp 92 %

Then the hydraulic power is Wh ρ g Hp Q Wh 325 kW

The pump power is then Wm

Wh

ηp

 Wm 2 706 kW

If electricity is 10 cents per kW-hr then the hourly cost is about $35

If electricity is 15 cents per kW-hr then the hourly cost is about $53

If electricity is 20 cents per kW-hr then the hourly cost is about $71



 

Problem 10.57                                                              [Difficulty: 2]



 

Problem 10.58                                                               [Difficulty: 3]   Part 1/2



 

Problem 10.58                                                               [Difficulty: 3]   Part 2/2



Problem 10.59 [Difficulty: 3]

Given: Data on pump and pipe system

Find: Delivery through system

Solution:

Governing Equations:

For the pump and system

where the total head loss is comprised of major and minor losses

and the pump head (in energy/mass) is given by (from Example 10.6)

Hpump ft( ) 55.9 3.44 10
5

 Q gpm( )
2



Hence, applied between the two reservoir free surfaces (p1 = p2 = 0,  V1 =  V2 = 0,  z1 =  z2 ) we have

0 hlT ∆hpump

hlT g Hsystem ∆hpump g Hpump

or HlT Hpump (1)

where
HlT f1

L1

D1

 Kent








V1
2

2 g
 f2

L2

D2

 Kexit








V2
2

2


Results generated in Excel are shown on the next page.



Given or available data:

L 1 = 3000 ft ν = 1.23E-05 ft
2
/s (Table A.7)

D 1 = 9 in K ent = 0.5 (Fig. 8.14)

L 2 = 1000 ft K exp = 1

D 2 = 6 in Q loss = 75 gpm

e  = 0.00085 ft (Table 8.1)

The system and pump heads are computed and plotted below.

To find the operating condition, Goal Seek  is used to vary Q 1

so that the error between the two heads is zero.

Q 1 (gpm) Q 2 (gpm) V 1 (ft/s) V 2 (ft/s) Re 1 Re 2 f 1 f2 H lT (ft) H pump (ft)

100 25 0.504 0.284 30753 11532 0.0262 0.0324 0.498 55.6

200 125 1.01 1.42 61506 57662 0.0238 0.0254 3.13 54.5

300 225 1.51 2.55 92260 103792 0.0228 0.0242 8.27 52.8

400 325 2.02 3.69 123013 149922 0.0222 0.0237 15.9 50.4

500 425 2.52 4.82 153766 196052 0.0219 0.0234 26.0 47.3

600 525 3.03 5.96 184519 242182 0.0216 0.0233 38.6 43.5

700 625 3.53 7.09 215273 288312 0.0215 0.0231 53.6 39.0

Q 1 (gpm) Q 2 (gpm) V 1 (ft/s) V 2 (ft/s) Re 1 Re 2 f 1 f2 H lT (ft) H pump (ft) Error)

627 552 3.162 6.263 192785 254580 0.0216 0.0232 42.4 42.4 0%
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Problem 10.60 [Difficulty: 3]

Given: Pump and reservoir/pipe system

Find: Flow rate using different pipe sizes

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp

hlT f
L

D


V
2

2
 Σ f

Le

D


V
2

2
 Σ K

V
2

2
 Le for the elbows, and K for the square entrance and exit

and also H
h

g


Assumptions: 1) p
1
 = p

2
 = p

atm
 2) V

1
 = V

2
 = 0 3) α = 1 4) z1 0 , z2 24 ft   4) K Kent Kexp   5) 

Le

D
 is for two elbows

Hence hlT f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2
 and also z2 HlT Hp or H1T Hp z2

We want to find a flow that satisfies these equations, rewritten as energy/weight rather than energy/mass

HlT f
L

D

Le

D










 K








V
2

2 g
 H1T z2 Hp

Here are the results calculated in Excel:

Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1750 ft K ent = 0.5 (Fig. 8.14)

e  = 0.00015 ft (Table 8.1) K exp = 1

D   = 7.981 in L e/D elbow = 60 (Two)

ν  = 1.06E-05 ft
2
/s (Table A.8) L e/D valve = 8 (Table 8.4)

z 2 = 24 ft



The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.

A plot of the pump and system heads is shown for the 8 in case - the others will look similar.

Q  (cfm) Q
2

H p (ft) V  (ft/s) Re f H p (fit) H lT + z 2 (ft)

0.000 0 90.0 0.00 0 0.0000 89 24.0

50.000 2500 87.0 2.40 150504 0.0180 87 28.5

100.000 10000 81.0 4.80 301007 0.0164 81 40.4

150.000 22500 70.0 7.20 451511 0.0158 72 59.5

200.000 40000 59.0 9.59 602014 0.0154 59 85.8

250.000 62500 43.0 11.99 752518 0.0152 42.3 119.1

300.000 90000 22.0 14.39 903022 0.0150 21.9 159.5

H 0 = 89 ft

A  = 7.41E-04 ft/(cfm)
2

Q  (cfm) V  (ft/s) Re f H p (fit) H lT + z 2 (ft) Error)

167.5 8.03 504063 0.0157 67.9 67.9 0.00%

Repeating for: D   = 10.02 in

Q  (cfm) V  (ft/s) Re f H p (fit) H lT + z 2 (ft) Error)

179.8 8.63 541345 0.0156 64.7 64.7 0.00%

Repeating for: D   = 12 in

Q  (cfm) V  (ft/s) Re f H p (fit) H lT + z 2 (ft) Error)

189.4 9.09 570077 0.0155 62.1 62.1 0.00%
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Problem 10.61 [Difficulty: 3]

Given: Data on pump and pipe system

Find: Delivery through system, valve position to reduce delivery by half

Solution:

Governing Equations:

For the pump and system

where the total head loss is comprised of major and minor losses

Hence, applied between the two reservoir free surfaces (p1 = p2 = 0,  V1 =  V2 = 0,  z1 -  z2 = z) we have

g ∆z hlT ∆hpump

hlT g ∆z g Hsystem g ∆z ∆hpump g Hpump

or HlT ∆z Hpump

where
HlT f

L

D
2

Le

Delbow


Le

Dvalve










 Kent Kexit








V
2

2 g


The calculations performed using Excel are shown on the next page:



Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1200 ft K ent = 0.5 (Fig. 8.14)

D   = 12 in K exp = 1

e  = 0.00015 ft (Table 8.1) L e/D elbow = 30

ν  = 1.23E-05 ft
2
/s (Table A.7) L e/D valve = 8 (Table 8.4)

z  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.

Q  (gpm) Q
2
 (gpm) H pump (ft) V  (ft/s) Re f H pump (fit) H lT + z  (ft)

0 0 179 0.00 0 0.0000 180 50.0

500 250000 176 1.42 115325 0.0183 176 50.8

1000 1000000 165 2.84 230649 0.0164 164 52.8

1500 2250000 145 4.26 345974 0.0156 145 56.0

2000 4000000 119 5.67 461299 0.0151 119 60.3

2500 6250000 84 7.09 576623 0.0147 84.5 65.8

3000 9000000 43 8.51 691948 0.0145 42.7 72.4

H 0 = 180 ft

A  = 1.52E-05 ft/(gpm)
2

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error)

2705 7.67 623829 0.0146 68.3 68.3 0%

For the valve setting to reduce the flow by half, use Solver  to vary the value below to minimize the error.

L e/D valve = 26858

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error)

1352 3.84 311914 0.0158 151.7 151.7 0%
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Problem 10.62 [Difficulty: 3]

Given: Data on pump and pipe system

Find: Delivery through series pump system; valve position to reduce delivery by half

Solution:

Governing Equations:

For the pumps and system

where the total head loss is comprised of major and minor losses

Hence, applied between the two reservoir free surfaces (p1 = p2 = 0,  V1 =  V2 = 0,  z1 -  z2 = z) we have

g ∆z hlT ∆hpump

hlT g ∆z g Hsystem g ∆z ∆hpump g Hpump

or HlT ∆z Hpump

where
HlT f

L

D
2

Le

Delbow


Le

Dvalve










 Kent Kexit








V
2

2 g


For pumps in series Hpump 2 H0 2 A Q
2



where for a single pump Hpump H0 A Q
2



The calculations in Excel are shown on the next page.



Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1200 ft K ent = 0.5 (Fig. 8.14)

D   = 12 in K exp = 1

e  = 0.00015 ft (Table 8.1) L e/D elbow = 30

ν  = 1.23E-05 ft
2
/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.

Q  (gpm) Q
2
 (gpm) H pump (ft) H pump (fit) V  (ft/s) Re f H pumps (par) H lT + Δz  (ft)

0 0 179 180 0.00 0 0.0000 359 50.0

500 250000 176 176 1.42 115325 0.0183 351 50.8

1000 1000000 165 164 2.84 230649 0.0164 329 52.8

1500 2250000 145 145 4.26 345974 0.0156 291 56.0

2000 4000000 119 119 5.67 461299 0.0151 237 60.3

2500 6250000 84 85 7.09 576623 0.0147 169 65.8

3000 9000000 43 43 8.51 691948 0.0145 85 72.4

3250 9.22 749610 0.0144 38 76.1

H 0 = 180 ft

A  = 1.52E-05 ft/(gpm)
2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz  (ft) Error)

3066 8.70 707124 0.0145 73.3 73.3 0%

For the valve setting to reduce the flow by half, use Solver  to vary the value below to minimize the error.

L e/D valve = 50723

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + Δz  (ft) Error)

1533 4.35 353562 0.0155 287.7 287.7 0%
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Problem 10.63 [Difficulty: 4]

Given: Data on pump and pipe system, and their aging

Find: Reduction in delivery through system after 20 and 40 years (aging and non-aging pumps)

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 1200 ft K ent = 0.5 (Fig. 8.14)

D   = 12 in K exp = 1

e  = 0.00015 ft (Table 8.1) L e/D elbow = 30

 = 1.23E-05 ft
2
/s (Table A.7) L e/D valve = 8 (Table 8.4)

z  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.



New System:

Q  (gpm) Q
2
 (gpm) H pump (ft) V  (ft/s) Re f H pump (fit) H lT + z  (ft)

0 0 179 0.00 0 0.0000 180 50.0

500 250000 176 1.42 115325 0.0183 176 50.8

1000 1000000 165 2.84 230649 0.0164 164 52.8

1500 2250000 145 4.26 345974 0.0156 145 56.0

2000 4000000 119 5.67 461299 0.0151 119 60.3

2500 6250000 84 7.09 576623 0.0147 84.5 65.8

3000 9000000 43 8.51 691948 0.0145 42.7 72.4

H 0 = 180 ft

A  = 1.52E-05 ft/(gpm)
2

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error)

2705 7.67 623829 0.0146 68.3 68.3 0%

20-Year Old System:

f  = 2.00 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2541 7.21 586192 0.0295 81.4 81.4 0% 163 gpm

6.0% Loss

40-Year Old System:

f  = 2.40 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2484 7.05 572843 0.0354 85.8 85.8 0% 221 gpm

8.2% Loss

20-Year Old System and Pump:

f  = 2.00 f new H pump = 0.90 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2453 6.96 565685 0.0296 79.3 79.3 0% 252 gpm

9.3% Loss

40-Year Old System and Pump:

f  = 2.40 f new H pump = 0.75 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2214 6.28 510754 0.0358 78.8 78.8 0% 490 gpm

18.1% Loss
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Problem 10.64 [Difficulty: 3]

Given: Data on pump and pipe system

Find: Delivery through parallel pump system; valve position to reduce delivery by half

Solution:

Governing Equations:

For the pumps and system

where the total head loss is comprised of major and minor losses

Hence, applied between the two reservoir free surfaces (p1 = p2 = 0,  V1 =  V2 = 0,  z1 -  z2 = z) we have

g ∆z hlT ∆hpump

hlT g ∆z g Hsystem g ∆z ∆hpump g Hpump

or HlT ∆z Hpump

where
HlT f

L

D
2

Le

Delbow


Le

Dvalve










 Kent Kexit








V
2

2 g


For pumps in parallel Hpump H0
1

4
A Q

2


where for a single pump Hpump H0 A Q
2



The calculations performed using Excel are shown on the next page.



Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1200 ft K ent = 0.5 (Fig. 8.14)

D   = 12 in K exp = 1

e  = 0.00015 ft (Table 8.1) L e/D elbow = 30

ν  = 1.23E-05 ft
2
/s (Table A.7) L e/D valve = 8 (Table 8.4)

Δz  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.

Q  (gpm) Q
2
 (gpm) H pump (ft) H pump (fit) V  (ft/s) Re f H pumps (par) H lT + Δz (ft)

0 0 179 180 0.00 0 0.0000 180 50.0

500 250000 176 176 1.42 115325 0.0183 179 50.8

1000 1000000 165 164 2.84 230649 0.0164 176 52.8

1500 2250000 145 145 4.26 345974 0.0156 171 56.0

2000 4000000 119 119 5.67 461299 0.0151 164 60.3

2500 6250000 84 85 7.09 576623 0.0147 156 65.8

3000 9000000 43 43 8.51 691948 0.0145 145 72.4

3500 9.93 807273 0.0143 133 80.1

4000 11.35 922597 0.0142 119 89.0

4500 12.77 1037922 0.0141 103 98.9

5000 14.18 1153247 0.0140 85 110.1

H 0 = 180 ft

A  = 1.52E-05 ft/(gpm)
2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT +Δz (ft) Error)

4565 12.95 1053006 0.0141 100.3 100.3 0%

For the valve setting to reduce the flow by half, use Solver  to vary the value below to minimize the error.

L e/D valve = 9965

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + z  (ft) Error)

2283 6.48 526503 0.0149 159.7 159.7 0%
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Problem 10.65 [Difficulty: 4]

Given: Data on pump and pipe system

Find: Delivery through parallel pump system; reduction in delivery after 20 and 40 years

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 1200 ft K ent = 0.5 (Fig. 8.14)

D   = 12 in K exp = 1

e  = 0.00015 ft (Table 8.1) L e/D elbow = 30

 = 1.23E-05 ft
2
/s (Table A.7) L e/D valve = 8 (Table 8.4)

z  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.



Q  (gpm) Q
2
 (gpm) H pump (ft) H pump (fit) V  (ft/s) Re f H pumps (par) H lT + z  (ft)

0 0 179 180 0.00 0 0.0000 180 50.0

500 250000 176 176 1.42 115325 0.0183 179 50.8

1000 1000000 165 164 2.84 230649 0.0164 176 52.8

1500 2250000 145 145 4.26 345974 0.0156 171 56.0

2000 4000000 119 119 5.67 461299 0.0151 164 60.3

2500 6250000 84 85 7.09 576623 0.0147 156 65.8

3000 9000000 43 43 8.51 691948 0.0145 145 72.4

3500 9.93 807273 0.0143 133 80.1

4000 11.35 922597 0.0142 119 89.0

4500 12.77 1037922 0.0141 103 98.9

5000 14.18 1153247 0.0140 85 110.1

H 0 = 180 ft

A  = 1.52E-05 ft/(gpm)
2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + z  (ft) Error)

4565 12.95 1053006 0.0141 100.3 100.3 0%

20-Year Old System:

f  = 2.00 f new

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + z  (ft) Error) Flow reduction:

3906 11.08 900891 0.0284 121.6 121.6 0% 660 gpm

14.4% Loss

40-Year Old System:

f  = 2.40 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

3710 10.52 855662 0.0342 127.2 127.2 0% 856

18.7%

20-Year Old System and Pumps:

f  = 2.00 f new H pump = 0.90 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

3705 10.51 854566 0.0285 114.6 114.6 0% 860 gpm

18.8% Loss

40-Year Old System and Pumps:

f  = 2.40 f new H pump = 0.75 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

3150 8.94 726482 0.0347 106.4 106.4 0% 1416

31.0%
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Problem 10.66 [Difficulty: 4]

Given: Data on pump and pipe system

Find: Delivery through series pump system; reduction after 20 and 40 years

Solution:

Given or available data (Note: final results will vary depending on fluid data selected) :

L  = 1200 ft K ent = 0.5 (Fig. 8.14)

D   = 12 in K exp = 1

e  = 0.00015 ft (Table 8.1) L e/D elbow = 30

 = 1.23E-05 ft
2
/s (Table A.7) L e/D valve = 8 (Table 8.4)

z  = -50 ft

The pump data is curve-fitted to H pump = H 0 - AQ
2
.

The system and pump heads are computed and plotted below.

To find the operating condition, Solver  is used to vary Q

so that the error between the two heads is minimized.

Q  (gpm) Q
2
 (gpm) H pump (ft) H pump (fit) V  (ft/s) Re f H pumps (par) H lT + z  (ft)

0 0 179 180 0.00 0 0.0000 359 50.0

500 250000 176 176 1.42 115325 0.0183 351 50.8

1000 1000000 165 164 2.84 230649 0.0164 329 52.8

1500 2250000 145 145 4.26 345974 0.0156 291 56.0

2000 4000000 119 119 5.67 461299 0.0151 237 60.3

2500 6250000 84 85 7.09 576623 0.0147 169 65.8

3000 9000000 43 43 8.51 691948 0.0145 85 72.4

3250 9.22 749610 0.0144 38 76.1



H 0 = 180 ft

A  = 1.52E-05 ft/(gpm)
2

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + z  (ft) Error)

3066 8.70 707124 0.0145 73.3 73.3 0%

20-Year Old System:

f  = 2.00 f new

Q  (gpm) V  (ft/s) Re f H pumps (par) H lT + z  (ft) Error) Flow reduction:

2964 8.41 683540 0.0291 92.1 92.1 0% 102 gpm

3.3% Loss

40-Year Old System:

f  = 2.40 f new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2925 8.30 674713 0.0349 98.9 98.9 0% 141 gpm

4.6% Loss

20-Year Old System and Pumps:

f  = 2.00 f new H pump = 0.90 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2915 8.27 672235 0.0291 90.8 90.8 0% 151 gpm

4.9% Loss

40-Year Old System and Pumps:

f  = 2.40 f new H pump = 0.75 H new

Q  (gpm) V  (ft/s) Re f H pump (fit) H lT + z  (ft) Error) Flow reduction:

2772 7.86 639318 0.0351 94.1 94.1 0% 294 gpm

9.6% Loss
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Problem 10.67 [Difficulty: 3]

Given: Water supply for Englewood, CO

Find: (a) system resistance curve

(b) specify appropriate pumping system

(c) estimate power required for steady-state operation at two specified flow rates

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp

hlT f
L

D


V
2

2
 Σ f

Le

D


V
2

2
 Σ K

V
2

2
 H

h

g
 Wp

ρ Q g Hp

ηp



Assumptions: 1) p1 = p2 = patm    2) V1 = V2 = 0    3) Kent = 0    4) Kexit = 1    5) Le/D = 0

Hence g z1 z2  f
L

D
 1





V
2

2
 hp or Hp z2 z1  f

L

D
 1





V
2

2 g


The results calculated using Excel are shown below:

Given or available data (Note: final results will vary depending on fluid data selected):

L  = 1770 m z 1 = 1610 m

e  = 0.046 mm (Table 8.1) z 2 = 1620 m

D   = 68.5 cm ρ  = 998 kg/m
3

ν  = 1.01E-06 m
2
/s (Table A.8)

The required pump head is computed and plotted below.

Q  (m
3
/hr) V  (m/s) Re f H p (m)

0 0.00 0.00E+00 0.0000 10.0

500 0.38 2.56E+05 0.0155 10.3

1000 0.75 5.11E+05 0.0140 11.1

1500 1.13 7.67E+05 0.0133 12.3

2000 1.51 1.02E+06 0.0129 14.0

2500 1.88 1.28E+06 0.0126 16.1

3000 2.26 1.53E+06 0.0124 18.6

3200 2.41 1.64E+06 0.0124 19.8

3500 2.64 1.79E+06 0.0123 21.6

3900 2.94 1.99E+06 0.0122 24.3

4000 3.01 2.04E+06 0.0122 25.0



The maximum flow rate is: 17172 gpm

The associated head is: 80 ft

Based on these data and the data of Figures D.1 and D.2, we could choose two 16A 18B pumps in parallel,

or three 10AE14 (G) pumps in parallel. The efficiency will be approximately 90%

Therefore, the required power would be: 191.21 kW at Q = 3200 m
3
/hr

286.47 kW at Q = 3900 m
3
/hr
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Problem 10.68 [Difficulty: 3]

Given: System shown, design flow rate

Find: Head losses for suction and discharge lines, NPSHA,

select a suitable pump

Solution:

We will apply the energy equation for steady, incompressible pipe flow.

Basic equations:

p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp

hlT f
L

D


V
2

2
 Σ f

Le

D


V
2

2
 Σ K

V
2

2
 H

h

g


Assumptions: 1) pent = pexit = patm    2) Vent = Vexit = 0

The given or available data is Q 800
L

min
 D 10 cm e 0.046 mm patm 101.3 kPa

From Table A.8 at 20oC ν 1.01 10
6


m

2

s
 pv 2.34 kPa ρ 998

kg

m
3



At the specified flow rate, the speed of the water is: V
Q

A


4 Q

π D
2


 V 1.698

m

s
 Re

V D

ν
1.681 10

5


e

D
4.6 10

4
 Therefore we can calculate the friction factor: f 1.8 log

e

3.7 D






1.11
6.9

Re



















2

0.019

At the inlet: g z1
p2

ρ
α2

V2
2

2
 g z2







 f
L

D

Le

D











V

2

2
 Σ K

V
2

2
 In this case: Le 75 D K 0.78 L 2 m

z2 8.7 m z1 7.2 m

Solving for total pressure at 2: p2t ρ g z2 z1  f
L

D

Le

D











V

2

2
 K

V
2

2










 p2t 18.362 kPa (gage)

The NPSHA can be calculated: NPSHA
p2tabs pv

ρ g
 NPSHA

p2t patm pv

ρ g
 NPSHA 8.24 m



For the entire system: g z1 z2  f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2
 hp

In this case: z1 7.2 m z2 88 m L 2 m 400 m 402 m Le 75 55 8 2 30( ) D K 0.78 1

Solving for the required head at the pump: Hp z2 z1  f
L

D

Le

D










 K








V
2

2 g










 Hp 92.7 m

In U.S. Customary units: Q 211 gpm Hp 304 ft

A pump would be selected by finding one for which the NPSHR is less than the NPSHA. Based on these data and the information

in Appendix D, a 2AE11 or a 4AE12 pump would be capable of supplying the required head at the given flow rate. The pump

should be operated at a speed between 1750 and 3500 rpm, but the efficiency may not be acceptable. One should consult a

complete catalog to make a better selection.



 

Problem 10.69                                                               [Difficulty: 3]
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Problem 10.70 [Difficulty: 3]

Given: Flow system and data of Problem 10.68; data for pipe aging from Problem 10.63

Find: Pumps to maintain system flow rates; compare delivery

to that with pump sized for new pipes only

Solution:

We will apply the energy equation for steady, incompressible pipe flow.

Basic equations:

p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp

hlT f
L

D


V
2

2
 Σ f

Le

D


V
2

2
 Σ K

V
2

2
 H

h

g


Assumptions: 1) pent = pexit = patm    2) Vent = Vexit = 0

The given or available data is Q 800
L

min
 D 10 cm e 0.046 mm patm 101.3 kPa

From Table A.8 at 20oC ν 1.01 10
6


m

2

s
 pv 2.34 kPa ρ 998

kg

m
3



At the specified flow rate, the speed of the water is: V
Q

A


4 Q

π D
2


 V 1.698

m

s
 Re

V D

ν
1.681 10

5


e

D
4.6 10

4
 Therefore we can calculate the friction factor: f 1.8 log

e

3.7 D






1.11
6.9

Re



















2

0.019

For the entire system: g z1 z2  f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2
 hp

In this case: z1 7.2 m z2 87 m L 2 m 400 m 402 m Le 75 55 8 2 30( ) D K 0.78 1

Solving for the required head at the pump: Hp z2 z1  f
L

D

Le

D










 K








V
2

2 g












For old pipes, we apply the multipliers from Problem 10.63: f20 5.00 fnew f40 8.75 fnew

The results of the analysis, computed in Excel, are shown on the next page.



The required pump head is computed and plotted below.

New New 20 yo 40 yo

Q  (L/min) V  (m/s) Re f H p (m) Q (gpm) H p (ft) H p (ft) H p (ft) Pump (ft)

0 0.000 0.00E+00 0.0000 79.80 0.00 261.81 261.81 261.81 856.54

200 0.424 4.20E+04 0.0231 80.71 52.84 264.81 276.57 287.59 840.48

400 0.849 8.40E+04 0.0207 83.07 105.68 272.52 314.52 353.89 792.30

600 1.273 1.26E+05 0.0196 86.77 158.52 284.67 374.19 458.10 712.00

800 1.698 1.68E+05 0.0189 91.80 211.36 301.17 455.19 599.58 599.58

922 1.957 1.94E+05 0.0187 95.52 243.64 313.38 515.10 704.21 515.10

1000 2.122 2.10E+05 0.0185 98.14 264.20 321.99 557.37 778.03 455.04

1136 2.410 2.39E+05 0.0183 103.20 300.08 338.59 638.8 920.2 338.59

1200 2.546 2.52E+05 0.0182 105.80 317.04 347.12 680.64 993.31 278.38

1400 2.971 2.94E+05 0.0180 114.77 369.88 376.54 824.95 1245.3 69.59

1600 3.395 3.36E+05 0.0178 125.04 422.72 410.25 990.27 1534.0 -171.31

1800 3.820 3.78E+05 0.0177 136.62 475.56 448.24 1176.6 1859.4 -444.33

2000 4.244 4.20E+05 0.0176 149.51 528.40 490.51 1383.9 2221.4 -749.47

If we assume that the head at 800 L/min for 40 year old pipe is 70% of the maximum head for the pump,

and that the pump curve has the form H  = H 0 - AQ
2
:

H 800 = 599.58 ft We plot the pump curve along with the head loss on the graph below:

H 0 = 856.54 ft

A  = 0.005752 ft/gpm
2

Sizing the pump for 800 L/min for at 40 years would (assuming no change in the pump characteristics) produce

922 L/min at 20 years and 1136 L/min for new pipe.

Since the head increases by a factor of two, the extra head could be obtained by placing a second identical pump

in series with the pump of Problem 10.68.
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Problem 10.72 [Difficulty: 3]

Given: Flow from pump to reservoir

Find: Select a pump to satisfy NPSHR

Solution:

Basic equations
p1

ρ
α

V1
2

2
 g z1







p2

ρ
α

V2
2

2
 g z2







 hlT hp hlT hl hlm f
L

D


V1
2

2
 Kexit

V1
2

2


Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 is approximately 1 4) V2 << V1 

Note that we compute head per unit weight, H, not head per unit mass, h, so

the energy equation between Point 1 and the free surface (Point 2) becomes
p1

ρ g

V
2

2 g










z2  f
L

D


V
2

2 g
 Kexit

V
2

2 g
 Hp

Solving for Hp Hp z2

p1

ρ g


V
2

2 g
 f

L

D


V
2

2 g
 Kexit

V
2

2 g


From Table A.7 (68oF) ρ 1.94
slug

ft
3

 ν 1.08 10
5


ft

2

s
 Re

V D

ν
 Re 6.94 10

5


For commercial steel pipe e 0.00015 ft (Table

8.1)

so
e

D
0.0002

Flow is turbulent: Given
1

f
2.0 log

e

D

3.7

2.51

Re f












 f 0.0150

For the exit Kexit 1.0 so we

find
Hp z2

p1

ρ g
 f

L

D


V
2

2 g


Note that for an NPSHR of 15 ft this means
p1

ρ g
15 ft Hp z2

p1

ρ g
 f

L

D


V
2

2 g
 Hp 691 ft

Note that Q
π D

2


4
V Q 4.42

ft
3

s
 Q 1983 gpm

For this combination of Q and Hp, from Fig. D.11 the best pump appears to be a Peerless two-stage 10TU22C operating at 1750 rpm

After 10 years, from Problem 10.63, the friction factor will have increased by a factor of 2.2 f 2.2 0.150 f 0.330

We now need to solve Hp z2

p1

ρ g
 f

L

D


V
2

2 g
 for the new velocity

V

V
2 D g

f L
Hp z2

p1

ρ g










 V 2.13
ft

s
 and f will still be 2.2 0.150

Q
π D

2


4
V Q 0.94

ft
3

s
 Q 423 gpm Much less!



Problem 10.73 [Difficulty: 3]

Given: Water pipe system

Find: Pump suitable for 300 gpm

Solution:

p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hl hlT f
L

D


V
2

2


f
64

Re
 (Laminar)

1

f
2.0 log

e

D

3.7

2.51

Re f












 (Turbulent)

The energy equation can be simplified to ∆p ρ f
L

D


V
2

2


This can be written for each pipe section

Pipe A (first section) ∆pA ρ fA
LA

DA


VA

2

2
 (1)

Pipe B (1.5 in branch) ∆pB ρ fB
LB

DB


VB

2

2
 (2)

Pipe C (1 in branch) ∆pC ρ fC
LC

DC


VC

2

2
 (3)

Pipe D (last section) ∆pD ρ fD
LD

DD


VD

2

2
 (4)

In addition we have the following contraints

QA QD Q (5)

Q QB QC (6)

∆p ∆pA ∆pB ∆pD (7)

∆pB ∆pC (8)

We have 2 unknown flow rates (or, equivalently, velocities); We solve the above eight equations simultaneously 

Once we compute the flow rates and pressure drops, we can compute data for the pump

∆ppump ∆p and Qpump QA Wpump ∆ppump Qpump

The calculations, performed in Excel, are shown on the next page.



Pipe Data:

Pipe L  (ft) D  (in) e  (ft)

A 150 1.5 0.00085

B 150 1.5 0.00085

C 150 1 0.00085

D 150 1.5 0.00085

Fluid Properties:

ρ  = 1.94 slug/ft
3

μ  = 2.10E-05 lbf-s/ft
2

Flow Rate:

Q  = 300 gpm

= 0.668 ft
3
/s

Flows: QA (ft
3
/s) QB (ft

3
/s) QC (ft

3
/s) QD (ft

3
/s)

0.668 0.499 0.169 0.668

V A (ft/s) V B  (ft/s) V C (ft/s) V D (ft/s)

54.47 40.67 31.04 54.47

Re A Re B Re C Re D

6.29E+05 4.70E+05 2.39E+05 6.29E+05

fA fB fC fD

0.0335 0.0336 0.0384 0.0335

Heads: Δp A (psi) Δp B  (psi) Δp C (psi) Δp D (psi)

804.0 448.8 448.8 804.0

Constraints: (6) Q  = QB + QC (8) Δp B = Δp C

0.00% 0.00%

Error: 0.00% Vary QB and QC

using Solver  to minimize total error

For the pump: Δp  (psi) Q  (gpm) P (hp)

2057 300 360

This is a very high pressure; a sequence of pumps would be needed



Problem 10.74                                                              [Difficulty: 3]



Problem 10.75 [Difficulty: 4]

Given: Pump and supply pipe system

Find: Head versus flow curve; Flow for a head of 85 ft

Solution:

Basic equations:
p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hpump hlT f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2


Applying to the 70 ft branch (branch a) g Ha f
L

D


Va
2

2
 f

Le

D


Va
2

2
 K

Va
2

2
 g Hpump

where Ha 70 ft  and 
Lea

D
 is due to a standard T branch (= 60) and a standard elbow (= 30) from Table 8.4, and 

K Kent Kexit 1.5  from Fig. 8.14

Hpump Ha f
L

D

Lea

D










 K








Va

2 g
 (1)

Applying to the 50 ft branch (branch b) Hpump Hb f
L

D

Leb

D










 K








Vb

2 g
 (2)

where Hb 50 ft  and 
Leb

D
 is due to a standard T run (= 20) and two standard elbows (= 60), and K Kent Kexit 1.5

Here are the calculations, performed in Excel:

Given data: Computed results: Set up Solver so that it varies all flow rates to make the total head error zero

L  = 1000 ft H pump (ft) Q  (ft
3
/s) Q a  (ft

3
/s) V a  (ft/s) Re a f a H pump (Eq. 1) Q b  (ft

3
/s) V b  (ft/s) Re b f b H pump (Eq. 2) H  (Errors)

e  = 0.00085 ft 72.0 1.389 0.313 1.561 7.44E+04 0.0248 72.0 1.076 5.364 2.56E+05 0.0232 72.0 0.00

D  = 6.065 in 74.0 1.574 0.449 2.237 1.07E+05 0.0241 74.0 1.125 5.607 2.67E+05 0.0231 74.0 0.00

K  = 1.5 76.0 1.724 0.553 2.756 1.31E+05 0.0238 76.0 1.171 5.839 2.78E+05 0.0231 76.0 0.00

L ea /D  = 90 78.0 1.857 0.641 3.195 1.52E+05 0.0237 78.0 1.216 6.063 2.89E+05 0.0231 78.0 0.00

L eb /D  = 80 80.0 1.978 0.718 3.581 1.71E+05 0.0235 80.0 1.260 6.279 2.99E+05 0.0231 80.0 0.00

H a  = 70 ft 82.0 2.090 0.789 3.931 1.87E+05 0.0234 82.0 1.302 6.487 3.09E+05 0.0230 82.0 0.00

H b  = 50 ft 84.0 2.195 0.853 4.252 2.03E+05 0.0234 84.0 1.342 6.690 3.19E+05 0.0230 84.0 0.00

ρ  = 1.94 slug/ft3
85.0 2.246 0.884 4.404 2.10E+05 0.0233 85.0 1.362 6.789 3.24E+05 0.0230 85.0 0.00

ν  = 1.06E-05 ft
2
/s 86.0 2.295 0.913 4.551 2.17E+05 0.0233 86.0 1.382 6.886 3.28E+05 0.0230 86.0 0.00

88.0 2.389 0.970 4.833 2.30E+05 0.0233 88.0 1.420 7.077 3.37E+05 0.0230 88.0 0.00

90.0 2.480 1.023 5.099 2.43E+05 0.0232 90.0 1.457 7.263 3.46E+05 0.0230 90.0 0.00

92.0 2.567 1.074 5.352 2.55E+05 0.0232 92.0 1.494 7.445 3.55E+05 0.0230 92.0 0.00

94.0 2.651 1.122 5.593 2.67E+05 0.0231 94.0 1.529 7.622 3.63E+05 0.0229 94.0 0.00

For the pump head less than the upper reservoir head flow will be out of the reservoir (into the lower one) Total Error: 0.00



Head Versus Flow Rate
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Problem 10.76 [Difficulty: 4]

Given: Data on flow from reservoir/pump

Find: Appropriate pump; Reduction in flow after 10 years

Solution:

Basic equation:
p1

ρ g
α

V1
2

2 g
 z1







p4

ρ g
α

V4
2

2 g
 z4







 HlT Hp for flow from 1 to 4

HlT f
L

D


V
2

2 g
 f

Le

D


V
2

2 g
 K

V
2

2 g


Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) V2 = V3 = V4 (constant area pipe)

Given or available data ρ 1000
kg

m
3

 ν 1.01 10
6


m

2

s
 pv 2.34 kPa (Table A.8)

p2 150 kPa p3 450 kPa D 15 cm e 0.046 mm Q 0.075
m

3

s


z1 20 m z4 35 m V
4 Q

π D
2


 V 4.24

m

s


For minor losses we have Four elbows:
Le

D
4 12 48 (Fig. 8.16) Square inlet: Kent 0.5

At the pump inlet NPSHA

p2
1

2
ρ V

2
 pv

ρ g
 NPSHA 16.0 m

The head rise through the pump is Hp

p3 p2

ρ g
 Hp 30.6 m

Hence for a flow rate of Q 0.075
m

3

s
  or Q 1189 gpm  and Hp 30.6 m or Hp 100 ft , from

Appendix D. Fig. D3 a Peerless4AE11 would suffice

We do not know the pipe length L!  Solving the energy equation for it:z1 z4 HlT Hp f
L

D


V
2

2 g
 f

Le

D


V
2

2 g
 Kent

V
2

2 g
 Hp

For f Re
V D

ν
 Re 6.303 10

5
 and

e

D
3.07 10

4


Given
1

f
2.0 log

e

D

3.7

2.51

Re f












 f 0.0161



Hence, substituting values L
2 g D

f V
2


z1 z4 Hp  D

Le

D










Kent D

f
 L 146 m

From Problem 10.63, for a pipe D 0.15 m  or D 5.91 in , the aging over 10 years leads to fworn 2.2 f

We need to solve the energy equation for a new V

Vworn

2 g z1 z4 Hp 

fworn
L

D

Le

D










 Kent

 Vworn 2.88
m

s


Hence Qworn
π D

2


4
Vworn Qworn 0.0510

m
3

s


∆Q Qworn Q ∆Q 0.0240
m

3

s


∆Q

Q
32.0 %

Check f Reworn

Vworn D

ν
 Given

1

f
2.0 log

e

D

3.7

2.51

Reworn f












 f 0.0165

Hence using 2.2 x 0.0161 is close enough to using 2.2 x 0.0165
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Problem 10.79 [Difficulty: 4]

Given: Sprinkler system for lakeside home

 







3 m 

30 m

L34 = 45 m

L12 = 20 m

Find: (a) Head loss on suction side of pump

(b) Gage pressure at pump inlet

(c) Hydraulic power requirement for the pump

(d) Change in power requirement if pipe diameter is changed

(e) Change in power requirement if the pump were moved

Solution:

We will apply the energy equation for steady, incompressible pipe flow.

Basic equations:

p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp

hlT f
L

D


V
2

2
 Σ f

Le

D


V
2

2
 Σ K

V
2

2
 H

h

g


Assumptions: 1) p1 = patm    2) V1 = 0

The given or available data is Q 40
L

min
 D 2 cm e 0.15 mm patm 101.3 kPa p4 300 kPa (gage)

z1 0 m z2 3 m z3 z2 z4 33 m L12 20 m L34 45 m

From Table A.8 at 20oC ν 1.01 10
6


m

2

s
 pv 2.34 kPa ρ 998

kg

m
3



At the specified flow rate, the speed of the water is: V
Q

A


4 Q

π D
2


 V 2.122

m

s
 Re

V D

ν
4.202 10

4


e

D
7.5 10

3
 Therefore we can calculate the friction factor: f 1.8 log

e

3.7 D






1.11
6.9

Re



















2

0.036

Between 1 and 2:
p2

ρ
α2

V
2

2
 g z2









 f
L12

D

Le

D











V

2

2
 K

V
2

2
 In this case: Le 30 16( ) D K 0.78



The head loss before the pump is: HlT12 f
L12

D

Le

D











V

2

2 g
 K

V
2

2 g


HlT12 8.844 m

Solving for pressure at 2: p2 ρ
V

2

2
g z2 f

L12

D

Le

D











V

2

2
 K

V
2

2










 p2 54.946 kPa (gage)

To find the pump power, we need to analyze between 3 and 4:

p3

ρ
g z3









p4

ρ
g z4









 f
L34

D

Le

D











V

2

2
 K

V
2

2
 In this case: Le 16 16( ) D K 0

p3 p4 ρ g z4 z3  f
L34

D

Le

D











V

2

2










 p3 778.617 kPa Thus the pump head is: Hp

p3 p2

ρ g
85.17 m

Now we can calculate the power: Wp ρ g Q Hp Wp 556 W

Changing to 4 centimeter pipe would reduce the mean velocity and hence the head loss and minor loss: D 4 cm

V
Q

A


4 Q

π D
2


 V 0.531

m

s
 Re

V D

ν
2.101 10

4


e

D
3.75 10

3
 f 1.8 log

e

3.7 D






1.11
6.9

Re



















2

0.032

Le 30 16( ) D K 0.78 p2 ρ
V

2

2
g z2 f

L12

D

Le

D











V

2

2
 K

V
2

2










 p2 26.922 kPa (gage)

p3 778.617 kPa (gage)
Le 16 16( ) D K 0 p3 p4 ρ g z4 z3  f

L34

D

Le

D











V

2

2












Hp

p3 p2

ρ g
58.44 m Wpnew ρ g Q Hp 381.283 W ∆Wp

Wpnew Wp

Wp

31 %

The pump should not be moved up the hill. The NPSHA is: NPSHA

p2 patm ρ
V

2

2
 pv

ρ g
4.512 m for 2-cm pipe.

If anything, the pump should be moved down the hill to increase the NPSHA.



Problem 10.80 [Difficulty: 4]

   


Given: Fire nozzle/pump system

Find: Appropriate pump; Impeller diameter; Pump power input needed

Solution:

Basic equations
p2

ρ
α

V2
2

2
 g z2







p3

ρ
α

V3
2

2
 g z3







 hl hl f
L

D


V2
2

2
 for the hose

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 2 and 3 is approximately 1 4) No minor loss

p2

ρ
α

V2
2

2
 g z2







p1

ρ
α

V1
2

2
 g z1







 hpump for the pump

Assumptions: 1) Steady flow 2) Incompressible flow 3) α at 1 and 2 is approximately 1 4) No minor loss

The first thing we need is the flow rate.  Below we repeat Problem 8.179 calculations

Hence for the hose
∆p

ρ

p2 p3

ρ
 f

L

D


V
2

2
 or V

2 ∆p D

ρ f L


We need to iterate to solve this for V because f is unknown until Re is known.  This can be done using Excel's Solver, but here:

∆p 750 kPa L 100 m e 0 D 3.5 cm ρ 1000
kg

m
3

 ν 1.01 10
6


m

2

s


Make a guess for f f 0.01 V
2 ∆p D

ρ f L
 V 7.25

m

s
 Re

V D

ν
 Re 2.51 10

5


Given
1

f
2.0 log

e

D

3.7

2.51

Re f












 f 0.0150

V
2 ∆p D

ρ f L
 V 5.92

m

s
 Re

V D

ν
 Re 2.05 10

5


Given
1

f
2.0 log

e

D

3.7

2.51

Re f












 f 0.0156

V
2 ∆p D

ρ f L
 V 5.81

m

s
 Re

V D

ν
 Re 2.01 10

5


Given
1

f
2.0 log

e

D

3.7

2.51

Re f












 f 0.0156

V
2 ∆p D

ρ f L
 V 5.80

m

s
 Re

V D

ν
 Re 2.01 10

5




Q
π D

2


4
V Q 5.578 10

3


m
3

s
 Q 0.335

m
3

min


We have p1 350 kPa p2 700 kPa 750 kPa p2 1450 kPa

For the pump p2

ρ
α

V2
2

2
 g z2







p1

ρ
α

V1
2

2
 g z1







 hpump

so hpump

p2 p1

ρ
 or Hpump

p2 p1

ρ g
 Hpump 112 m

We need a pump that can provide a flow of Q 0.335
m

3

min
  or Q 88.4 gpm , with a head of Hpump 112 m  or Hpump 368 ft

From Appendix D, Fig. D.1 we see that a Peerless 2AE11 can provide this kind of flow/head combination; it could also handle four

such hoses (the flow rate would be 4 Q 354 gpm ).  An impeller diameter could be chosen from proprietary curves.

The required power input is Wm

Wh

ηp

 where we choose ηp 75 %   from Fig. 10.15

Wm

ρ Q g Hpump

ηp

 Wm 8.18 kW for one hose or 4 Wm 32.7 kW for four

Prequired

Ppump

η
 Prequired

6.14 kW

70 %
 Prequired 8.77 kW or 4 Prequired 35.1 kW for four



Problem 10.81 [Difficulty: 4]

Given: Manufacturer data for a pump

Find: (a) Plot performance and develop curve-fit equation.

(b) Calculate pump delivery vs discharge height for length of garden hose

Solution:

Basic equations: hlT f
L

D


V
2

2
 f

Le

D


V
2

2
 K

V
2

2
 H

h

g
 Hp H0 A Q

2


For this case, Le = K = 0, therefore: hlT f
L

D


V
2

2
 Here are the results calculated in Excel:

Given data: Here are the data for the head generated by the pump, as well as the head losses for the hose and the pipe:

L  = 15 m

e  = 0 ft D  = 20 mm D  = 25 mm

D  = 20 mm e = 0 mm e = 0.15 mm

ρ  = 998 kg/m
3

z  (m) Q  (L/min) Q
2 z fit (m) V  (m/s) Re a f a H L (m) V  (m/s) Re a f a H L (m)

ν  = 1.01E-06 m
2
/s 0.3 77.2 5959.840 0.320 4.096 8.11E+04 0.0188 12.1 2.621 6.49E+04 0.0334 7.0

0.7 75.0 5625.000 0.722 3.979 7.88E+04 0.0189 11.4 2.546 6.30E+04 0.0334 6.6

H 0= 7.48727 m 1.5 71.0 5041.000 1.425 3.767 7.46E+04 0.0191 10.4 2.411 5.97E+04 0.0335 6.0

A = 0.0012 m/(L/min)
2

3.0 61.0 3721.000 3.012 3.236 6.41E+04 0.0198 7.9 2.071 5.13E+04 0.0337 4.4

4.5 51.0 2601.000 4.359 2.706 5.36E+04 0.0206 5.8 1.732 4.29E+04 0.0340 3.1

6.0 26.0 676.000 6.674 1.379 2.73E+04 0.0240 1.7 0.883 2.19E+04 0.0356 0.8

8.0 0.0 0.000 7.487 0.000 0.00E+00 0.0000 0.0 0.000 0.00E+00 0.0000 0.0
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To determine the discharge heights for the hose and the pipe, we subtract the head loss from the head generated by the pump.

For the hose: For the pipe:

Q  (L/min) V  (m/s) Re a f a H L (m) Disch (m) V  (m/s) Re a f a H L (m) Disch (m) % Diff

0.0 0.000 0.00E+00 0.0000 0.000 7.487 0.000 0.00E+00 0.0000 0.000 7.487 0%

10.0 0.531 1.05E+04 0.0305 0.328 7.039 0.340 8.40E+03 0.0398 0.140 7.227 -3%

20.0 1.061 2.10E+04 0.0256 1.101 5.906 0.679 1.68E+04 0.0364 0.514 6.492 -9%

30.0 1.592 3.15E+04 0.0232 2.248 4.157 1.019 2.52E+04 0.0351 1.115 5.290 -21%

40.0 2.122 4.20E+04 0.0217 3.740 1.823 1.358 3.36E+04 0.0345 1.943 3.620 -50%

50.0 2.653 5.25E+04 0.0207 5.558 -1.077 1.698 4.20E+04 0.0340 2.998 1.483

60.0 3.183 6.30E+04 0.0199 7.689 -4.531 2.037 5.04E+04 0.0337 4.279 -1.122

The results show that the 15% performance loss is an okay "ball park" guess at the lower flow rates, but not very good

at flow rates above 30 L/min.
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Problem 10.82 [Difficulty: 4]

Given: Swimming pool filtration system, filter pressure drop is Δp=0.6Q2, with Δp in psi and Q in gpm

Find: Speed and impeller diameter of suitable pump; estimate efficiency

Solution:

We will apply the energy equation for steady, incompressible pipe flow.

Basic equations:

p1

ρ
α1

V1
2

2
 g z1







p2

ρ
α2

V2
2

2
 g z2







 hlT hp hlT f
L

D


V
2

2
 Σ f

Le

D


V
2

2
 Σ K

V
2

2
 H

h

g


The given or available data are: Q 30 gpm Q 1.893 10
3


m

3

s
 ν 1.06 10

5


ft
2

s
 ν 9.848 10

7


m
2

s


ρ 1.93
slug

ft
3

 ρ 995
kg

m
3

 D 20 mm e 0 mm

Setting state 1 at the pump discharge, state 2 at the tee, state 3a downstream of the filter, and state 3b after the 40 ft pipe, we can look

at the pressure drop between 1 and 2:

V1 V2
e

D
0 V

Q

A


4 Q

π D
2


 V 6.025

m

s
 Re

V D

ν
1.224 10

5


e

D
0 Therefore we can calculate the friction factor: f 1.8 log

e

3.7 D






1.11
6.9

Re



















2

0.017

Since this is a straight run of pipe: Le 0 K 0 and therefore the pressure drop is: ∆p12 ρ f
V

2

2


L

D
 ∆p12 47.04 kPa

Since both legs exhaust to the same pressure, the pressure drops between the two must be equal, and the flow rates must equal the

total flow rate of the system. This requires an iterative solution, using Solver in Excel. The result is:

Qa 1.094 10
3


m

3

s
 Qb 7.99 10

4


m
3

s
 The resulting pressure drop is ∆p23 42.96 kPa

Neglecting any pressure at the pump inlet, the pump must supply: ∆ppump ∆p12 ∆p23 90.0 kPa

The resulting head is: Hpump

∆ppump

ρ g
9.226 m in U.S. units: Hpump 30.269 ft

This head is too low for any of the pumps in Fig. D.1. Therefore, assuming a speed of 3500 rpm: N
ω Q

g Hpump 0.75
0.544

In customary units: Ncu 2733 N 1485 So from Figure 10.9 we can estimate the efficiency: η 65 %

The pump power is: Wp

ρ Q g Hpump

η
262.056 W Wp 262.1 W
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Problem 10.84 [Difficulty: 3]

Given: Data on centrifugal fan

Find: Plot of performance curves; Best effiiciency point

Solution:

Basic

equations:
ηp

Wh

Wm

 Wh Q ∆p ∆p ρw g ∆h (Note: Software cannot render a dot!)

Here are the results, calculated using Excel:

ρ w = 1.94 slug/ft3
Fitting a 2nd order polynomial to each set of data we find

Δp =-1.51x10
-6
Q

2
 + 2.37x10

-4
Q  + 0.0680

Q  (ft
3
/s) Δp  (psi) Pm (hp) Ph (hp) η  (%) η =-3.37x10

-5
Q

2
 + 0.0109Q  -0.0151

106 0.075 2.75 2.08 75.7%

141 0.073 3.18 2.69 84.7% Finally, we use Solver to maximize η  by varying Q :

176 0.064 3.50 2.95 84.3%

211 0.050 3.51 2.76 78.7% Q  (ft
3
/s) Δp  (psi) η  (%)

246 0.033 3.50 2.13 60.7% 161.72 0.0668 86.6%

282 0.016 3.22 1.18 36.7%

Fan Performance Curve

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

100 120 140 160 180 200 220 240 260 280 300

Q  (ft
3
/s)

Δp
 (

p
si

)

0%

25%

50%

75%

100%

η
 (

%
)

Δp η

BEP



Problem 10.85 [Difficulty: 3]

Given: Data on centrifugal fan and square metal duct

Find: Minimum duct geometry for flow required; Increase if fan speed is increased

Solution:

Basic

equations:
ηp

Wh

Wm

 Wh Q ∆p ∆p ρw g ∆h (Note: Software cannot render a dot!)

and for the duct ∆p ρair f
L

Dh


V

2

2
 Dh

4 A

P


4 H
2



4 H
 H

and fan scaling Q 200
ft

3

s
 ω 750 rpm ω' 1000 rpm Q'

ω'

ω
Q Q' 266.67

ft
3

s


Here are the results, calculated using Excel:

ρ w = 1.94 slug/ft
3

Fitting a 2nd order polynomial to each set of data we find

ρ air = 0.00237 slug/ft
3 Δp =-1.51x10

-6
Q

2
 + 2.37x10

-4
Q  + 0.0680

ν air = 1.58E-04 ft
2
/s Now we need to match the pressure loss in the duct with

L = 50 ft the pressure rise across the fan. To do this, we use

Assume smooth ducting Solver to vary H so the error in p is zero Fan

Note: Efficiency curve not needed for this problem. Q  (ft
3
/s) Δp  (psi)

We use the data to get a relationship for pressure increase. 266.67 0.0238

Q  (ft
3
/s) Δp  (psi) Pm (hp) Ph (hp) η  (%)

106 0.075 2.75 2.08 75.7% Duct

141 0.073 3.18 2.69 84.7% H (ft) V (ft/s) Re f Δp  (psi)

176 0.064 3.50 2.95 84.3% 1.703 91.94 9.91.E+05 0.0117 0.0238

211 0.050 3.51 2.76 78.7%

246 0.033 3.50 2.13 60.7% Error in Δp 0.00%

282 0.016 3.22 1.18 36.7%

Answers:

Q  (ft
3
/s) H  (ft) Q  (ft

3
/s) H  (ft)

200.00 1.284 266.67 1.703

A plot of the performance curve is shown on the next page.
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Problem 10.86 [Difficulty: 3]

Given: Data on centrifugal fan and various sizes

Find: Suitable fan; Fan speed and input power

Solution:

Basic

equations:

Q'

Q

ω'

ω







D'

D







3


h'

h

ω'

ω







2
D'

D







2


P'

P

ω'

ω







3
D'

D







5



We choose data from the middle of the table above as being in the region of the best efficiency

Q 176
ft

3

s
 ∆p 0.064 psi P 3.50 hp and ω 750 rpm D 3 ft ρw 1.94

slug

ft
3



The flow and head are Q' 600
ft

3

s
 h' 1 in At best efficiency point: h

∆p

ρw g
1.772 in

These equations are the scaling laws for scaling from the table data to the new fan.  Solving for scaled fan

speed, and diameter using the first two equations

ω' ω
Q

Q'







1

2


h'

h







3

4

 ω' 265 rpm D' D
Q'

Q







1

2


h

h'







1

4

 D' 76.69 in

This size is too large; choose (by trial and error)

Q 246
ft

3

s
 h

0.033 psi

ρw g
0.914 in P 3.50 hp

ω' ω
Q

Q'







1

2


h'

h







3

4

 ω' 514 rpm D' D
Q'

Q







1

2


h

h'







1

4

 D' 54.967 in

Hence it looks like the 54-inch fan will work; it must run at about 500 rpm.  Note that it will NOT be running at best

efficiency.  The power will be

P' P
ω'

ω







3


D'

D







5

 P' 9.34 hp



Problem 10.87 [Difficulty: 3]

Given: Data on centrifugal fan

Find: Fan outlet area; Plot total pressure rise and power; Best effiiciency point

Solution:

Basic equations: ηp

Wh

Wm

 Wh Q ∆pt ∆p ρw g ∆ht (Note: Software cannot render a dot!)

pdyn
1

2
ρair V

2


At Q 200
ft

3

s
  we have hdyn 0.25in Q V A and hdyn

pdyn

ρw g


ρair

ρw

V
2

2


Hence V
ρw

ρair

2 g hdyn and A
Q

V


The velocity V is directly proportional to Q, so the dynamic pressure at any flow rate Q is hdyn 0.25 in
Q

200
ft

3

s










2



The total pressure Δht will then be ∆ht ∆h hdyn Δh is the tabulated static pressure rise

Here are the results, generated in Excel:

At Q  = 200 ft
3
/s

h dyn = 0.25 in Hence V  = 33.13 ft/s

A  = 6.03749 ft
2

ρ w = 1.94 slug/ft
3

Fitting a 2nd order polynomial to each set of data we find

ρ air = 0.00237 slug/ft
3

h t =-3.56x10
-5
Q

2
 + 6.57x10

-3
Q  + 1.883

Q  (ft
3
/s) Δp  (psi) Pm (hp) h dyn (in) h t  (in) Ph (hp) η  (%) Ph  = -1.285x10

-4
Q

2
 + 0.0517Q  - 1.871

106 0.075 2.75 0.07 2.15 2.15 78.2% η =-3.37x10
-5
Q

2
 + 0.0109Q  -0.0151

141 0.073 3.18 0.12 2.15 2.86 90.0%

176 0.064 3.50 0.19 1.97 3.27 93.5% Finally, we use Solver to maximize η  by varying Q :

211 0.050 3.51 0.28 1.66 3.32 94.5%

246 0.033 3.50 0.38 1.29 3.01 85.9% Q  (ft
3
/s) h t  (in) Ph (hp) η  (%)

282 0.016 3.22 0.50 0.94 2.51 77.9% 161.72 2.01 3.13 86.6%

A plot of the performance curves is shown on the next page.
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Problem 10.91 [Difficulty: 3]

Given: Data on turbine system

Find: Model test speed; Scale; Volume flow rate

Solution:

Basic equations: Wh ρ Q g H η
Wmech

Wh

 NS
ω P

1

2


ρ

1

2
h

5

4




The given or available data is

ρ 1.94
slug

ft
3

 Wp 36000 hp Hp 50 ft ωp 95 rpm Hm 15 ft Wm 50 hp

where sub p stands for prototype and sub m stands for model

Note that we need h (energy/mass), not H (energy/weight) hp Hp g hp 1609
ft

2

s
2

 hm Hm g hm 482.6
ft

2

s
2



Hence for the prototype NS

ωp Wp

1

2


ρ

1

2
hp

5

4


 NS 3.12

Then for the model NS

ωm Wm

1

2


ρ

1

2
hm

5

4


 ωm NS

ρ

1

2
hm

5

4


Wm

1

2

 ωm 59.3
rad

s
 ωm 566 rpm

For dynamically similar conditions
Hp

ωp
2

Dp
2



Hm

ωm
2

Dm
2


 so

Dm

Dp

ωp

ωm

Hm

Hp

 0.092

Also
Qp

ωp Dp
3



Qm

ωm Dm
3


 so Qm Qp

ωm

ωp


Dm

Dp









3



To find Q
p
 we need efficiency.  At Wp 36000 hp  and Hp 50 ft  from F ig. 10.17 we find (see below), for

NScu
N rpm( ) P hp( )

1

2


H ft( )

5

4

 135.57 η 93 %



Hence from η
Wmech

Wh


Wmech

ρ Q g H
 Qp

Wp

ρ g Hp η
 Qp 3.06 10

6
 gpm

and also Qm

Wm

ρ g Hm η
 Qm 1.418 10

4
 gpm
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Problem 10.93 [Difficulty: 2]

V1 
U = R 

D 

Vj 

Given: Pelton turbine

Find: 1) Power 2) Operating speed 3) Runaway speed 4) Torque 5) Torque at zero speed

Solution:

Basic equations
p1

ρ g
α

V1
2

2 g
 z1







pj

ρ g
α

Vj
2

2 g
 zj








hlT

g
 hlT hl hlm K

V
2

2


and from Example

10.5
Tideal ρ Q R Vj U  1 cos θ( )( ) θ 165 deg

Assumptions: 1) pj = pamt 2) Incompressible flow 3) α at 1 and j is approximately 1 4) Only minor loss at nozzle 5) z1 = zj

Given data p1g 700 psi V1 15 mph V1 22
ft

s
 η 86 %

d 7.5 in D 8 ft R
D

2
 K 0.04 ρ 1.94

slug

ft
3



Then
p1g

ρ g

V1
2

2 g


Vj
2

2 g


K

g

Vj
2

2
 o

r
Vj

2
p1g

ρ

V1
2

2










1 K
 Vj 317

ft

s


and
Q Vj

π d
2



4
 Q 97.2

ft
3

s
 H

p1g

ρ g

V1
2

2 g
 H 1622 ft

Hence P η ρ Q g H P 15392 hp

From Fig. 10.10, normal operating speed is around U 0.47 Vj U 149
ft

s
 ω

U

R
 ω 37.2

rad

s
 ω 356 rpm

At runaway Urun Vj ωrun

Urun

D

2







 ωrun 79.2
rad

s
 ωrun 756 rpm

From Example 10.5 Tideal ρ Q R Vj U  1 cos θ( )( ) Tideal 2.49 10
5

 ft lbf

Hence T η Tideal T 2.14 10
5

 ft lbf

Stall occurs when U 0 Tstall η ρ Q R Vj 1 cos θ( )( ) Tstall 4.04 10
5

 ft lbf



Problem 10.94 [Difficulty: 2]

Given: Data on Francis turbines at Niagra Falls

Find: Specific speed, volume flow rate to each turbine, penstock size

Solution:

Basic

equations: Wh ρ Q g H η
Wmech

Wh

 NS
ω P

1

2


ρ

1

2
h

5

4


 h g H hlT f
L

D


V
2

2


The given or available data is

ρ 998
kg

m
3

 Wmech 54 MW ω 107 rpm η 93.8% H 65 m Lpenstock 400 m Hnet H 83 %

The specific energy of the turbine is: h g H 637.4
m

2

s
2

 The specific speed is: NS

ω Wmech

1

2


ρ

1

2
h

5

4


 NS 0.814

Solving for the flow rate of the turbine: Q
Wmech

ρ h η
90.495

m
3

s
 Q 90.5

m
3

s


Based on the head loss: hlT g H Hnet  108.363
m

2

s
2

 Since V
Q

A


4 Q

π D
2


 into the head loss equation:

hlT f
L

D


1

2


4 Q

π D
2











2


8

π
2

f L Q
2



D
5

 Solving for the diameter: D
8 f L Q

2


π
2

hlT











1

5

 This will require an iterative solution.

Assuming concrete-lined penstocks: e 3 mm If we assume a diameter of 2 m, we can iterate to find the actual diameter:

D  (m) V  (m/s) Re e /D f D  (m)

2.000 28.807 5.70E+07 0.001500 0.02173 3.510

3.510 9.354 3.25E+07 0.000855 0.01892 3.414

3.414 9.888 3.34E+07 0.000879 0.01904 3.418

3.418 9.862 3.34E+07 0.000878 0.01904 3.418 D 3.42 m
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Problem 10.97 [Difficulty: 3]

Given: Data on Pelton wheel

Find: Rotor radius, jet diameter, water flow rate.

Solution:

The given or available data is

ρ 999
kg

m
3

 Wmech 26.8 MW ω 225 rpm H 360 m ν 1.14 10
6


m

2

s


From Bernoulli, the jet velocity is: Vi 2 g H Assuming a velocity coefficient of Cv 0.98 (4% loss in the nozzle): 

Vj Cv 2 g H 82.35
m

s
 From Fig. 10.36, at maximum efficiency: U R ω 0.47 Vj So the radius can be calculated:

R 0.47
Vj

ω
 1.643m

From Fig. 10.37 the efficiency at full load is η 86% Thus: η
Wmech

Q ρ g H
 Solving for the flow rate:

Q
Wmech

η ρ g H
8.836

m
3

s


We can now calculate the jet velocity: Aj
π

4
Dj

2


Q

Vj

 Therefore, Dj 2
Q

π Vj
 0.37 m Dj 37.0 cm

mrate ρ Q 8.83 10
3


kg

s




Problem 10.98 [Difficulty: 3]

Given: Impulse turbine requirements

Find: 1) Operating speed 2) Wheel diameter 4) Jet diameter 5) Compare to multiple-jet and double-overhung

Solution:

Basic

equations:
Vj 2 g H NS

ω P

1

2


ρ

1

2
h

5

4


 η
P

ρ Q g H
 Q Vj Aj

Model as optimum.  This means. from Fig. 10.10 U 0.47 Vj and from Fig. 10.17 NScu 5 with η 89 %

Given or available data H 350 m P 15 MW ρ 1.94
slug

ft
3



Then Vj 2 g H Vj 82.9
m

s
 U 0.47 Vj U 38.9

m

s


We need to convert from NScu (from Fig. 10.17)  to NS (see discussion after Eq. 10.18b). NS

NScu

43.46
 NS 0.115

The water consumption is Q
P

η ρ g H
 Q 4.91

m
3

s


For a single jet ω NS
ρ

1

2
g H( )

5

4


P

1

2

 (1) ω 236 rpm Dj
4 Q

π Vj
 (2) Dj 0.275 m

The wheel radius is D
2 U

ω
 (3) D 3.16 m

For multiple (n) jets, we use the power and flow per jet

From Eq 1 ωn ω n From Eq. 2 Djn

Dj

n
 an

d
Dn

D

n
 from Eq.

3

Results:
n

1

2

3

4

5

 ωn n( )

236

333

408

471

527

rpm

 Djn n( )

0.275

0.194

0.159

0.137

0.123

m

 Dn n( )

3.16

2.23

1.82

1.58

1.41

m



A double-hung wheel is equivalent to having a single wheel with two jets



Problem 10.99 [Difficulty: 2]

Given: Data on impulse turbine

Find: Plot of power and efficiency curves

Solution:

Basic equations: T F R P ω T η
P

ρ Q g H
 Here are the results calculated in Excel:

H  = 33 ft ω  (rpm) Q  (cfm) F (lbf) T (ft-lbf) P (hp) η (%)

ρ  = 1.94 slug/ft
3

0 7.74 2.63 1.32 0.000 0.0%

R  = 0.50 ft 1000 7.74 2.40 1.20 0.228 47.3%

1500 7.74 2.22 1.11 0.317 65.6%

1900 7.44 1.91 0.96 0.345 74.4%

2200 7.02 1.45 0.73 0.304 69.3%

2350 5.64 0.87 0.44 0.195 55.3%

2600 4.62 0.34 0.17 0.084 29.2%

2700 4.08 0.09 0.05 0.023 9.1%

Turbine Performance Curves
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Problem 10.101 [Difficulty: 3]

Given: Published data for the Tiger Creek Power Plant

Find: (a) Estimate net head at the site, turbine specific speed, and turbine efficiency

(b) Comment on consistency of the published data

Solution:

Basic Equations: NScu
N P

H

5

4

 NS
N P

ρ g H( )

5

4


 η
P

ρ Q g Hnet


The given or available data is

ρ 999
kg

m
3

 P 58 MW Q 21
m

3

s
 Hgross 373 m ν 1.14 10

6


m
2

s


Using data from Fig. 10.37, we will assume η 87% We can take this to estimate the net head: Hnet
P

ρ Q g η
324 m

Therefore:
Hnet

Hgross

86.875 % This is close to 87%, so the assumption for the efficiency was a good one.

From the same figure, we will assume NScu 5 Therefore the dimensionless specific speed is NS

NScu

43.46
0.115

We may then calculate the rotational speed for the turbine: N
NS ρ g Hnet 

5

4


P
108.8 rpm

The power output seems low for a turbine used for electricity generation; several turbines are probably used in this one plant.

To check the claims: 58 MW
24 hr

1 day


365 day

yr
 5.081 10

8


kW hr

yr
 This number is 50% higher than the claim.

58 MW
s

21 m
3




hr

3600 s
 0.767

kW hr

m
2

m
 This is in excellent agreement with the claim.



Problem 10.102 [Difficulty: 4]

Given: Hydraulic turbine site

Find: Minimum pipe size; Fow rate; Discuss

Solution:

Basic equations: Hl

hl

g
 f

L

D


V
2

2 g
 and also, from Example 10.15 the optimum is when Hl

∆z

3


As in Fig. 10.41 we assume L 2 ∆z and f 0.02

Then, for a given pipe diameter D V
2 g D Hl

f L


g D

3 f


Also Q V
π D

2


4
 Ph ρ Q

V
2

2
 Pm η Ph Here are the results in Excel:

f = 0.02

ρ  = 998.00 kg/m
3

η  = 83%

D  (cm) V  (m/s) Q  (m
3
/s) Ph (kW) Pm (kW) Turbine efficiency varies with specific speed

25 6.39 0.314 6.40 5.31 Pipe roughness appears to the 1/2 power, so has a secondary effect.

30 7.00 0.495 12.12 10.06 A 20% error in f  leads to a 10% change in water speed

35 7.56 0.728 20.78 17.25 and 30% change in power.

40 8.09 1.016 33.16 27.53 A Pelton wheel is an impulse turbine that does not flow full of water;

45 8.58 1.364 50.09 41.57 it directs the stream with open buckets.

50 9.04 1.775 72.42 60.11 A diffuser could not be used with this system.

41.0 8.19 1.081 36.14 30.00 Use Goal Seek or Solver to vary D  to make Pm 30 kW!

Power Versus Pipe Diameter
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Problem 10.104 [Difficulty: 3]

 

CS 



x 

y 
2h 

  



V2 = V3 = V V1 

V4 
Given: Data on boat and propeller

Find: Propeller diameter; Thrust at rest; Thrust at 15 m/s

Solution:

Basic equation: (4.26)

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum is then T u1 mrate  u4 mrate  V4 V1  mrate where mrate 50
kg

s
  is the mass flow rate

It can be shown (see Example 10.13) that V
1

2
V4 V1 

For the static case V1 0
m

s
 V4 45

m

s
 so V

1

2
V4 V1  V 22.5

m

s


From continuity mrate ρ V A ρ V
π D

2


4
 with ρ 1.23

kg

m
3



Hence D
4 mrate

ρ π V
 D 1.52 m

For V1 = 0 T mrate V4 V1  T 2250 N

When in motion V1 15
m

s
 and V

1

2
V4 V1  so V4 2 V V1 V4 30

m

s


Hence for V1 = 15 m/s T mrate V4 V1  T 750 N



Problem 10.105 [Difficulty: 3]

Given: Data on fanboat and propeller

Find: Thrust at rest; Thrust at 12.5 m/s

Solution:

Assume the aircraft propeller coefficients in Fi.g 10.40 are applicable to this propeller.

At V = 0, J = 0.  Extrapolating from Fig. 10.40b CF 0.16

We also have D 1.5 m n 1800 rpm n 30
rev

s
 and ρ 1.225

kg

m
3



The thrust at standstill (J = 0) is found from FT CF ρ n
2

 D
4

 (Note: n is in rev/s) FT 893 N

At a speed V 12.5
m

s
 J

V

n D
 J 0.278 and so from Fig. 10.40b CP 0.44 and CF 0.145

The thrust and power at this speed can be found FT CF ρ n
2

 D
4

 FT 809 N P CP ρ n
3

 D
5

 P 111 kW



Problem 10.106 [Difficulty: 3]

CS 
 

 

U 

X 

Y 

x 

y 

V 

FD 

Given: Data on jet-propelled aircraft

Find: Propulsive efficiency

Solution:

Basic equation: (4.26)

(4.56)

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum is then FD u1 mrate  u2 mrate  U( ) mrate  V( ) mrate 

or FD mrate V U( ) where mrate 50
kg

s
  is the mass flow rate

The useful work is then FD U mrate V U( ) U

The energy equation simplifies to W
U

2

2









mrate 
V

2

2









mrate 
mrate

2
V

2
U

2
 

Hence η
mrate V U( ) U

mrate

2
V

2
U

2
 


2 V U( ) U

V
2

U
2

 


2

1
V

U




With U 225
m

s
 and η 45% V U

2

η
1





 V 775
m

s

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Problem 10.108 [Difficulty: 4]

 

CS 



x 

y 
2h 

  



V2 = V3 = V V1 

V4 

Given: Definition of propulsion efficiency η

Find: η for moving and stationary boat

Solution:

Assumption: 1) Atmospheric pressure on CS 2) Horizontal 3) Steady w.r.t. the CV 4) Use velocities relative to CV

The x-momentum (Example 10.3): T u1 mrate  u4 mrate  mrate V4 V1 

Applying the energy equation to steady, incompressible, uniform flow through the moving CV gives the minimum power input

requirement

Pmin mrate

V4
2

2

V1
2

2










On the other hand, useful work is done at the rate of

Puseful V1 T V1 mrate V4 V1 

Combining these expressions η
V1 mrate V4 V1 

mrate

V4
2

2

V1
2

2











V1 V4 V1 

1

2
V4 V1  V4 V1 



or η
2 V1

V1 V4


When in motion V1 30 mph and V4 90 mph η
2 V1

V1 V4
 η 50 %

For the stationary case V1 0 mph η
2 V1

V1 V4
 η 0 %
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Problem 10.111 [Difficulty: 2]

Given: NASA-DOE wind turbine generator

Find: Estimate rotor tip speed and power coefficient at maximum power condition

Solution:

Basic equations: CP

Pm

1

2
ρ V

3
 π R

2


 X
ω R

V
 U ω R η

Pm

Pideal



and we have ρ 0.00237
slug

ft
3

 ω 45 rpm 4.712
rad

s
 R 63 ft V 16 knot 27.005

ft

s
 P 135 hp η 74%

The blade tip speed is: U ω R 297
ft

s


The tip speed ratio is: X
ω R

V
10.994 (X will decrease at the wind speed increases.)

The mechanical work out is: Pm
P

η
182.4 hp From this we can calculate the power coefficient:

CP

Pm

1

2
ρ V

3
 π R

2


0.345
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Problem 10.113 [Difficulty: 2]

Given: Model of farm windmill

Find: Angular speed for optimum power; Power output

Solution:

Basic equations: CP
P

1

2
ρ V

3
 π R

2


 X
ω R

V
 and we have ρ 1.225

kg

m
3



From Fig. 10.45 CPmax 0.3 at X 0.8 and D 1 m R
D

2
 R 0.5 m

Hence, for V 10
m

s
 ω

X V

R
 ω 16

rad

s
 ω 153 rpm

Also P CPmax
1

2
 ρ V

3
 π R

2
 P 144 W



Problem 10.114 [Difficulty: 2]

Given: NASA-DOE wind turbine generator

Find: Estimate rotor tip speed and power coefficient at maximum power condition

Solution:

Basic equations: CP

Pm

1

2
ρ V

3
 π R

2


 X
ω R

V
 U ω R η

Pm

Pideal



and we have ρ 1.23
kg

m
3

 ω 70 rpm R 5 m H 18 m A 110 m
2

 U ω R 36.652
m

s


From Fig. 10.45: CP 0.34 when X 5.3 (maximum power condition) If we replace the π R
2

 term in the power coefficient

with the swept area we will get: P
1

2
CP ρ V

3
 A

Here are the results, calculated using Excel:

A = 110.00 m
2

Power coefficient data were taken from Fig. 10.45

ρ  = 1.23 kg/m
3

U = 36.65 m/s

V  (kt) V  (m/s) X C P P (kW)

10.0 5.14 7.125 0.00 0.00

12.5 6.43 5.700 0.30 5.40

15.0 7.72 4.750 0.32 9.95

17.5 9.00 4.071 0.20 9.87

20.0 10.29 3.562 0.10 7.37

22.5 11.57 3.167 0.05 4.72

25.0 12.86 2.850 0.02 2.88

30.0 15.43 2.375 0.00 0.00

Power Versus Wind Speed
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Problem 10.117 [Difficulty: 2]

Given: Prototype air compressor, 1/5 scale model to be built

Find: Mass flow rate and power requirements for operation at equivalent efficiency

Solution:

Basic equations: η f1

M R T01

p01 D
2



ω D

c01













Wc

ρ01 ω
3

 D
5


f2

M R T01

p01 D
2



ω D

c01













Dm

Dp

1

5


Given data: Mp 8.9
kg

s
 ωp 600 rpm Wcp 5.6 MW

Since the efficiencies are the same for the prototype and the model, it follows that:

Mm Rm T01m

p01m Dm
2



Mp Rp T01p

p01p Dp
2




ωm Dm

c01m

ωp Dp

c01p


Wcm

ρ01m ωm
3

 Dm
5



Wcp

ρ01p ωp
3

 Dp
5




Given identical entrance conditions for model and prototype and since the working fluid for both is air:

Mm

Dm
2

Mp

Dp
2

 Solving for the mass flow rate of the model: Mm Mp

Dm

Dp









2

 Mm 0.356
kg

s


ωm Dm ωp Dp Solving for the speed of the model: ωm ωp

Dp

Dm

 3000 rpm

Wcm

ωm
3

Dm
5



Wcp

ωp
3

Dp
5


 Solving for the power requirement for the model: Wcm Wcp

ωm

ωp









3


Dm

Dp









5



Wcm 0.224 MW



Problem 10.118 [Difficulty: 3]

Given: Prototype air compressor equipped with throttle to control entry pressure

Find: Speed and mass flow rate of compressor at off-design entrance conditions

Solution:

Basic equations: η f1

M T01

p01

ω

T01









∆T01

T01

f2

M T01

p01

ω

T01










Given data: p01d 14.7 psi T01d 70 °F ωd 3200 rpm T01 58 °F Md 125
lbm

s
 p01 8.0 psi

Since the normalized speed is equal to that of the design point, it follows that:
ω

T01

ωd

T01d



Solving for the required speed: ω ωd

T01

T01d

 ω 3164 rpm

At similar conditions:
M T01

p01

Md T01d

p01d

 Solving for the actual mass flow rate: M Md

T01d

T01


p01

p01d

 M 68.8
lbm

s




Problem 10.119 [Difficulty: 3]

Given: Design conditions for jet turbine, off-design actual conditions

Find: New operating speed, mass flow rate, and exit conditions for similar operation

Solution:

Basic equations: η f1

M T01

p01

ω

T01









∆T0

T01

f2

M T01

p01

ω

T01









p01

p02

f3

M T01

p01

ω

T01










Given data: p01d 160 psi T01d 1700 °F ωd 500 rpm Md 500
lbm

s
 p02d 80 psi T02d 1350 °F

p01 140 psi T01 1600 °F

At similar conditions:
ω

T01

ωd

T01d

 Solving for the required speed: ω ωd

T01

T01d

 ω 488 rpm

M T01

p01

Md T01d

p01d

 Solving for the actual mass flow rate: M Md

T01d

T01


p01

p01d

 M 448
lbm

s


∆T0

T01

∆T0d

T01d

 Solving for the temperature drop: ∆T0 ∆T0d

T01

T01d

 Substituting in temperatures:

T01 T02 T01d T02d 
T01

T01d

 T02 T01 T01d T02d 
T01

T01d


T02 1266 °F

p01

p02

p01d

p02d

 Solving for the exit pressure: p02 p01

p02d

p01d

 p02 70 psi



 Problem 10.120 [Difficulty: 4] 
 

 
 

 

Discussion: When we change the working fluid, we need to be sure that we use the correct similitude 

relationships. Specifically, we would need to keep fluid-specific parameters (gas constant and specific heat 

ratio) in the relationships. The functional relationships are: 

 

  










k

c

NDND

ND

m
f

DN

P

ND

h s ,,,,,
01

2

01

3

01

153

01

2

0








 

 

So these dimensionless groups need to be considered. When we replace air with helium, both the gas constant R 

and the specific heat ratio k will increase. Given a fixed inflow pressure and temperature and a fixed geometry, 

the effect would be to decrease density and increase sound speed. Therefore, replacing air with helium should 

result in decreased mass flow rate and power, and an increased operating speed. 

 

When considering dimensional parameters, the important thing to remember is that the operability maps for 

compressors and/or turbines were constructed for a single working fluid. Therefore, to be safe, an engineer 

should reconstruct an operability map for a new working fluid. 

 



Problem 11.1 [Difficulty: 2]

Given: Trapezoidal channel

Find: Derive expression for hydraulic radius; Plot R/y versus y for two different side slopes

Solution:

Available data b 2 m α1 30 deg α2 60 deg

The area is (from simple geometry of a rectangle and triangles) A b y 2
1

2
 y y cot α( ) y b y cot α( )( )

The wetted perimeter is (from simple geometry) P b 2
y

sin α( )


Hence the hydraulic radius is R
A

P


y b y cot α( )( )

b 2
y

sin α( )


 which is the same as that listed in Table 11.1

We are to plot
R

y

b y cot α( )

b 2
y

sin α( )


 with b 2 m for α = 30o and 60o, and 0.5 < y < 3 m.

The graph is shown below; it can be plotted in Excel.

0 0.5 1 1.5 2 2.5 3

0.25

0.5

0.75

30 Degrees

60 Degrees

y (m)

R
/y

As the depth increases, the hydraulic radius becomes smaller relative to depth y - wetted perimeter becomes dominant over area



Problem 11.2 [Difficulty: 2]

Given: Circular channel

Find: Derive expression for hydraulic radius; Plot R/D versus D for a range of depths

Solution:

The area is (from simple geometry - a segment of a circle plus two triangular sections)

A
D

2

8
α⋅ 2

1

2
⋅

D

2
⋅ sin π

α

2
−⎛⎜

⎝
⎞
⎠

⋅
D

2
⋅ cos π

α

2
−⎛⎜

⎝
⎞
⎠

⋅+=
D

2

8
α⋅

D
2

4
sin π

α

2
−⎛⎜

⎝
⎞
⎠

⋅ cos π
α

2
−⎛⎜

⎝
⎞
⎠

⋅+=

A
D

2

8
α⋅

D
2

8
sin 2 π⋅ α−( )⋅+=

D
2

8
α⋅

D
2

8
sin α( )⋅−=

D
2

8
α sin α( )−( )⋅=

The wetted perimeter is (from simple geometry) P
D

2
α⋅=

Hence the hydraulic radius is R
A

P
=

D
2

8
α sin α( )−( )⋅

D

2
α⋅

=
1

4
1

sin α( )

α
−⎛⎜

⎝
⎞
⎠

⋅ D⋅= which is the same as that listed in Table 11.1

We are to plot
R

D

1

4
1

sin α( )

α
−⎛⎜

⎝
⎞
⎠

⋅=

We will need y as a function of α: y
D

2

D

2
cos π

α

2
−⎛⎜

⎝
⎞
⎠

⋅+=
D

2
1 cos

α

2

⎛⎜
⎝

⎞
⎠

−⎛⎜
⎝

⎞
⎠

⋅= or
y

D

1

2
1 cos

α

2

⎛⎜
⎝

⎞
⎠

−⎛⎜
⎝

⎞
⎠

⋅=

The graph can be plotted in Excel.
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Problem 11.3 [Difficulty: 1]

Given: Wave from a passing boat

Find: Estimate of water depth

Solution:

Basic equation c g y

Available data c 10 mph or c 14.7
ft

s


We assume a shallow water wave (long wave compared to water depth)

c g y so y
c
2

g
 y 6.69 ft



Problem 11.4 [Difficulty: 1]

Given: Pebble dropped into flowing stream

Find: Estimate of water speed

Solution:

Basic equation c g y and relative speeds will be Vwave Vstream c

Available data y 2 m and Vwave
7 m

1 s
 Vwave 7

m

s


We assume a shallow water wave (long wave compared to water depth)

c g y so c 4.43
m

s


Hence Vstream Vwave c Vstream 2.57
m

s




Problem 11.5 [Difficulty: 2]

Given: Pebble dropped into flowing stream

Find: Estimate of water depth and speed

Solution:

Basic equation c g y and relative speeds will be Vwave Vstream c

Available data Vwaveupstream
5 ft

1 s
 Vwaveupstream 5

ft

s


Vwavedownstream
13 ft

1 s
 Vwavedownstream 13

ft

s


But we have Vwavedownstream Vstream c and Vwaveupstream Vstream c

Adding Vstream

Vwavedownstream Vwaveupstream

2
 Vstream 4

ft

s


Subtracting c
Vwavedownstream Vwaveupstream

2
 c 9

ft

s


We assume a shallow water wave (long wave compared to water depth)

Hence c g y so y
c
2

g
 y 2.52 ft



Problem 11.6 [Difficulty: 3]

Given: Speed of surface waves with no surface tension

Find: Speed when λ/y approaches zero or infinity; Value of λ/y for which speed is 99% of this latter value

Solution:

Basic equation c
g λ⋅

2 π⋅ tanh
2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅

= (1)

For λ/y << 1 tanh
2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

approaches 1 tanh ∞( ) 1→ so c
g λ⋅

2 π⋅
=

Hence c is proportional to λ so as λ/y approaches ∞ c g y⋅=

We wish to find λ/y when c 0.99 g y⋅⋅=

Combining this with Eq 1 0.99 g y⋅⋅
g λ⋅

2 π⋅ tanh
2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅

= or 0.99
2

g⋅ y⋅
g λ⋅

2 π⋅ tanh
2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅

=

Hence 0.99
2

2⋅ π⋅ tanh
2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅
λ

y
= Letting λ/y = x we find 0.99

2
2⋅ π⋅ tanh

2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅ x=

This is a nonlinear equation in x that can be solved by iteration or using Excel's Goal Seek or Solver

x 1= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 6.16= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 4.74=

x 4.74= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.35= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.09=

x 5.09= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.2= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.15=

x 5.15= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.17= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.16=

x 5.16= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.17= x 0.99
2

2⋅ π⋅ tanh
2 π⋅

x

⎛⎜
⎝

⎞
⎠

⋅= x 5.16=

Hence
λ

y
5.16=



Problem 11.7 [Difficulty: 1]

Given: Expression for capillary wave length

Find: Length of water and mercury waves

Solution:

Basic equation λ 2 π
σ

ρ g


Available data Table A.2 (20oC) SGHg 13.55 SGw 0.998 ρ 1000
kg

m
3



Table A.4 (20oC) σHg 484 10
3


N

m
 σw 72.8 10

3


N

m


Hence λHg 2 π
σHg

SGHg ρ g
 λHg 12 mm λHg 0.472 in

λw 2 π
σw

SGw ρ g
 λw 17.1 mm λw 0.675 in



Problem 11.8 [Difficulty: 2]

Given: Expression for surface wave speed

Find: Plot speed versus wavelength for water and mercury waves

Solution:

Basic equation c
g λ⋅

2 π⋅

2 π⋅ σ⋅

ρ λ⋅
+⎛⎜

⎝
⎞
⎠

tanh
2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅=

Available data Table A.2 (20oC) SGHg 13.55= SGw 0.998= ρ 1000
kg

m
3

⋅=

Table A.4 (20oC) σHg 484 10
3−

×
N

m
⋅= σw 72.8 10

3−
×

N

m
⋅= y 7 mm⋅=

Hence
cw λ( )

g λ⋅

2 π⋅

2 π⋅ σw⋅

SGw ρ⋅ λ⋅
+

⎛
⎜
⎝

⎞

⎠
tanh

2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅= cHg λ( )
g λ⋅

2 π⋅

2 π⋅ σHg⋅

SGHg ρ⋅ λ⋅
+

⎛
⎜
⎝

⎞

⎠
tanh

2 π⋅ y⋅

λ

⎛⎜
⎝

⎞
⎠

⋅=
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Problem 11.9 [Difficulty: 1]

Given: Sharp object causing waves

Find: Flwo speed and Froude number

Solution:

Basic equation c g y

Available data y 150 mm θ 30 deg

We assume a shallow water wave (long wave compared to water depth)

c g y so c 1.21
m

s


From geometry

Hence sin θ( )
c

V
 so V

c

sin θ( )
 V 2.43

m

s


Also Fr
V

c
 Fr 2 or Fr

1

sin θ( )
 Fr 2



Problem 11.10 [Difficulty: 2]

Given: Shallow water waves

Find: Speed versus depth

Solution:

Basic equation c y( ) g y

We assume a shallow water wave (long wave compared to water depth)

1 10
3 0.01 0.1 1 10

0.1

1

10

Depth (m)

W
av

e 
S

p
ee

d
 (

m
/s

)

Rapid Flow: Fr > 1

Tranquil Flow: Fr < 1



Problem 11.11 [Difficulty: 2]

Given: Motion of sumerged body

Find: Speed versus ship length

Solution:

Basic equation c g y

We assume a shallow water wave (long wave compared to water depth)

In this case we want the Froude number to be 0.5, with Fr 0.5
V

c
 and c g x where x is the ship length

Hence V 0.5 c 0.5 g x

1 10 100 1 10
3

1

10

100

Ship Length (m)

S
h

ip
 S

p
ee

d
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m
/s
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Problem 11.12 [Difficulty: 1]

Given: Flow in a rectangular channel

Find: Froude numbers

Solution:

Basic equation Fr
V

g y


Available data y 750 mm V1 1
m

s
 V2 4

m

s


Hence Fr1

V1

g y
 Fr1 0.369 Subcritical flow

Fr2

V2

g y
 Fr2 1.47 Supercritical flow



Problem 11.12 [Difficulty: 2]

Given: Flow in a rectangular channel with wavy surface

Find: Froude numbers

Solution:

Basic equation Fr
V

g y


Available data b 10 ft y 6 ft

A "wavy" surface indicates an unstable flow, which suggests critical flow Fr 1

Hence V Fr g y V 13.9
ft

s


Then Q V b y Q 834
ft

3

s
 Q 3.74 10

5
 gpm



Problem 11.14 [Difficulty: 2]

Given: Data on sluice gate

Find: Downstream depth; Froude number

Solution:

Basic equation:
p1

ρ g⋅

V1
2

2 g⋅
+ y1+

p2

ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.

Noting that p1 = p2 = patm, (1 = upstream, 2 = downstream) the Bernoulli equation becomes

V1
2

2 g⋅
y1+

V2
2

2 g⋅
y2+=

The given data is b 5 m⋅= y1 2.5 m⋅= Q 10
m

3

s
⋅=

For mass flow Q V A⋅= so V1
Q

b y1⋅
= and V2

Q

b y2⋅
=

Using these in the Bernoulli equation

Q

b y1⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y1+

Q

b y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+= (1)

The only unknown on the right is y2.  The left side evaluates to

Q

b y1⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y1+ 2.53 m=

To find y2 we need to solve the non-linear equation.  We must do this numerically; we may use the Newton method or similar, or

Excel's Solver or Goal Seek.  Here we interate manually, starting with an arbitrary value less than y1.

For y2 0.25 m⋅=

Q

b y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 3.51 m= For y2 0.3 m⋅=

Q

b y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 2.57 m=

For y2 0.305 m⋅=

Q

b y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 2.50 m= For y2 0.302 m⋅=

Q

b y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 2.54 m=

Hence y2 0.302 m= is the closest to three figs.

Then V2
Q

b y2⋅
= V2 6.62

m

s
= Fr2

V2

g y2⋅
= Fr2 3.85=



Problem 11.15 [Difficulty: 3]

Given: Rectangular channel

Find: Plot of specific energy curves; Critical depths; Critical specific energy

Solution:

Given data: b = 20 ft

Specific energy: Critical depth:

Q  = Q  = Q  = Q = Q =

y  (ft) 0 25 75 125 200

0.5 0.50 0.60 1.37 2.93 6.71

0.6 0.60 0.67 1.21 2.28 4.91

0.8 0.80 0.84 1.14 1.75 3.23

1.0 1.00 1.02 1.22 1.61 2.55

1.2 1.20 1.22 1.35 1.62 2.28

1.4 1.40 1.41 1.51 1.71 2.19

1.6 1.60 1.61 1.69 1.84 2.21

1.8 1.80 1.81 1.87 1.99 2.28

2.0 2.00 2.01 2.05 2.15 2.39

2.2 2.20 2.21 2.25 2.33 2.52

2.4 2.40 2.40 2.44 2.51 2.67

2.6 2.60 2.60 2.63 2.69 2.83

2.8 2.80 2.80 2.83 2.88 3.00

3.0 3.00 3.00 3.02 3.07 3.17

3.5 3.50 3.50 3.52 3.55 3.63

4.0 4.00 4.00 4.01 4.04 4.10

4.5 4.50 4.50 4.51 4.53 4.58

5.0 5.00 5.00 5.01 5.02 5.06

y c  (ft) 0.365 0.759 1.067 1.46

E c  (ft) 0.547 1.14 1.60 2.19

Specific Energy, E  (ft·lb/lb)

0

1

2

3

4

5

0 2 4 6

E  (ft)

y  (ft)

Q = 0

Q = 25 cfs

Q = 75 cfs

Q = 125 cfs

Q = 200 cfs

22

2 1

2 ygb

Q
yE ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

3

1

2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

gb

Q
y c



Problem 11.16 [Difficulty: 1]

Given: Rectangular channel flow

Find: Critical depth

Solution:

Basic equations: yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

=

Given data: b 2.5 m⋅= Q 3
m

3

s
⋅=

Hence yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= yc 0.528 m=



Problem 11.17 [Difficulty: 3]

Given: Data on trapezoidal channel

Find: Critical depth and velocity

Solution:

Basic equation: E y
V

2

2 g


S0 0.0016The given data is: b 20 ft α atan 2( ) α 63.4deg n 0.025 Q 400
ft

3

s


In terms of flow rate E y
Q

2

2 A
2

 g
 where (Table 11.1) A y b y cot α( )( )

Hence in terms of y E y
Q

2

2 b y cot α( )( )
2

 y
2

 g


For critical conditions
dE

dy
0 1

Q
2

g y
3

 b y cot α( )( )
2




Q
2

cot α( )

g y
2

 b y cot α( )( )
3


 1

Q
2

b 2 y cot α( )( )

g y
3

 b y cot α( )( )
3




Hence g y
3

 b y cot α( )( )
3

 Q
2

b 2 y cot α( )( ) 0

Let f y( ) g y
3

 b y cot α( )( )
3

 Q
2

b 2 y cot α( )( )

We can iterate or use Excel's Goal Seek or Solver to find y when f(y) = 0

Guess y 2 ft f y( ) 1.14 10
6


ft

7

s
2

 y 2.25 ft f y( ) 1.05 10
5


ft

7

s
2

 y 2.35 ft f y( ) 3.88 10
5


ft

7

s
2



The solution is somewhere between y = 2.25 ft and y = 2.35 ft, as the sign of f(y) changes here.

y 2.3 ft f y( ) 1.36 10
5


ft

7

s
2

 y 2.275 ft f y( ) 1.38 10
4


ft

7

s
2

 y 2.272 ft f y( ) 657
ft

7

s
2



Hence critical depth is y 2.27 ft and A y b y cot α( )( ) A 48.0 ft
2



and critical speed is V
Q

A
 V 8.34

ft

s




Problem 11.18 [Difficulty: 2]

Given: Data on rectangular channel

Find: Minimum specific energy; Flow depth; Speed

Solution:

Basic equation: E y
V

2

2 g⋅
+=

In Section 11-2 we prove that the minimum specific energy is when we have critical flow; here we rederive the minimum energy point

For a rectangular channel Q V b⋅ y⋅= or V
Q

b y⋅
= with

Q

b
10

ft
3

s

ft
⋅= constant=

Hence, using this in the basic equation E y
Q

b y⋅
⎛⎜
⎝

⎞
⎠

2
1

2 g⋅
⋅+= y

Q
2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+=

E is a minimum when
dE

dy
1

Q
2

b
2

g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
3

⋅−= 0= or y
Q

2

b
2

g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= y 1.46 ft⋅=

The speed is then given by V
Q

b y⋅
= V 6.85

ft

s
⋅=

Note that from Eq. 11.22 we also have Vc
g Q⋅

b

⎛⎜
⎝

⎞
⎠

1

3

= Vc 6.85
ft

s
⋅= which agrees with the above

The minimum energy is then Emin y
V

2

2 g⋅
+= Emin 2.19 ft⋅=



Problem 11.19 [Difficulty: 3]

Given: Data on rectangular channel

Find: Depths for twice the minimum energy

Solution:

Basic

equation:
E y

V
2

2 g⋅
+=

For a rectangular channel Q V b⋅ y⋅= or V
Q

b y⋅
= with

Q

b
10

ft
3

s

ft
⋅= constant=

Hence, using this in the basic eqn. E y
Q

b y⋅
⎛⎜
⎝

⎞
⎠

2
1

2 g⋅
⋅+= y

Q
2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+= and E 2 2.19× ft⋅= E 4.38 ft⋅=

We have a nonlinear implicit equation for y y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ E=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start

with a y larger than the critical, and evaluate the left side of the equation so that it is equal to E 4.38 ft⋅=

For y 2 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 2.39 ft⋅= For y 4 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 4.10 ft⋅=

For y 4.5 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 4.58 ft⋅= For y 4.30 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 4.38 ft⋅=

Hence y 4.30 ft⋅=

For the shallow depth

For y 1 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 2.55 ft⋅= For y 0.5 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 6.72 ft⋅=

For y 0.6 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 4.92 ft⋅= For y 0.65 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 4.33 ft⋅=

For y 0.645 ft⋅= y
Q

2

2 b
2

⋅ g⋅

⎛⎜
⎜
⎝

⎞

⎠

1

y
2

⋅+ 4.38 ft⋅= Hence y 0.645 ft⋅=



Problem 11.20 [Difficulty: 2]

Given: Trapezoidal channel

Find: Critcal depth

Solution:

Basic equation: E y
V

2

2 g


The critical depth occurs when the specific energy is minimized

For a trapezoidal channel (Table 11.1) A y b cot(α) y( )

Hence for V V
Q

A


Q

y b cot(α) y( )


Using this in Eq. 11.14 E y
Q

y b cot(α) y( )






2
1

2 g


E is a minimum when
dE

dy
1

Q
2

cot(α)

g y
2

 b y cot(α)( )
3




Q
2

g y
3

 b y cot(α)( )
2


 0

Hence we obtain for y
Q

2
cot(α)

g y
2

 b y cot(α)( )
3



Q
2

g y
3

 b y cot(α)( )
2


 1

This can be simplified to Q
2

b 2 y cot(α)( )

g y
3

 b y cot(α)( )
3


1

This expression is the simplest one for y; it is implicit



Problem 11.21 [Difficulty: 3]

Given: Data on trapezoidal channel

Find: Critical depth

Solution:

Basic equation: E y
V

2

2 g⋅
+=

In Section 11-2 we prove that the minimum specific energy is when we have critical flow; here we rederive the minimum energy point

For a trapezoidal channel (Table 11.1) A b cot(α) y⋅+( ) y⋅= and b 10 ft⋅= α atan
3

1

⎛⎜
⎝

⎞
⎠

= α 71.6 deg=

Hence for V V
Q

A
=

Q

b cot(α) y⋅+( ) y⋅
= and Q 400

ft
3

s
⋅=

Using this in the basic equation E y
Q

b cot(α) y⋅+( ) y⋅
⎡⎢
⎣

⎤⎥
⎦

2
1

2 g⋅
⋅+=

E is a minimum when
dE

dy
1

Q
2

cot(α)⋅

g y
2

⋅ b y cot(α)⋅+( )
3

⋅
−

Q
2

g y
3

⋅ b y cot(α)⋅+( )
2

⋅
−= 0=

Hence we obtain for y
Q

2
cot(α)⋅

g y
2

⋅ b y cot(α)⋅+( )
3

⋅

Q
2

g y
3

⋅ b y cot(α)⋅+( )
2

⋅
+ 1= or

Q
2

b 2 y⋅ cot(α)⋅+( )⋅

g y
3

⋅ b y cot(α)⋅+( )
3

⋅
1=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below, to make

the left side equal unity

y 5 ft⋅=
Q

2
b 2 y⋅ cot α( )⋅+( )⋅

g y
3

⋅ b y cot α( )⋅+( )
3

⋅
0.3= y 4 ft⋅=

Q
2

b 2 y⋅ cot α( )⋅+( )⋅

g y
3

⋅ b y cot α( )⋅+( )
3

⋅
0.7=

y 3.5 ft⋅=
Q

2
b 2 y⋅ cot α( )⋅+( )⋅

g y
3

⋅ b y cot α( )⋅+( )
3

⋅
1.03= y 3.55 ft⋅=

Q
2

b 2 y⋅ cot α( )⋅+( )⋅

g y
3

⋅ b y cot α( )⋅+( )
3

⋅
0.98=

y 3.53 ft⋅=
Q

2
b 2 y⋅ cot α( )⋅+( )⋅

g y
3

⋅ b y cot α( )⋅+( )
3

⋅
1.00= The critical depth is y 3.53 ft⋅=



Problem 11.22 [2]

Given: Data on venturi flume

Find: Flow rate

Solution:

Basic equation:
p1

ρ g⋅

V1
2

2 g⋅
+ y1+

p2

ρ g⋅

V2
2

2 g⋅
+ y2+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow

At each section Q V A⋅= V b⋅ y⋅= or V
Q

b y⋅
=

The given data is b1 2 ft⋅= y1 1 ft⋅= b2 1 ft⋅= y2 0.75 ft⋅=

Hence the Bernoulli equation becomes (with p1 = p2 = patm)

Q

b1 y1⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y1+

Q

b2 y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+=

Solving for Q Q
2 g⋅ y1 y2−( )⋅

1

b2 y2⋅
⎛
⎜
⎝

⎞
⎠

2
1

b1 y1⋅
⎛
⎜
⎝

⎞
⎠

2

−

= Q 3.24
ft

3

s
⋅=



Problem 11.23 [Difficulty: 3]

Given: Data on rectangular channel and a bump

Find: Elevation of free surface above the bump

Solution:

Basic

equation:

p1

ρ g

V1
2

2 g
 y1

p2

ρ g

V2
2

2 g
 y2 h The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the

bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V

2

2 g
y and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h

At each section Q V A V b y or V
Q

b y


The given data is b 10 ft y1 1 ft h 4 in Q 100
ft

3

s


Hence we find V1
Q

b y1
 V1 10

ft

s


and E1

V1
2

2 g
y1 E1 2.554 ft

Hence E1 E2 h
V2

2

2 g
y2 h

Q
2

2 g b
2

 y2
2


y2 h or

Q
2

2 g b
2

 y2
2


y2 E1 h

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select y2

so the left side of the equation equals E1 h 2.22 ft  

For y2 1 ft
Q

2

2 g b
2

 y2
2


y2 2.55 ft For y2 1.5 ft

Q
2

2 g b
2

 y2
2


y2 2.19 ft

For y2 1.4 ft
Q

2

2 g b
2

 y2
2


y2 2.19 ft For y2 1.3 ft

Q
2

2 g b
2

 y2
2


y2 2.22 ft

Hence y2 1.30 ft

Note that V2
Q

b y2
 V2 7.69

ft

s


so we have Fr1

V1

g y1
 Fr1 1.76 and Fr2

V2

g y2
 Fr2 1.19



Problem 11.24 [Difficulty: 3]

Given: Data on rectangular channel and a bump

Find: Local change in flow depth caused by the bump

Solution:

Basic equation:
p1

ρ g

V1
2

2 g
 y1

p2

ρ g

V2
2

2 g
 y2 h The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the

bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V

2

2 g
y and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h

At each section Q V A V b y or V
Q

b y


The given data is b 10 ft y1 1 ft h 0.25 ft Q 20
ft

3

s


Hence we find V1
Q

b y1
 V1 2

ft

s


and E1

V1
2

2 g
y1 E1 1.062 ft

Hence E1 E2 h
V2

2

2 g
y2 h

Q
2

2 g b
2

 y2
2


y2 h or

Q
2

2 g b
2

 y2
2


y2 E1 h

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select

y
2
 so the left side of the equation equals E1 h 0.812 ft  

For y2 0.75 ft
Q

2

2 g b
2

 y2
2


y2 0.861 ft For y2 0.7 ft

Q
2

2 g b
2

 y2
2


y2 0.827 ft

For y2 0.65 ft
Q

2

2 g b
2

 y2
2


y2 0.797 ft For y2 0.676 ft

Q
2

2 g b
2

 y2
2


y2 0.812 ft

Hence y2 0.676 ft and
y2 y1

y1

32.4 %

Note that V2
Q

b y2
 V2 2.96

ft

s


so we have Fr1

V1

g y1
 Fr1 0.353 and Fr2

V2

g y2
 Fr2 0.634



Problem 11.25 [Difficulty: 3]

Given: Data on rectangular channel and a bump

Find: Local change in flow depth caused by the bump

Solution:

Basic equation:
p1

ρ g

V1
2

2 g
 y1

p2

ρ g

V2
2

2 g
 y2 h The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the

bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V

2

2 g
y and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h

At each section Q V A V b y or V
Q

b y


The given data is b 10 ft y1 0.3 ft h 0.1 ft Q 20
ft

3

s


Hence we find V1
Q

b y1
 V1 6.67

ft

s


and E1

V1
2

2 g
y1 E1 0.991 ft

Hence E1 E2 h
V2

2

2 g
y2 h

Q
2

2 g b
2

 y2
2


y2 h or

Q
2

2 g b
2

 y2
2


y2 E1 h

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select y2

so the left side of the equation equals E1 h 0.891 ft  

For y2 0.3 ft
Q

2

2 g b
2

 y2
2


y2 0.991 ft For y2 0.35 ft

Q
2

2 g b
2

 y2
2


y2 0.857 ft

For y2 0.33 ft
Q

2

2 g b
2

 y2
2


y2 0.901 ft For y2 0.334 ft

Q
2

2 g b
2

 y2
2


y2 0.891 ft

Hence y2 0.334 ft and
y2 y1

y1

11.3 %

Note that V2
Q

b y2
 V2 5.99

ft

s


so we have Fr1

V1

g y1
 Fr1 2.15 and Fr2

V2

g y2
 Fr2 1.83



Problem 11.26 [Difficulty: 3]

Given: Data on wide channel

Find: Stream depth after rise

Solution:

Basic equation:
p1

ρ g

V1
2

2 g
 y1

p2

ρ g

V2
2

2 g
 y2 h The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.  Note that at location 2 (the

bump), the potential is y2 + h, where h is the bump height

Recalling the specific energy E
V

2

2 g
y and noting that p1 = p2 = patm, the Bernoulli equation becomes E1 E2 h

At each section Q V A V1 b y1 V2 b y2 V2 V1

y1

y2



The given data is y1 2 ft V1 3
ft

s
 h 0.5 ft

Hence E1

V1
2

2 g
y1 E1 2.14 ft

Then E1 E2 h
V2

2

2 g
y2 h

V1
2

y1
2



2 g

1

y2
2

 y2 h or
V1

2
y1

2


2 g

1

y2
2

 y2 E1 h

This is a nonlinear implicit equation for y2 and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We select

y
2
 so the left side of the equation equals E1 h 1.64 ft  

For y2 2 ft
V1

2
y1

2


2 g

1

y2
2

 y2 2.14 ft For y2 1.5 ft
V1

2
y1

2


2 g

1

y2
2

 y2 1.75 ft

For y2 1.3 ft
V1

2
y1

2


2 g

1

y2
2

 y2 1.63 ft For y2 1.31 ft
V1

2
y1

2


2 g

1

y2
2

 y2 1.64 ft

Hence y2 1.31 ft

Note that V2 V1

y1

y2

 V2 4.58
ft

s


so we have Fr1

V1

g y1
 Fr1 0.37 and Fr2

V2

g y2
 Fr2 0.71



Problem 11.27 [Difficulty: 2]

Given: Data on sluice gate

Find: Water level upstream; Maximum flow rate

Solution:

Basic equation:
p1

ρ g⋅

V1
2

2 g⋅
+ y1+

p2

ρ g⋅

V2
2

2 g⋅
+ y2+ h+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.

Noting that p1 = p2 = patm, and V1 is approximately zero (1 = upstream, 2 = downstream) the Bernoulli equation becomes

y1

V2
2

2 g⋅
y2+=

The given data is
Q

b
10

m
2

s
⋅= y2 1.25 m⋅=

Hence Q V2 A2⋅= V2 b⋅ y2⋅= or V2
Q

b y2⋅
= V2 8

m

s
=

Then upstream y1

V2
2

2 g⋅
y2+

⎛⎜
⎜⎝

⎞

⎠
= y1 4.51 m=

The maximum flow rate occurs at critical conditions (see Section 11-2), for constant specific energy

In this case V2 Vc= g yc⋅=

Hence we find y1

Vc
2

2 g⋅
yc+=

g yc⋅

2 g⋅
yc+=

3

2
yc⋅=

Hence yc
2

3
y1⋅= yc 3.01 m= Vc g yc⋅= Vc 5.43

m

s
=

Q

b
Vc yc⋅=

Q

b
16.3

m
3

s

m
⋅= (Maximum flow rate)



Problem 11.28 [Difficulty: 2]

Given: Data on sluice gate

Find: Flow rate

Solution:

Basic equation:
p1

ρ g⋅

V1
2

2 g⋅
+ y1+

p2

ρ g⋅

V2
2

2 g⋅
+ y2+= The Bernoulli equation applies because we have steady,

incompressible, frictionless flow.

Noting that p1 = p2 = patm, (1 = upstream, 2 = downstream) the Bernoulli equation becomes

V1
2

2 g⋅
y1+

V2
2

2 g⋅
y2+=

The given data is b 3 ft⋅= y1 6 ft⋅= y2 0.9 ft⋅=

Also Q V A⋅= so V1
Q

b y1⋅
= and V2

Q

b y2⋅
=

Using these in the Bernoulli equation

Q

b y1⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y1+

Q

b y2⋅
⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+=

Solving for Q Q
2 g⋅ b

2
⋅ y1

2
⋅ y2

2
⋅

y1 y2+
= Q 49.5

ft
3

s
⋅=

Note that V1
Q

b y1⋅
= V1 2.75

ft

s
⋅= Fr1

V1

g y1⋅
= Fr1 0.198=

V2
Q

b y2⋅
= V2 18.3

ft

s
⋅= Fr2

V2

g y2⋅
= Fr2 3.41=



Problem 11.29 [Difficulty: 2]

Given: Data on sluice gate

Find: Water depth and velocity after gate

Solution:

Basic equation: E1

V1
2

2 g⋅
y1+=

p2

ρ g⋅

V2
2

2 g⋅
+= E2= For the gate

y3

y2

1

2
1− 1 8 Fr2

2
⋅++⎛

⎝
⎞
⎠⋅= For the jump (state 2 before, state 3 after)

The given data is y1 1.5 m⋅= V1 0.2
m

s
⋅=

Hence q y1 V1⋅= q 0.3
m

2

s
= E1

V1
2

2 g⋅
y1+= E1 1.50 m=

Then we need to solve
V2

2

2 g⋅
y2+ E1= or

q
2

2 g⋅ y2
2

⋅
y2+ E1= with E1 1.50 m=

We can solve this equation iteratively (or use Excel's Goal Seek or Solver)

For y2 0.5 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 0.518 m= For y2 0.05 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.89 m=

For y2 0.055 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.57 m= For y2 0.057 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.47 m=

For y2 0.0563 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.50 m= Hence y2 0.056 m= is the closest to three figs.

Then V2
q

y2

= V2 5.33
m

s
= Note that Fr2

V2

g y2⋅
= Fr2 7.17=



Problem 11.30 [Difficulty: 2]

Given: Rectangular channel flow with hump and/or side wall restriction

Find: Whether critical flow occurs

Solution:

Basic equations: yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= E y
Q

2

2 g⋅ A
2

⋅
+= A b y⋅= Emin

3

2
yc⋅= (From Example 11.4)

Given data: b 2 m⋅= y 1 m⋅= h 350 mm⋅= Q 2.4
m

3

s
⋅=

(a) For a hump with h 35 cm⋅= E1 y
Q

2

2 g⋅ b
2

⋅

1

y
2

⋅+= E1 1.07 m=

Then for the bump Ebump E1 h−= Ebump 0.723 m= (1)

For the minimum specific energy yc

Q

b

⎛⎜
⎝

⎞
⎠

2

g

⎡⎢
⎢
⎢⎣

⎤⎥
⎥
⎥⎦

1

3

= yc 0.528 m= Emin
3

2
yc⋅= Emin 0.791 m= (2)

Comparing Eqs. 1 and 2 we see that the bump IS sufficient for critical flow 

(b) For the sidewall restriction with bconst 1.5 m⋅= as in Example 11.4 we have Econst E1= Econst 1.073 m= (3)

With bconst: yc

Q

bconst

⎛
⎜
⎝

⎞
⎠

2

g

⎡⎢
⎢
⎢
⎣

⎤⎥
⎥
⎥
⎦

1

3

= yc 0.639 m= Eminconst
3

2
yc⋅= Eminconst 0.959 m= (4)

Comparing Eqs. 3 and 4 we see that the constriction is NOT sufficient for critical flow 

(c) For both, following Example 11.4 Eboth E1 h−= Eboth 0.723 m= (5)

Eminboth Eminconst= Eminboth 0.959 m= (6)

Comparing Eqs. 5 and 6 we see that the bump AND constriction ARE sufficient for critical flow (not surprising, as the bump alone is

sufficient!) 



Problem 11.31 [Difficulty: 2]

Given: Hydaulic jump data

Find: Energy consumption; temperature rise

Solution:

Basic equations: P ρ g Hl Q (1)

Hl is the head loss in m of fluid); multiplying by ρg produces energy/vol; multiplying by Q produces energy/time, or power

Urate ρ Q cH2O ∆T (2)

Urate is the rate of increase of internal energy of the flow; cH20∆T is the energy increase per unit mass due to a ∆T temperature rise;

multiplying by ρQ converts to energy rise of the entire flow/time

Given data: From Example 11.5 Q 9.65
m

3

s
 Hl 0.258 m ρ 999

kg

m
3

 and cH2O 1
kcal

kg K


From Eq. 1 P ρ g Hl Q P 24.4 kW a significant energy consumption

Equating Eqs. 1 and 2 ρ g Hl Q ρ Q cH2O ∆T or ∆T
g Hl

cH2O

 ∆T 6.043 10
4

 ∆°C

The power consumed by friction is quite large, but the flow is very large, so the rise in temperature is insignificant.

In English units:

P 32.7 hp Q 1.53 10
5

 gpm ∆T 1.088 10
3

 ∆°F



Problem 11.32 [Difficulty: 2]

Given: Data on rectangular channel and hydraulic jump

Find: Flow rate; Critical depth; Head loss

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−= yc

Q
2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

=

The given data is b 4 m⋅= y1 0.4 m⋅= y2 1.7 m⋅=

We can solve for Fr1 from the basic equation 1 8 Fr1
2

⋅+ 1 2
y2

y1

⋅+=

Fr1

1 2
y2

y1

⋅+
⎛
⎜
⎝

⎞

⎠

2

1−

8
= Fr1 3.34= and Fr1

V1

g y1⋅
=

Hence V1 Fr1 g y1⋅⋅= V1 6.62
m

s
=

Then Q V1 b⋅ y1⋅= Q 10.6
m

3

s
⋅=

The critical depth is yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= yc 0.894 m=

Also V2
Q

b y2⋅
= V2 1.56

m

s
= Fr2

V2

g y2⋅
= Fr2 0.381=

The energy loss is Hl y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−= Hl 0.808 m=

Note that we could used Hl

y2 y1−( )3
4 y1⋅ y2⋅

= Hl 0.808 m=



Problem 11.33 [Difficulty: 2]

Given: Data on wide channel and hydraulic jump

Find: Jump depth; Head loss

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−=

The given data is
Q

b
10

m
3

s

m
⋅= y1 1 m⋅=

Also Q V A⋅= V b⋅ y⋅=

Hence V1
Q

b y1⋅
= V1 10.0

m

s
= Fr1

V1

g y1⋅
= Fr1 3.19=

Then y2

y1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= y2 4.04 m=

V2
Q

b y2⋅
= V2 2.47

m

s
= Fr2

V2

g y2⋅
= Fr2 0.393=

The energy loss is Hl y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−= Hl 1.74 m=

Note that we could use Hl

y2 y1−( )3
4 y1⋅ y2⋅

= Hl 1.74 m=



Problem 11.34 [Difficulty: 1]

Given: Data on wide channel and hydraulic jump

Find: Jump depth

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅=

The given data is
Q

b
2

m
3

s

m
⋅= y1 500 mm⋅=

Also Q V A⋅= V b⋅ y⋅=

Hence V1
Q

b y1⋅
= V1 4.00

m

s
= Fr1

V1

g y1⋅
= Fr1 1.806=

Then y2

y1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= y2 1.05 m⋅=

Note: V2
Q

b y2⋅
= V2 6.24

ft

s
⋅= Fr2

V2

g y2⋅
= Fr2 0.592=



Problem 11.35 [Difficulty: 2]

Given: Data on wide channel and hydraulic jump

Find: Jump depth; Head loss

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−=

The given data is Q 200
ft

3

s
⋅= b 10 ft⋅= y1 1.2 ft⋅=

Also Q V A⋅= V b⋅ y⋅=

Hence V1
Q

b y1⋅
= V1 16.7

ft

s
⋅= Fr1

V1

g y1⋅
= Fr1 2.68=

Then y2

y1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= y2 3.99 ft⋅=

V2
Q

b y2⋅
= V2 5.01

ft

s
⋅= Fr2

V2

g y2⋅
= Fr2 0.442=

The energy loss is Hl y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−= Hl 1.14 ft⋅=

Note that we could use Hl

y2 y1−( )3
4 y1⋅ y2⋅

= Hl 1.14 ft⋅=



Problem 11.36 [Difficulty: 2]

Given: Data on wide channel and hydraulic jump

Find: Flow rate; Head loss

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−=

The given data is b 5 ft⋅= y1 0.66 ft⋅= y2 3.0 ft⋅=

We can solve for Fr1 from the basic equation 1 8 Fr1
2

⋅+ 1 2
y2

y1

⋅+=

Fr1

1 2
y2

y1

⋅+
⎛
⎜
⎝

⎞

⎠

2

1−

8
= Fr1 3.55= and Fr1

V1

g y1⋅
=

Hence V1 Fr1 g y1⋅⋅= V1 16.4
ft

s
⋅=

Then Q V1 b⋅ y1⋅= Q 54.0
ft

3

s
⋅=

Also V2
Q

b y2⋅
= V2 3.60

ft

s
⋅= Fr2

V2

g y2⋅
= Fr2 0.366=

The energy loss is Hl y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−= Hl 1.62 ft⋅=

Note that we could use Hl

y2 y1−( )3
4 y1⋅ y2⋅

= Hl 1.62 ft⋅=



Problem 11.37 [Difficulty: 2]

Given: Data on wide spillway flow

Find: Depth after hydraulic jump; Specific energy change

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−=

The given data is y1 0.9 m⋅= V1 25
m

s
=

Then Fr1 is Fr1

V1

g y1⋅
= Fr1 8.42=

Hence y2

y1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= y2 10.3 m=

Then Q V1 b⋅ y1⋅= V2 b⋅ y2⋅= V2 V1

y1

y2

⋅= V2 2.19
m

s
=

For the specific energies E1 y1

V1
2

2 g⋅
+= E1 32.8 m=

E2 y2

V2
2

2 g⋅
+= E2 10.5 m=

E2

E1

0.321=

The energy loss is Hl E1 E2−= Hl 22.3 m=

Note that we could use Hl

y2 y1−( )3
4 y1⋅ y2⋅

= Hl 22.3 m⋅=



Problem 11.38 [Difficulty: 2]

Given: Data on rectangular channel flow

Find: Depth after hydraulic jump; Specific energy change

Solution:

Basic equations:
y2

y1

1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= Hl E1 E2−= y1

V1
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
y2

V2
2

2 g⋅
+

⎛⎜
⎜⎝

⎞

⎠
−=

The given data is y1 0.4 m⋅= b 1 m⋅= Q 6.5
m

3

s
=

Then Q V1 b⋅ y1⋅= V2 b⋅ y2⋅= V1
Q

b y1⋅
= V1 16.3

m

s
=

Then Fr1 is Fr1

V1

g y1⋅
= Fr1 8.20=

Hence y2

y1

2
1− 1 8 Fr1

2
⋅++⎛

⎝
⎞
⎠⋅= y2 4.45 m=

and V2
Q

b y2⋅
= V2 1.46

m

s
=

For the specific energies E1 y1

V1
2

2 g⋅
+= E1 13.9 m=

E2 y2

V2
2

2 g⋅
+= E2 4.55 m=

The energy loss is Hl E1 E2−= Hl 9.31 m=

Note that we could use Hl

y2 y1−( )3
4 y1⋅ y2⋅

= Hl 9.31 m⋅=



Problem 11.39 [Difficulty: 3]

Given: Data on sluice gate

Find: Water depth before and after the jump

Solution:

Basic equation: E1

V1
2

2 g⋅
y1+=

p2

ρ g⋅

V2
2

2 g⋅
+= E2= For the gate

y3

y2

1

2
1− 1 8 Fr2

2
⋅++⎛

⎝
⎞
⎠⋅= For the jump (state 2 before, state 3 after)

The given data is y1 1.5 m⋅= V1 0.2
m

s
⋅=

Hence q y1 V1⋅= q 0.3
m

2

s
= E1

V1
2

2 g⋅
y1+= E1 1.50 m=

Then we need to solve
V2

2

2 g⋅
y2+ E1= or

q
2

2 g⋅ y2
2

⋅
y2+ E1= with E1 1.50 m=

We can solve this equation iteratively (or use Excel's Goal Seek or Solver)

For y2 0.5 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 0.518 m= For y2 0.05 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.89 m=

For y2 0.055 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.57 m= For y2 0.057 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.47 m=

For y2 0.0563 m⋅=

q

y2

⎛
⎜
⎝

⎞
⎠

2

2 g⋅
y2+ 1.50 m= Hence y2 0.056 m= is the closest to three figs.

Then V2
q

y2

= V2 5.33
m

s
= Note that Fr2

V2

g y2⋅
= Fr2 7.17=

For the jump (States 2 to 3) y3

y2

2
1− 1 8 Fr2

2
⋅++⎛

⎝
⎞
⎠⋅= y3 0.544 m=



Problem 11.40 [Difficulty: 3]

Given: Surge wave

y1

y2 V2 = VSurge 

At rest V2 Find: Surge speed

Solution:

Basic equations:
V1

2
y1⋅

g

y1
2

2
+

V2
2

y2⋅

g

y2
2

2
+=

(This is the basic momentum equation for the flow)

V1 y1⋅ V2 y2⋅= or
V1

V2

y2

y1

=

Then y2
2

y1
2

−
2

g
V1

2
y1⋅ V2

2
y2⋅−⎛

⎝
⎞
⎠⋅=

2 V2
2

⋅

g

V1

V2

⎛
⎜
⎝

⎞

⎠

2

y1⋅ y2−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=
2 V2

2
⋅

g

y2

y1

⎛
⎜
⎝

⎞

⎠

2

y1⋅ y2−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

y2
2

y1
2

−
2 V2

2
⋅

g

y2
2

y1

y2−
⎛
⎜
⎜
⎝

⎞

⎠
⋅=

2 V2
2

⋅ y2⋅

g

y2 y1−( )
y1

⋅=

Dividing by (y2 - y1) y2 y1+ 2
V2

2

g
⋅

y2

y1

⋅= or V2
2 g

2
y1⋅

y2 y1+( )
y2

⋅=

V2

g y1⋅

2
1

y1

y2

+
⎛
⎜
⎝

⎞

⎠
⋅=

But V2 VSurge= so VSurge

g y1⋅

2
1

y1

y2

+
⎛
⎜
⎝

⎞

⎠
⋅=



Problem 11.41 [Difficulty: 3]

y2

y1 

At rest

V1 = Vr + Vbore

Given: Tidal bore

Find: Speed of undisturbed river

Solution:

Basic equations:
V2

2
y2⋅

g

y2
2

2
+

V1
2

y1⋅

g

y1
2

2
+=

(This is the basic momentum equation for the flow)

V2 y2⋅ V1 y1⋅= or
V2

V1

y1

y2

=

Given data Vbore 18 mph⋅= Vbore 26.4
ft

s
⋅= y1 8 ft⋅= y2 y1 12 ft⋅+= y2 20 ft⋅=

Then y1
2

y2
2

−
2

g
V2

2
y2⋅ V1

2
y1⋅−⎛

⎝
⎞
⎠⋅=

2 V1
2

⋅

g

V2

V1

⎛
⎜
⎝

⎞

⎠

2

y2⋅ y1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=
2 V1

2
⋅

g

y1

y2

⎛
⎜
⎝

⎞

⎠

2

y2⋅ y1−
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

⋅=

y1
2

y2
2

−
2 V1

2
⋅

g

y1
2

y2

y1−
⎛
⎜
⎜
⎝

⎞

⎠
⋅=

2 V1
2

⋅ y1⋅

g

y1 y2−( )
y2

⋅=

Dividing by (y2 - y1) y1 y2+ 2
V1

2

g
⋅

y1

y2

⋅= or V1
2 g

2
y2⋅

y1 y2+( )
y1

⋅=

V1

g y2⋅

2
1

y2

y1

+
⎛
⎜
⎝

⎞

⎠
⋅= V1 33.6

ft

s
⋅= V1 22.9 mph⋅=

But V1 Vr Vbore+= or Vr V1 Vbore−= Vr 7.16
ft

s
⋅= Vr 4.88 mph⋅=



Problem 11.42 [Difficulty: 1]

Given: Rectangular channel flow

Find: Discharge

Solution:

Basic equation: Q
1

n
A Rh

2

3
 Sb

1

2


Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width b 2 m  and depth y 1.5 m  we find from Table 11.1

A b y A 3.00 m
2

 Rh
b y

b 2 y
 Rh 0.600 m

Manning's roughness coefficient is n 0.015 and Sb 0.0005

Q
1.49

n
A Rh

2

3
 Sb

1

2
 Q 3.18

m
3

s




Problem 11.43 [Difficulty: 3]

Given: Data on rectangular channel

Find: Depth of flow

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width b 2.5 m⋅=  and flow rate Q 3
m

3

s
⋅=  we find from Table 11.1 A b y⋅= R

b y⋅

b 2 y⋅+
=

Manning's roughness coefficient is n 0.015= and Sb 0.0004=

Hence the basic equation becomes Q
1

n
b⋅ y⋅

b y⋅

b 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ Sb

1

2
⋅=

Solving for y
y

b y⋅

b 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅
Q n⋅

b Sb

1

2
⋅

=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below, to make the

left side evaluate to 
Q n⋅

b Sb

1

2
⋅

0.900= .

For y 1= m( ) y
b y⋅

b 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ 0.676= For y 1.2= m( ) y
b y⋅

b 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ 0.865=

For y 1.23= m( ) y
b y⋅

b 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ 0.894= For y 1.24= m( ) y
b y⋅

b 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ 0.904=

The solution to three figures is y 1.24= (m)



Problem 11.44 [Difficulty: 3]

Given: Data on trapzoidal channel

Find: Depth of flow

Solution:

Basic equation: Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 8 ft⋅= α atan
1

2

⎛⎜
⎝
⎞
⎠

= α 26.6deg= Q 100
ft

3

s
⋅= S0 0.0004=

n 0.015=

Hence from Table 11.1 A y b y cot α( )⋅+( )⋅= y 8 2 y⋅+( )⋅= Rh
y b y cot(α)⋅+( )⋅

b
2 y⋅

sin α( )
+

=
y 8 2 y⋅+( )⋅

8 2 y⋅ 5⋅+
=

Hence Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1.49

0.015
y⋅ 8 2 y⋅+( )⋅ y⋅

y 8 2 y⋅+( )⋅

8 2 y⋅ 5⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2

3

⋅ 0.0004

1

2
⋅= 100= (Note that we don't use units!)

Solving for y
y 8 2 y⋅+( )⋅[ ]

5

3

8 2 y⋅ 5⋅+( )
2

3

50.3=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

For y 2= ft( )
y 8 2 y⋅+( )⋅[ ]

5

3

8 2 y⋅ 5⋅+( )
2

3

30.27= For y 3= ft( )
y 8 2 y⋅+( )⋅[ ]

5

3

8 2 y⋅ 5⋅+( )
2

3

65.8=

For y 2.6= ft( )
y 8 2 y⋅+( )⋅[ ]

5

3

8 2 y⋅ 5⋅+( )
2

3

49.81= For y 2.61= ft( )
y 8 2 y⋅+( )⋅[ ]

5

3

8 2 y⋅ 5⋅+( )
2

3

50.18=

The solution to three figures is y 2.61= (ft)



Problem 11.45 [Difficulty: 3]

Given: Data on trapezoidal channel

Find: Depth of flow

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 2.5 m⋅= α atan
1

2

⎛⎜
⎝

⎞
⎠

= α 26.6 deg= Q 3
m

3

s
⋅= S0 0.0004=

n 0.015=

Hence from Table 11.1 A y b cot α( ) y⋅+( )⋅= y 8 2 y⋅+( )⋅= R
y b y cot α( )⋅+( )⋅

b
2 y⋅

cot α( )
+

=
y 2.5 2 y⋅+( )⋅

2.5 2 y⋅ 5⋅+
=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

0.015
y⋅ 2.5 2 y⋅+( )⋅

2.5 2 y⋅+( ) y⋅

2.5 2 y⋅ 5⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2

3

⋅ 0.0004

1

2
⋅= 3= (Note that we don't use units!)

Solving for y
y 2.5 2 y⋅+( )⋅[ ]

5

3

2.5 2 y⋅ 5⋅+( )
2

3

2.25=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

For y 1= m( )
y 2.5 2 y⋅+( )⋅[ ]

5

3

2.5 2 y⋅ 5⋅+( )
2

3

3.36= For y 0.8= m( )
y 2.5 2 y⋅+( )⋅[ ]

5

3

2.5 2 y⋅ 5⋅+( )
2

3

2.17=

For y 0.81= m( )
y 2.5 2 y⋅+( )⋅[ ]

5

3

2.5 2 y⋅ 5⋅+( )
2

3

2.23= For y 0.815= m( )
y 2.5 2 y⋅+( )⋅[ ]

5

3

2.5 2 y⋅ 5⋅+( )
2

3

2.25=

The solution to three figures is y 0.815= (m)



Problem 11.46 [Difficulty: 1]

Given: Data on flume

Find: Discharge

Solution:

Basic equation: Q
1.49

n
A Rh

2

3
 Sb

1

2


Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width b 6 ft  and depth y 3 ft  we find from Table 11.1

A b y A 18 ft
2

 Rh
b y

b 2 y
 Rh 1.50 ft

For concrete (Table 11.2) n 0.013 and Sb
1 ft

1000 ft
 Sb 0.001

Q
1.49

n
A Rh

2

3
 Sb

1

2
 Q 85.5

ft
3

s




Problem 11.47 [Difficulty: 1]

Given: Data on flume

Find: Slope

Solution:

Basic equation: Q
1.49

n
A Rh

2

3
 Sb

1

2


Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width b 3 ft  and depth y 6 ft  we find

A b y A 18 ft
2

 Rh
b y

b 2 y
 Rh 1.20 ft

For wood (not in Table 11.2) a Google search finds n = 0.012 to 0.017; we use n 0.0145 with Q 90
ft

3

s


Sb
n Q

1.49 A Rh

2

3













2

 Sb 1.86 10
3





Problem 11.48 [Difficulty: 2]

Given: Data on square channel

Find: Dimensions for concrete and soil cement

Solution:

Basic equation: Q
1

n
A Rh

2

3
 Sb

1

2


Note that this is an "engineering" equation, to be used without units!

For a square channel of width b we find A b
2

 R
b y

b 2 y


b
2

b 2 b


b

3


Hence Q
1

n
b

2


b

3







2

3

 Sb

1

2


Sb

1

2

n 3

2

3


b

8

3
 or b

3

2

3
Q

Sb

1

2

n














3

8



The given data is Q 20
m

3

s
 Sb 0.003

For concrete, from Table 11.2 (assuming large depth) n .013

b 2.36 m

For soil cement from Table 11.2 (assuming large depth) n .020

b 2.77 m



Problem 11.49 [Difficulty: 1]

Given: Data on trapezoidal channel

Find: Bed slope

Solution:

Basic equation: Q
1

n
A Rh

2

3
 Sb

1

2


Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 2.4 m α 45 deg y 1.2 m Q 7.1
m

3

s


For bare soil (Table 11.2) n 0.020

Hence from Table 11.1 A y b cot α( ) y( ) A 4.32 m
2

 Rh
y b y cot α( )( )

b
2 y

sin α( )


 Rh 0.746 m

Hence Sb
Q n

A Rh

2

3













2

 Sb 1.60 10
3





Problem 11.50 [Difficulty: 1]

Given: Data on triangular channel

Find: Required dimensions

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the triangular channel we have α 45 deg⋅= Sb 0.001= Q 10
m

3

s
⋅=

For concrete (Table 11.2) n 0.013= (assuming y > 60 cm: verify later)

Hence from Table 11.1 A y
2

cot α( )⋅= y
2

= Rh
y cos α( )⋅

2
=

y

2 2⋅
=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

n
y

2
⋅

y

2 2⋅
⎛
⎜
⎝

⎞
⎠

2

3

⋅ Sb⋅=
1

n
y

8

3
⋅

1

8

⎛⎜
⎝

⎞
⎠

1

3

⋅ Sb

1

2
⋅=

1

2 n⋅
y

8

3
⋅ Sb

1

2
⋅=

Solving for y y
2 n⋅ Q⋅

Sb

⎛
⎜
⎝

⎞

⎠

3

8

= y 2.20 m= (The assumption that y > 60 cm is verified)



Problem 11.51 [Difficulty: 2]

Given: Data on semicircular trough

Find: Discharge

Solution:

Basic equation: Q
1

n
A Rh

2

3
 Sb

1

2


Note that this is an "engineering" equation, to be used without units!

For the semicircular channel D 1 m y 0.25 m Sb 0.01

Hence, from geometry α 2 asin

y
D

2


D

2













 180 deg α 120 deg

For corrugated steel, a Google search leads to n 0.022

Hence from Table 11.1 A
1

8
α sin α( )( ) D

2
 A 0.154 m

2


Rh
1

4
1

sin α( )

α






 D Rh 0.147 m

Then the discharge is Q
1

n
A Rh

2

3
 Sb

1

2


m
3

s
 Q 0.194

m
3

s




Problem 11.52 [Difficulty: 1]

Given: Data on semicircular trough

Find: Discharge

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel D 1 m⋅= α 180 deg⋅= Sb 0.01=

For corrugated steel, a Google search leads to (Table 11.2) n 0.022=

Hence from Table 11.1 A
1

8
α sin α( )−( )⋅ D

2
⋅= A 0.393 m

2
=

Rh
1

4
1

sin α( )

α
−⎛⎜

⎝
⎞
⎠

⋅ D⋅= Rh 0.25 m=

Then the discharge is Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅

m
3

s
⋅= Q 0.708

m
3

s
=



Problem 11.53 [Difficulty: 3]

Given: Data on flume with plastic liner

Find: Depth of flow

Solution:

Basic equation: Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For a rectangular channel of width b 6 ft⋅=  and depth y we find from Table 11.1

A b y⋅= 6 y⋅= R
b y⋅

b 2 y⋅+
=

6 y⋅

6 2 y⋅+
=

and also n 0.010= and Sb
1 ft⋅

1000 ft⋅
= Sb 0.001=

Hence Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1.49

0.010
6⋅ y⋅

6 y⋅

6 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ 0.001

1

2
⋅= 85.5= (Note that we don't use units!)

Solving for y
y

5

3

6 2 y⋅+( )

2

3

85.5 0.010⋅

1.49 .001

1

2
⋅ 6⋅ 6

2

3
⋅

= or
y

5

3

6 2 y⋅+( )

2

3

0.916=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start

with Problem 11.46's depth 

For y 3= feet( )
y

5

3

6 2 y⋅+( )

2

3

1.191= For y 2= feet( )
y

5

3

6 2 y⋅+( )

2

3

0.684=

For y 2.5= feet( )
y

5

3

6 2 y⋅+( )

2

3

0.931= For y 2.45= feet( )
y

5

3

6 2 y⋅+( )

2

3

0.906=

For y 2.47= feet( )
y

5

3

6 2 y⋅+( )

2

3

0.916= y 2.47= (feet)



Problem 11.54 [Difficulty: 3]

Given: Data on trapzoidal channel

Find: New depth of flow

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 2.4 m⋅= α 45 deg⋅= Q 10
m

3

s
⋅= Sb 0.00193=

For bare soil (Table 11.2) n 0.020=

Hence from Table 11.1 A y b cot α( ) y⋅+( )⋅= y 2.4 y+( )⋅= R
y b y cot α( )⋅+( )⋅

b
2 y⋅

sin α( )
+

=
y 2.4 y+( )⋅

2.4 2 y⋅ 2⋅+
=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

0.020
y⋅ 2.4 y+( )⋅

y 2.4 y+( )⋅

2.4 2 y⋅ 2⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2

3

⋅ 0.00193

1

2
⋅= 10= (Note that we don't use units!)

Solving for y
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

4.55=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start

with a larger depth than Problem 11.49's. 

For y 1.5= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

5.37= For y 1.4= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

4.72=

For y 1.35= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

4.41= For y 1.37= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

4.536=

The solution to three figures is y 1.37= (m)



Problem 11.55 [Difficulty: 3]

Given: Data on trapzoidal channel

Find: New depth of flow

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 2.4 m⋅= α 45 deg⋅= Q 7.1
m

3

s
⋅= Sb 0.00193=

For bare soil (Table 11.2) n 0.010=

Hence from Table 11.1 A y b y cot α( )⋅+( )⋅= y 2.4 y+( )⋅= Rh
y b y cot α( )⋅+( )⋅

b
2 y⋅

sin α( )
+

=
y 2.4 y+( )⋅

2.4 2 y⋅ 2⋅+
=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

0.010
y⋅ 2.4 y+( )⋅

y 2.4 y+( )⋅

2.4 2 y⋅ 2⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2

3

⋅ 0.00193

1

2
⋅= 7.1= (Note that we don't use units!)

Solving for y
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

1.62=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start

with a shallower depth than that of Problem 11.49. 

For y 1= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

2.55= For y 0.75= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

1.53=

For y 0.77= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

1.60= For y 0.775= m( )
y 2.4 y+( )⋅[ ]

5

3

2.4 2 y⋅ 2⋅+( )
2

3

1.62=

The solution to three figures is y 0.775= (m)



Problem 11.56 [Difficulty: 4]

Given: Data on semicircular trough

Find: New depth of flow

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the semicircular channel D 1 m⋅= Sb 0.01= Q 0.5
m

3

s
⋅=

For corrugated steel, a Google search leads to (Table 11.2) n 0.022=

From Table 11.1 A
1

8
α sin α( )−( )⋅ D

2
⋅=

1

8
α sin α( )−( )⋅= Rh

1

4
1

sin α( )

α
−⎛⎜

⎝
⎞
⎠

⋅ D⋅=
1

4
1

sin α( )

α
−⎛⎜

⎝
⎞
⎠

⋅=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

0.022

1

8
α sin α( )−( )⋅⎡⎢

⎣
⎤⎥
⎦

⋅
1

4
1

sin α( )

α
−⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

2

3

⋅ 0.01

1

2
⋅= 0.5= (Note that we don't use units!)

Solving for α α

2

3
−

α sin α( )−( )

5

3
⋅ 2.21=

This is a nonlinear implicit equation for α and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start

with a half-full channel 

For α 180 deg⋅= α

2

3
−

α sin α( )−( )

5

3
⋅ 3.14= For α 160 deg⋅= α

2

3
−

α sin α( )−( )

5

3
⋅ 2.25=

For α 159 deg⋅= α

2

3
−

α sin α( )−( )

5

3
⋅ 2.20= For α 159.2 deg⋅= α

2

3
−

α sin α( )−( )

5

3
⋅ 2.212=

The solution to three figures is α 159 deg⋅=

From geometry y
D

2
1 cos

α

2

⎛⎜
⎝

⎞
⎠

−⎛⎜
⎝

⎞
⎠

⋅= y 0.410 m=



Problem 11.57 [Difficulty: 3]

Given: Triangular channel

Find: Proof that wetted perimeter is minimized when sides meet at right angles

Solution:

From Table 11.1 A y
2

cot α( )⋅= P
2 y⋅

sin α( )
=

We need to vary z to minimize P while keeping A constant, which means that y
A

cot α( )
= with A = constant

Hence we eliminate y in the expression for P P 2
A

cot α( )
⋅

1

sin α( )
⋅=

For optimizing P
dP

dα

2 A cos α( )⋅ A sin α( )⋅ tan α( )⋅−( )⋅

sin 2 α⋅( ) A tan α( )⋅⋅
−= 0=

or A cos α( )⋅ A sin α( )⋅ tan α( )⋅− 0=
1

tan α( )
tan α( )= tan α( ) 1= α 45 deg⋅=

For α = 45o we find from the figure that we have the case where the sides meet at 90o.  Note that we have only proved that this is

a minimum OR maximum of P!  It makes sense that it's the minimum, as, for constant A, we get a huge P if we set α to a large

number (almost vertical walls); hence we can't have a maximum value at α = 45o.



Problem 11.58 [Difficulty: 3]

Given: Data on trapezoidal channel

Find: Normal depth and velocity

Solution:

Basic equation: Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 20 ft⋅= α atan 2( )= α 63.4 deg= Q 400
ft

3

s
⋅= Sb 0.0016= n 0.025=

Hence from Table 11.2 A y b y cot α( )⋅+( )⋅= y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅= Rh
y b y cot α( )⋅+( )⋅

b
2 y⋅

sin α( )
+

=

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅

20 y 5⋅+
=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

0.025
y⋅ 20

1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅

20 y 5⋅+

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

2

3

⋅ 0.0016

1

2
⋅= 400= (Note that we don't use units!)

Solving for y

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

5

3

20 y 5⋅+( )
2

3

250= This is a nonlinear implicit equation for y and must be solved numerically.  We

can use one of a number of numerical root finding techniques, such as

Newton's method, or we can use Excel's Solver or Goal Seek, or we can

manually iterate, as below.  We start with an arbitrary depth

For y 5= ft( )

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

5

3

20 y 5⋅+( )
2

3

265= For y 4.9= ft( )

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

5

3

20 y 5⋅+( )
2

3

256=

For y 4.85= ft( )

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

5

3

20 y 5⋅+( )
2

3

252= For y 4.83= ft( )

y 20
1

2
y⋅+⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

5

3

20 y 5⋅+( )
2

3

250=

The solution to three figures is y 4.83 ft⋅= Then A b y cot α( )⋅+( ) y⋅= A 108 ft
2

⋅=

Finally, the normal velocity is V
Q

A
= V 3.69

ft

s
⋅=



Problem 11.59 [Difficulty: 5]

Given: Data on trapezoidal channel

Find: Geometry for greatest hydraulic efficiency

Solution:

Basic equation: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have α atan
1

2

⎛⎜
⎝

⎞
⎠

= α 26.6 deg⋅= Q 250
m

3

s
⋅= Sb 0.001= n 0.020=

From Table 11.1 A y b y cot α( )⋅+( )⋅= P b
2 y⋅

sin α( )
+=

We need to vary b and y to obtain optimum conditions.  These are when the area and perimeter are optimized.  Instead of two

independent variables b and y, we eliminate b by doing the following

b
A

y
y cot α( )⋅−= and so P

A

y
y cot α( )⋅−

2 y⋅

sin α( )
+=

Taking the derivative w.r.t. y

y
P

∂

∂

1

y y
A

∂

∂
⋅

A

y
2

− cot α( )−
2

sin α( )
+=

But at optimum conditions
y

P
∂

∂
0= and

y
A

∂

∂
0=

Hence 0
A

y
2

− cot α( )−
2

sin α( )
+= or A

2 y
2

⋅

sin α( )
y

2
cot α( )⋅−=

Comparing to A y b y cot α( )⋅+( )⋅= we find A y b y cot α( )⋅+( )⋅=
2 y

2
⋅

sin α( )
y

2
cot α( )⋅−=

Hence b
2 y⋅

sin α( )
2 y⋅ cot α( )⋅−=

Then A y b y cot α( )⋅+( )⋅= y
2 y⋅

sin α( )
2 y⋅ cot α( )⋅− y cot α( )⋅+⎛⎜

⎝
⎞
⎠

⋅= y
2 2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

⋅=

P b
2 y⋅

sin α( )
+=

4 y⋅

sin α( )
2 y⋅ cot α( )⋅−= 2 y⋅

2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

⋅=



and Rh
A

P
=

y
2 2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

⋅

2 y⋅
2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

⋅

=
y

2
=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

n
y

2 2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

⋅
y

2

⎛⎜
⎝

⎞
⎠

2

3

⋅ Sb

1

2
⋅=

Q
2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

y

8

3
Sb

1

2
⋅

n 2

2

3
⋅

⋅=

Solving for y y
2

2

3
n⋅ Q⋅

2

sin α( )
cot α( )−⎛⎜

⎝
⎞
⎠

Sb

1

2
⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

3

8

=
y 5.66= (m)

Finally b
2 y⋅

sin α( )
2 y⋅ cot α( )⋅−= b 2.67= (m)



Problem 11.60 [Difficulty: 3]

Given: Data on trapezoidal channel

Find: Normal depth

Solution:

Basic equation: Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

Note that this is an "engineering" equation, to be used without units!

For the trapezoidal channel we have b 20 ft⋅= α atan
1

1.5

⎛⎜
⎝

⎞
⎠

= α 33.7 deg= Q 1000
ft

3

s
⋅=

S0 0.0002= n 0.014=

Hence from Table 11.1 A y b y cot α( )⋅+( )⋅= y 20 1.5 y⋅+( )⋅= Rh
y b y cot α( )⋅+( )⋅

b
2 y⋅

sin α( )
+

=
y 20 1.5 y⋅+( )⋅

20 2 y⋅ 3.25⋅+
=

Hence Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1.49

0.014
y⋅ 20 1.5 y⋅+( )⋅

y 20 1.5 y⋅+( )⋅

20 2 y⋅ 3.25⋅+
⎡
⎢
⎣

⎤
⎥
⎦

2

3

⋅ 0.0002

1

2
⋅= 1000= (Note that we don't use units!)

Solving for y
20 1.5 y⋅+( ) y⋅[ ]

5

3

20 2 y⋅ 3.25⋅+( )
2

3

664=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

For y 7.5= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5

3

20 2 y⋅ 3.25⋅+( )
2

3

684= For y 7.4= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5

3

20 2 y⋅ 3.25⋅+( )
2

3

667=

For y 7.35= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5

3

20 2 y⋅ 3.25⋅+( )
2

3

658= For y 7.38= ft( )
20 1.5 y⋅+( ) y⋅[ ]

5

3

20 2 y⋅ 3.25⋅+( )
2

3

663=

The solution to three figures is y 7.38= (ft)



Problem 11.61 [Difficulty: 5]

Given: Trapezoidal channel

Find: Geometry for greatest hydraulic efficiency

Solution:

From Table 11.1 A y b y cot α( )⋅+( )⋅= P b
2 y⋅

sin α( )
+=

We need to vary b and y (and then α!) to obtain optimum conditions.  These are when the area and perimeter are optimized.  Instead

of two independent variables b and y, we eliminate b by doing the following

b
A

y
y cot α( )⋅−= and so P

A

y
y cot α( )⋅−

2 y⋅

sin α( )
+=

Taking the derivative w.r.t. y

y
P

∂

∂

1

y y
A

∂

∂
⋅

A

y
2

− cot α( )−
2

sin α( )
+=

But at optimum conditions

y
P

∂

∂
0= and

y
A

∂

∂
0=

Hence 0
A

y
2

− cot α( )−
2

sin α( )
+= or A

2 y
2

⋅

sin α( )
y

2
cot α( )⋅−= (1)

Now we optimize A w.r.t. α
α

A
∂

∂

2 y
2

⋅ cos α( )⋅

sin α( )
2

− y
2

1− cot α( )
2

−( )⋅−= 0= or
2 cos α( )⋅

sin α( )
2

− cot α( )
2

1+( )+ 0=

But cot α( )
2

1+
cos α( )

2

sin α( )
2

1+=
sin α( )

2
cos α( )

2
+

sin α( )
2

=
1

sin α( )
2

=

Hence 2− cos α( )⋅ 1−= α acos
1

2

⎛⎜
⎝

⎞
⎠

= α 60 deg=

We can now evaluate A from Eq 1 A
2 y

2
⋅

sin α( )
y

2
cot α( )⋅−=

2 y
2

⋅

3

2

1

3
y

2
⋅−=

4

3

1

3
−⎛

⎜
⎝

⎞
⎠

y
2

⋅= 3 y
2

⋅=

But for a trapezoid A y b y cot α( )⋅+( )⋅= y b
1

3
y⋅+⎛

⎜
⎝

⎞
⎠

⋅=

Comparing the two A expressions A b
1

3
y⋅+⎛

⎜
⎝

⎞
⎠

y⋅= 3 y
2

⋅= we find b 3
1

3
−⎛

⎜
⎝

⎞
⎠

y⋅=
2

3
y⋅=



But the perimeter is P b
2 y⋅

sin α( )
+= b 2 y⋅

2

3
⋅+= b

4

3
y⋅+= b 2 b⋅+= 3 b⋅=

In summary we have α 60 deg=

and b
1

3
P⋅= so each of the symmetric sides is

P
1

3
P⋅−

2

1

3
P⋅=

We have proved that the optimum shape is equal side and bottom lengths, with 60 angles i.e., half a hexagon!



Problem 11.62 [Difficulty: 1]

Given: Rectangular channel flow

Find: Critical depth

Solution:

Basic equations: yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

For a rectangular channel of width b 2 m⋅=  and depth y 1.5 m⋅=  we find from Table 11.1

A b y⋅= A 3.00 m
2

⋅= Rh
b y⋅

b 2 y⋅+
= Rh 0.600 m⋅=

Manning's roughness coefficient is n 0.015= and Sb 0.0005=

Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅= Q 3.18

m
3

s
⋅=

Hence yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= yc 0.637 m=



Problem 11.63 [Difficulty: 4]

Given: Data on rectangular channel and weir

Find: If a hydraulic jump forms upstream of the weir

Solution:

Basic equations: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅= yc

Q
2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

=

Note that the Q equation is an "engineering" equation, to be used without units!

For a rectangular channel of width b 2.45 m⋅=  and depth y we find from Table 11.1

A b y⋅= 2.45 y⋅= Rh
b y⋅

b 2 y⋅+
=

2.45 y⋅

2.45 2 y⋅+
= and also n 0.015= and Sb 0.0004= Q 5.66

m
3

s
⋅=

Hence Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

0.015
2.45⋅ y⋅

2.45 y⋅

2.45 2 y⋅+
⎛⎜
⎝

⎞
⎠

2

3

⋅ 0.0004

1

2
⋅= 5.66= (Note that we don't use units!)

Solving for y
y

5

3

2.45 2 y⋅+( )

2

3

5.66 0.015⋅

.0004

1

2
2.54⋅ 2.54

2

3
⋅

= or
y

5

3

2.54 2 y⋅+( )

2

3

0.898=

This is a nonlinear implicit equation for y and must be solved numerically.  We can use one of a number of numerical root finding

techniques, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with the given depth

For y 1.52= m( )
y

5

3

2.54 2 y⋅+( )

2

3

0.639= For y 2= m( )
y

5

3

2.54 2 y⋅+( )

2

3

0.908=

For y 1.95= m( )
y

5

3

2.54 2 y⋅+( )

2

3

0.879= For y 1.98= m( )
y

5

3

2.54 2 y⋅+( )

2

3

0.896=

y 1.98= (m) This is the normal depth. We also have the critical depth: yc
Q

2

g b
2

⋅

⎛⎜
⎜
⎝

⎞

⎠

1

3

= yc 0.816 m=

Hence the given depth is 1.52 m > yc, but 1.52 m < yn, the normal depth.  This implies the flow is subcritical (far enough upstream

it is depth 1.98 m), and that it draws down to 1.52 m as it gets close to the wier.  There is no jump.



Problem 11.64 [Difficulty: 2]

Given: Data on rectangular flume

Find: Optimum geometry

Solution:

Basic equations: Q
1.49

n
A Rh

2

3
 Sb

1

2
 and from Table 11.3, for optimum geometry b 2 yn

Note that the Q equation is an "engineering" equation, to be used without units!

Available data Sb 10
ft

mile
 Sb 0.00189 Q 40

ft
3

s


For wood (unplaned), a Google seach gives n 0.013

Hence A b yn 2 yn
2

 Rh
A

P


2 yn
2



yn 2 yn yn


yn

2


Then Q
1.49

n
A Rh

2

3
 Sb

1

2


1.49

n
2 yn

2


yn

2








2

3

 Sb

1

2


Solving for yn yn
Q n 2

2

3


4 1.49 Sb

1

2















3

5

 yn 2.00 (ft) b 2yn b 4.01 (ft)



Problem 11.65 [Difficulty: 2]

Given: Data on rectangular channel

Find: Expressions valid for critical depth at optimum geometry

Solution:

Basic equations: Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅= and from Table 11.3, for optimum geometry b 2 yn⋅=

Note that the Q equation is an "engineering" equation, to be used without units!

Hence A b yn⋅= 2 yn
2

⋅= Rh
A

P
=

2 yn
2

⋅

yn 2 yn⋅+ yn+
=

yn

2
=

Then Q
1

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅=

1

n
2⋅ yn

2
⋅

yn

2

⎛
⎜
⎝

⎞
⎠

2

3

⋅ Sb

1

2
⋅= or Q

2

1

3

n
yn

8

3
⋅ Sb

1

2
⋅=

We can write the Froude number in terms of Q

Fr
V

g y⋅
=

Q

A g y⋅⋅
=

Q

2 yn
2

⋅ g⋅ yn

1

2
⋅

= or Fr
Q

2 g⋅ yn

5

2
⋅

=

Hence for critical flow, Fr = 1 and yn = yc, so 1
Q

2 g⋅ yc

5

2
⋅

= or Q 2 g⋅ yc

5

2
⋅= Q 6.26 yc

5

2
⋅=

To find Sc, equate the expressions for Q and set Sb = Sc

Q
2

1

3

n
yc

8

3
⋅ Sc

1

2
⋅= 2 g⋅ yc

5

2
⋅= or Sc 2

4

3
g⋅ n

2
⋅ yc

1

3
−

⋅= Sc
24.7 n

2
⋅

yc

1

3

=



Problem 11.66 [Difficulty: 3]

Given: Data on trapezoidal canal

Find: Critical slope

Solution:

Basic equations: Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅= and A y b⋅ y cot α( )⋅+= Rh

y b y cot α( )⋅+( )⋅

b
2 y⋅

sin α( )
+

=

Note that the Q equation is an "engineering" equation, to be used without units!

Available data b 10 ft⋅= α atan
2

1

⎛⎜
⎝

⎞
⎠

= α 63.4 deg⋅= Q 600
ft

3

s
⋅=

For brick, a Google search gives n 0.015=

For critical flow y yc= Vc g yc⋅=

so Q A Vc⋅= yc b⋅ yc cot α( )⋅+( ) g yc⋅⋅= yc b⋅ yc cot α( )⋅+( ) g yc⋅⋅ Q= with Q 600
ft

3

s
⋅=

This is a nonlinear implicit equation for yc and must be solved numerically.  We can use one of a number of numerical root finding

techniques, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.  We start with the given depth

For yc 5= ft( ) yc b⋅ yc cot α( )⋅+( ) g yc⋅⋅ 666= For yc 4.5= ft( ) yc b⋅ yc cot α( )⋅+( ) g yc⋅⋅ 569=

For yc 4.7= ft( ) yc b⋅ yc cot α( )⋅+( ) g yc⋅⋅ 607= For yc 4.67= ft( ) yc b⋅ yc cot α( )⋅+( ) g yc⋅⋅ 601=

Hence yc 4.67= (ft) and Acrit yc b⋅ yc cot α( )⋅+= Acrit 49.0= (ft2)

Rhcrit

yc b yc cot α( )⋅+( )⋅

b
2 yc⋅

sin α( )
+

= Rhcrit 2.818= (ft)

Solving the basic equation for Sc Q
1.49

n
A⋅ Rh

2

3
⋅ Sb

1

2
⋅= Sbcrit

n Q⋅

1.49 Acrit⋅ Rhcrit

2

3
⋅

⎛⎜
⎜
⎜
⎝

⎞

⎟

⎠

2

= Sbcrit 0.00381=



Problem 11.67 [Difficulty: 2]

Given: Data on wide channel

Find: Critical slope

Solution:

Basic equations: Q
1.49

n
A Rh

2

3
 Sb

1

2
 and A b y Rh y

Note that the Q equation is an "engineering" equation, to be used without units!

Available data q 20

ft
3

s

ft


From Table 11.2 n 0.015

For critical flow y yc Vc g yc

so Q A Vc b yc g yc or yc
Q

b g







2

3

 yc
q

g








2

3



Hence yc 2.316 (ft)

Solving the basic equation for Sc Q
1.49

n
A Rh

2

3
 Sb

1

2


1.49

n
b yc yc

2

3
 Sb

1

2


Sbcrit
n Q

1.49 b yc yc

2

3













2

 Sbcrit
n q

1.49 yc

5

3













2

 Sbcrit 0.00247

Note from Table 11.2 that a better roughness is n 0.013

and then Sbcrit
n q

1.49 yc

5

3













2

 Sbcrit 0.00185



Problem 11.68 [Difficulty: 2]

Given: Data on optimum rectangular channel

Find: Channel width and slope

Solution:

Basic equations: Q
1.49

n
A Rh

2

3
 Sb

1

2
 and from Table 11.3, for optimum geometry b 2 yn

Note that the Q equation is an "engineering" equation, to be used without units!

Available data Q 100
ft

3

s
 n 0.015 (Table 11.2)

Hence A b yn 2 yn
2

 Rh
A

P


2 yn
2



yn 2 yn yn


yn

2


We can write the Froude number in terms of Q

Fr
V

g y


Q

A g y


Q

2 yn
2

 g yn

1

2


 or Fr
Q

2 g yn

5

2




Hence for critical flow, Fr = 1 and yn = yc, so 1
Q

2 g yc

5

2


 or Q 2 g yc

5

2


Hence yc
Q

2 g







2

5

 yc 2.39 (ft) and b 2 yc b 4.78 (ft)

Then Q
1.49

n
A Rh

2

3
 Sb

1

2


1.49

n
2 yc

2


yc

2








2

3

 Sc

1

2
 or Q

1.49 2

1

3


n
yc

8

3
 Sc

1

2


Hence Sc
n Q

1.49 2

1

3
 yc

8

3













2

 Sc 0.00615

Using (from Table 11.2) n 0.013 Sc
n Q

1.49 2

1

3
 yc

8

3













2

 Sc 0.00462



Problem 11.69 [Difficulty: 1]

Given: Data on broad-crested wier

Find: Maximum flow rate/width

Solution:

Basic equation: Q Cw b⋅ H

3

2
⋅=

Available data H 1 ft⋅= P 8 ft⋅ 1 ft⋅−= P 7 ft⋅= Cw 3.4=

Then
Q

b
q= Cw H

3

2
⋅= 3.4

ft
3

s

ft
⋅=



Problem 11.70 [Difficulty: 3]

Given: Data on rectangular, sharp-crested weir

Find: Required weir height

Solution:

Basic equations: Q Cd
2

3
 2 g b' H

3

2
 where Cd 0.62 and b' b 0.1 n H with n 2

Given data: b 1.6 m Q 0.5
m

3

s


Hence we find

Q Cd
2

3
 2 g b' H

3

2
 Cd

2

3
 2 g b 0.1 n H( ) H

3

2


Rearranging b 0.1 n H( ) H

3

2


3 Q

2 2 g Cd


This is a nonlinear implicit equation for H and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

The right side evaluates to
3 Q

2 2 g Cd
0.273 m

5

2


For H 1 m b 0.1 n H( ) H

3

2
 1.40 m

5

2
 For H 0.5 m b 0.1 n H( ) H

3

2
 0.530 m

5

2


For H 0.3 m b 0.1 n H( ) H

3

2
 0.253 m

5

2
 For H 0.35 m b 0.1 n H( ) H

3

2
 0.317 m

5

2


For H 0.31 m b 0.1 n H( ) H

3

2
 0.265 m

5

2
 For H 0.315 m b 0.1 n H( ) H

3

2
 0.272 m

5

2


For H 0.316 m b 0.1 n H( ) H

3

2
 0.273 m

5

2
 H 0.316 m

But from the figure H P 2.5 m P 2.5 m H P 2.18 m



Problem 11.71 [Difficulty: 1]

Given: Data on rectangular, sharp-crested weir

Find: Discharge

Solution:

Basic equation: Q Cw b H

3

2
 where Cw 3.33 and b 8 ft P 2 ft H 1 ft

Note that this is an "engineering" equation, to be used without units!

Q Cw b H

3

2
 Q 26.6

ft
3

s



Problem 11.72 [Difficulty: 3]

Given: Data on rectangular, sharp-crested weir

Find: Required weir height

Solution:

Basic equations: Q Cd
2

3
 2 g b' H

3

2
 where Cd 0.62 and b' b 0.1 n H with n 2

Given data: b 1.5 m Q 0.5
m

3

s


Hence we find

Q Cd
2

3
 2 g b' H

3

2
 Cd

2

3
 2 g b 0.1 n H( ) H

3

2


Rearranging b 0.1 n H( ) H

3

2


3 Q

2 2 g Cd


This is a nonlinear implicit equation for H and must be solved numerically.  We can use one of a number of numerical root finding

techniques, such as Newton's method, or we can use Excel's Solver or Goal Seek, or we can manually iterate, as below.

The right side evaluates to
3 Q

2 2 g Cd
0.273 m

5

2


For H 1 m b 0.1 n H( ) H

3

2
 1.30 m

5

2
 For H 0.5 m b 0.1 n H( ) H

3

2
 0.495 m

5

2


For H 0.3 m b 0.1 n H( ) H

3

2
 0.237 m

5

2
 For H 0.35 m b 0.1 n H( ) H

3

2
 0.296 m

5

2


For H 0.34 m b 0.1 n H( ) H

3

2
 0.284 m

5

2
 For H 0.33 m b 0.1 n H( ) H

3

2
 0.272 m

5

2


For H 0.331 m b 0.1 n H( ) H

3

2
 0.273 m

5

2
 H 0.331 m

But from the figure H P 2.5 m P 2.5 m H P 2.17 m



Problem 11.73 [Difficulty: 1]

Given: Data on V-notch weir

Find: Flow head

Solution:

Basic equation: Q Cd
8

15
⋅ 2 g⋅⋅ tan

θ

2

⎛⎜
⎝

⎞
⎠

⋅ H

5

2
⋅= where Cd 0.58= θ 60 deg⋅= Q 150

L

s
⋅=

H
Q

Cd
8

15
⋅ 2 g⋅⋅ tan

θ

2

⎛⎜
⎝

⎞
⎠

⋅

⎛
⎜
⎜
⎝

⎞

⎠

2

5

= H 0.514m=



Problem 11.74 [Difficulty: 1]

Given: Data on V-notch weir

Find: Discharge

Solution:

Basic equation: Q Cw H

5

2
 where H 1.5 ft Cw 2.50 for θ 90 deg

Note that this is an "engineering" equation in which we ignore units!

Q Cw H

5

2
 Q 6.89

ft
3

s



Problem 11.75 [Difficulty: 1]

Given: Data on V-notch weir

Find: Weir coefficient

Solution:

Basic equation: Q Cw H

5

2
 where H 180 mm Q 20

L

s


Note that this is an "engineering" equation in which we ignore units!

Cw
Q

H

5

2

 Cw 1.45



Problem 12.1 [Difficulty: 2]

Given: Air flow through a filter

Find: Change in p, T and ρ

Solution:

Basic equations: h2 h1 cp T2 T1  p ρ R T

Assumptions: 1) Ideal gas 2) Throttling process

In a throttling process enthalpy is constant.  Hence h2 h1 0 s

o
T2 T1 0 or T constant

The filter acts as a resistance through which there is a pressure drop (otherwise there would be no flow.  Hence p2 p1

From the ideal gas equation
p1

p2

ρ1 T1

ρ2 T2
 so ρ2 ρ1

T1

T2










p2

p1









 ρ1

p2

p1









 Hence ρ2 ρ1

The governing equation for entropy is ∆s cp ln
T2

T1









 R ln
p2

p1











Hence ∆s R ln
p2

p1









 and
p2

p1

1 so ∆s 0

Entropy increases because throttling is an irreversible adiabatic process



 

Problem 12.2                                                               [Difficulty: 2]



Problem 12.3 [Difficulty: 2]

Given: Data on an air compressor

Find: Whether or not the vendor claim is feasible

Solution:

Basic equation: ∆s cp ln
T2

T1









 R ln
p2

p1











The data provided, or available in the Appendices, is:

p1 14.7 psi T1 50 460( ) R

p2 150 14.7( ) psi T2 200 460( ) R

cp 0.2399
BTU

lb R
 Rgas 53.33

ft lbf

lb R
 0.0685

BTU

lb R


Then ∆s cp ln
T2

T1









 Rgas ln
p2

p1









 ∆s 0.1037
BTU

lb R


Entropy s

T
em

p
er

at
u

re
 T

2s
We have plotted the actual process in red (1-2) on this temperature-entropy

diagram, and the ideal compression (isentropic) in blue (1-2s). The line of constant

pressure equal to 150 psig is shown in green. However, can this process actually

occur? The second law of thermodynamics states that, for an adiabatic process

2

∆s 0 or for all real processes ∆s 0

1 

Hence the process is NOT feasible!



Problem 12.4 [Difficulty: 2]

Given: Data on turbine inlet and exhaust

Find: Whether or not the vendor claim is feasible

Solution:

Basic equation: ∆s cp ln
T2

T1









 R ln
p2

p1











The data provided, or available in the Appendices, is:

p1 10 atm 146.959 psi T1 2200 460( ) R T1 1.478 10
3

 K

p2 1 atm 14.696 psi T2 850 460( ) R T2 727.778 K

cp 0.2399
BTU

lb R
 Rgas 53.33

ft lbf

lb R
 0.0685

BTU

lb R


Then ∆s cp ln
T2

T1









 Rgas ln
p2

p1









 ∆s 0.0121
BTU

lb R


Entropy s

T
em

p
er

at
u

re
 T

1 
An example of this type of process is plotted in green on the graph.

Also plotted are an isentropic process (blue - 1-2s) and one with an

increase in entropy (red: 1-2i). All three processes expand to the same

pressure. The constant pressure curve is drawn in purple.The second

law of thermodynamics states that, for an adiabatic process
2i

∆s 0 or for all real processes ∆s 0
2 

2s

Hence the process is NOT feasible!



Problem 12.5 [Difficulty: 2]

Given: Air before and after expansion; process

Find: Final temperature and change in entropy

Solution:

Basic equations: ∆s cp ln
T2

T1









 R ln
p2

p1









 p V m R T

The data provided, or available in the Appendices, is:

p1 50 psi T1 660 R

p2 1 atm 14.696 psi

cp 0.2399
Btu

lb R
 Rgas 53.33

ft lbf

lb R
 0.0685

Btu

lb R


From the process given: p1 V1
1.3

 p2 V2
1.3

 From the ideal gas equation of state:
p2 V2

p1 V1

T2

T1


V1

V2

p2

p1

T1

T2



When we combine these two equations we get:
p2

p1

V1

V2









1.3


p2

p1

T1

T2










1.3

 Solving for temperature ratio:
T1

T2

p2

p1









1

1.3
1



So the final temperature is: T2 T1

p1

p2









1

1.3
1

 T2 497.5 R

Then ∆s cp ln
T2

T1









 Rgas ln
p2

p1









 ∆s 0.0161
Btu

lb R




Problem 12.6 [Difficulty: 2]

Given: Adiabatic air compressor

Find: Lowest delivery temperature; Sketch the process on a Ts diagram

Solution:

Basic equation: ∆s cp ln
T2

T1









 R ln
p2

p1











T2 T1

p1

p2









1 k

k


The lowest temperature implies an ideal (reversible) process; it is also adiabatic, so Δs = 0, and

The data provided, or available in the Appendices, is: p1 101 kPa p2 500 101( ) kPa T1 288.2 K k 1.4

Hence T2 T1

p1

p2









1 k

k

 T2 864 R

Entropy s

T
em

p
er

at
u

re
 T

p2
2 

The process is

p1

1 



Problem 12.7 [Difficulty: 2]

Given: Data on turbine inlet and exhaust

Find: Whether or not the vendor claim is feasible

Solution:

Basic equations: ∆s cp ln
T2

T1









 R ln
p2

p1









 ∆h cp ∆T
T2

T1

p2

p2









k 1

k

 when s = constant

η
h1 h2

h1 h2s


T1 T2

T1 T2s


The data provided, or available in the Appendices, is:

p1 10 bar 1 10
3

 kPa T1 1400 K η 80 % P 1 MW

p2 1 bar 100 kPa

cp 1004
J

kg K
 Rgas 287

J

kg K
 k 1.4

If the expansion were isentropic, the exit temperature would be: T2s T1

p2

p1









k 1

k

 725.126 K

Since the turbine is not isentropic, the final temperature is higher: T2 T1 η T1 T2s  860.101 K

Then ∆h cp T1 T2  542.058
kJ

kg
 ∆s cp ln

T2

T1









 Rgas ln
p2

p1









 ∆s 171.7157
J

kg K


The mass flow rate is: m
P

∆h
1.845

kg

s




Problem 12.8 [Difficulty: 2]

Given: Test chamber with two chambers

Find: Pressure and temperature after expansion

Solution:

Basic equation: p ρ R T ∆u q w (First law - closed system) ∆u cv ∆T

Assumptions: 1) Ideal gas 2) Adiabatic 3) No work

For no work and adiabatic the first law becomes ∆u 0 or for an Ideal gas ∆T 0 T2 T1

We also have M ρ Vol const and Vol2 2 Vol1 so ρ2
1

2
ρ1

From the ideal gas equation
p2

p1

ρ2

ρ1

T2

T1


1

2
 so p2

1

2
p1

Hence T2 20 °F p2
200 kPa

2
 p2 100 kPa

Note that ∆s cp ln
T2

T1









 R ln
p2

p1









 R ln
1

2







 0.693 R so entropy increases (irreversible adiabatic)



Problem 12.9 [Difficulty: 2]

Given: Supercharger

Find: Pressure, temperature and flow rate at exit; power drawn

Solution:

Basic equation: p ρ Rair T ∆s cp ln
T2

T1









 R ln
p2

p1











∆h q w (First law - open system) ∆h cp ∆T

Assumptions: 1) Ideal gas 2) Adiabatic

In an ideal process (reversible and adiabatic) the first law becomes ∆h w or for an ideal gas wideal cp ∆T

For an isentropic process ∆s 0 cp ln
T2

T1









 R ln
p2

p1









 or
T2

T1

p2

p1









k 1

k



The given or available data is T1 70 460( ) R p1 14.7 psi p2 200 14.7( ) psi η 70 %

Q1 0.5
ft

3

s
 k 1.4 cp 0.2399

Btu

lbm R
 Rair 53.33

ft lbf

lbm R


Hence T2

p2

p1









k 1

k

T1 T2 1140 R T2 681 °F p2 215 psi

We also have mrate ρ1 Q1 ρ2 Q2 Q2 Q1

ρ1

ρ2

 Q2 Q1

p1

p2


T2

T1

 Q2 0.0737
ft

3

s


For the power we use Pideal mrate wideal ρ1 Q1 cp ∆ T

From the ideal gas equation ρ1

p1

Rair T1
 ρ1 0.00233

slug

ft
3

 or ρ1 0.0749
lbm

ft
3



Hence Pideal ρ1 Q1 cp T2 T1  Pideal 5.78 kW

The actual power needed is Pactual

Pideal

η
 Pactual 8.26 kW

A supercharger is a pump that forces air into an engine, but generally refers to a pump that is driven directly by

the engine, as opposed to a turbocharger that is driven by the pressure of the exhaust gases.



Problem 12.10 [Difficulty: 2]

Given: Cooling of air in a tank

Find: Change in entropy, internal energy, and enthalpy

Solution:

Basic equation: p ρ R T ∆s cp ln
T2

T1









 R ln
p2

p1











∆u cv ∆T ∆h cp ∆T

Assumptions: 1) Ideal gas 2) Constant specific heats

Given or available data M 5 kg T1 250 273( ) K T2 50 273( ) K p1 3 MPa

cp 1004
J

kg K
 cv 717.4

J

kg K
 k

cp

cv

 k 1.4 R cp cv R 287
J

kg K


For a constant volume process the ideal gas equation gives
p2

p1

T2

T1

 p2

T2

T1

p1 p2 1.85 MPa

Then ∆s cp ln
T2

T1









 R ln
p2

p1









 ∆s 346
J

kg K


∆u cv T2 T1  ∆u 143
kJ

kg


∆h cp T2 T1  ∆h 201
kJ

kg


Total amounts are ∆S M ∆s ∆S 1729
J

K


∆U M ∆u ∆U 717 kJ
Here is a plot of the T-s diagram:

∆H M ∆h ∆H 1004 kJ

T-s  Diagram for Constant Volume Cooling
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Problem 12.11 [Difficulty: 3]

Given: Air in a piston-cylinder

Find: Heat to raise temperature to 1200oC at a) constant pressure and b) constant volume

Solution:

The data provided, or available in the Appendices, is:

T1 100 273( ) K T2 1200 273( ) K R 287
J

kg K
 cp 1004

J

kg K
 cv cp R cv 717

J

kg K


a) For a constant pressure process we start with T ds dh v dp

Hence, for p = const. ds
dh

T
 cp

dT

T


But δq T ds

Hence δq cp dT q Tcp





d q cp T2 T1  q 1104
kJ

kg


b)  For a constant volume process we start T ds du p dv

Hence, for v = const. ds
du

T
 cv

dT

T


But δq T ds

Hence δq cv dT q Tcv





d q cv T2 T1  q 789
kJ

kg


Heating to a higher temperature at constant pressure requires more heat than at constant volume: some of the

heat is used to do work in expanding the gas; hence for constant pressure less of the heat is available for

raising the temperature.

From the first law: Constant pressure: q ∆u w Constant volume: q ∆u

The two processes can be plotted using Eqs. 11.11b and 11.11a, simplified for the case of constant pressure

and constant volume.

a) For constant pressure s2 s1 cp ln
T2

T1









 R ln
p2

p1









 so ∆s cp ln
T2

T1











b) For constant volume s2 s1 cv ln
T2

T1









 R ln
v2

v1









 so ∆s cv ln
T2

T1











The processes are plotted in Excel and shown on the next page
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Problem 12.12 [Difficulty: 4]

Given: Data on Otto cycle

Find: Plot of pV and Ts diagrams; efficiency

Solution:

The data provided, or available in the Appendices, is:

cp 1004
J

kg K
 R 287

J

kg K
 cv cp R cv 717

J

kg K
 k

cp

cv

 k 1.4

p1 100 kPa T1 20 273( ) K T3 2750 273( ) K V1 500 cc V2

V1

8.5
 V2 58.8 cc

V4 V1

Computed results: M
p1 V1

R T1
 M 5.95 10

4
 kg

For process 1-2 we have isentropic behavior T v
k 1

 constant p v
k

 constant (12.12 a and 12.12b)

Hence T2 T1

V1

V2









k 1

 T2 690 K p2 p1

V1

V2









k

 p2 2002 kPa

The process from 1 -2 is p V( ) p1

V1

V









k

 and s constant

The work is W12
V1

V2

Vp V( )




d
p1 V1 p2 V2

k 1












 W12 169 J Q12 0 J (Isentropic)

For process 2 - 3 we have constant volume V3 V2 V3 58.8 cc

Hence p3 p2

T3

T2

 p3 8770 kPa



The process from 2 -3 is V V2 constant and ∆s cv ln
T

T2









 W23 0 J

(From 12.11a)

Q23 M ∆u M Tcv





d Q23 M cv T3 T2  Q23 995 J

For process 3 - 4 we again have isentropic behavior

Hence T4 T3

V3

V4









k 1

 T4 1284 K p4 p3

V3

V4









k

 p4 438 kPa

The process from 3 - 4 is p V( ) p3

V3

V









k

 and s constant

The work is W34

p3 V3 p4 V4

k 1
 W34 742 J Q34 0 J

For process 4-1 we again have constant volume

The process from 4 -1 is V V4 constant and ∆s cv ln
T

T4









 W41 0 J

(From 12.11a)

Q41 M cv T1 T4  Q41 422 J

The net work is Wnet W12 W23 W34 W41 Wnet 572 J

The efficiency is η
Wnet

Q23

 η 57.5 %

This is consistent with the expression for the Otto efficiency ηOtto 1
1

r
k 1



where r is the compression ratio r
V1

V2

 r 8.5

ηOtto 57.5 %

Plots of the cycle in pV and Ts space, generated using Excel, are shown on the next page.
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Problem 12.13 [Difficulty: 4]

Given: Data on diesel cycle

Find: Plot of pV and Ts diagrams; efficiency

Solution:

The data provided, or available in the Appendices, is:

cp 1004
J

kg K
 R 287

J

kg K
 cv cp R cv 717

J

kg K
 k

cp

cv

 k 1.4

p1 100 kPa T1 20 273( ) K T3 3000 273( ) K V1 500 cc

V2

V1

12.5
 V2 40 cc V3 V2 V4 1.75 V3 V4 70 cc V5 V1

Computed results: M
p1 V1

R T1
 M 5.95 10

4
 kg

For process 1-2 we have isentropic behavior T v
k 1

 constant (12.12a) p v
k

 constant (12.12c)

Hence T2 T1

V1

V2









k 1

 T2 805 K p2 p1

V1

V2









k

 p2 3435 kPa

The process from 1 -2 is p V( ) p1

V1

V









k

 and s constant

The work is W12
V1

V2

Vp V( )




d
p1 V1 p2 V2

k 1
 W12 218 J Q12 0 J

(Isentropic)

For process 2 - 3 we have constant volume V3 V2 V3 40 cc

Hence p3 p2

T3

T2

 p3 13963 kPa



The process from 2 -3 is V V2 constant and ∆s cv ln
T

T2









 W23 0 J

(From Eq. 12.11a)

Q23 M ∆u M Tcv





d Q23 M cv T3 T2  Q23 1052 J

For process 3 - 4 we have constant pressure p4 p3 p4 13963 kPa T4 T3

V4

V3









 T4 5728 K

The process from 3 - 4 is p p3 constant and ∆s cp ln
T

T3











(From Eq. 12.11b)

W34 p3 V4 V3  W34 419 J Q34 M cp T4 T3  Q34 1465 J

For process 4 - 5 we again have isentropic behavior T5 T4

V4

V5









k 1

 T5 2607 K

Hence p5 p4

V4

V5









k

 p5 890 kPa

The process from 4 - 5 is p V( ) p4

V4

V









k

 and s constant

The work is W45

p4 V4 p5 V5

k 1
 W45 1330 J Q45 0 J

For process 5-1 we again have constant volume

The process from 5 -1 is V V5 constant and ∆s cv ln
T

T5











(From Eq. 12.11a)

Q51 M cv T1 T5  Q51 987 J W51 0 J

The net work is Wnet W12 W23 W34 W45 W51 Wnet 1531 J

The heat added is Qadded Q23 Q34 Qadded 2517 J

The efficiency is η
Wnet

Qadded

 η 60.8 %



This is consistent with the expression from thermodynamics for the diesel efficiency

ηdiesel 1
1

r
k 1

rc
k

1

k rc 1 













where r is the compression ratio r
V1

V2

 r 12.5

and rc is the cutoff ratio rc

V4

V3

 rc 1.75

ηdiesel 58.8 %

The plots of the cycle in pV and Ts space, generated using Excel, are shown here:
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Problem 12.14 [Difficulty: 3]

Given: Air is compressed from standard conditions to fill a tank

Find: (a) Final temperature of air if tank is filled adiabatically and reversibly

(b) Heat lost if tank is filled isothermally

(c) Which process results in a greater mass of air in the tank

Solution:

The data provided, or available in the Appendices, is:

cp 1004
J

kg K
 R 287

J

kg K
 cv cp R cv 717

J

kg K
 k

cp

cv

 k 1.4

V 1 m
3

 p1 0.1 MPa T1 20 273( ) K p2 2 MPa

Adiabatic, reversible process is isentropic: T2s T1

p2

p1









k 1

k

 T2s 689.9 K

For the isothermal process, we look at the first law: ∆u q w cv ∆T but ΔT = 0 so: ∆u 0 and q w

The work is equal to: w vp




d v
R T1

v






d R T1

v1

v2

v
1

v






d R T1 ln
v2

v1











From Boyle's law: p1 v1 p2 v2
v2

v1

p1

p2

 substituting this into the above equation: w R T1 ln
p1

p2











w 252
kJ

kg
 Therefore the heat transfer is q w 252

kJ

kg
 (The negative sign indicates heat loss)

The mass of the air can be calculated from the ideal gas equation of state: p V M R T M
p2 V

R T1
23.8 kg

So the actual heat loss is equal to: Q M q Q 5.99 10
3

 kJ

The mass in the tank after compression isothermally is: Mt 23.8 kg

For the isentropic compression: M
p2 V

R T2s
10.1 kg Therefore the isothermal compression results in

more mass in the tank.



 

Problem 12.15                                                              [Difficulty: 3]



 

Problem 12.16                                                              [Difficulty: 2]



 

Problem 12.17                                                              [Difficulty: 3]



Problem 12.18 [Difficulty: 3]

Given: Data on flow through compressor

Find: Efficiency at which power required is 30 MW; plot required efficiency and exit temperature as functions of efficiency

Solution:

The data provided, or available in the Appendices, is:

R 518.3
J

kg K
 cp 2190

J

kg K
 cv cp R cv 1672

J

kg K
 k

cp

cv

 k 1.31

T1 13 273( ) K p1 0.5 MPa 101 kPa V1 32
m

s


p2 8 MPa 101 kPa Wcomp 30 MW D 0.6 m

The governing equation is the first law of thermodynamics for the compressor

Mflow h2

V2
2

2








h1

V1
2

2















 Wcomp or Wcomp Mflow cp T2 T1 
V2

2
V1

2


2










We need to find the mass flow rate and the temperature and velocity at the exit

Mflow ρ1 A1 V1
p1

R T1

π

4
 D

2
 V1 Mflow

p1

R T1

π

4
 D

2
 V1 Mflow 36.7

kg

s


The exit velocity is then given by Mflow

p2

R T2

π

4
 D

2
 V2 V2

4 Mflow R T2

π p2 D
2


 (1)

The exit velocity cannot be computed until the exit temperature is determined!

Using Eq. 1 in the first law Wcomp Mflow cp T2 T1 

4 Mflow R T2

π p2 D
2













2

V1
2



2














In this complicated expression the only unknown is T2, the exit temperature.  The equation is a quadratic, so

is solvable explicitly for T2, but instead we use Excel's Goal Seek to find the solution (the second solution

is mathematically correct but physically unrealistic - a very large negative absolute temperature).  The exit

temperature is

T2 660 K

If the compressor was ideal (isentropic), the exit temperature would be given by T p

1 k

k
 constant (12.12b)



Hence T2s T1

p1

p2









1 k

k

 T2s 529 K

For a compressor efficiency η, we have η
h2s h1

h2 h1
 or η

T2s T1

T2 T1
 η 65.1 %

To plot the exit temperature and power as a function of efficiency we use T2 T1

T2s T1

η


with V2

4 Mflow R T2

π p2 D
2


 and Wcomp Mflow cp T2 T1 

V2
2

V1
2



2










The dependencies of T2 and Wcomp on efficiency are plotted in Excel and shown here:
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Problem 12.19 [Difficulty: 3]

Given: Data on performance degradation of turbine

Find: Time necessary for power output to drop to 950 kW

Solution:

The data provided, or available in the Appendices, is:

p1 10 bar 1 10
3

 kPa T1 1400 K ηinitial 80 % Pinitial 1 MW

p2 1 bar 100 kPa Pfinal 950 kW

cp 1004
J

kg K
 Rgas 287

J

kg K
 k 1.4

If the turbine expansion were isentropic, the actual output would be: Pideal

Pinitial

ηinitial

1.25 MW

So when the power output drops to 950 kW, the new efficiency is: ηfinal

Pfinal

Pideal

76 %

Since the efficiency drops by 1% per year, the time elapsed is: ∆t 4 yr



 

Problem 12.20                                                              [Difficulty: 4]



Problem 12.21 [Difficulty: 3]

Given: Data on flow rate and balloon properties

Find: "Volumetric ratio" over time

Solution:

The given or available data are: Rair 53.3
ft lbf

lbm R
 Tatm 519 R patm 14.7 psi k 200

lbf

ft
3

 Vrate 0.1
ft

3

min


Basic equation:

Standard air density ρair

patm

Rair Tatm
0.0765

lbm

ft
3



Mass flow rate Mrate Vrate ρair 1.275 10
4


lbm

s


From a force balance on each hemisphere p patm  π r
2

 σ 2 π r where σ k A k 4 π r
2



Hence p patm
2 σ

r
 or p patm 8 π k r

Density in balloon ρ
p

Rair Tair


The instantaneous volume is Vball
4

3
π r

3


The instantaneous mass is Mball Vball ρ

The time to fill to radius r from r = 5 in is t
Mball r( ) Mball r 5in( )

Mrate



The volume change between time steps t is ∆V Vball t ∆t( ) Vball t( )

The results, calculated using Excel, are shown on the next page:



r  (in) p  (psi) ρ  (lb/ft
3
) V ball (ft

3
) M ball (lb) t  (s) ΔV/V rate

5.00 29.2 0.152 0.303 0.0461 0.00 0.00

5.25 30.0 0.156 0.351 0.0547 67.4 42.5%

5.50 30.7 0.160 0.403 0.0645 144 41.3%

5.75 31.4 0.164 0.461 0.0754 229 40.2%

6.00 32.2 0.167 0.524 0.0876 325 39.2%

6.25 32.9 0.171 0.592 0.101 433 38.2%

6.50 33.6 0.175 0.666 0.116 551 37.3%

6.75 34.3 0.179 0.746 0.133 683 36.4%

7.00 35.1 0.183 0.831 0.152 828 35.5%

Volume Increase of Balloon

as Percentage of Supplied Volume

34%

36%

38%

40%

42%

44%

0 250 500 750 1000

t  (s)

Δ
V
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Problem 12.22 [Difficulty: 3]

Given: Sound wave

Find: Estimate of change in density, temperature, and velocity after sound wave passes

Solution:

Basic equation: p ρ R T ∆s cp ln
T2

T1









 R ln
p2

p1











du cv dT dh cp dT

Assumptions: 1) Ideal gas 2) Constant specific heats 3) Isentropic process 4) infinitesimal changes

Given or available data

T1 20 273( ) K p1 100 kPa dp 20 Pa k 1.4 R 286.9
J

kg K


c k R T1 c 343
m

s


For small changes, from Section 11-2 dp c
2

dρ so dρ
dp

c
2

 dρ 1.70 10
4


kg

m
3

 a very small change!

The air density is ρ1

p1

R T1
 ρ1 1.19

kg

m
3



Then dVx
1

ρ1 c
dp dVx 0.049

m

s
 This is the velocity of the air after the sound wave!

For the change in temperature we start with the ideal gas equation p ρ R T and differentiate dp dρ R T ρ R dT

Dividing by the ideal gas equation we find
dp

p

dρ

ρ

dT

T


Hence dT T1
dp

p1

dρ

ρ1









 dT 0.017 K dT 0.030 ∆°F a very small change!



Problem 12.23 [Difficulty: 3]

Given: Five different gases at specified temperature

Find: Sound speeds for each gas at that temperature

Solution: Basic equation: c k R T

The data provided, or available in the Appendices, is: T 20 273( ) K

kH2 1.41 RH2 4124
J

kg K
 kHe 1.66 RHe 2077

J

kg K


kCH4 1.31 RCH4 518.3
J

kg K
 kN2 1.40 RN2 296.8

J

kg K


kCO2 1.29 RCO2 188.9
J

kg K


cH2 kH2 RH2 T cH2 1305
m

s


cHe kHe RHe T cHe 1005
m

s


cCH4 kCH4 RCH4 T cCH4 446
m

s


cN2 kN2 RN2 T cN2 349
m

s


cCO2 kCO2 RCO2 T cCO2 267
m

s




Problem 12.24 [Difficulty: 3]

Given: Sound wave

Find: Estimate of change in density, temperature, and velocity after sound wave passes

Solution:

Basic

equations:
p ρ R T Ev

dp

dρ

ρ



Assumptions: 1) Ideal gas 2) Constant specific heats 3) Infinitesimal changes

To find the bulk modulus we need
dp

dρ
in Ev

dp

dρ

ρ

 ρ
dp

dρ


For rapid compression (isentropic)
p

ρ
k

const and so
dp

dρ
k

p

ρ


Hence Ev ρ k
p

ρ






 Ev k p

For gradual compression (isothermal) we can use the ideal gas equation p ρ R T so dp dρ R T

Hence Ev ρ R T( ) p Ev p

We conclude that the "stiffness" (Ev) of air is equal to kp when rapidly compressed and p when gradually compressed.  To give an

idea of values:

For water Ev 2.24 GPa

For air ( k 1.4 ) at p 101 kPa Rapid compression Ev k p Ev 141 kPa

Gradual compression Ev p Ev 101 kPa



Problem 12.25 [Difficulty: 2]

Given: Device for determining bulk modulus

Find: Time delay; Bulk modulus of new material

Solution:

Basic equation: c
Ev

ρ


Hence for given data Ev 200
GN

m
2

 L 1 m and for steel SG 7.83 ρw 1000
kg

m
3



For the steel c
Ev

SG ρw
 c 5054

m

s


Hence the time to travel distance L is Δt
L

c
 Δt 1.98 10

4
 s Δt 0.198 ms Δt 198 μs

For the unknown material M 0.25 kg D 1 cm Δt 0.5 ms

The density is then ρ
M

L
π D

2


4


 ρ 3183
kg

m
3



The speed of sound in it is c
L

Δt
 c 2000

m

s


Hence th bulk modulus is Ev ρ c
2

 Ev 12.7
GN

m
2





Problem 12.26 [Difficulty: 2]

Given: Hunting dolphin

Find: Time delay before it hears prey at 1/2 mile

Solution:

Basic equation: c
Ev

ρ


Given (and Table A.2) data L 0.5 mi 2.64 10
3

 ft SG 1.025 Ev 3.20 10
5

 psi ρw 1.94
slug

ft
3



For the seawater c
Ev

SG ρw
 c 4814

ft

s


Hence the time for sound to travel distance L is ∆t
L

c
 ∆t 0.548 s ∆t 548 ms



Problem 12.27 [Difficulty: 2]

Given: Submarine sonar

Find: Separation between submarines

Solution:

Basic equation: c
Ev

ρ


Given (and Table A.2) data ∆t 3.25 s SG 1.025 Ev 2.42
GN

m
2

 ρw 1000
kg

m
3



For the seawater c
Ev

SG ρw
 c 1537

m

s


Hence the distance sound travels in time Δt is L c ∆t L 5 km

The distance between submarines is half of this x
L

2
 x 2.5 km



Problem 12.28 [Difficulty: 1]

Given: Airplane cruising at two different elevations

Find: Mach numbers

Solution:

Basic equation: c k R T M
V

c


Available data R 286.9
J

kg K
 k 1.4

At z 1500 m T 278.4 K from Table A.3

Hence c k R T c 334
m

s
 c 1204

km

hr
 and we have V 550

km

hr


The Mach number is M
V

c
 M 0.457

Repeating at z 15000 m T 216.7 K

Hence c k R T c 295
m

s
 c 1062

km

hr
 and we have V 1200

km

hr


The Mach number is M
V

c
 M 1.13



Problem 12.29 [Difficulty: 2]

Given: Scramjet-powered missile traveling at fixed Mach number and altitude

Find: Time necessary to cover specified range

Solution:

Basic equation: c k R T M
V

c


Available data R 286.9
J

kg K
 k 1.4 M 7 ∆x 600 nmi 3.65 10

6
 ft

At z 85000 ft z 25908 m interpolating from Table A.3 T 220.6 K 222.5 K 220.6 K( )
25908 24000

26000 24000


T 222 K

Hence c k R T c 299
m

s
 c 981

ft

s
 and we have V M c 6864

ft

s


The time needed to cover the range is: ∆t
∆x

V
531 s ∆t 8.85 min This is about ten times as fast as the Tomahawk!



 

Problem 12.30                                                              [Difficulty: 1]



 

Problem 12.31                                                               [Difficulty: 1]



Problem 12.32 [Difficulty: 2]

Given: Airplane cruising at 550 mph

Find: Mach number versus altitude

Solution:

Basic equation: c k R T M
V

c
 Here are the results, generated using Excel:

V = 500 mph

R = 286.90 J/kg-K (Table A.6)

k  = 1.40

Data on temperature versus height obtained from Table A.3

z  (m) T  (K) c  (m/s) c  (mph) M

0 288.2 340 661 0.756

500 284.9 338 658 0.760

1000 281.7 336 654 0.765

1500 278.4 334 650 0.769

2000 275.2 332 646 0.774

2500 271.9 330 642 0.778

3000 268.7 329 639 0.783

3500 265.4 326 635 0.788

4000 262.2 325 631 0.793

4500 258.9 322 627 0.798

5000 255.7 320 623 0.803

6000 249.2 316 615 0.813

7000 242.7 312 607 0.824

8000 236.2 308 599 0.835

9000 229.7 304 590 0.847

10000 223.3 299 582 0.859

Mach Number versus Elevation

0.70
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0.80

0.85

0.90

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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M



Problem 12.33 [Difficulty: 2]

Given: Fireworks displays!

Find: How long after seeing them do you hear them?

Solution:

Basic equation: c k R T

Assumption: Speed of light is essentially infinite (compared to speed of sound)

The given or available data is TJuly 75 460( ) R L 1 mi k 1.4 Rair 53.33
ft lbf

lbm R


Hence cJuly k Rair TJuly cJuly 1134
ft

s


Then the time is ∆tJuly
L

cJuly

 ∆tJuly 4.66 s

In January TJan 5 460( ) R

Hence cJan k Rair TJan cJan 1057
ft

s


Then the time is ∆tJan
L

cJan

 ∆tJan 5.00 s



Problem 12.34 [Difficulty: 2]

Given: X-15 rocket plane speed and altitude

Find: Mach number

Solution:

Basic equation: c k R T M
V

c


Available data R 286.9
J

kg K
 k 1.4 V 7270

km

hr


At z 58400 m interpolating from Table A.3 T 270.7 K 255.8 K 270.7 K( )
58400 50000

60000 50000


T 258 K

Hence c k R T c 322
m

s
 c 1159

km

hr
 and we have M

V

c
6.27



Problem 12.35 [Difficulty: 2]

Given: Mach number and altitude of hypersonic aircraft

Find: Speed assuming stratospheric temperature, actual speed, speed assuming sea level static temperature

Solution:

Basic equation: c k R T M
V

c


Available data Rair 286.9
J

kg K
 k 1.4 M 7

Assuming T 390 R 217 K

Hence c k Rair T c 295
m

s
 and we have Vstrat M c 2065

m

s


At z 120000 ft z 36576 m interpolating from Table A.3 T 226.5 K 250.4 K 226.5 K( )
36576 30000

40000 30000


T 242 K

Hence c k Rair T c 312
m

s
 and we have Vactual M c 2183

m

s


The error is:
Vstrat Vactual

Vactual

5.42 %

Assuming T 288.2 K

Hence c k Rair T c 340
m

s
 and we have Vsls M c 2382

m

s


The error is:
Vsls Vactual

Vactual

9.08 %



Problem 12.36 [Difficulty: 2]

Given: Shuttle launch

Find: How long after seeing it do you hear it?

Solution:

Basic equation: c k R T

Assumption: Speed of light is essentially infinite (compared to speed of sound)

The given or available data is T 80 460( ) R L 3.5 mi k 1.4 Rair 53.33
ft lbf

lbm R


Hence c k Rair T c 1139
ft

s


Then the time is ∆t
L

c
 ∆t 16.23 s

In the winter: T 50 460( ) R

Hence c k Rair T c 1107
ft

s


Then the time is ∆t
L

c
 ∆t 16.7 s



Problem 12.37 [Difficulty: 2]

Given: Echo heard while hammering near mountain lake, time delay of echo is known

Find: How far away are the mountains 

Solution:

Basic equation: c k R T

Assumption: Speed of light is essentially infinite (compared to speed of sound)

The given or available data is T 25 273( ) K k 1.4 Rair 287
J

kg K
 ∆t 3 s

Hence c k Rair T c 346
m

s


The distance covered by the sound is: L c ∆t L 1038 m but the distance to the mountains is half that distance:

L

2
519 m



Problem 12.38 [Difficulty: 2]

Given: Data on water specific volume

Find: Speed of sound over temperature range

Solution:

Basic equation: c
ρ

p



 at isentropic conditions

As an approximation for a liquid c
∆p

∆ρ
 using available data.

We use compressed liquid data at adjacent pressures of 5 MPa and 10 MPa, and estimate the change in density between these

pressures from the corresponding specific volume changes

∆p p2 p1 ∆ρ
1

v2

1

v1

 and c
∆p

∆ρ
 at each

temperature

Here are the results, calculated using Excel:

p 2 = 10 MPa

p 1 = 5 MPa

p  = 5 MPa

Data on specific volume versus temperature can be obtained fro any good thermodynamics text (try the Web!)

p 1 p 2

T  (
o
C) v  (m

3
/kg) v  (m

3
/kg) Δρ  (kg/m

3
) c  (m/s)

0 0.0009977 0.0009952 2.52 1409

20 0.0009996 0.0009973 2.31 1472

40 0.0010057 0.0010035 2.18 1514

60 0.0010149 0.0010127 2.14 1528

80 0.0010267 0.0010244 2.19 1512

100 0.0010410 0.0010385 2.31 1470

120 0.0010576 0.0010549 2.42 1437

140 0.0010769 0.0010738 2.68 1366

160 0.0010988 0.0010954 2.82 1330

180 0.0011240 0.0011200 3.18 1254

200 0.0011531 0.0011482 3.70 1162

Speed of Sound versus Temperature

1000

1100

1200

1300

1400

1500

1600

0 50 100 150 200

T  (oC)

c
 (

m
/s

)



 

Problem 12.39                                                               [Difficulty: 3]

Section 12-2



Problem 12.40 [Difficulty: 2]

Given: Data on atmospheric temperature variation with altitude

Find: Sound of speed at sea level; plot speed as function of altitude

Solution

The given or available data is:

R  = 286.9 J/kg.K

k  = 1.4

Computing equation:

Computed results:

(Only partial data is shown in table)
z  (m) T  (K) c  (m/s)

0 288.2 340

500 284.9 338

1000 281.7 336

1500 278.4 334

2000 275.2 332

2500 271.9 330

3000 268.7 329

3500 265.4 326

4000 262.2 325

4500 258.9 322

5000 255.7 320

6000 249.2 316

7000 242.7 312

8000 236.2 308

9000 229.7 304

10000 223.3 299

Speed of Sound Variation with Altitude

250

275

300

325

350

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

z  (m)

c
 (

m
/s

)

kRTc 



Problem 12.41 [Difficulty: 3]

Given: Data on atmospheric temperature variation with altitude

Find: Lapse rate; plot rate of change of sonic speed with altitude

Solution:

The given or available data is: Rair 286.9
J

kg K
 k 1.4 T0 288.2 K T10k 223.3 K z 10000 m

For a linear temperature variation T T0 m z

dT

dz
m

T T0

z
 which can be evaluated at z = 10 km

m
T10k T0

z
6.49 10

3


K

m


For an ideal gas c k R T k R T0 m z 

Hence
dc

dz

m k R

2 c
 Here are the results, calculated using Excel:

z  (km) T  (K) dc/dz  (s
-1

)

0 288.2 -0.00383

1 281.7 -0.00387

2 275.2 -0.00392

3 268.7 -0.00397

4 262.2 -0.00402

5 255.8 -0.00407

6 249.3 -0.00412

7 242.8 -0.00417

8 236.3 -0.00423

9 229.8 -0.00429

10 223.3 -0.00435

Rate of Change of Sonic Speed

with Altitude

-0.0044

-0.0043

-0.0042

-0.0041

-0.0040

-0.0039

-0.0038

0 2 4 6 8 10

z  (km)

d
c
/d

z
 (

s
-1

)



Problem 12.42 [Difficulty: 1]

Given: Air flow at M = 1.9

Find: Air speed; Mach angle

Solution:

Basic equations: c k R T M
V

c
 α asin

1

M









The given or available data is T 77 460( ) R M 1.9 k 1.4 Rair 53.33
ft lbf

lbm R


Hence c k Rair T c 1136
ft

s


Then the air speed is V M c V 2158
ft

s
 V 1471 mph

The Mach angle is given by α asin
1

M







 α 31.8 deg



Problem 12.43 [Difficulty: 3]

 x 

h 
 

Given: Hypersonic aircraft flying overhead

Find: Time at which airplane is heard, how far aircraft travelled

Solution:

Basic equations: c k R T M
V

c
 α asin

1

M









Given or available data M 7 k 1.4 R 286.9
J

kg K


The time it takes to fly from directly overhead to where you hear it is ∆t
x

V


If the temperature is constant then x
h

tan α( )


At h 120000 ft h 36576 m interpolating from Table A.3 T 226.5 K 250.4 K 226.5 K( )
36576 30000

40000 30000


T 242.2 K

Using this temperature c k R T c 312
m

s
 and V M c V 2183

m

s


Hence α asin
1

M







 α 8.2 deg x
h

tan α( )
 x 253.4 km

∆t
x

V
 ∆t 116.06 s



Problem 12.44 [Difficulty: 3]

Given: Projectile fired into a gas, Mach cone formed

Find: Speed of projectile

Solution:

Basic equations: c k R T M
V

c
 α asin

1

M







 p ρ R T

Given or available data p 450 kPa ρ 4.5
kg

m
3

 k 1.625 α
25

2
deg 12.5 deg

Combining ideal gas equation of state and the sonic speed: c k
p

ρ
 c 403.1

m

s


From the Mach cone angle: M
1

sin α( )
 M 4.62 Therefore the speed is: V M c V 1862

m

s




 

Problem 12.45                                                              [Difficulty: 1]



 

Problem 12.46                                                               [Difficulty: 2]



 

Problem 12.47                                                               [Difficulty: 2]



Problem 12.48 [Difficulty: 2]

 x 

h 
 

Given: High-speed jet flying overhead

Find: Estimate speed and Mach number of jet

Solution:

Basic

equations:
c k R T M

V

c
 α asin

1

M









Given or available data T 25 273( ) K h 3000 m k 1.4 R 286.9
J

kg K


The time it takes to fly from directly overhead to where you hear it is ∆t 7.5 s

The distance traveled, moving at speed V, is x V ∆t

The Mach angle is related to height h and distance x by tan α( )
sin α( )

cos α( )


h

x


h

V ∆t
 (1)

and also we have sin α( )
1

M


c

V
 (2)

Dividing Eq. 2 by Eq 1 cos α( )
c

V

V ∆t

h


c ∆t

h


Note that we could have written this equation from geometry directly!

We have c k R T c 346
m

s
 so α acos

c ∆t

h







 α 30.1 deg

Hence M
1

sin α( )
 M 1.99

Then the speed is V M c V 689
m

s


Note that we assume the temperature of the air is uniform.  In fact the temperature will vary over 3000 m, so the

Mach cone will be curved.  This speed and Mach number are only rough estimates.



 

Problem 12.49                                                              [Difficulty: 2]



Problem 12.50 [Difficulty: 3]

 x 

h 
 

Given: Supersonic aircraft flying overhead

Find: Time at which airplane heard

Solution:

Basic equations: c k R T M
V

c
 α asin

1

M









Given or available data V 1000
m

s
 h 3 km k 1.4 R 286.9

J

kg K


The time it takes to fly from directly overhead to where you hear it is ∆t
x

V


If the temperature is constant then x
h

tan α( )


The temperature is not constant so the Mach line will not be straight.  We can find a range of Δt by considering the temperature range

At h 3 km  we find from Table A.3 that T 268.7 K

Using this temperature c k R T c 329
m

s
 and M

V

c
 M 3.04

Hence α asin
1

M







 α 19.2 deg x
h

tan α( )
 x 8625m ∆t

x

V
 ∆t 8.62s

At sea level we find from Table A.3 that T 288.2 K

Using this temperature c k R T c 340
m

s
 and M

V

c
 M 2.94

Hence α asin
1

M







 α 19.9 deg x
h

tan α( )
 x 8291m ∆t

x

V
 ∆t 8.29s

Thus we conclude that the time is somwhere between 8.62 and 8.29 s.  Taking an average ∆t 8.55 s



Problem 12.51 [Difficulty: 3]

 

x = Vt 

h  
 

x 

Given: Supersonic aircraft flying overhead

Find: Location at which first sound wave was emitted

Solution:

Basic equations: c k R T M
V

c
 α asin

1

M









Given or available data V 1000
m

s
 h 3 km k 1.4 R 286.9

J

kg K


We need to find Δx as shown in the figure ∆x h tan α( )

The temperature is not constant so the Mach line will not be straight (α is not constant).  We can find a range of

α and Δx by considering the temperature range

At h 3 km  we find from Table A.3 that T 268.7 K

Using this temperature c k R T c 329
m

s
 an

d
M

V

c
 M 3.04

Hence α asin
1

M







 α 19.2 deg ∆x h tan α( ) ∆x 1043 m

At sea level we find from Table A.3 that T 288.2 K

Using this temperature c k R T c 340
m

s
 an

d
M

V

c
 M 2.94

Hence α asin
1

M







 α 19.9 deg ∆x h tan α( ) ∆x 1085 m

Thus we conclude that the distance is somwhere between 1043 and 1085 m.  Taking an average ∆x 1064 m
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Problem 12.53 [Difficulty: 2]

Given: Speed of automobile

Find: Whether flow can be considered incompressible

Solution:

Consider the automobile at rest with 60 mph air flowing over it.  Let state 1 be upstream, and point 2 the stagnation point

on the automobile

The data provided, or available in the Appendices, is:

R 287
J

kg K
 k 1.4 V1 60 mph p1 101 kPa T1 20 273( ) K

The basic equation for the density change is
ρ0

ρ
1

k 1( )

2
M

2






1

k 1
 (12.20c)

or ρ0 ρ1 1
k 1( )

2
M1

2






1

k 1


ρ1

p1

R T1
 ρ1 1.201

kg

m
3



For the Mach number we need c c1 k R T1 c1 343
m

s


V1 26.8
m

s
 M1

V1

c1

 M1 0.0782

ρ0 ρ1 1
k 1

2
M1

2






1

k 1
 ρ0 1.205

kg

m
3

 The percentage change in density is
ρ0 ρ1

ρ0

0.305 %

This is an insignificant change, so the flow can be considered incompressible.  Note that M < 0.3, the usual guideline for

incompressibility

For the maximum speed present V1 120 mph V1 53.6
m

s
 M1

V1

c1

 M1 0.156

ρ0 ρ1 1
k 1

2
M1

2






1

k 1
 ρ0 1.216

kg

m
3

 The percentage change in

density is

ρ0 ρ1

ρ0

1.21 %

This is still an insignificant change, so the flow can be considered incompressible.



 Problem 12.54 [Difficulty: 5] 
 

 
 

Given: Supersonic transport aircraft 

Find: Explanation of sound wave refraction 

Solution:  

 

A sound wave is refracted when the speed of sound varies with altitude in the atmosphere.  (The variation in sound speed is caused by 

temperature variations in the atmosphere, as shown in Fig. 3.3) 

 

Imagine a plane wave front that initially is vertical.  When the wave encounters a region where the temperature increase with altitude 

(such as between 20.1 km and 47.3 km altitude in Fig. 3.3), the sound speed increases with elevation.  Therefore the upper portion of 

the wave travels faster than the lower portion.  The wave front turns gradually and the sound wave follows a curved path through the 

atmosphere.  Thus a wave that initially is horizontal bends and follows a curved path, tending to reach the ground some distance from 

the source. 

 

The curvature and the path of the sound could be calculated for any specific temperature variation in the atmosphere.  However, the 

required analysis is beyond the scope of this text. 



Problem 12.55 [Difficulty: 2]

Given: Mach number range from 0.05 to 0.95

Find: Plot of percentage density change; Mach number for 1%, 5% and 10% density change

Solution:

The given or available data is: k 1.4

Basic equation:

ρ0

ρ
1

k 1( )

2
M

2






1

k 1
 (12.20c) Hence

∆ρ

ρ0

ρ0 ρ

ρ0

 1
ρ

ρ0

 so
∆ρ

ρ0

1 1
k 1( )

2
M

2






1

1 k


Here are the results, generated using Excel:

M Δρ /ρ o
0.05 0.1%

0.10 0.5%

0.15 1.1%

0.20 2.0%

0.25 3.1% To find M  for specific density changes

0.30 4.4% use Goal Seek repeatedly

0.35 5.9% M Δρ /ρ o
0.40 7.6% 0.142 1%

0.45 9.4% 0.322 5%

0.50 11% 0.464 10%

0.55 14% Note: Based on ρ  (not ρ o) the results are:

0.60 16% 0.142 0.314 0.441

0.65 18%

0.70 21%

0.75 23%

0.80 26%

0.85 29%

0.90 31%

0.95 34%

Density Variation with Mach Number

0%

10%

20%

30%

40%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M

Δ
ρ/
ρ o



Problem 12.56 [Difficulty: 2]

Given: Scramjet-powered missile traveling at fixed Mach number and altitude

Find: Stagnation temperature at the nose of the missile

Solution:

Basic equation: T0 T 1
k 1

2
M

2








Available data R 286.9
J

kg K
 k 1.4 M 7

At z 85000 ft z 25908 m interpolating from Table A.3 T 220.6 K 222.5 K 220.6 K( )
25908 24000

26000 24000


T 222 K

So the stagnation temperature is T0 T 1
k 1

2
M

2






 T0 2402 K



Problem 12.57 [Difficulty: 2]

Given: X-15 rocket plane traveling at fixed Mach number and altitude

Find: Stagnation temperature at the nose of the plane

Solution:

Basic equation: T0 T 1
k 1

2
M

2






 c k R T M
V

c


Available data R 286.9
J

kg K
 k 1.4 V 7270

km

hr


At z 58400 m interpolating from Table A.3 T 270.7 K 255.8 K 270.7 K( )
58400 50000

60000 50000


T 258 K

Hence c k R T c 322
m

s
 c 1159

km

hr
 and we have M

V

c
6.27

So the stagnation temperature is T0 T 1
k 1

2
M

2






 T0 2289 K



Problem 12.58 [Difficulty: 1]

Given: Car and F-1 race car traveling at sea level

Find: Ratio of static to total pressure in each case; are compressiblilty effects experienced?

Solution:

Basic equations: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1


Given or available data Vcar 55 mph Vcar 80.7
ft

s
 VF1 220 mph VF1 323

ft

s


k 1.4 Rair 53.33
ft lbf

lbm R


At sea level, from Table A.3 T 288.2 K or T 519 R ρ 0.002377
slug

ft
3

 p 14.696 psi

Hence c k Rair T c 1116
ft

s
 Mcar

Vcar

c
 Mcar 0.0723

The pressure ratio is
p

p0

1
k 1

2
Mcar

2






k

k 1


 0.996

Note that the Bernoulli equation would give the same result!
p

p0

1
ρ Vcar

2


2 p








1

 0.996

For the Formula One car: MF1

VF1

c
 MF1 0.289

The pressure ratio is
p

p0

1
k 1

2
MF1

2






k

k 1


 0.944

Note that the Bernoulli equation would give almost the same result:
p

p0

1
ρ VF1

2


2 p








1

 0.945

Incompressible flow can be assumed for both cases,

but the F1 car gets very close to the Mach 0.3 rule

of thumb for compressible vs. incompressible flow.



Problem 12.59 [Difficulty: 2]

Given: Scramjet-powered missile traveling at fixed Mach number and altitude

Find: Stagnation and dynamic pressures

Solution:

Basic equation: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1
 pdyn

1

2
ρ V

2


Available data R 286.9
J

kg K
 k 1.4 M 7 pSL 14.696 psi ρSL 0.2377

slug

ft
3



At z 85000 ft z 25908 m interpolating from Table A.3 T 220.6 K 222.5 K 220.6 K( )
25908 24000

26000 24000


T 222 K

Hence c k R T c 299
m

s
 c 981

ft

s
 and we have V M c 6864

ft

s


The static pressure and density can be found by interpolation:

p pSL 0.02933 0.02160 0.02933( )
25908 24000

26000 24000






 p 0.323 psi p0 p 1
k 1

2
M

2






k

k 1
 p0 1336 psi

ρ ρSL 0.03832 0.02797 0.03832( )
25908 24000

26000 24000






 ρ 0.00676
slug

ft
3

 pdyn
1

2
ρ V

2
 pdyn 1106 psi



Problem 12.60 [Difficulty: 2]

Given: X-15 rocket plane traveling at fixed Mach number and altitude

Find: Stagnation and dynamic pressures

Solution:

Basic equation: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1
 pdyn

1

2
ρ V

2


Available data R 286.9
J

kg K
 k 1.4 V 7270

km

hr
 pSL 101.3 kPa ρSL 1.225

kg

m
3



At z 58400 m interpolating from Table A.3 T 270.7 K 255.8 K 270.7 K( )
58400 50000

60000 50000


T 258 K

Hence c k R T c 322
m

s
 c 1159

km

hr
 and we have M

V

c
6.27

The static pressure and density can be found by interpolation:

p pSL 0.0007874 0.0002217 0.0007874( )
58400 50000

60000 50000






 p 0.0316 kPa

p0 p 1
k 1

2
M

2






k

k 1
 p0 65.6 kPa

ρ ρSL 0.0008383 0.0002497 0.0008383( )
58400 50000

60000 50000






 ρ 4.21 10
4


kg

m
3



pdyn
1

2
ρ V

2
 pdyn 0.86 kPa



Problem 12.61 [Difficulty: 1]

Given: Aircraft flying at 250 m/s

Find: Stagnation pressure

Solution:

Basic equations: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1


Given or available data V 250
m

s
 T 50 273( ) K p 28 kPa k 1.4 R 286.9

J

kg K


First we need c k R T c 299
m

s
 then M

V

c
 M 0.835

Finally we solve for p0 p0 p 1
k 1

2
M

2






k

k 1
 p0 44.2 kPa



Problem 12.62 [Difficulty: 2]

Given: Pressure data on aircraft in flight

Find: Change in air density; whether flow can be considered incompressible

Solution:

The data provided, or available in the Appendices, is:

k 1.4 p0 48 kPa p 27.6 kPa T 55 273( ) K

Governing equation (assuming isentropic flow):

p

ρ
k

constant (12.12c)

Hence
ρ

ρ0

p

p0









1

k



so
∆ρ

ρ

ρ0 ρ

ρ


ρ0

ρ
1

p0

p









1

k

1
∆ρ

ρ
48.5 % NOT an incompressible flow!



Problem 12.63 [Difficulty: 2]

Given: Aircraft flying at 12 km

Find: Dynamic and stagnation pressures

Solution:

Basic equations: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1
 pdyn

1

2
ρ V

2


Given or available data M 2 h 12 km k 1.4 R 286.9
J

kg K


ρSL 1.225
kg

m
3

 pSL 101.3 kPa

At  h 12 km  ,from Table A.3 ρ 0.2546 ρSL ρ 0.312
kg

m
3

 p 0.1915 pSL p 19.4 kPa T 216.7 K

Hence p0 p 1
k 1

2
M

2






k

k 1
 p0 152 kPa

Also c k R T c 295
m

s
 V M c V 590

m

s


Hence pdyn
1

2
ρ V

2
 pdyn 54.3 kPa



 

Problem 12.64                                                               [Difficulty: 1]



 

Problem 12.65                                                               [Difficulty: 1]



 

Problem 12.66                                                               [Difficulty: 1]



Problem 12.67 [Difficulty: 2]

Given: Mach number of aircraft

Find: Pressure difference; air speed based on a) compressible b) incompressible assumptions

Solution:

The data provided, or available in the Appendices, is:

R 287
J

kg K
 cp 1004

J

kg K
 k 1.4 M 0.65

From Table A.3, at 10 km altitude T 223.3 K p 0.2615 101 kPa p 26.4 kPa

The governing equation for pressure change is:
p0

p
1

k 1

2
M

2






k

k 1
 (12.20a)

Hence p0 p 1
k 1

2
M

2






k

k 1
 p0 35.1 kPa

The pressure difference is p0 p 8.67 kPa

a) Assuming compressibility c k R T c 300
m

s
 V M c V 195

m

s


b) Assuming incompressibility

Here the Bernoulli equation applies in the form
p

ρ

V
2

2


p0

ρ
 so V

2 p0 p 

ρ


For the density ρ
p

R T
 ρ 0.412

kg

m
3

 V
2 p0 p 

ρ


Hence V 205
m

s


In this case the error at M = 0.65 in computing the speed of the aircraft using Bernoulli equation is
205 195

195
5.13 %



Problem 12.68                                                               [Difficulty: 1]



Problem 12.69 [Difficulty: 2]

Given: Flight altitude of high-speed aircraft

Find: Mach number and aircraft speed errors assuming incompressible flow; plot

Solution:

The governing equation for pressure change is:
p0

p
1

k 1

2
M

2






k

k 1
 (12.20a)

Hence ∆p p0 p p
p0

p
1









 ∆p p 1
k 1

2
M

2






k

k 1
1









 (1)

For each Mach number the actual pressure change can be computed from Eq. 1

Assuming incompressibility, the Bernoulli equation applies in

the form

p

ρ

V
2

2


p0

ρ
 so V

2 p0 p 

ρ


2 ∆p

ρ


and the Mach number based on this is Mincomp
V

c


2 ∆p

ρ

k R T


2 ∆p

k ρ R T


Using Eq. 1 Mincomp
2

k
1

k 1

2
M

2






k

k 1
1











The error in using Bernoulli to estimate the Mach number is
∆M

M

Mincomp M

M


For errors in speed:

Actual speed: V M c V M k R T

Speed assuming incompressible flow: Vinc Mincomp k R T

The error in using Bernoulli to estimate the speed from the pressure difference is
∆V

V

Vincomp V

V


The computations and plots are shown below, generated using Excel:



The given or available data is:

R  = 286.9 J/kg.K

k  = 1.4

T  = 216.7 K (At 12 km, Table A.3)

Computed results:

c  = 295 m/s

M M incomp
ΔM/M V  (m/s) V incomp (m/s) ΔV/V

0.1 0.100 0.13% 29.5 29.5 0.13%

0.2 0.201 0.50% 59.0 59.3 0.50%

0.3 0.303 1.1% 88.5 89.5 1.1%

0.4 0.408 2.0% 118 120 2.0%

0.5 0.516 3.2% 148 152 3.2%

0.6 0.627 4.6% 177 185 4.6%

0.7 0.744 6.2% 207 219 6.2%

0.8 0.865 8.2% 236 255 8.2%

0.9 0.994 10.4% 266 293 10.4%

Error in Mach Number Using Bernoulli
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M
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Error in Speed Using Bernoulli
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Problem 12.70 [Difficulty: 2]

Given: Wind tunnel at M = 2.5

Find: Stagnation conditions; mass flow rate

Solution:

Basic equations: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1


T0

T
1

k 1

2
M

2


Given or available data M 2.5 T 15 273( ) K p 35 kPa A 0.175 m
2



k 1.4 R 286.9
J

kg K


Then T0 T 1
k 1

2
M

2






 T0 648 K T0 375 °C

Also p0 p 1
k 1

2
M

2






k

k 1
 p0 598 kPa

The mass flow rate is given by mrate ρ A V

We need c k R T c 340
m

s
 V M c V 850

m

s


and also ρ
p

R T
 ρ 0.424

kg

m
3



Then mrate ρ A V mrate 63.0
kg

s

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Problem 12.72 [Difficulty: 3]

Given: Wind tunnel test of supersonic transport

Find: Lift and drag coefficients

Solution:

Basic equations: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1


T0

T
1

k 1

2
M

2


CL

FL

1

2
ρ V

2
 A

 CD

FD

1

2
ρ V

2
 A



Given or available data M 1.8 T0 500 460( ) R p0 200 psi FL 12000 lbf FD 1600 lbf

A 100 in
2

 k 1.4 Rair 53.33
ft lbf

lbm R


We need local conditions p p0 1
k 1

2
M

2






k

k 1


 p 34.8 psi

T
T0

1
k 1

2
M

2


 T 583 R T 123 °F

Then c k Rair T c 1183
ft

s
 c 807 mph

and V M c V 2129
ft

s
 V 1452 mph

We also need ρ
p

Rair T
 ρ 0.00501

slug

ft
3



Finally CL

FL

1

2
ρ V

2
 A

 CL 1.52

CD

FD

1

2
ρ V

2
 A

 CD 0.203
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Problem 12.75 [Difficulty: 2]

Given: Data on air flow in a duct

Find: Stagnation pressures and temperatures; explain velocity increase; isentropic or not?

Solution:

The data provided, or available in the Appendices, is:

Rair 287
J

kg K
 cp 1004

J

kg K
 k 1.4 M 9.68 pSL 101.3 kPa ρSL 1.225

kg

m
3



At altitude: z 110000 ft z 33528 m T1 226.5 K 250.4 K 226.5 K( )
33528 30000

40000 30000
 T1 234.9 K

p1 pSL 0.01181 0.002834 0.01181( )
33528 30000

40000 30000






 p1 0.8756 kPa

The sound speed is: c k Rair T1 307.239
m

s
 so the flight speed is: V M c 2974

m

s
 V 9757

ft

s


So the stagnation temperature and pressure are: T01 T1 1
k 1

2
M

2






 T01 4638 K T01 8348 R

p01 p1 1
k 1

2
M

2






k

k 1
 p01 29.93 MPa

As the air passes through the shock wave, stagnation pressure decreases: p02 p01 1 0.996( )

Therefore, the total head probe sees a pressure of p02 119.7 kPa

Since there is no heat transfer through the shock wave, the stagnation temperature remains the same: T02 T01

T02 8348 R



Problem 12.76 [Difficulty: 2]

Given: Data on air flow in a duct

Find: Stagnation pressures and temperatures; explain velocity increase; isentropic or not?

Solution:

The data provided, or available in the Appendices, is:

R 287
J

kg K
 cp 1004

J

kg K
 k 1.4

M1 0.1 T1 20 273( ) K p1 1000 kPa M2 0.7 T2 5.62 273( ) K p2 136.5 kPa

For stagnation temperatures: T01 T1 1
k 1

2
M1

2






 T01 293.6 K T01 20.6 C

T02 T2 1
k 1

2
M2

2






 T02 293.6 K T02 20.6 C

(Because the stagnation temperature is constant, the process is adiabatic)

For stagnation pressures: p01 p1 1
k 1

2
M1

2






k

k 1
 p01 1.01 MPa

p02 p2 1
k 1

2
M2

2






k

k 1
 p02 189 kPa

The entropy change is: ∆s cp ln
T2

T1









 R ln
p2

p1









 ∆s 480
J

kg K


Note that V1 M1 k R T1 V1 34.3
m

s
 V2 M2 k R T2 V2 229

m

s


Although there is friction, suggesting the flow should decelerate, because

the static pressure drops so much, the net effect is flow acceleration!

The entropy increases because the process is adiabatic but irreversible (friction).

From the second law of thermodynamics ds
δq

T
 : becomes ds > 0



Problem 12.77 [Difficulty: 2]

Given: Data on air flow in a duct

Find: Stagnation temperatures; explain; rate of cooling; stagnation pressures; entropy change

Solution:

The data provided, or available in the Appendices, is: R 287
J

kg K
 cp 1004

J

kg K
 k 1.4

T1 500 273( ) K p1 500 kPa T2 18.57 273( ) K p2 639.2 kPa

M1 0.5 M2 0.2 Mrate 0.05
kg

s


For stagnation temperatures: T01 T1 1
k 1

2
M1

2






 T01 811.7 K T01 539 C

T02 T2 1
k 1

2
M2

2






 T02 256.5 K T02 16.5 C

The fact that the stagnation temperature (a measure of total energy) decreases suggests cooling is taking place.

For the heat transfer: Q Mrate cp T02 T01  Q 27.9 kW

For stagnation pressures: p01 p1 1
k 1

2
M1

2






k

k 1
 p01 593 kPa

p02 p2 1
k 1

2
M2

2






k

k 1
 p02 657 kPa

The entropy change is: ∆s cp ln
T2

T1









 R ln
p2

p1









 ∆s 1186
J

kg K


The entropy decreases because the process is a cooling process (Q is negative).

From the second law of thermodynamics: ds
δq

T
  becomes ds ve

Hence, if the process is reversible, the entropy must decrease; if it is irreversible, it may increase or decrease
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Problem 12.79 [Difficulty: 3]

Given: Air flow in duct with heat transfer and friction

Find: Heat transfer; Stagnation pressure at location 2

Solution:

Basic equations: c k R T M
V

c


p0

p
1

k 1

2
M

2






k

k 1


ρ V A const h1

V1
2

2


δQ

dm
 h2

V2
2

2


Given or available data p1 400 kPa T1 325 K V1 150
m

s


p2 275 kPa T2 450 K

cp 1004
J

kg K
 k 1.4 R 286.9

J

kg K


Then ρ1

p1

R T1
 ρ1 4.29

kg

m
3

 ρ2

p2

R T2
 ρ2 2.13

kg

m
3



and from ρ V A const V2 V1

ρ1

ρ2

 V2 302
m

s


Also
δQ

dm
q h2 h1

V2
2

V1
2



2


q cp T2 T1 
V2

2
V1

2


2
 q 160

kJ

kg


We also have c2 k R T2 c2 425
m

s
 s

o
M2

V2

c2

 M2 0.711

Hence p02 p2 1
k 1

2
M2

2






k

k 1
 p02 385 kPa



Problem 12.80 [Difficulty: 2]

Given: Data on air flow in a ramjet combustor

Find: Stagnation pressures and temperatures; isentropic or not?

Solution:

The data provided, or available in the Appendices, is:

Rair 53.33
ft lbf

lbm R
 cp 0.2399

BTU

lbm R
 k 1.4 Mrate 0.1

lbm

s


M1 0.2 T1 600 460( ) R p1 7 psi M2 0.9 T2 1890 460( ) R p2 4.1 psi

For stagnation temperatures: T01 T1 1
k 1

2
M1

2






 T01 1068.5 R T01 608.8 °F

T02 T2 1
k 1

2
M2

2






 T02 2730.7 R T02 2271 °F

Since we are modeling heat addition, the stagnation temperature should increase.

The rate of heat addition is: Q Mrate cp T02 T01  Q 39.9
BTU

s


For stagnation pressures: p01 p1 1
k 1

2
M1

2






k

k 1
 7.20 psi p02 p2 1

k 1

2
M2

2






k

k 1
 6.93 psi

T 

p01 

s 

p1 

T01 

T1 
 

p02 

p2 

T02 

T2 


The entropy change is: ∆s cp ln
T2

T1









 Rair ln
p2

p1









 0.228
BTU

lbm R


The entropy increases because heat is being added. Here is a Ts diagram

of the process:



Problem 12.81 [Difficulty: 2]

Given: Data on air flow in a ramjet combustor

Find: Stagnation pressures and temperatures; isentropic or not?

Solution:

The data provided, or available in the Appendices, is:

Rair 53.33
ft lbf

lbm R
 cp 0.2399

BTU

lbm R
 k 1.4 Mrate 0.1

lbm

s


M1 0.2 T1 600 460( ) R p1 7 psi M2 0.9 T2 1660 460( ) R p2 1.6 psi

For stagnation temperatures: T01 T1 1
k 1

2
M1

2






 T01 1068.5 R T01 608.8 °F

T02 T2 1
k 1

2
M2

2






 T02 2463.4 R T02 2003.8 °F

The rate of heat addition is: Q Mrate cp T02 T01  Q 33.5
BTU

s


For stagnation pressures: p01 p1 1
k 1

2
M1

2






k

k 1
 p01 7.20 psi

p02 p2 1
k 1

2
M2

2






k

k 1
 p02 2.71 psi

The entropy change is: ∆s cp ln
T2

T1









 Rair ln
p2

p1









 ∆s 0.267
BTU

lbm R


The friction has increased the entropy increase across the duct, even though the heat addition has decreased.
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Problem 12.83 [Difficulty: 2]

Given: Air flow through turbine

Find: Stagnation conditions at inlet and exit; change in specific entropy; Plot on Ts

diagram

Solution:

Basic equations:
p0

p
1

k 1

2
M

2






k

k 1


T0

T
1

k 1

2
M

2
 ∆s cp ln

T2

T1









 R ln
p2

p1











Given or available data M1 0.4 p1 625 kPa T1 1250 273( ) K

M2 0.8 p2 20 kPa T2 650 273( ) K

cp 1004
J

kg K
 k 1.4 R 286.9

J

kg K


Then T01 T1 1
k 1

2
M1

2






 T01 1572K T01 1299 °C

p01 p1 1
k 1

2
M1

2






k

k 1
 p01 698 kPa

T02 T2 1
k 1

2
M2

2






 T02 1041 K T02 768 °C

p02 p2 1
k 1

2
M2

2






k

k 1
 p02 30 kPa

∆s cp ln
T2

T1









 R ln
p2

p1









 ∆s 485
J

kg K


 
T 

p01 

s 

p1 

T01 

T1 
 

p02 

p2 

T02 

T2 
 
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Problem 12.85 [Difficulty: 2]

Given: Air flow leak in window of airplane

Find: Mass flow rate

Solution:

Basic equations: mrate ρ V A Vcrit
2 k

k 1
R T0

ρ0

ρcrit

k 1

2







1

k 1


The interior conditions are the stagnation conditions for the flow

Given or available data T0 271.9 K ρSL 1.225
kg

m
3

 ρ0 0.7812 ρSL ρ0 0.957
kg

m
3



(Above data from Table A.3 at an altitude of 2500 m)

A 1 mm
2

 cp 1004
J

kg K
 k 1.4 R 286.9

J

kg K


Then ρcrit

ρ0

k 1

2







1

k 1

 ρcrit 0.607
kg

m
3

 Vcrit
2 k

k 1
R T0 Vcrit 302

m

s


The mass flow rate is mrate ρcrit Vcrit A mrate 1.83 10
4


kg

s




Problem 12.86 [Difficulty: 2]

Given: Air leak in ISS

Find: Mass flow rate

Solution:

Basic equations: mrate ρ V A Vcrit
2 k

k 1
R T0

ρ0

ρcrit

k 1

2







1

k 1


The interior conditions are the stagnation conditions for the flow

Given or available data T0 65 460( ) R p0 14.7 psi Rair 53.33
ft lbf

lbm R
 k 1.4 A 0.001 in

2


The density of air inside the ISS would be: ρ0

p0

Rair T0
 ρ0 2.35 10

3


slug

ft
3



Then ρcrit

ρ0

k 1

2







1

k 1

 ρcrit 1.49 10
3


slug

ft
3

 Vcrit
2 k

k 1
Rair T0 Vcrit 1025

ft

s


The mass flow rate is mrate ρcrit Vcrit A mrate 1.061 10
5


slug

s
 mrate 3.41 10

4


lbm

s

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Problem 12.88 [Difficulty: 1]

Given: Data on helium in reservoir

Find: Critical conditions

Solution:

The data provided, or available in the Appendices, is:

RHe 386.1
ft lbf

lbm R
 k 1.66 T0 3600 R p0 725 14.7( )psi p0 740 psi

For critical conditions
T0

Tcrit

k 1

2
 Tcrit

T0

k 1

2

 Tcrit 2707 R

p0

pcrit

k 1

2







k

k 1
 pcrit

p0

k 1

2







k

k 1

 pcrit 361 psi absolute

Vcrit k RHe Tcrit Vcrit 7471
ft

s

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Problem 12.90 [Difficulty: 1]

Given: Data on hot gas stream

Find: Critical conditions

Solution:

The data provided, or available in the Appendices, is:

R 287
J

kg K
 k 1.4 T0 1500 273( ) K T0 1773K p0 140 kPa

For critical conditions
T0

Tcrit

k 1

2
 Tcrit

T0

k 1

2

 Tcrit 1478K

p0

pcrit

k 1

2







k

k 1
 pcrit

p0

k 1

2







k

k 1

 pcrit 74.0 kPa absolute

Vcrit k R Tcrit Vcrit 770
m

s




Problem 12.91 [Difficulty: 1]

Given: Data on air flow in a ramjet combustor

Find: Critical temperature and pressure at nozzle exit

Solution:

The data provided, or available in the Appendices, is: k 1.4 p0 1.7 MPa T0 1010 K

The critical temperature and pressure are:

T0

Tcrit

k 1

2
 Tcrit

T0

k 1

2

 Tcrit 841.7 K

p0

pcrit

k 1

2







k

k 1
 pcrit

p0

k 1

2







k

k 1

 pcrit 0.898 MPa



Problem 12.92 [Difficulty: 1]

Given: Data on air flow in a ramjet combustor

Find: Critical temperature and pressure at nozzle exit

Solution:

The data provided, or available in the Appendices, is: k 1.4 M2 0.9 T2 1660 460( ) R p2 1.6 psi

Stagnation conditions are: T02 T2 1
k 1

2
M2

2






 T02 2463.4R T02 2003.8°F

p02 p2 1
k 1

2
M2

2






k

k 1
 p02 2.71 psi

The critical temperature and pressure are:

T02

Tcrit2

k 1

2
 Tcrit2

T02

k 1

2

 Tcrit2 2052.9 R Tcrit2 1593.2 °F

p02

pcrit2

k 1

2







k

k 1
 pcrit2

p02

k 1

2







k

k 1

 pcrit2 1.430 psi



Problem 13.1 [Difficulty: 2]

Given: Air extracted from a large tank

Find: Mass flow rate

Solution:

Basic

equations:
mrate ρ V A h1

V1
2

2
 h2

V2
2

2


p

ρ
k

const T p

1 k( )

k
 const

Given or available data T0 70 273( ) K p0 101 kPa p 25 kPa

D 15 cm cp 1004
J

kg K
 k 1.4 R 286.9

J

kg K


The mass flow rate is given by mrate ρ A V A
π D

2


4
 A 0.0177 m

2


We need the density and velocity at the nozzle.  In the tank ρ0

p0

R T0
 ρ0 1.026

kg

m
3



From the isentropic relation ρ ρ0
p

p0









1

k

 ρ 0.379
kg

m
3



We can apply the energy equation between the tank (stagnation conditions) and the point in the nozzle to find the velocity

h0 h
V

2

2
 V 2 h0 h  2 cp T0 T 

Fot T we again use insentropic relations T T0

p0

p









1 k( )

k

 T 230.167 K T 43.0 °C

Then V 2 cp T0 T  V 476
m

s


The mass flow rate is mrate ρ A V mrate 3.18
kg

s


Note that the flow is supersonic at this point c k R T c 304
m

s
 M

V

c
 M 1.57

Hence we must have a converging-diverging nozzle



 

Problem 13.2                                                               [Difficulty: 2]



Problem 13.3 [Difficulty: 2]

Given: Steam flow through a nozzle

Find: Speed and Mach number; Mass flow rate; Sketch the shape

Solution:

Basic

equations:
mrate ρ V A h1

V1
2

2
 h2

V2
2

2


Assumptions: 1) Steady flow 2) Isentropic 3) Uniform flow 4) Superheated steam can be treated as ideal gas

Given or available data T0 450 273( ) K p0 6 MPa p 2 MPa

D 2 cm k 1.30 R 461.4
J

kg K
 (Table A.6)

From the steam tables (try finding interactive ones on the Web!), at stagnation conditions

s0 6720
J

kg K
 h0 3.302 10

6


J

kg


Hence at the nozzle section s s0 6720
J

kg K
 an

d
p 2 MPa

From these values we find from the steam tables that T 289 °C h 2.997 10
6


J

kg
 v 0.1225

m
3

kg


Hence the first law becomes V 2 h0 h  V 781
m

s


The mass flow rate is given by mrate ρ A V
A V

v
 A

π D
2



4
 A 3.14 10

4
 m

2


Hence mrate
A V

v
 mrate 2.00

kg

s


For the Mach number we need c k R T c 581
m

s
 M

V

c
 M 1.35

The flow is supersonic starting from rest, so must be converging-diverging



Problem 13.4 [Difficulty: 2]

Given: Data on flow in a passage

Find: Pressure and Mach number at downstream location

Solution:

The given or available data is: R  = 296.8 J/kg-K

k  = 1.4

p 1 = 450 kPa

M 1 = 0.7

A 1 = 0.15 m
2

A 2 = 0.45 m
2

Equations and Computations:

From M 1 and p 1, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

p 01 = 624 kPa

From M 1, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A
*

1 = 0.1371 m
2

For isentropic flow (p 01 = p 02, A
*

2 = A
*

1)

p 02 = 624 kPa

A
*

2 = 0.1371 m
2

A 2/A
*

2 = 3.2831

From A 2/A
*

2, and Eq. 13.7d

(using built-in function IsenMsubfromA (M ,k ))

Since there is no throat, the flow stays subsonic

M 2 = 0.1797

From M 2 and p 02, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

p 2 = 610 kPa



Problem 13.5 [Difficulty: 2]

Given: Data on flow in a passage

Find: Temperature and Mach number at downstream location

Solution:

The given or available data is: R  = 296.8 J/kg-K

k  = 1.4

T 1 = 30 °C

T 1 = 303 K

M 1 = 1.7

A 1 = 0.15 m
2

A 2 = 0.45 m
2

Equations and Computations:

From M 1 and T 1, and Eq. 13.7b

(using built-in function Isent (M ,k ))

T 01 = 478 K

From M 1, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A
*

1 = 0.1121 m
2

For isentropic flow (T 01 = T 02, A
*
2 = A

*
1)

T 02 = 478 K

A
*

2 = 0.1121 m
2

A 2/A
*

2 = 4.0128

From A 2/A
*

2, and Eq. 13.7d

(using built-in function IsenMsupfromA (M ,k ))

Since there is no throat, the flow stays supersonic!

M 2 = 2.94

From M 2 and T 02, and Eq. 13.7b

(using built-in function Isent (M ,k ))

T 2 = 175 K

T 2 = -98 °C



Problem 13.6 [Difficulty: 2]

Given: Air flow in a passage

Find: Mach number; Sketch shape

Solution:

Basic

equations:

p0

p
1

k 1

2
M

2






k

k 1
 c k R T

Given or available data T1 10 273( ) K p1 150 kPa V1 120
m

s


p2 50 kPa k 1.4 R 286.9
J

kg K


The speed of sound at state 1 is c1 k R T1 c1 337
m

s


Hence M1

V1

c1

 M1 0.356

For isentropic flow stagnation pressure is constant.  Hence at state 2
p0

p2

1
k 1

2
M2

2






k

k 1


Hence p0 p1 1
k 1

2
M1

2






k

k 1
 p0 164 kPa

Solving for M2 M2
2

k 1

p0

p2









k 1

k

1













 M2 1.42

Hence, as we go from subsonic to supersonic we must have a converging-diverging nozzle



Problem 13.7 [Difficulty: 2]

Given: Data on flow in a passage

Find: Pressure at downstream location

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·
o
R

k  = 1.4

T 1 = 560
o
R

p 1 = 30 psi

V 1 = 1750 ft/s

M 2 = 2.5

Equations and Computations:

From T 1 and Eq. 12.18

c 1 = 1160 ft/s

Then M 1 = 1.51

From M 1 and p 1, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

p 01 = 111 psi

For isentropic flow (p 01 = p 02)

p 02 = 111 psi

From M 2 and p 02, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

p 2 = 6.52 psi



Problem 13.8 [Difficulty: 2]

Given: Data on flow in a passage

Find: Stagnation conditions; whether duct is a nozzle or diffuser; exit conditions

Solution:

The given or available data is: R  = 259.8 J/kg-K

k  = 1.4

p 1 = 200 kPa

T 1 = 420 K

V 1 = 200 m/s

A 1 = 0.6 m
2

A 2 = 0.5 m
2

Equations and Computations:

From T 1 and Eq. 12.18

c 1 = 391 m/s

Then M 1 = 0.512

From M 1 and T 1, and Eq. 13.7b

(using built-in function Isent (M ,k ))

T 01 = 442 K

From M 1 and p 1, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

p 01 = 239 kPa

Since the flow is subsonic and the area is decreasing, this duct is a nozzle.

From M 1, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A
*

1 = 0.4552 m
2

For isentropic flow (p 01 = p 02, T 01 = T 02, A
*

2 = A
*

1)

p 02 = 239 kPa

T 02 = 442 K

A
*

2 = 0.4552 m
2

A 2/A
*

2 = 1.0984

From A 2/A
*

2, and Eq. 13.7d

(using built-in function IsenMsubfromA (M ,k ))

Since there is no throat, the flow stays subsonic!

M 2 = 0.69

From M 2 and stagnation conditions:

(using built-in functions)

p 2 = 173 kPa

T 2 = 403 K



Problem 13.9 [Difficulty: 3]

Given: Data on flow in a passage

Find: Shape of flow passage; exit area provided the flow is reversible

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

m = 20 lbm/s

p 1 = 30 psia

T 1 = 1200 °F

T 1 = 1660 °R

A 1 = 8 in
2

M 2 = 1.2

Equations and Computations:

Using the ideal gas law we calculate the density at station 1:

ρ 1 = 0.04880 lbm/ft
3

Now we can use the area and density to get the velocity from the mass flow rate:

V 1 = 7377 ft/s

From T 1 and Eq. 12.18

c 1 = 1998 ft/s

Then M 1 = 3.69

Since the flow is supersonic and the velocity is decreasing, this duct is converging.

From M 1, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A
*
1 = 0.9857 in

2

For isentropic flow ( A
*
2 = A

*
1)

A
*
2 = 0.9857 in

2

A 2/A
*
2 = 1.0304

Therefore the exit area is:

A 2 = 1.016 in
2



Problem 13.10 [Difficulty: 3]

Given: Data on flow in a nozzle

Find: Mass flow rate; Throat area; Mach numbers

Solution:

The given or available data is: R  = 286.9 J/kg·K

k  = 1.4

T 0 = 523 K

p 1 = 200 kPa p 2 = 50 kPa

A  = 1 cm
2

Equations and Computations:

We don't know the two Mach numbers.  We do know for each that Eq. 13.7a applies:

Hence we can write two equations, but have three unknowns (M 1, M 2, and p 0)!

We also know that states 1 and 2 have the same area.  Hence we can write Eq. 13.7d twice:

We now have four equations for four unknowns (A *, M 1, M 2, and p 0)!

We make guesses (using Solver) for M 1 and M 2, and make the errors in computed A * and p 0 zero.

For: M 1 = 0.512 M 2 = 1.68 Errors

from Eq. 13.7a: p 0 = 239 kPa p 0 = 239 kPa 0.00%

and from Eq. 13.7d: A*  = 0.759 cm
2

A*  = 0.759 cm
2

0.00%

Note that the throat area is the critical area Sum 0.00%

The stagnation density is then obtained from the ideal gas equation

0 = 1.59 kg/m
3

The density at critical state is obtained from Eq. 13.7a (or 12.22c)

* = 1.01 kg/m
3

The velocity at critical state can be obtained from Eq. 12.23)

V*  = 418 m/s

The mass flow rate is *V *A *

m rate = 0.0321 kg/s
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Problem 13.12 [Difficulty: 3]

Given: Air flow in a passage

Find: Speed and area downstream; Sketch flow passage

Solution:

Basic equations:
T0

T
1

k 1

2
M

2
 c k R T

A

Acrit

1

M

1
k 1

2
M

2


k 1

2













k 1

2 k 1( )



Given or available data T1 32 460( ) R p1 25 psi M1 1.75

T2 225 460( ) R k 1.4 Rair 53.33
ft lbf

lbm R


D1 3 ft A1

π D1
2



4
 A1 7.07 ft

2


Hence T0 T1 1
k 1

2
M1

2






 T0 793 R T0 334 °F

For isentropic flow stagnation conditions are constant.  Hence

M2
2

k 1

T0

T2

1








 M2 0.889

We also have c2 k Rair T2 c2 1283
ft

s


Hence V2 M2 c2 V2 1141
ft

s


From state 1 Acrit

A1 M1

1
k 1

2
M1

2


k 1

2













k 1

2 k 1( )

 Acrit 5.10 ft
2



Hence at state 2 A2

Acrit

M2

1
k 1

2
M2

2


k 1

2













k 1

2 k 1( )

 A2 5.15 ft
2



Hence, as we go from supersonic to subsonic we must have a converging-diverging diffuser
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Problem 13.14 [Difficulty: 3]

Given: Data on flow in a passage

Find: Mach numbers at entrance and exit; area ratio of duct

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

T 1 = 310 K

p 1 = 200 kPa

T 2 = 294 K

T 02 = 316 K

p 2 = 125 kPa

Equations and Computations:

Since the flow is adiabatic, the stagnation temperature is constant:

T 01 = 316 K

Solving for the Mach numbers at 1 and 2 using Eq. 13.7b

(using built-in function IsenMfromT (Tratio ,k ))

Then M 1 = 0.311

M 2 = 0.612

Using the ideal gas equation of state, we can calculate the densities of the gas:

ρ 1 = 2.249 kg/m
3

ρ 2 = 1.482 kg/m
3

From static temperatures and Eq. 12.18

c 1 = 352.9 m/s

c 2 = 343.6 m/s

V 1 = 109.8 m/s

V 2 = 210.2 m/s

Since flow is steady, the mass flow rate must be equal at 1 and 2.

So the area ratio may be calculated from the densities and velocities:

A 2/A 1 = 0.792

Note that we can not assume isentropic flow in this problem. While the flow is

adiabatic, it is not reversible. There is a drop in stagnation pressure from state 1 to 2

which would invalidate the assumption of isentropic flow.



Problem 13.15 [Difficulty: 3]

Given: Flow in a converging nozzle to a pipe

Find: Plot of mass flow rate

Solution:

The given or available data is R  = 287 J/kg·K

k  = 1.4

T 0 = 293 K

p 0 = 101 kPa

D t = 1 cm

A t = 0.785 cm
2

Equations and Computations:

The critical pressure is given by

p * = 53.4 kPa

Hence for p  = 100 kPa down to this pressure the flow gradually increases; then it is constant

p M T  (K) c V  = M ·c   = p /RT

Flow 

Rate
(kPa) (Eq. 13.7a) (Eq. 13.7b) (m/s) (m/s) (kg/m

3
) (kg/s)

100 0.119 292 343 41 1.19 0.00383

99 0.169 291 342 58 1.18 0.00539

98 0.208 290 342 71 1.18 0.00656

97 0.241 290 341 82 1.17 0.00753

96 0.270 289 341 92 1.16 0.00838

95 0.297 288 340 101 1.15 0.0091

90 0.409 284 337 138 1.11 0.0120

85 0.503 279 335 168 1.06 0.0140

80 0.587 274 332 195 1.02 0.0156

75 0.666 269 329 219 0.971 0.0167

70 0.743 264 326 242 0.925 0.0176

65 0.819 258 322 264 0.877 0.0182

60 0.896 252 318 285 0.828 0.0186

55 0.974 246 315 306 0.778 0.0187

53.4 1.000 244 313 313 0.762 0.0187

53 1.000 244 313 313 0.762 0.0187

52 1.000 244 313 313 0.762 0.0187

51 1.000 244 313 313 0.762 0.0187

50 1.000 244 313 313 0.762 0.0187

Using critical conditions, and Eq. 13.9 for mass flow rate:

53.4 1.000 244 313 313 0.762 0.0185

(Note: discrepancy in mass flow rate is due to round-off error)

Flow Rate in a Converging Nozzle
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Problem 13.16 [Difficulty: 2]

Given: Data on flow in a passage

Find: Flow rate; area and pressure at downstream location; sketch passage shape

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

A 1 = 0.25 m
2

T 1 = 283 K

p 1 = 15 kPa

V 1 = 590 m/s

T 2 = 410

M 2 = 0.75

Equations and Computations:

From T 1 and Eq. 12.18 (12.18)

c 1 = 337 m/s

Then M 1 = 1.75

Because the flow decreases isentropically from supersonic to subsonic

the passage shape must be convergent-divergent

From p 1 and T 1 and the ideal gas equation

1 = 0.185 kg/m
3

The mass flow rate is m rate = 1A 1V 1

m rate = 27.2 kg/s



From M 1 and A 1, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

(13.7d)

A*  = 0.180 m
2

From M 2 and A *, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A 2 = 0.192 m
2

From M 1 and p 1, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

(13.7a)

p 01 = 79.9 kPa

For isentropic flow (p 01 = p 02)

p 02 = 79.9 kPa

From M 2 and p 02, and Eq. 13.7a

(using built-in function Isenp (M ,k ))

p 2 = 55.0 kPa



Problem 13.17 [Difficulty: 3]

Given: Data on tank conditions; isentropic flow

Find: Plot cross-section area and pressure distributions

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·
o
R

k  = 1.4

T 0 = 500
o
R

p 0 = 45 psia

p e = 14.7 psia

m rate = 2.25 lbm/s

Equations and Computations:

From p 0, p e and Eq. 13.7a (using built-in function IsenMfromp (M,k))

(13.7a)

M e = 1.37

Because the exit flow is supersonic, the passage must be a CD nozzle

We need a scale for the area.

From p 0, T 0, m flow, and Eq. 13.10c

(13.10c)

Then A t  = A * = 0.0146 ft
2

For each M , and A *, and Eq. 13.7d

(using built-in function IsenA (M ,k )

(13.7d)

we can compute each area A .

From each M , and p 0, and Eq. 13.7a

(using built-in function Isenp (M ,k )

we can compute each pressure p .



L  (ft) M A  (ft
2
) p  (psia)

1.00 0.069 0.1234 44.9

1.25 0.086 0.0989 44.8

1.50 0.103 0.0826 44.7

1.75 0.120 0.0710 44.5

2.00 0.137 0.0622 44.4

2.50 0.172 0.0501 44.1

3.00 0.206 0.0421 43.7

4.00 0.274 0.0322 42.7

5.00 0.343 0.0264 41.5

6.00 0.412 0.0227 40.0

7.00 0.480 0.0201 38.4

8.00 0.549 0.0183 36.7

9.00 0.618 0.0171 34.8

10.00 0.686 0.0161 32.8

11.00 0.755 0.0155 30.8

12.00 0.823 0.0150 28.8

13.00 0.892 0.0147 26.8

14.00 0.961 0.0146 24.9

14.6 1.000 0.0146 23.8

16.00 1.098 0.0147 21.1

17.00 1.166 0.0149 19.4

18.00 1.235 0.0152 17.7

19.00 1.304 0.0156 16.2

20.00 1.372 0.0161 14.7

Area Variation in Passage
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Problem 13.18 [Difficulty: 2]

Given: Flow in a converging-diverging nozzle to a pipe

Find: Plot of mass flow rate

Solution:

The given or available data is R  = 286.9 J/kg·K

k  = 1.4

T 0 = 293 K

p 0 = 101 kPa

D t = 1 cm De  = 2.5 cm

A t = 0.785 cm
2

A e = 4.909 cm
2

Equations and Computations:

The critical pressure is given by

p * = 53.4 kPa This is the minimum throat pressure

For the CD nozzle, we can compute the pressure at the exit required for this to happen

A* = 0.785 cm
2

(= A t)

A e/A * = 6.25

M e = 0.0931 or 3.41 (Eq. 13.7d)

p e = 100.4 or 67.2 kPa (Eq. 13.7a)

Hence we conclude flow occurs in regimes iii  down to v  (Fig. 13.8); the flow is ALWAYS choked!

p * M T * (K) c * V * = c *   = p /RT

Flow 

Rate

(kPa) (Eq. 13.7a) (Eq. 13.7b) (m/s) (m/s) (kg/m
3
) (kg/s)

53.4 1.000 244 313 313 0.762 0.0187

(Note: discrepancy in mass flow rate is due to round-off error) 0.0185 (Using Eq. 13.9)



Problem 13.19 [Difficulty: 2]

Given: Isentropic air flow in converging nozzle

Find: Pressure, speed and Mach number at throat

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1


Given or available data p1 350 kPa V1 150
m

s
 M1 0.5 pb 250 kPa

k 1.4 R 286.9
J

kg K


The flow will be choked if pb/p0 < 0.528

p0 p1 1
k 1

2
M1

2






k

k 1
 p0 415 kPa

pb

p0

0.602 (Not choked)

Hence
p0

pt

1
k 1

2
Mt

2






k

k 1
 where pt pb pt 250 kPa

so Mt
2

k 1

p0

pt









k 1

k

1













 Mt 0.883

Also V1 M1 c1 M1 k R T1 or T1
1

k R

V1

M1









2

 T1 224 K T1 49.1 °C

Then T0 T1 1
k 1

2
M1

2






 T0 235 K T0 37.9 °C

Hence Tt

T0

1
k 1

2
Mt

2


 Tt 204 K Tt 69.6 °C

Then ct k R Tt ct 286
m

s


Finally Vt Mt ct Vt 252
m

s




Problem 13.20 [Difficulty: 2]

Given: Air flow in a converging nozzle

Find: Mass flow rate

Solution:

Basic equations: mrate ρ V A p ρ R T
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1


Given or available data pb 35 psi p0 60 psi T0 200 460( ) R Dt 4 in

k 1.4 Rair 53.33
ft lbf

lbm R
 At

π

4
Dt

2
 At 0.0873 ft

2


Since 
pb

p0

0.583 is greater than 0.528, the nozzle is not choked and pt pb

Hence Mt
2

k 1

p0

pt









k 1

k

1













 Mt 0.912

and Tt

T0

1
k 1

2
Mt

2


 Tt 566 R Tt 106 °F

ct k Rair Tt Vt ct Vt 1166
ft

s


ρt

pt

Rair Tt
 ρt 5.19 10

3


slug

ft
3



mrate ρt At Vt mrate 0.528
slug

s
 mrate 17.0

lbm

s




Problem 13.21 [Difficulty: 2]

Given: Data on flow in a passage

Find: Possible Mach numbers at downstream location

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

M 1 = 1

A 1 = 0.2 m
2

A 2 = 0.5 m
2

Equations and Computations:

Since the flow is sonic at the entrance:

A
*
1 = 0.2 m

2

For isentropic flow (A
*
2 = A

*
1)

A
*
2 = 0.2 m

2

A 2/A
*
2 = 2.5

Now there are two Mach numbers which could result from this area change,

one subsonic and one supersonic.

From A 2/A
*

2, and Eq. 13.7d

(using built-in functions)

M 2sub  = 0.2395

M 2sup  = 2.4428



Problem 13.22 [Difficulty: 3]

Given: Data on three tanks

Find: Mass flow rate; Pressure in second tank

Solution:
The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

A t = 1 cm
2

We need to establish whether each nozzle is choked.  There is a large total pressure drop so this is likely.

However, BOTH cannot be choked and have the same flow rate.  This is because Eq. 13.9a, below

(13.9b)

indicates that the choked flow rate depends on stagnation temperature (which is constant) but also

stagnation pressure, which drops because of turbulent mixing in the middle chamber.  Hence BOTH nozzles

cannot be choked.  We assume the second one only is choked (why?) and verify later.

Temperature and pressure in tank 1: T 01 = 308 K

p 01 = 650 kPa

We make a guess at the pressure at the first nozzle exit: p e1 = 527 kPa

NOTE: The value shown is the final answer!  It was obtained using Solver !

This will also be tank 2 stagnation pressure: p 02 = 527 kPa

Pressure in tank 3: p 3 = 65 kPa

Equations and Computations:

From the p e1 guess and Eq. 13.17a: M e1 = 0.556

Then at the first throat (Eq.13.7b): T e1 = 290 K

The density at the first throat (Ideal Gas) is:  e1 = 6.33 kg/m
3

Then c  at the first throat (Eq. 12.18) is: c e1 = 341 m/s

Then V  at the first throat is: V e1 = 190 m/s

Finally the mass flow rate is: m rate = 0.120 kg/s First Nozzle!

For the presumed choked flow at the second nozzle we use Eq. 13.9a, with T 01 = T 02 and p 02:

m rate = 0.120 kg/s Second Nozzle!

For the guess value for p e1 we compute the error between the two flow rates:

m rate = 0.000 kg/s

Use Solver to vary the guess value for p e1 to make this error zero!

Note that this could also be done manually.



 

Problem 13.23                                                              [Difficulty: 2]



 

Problem 13.24                                                              [Difficulty: 2]



Problem 13.25 [Difficulty: 2]

Given: Data on converging nozzle; isentropic flow

Find: Pressure and Mach number; throat area; mass flow rate

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

A 1 = 0.05 m
2

T 1 = 276.3 K

V 1 = 200 m/s

p atm = 101 kPa

Equations and Computations:

From T 1 and Eq. 12.18 (12.18)

c 1 = 333 m/s

Then M 1 = 0.60

To find the pressure, we first need the stagnation pressure.

If the flow is just choked

p e = p atm = p * = 101 kPa

From p e = p * and Eq. 12.22a

(12.22a)

p 0 = 191 kPa

From M 1 and p 0, and Eq. 13.7a

(using built-in function Isenp (M ,k )

(13.7a)

Then p 1 = 150 kPa



The mass flow rate is m rate = 1A 1V 1

Hence, we need 1 from the ideal gas equation.

1 = 1.89 kg/m
3

The mass flow rate m rate is then

m rate = 18.9 kg/s

The throat area A t = A * because the flow is choked.

From M 1 and A 1, and Eq. 13.7d

(using built-in function IsenA (M ,k )

(13.7d)

A*  = 0.0421 m
2

Hence A t = 0.0421 m
2



 

Problem 13.26                                                               [Difficulty: 2]



 

Problem 13.27                                                               [Difficulty: 2]



Problem 13.28 [Difficulty: 3]

Given: Data on flow in a passage

Find: Exit temperature and mass flow rate of air assuming isentropic flow

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

T 1 = 450 °R

p 1 = 45 psia

p 01 = 51 psia

A 1 = 4 ft
2

A 2 = 3 ft
2

Equations and Computations:

From the static and stagnation pressures we can calculate M 1:

M 1 = 0.427

From the M 1 and T 1 we can get T 01:

T 01 = 466.38 °R

From M 1, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A
*
1 = 2.649 ft

2

For isentropic flow (p 02 = p 01, T 02 = T 01, A
*
2 = A

*
1)

p 02 = 51 psia

T 02 = 466.38 °R

A
*
2 = 2.649 ft

2

A 2/A
*
2 = 1.1325



Given subsonic flow in the duct, we can find the exit Mach number using

Equation 13.7d

M 2 = 0.653

From the Mach number and stagnation state we can calculate the

static pressure and temperature:

p 2 = 38.28 psia

T 2 = 430 °R

From T 2 and Eq. 12.18

c 2 = 1016.38 ft/s

V 2 = 664.11 ft/s

Using the ideal gas law we calculate the density at station 2:

ρ 2 = 0.2406 lbm/ft
3

Now we can use the area, density, and velocity to calculate the mass flow rate:

m  = 479 lbm/s



Problem 13.29 [Difficulty: 2]

Given: Temperature in and mass flow rate from a tank

Find: Tank pressure; pressure, temperature and speed at exit

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

T 0 = 273 K

A t = 0.001 m
2

m rate = 2 kg/s

Equations and Computations:

Because p b = 0 p e = p *

Hence the flow is choked!

Hence T e = T *

From T 0, and Eq. 12.22b

(12.22b)

T * = 228 K

T e = 228 K

-45.5
o
C



Also M e = 1

Hence V e = V * = c e

From T e and Eq. 12.18 (12.18)

c e = 302 m/s

Then V e = 302 m/s

To find the exit pressure we use the ideal gas equation

after first finding the exit density.

The mass flow rate is m rate = eA eV e

Hence e = 6.62 kg/m
3

From the ideal gas equation p e = eRT e

p e = 432 kPa

From p e = p * and Eq. 12.22a

(12.22a)

p 0 = 817 kPa

We can check our results:

From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

Then m choked = 2.00 kg/s

m choked = m rate Correct!



 

Problem 13.30                                                               [Difficulty: 2]



Problem 13.31 [Difficulty: 3]

Given: Temperature and pressure in a tank; nozzle with specific area

Find: Mass flow rate of gas; maximum possible flow rate

Solution:

The given or available data is: R  = 296.8 J/kg.K

k  = 1.4

T 0 = 450 K

p 0 = 150 kPa

A t = 30 cm
2

A t = 0.003 m
2

p b = 100 kPa

Equations and Computations:

Assuming that the nozzle exit pressure is the back pressure:

p e = 100 kPa

Then the nozzle exit Mach number is:

M e = 0.7837

This nozzle is not choked. The exit temperature is:

T e = 400.78 K

From T e and Eq. 12.18 (12.18)

c e = 408.08 m/s

Then V e = 319.80 m/s

From the ideal gas equation of state, we can calculate the density:

e = 0.8407 kg/m
3

Therefore the mass flow rate is:

m  = 0.807 kg/s

When the room pressure can be lowered, we can choke the nozzle.

p e = p *

T e = T *



From T 0, and Eq. 12.22b

(12.22b)

T * = 375 K

p * = 79.24 kPa

T e = 375 K

Also M e = 1

Hence V e = V * = c e

From T e and Eq. 12.18 (12.18)

c e = 395 m/s

Then V e = 395 m/s

To find the mass flow rate we calculate the density from the ideal

gas equation of state:

Hence e = 0.7120 kg/m
3

Therefore the mass flow rate is:

m max = 0.843 kg/s

We can check our results:

From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

Then m choked = 0.843 kg/s

m choked = m rate Correct!



Problem 13.32 [Difficulty: 2]

Given: Isentropic air flow into a tank

Find: Initial mass flow rate; Ts process; explain nonlinear mass flow rate

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 mrate ρ A V

Given or available data p0 101 kPa pb p0 10 kPa pb 91 kPa T0 20 273( ) K

k 1.4 R 286.9
J

kg K
 D 5 mm

Then A
π

4
D

2
 Avena 65 % A Avena 12.8 mm

2


The flow will be choked if pb/p0 < 0.528
pb

p0

0.901 (Not choked)

Hence
p0

pvena

1
k 1

2
M

2






k

k 1
 wher

e
pvena pb pvena 91 kPa

so Mvena
2

k 1

p0

pvena









k 1

k

1













 Mvena 0.389

Then Tvena

T0

1
k 1

2
Mvena

2


 Tvena 284 K Tvena 11.3 °C

Then cvena k R Tvena cvena 338
m

s


and Vvena Mvena cvena Vvena 131
m

s


Also ρvena

pvena

R Tvena
 ρvena 1.12

kg

m
3



Finally mrate ρvena Avena Vvena mrate 1.87 10
3


kg

s


The Ts diagram will be a vertical line (T decreases and s = const).  After entering the tank there will be turbulent mixing (s increases)

and the flow comes to rest (T increases).  The mass flow rate versus time will look like the curved part of Fig. 13.6b; it is nonlinear

because V AND ρ vary



Problem 13.33 [Difficulty: 3]

Given: Spherical cavity with valve

Find: Time to reach desired pressure; Entropy change

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 ∆s cp ln

T2

T1









 R ln
p2

p1











p ρ R T c k R T mrate ρ A V mchoked At p0
k

R T0


2

k 1






k 1

2 k 1( )


Given or available data p0 101 kPa Tatm 20 273( ) K T0 Tatm d 1 mm D 50 cm

pf 45 kPa Tf Tatm k 1.4 R 286.9
J

kg K
 cp 1004

J

kg K


Then the inlet area is At
π

4
d

2
 At 0.785 mm

2
 and tank volume is V

π

3
D

3
 V 0.131 m

3


The flow will be choked if pb/p0 < 0.528; the MAXIMUM back pressure is pb pf so
pb

p0

0.446 (Choked)

The final density is ρf

pf

R Tf
 ρf 0.535

kg

m
3

 and final mass is M ρf V M 0.0701 kg

Since the mass flow rate is constant (flow is always choked) M mrate ∆t or ∆t
M

mrate



We have choked flow so mrate At p0
k

R T0


2

k 1






k 1

2 k 1( )
 mrate 1.873 10

4


kg

s


Hence ∆t
M

mrate

 ∆t 374 s ∆t 6.23 min

The air in the tank will be cold when the valve is closed.  Because ρ =M/V is constant, p = ρRT = const x T, so as the

temperature rises to ambient, the pressure will rise too.

For the entropy change during the charging process is given by ∆s cp ln
T2

T1









 R ln
p2

p1









   where T1 Tatm T2 Tatm

and p1 p0 p2 pf Hence ∆s cp ln
T2

T1









 R ln
p2

p1









 ∆s 232
J

kg K




 

Problem 13.34                                                               [Difficulty: 3]



 

Problem 13.35                                                               [Difficulty: 3]



 

Problem 13.36                                                              [Difficulty: 3]



Problem 13.37 [Difficulty: 3]

Given: Air-driven rocket in space

Find: Tank pressure; pressure, temperature and speed at exit; initial acceleration

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

T 0 = 398 K

A t = 25 mm
2

M  = 25 kg

m rate = 0.05 kg/s

Equations and Computations:

Because p b = 0 p e = p *

Hence the flow is choked!

Hence T e = T *

From T 0, and Eq. 12.22b

(12.22b)

T * = 332 K

T e = 332 K

58.7
o
C

Also M e = 1

Hence V e = V * = c e

From T e and Eq. 12.18 (12.18)

c e = 365 m/s

Then V e = 365 m/s



To find the exit pressure we use the ideal gas equation

after first finding the exit density.

The mass flow rate is m rate = eA eV e

Hence e = 0.0548 kg/m
3

From the ideal gas equation p e = eRT e

p e = 5.21 kPa

From p e = p * and Eq. 12.22a

(12.22a)

p 0 = 9.87 kPa

We can check our results:

From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

Then m choked = 0.050 kg/s

m choked = m rate Correct!

The initial acceleration is given by:

(4.33)

which simplifies to: or:

a x = 1.25 m/s
2

VmMaAp ratexte 
M

ApVm
a terate

x






Problem 13.38 [Difficulty: 3]

Given: Air flow through a converging-diverging nozzle

Find: Nozzle exit area and mass flow rate

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

p 0 = 2 MPa

T 0 = 313 K

p e = 200 kPa

A t = 20 cm
2

Equations and Computations:

Using the stagnation to exit static pressure ratio, we can find the exit Mach number:

(using built-in function Isenp (M ,k ))

M e = 2.1572

From M e, and Eq. 13.7d

(using built-in function IsenA (M ,k ))

A e/A
*
 = 1.9307

At the throat the flow is sonic, so At = A*. Therefore:

A e = 38.6 cm
2

To find the mass flow rate at the exit, we will use the choked flow equation:

From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

m  = 17.646 kg/s



Problem 13.39 [Difficulty: 1]

Given: Hydrogen flow through a converging-diverging nozzle

Find: Nozzle exit Mach number

Solution:

The given or available data is: R  = 766.5 ft-lbf/lbm-°R

k  = 1.41

p 0 = 100 psia

T 0 = 540 °F

T 0 = 1000 °R

p e = 20 psia

Equations and Computations:

Using the stagnation to exit static pressure ratio, we can find the exit Mach number:

(using built-in function Isenp (M ,k ))

M e = 1.706



Problem 13.40 [Difficulty: 3]

Given: Gas cylinder with broken valve

Find: Mass flow rate; acceleration of cylinder

Solution:

Basic

equations:

T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 p ρ R T c k R T mrate ρ A V

(4.33)

Given or available data patm 101 kPa p0 20 MPa patm 20.101 MPa T0 20 273( ) K

k 1.66 R 2077
J

kg K
 d 10 mm so the nozzle area is Ae

π

4
d

2
 Ae 78.5 mm

2
 MCV 65 kg

The flow will be choked if pb/p0 < 0.528: pb patm so
pb

p0

5.025 10
3

 (Choked: Critical conditions)

The exit temperature is Te

T0

1
k 1

2






 Te 220 K Te 52.8 °C ce k R Te

The exit speed is Ve ce Ve 872
m

s


The exit pressure is pe

p0

1
k 1

2






k

k 1

 pe 9.8 MPa and exit density is ρe

pe

R Te
 ρe 21

kg

m
3



Then mrate ρe Ae Ve mrate 1.468
kg

s


The momentum equation (Eq. 4.33) simplifies to pe patm  Ae MCV ax Ve mrate

Hence ax

pe patm  Ae Ve mrate

MCV

 ax 31.4
m

s
2



The process is isentropic, followed by nonisentropic expansion to atmospheric pressure



 

Problem 13.41                                                               [Difficulty: 3]



Problem 13.42 [Difficulty: 4]

Given: Spherical air tank

Find: Air temperature after 30s; estimate throat area

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p

ρ
k

const
t

VCVρ




d



ACS


ρ V






d 0 (4.12)

Assumptions: 1) Large tank (stagnation conditions) 2) isentropic 3) uniform flow

Given or available data patm 101 kPa p1 2.75 MPa T1 450 K D 2 m V
π

6
D

3
 V 4.19 m

3


∆M 30 kg ∆t 30 s k 1.4 R 286.9
J

kg K


The flow will be choked if pb/p1 < 0.528: pb patm so
pb

p1

0.037 (Initially choked: Critical conditions)

We need to see if the flow is still choked after 30s

The initial (State 1) density and mass are ρ1

p1

R T1
 ρ1 21.3

kg

m
3

 M1 ρ1 V M1 89.2 kg

The final (State 2) mass and density are then M2 M1 ∆M M2 59.2 kg ρ2

M2

V
 ρ2 14.1

kg

m
3



For an isentropic process
p

ρ
k

const so p2 p1

ρ2

ρ1









k

 p2 1.55 MPa
pb

p2

0.0652 (Still choked)

The final temperature is T2

p2

ρ2 R
 T2 382 K T2 109 °C

To estimate the throat area we use
∆M

∆t
mtave ρtave At Vtave or At

∆M

∆t ρtave Vtave


where we use average values of density and speed at the throat.

The average stagnation temperature is T0ave

T1 T2

2
 T0ave 416 K

The average stagnation pressure is p0ave

p1 p2

2
 p0ave 2.15 MPa



Hence the average temperature and pressure (critical) at the throat are

Ttave

T0ave

1
k 1

2






 Ttave 347 K and ptave

p0ave

1
k 1

2






k

k 1

 ptave 1.14 MPa

Hence Vtave k R Ttave Vtave 373
m

s
 ρtave

ptave

R Ttave
 ρtave 11.4

kg

m
3



Finally At
∆M

∆t ρtave Vtave
 At 2.35 10

4
 m

2
 At 235 mm

2


This corresponds to a diameter

Dt

4 At

π
 Dt 0.0173 m Dt 17.3 mm

The process is isentropic, followed by nonisentropic expansion to atmospheric pressure



Problem 13.43 [Difficulty: 4]

Given: Ideal gas flow in a converging nozzle

Find: Exit area and speed

Solution:

Basic

equations:

T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1


A

Acrit

1

M

1
k 1

2
M

2


k 1

2













k 1

2 k 1( )



Given or available data p1 35 psi ρ1 0.1
lbm

ft
3

 V1 500
ft

s
 A1 1 ft

2
 p2 25 psi k 1.25

Check for choking: c1 k R T1 or, replacing R using the ideal gas equation c1 k
p1

ρ1

 c1 1424
ft

s


Hence M1

V1

c1

 M1 0.351

Then p0 p1 1
k 1

2
M1

2






k

k 1
 p0 37.8 psi

The critical pressure is then pcrit

p0

k 1

2







k

k 1

 pcrit 21.0 psi Hence p2 > pcrit, so NOT choked

Then we have M2
2

k 1

p0

p2









k 1

k

1













 M2 0.830

From M1 we find Acrit

M1 A1

1
k 1

2
M1

2


k 1

2













k 1

2 k 1( )

 Acrit 0.557 ft
2

 A2

Acrit

M2

1
k 1

2
M2

2


k 1

2













k 1

2 k 1( )

 A2 0.573 ft
2



For isentropic flow p ρ
k

 const so ρ2 ρ1

p1

p2









1

k

 ρ2 0.131
lbm

ft
3



Finally from continuity ρ A V const so V2 V1

A1 ρ1

A2 ρ2
 V2 667

ft

s

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Problem 13.45 [Difficulty: 3]

Given: Air flow through a converging-diverging nozzle

Find: Nozzle mass flow rate

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

V 1 = 50 ft/s

p 1 = 15 psia

T 1 = 70 °F

T 1 = 530 °R

A t = 1 ft
2

Equations and Computations:

At station 1 the local sound speed is:

c 1 = 1128.80 ft/s

So the upstream Mach number is:

M 1 = 0.0443

So now we can calculate the stagnation temperature and pressure:

p 0 = 15.021 psia

T 0 = 530.21 °R

To find the mass flow rate, we will use the choked flow equation:

From p 0, T 0, A t, and Eq. 13.10a

(13.10a)

m  = 50.0 lbm/s



Problem 13.46 [Difficulty: 2]

Given: CD nozzle attached to large tank

Find: Flow rate

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 mrate ρ V A

Given or available data p0 150 kPa T0 35 273( ) K pe 101 kPa D 2.75 cm

k 1.4 R 286.9
J

kg K
 Ae

π

4
D

2
 Ae 5.94 cm

2


For isentropic flow Me
2

k 1

p0

pe









k 1

k

1













 Me 0.773

Then Te

T0

1
k 1

2
Me

2






 Te 275 K Te 1.94 °C

Also ce k R Te ce 332
m

s
 Ve Me ce Ve 257

m

s


ρe

pe

R Te
 ρe 1.28

kg

m
3



Finally mrate ρe Ve Ae mrate 0.195
kg

s




 

Problem 13.47                                                               [Difficulty: 4]



Problem 13.48                                                               [Difficulty: 4]   Part 1/2



 

Problem 13.48                                                                   [Difficulty: 4]   Part 2/2



Problem 13.49 [Difficulty: 2]

Given: Design condition in a converging-diverging nozzle

Find: Tank pressure; flow rate; throat area

Solution:

The given or available data is: R  = 53.33 ft.lbf/lbm.
o
R

k  = 1.4

T 0 = 560
o
R

A e = 1 in
2

p b = 14.7 psia

M e = 2

Equations and Computations:

At design condition p e = p b

p e = 14.7 psia

From M e and p e, and Eq. 13.7a

(using built-in function Isenp (M ,k )

(13.7a)

p 0 = 115 psia

From M e and A e, and Eq. 13.7d

(using built-in function IsenA (M ,k )

(13.7d)

A*  = 0.593 in
2

Hence A t = 0.593 in
2

From p 0, T 0, A t, and Eq. 13.10a

(13.10a)

m choked = 1.53 lb/s



Problem 13.50 [Difficulty: 3]

Given: Wind tunnel test section with blockage

Find: Maximum blockage that can be tolerated; air speed given a fixed blockage

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 1.2

T 1 = 70 °F

T 1 = 530 °R

A t = 1 ft
2

Equations and Computations:

The test section will choke if the blockage decreases the area to A
*
. In the test section:

A 1/A
*
 = 1.0304

So the minimum area would be

A
*
 = 0.9705 ft

2

And the blockage would be the difference between this and the test section area:

A 1 - A
*
 = 0.0295 ft

2

A 1 - A
*
 = 4.25 in

2

If we have a blockage of:

A 1 - A  = 3.0000 in
2

Then the actual area would be:

A actual = 0.9792 ft
2

The resulting isentropic area ratio is:

A actual/A
*
 = 1.0090

and the actual Mach number is:

M actual = 1.1066

(remember that since we're already supersonic, we should use the supersonic solution)

The stagnation temperature for the wind tunnel is (based on test section conditions)

T 0 = 682.64 °R

So the actual static temperature in the tunnel is:

T actual = 548.35 °R

The sound speed would then be:

c actual = 1148.17 ft/s

And so the speed in the test section is:

V actual = 1270.5 ft/s



Problem 13.51 [Difficulty: 3]

Given: Air flow through a converging-diverging nozzle equipped with pitot-static probe

Find: Nozzle velocity and mass flow rate

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

p 1 = 75 kPa

p 01 = 100 kPa

T 1 = 20 °C

T 1 = 293 K

A 1 = 10 in
2

A 1 = 0.006452 m
2

Equations and Computations:

At station 1 the local sound speed is:

c 1 = 343.05 m/s

Based on the static and pitot pressures, the Mach number is:

M 1 = 0.6545

Therefore the velocity is:

V 1 = 225 m/s

The local density can be calculated using the ideal gas equation of state:

ρ 1 = 0.8922 kg/m
3

So the mass flow rate is:

m  = 1.292 kg/s



 

Problem 13.52                                                               [Difficulty: 2]



 

Problem 13.53                                                               [Difficulty: 2]



Problem 13.54 [Difficulty: 3]

Given: Methane discharging from one tank to another via a converging nozzle

Find: Mass flow rate at two different back pressures

Solution:

The given or available data is: R  = 96.32 ft-lbf/lbm-°R

k  = 1.31

p 0 = 75 psia

T 0 = 80 °F

T 0 = 540 °R

A e = 1 in
2

Equations and Computations:

If the nozzle were choked, the exit Mach number is 1 and the pressure would be:

p
*

 = 40.79 psia

Therefore, in part a, when

p e = 15 psia

The nozzle is choked, and we can use the choked flow equation:

From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

m  = 1.249 lbm/s

In part b, when

p e = 60 psia

The nozzle is not choked. The exit Mach number is:

M e = 0.5915

The exit temperature can be found from the Mach number:

T e = 512.2 °R

The sound speed at the exit is:

c e = 1442.6 ft/s

And so the exit flow speed is:

V e = 853.3 ft/s

The density can be calculated using the ideal gas equation of state:

ρ e = 0.1751 lbm/ft
3

The mass flow rate can then be calculated directly from continuity:

m = 1.038 lbm/s



 

Problem 13.55                                                               [Difficulty: 2]



 

Problem 13.56                                                               [Difficulty: 2]



Problem 13.57                                                              [Difficulty: 3]   Part 1/2



 

Problem 13.57                                                                [Difficulty: 3]   Part 2/2



Problem 13.58 [Difficulty: 3]

Given: Rocket motor on test stand

Find: Mass flow rate; thrust force

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 p ρ R T c k R T mrate ρ A V

patm pe  Ae Rx mrate Ve Momentum for pressure pe and velocity Ve at exit; Rx is the reaction force

Given or available data pe 75 kPa patm 101 kPa p0 4 MPa T0 3250 K k 1.25 R 300
J

kg K


d 25 cm so the nozzle exit area is Ae
π

4
d

2
 Ae 491 cm

2


From the pressures Me
2

k 1

p0

pe









k 1

k

1













 Me 3.12

The exit temperature is Te

T0

1
k 1

2
Me

2






 Te 1467 K ce k R Te ce 742
m

s


The exit speed is Ve Me ce Ve 2313
m

s
 and ρe

pe

R Te
 ρe 0.170

kg

m
3



Then mrate ρe Ae Ve mrate 19.3
kg

s


The momentum equation (Eq. 4.33) simplifies to pe patm  Ae MCV ax Ve mrate

Hence Rx pe patm  Ae Ve mrate Rx 43.5 kN



 

Problem 13.59                                                               [Difficulty: 3]



 

Problem 13.60                                                               [Difficulty: 3]



 

Problem 13.61                                                               [Difficulty: 3]



Problem 13.62 [Difficulty: 4]

Given: Compressed CO2 in a cartridge expanding through a nozzle

Find: Throat pressure; Mass flow rate; Thrust; Thrust increase with diverging section; Exit area

Solution:

Basic equations:

Assumptions: 1) Isentropic flow 2) Stagnation in cartridge 3) Ideal gas 4) Uniform flow

Given or available data: k 1.29 R 188.9
J

kg K
 patm 101 kPa

p0 35 MPa T0 20 273( ) K dt 0.5 mm

From isentropic relations pcrit

p0

1
k 1

2






k

k 1

 pcrit 19.2 MPa

Since pb << pcrit, then pt pcrit pt 19.2 MPa

Throat is critical so mrate ρt Vt At

Tt

T0

1
k 1

2


 Tt 256 K

Vt k R Tt Vt 250
m

s


At

π dt
2



4
 At 1.963 10

7
 m

2


ρt

pt

R Tt
 ρt 396

kg

m
3



mrate ρt Vt At mrate 0.0194
kg

s




For 1D flow with no body force the momentum equation reduces to Rx ptgage At mrate Vt ptgage pt patm

Rx mrate Vt ptgage At Rx 8.60 N

When a diverging section is added the nozzle can exit to atmospheric pressure pe patm

Hence the Mach number at exit is Me
2

k 1

p0

pe









k 1

k

1



























1

2

 Me 4.334

Te

T0

1
k 1

2
Me

2


 Te 78.7 K

ce k R Te ce 138
m

s


Ve Me ce Ve 600
m

s


The mass flow rate is unchanged (choked flow)

From the momentum equation Rx mrate Ve Rx 11.67 N

The percentage increase in thrust is
11.67 N 8.60 N

8.60 N
35.7 %

The exit area is obtained from mrate ρe Ve Ae and ρe

pe

R Te
 ρe 6.79

kg

m
3



Ae

mrate

ρe Ve
 Ae 4.77 10

6
 m

2
 Ae 4.77 mm

2


 
T 

p0 

s 

pt 

T0 

Tt 

CD 

Nozzle 

pb Te 

Conv. 

Nozzle 



Problem 13.63 [Difficulty: 3]

Given: Rocket motor

Find: Nozzle exit area, velocity, and thrust generated

Solution:

The given or available data is: R  = 70.6 ft-lbf/lbm-°R

k  = 1.25

p 0 = 175 psia

T 0 = 5400 °R

A t = 1 in
2

p e = 14.7 psia

Equations and Computations:

The exit Mach number can be calculated based on the pressure ratio:

M e = 2.2647

The isentropic area ratio at this Mach number is:

A e/A
*
 = 2.4151

So the nozzle exit area is:

A e = 2.42 in
2

The exit temperature can be found from the Mach number:

T e = 3290.4 °R

The sound speed at the exit is:

c e = 3057.8 ft/s

And so the exit flow speed is:

V e = 6925.2 ft/s

The density can be calculated using the ideal gas equation of state:

ρ e = 0.009112 lbm/ft
3

The nozzle is choked, and we can use the choked flow equation:

From p 0, T 0, A t, and Eq. 13.10a

(13.10a)

m  = 1.058 lbm/s

Based on the momentum equation, we can calculate the thrust generated:

R x = 228 lbf

Note that since the flow expanded perfectly (the nozzle exit pressure is equal

to the ambient pressure), the pressure terms drop out of the thrust

calculation.



Problem 13.64 [Difficulty: 4]

Given: Rocket motor with converging-only nozzle

Find: Nozzle exit pressure and thrust

Solution:

The given or available data is: R  = 70.6 ft-lbf/lbm-°R

k  = 1.25

p 0 = 175 psia

T 0 = 5400 °R

A t = 1 in
2

p b = 14.7 psia

Equations and Computations:

If the diverging portion of the nozzle is removed, the exit Mach number is 1:

The exit Mach number can be calculated based on the pressure ratio:

M e = 1.0000

The isentropic area ratio at this Mach number is:

A e/A
*
 = 1.0000

So the nozzle exit area is:

A t = 1.00 in
2

The exit temperature and pressure can be found from the Mach number:

T e = 4800.0 °R

p e = 97.1 psia

The sound speed at the exit is:

c e = 3693.2 ft/s

And so the exit flow speed is:

V e = 3693.2 ft/s

The nozzle is choked, and we can use the choked flow equation:

From p 0, T 0, A t, and Eq. 13.9a

(13.9a)

m  = 1.058 lbm/s

Based on the momentum equation, we can calculate the thrust generated:

F = 204 lbf



Problem 13.65 [Difficulty: 3]

Given: CO2 cartridge and convergent nozzle

Find: Tank pressure to develop thrust of 15 N

Solution:

The given or available data is: R  = 188.9 J/kg·K

k  = 1.29

T 0 = 293 K

p b = 101 kPa

D t = 0.5 mm

Equations and Computations:

A t = 0.196 mm
2

The momentum equation gives

R x = m flowV e

Hence, we need m flow and V e

For isentropic flow p e = p b

p e = 101 kPa

If we knew p 0 we could use it and p e, and Eq. 13.7a, to find M e.

Once M e is known, the other exit conditions can be found.

Make a guess for p 0, and eventually use Goal Seek  (see below).

p 0 = 44.6 MPa

From p 0 and p e, and Eq. 13.7a

(using built-in function IsenMfromp (M ,k )

(13.7a)

M e = 4.5



From M e and T 0 and Eq. 13.7b

(using built-in function IsenT (M ,k )

(13.7b)

T e = 74.5 K

From T e and Eq. 12.18 (12.18)

c e = 134.8 m/s

Then V e = 606 m/s

The mass flow rate is obtained from p 0, T 0, A t, and Eq. 13.10a

(13.10a)

m choked = 0.0248 kg/s

Finally, the momentum equation gives

R x = m flowV e

= 15.0 N

We need to set R x to 15 N.  To do this use Goal Seek

to vary p 0 to obtain the result!



Problem 13.66 [Difficulty: 3]

 (Vs)  (Vs – V) Shock speed Vs Shift coordinates: 

V 

Shock at rest 

Given: Normal shock due to explosion

Find: Shock speed; temperature and speed after shock

Solution:

Basic equations: M2
2

M1
2 2

k 1


2 k

k 1






M1
2

 1

 V M c M k R T

T2

T1

1
k 1

2
M1

2






k M1
2


k 1

2








k 1

2







2

M1
2



p2

p1

2 k

k 1
M1

2


k 1

k 1


Given or available data k 1.4 R 286.9
J

kg K
 p2 30 MPa p1 101 kPa T1 20 273( ) K

From the pressure ratio M1
k 1

2 k






p2

p1

k 1

k 1










 M1 16.0

Then we have T2 T1

1
k 1

2
M1

2






k M1
2


k 1

2








k 1

2







2

M1
2



 T2 14790 K T2 14517 °C

M2

M1
2 2

k 1


2 k

k 1






M1
2

 1

 M2 0.382

Then the speed of the shock (Vs = V1) is V1 M1 k R T1 V1 5475
m

s
 Vs V1 Vs 5475

m

s


After the shock (V2) the speed is V2 M2 k R T2 V2 930
m

s


But we have V2 Vs V V Vs V2 V 4545
m

s


These results are unrealistic because at the very high post-shock temperatures experienced, the specific heat

ratio will NOT be constant!  The extremely high initial air velocity and temperature will rapidly decrease as the

shock wave expands in a spherical manner and thus weakens.



Problem 13.67 [Difficulty: 2]

Given: Standing normal shock

Find: Pressure and temperature ratios; entropy increase

Solution:

The given or available data is: R  = 286.9 J/kg-K

c p  = 1004 J/kg-K

k  = 1.4

M 1 = 1.75

Equations and Computations:

The pressure ratio is:

p 2/p 1 = 3.41

The tempeature ratio is:

T 2/T 1 = 1.495

The entropy increase across the shock is:

Δs  = 51.8 J/kg-K



Problem 13.68 [Difficulty: 3]

Given: Air flowing into converging duct, normal shock standing at duct exit

Find: Mach number at duct entrance, duct area ratio

Solution:

The given or available data is: R  = 286.9 J/kg-K

c p  = 1004 J/kg-K

k  = 1.4

M 3 = 0.54

p 2/p 1 = 2

Equations and Computations:

For the given post-shock Mach number, there can  be only one Mach number

upstream of the shock wave:

M 2 = 2.254

M 3 = 0.5400

(We used Solver to match the post-shock Mach number by varying M 2.)

The stagnation pressure is constant in the duct:

p 0/p 2 = 11.643

p 0/p 1 = 23.285

So the duct entrance Mach number is:

M 1 = 2.70

The isentropic area ratios at stations 1 and 2 are:

A 1/A
*
 = 3.1832

A 2/A
*
 = 2.1047

So the duct area ratio is:

A 1/A 2 = 1.512



Problem 13.69 [Difficulty: 2]

 

 

Given: Normal shock near pitot tube

Find: Air speed

Solution:

Basic equations: p1 p2 ρ1 V1 V2 V1  (Momentum)
p0

p
1

k 1

2
M

2






k

k 1


Given or available data T1 285 R p1 1.75 psi p02 10 psi p2 8 psi

k 1.4 Rair 53.33
ft lbf

lbm R


At state 2 M2
2

k 1

p02

p2









k 1

k

1













 M2 0.574

From momentum p1 p2 ρ2 V2
2

 ρ1 V1
2

 but ρ V
2

 ρ c
2

 M
2


p

R T
k R T M

2
 k p M

2


p1 p2 k p2 M2
2

 k p1 M1
2

 or p1 1 k M1
2





 p2 1 k M2

2






Hence M1
1

k

p2

p1

1 k M2
2





 1









 M1 2.01

Also c1 k Rair T1 c1 827
ft

s


Then V1 M1 c1 V1 1666
ft

s


Note: With p1 = 1.5 psi we obtain V1 1822
ft

s


(Using normal shock functions, for 
p2

p1

4.571 we find M1 2.02 M2 0.573 Check!)



Problem 13.70 [Difficulty: 3]

Given: C-D nozzle with normal shock

Find: Mach numbers at the shock and at exit; Stagnation and static pressures before and after the shock

Solution:

Basic equations: Isentropic flow
A

Acrit

1

M

1
k 1

2
M

2


k 1

2













k 1

2 k 1( )


p0

p
1

k 1

2
M

2






k

k 1


Normal shock M2
2

M1
2 2

k 1


2 k

k 1






M1
2

 1


p2

p1

2 k

k 1
M1

2


k 1

k 1


p02

p01

k 1

2
M1

2


1
k 1

2
M1

2














k

k 1

2 k

k 1
M1

2


k 1

k 1






1

k 1



Given or available data k 1.4 Rair 53.33
ft lbf

lbm R
 p01 125 psi T0 175 460( ) R

At 1.5 in
2

 As 2.5 in
2

 (Shock area) Ae 3.5 in
2



Because we have a normal shock the CD must be accelerating the flow to supersonic so the throat is at critical state.

Acrit At

At the shock we have
As

Acrit

1.667

At this area ratio we can find the Mach number before the shock from the

isentropic relation

As

Acrit

1

M1

1
k 1

2
M1

2


k 1

2













k 1

2 k 1( )



Solving iteratively (or using Excel's Solver, or even better the function isenMsupfromA from the Web site!) M1 1.985

The stagnation pressure before the shock was given: p01 125 psi

p1

p01

1
k 1

2
M1

2






k

k 1

 p1 16.4 psi
The static pressure is then



After the shock we have M2

M1
2 2

k 1


2 k

k 1






M1
2

 1

 M2 0.580

Also p02 p01

k 1

2
M1

2


1
k 1

2
M1

2














k

k 1

2 k

k 1
M1

2


k 1

k 1






1

k 1

 p02 91.0 psi

and p2 p1
2 k

k 1
M1

2


k 1

k 1






 p2 72.4 psi

Finally, for the Mach number at the exit, we could find the critical area change across the shock; instead

we find the new critical area from isentropic conditions at state 2.

Acrit2 As M2

1
k 1

2
M2

2


k 1

2













k 1

2 k 1( )


 Acrit2 2.06 in
2



At the exit we have
Ae

Acrit2

1.698

At this area ratio we can find the Mach number before the shock from the

isentropic relation

Ae

Acrit2

1

Me

1
k 1

2
Me

2


k 1

2













k 1

2 k 1( )



Solving iteratively (or using Excel's Solver, or even better the function isenMsubfromA from the Web site!) Me 0.369

These calculations are obviously a LOT easier using the  Excel functions available on the Web site!



 

Problem 13.71                                                                  [Difficulty: 2]
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Problem 13.73 [Difficulty: 3]

Given: Pitot probe used in supersonic wind tunnel nozzle

Find: Pressure measured by pitot probe; nozzle exit velocity

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

M 1 = 5

p 1 = 10 kPa

T 0 = 1450 K

Equations and Computations:

Downstream of the normal shock wave, the Mach number is:

M 2 = 0.4152

The static and stagnation pressure ratios are:

p 2/p 1 = 29.000

p 02/p 01 = 0.06172

So the static pressure after the shock is:

p 2 = 290 kPa

The pitot pressure, however, is the stagnation pressure:

p 02/p 2 = 1.12598

p 02 = 327 kPa

The static temperature at the nozzle exit can be calculated:

T 01/T 1 = 6.000

T 1 = 241.67 K

At the nozzle exit the sound speed is:

c 2 = 311.56 m/s

Therefore the flow velocity at the nozzle exit is:

V 2 = 1558 m/s



Problem 13.74 [Difficulty: 3]

Given: Air approaching a normal shock

Find: Pressure and velocity after the shock; pressure and velocity if flow were

decelerated isentropically

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

V 1 = 900 m/s

p 1 = 50 kPa

T 1 = 220 K

Equations and Computations:

The sonic velocity at station 1 is:

c 1 = 297.26 m/s

So the Mach number at 1 is:

M 1 = 3.028

Downstream of the normal shock wave, the Mach number is:

M 2 = 0.4736

The static pressure and temperature ratios are:

p 2/p 1 = 10.528

T 2/T 1 = 2.712

So the exit temperature and pressure are:

p 2 = 526 kPa

T 2 = 596.6 K

At station 2 the sound speed is:

c 2 = 489.51 m/s

Therefore the flow velocity is:

V 2 = 232 m/s

If we decelerate the flow isentropically to

M 2s = 0.4736

The isentropic pressure ratios at station 1 and 2s are:

p 0/p 1 = 38.285

p 0/p 2s = 1.166

p 2s/p 1 = 32.834

So the final pressure is:

p 2s = 1642 kPa

The temperature ratios are:

T 0/T 1 = 2.833

T 0/T 2s = 1.045

T 2s/T 1 = 2.712

So the final temperature is:

T 2s = 596.6 K

The sonic velocity at station 2s is:

c 2s = 489.51 m/s

Therefore the flow velocity is:

V 2s = 232 m/s



Problem 13.75 [Difficulty: 3]

Given: Air accelerating through a converging-diverging nozzle, passes through a normal shock

Find: Mach number before and after shock; entropy generation

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

p 01 = 150 psia

T 01 = 400 °F

T 01 = 860 °R

A t = 3 in
2

A 1 = A 2 = 6 in
2

Equations and Computations:

The isentropic area ratio at the station of interest is:

A 1/A 1
*
 = 2.00

So the Mach number at 1 is:

M 1 = 2.20

Downstream of the normal shock wave, the Mach number is:

M 2 = 0.547

The total pressure ratio across the normal shock is:

p 02/p 01 = 0.6294

Since stagnation temperature does not change across a normal shock,

the increase in entropy is related to the stagnation pressure loss only:

Δs 1-2 = 24.7 ft-lbf/lbm-°R

Δs 1-2 = 0.0317 Btu/lbm-°R



Problem 13.76 [Difficulty: 2]

Given: Normal shock

Find: Speed and temperature after shock; Entropy change

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·R 0.0685 Btu/lbm·R

k  = 1.4

c p  = 0.2399 Btu/lbm·R

T 01 = 1250
o
R

p 1 = 20 psi

M 1 = 2.5

Equations and Computations:

From  1 = 0.0432 slug/ft
3

V 1 = 4334 ft/s

Using built-in function IsenT (M,k):

T 01 /T 1 = 2.25 T 1 = 556
o
R

96
o
F

Using built-in function NormM2fromM (M,k):

M 2 = 0.513

Using built-in function NormTfromM (M,k):

T 2 /T 1 = 2.14 T 2 = 1188
o
R

728
o
F

Using built-in function NormpfromM (M,k):

p 2 /p 1 = 7.13 p 2 = 143 psi

From V 2 = 867 ft/s

From

s  = 0.0476 Btu/lbm·R

37.1 ft·lbf/lbm·R

111 RTp 

222 kRTMV 




















1

2

1

2 lnln
p

p
R

T

T
cs p
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Problem 13.78 [Difficulty: 2]

Given: Normal shock

Find: Pressure after shock; Compare to isentropic deceleration

Solution:

The given or available data is: R  = 286.9 J/kg·K

k  = 1.4

T 01 = 550 K

p 01 = 650 kPa

M 1 = 2.5

Equations and Computations:

Using built-in function Isenp (M,k):

p 01 /p 1 = 17.09 p 1 = 38 kPa

Using built-in function NormM2fromM (M,k):

M 2 = 0.513

Using built-in function NormpfromM (M,k):

p 2 /p 1 = 7.13 p 2 = 271 kPa

Using built-in function Isenp (M,k) at M 2:

p 02 /p 2 = 1.20

But for the isentropic case: p 02 = p 01

Hence for isentropic deceleration: p 2 = 543 kPa



Problem 13.79 [Difficulty: 2]

Given: Normal shock

Find: Speed and Mach number after shock; Change in stagnation pressure

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·R 0.0685 Btu/lbm·R

k  = 1.4

T 1 = 445
o
R

p 1 = 5 psi

V 1 = 2000 mph 2933 ft/s

Equations and Computations:

From c 1 = 1034 ft/s

Then M 1 = 2.84

Using built-in function NormM2fromM (M,k):

M 2 = 0.486

Using built-in function NormdfromM (M,k):

 2 / 1 = 3.70

Using built-in function Normp0fromM (M,k):

p 02 /p 01 = 0.378

Then V 2 = 541 mph 793 ft/s

Using built-in function Isenp (M,k) at M 1:

p 01 /p 1 = 28.7

From the above ratios and given p 1:

p 01 = 143 psi

p 02 = 54.2 psi

p 01 – p 02 = 89.2 psi

11 kRTc 

1

2

1
2 VV








Problem 13.80 [Difficulty: 2]

Given: Normal shock

Find: Speed; Change in pressure; Compare to shockless deceleration

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·R 0.0685 Btu/lbm·R

k  = 1.4

T 1 = 452.5
o
R

p 1 = 14.7 psi

V 1 = 1750 mph 2567 ft/s

Equations and Computations:

From c 1 = 1043 ft/s

Then M 1 = 2.46

Using built-in function NormM2fromM (M,k):

M 2 = 0.517

Using built-in function NormdfromM (M,k):

 2 / 1 = 3.29

Using built-in function NormpfromM (M,k):

p 2 /p 1 = 6.90 p 2 = 101 psi

p 2 – p 1 = 86.7 psi

Then V 2 = 532 mph 781 ft/s

Using built-in function Isenp (M,k) at M 1:

p 01 /p 1 = 16.1

Using built-in function Isenp (M,k) at M 2:

p 02 /p 2 = 1.20

From above ratios and p 1, for isentropic flow (p 0 = const): p 2 = 197 psi

p 2 – p 1 = 182 psi

11 kRTc 

1

2

1
2 VV





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Problem 13.84 [Difficulty: 3]

Given: Stagnation pressure and temperature probes on the nose of the Hyper-X

Find: Pressure and temperature read by those probes

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 9.68

z = 110000 ft

z = 33528 m

p SL = 14.696 psia

T SL = 518.76 °R

Equations and Computations:

At this altitude the local pressure and temperature are:

p 1/p SL = 0.008643

p 1 = 0.12702 psia

T 1 = 422.88 °R

The stagnation pressure and temperature at these conditions are:

p 01/p 1 = 34178.42

p 01 = 4341.36 psia

T 01/T 1 = 19.74

T 01 = 8347.81 °R

Downstream of the normal shock wave, the Mach number is:

M 2 = 0.3882

The total pressure ratio across the normal shock is:

p 02/p 01 = 0.003543

So the pressure read by the probe is:

p 02 = 15.38 psia

Since stagnation temperature is constant across the shock, the probe reads:

T 02 = 8348 °R



Problem 13.85 [Difficulty: 4]

Given: Normal shock

Find: Rankine-Hugoniot relation

Solution:

Basic equations: Momentum: p1 ρ1 V1
2

 p2 ρ2 V2
2

 Mass: ρ1 V1 ρ2 V2

Energy: h1
1

2
V1

2
 h2

1

2
V2

2
 Ideal Gas: p ρ R T

From the energy equation 2 h2 h1  2 cp T2 T1  V1
2

V2
2

 V1 V1  V1 V2  (1)

From the momentum equation p2 p1 ρ1 V1
2

 ρ2 V2
2

 ρ1 V1 V1 V2  where we have used the mass equation

Hence V1 V2
p2 p1

ρ1 V1


Using this in Eq 1 2 cp T2 T1 
p2 p1

ρ1 V1
V1 V2 

p2 p1

ρ1

1
V2

V1











p2 p1

ρ1

1
ρ1

ρ2










 p2 p1  1

ρ1

1

ρ2






where we again used the mass equation

Using the ideal gas equation 2 cp
p2

ρ2 R

p1

ρ1 R










 p2 p1  1

ρ1

1

ρ2











Dividing by p1 and multiplying by ρ2, and using R = cp - cv, k = cp/cv

2
cp

R


p2

p1

ρ2

ρ1










 2
k

k 1


p2

p1

ρ2

ρ1











p2

p1

1








ρ2

ρ1

1










Collecting terms p2

p1

2 k

k 1
1

ρ2

ρ1











2 k

k 1

ρ2

ρ1


ρ2

ρ1

 1

p2

p1

2 k

k 1

ρ2

ρ1


ρ2

ρ1

 1

2 k

k 1
1

ρ2

ρ1












k 1( )

k 1( )

ρ2

ρ1

 1

k 1( )

k 1( )

ρ2

ρ1



 or
p2

p1

k 1( )
ρ2

ρ1

 k 1( )

k 1( ) k 1( )
ρ2

ρ1





For an infinite pressure ratio k 1( ) k 1( )
ρ2

ρ1

 0 or
ρ2

ρ1

k 1

k 1
 (= 6 for air)
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Problem 13.91 [Difficulty: 4]

Given: Air flowing through a wind tunnel, stagnation and test section conditions known

Find: Throat area, mass flow rate, static conditions in test section, minumum diffuser area

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

p 01 = 14.7 psia

T 01 = 75 °F

T 01 = 535 °R

A 1 = 1 ft
2

M 1 = 2.3

A schematic of this wind tunnel is shown here:

Equations and Computations:

For the Mach number in the test section, the corresponding area ratio is:

A 1/A 1
*
 = 2.193

So the throat area is:

A t = 0.456 ft
2

The mass flow rate can be calculated using the choked flow equation:

m = 22.2 lbm/s

The static conditions in the test section are:

p 01/p 1 = 12.5043

T 01/T 1 = 2.0580

p 1 = 1.176 psia

T 1 = 260 °R

The strongest possible shock that can occur downstream of the first throat is when

the shock wave is in the test section. The post-shock Mach number is then

M 2 = 0.5344

The area ratio corresponding to this Mach number is:

A 2/A 2
*
 = 1.2792

Therefore, the minimum diffuser throat area is

A 2
*
 = 0.782 ft

2
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Problem 13.97 [Difficulty: 3]

Given: Air accelerating through a converging-diverging nozzle

Find: Pressure ratios needed to operate with isentropic flow throughout, supersonic flow at

exit (third critical); isentropic flow throughout, subsonic flow at exit (first critical point);

and isentropic flow throughout, supersonic flow in the diverging portion, and a normal

shock at the exit (second critical point).

Solution:

The given or available data is: k  = 1.4

M d = 2.5

Equations and Computations:

The pressure ratio for the third critical can be found from the design point Mach number:

p 0inlet/p b,3rd = 17.0859

p b,3rd/p 0inlet = 0.0585

The area ratio for this nozzle is:

A /A
*
 = 2.637

So to operate at first critical the exit Mach number would be:

M 1st = 0.226

Since at first critical the flow is isentropic, the pressure ratio is:

p 0inlet/p b,1st = 1.0363

p b,1st/p 0inlet = 0.9650

At second critical, the flow is isentropic to the exit, followed by a normal shock.

At the design Mach number, the pressure ratio is:

p b,2nd/p b,3rd = 7.125

Therefore, the back pressure ratio at the second critical is:

p b,2nd/p 0inlet = 0.4170

p b,1st/p 0inlet = 0.9650

p b,2nd/p 0inlet = 0.4170

p b,3rd/p 0inlet = 0.0585



Problem 13.98 [Difficulty: 3]

Given: Oxygen accelerating through a converging-diverging nozzle

Find: Pressure ratios for critical points, show that a shock forms in the nozzle, pre- and post-

shock Mach numbers, exit Mach number

Solution:

The given or available data is: R  = 48.29 ft-lbf/lbm-°R

k  = 1.4

p 0inlet = 120 psia

p b = 50 psia

A e/A t = 3

Equations and Computations:

Based on the area ratio, the design Mach number is:

M d = 2.637

The pressure ratio for the third critical can be found from the design point Mach number:

p 0inlet/p b,3rd = 21.1422

p b,3rd/p 0inlet = 0.04730

If a normal shock exists in the nozzle, the pressure ratio should be between the

first and second critical points. At the first critical point the exit Mach number is

M 1st = 0.197

Since at first critical the flow is isentropic, the pressure ratio is:

p 0inlet/p b,1st = 1.0276

p b,1st/p 0inlet = 0.9732

At second critical, the flow is isentropic to the exit, followed by a normal shock.

At the design Mach number, the pressure ratio is:

p b,2nd/p b,3rd = 7.949

Therefore, the back pressure ratio at the second critical is:

p b,2nd/p 0inlet = 0.3760

The actual back pressure ratio is

p b/p 0inlet = 0.4167



This pressure ratio is between those for the first and second critical points, so a shock

exists in the nozzle. We need to use an iterative solution to find the exact location of

the shock wave. Specifically, we iterate on the pre-shock Mach number until we match

the exit pressure to the given back pressure:

M 1 = 2.55

A 1/A t = 2.759

p 0inlet/p 1 = 18.4233

p 1 = 6.513 psia

M 2 = 0.508

p 2/p 1 = 7.4107

p 2 = 48.269 psia

A e/A 2 = 1.0873

A 2/A 2
*
 = 1.324

A e/A 2
*
 = 1.440

M e = 0.454

p 02/p 2 = 1.193

p 02/p e = 1.152

p e = 50.000 psia

(We used Goal Seek  in Excel  for this solution.)
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Problem 13.100 [Difficulty: 3]

Given: Normal shock in CD nozzle

Find: Exit pressure; Throat area; Mass flow rate

Solution:

The given or available data is: R  = 286.9 J/kg·K

k  = 1.4

T 01 = 550 K

p 01 = 700 kPa

M 1 = 2.75

A 1 = 25 cm
2

A e = 40 cm
2

Equations and Computations (assuming State 1 and 2 before and after the shock):

Using built-in function Isenp (M,k):

p 01 /p 1 = 25.14 p 1 = 28 kPa

Using built-in function IsenT (M,k):

T 01 /T 1 = 2.51 T 1 = 219 K

Using built-in function IsenA (M,k):

A 1 /A 1
*
 = 3.34 A 1

*
 = A t = 7.49 cm

2

Then from the Ideal Gas equation:

 1 = 0.4433 kg/m
3

Also: c 1 = 297 m/s

So: V 1 = 815 m/s

Then the mass flow rate is: m rate =  1 V 1A 1

m rate = 0.904 kg/s

For the normal shock:

Using built-in function NormM2fromM (M,k):

M 2 = 0.492

Using built-in function Normp0fromM (M,k) at M 1:

p 02 /p 01 = 0.41 p 02 = 284 kPa



For isentropic flow after the shock:

Using built-in function IsenA (M,k):

A 2 /A 2
*
 = 1.356

But: A 2 = A 1

Hence: A 2
*
 = 18.44 cm

2

Using built-in function IsenAMsubfromA (Aratio,k):

For: A e /A 2
*
 = 2.17 M e = 0.279

Using built-in function Isenp (M,k):

p 02 /p e = 1.06 p e = 269 kPa



 

Problem 13.101                                                               [Difficulty: 2]



 

Problem 13.102                                                               [Difficulty: 3]



 

Problem 13.103                                                               [Difficulty: 3]



 

Problem 13.104                                                               [Difficulty: 3]



 

Problem 13.105                                                               [Difficulty: 3]



 

Problem 13.106                                                               [Difficulty: 3]



 

Problem 13.107                                                               [Difficulty: 3]



 

Problem 13.108                                                               [Difficulty: 4]



Problem 13.109 [Difficulty: 3]

Given: Air flowing through a converging-diverging nozzle with standing normal shock

Find: Exit Mach number and static pressure; design point pressure

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

p 0inlet = 150 psia

T 01 = 200 °F

T 01 = 660 °R

A e/A t = 1.76

A 1/A t = 1.2

Equations and Computations:

The pre-shock Mach number can be found based on the area ratio:

M 1 = 1.5341

The static pressure before the shock wave is:

p 0inlet/p 1 = 3.8580

p 1 = 38.881 psia

The Mach number and static pressure after the shock wave are:

M 2 = 0.689

p 2/p 1 = 2.5792

p 2 = 100.282 psia

The area ratio for the remainder of the nozzle is:

A e/A 2 = 1.4667

Based on this and the post-shock Mach number, we can determine

the exit Mach number:

A 2/A 2
*
 = 1.102

A e/A 2
*
 = 1.617

M e = 0.392

Therefore the exit pressure is:

p 02/p 2 = 1.374

p 02/p e = 1.112

p e = 123.9 psia

Based on the area ratio, the design Mach number is:

M d = 2.050

The pressure ratio for the third critical can be found from the design point Mach number:

p 0inlet/p b,3rd = 8.4583

p b,3rd/p 0inlet = 0.1182

So the design pressure is:

p d = 17.73 psia



 

Problem 13.110                                                               [Difficulty: 4]



 

Problem 13.111                                                               [Difficulty: 3]



Problem 13.112 [Difficulty: 5]

Given: Air flowing through a converging-diverging nozzle followed by duct with friction

Find: Back pressure needed for (a) normal shock at nozzle exit, (b) normal shock at duct exit,

(c) back pressure for shock-free flow

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

p 0inlet = 1 MPa

T 0inlet = 320 K

A e/A t = 2.5

L/D = 10

f = 0.03

Equations and Computations:

(a) For a shock wave at the nozzle exit:

The pre-shock Mach number can be found based on the area ratio:

M 1 = 2.4428

The static pressure before the shock wave is:

p 0inlet/p 1 = 15.6288

p 1 = 63.984 kPa

The Mach number and static pressure after the shock wave are:

M 2 = 0.5187

p 2/p 1 = 6.7950

p 2 = 434.770 kPa

The friction length and critical pressure ratio after the shock wave are:

fL/D 2 = 0.9269

p 2/p 2
*
 = 2.0575

The friction length for the duct is:

fL/D 2-3 = 0.3000

Therefore, the friction length at the duct exit is:

fL/D 3 = 0.6269

Iterating on Mach number with Solver  to match this friction length yields:

M 3 = 0.5692

fL/D 3 = 0.6269

The critical pressure ratio for this condition is:

p 3/p 3
*
 = 1.8652

Since the critical pressure at 2 and 3 are equal, the back pressure is:

p b = p 3 = 394 kPa



(b) For a shock wave at the duct exit:

We use the same nozzle exit Mach number and pressure:

M 1 = 2.443

p 1 = 63.984 kPa

The friction length and critical pressure ratio at this condition are:

fL/D 1 = 0.4195

p 1/p 1
*
 = 0.3028

The friction length for the duct is:

fL/D 1-2 = 0.3000

Therefore, the friction length at the duct exit is:

fL/D 2 = 0.1195

Iterating on Mach number with Solver  to match this friction length yields:

M 2 = 1.4547

fL/D 2 = 0.1195

The critical pressure ratio for this condition is:

p 2/p 2
*
 = 0.6312

Since the critical pressure at 1 and 2 are equal, the pressure is:

p 2 = 133.388 kPa

The Mach number and static pressure after the shock wave are:

M 3 = 0.7178

p 3/p 2 = 2.3021

p b = p 3 = 307 kPa

(c) For shock-free flow, we use the conditions from part b before the shock wave:

p b = p 3 = 133.4 kPa



Problem 13.113 [Difficulty: 4]

Given: Air flowing through a converging-diverging nozzle followed by diabatic duct

Find: Mach number at duct exit and heat addition in duct

Solution:

The given or available data is: R  = 286.9 J/kg-K

c p = 1004 J/kg-K

k  = 1.4

p 0inlet = 1 MPa

T 0inlet = 320 K

A 1/A t = 2.5

T e = 350 K

Equations and Computations:

The Mach number at the nozzle exit can be found based on the area ratio:

M 1 = 2.4428

The static temperature is:

T 0inlet/T 1 = 2.1934

T 1 = 145.891 K

The Rayliegh flow critical ratios at this condition are:

T 1/T 1
*
 = 0.39282

T 01/T 01
*
 = 0.71802

Since all we know is the static temperature at the exit, we need to iterate on

a solution. We can guess at a pre-shock Mach number at the duct exit, and

iterate on that value until we match the exit temperature:

M 2 = 1.753

T 2/T 2
*
 = 0.62964

T 02/T 02
*
 = 0.84716

T 2 = 233.844 K

T 02 = 377.553 K

M 3 = 0.6274

T 3/T 2 = 1.4967

T 3 = 350.000 K

In this case we used Solver  to match the exit temperature.

Therefore, the exit Mach number is:

M 3 = 0.627

The rate of heat addition is calculated from the rise in stagnation temperature:

q 1-2 = 57.78 kJ/kg



 

Problem 13.114                                                                [Difficulty: 2]



 

Problem 13.115                                                                 [Difficulty: 5]



 

Problem 13.116                                                                [Difficulty: 4]



Problem 13.117 [Difficulty: 2]

Given: Nitrogen traveling through duct

Find: Inlet pressure and mass flow rate

Solution:

The given or available data is: R  = 296.8 J/kg-K

k  = 1.4

D  = 30 cm

M 2 = 0.85

T 2 = 300 K

p 2 = 200 kPa

T 1 = 330 K

Equations and Computations:

We can find the critical temperature and pressure for choking at station 2:

T 2/T
*
 = 1.0485

T
*
 = 286.1 K

p 2/p
*
 = 1.2047

p
*
 = 166.0 kPa

Knowing the critical state, the Mach number at station 1 can be found:

(we will use Goal Seek  to match the Mach number)

T 1/T
*
 = 1.1533

M 1 = 0.4497

T 1/T
*
 = 1.1533

The static to critical pressure ratio is a function of Mach number. Therefore:

p 1 = 396 kPa

The sound speed at station 1 is:

c 1 = 370.30 m/s

So the velocity at 1 is:

V 1 = 166.54 m/s

The density at 1 can be calculated from the ideal gas equation of state:

ρ 1 = 4.0476 kg/m
3

The area of the duct is:

A  = 0.0707 m
2

So the mass flow rate is:

m  = 47.6 kg/s



Problem 13.118 [Difficulty: 2]

 

  

Given: Air flow in an insulated duct

Find: Mass flow rate; Range of choked exit pressures

Solution:

Basic equations:
T0

T
1

k 1

2
M

2
 c k R T

A

Acrit

1

M

1
k 1

2
M

2


k 1

2













k 1

2 k 1( )



Given or available data T0 80 460( ) R p0 14.7 psi p1 13 psi D 1 in

k 1.4 Rair 53.33
ft lbf

lbm R
 A

π D
2



4
 A 0.785 in

2


Assuming isentropic flow, stagnation conditions are constant.  Hence

M1
2

k 1

p0

p1









k 1

k

1













 M1 0.423 T1

T0

1
k 1

2
M1

2


 T1 521 R T1 61.7 °F

c1 k Rair T1 c1 341
m

s
 V1 M1 c1 V1 144

m

s


Also ρ1

p1

Rair T1
 ρ1 0.0673

lbm

ft
3



Hence mrate ρ1 V1 A mrate 0.174
lbm

s


When flow is choked M2 1 hence T2

T0

1
k 1

2


 T2 450 R T2 9.7 °F

We also have c2 k Rair T2 c2 1040
ft

s
 V2 c2 V2 1040

ft

s


From continuity ρ1 V1 ρ2 V2 ρ2 ρ1

V1

V2

 ρ2 0.0306
lbm

ft
3



Hence p2 ρ2 Rair T2 p2 5.11 psi

The flow will therefore choke for any back pressure (pressure at the exit) less than or equal to this pressure

(From Fanno line function
p1

pcrit

2.545 at M1 0.423 so pcrit

p1

2.545
 pcrit 5.11 psi Check!)



Problem 13.119 [Difficulty: 4]

Given: Air flow from converging nozzle into pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·
o
R

k  = 1.4

c p = 0.2399 Btu/lbm·
o
R

187 ft·lbf/lbm·
o
R

T 0 = 710
o
R

p 0 = 25 psi

p e = 24 psi

Equations and Computations:

From p 0 and p e, and Eq. 13.7a

(using built-in function IsenMfromp (M ,k )) M e = 0.242

Using built-in function IsenT (M ,k ) T e = 702
o
R

Using p e, M e, and function Fannop (M ,k ) p*  = 5.34 psi

Using T e, M e, and function FannoT (M ,k ) T*  = 592
o
R

We can now use Fanno-line relations to compute values for a range of Mach numbers:

M T /T * T  (
o
R) c  (ft/s) V  (ft/s) p /p * p  (psi)

s 

(ft·lbf/lbm·
o
R

) Eq. (12.11b)

0.242 1.186 702 1299 315 4.50 24.0 0.00

0.25 1.185 701 1298 325 4.35 23.2 1.57

0.26 1.184 701 1298 337 4.19 22.3 3.50

0.27 1.183 700 1297 350 4.03 21.5 5.35

0.28 1.181 699 1296 363 3.88 20.7 7.11

0.29 1.180 698 1296 376 3.75 20.0 8.80

0.3 1.179 697 1295 388 3.62 19.3 10.43

0.31 1.177 697 1294 401 3.50 18.7 11.98

0.32 1.176 696 1293 414 3.39 18.1 13.48

0.33 1.174 695 1292 427 3.28 17.5 14.92

0.34 1.173 694 1292 439 3.19 17.0 16.30

0.35 1.171 693 1291 452 3.09 16.5 17.63

0.36 1.170 692 1290 464 3.00 16.0 18.91

0.37 1.168 691 1289 477 2.92 15.6 20.14

0.38 1.166 690 1288 489 2.84 15.2 21.33

0.39 1.165 689 1287 502 2.77 14.8 22.48

0.4 1.163 688 1286 514 2.70 14.4 23.58

0.41 1.161 687 1285 527 2.63 14.0 24.65

0.42 1.159 686 1284 539 2.56 13.7 25.68

0.43 1.157 685 1283 552 2.50 13.4 26.67

0.44 1.155 684 1282 564 2.44 13.0 27.63

0.45 1.153 682 1281 576 2.39 12.7 28.55

Ts  Curve (Fanno)
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0.46 1.151 681 1280 589 2.33 12.4 29.44

0.47 1.149 680 1279 601 2.28 12.2 30.31

0.48 1.147 679 1277 613 2.23 11.9 31.14

0.49 1.145 677 1276 625 2.18 11.7 31.94

0.5 1.143 676 1275 638 2.14 11.4 32.72

0.51 1.141 675 1274 650 2.09 11.2 33.46

0.52 1.138 674 1273 662 2.05 11.0 34.19

0.53 1.136 672 1271 674 2.01 10.7 34.88

0.54 1.134 671 1270 686 1.97 10.5 35.56

0.55 1.132 669 1269 698 1.93 10.3 36.21

0.56 1.129 668 1267 710 1.90 10.1 36.83

0.57 1.127 667 1266 722 1.86 9.9 37.44

0.58 1.124 665 1265 733 1.83 9.8 38.02

0.59 1.122 664 1263 745 1.80 9.6 38.58

0.6 1.119 662 1262 757 1.76 9.4 39.12

0.61 1.117 661 1260 769 1.73 9.2 39.64

0.62 1.114 659 1259 781 1.70 9.1 40.14

0.63 1.112 658 1258 792 1.67 8.9 40.62

0.64 1.109 656 1256 804 1.65 8.8 41.09

0.65 1.107 655 1255 815 1.62 8.6 41.53

0.66 1.104 653 1253 827 1.59 8.5 41.96

0.67 1.101 652 1252 839 1.57 8.4 42.37

0.68 1.098 650 1250 850 1.54 8.2 42.77

0.69 1.096 648 1248 861 1.52 8.1 43.15

0.7 1.093 647 1247 873 1.49 8.0 43.51

0.71 1.090 645 1245 884 1.47 7.8 43.85

0.72 1.087 643 1244 895 1.45 7.7 44.18

0.73 1.084 642 1242 907 1.43 7.6 44.50

0.74 1.082 640 1240 918 1.41 7.5 44.80

0.75 1.079 638 1239 929 1.38 7.4 45.09

0.76 1.076 636 1237 940 1.36 7.3 45.36

0.77 1.073 635 1235 951 1.35 7.2 45.62

0.78 1.070 633 1234 962 1.33 7.1 45.86

0.79 1.067 631 1232 973 1.31 7.0 46.10

0.8 1.064 629 1230 984 1.29 6.9 46.31

0.81 1.061 628 1228 995 1.27 6.8 46.52

0.82 1.058 626 1227 1006 1.25 6.7 46.71

0.83 1.055 624 1225 1017 1.24 6.6 46.90

0.84 1.052 622 1223 1027 1.22 6.5 47.07

0.85 1.048 620 1221 1038 1.20 6.4 47.22

0.86 1.045 619 1219 1049 1.19 6.3 47.37

0.87 1.042 617 1218 1059 1.17 6.3 47.50

0.88 1.039 615 1216 1070 1.16 6.2 47.63

0.89 1.036 613 1214 1080 1.14 6.1 47.74

0.9 1.033 611 1212 1091 1.13 6.0 47.84

0.91 1.029 609 1210 1101 1.11 6.0 47.94

0.92 1.026 607 1208 1112 1.10 5.9 48.02

0.93 1.023 605 1206 1122 1.09 5.8 48.09

0.94 1.020 603 1204 1132 1.07 5.7 48.15

0.95 1.017 601 1202 1142 1.06 5.7 48.20

0.96 1.013 600 1201 1153 1.05 5.6 48.24

0.97 1.010 598 1199 1163 1.04 5.5 48.27

0.98 1.007 596 1197 1173 1.02 5.5 48.30

0.99 1.003 594 1195 1183 1.01 5.4 48.31

1 1.000 592 1193 1193 1.00 5.3 48.31
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Problem 13.120 [Difficulty: 4]

Given: Air flow from converging-diverging nozzle into pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·
o
R

k  = 1.4

c p = 0.2399 Btu/lbm·
o
R

187 ft·lbf/lbm·
o
R

T 0 = 710
o
R

p 0 = 25 psi

p e = 2.5 psi

Equations and Computations:

From p 0 and p e, and Eq. 13.7a

(using built-in function IsenMfromp (M ,k )) M e = 2.16

Using built-in function IsenT (M ,k ) T e = 368
o
R

Using p e, M e, and function Fannop (M ,k ) p*  = 6.84 psi

Using T e, M e, and function FannoT (M ,k ) T*  = 592
o
R

We can now use Fanno-line relations to compute values for a range of Mach numbers:

M T /T * T  (
o
R) c  (ft/s) V  (ft/s) p /p * p  (psi)

s 

(ft·lbf/lbm·
o
R) 

Eq. (12.11b)

2.157 0.622 368 940 2028 0.37 2.5 0.00

2 0.667 394 974 1948 0.41 2.8 7.18

1.99 0.670 396 976 1942 0.41 2.8 7.63

1.98 0.673 398 978 1937 0.41 2.8 8.07

1.97 0.676 400 980 1931 0.42 2.9 8.51

1.96 0.679 402 982 1926 0.42 2.9 8.95

1.95 0.682 403 985 1920 0.42 2.9 9.38

1.94 0.685 405 987 1914 0.43 2.9 9.82

1.93 0.688 407 989 1909 0.43 2.9 10.25

1.92 0.691 409 991 1903 0.43 3.0 10.68

1.91 0.694 410 993 1897 0.44 3.0 11.11

1.9 0.697 412 996 1892 0.44 3.0 11.54

1.89 0.700 414 998 1886 0.44 3.0 11.96

1.88 0.703 416 1000 1880 0.45 3.1 12.38

1.87 0.706 418 1002 1874 0.45 3.1 12.80

1.86 0.709 420 1004 1868 0.45 3.1 13.22

1.85 0.712 421 1007 1862 0.46 3.1 13.64

1.84 0.716 423 1009 1856 0.46 3.1 14.05

1.83 0.719 425 1011 1850 0.46 3.2 14.46

1.82 0.722 427 1013 1844 0.47 3.2 14.87

1.81 0.725 429 1015 1838 0.47 3.2 15.28

1.8 0.728 431 1018 1832 0.47 3.2 15.68

1.79 0.731 433 1020 1826 0.48 3.3 16.08

1.78 0.735 435 1022 1819 0.48 3.3 16.48

1.77 0.738 436 1024 1813 0.49 3.3 16.88

1.76 0.741 438 1027 1807 0.49 3.3 17.27

1.75 0.744 440 1029 1801 0.49 3.4 17.66

1.74 0.747 442 1031 1794 0.50 3.4 18.05

1.73 0.751 444 1033 1788 0.50 3.4 18.44

1.72 0.754 446 1036 1781 0.50 3.5 18.82

1.71 0.757 448 1038 1775 0.51 3.5 19.20

Ts  Curve (Fanno)
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1.7 0.760 450 1040 1768 0.51 3.5 19.58

1.69 0.764 452 1042 1761 0.52 3.5 19.95

1.68 0.767 454 1045 1755 0.52 3.6 20.32

1.67 0.770 456 1047 1748 0.53 3.6 20.69

1.66 0.774 458 1049 1741 0.53 3.6 21.06

1.65 0.777 460 1051 1735 0.53 3.7 21.42

1.64 0.780 462 1054 1728 0.54 3.7 21.78

1.63 0.784 464 1056 1721 0.54 3.7 22.14

1.62 0.787 466 1058 1714 0.55 3.7 22.49

1.61 0.790 468 1060 1707 0.55 3.8 22.84

1.6 0.794 470 1063 1700 0.56 3.8 23.18

1.59 0.797 472 1065 1693 0.56 3.8 23.52

1.58 0.800 474 1067 1686 0.57 3.9 23.86

1.57 0.804 476 1069 1679 0.57 3.9 24.20

1.56 0.807 478 1072 1672 0.58 3.9 24.53

1.55 0.811 480 1074 1664 0.58 4.0 24.86

1.54 0.814 482 1076 1657 0.59 4.0 25.18

1.53 0.817 484 1078 1650 0.59 4.0 25.50

1.52 0.821 486 1080 1642 0.60 4.1 25.82

1.51 0.824 488 1083 1635 0.60 4.1 26.13

1.5 0.828 490 1085 1627 0.61 4.1 26.44

1.49 0.831 492 1087 1620 0.61 4.2 26.75

1.48 0.834 494 1089 1612 0.62 4.2 27.05

1.47 0.838 496 1092 1605 0.62 4.3 27.34

1.46 0.841 498 1094 1597 0.63 4.3 27.63

1.45 0.845 500 1096 1589 0.63 4.3 27.92

1.44 0.848 502 1098 1582 0.64 4.4 28.21

1.43 0.852 504 1101 1574 0.65 4.4 28.48

1.42 0.855 506 1103 1566 0.65 4.5 28.76

1.41 0.859 508 1105 1558 0.66 4.5 29.03

1.4 0.862 510 1107 1550 0.66 4.5 29.29

1.39 0.866 512 1110 1542 0.67 4.6 29.55

1.38 0.869 514 1112 1534 0.68 4.6 29.81

1.37 0.872 516 1114 1526 0.68 4.7 30.06

1.36 0.876 518 1116 1518 0.69 4.7 30.31

1.35 0.879 520 1118 1510 0.69 4.8 30.55

1.34 0.883 522 1121 1502 0.70 4.8 30.78

1.33 0.886 524 1123 1493 0.71 4.8 31.01

1.32 0.890 527 1125 1485 0.71 4.9 31.24

1.31 0.893 529 1127 1477 0.72 4.9 31.46

1.3 0.897 531 1129 1468 0.73 5.0 31.67

1.29 0.900 533 1132 1460 0.74 5.0 31.88

1.28 0.904 535 1134 1451 0.74 5.1 32.09

1.27 0.907 537 1136 1443 0.75 5.1 32.28

1.26 0.911 539 1138 1434 0.76 5.2 32.48

1.25 0.914 541 1140 1426 0.76 5.2 32.66

1.24 0.918 543 1143 1417 0.77 5.3 32.84

1.23 0.921 545 1145 1408 0.78 5.3 33.01

1.22 0.925 547 1147 1399 0.79 5.4 33.18

1.21 0.928 549 1149 1390 0.80 5.4 33.34

1.2 0.932 551 1151 1381 0.80 5.5 33.50

1.19 0.935 553 1153 1372 0.81 5.6 33.65

1.18 0.939 555 1155 1363 0.82 5.6 33.79

1.17 0.942 557 1158 1354 0.83 5.7 33.93

1.16 0.946 559 1160 1345 0.84 5.7 34.05

1.15 0.949 561 1162 1336 0.85 5.8 34.18

1.14 0.952 564 1164 1327 0.86 5.9 34.29

1.13 0.956 566 1166 1318 0.87 5.9 34.40

1.12 0.959 568 1168 1308 0.87 6.0 34.50

1.11 0.963 570 1170 1299 0.88 6.0 34.59

1.1 0.966 572 1172 1290 0.89 6.1 34.68

1.09 0.970 574 1174 1280 0.90 6.2 34.76

1.08 0.973 576 1176 1271 0.91 6.2 34.83

1.07 0.976 578 1179 1261 0.92 6.3 34.89

1.06 0.980 580 1181 1251 0.93 6.4 34.95

1.05 0.983 582 1183 1242 0.94 6.5 34.99

1.04 0.987 584 1185 1232 0.96 6.5 35.03

1.03 0.990 586 1187 1222 0.97 6.6 35.06

1.02 0.993 588 1189 1212 0.98 6.7 35.08

1.01 0.997 590 1191 1203 0.99 6.8 35.10

1 1.000 592 1193 1193 1.00 6.8 35.10

Velocity V  Versus M  (Fanno)

0

500

1000

1500

2000

2500

1.01.21.41.61.82.0

M

V  (ft/s)

Pressure p  Versus M  (Fanno)

0

1

2

3

4

5

6

7

8

1.01.21.41.61.82.0

M

p  (psi)



Problem 13.121 [Difficulty: 3]

Given: Oxygen traveling through duct

Find: Inlet and exit Mach numbers, exit stagnation conditions, friction factor and

absolute roughness

Solution:

The given or available data is: R  = 259.8 J/kg-K

k  = 1.4

D  = 35 cm

L  = 5 m

m  = 40.0 kg/s

p 1 = 200 kPa

T 1 = 450 K

p 2 = 160 kPa

Equations and Computations:

The area of the duct is:

A  = 0.0962 m
2

The sound speed at station 1 is:

c 1 = 404.57 m/s

The density at 1 can be calculated from the ideal gas equation of state:

ρ 1 = 1.7107 kg/m
3

So the velocity at 1 is:

V 1 = 243.03 m/s

and the Mach number at 1 is:

M 1 = 0.601

The critical temperature and pressure may then be calculated:

p 1/p
*
 = 1.7611

p
*
 = 113.6 kPa

T 1/T
*
 = 1.1192

T
*
 = 402.1 K

Since the critical pressure is equal at 1 and 2, we can find the pressure ratio at 2:

p 2/p
*
 = 1.4089

The static to critical pressure ratio is a function of Mach number. Therefore:

M 2 = 0.738

p 2/p
*
 = 1.4089

(we used Solver  to find the correct Mach number to match the pressure ratio)

The exit temperature is:

T 2/T
*
 = 1.0820

T 2 = 435.0 K



Based on the exit Mach number, pressure, and temperature, stagnation conditions are:

p 02 = 230 kPa

T 02 = 482 K

The maximum friction lengths at stations 1 and 2 are:

fL 1/D = 0.48802

fL 2/D = 0.14357

So the friction length for this duct is:

fL /D = 0.34445

and the friction factor is:

f  = 0.02411

Now to find the roughness of the pipe, we need the Reynolds number.

From the LMNO Engineering website, we can find the viscosities of oxygen:

μ 1 = 2.688E-05 N-s/m
2

μ 2 = 2.802E-05 N-s/m
2

Therefore the Reynolds number at station 1 is:

Re1 = 5.413E+06

At station 2, we will need to find density and velocity first. From ideal gas equation:

ρ 2 = 1.4156 kg/m
3

The sound speed at 2 is:

c 2 = 397.79 m/s

So the velocity at 2 is:

V 2 = 293.69 m/s

and the Reynolds number is:

Re2 = 5.193E+06

So the Reynolds number does not change significantly over the length of duct.

We will use an average of the two to find the relative roughness:

Re = 5.303E+06

The relative roughness for this pipe is:

e/D  = 0.00222

f  = 0.02411

(we used Solver  to find the correct roughness to match the friction factor.)

Therefore, the roughness of the duct material is:

e  = 0.0776 cm



Problem 13.122 [Difficulty: 3]

 

  

Given: Air flow in a converging nozzle and insulated duct

Find: Pressure at end of duct; Entropy increase

Solution:

Basic

equations:

T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 ∆s cp ln

T2

T1









 Rair ln
p2

p1









 c k R T

Given or available data T0 250 460( ) R p0 145 psi p1 125 psi T2 150 460( ) R

k 1.4 cp 0.2399
BTU

lbm R
 Rair 53.33

ft lbf

lbm R


Assuming isentropic flow in the nozzle

M1
2

k 1

p0

p1









k 1

k

1













 M1 0.465 T1

T0

1
k 1

2
M1

2


 T1 681 R T1 221 °F

In the duct T0 (a measure of total energy) is constant, soM2
2

k 1

T0

T2









1








 M2 0.905

At each location c1 k Rair T1 c1 1279
ft

s
 V1 M1 c1 V1 595

ft

s


c2 k Rair T2 c2 1211
ft

s
 V2 M2 c2 V2 1096

ft

s


Also ρ1

p1

Rair T1
 ρ1 0.4960

lbm

ft
3



Hence mrate ρ1 V1 A ρ2 V2 A so ρ2 ρ1

V1

V2

 ρ2 0.269
lbm

ft
3



Then p2 ρ2 Rair T2 p2 60.8 psi Finall

y
∆s cp ln

T2

T1









 Rair ln
p2

p1









 ∆s 0.0231
BTU

lbm R


(Note: Using Fanno line relations, at M1 0.465
T1

Tcrit

1.150 Tcrit

T1

1.150
 Tcrit 329 K

p1

pcrit

2.306 pcrit

p1

2.3060
 pcrit 54.2 psi

Then
T2

Tcrit

1.031 so M2 0.907
p2

pcrit

1.119 p2 1.119 pcrit p2 60.7 psi Check!)



 

Problem 13.123                                                            [Difficulty: 2]



 

Problem 13.124                                                            [Difficulty: 3]



 

Problem 13.125                                                            [Difficulty: 3]



Problem 13.126 [Difficulty: 3]

Given: Nitrogen traveling through C-D nozzle and constant-area duct with friction

Find: Exit temperature and pressure

Solution:

The given or available data is: R  = 55.16 ft-lbf/lbm-°R

k  = 1.4

p 01 = 105 psia

T 01 = 100 °F

T 01 = 560 °R

A e/A t = 4

fL /D = 0.355

Equations and Computations:

Based on the area ratio of the nozzle, we can find the nozzle exit Mach number:

M 1 = 2.940

The pressure and temperature at station 1 are therefore:

p 1 = 3.128 psia

T 1 = 205.2 °R

The critical temperature, pressure, and maximum friction length at 1 are:

p 1/p
*
 = 0.2255

p
*
 = 13.867 psia

T 1/T
*
 = 0.4397

T
*
 = 466.7 °R

fL 1/D = 0.51293

Based on the maximum and actual friction lengths, the maximum friction

length at station 2 is:

fL 2/D = 0.15793

So the exit Mach number is:

M 2 = 1.560

fL 2/D = 0.15793

(we used Solver  to find the correct Mach number to match the friction length)

The critical pressure and temperature ratios at station 2 are:

p 2/p
*
 = 0.5759

T 2/T
*
 = 0.8071

So the exit temperature and pressure are:

p 2 = 7.99 psia

T 2 = 377 °R



Problem 13.127 [Difficulty: 3]

 

  

Given: Air flow in a CD nozzle and insulated duct

Find: Temperature at end of duct; Force on duct; Entropy increase

Solution:

Basic equations: Fs p1 A p2 A Rx mrate V2 V1 
T0

T
1

k 1

2
M

2
 ∆s cp ln

T2

T1









 Rair ln
p2

p1











Given or available data T1 100 460( ) R p1 18.5 psi M1 2 M2 1 A 1 in
2



k 1.4 cp 0.2399
BTU

lbm R
 Rair 53.33

ft lbf

lbm R


Assuming isentropic flow in the nozzle

T0

T1

T2

T0



1
k 1

2
M1

2


1
k 1

2
M2

2


 so T2 T1

1
k 1

2
M1

2


1
k 1

2
M2

2


 T2 840 R T2 380 °F

Also c1 k Rair T1 V1 M1 c1 V1 2320
ft

s
 c2 k Rair T2 V2 M2 c2 V2 1421

ft

s


ρ1

p1

Rair T1
 ρ1 0.0892

lbm

ft
3

 mrate ρ1 V1 A ρ2 V2 A2 so ρ2 ρ1

V1

V2

 ρ2 0.146
lbm

ft
3



mrate ρ1 V1 A mrate 1.44
lbm

s
 p2 ρ2 Rair T2 p2 45.3 psi

Hence Rx p2 p1  A mrate V2 V1  Rx 13.3 lbf (Force is to the right)

Finally ∆s cp ln
T2

T1









 Rair ln
p2

p1









 ∆s 0.0359
BTU

lbm R


(Note: Using Fanno line relations, at M1 2
T1

Tcrit

T1

T2

 0.6667 T2

T1

0.667
 T2 840 R

p1

pcrit

p1

p2

 0.4083 p2

p1

0.4083
 p2 45.3 psi Check!)



 

Problem 13.128                                                            [Difficulty: 3]



 

Problem 13.129                                                            [Difficulty: 4]



Problem 13.130 [Difficulty: 4]

Given: Air traveling through converging nozzle and constant-area duct with friction;

choked flow at duct exit.

Find: Pressure at end of duct; exit conditions if 80% of duct were removed

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

p 1 = 600 kPa

T 1 = 550 K

Equations and Computations:

Station 1 is a stagnation state, station 2 is between the nozzle and friction duct,

and station 3 is at the duct exit.

For part (a) we know:

fL 2-3/D = 5.3

M 3 = 1

Therefore, we can make the following statements:

fL 3/D = 0

fL 2/D = 5.300

So the Mach number at the duct entrance is:

M 2 = 0.300

fL 2/D = 5.300

(we used Solver  to find the correct Mach number to match the friction length)

The pressure at station 2 can be found from the Mach number and stagnation state:

p 1/p 2 = 1.0644

p 2 = 563.69 kPa

Since state 3 is the critical state, we can find the pressure at state 3:

p 2/p
*
 = 3.6193

p
*
 = 155.75 kPa

p 3 = 155.7 kPa

For part (a) we know that if we remove 80% of the duct:

fL 2-3/D = 1.06

M 2 = 0.300

fL 2/D = 5.300

p 2 = 563.69 kPa

Since we know state 2 and the friction length of the duct, we can find state 3:

fL 3/D = 4.240



So the Mach number at the duct exit is:

M 3 = 0.326

fL 2/D = 4.240

(we used Solver  to find the correct Mach number to match the friction length)

To find the exit pressure:

p 2/p
*
 = 3.6193

p
*
 = 155.75 kPa

At state 3 the pressure ratio is:

p 3/p
*
 = 3.3299

So the pressure is:

p 3 = 519 kPa

These processes are plotted in the Ts  diagram below:

T
p 1

s

p 2

T 1

p 3short

p *

*



 

Problem 13.131                                                            [Difficulty: 4]



 

Problem 13.132                                                            [Difficulty: 3]



Problem 13.133 [Difficulty: 2]

 

  

Given: Air flow in a converging nozzle and insulated duct

Find: Length of pipe

Solution:

Basic equations: Fanno-line flow equations, and friction factor

Given or available data T0 250 460( ) R p0 145 psi p1 125 psi T2 150 460( ) R

D 2 in k 1.4 cp 0.2399
BTU

lbm R
 Rair 53.33

ft lbf

lbm R


From isentropic relations M1
2

k 1

p0

p1









k 1

k

1



























1

2

 M1 0.465

T0

T1

1
k 1

2
M1

2
 so T1

T0

1
k 1

2
M1

2






 T1 681 R T1 221 °F

Then for Fanno-line flow
fave Lmax1

Dh

1 M1
2



k M1
2



k 1

2 k
ln

k 1( ) M1
2



2 1
k 1

2
M1

2


















 1.3923

p1

pcrit

p1

p2


1

M1

k 1

2

1
k 1

2
M1

2














1

2

 2.3044
T1

Tcrit

k 1

2

1
k 1

2
M1

2


 1.150 Tcrit

T1

1.150


pcrit

p1

2.3044
 pcrit 54.2 psi Tcrit 592 R Tcrit 132 °F

Also, for
T2

Tcrit

1.031
T2

Tcrit

k 1

2

1
k 1

2
M2

2


 leads

to
M2

2

k 1

k 1

2

Tcrit

T2

 1








 M2 0.906

Then
fave Lmax2

Dh

1 M2
2



k M2
2



k 1

2 k
ln

k 1( ) M2
2



2 1
k 1

2
M2

2


















 0.01271



Also

ρ1

p1

Rair T1
 ρ1 0.496

lbm

ft
3

 V1 M1 k Rair T1 V1 595
ft

s


For air at T1 221 °F , from Table A.9 (approximately) μ 4.48 10
7


lbf s

ft
2

 so Re1

ρ1 V1 D

μ


For commercial steel pipe (Table 8.1) e 0.00015 ft
e

D
9 10

4
 and Re1 3.41 10

6


Hence at this Reynolds number and roughness (Eq. 8.37) f 0.01924

Combining results L12
D

f

fave Lmax2

Dh

fave Lmax1

Dh












2

12
ft

.01924
1.3923 0.01271( ) L12 12.0 ft

These calculations are a LOT easier using the Excel Add-ins!



 

Problem 13.134                                                            [Difficulty: 2]



Problem 13.135 [Difficulty: 3]

Given: Air traveling through a square duct

Find: Entrance static and stagnation conditions; friction factor

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

s = 2 ft

L = 40 ft

M 1 = 3

M 2 = 1.7

T 2 = 500 °R

p 2 = 110 psia

Equations and Computations:

From the entrance Mach number we can calculate:

p 01/p 1 = 36.7327

T 01/T 1 = 2.8000

p 1/p
*
 = 0.2182

T 1/T
*
 = 0.4286

fL 1/D = 0.52216

From the exit Mach number we can calculate:

p 2/p
*
 = 0.5130

T 2/T
*
 = 0.7605

fL 2/D = 0.20780

Since we know static conditions at 2, we can find the critical pressure and temperature:

p
*
 = 214.4 psia

T
*
 = 657.5 °R

Therefore, the static conditions at the duct entrance are:

p 1 = 46.8 psia

T 1 = 282 °R

and from the isentropic relations we can find stagnation conditions:

p 01 = 1719 psia

T 01 = 789 °R

To find the friction factor of the duct, first we need to friction length:

fL 1-2/D = 0.31436

The area and perimeter of the duct are:

A = 4.0 ft
2

P = 8.0 ft

Therefore the hydraulic diameter of the duct is:

D H  = 2.0 ft

From the hydraulic diameter, length, and friction length, the friction factor is:

f = 0.01572



Problem 13.136 [Difficulty: 3]

Given: Air traveling through a cast iron pipe

Find: Friction factor needed for sonic flow at exit; inlet pressure

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

D = 3.068 in

L = 10 ft

M 1 = 0.5

T 1 = 70 °F

T 1 = 530 °R

M 2 = 1

p 2 = 14.7 psia

Equations and Computations:

From the entrance Mach number we can calculate:

p 1/p
*
 = 2.1381

fL 1/D = 1.06906

From the exit Mach number we can calculate:

p 2/p
*
 = 1.0000

fL 2/D = 0.00000

To find the friction factor of the duct, first we need to friction length:

fL 1-2/D = 1.06906

Based on this, and the pipe length and diameter, the friction factor is:

f = 0.0273

We can calculate the critical pressure from the exit pressure:

p
*
 = 14.7 psia

Therefore, the static pressure at the duct entrance is:

p 1 = 31.4 psia



Problem 13.137                                                            [Difficulty: 3]   Part 1/2



 

Problem 13.137                                                            [Difficulty: 3]   Part 2/2



 

Problem 13.138                                                            [Difficulty: 3]



 

Problem 13.139                                                            [Difficulty: 3]

Example 13.8



 

Problem 13.140                                                            [Difficulty: 3]



 

Problem 13.141                                                             [Difficulty: 4]   Part 1/2



 

Problem 13.141                                                            [Difficulty: 4]   Part 2/2



Problem 13.142 [Difficulty: 2]

Given: Air flow through a CD nozzle and tube.

Find: Average friction factor; Pressure drop in tube

Solution:

Assumptions: 1) Isentropic flow in nozzle 2) Adiabatic flow in tube 3) Ideal gas 4) Uniform flow

Given or available data: k 1.40 R 286.9
J

kg K
 p1 15 kPa where State 1 is the nozzle exit

p0 1.35 MPa T0 550 K D 2.5 cm L 1.5 m

From isentropic relations M1
2

k 1

p0

p1









k 1

k

1



























1

2

 M1 3.617

Then for Fanno-line flow (for choking at the exit)

fave Lmax

Dh

1 M1
2



k M1
2



k 1

2 k
ln

k 1( ) M1
2



2 1
k 1

2
M1

2


















 0.599

fave
D

L

1 M1
2



k M1
2



k 1

2 k
ln

k 1( ) M1
2



2 1
k 1

2
M1

2





























 fave 0.0100
Hence

p1

pcrit

p1

p2


1

M1

k 1

2

1
k 1

2
M1

2














1

2

 0.159

p2

p1

1

M1

k 1

2

1
k 1

2
M1

2














1

2



















 p2 94.2 kPa

These calculations are a LOT easier

using the Excel Add-ins!∆p p1 p2 ∆p 79.2 kPa



Problem 13.143 [Difficulty: 3]

 

  

Given: Air flow in a CD nozzle and insulated duct

Find: Duct length; Plot of M and p

Solution:

Basic equations: Fanno-line flow equations, and friction factor

Given or available data T1 100 460( ) R p1 18.5 psi M1 2 M2 1 A 1 in
2



k 1.4 cp 0.2399
BTU

lbm R
 Rair 53.33

ft lbf

lbm R


Then for Fanno-line flow at M1 2

p1

pcrit

p1

p2


1

M1

k 1

2

1
k 1

2
M1

2














1

2

 0.4082
fave Lmax1

Dh

1 M1
2



k M1
2



k 1

2 k
ln

k 1( ) M1
2



2 1
k 1

2
M1

2


















 0.305

so pcrit

p1

0.4082
 pcrit 45.3 psi

and at M2 1
fave Lmax2

Dh

1 M2
2



k M2
2



k 1

2 k
ln

k 1( ) M2
2



2 1
k 1

2
M2

2


















 0

Also ρ1

p1

Rair T1
 ρ1 0.089

lbm

ft
3

 V1 M1 k Rair T1 V1 2320
ft

s
 D

4 A

π
 D 1.13 in

For air at T1 100 °F , from Table A.9 μ 3.96 10
7


lbf s

ft
2

 so Re1

ρ1 V1 D

μ


For commercial steel pipe (Table 8.1) e 0.00015 ft
e

D
1.595 10

3
 and Re1 1.53 10

6


Hence at this Reynolds number and roughness (Eq. 8.37) f .02222

Combining results L12
D

f

fave Lmax2

Dh

fave Lmax1

Dh












1.13

12
ft

.02222
0.3050 0( ) L12 1.29 ft L12 15.5 in

These calculations are a LOT easier using the Excel Add-ins!  The M and p plots are shown in the Excel spreadsheet on the next

page.



The given or available data is: f  = 0.0222

p * = 45.3 kPa

D  = 1.13 in

M fL max/D ΔfL max/D x  (in) p /p * p  (psi)

2.00 0.305 0.000 0 0.408 18.49

1.95 0.290 0.015 0.8 0.423 19.18

1.90 0.274 0.031 1.6 0.439 19.90

1.85 0.258 0.047 2.4 0.456 20.67

1.80 0.242 0.063 3.2 0.474 21.48

1.75 0.225 0.080 4.1 0.493 22.33

1.70 0.208 0.097 4.9 0.513 23.24

1.65 0.190 0.115 5.8 0.534 24.20

1.60 0.172 0.133 6.7 0.557 25.22

1.55 0.154 0.151 7.7 0.581 26.31

1.50 0.136 0.169 8.6 0.606 27.47

1.45 0.118 0.187 9.5 0.634 28.71

1.40 0.100 0.205 10.4 0.663 30.04

1.35 0.082 0.223 11.3 0.695 31.47

1.30 0.065 0.240 12.2 0.728 33.00

1.25 0.049 0.256 13.0 0.765 34.65

1.20 0.034 0.271 13.8 0.804 36.44

1.15 0.021 0.284 14.5 0.847 38.37

1.10 0.010 0.295 15.0 0.894 40.48

1.05 0.003 0.302 15.4 0.944 42.78

1.00 0.000 0.305 15.5 1.000 45.30

Fanno Line Flow Curves(M  and p )
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Problem 13.144                                                            [Difficulty: 3]



Problem 13.145 [Difficulty: 4]

Given: Natural gas pumped through a pipe

Find: Required entrance pressure and power needed to pump gas through the pipe

Solution:

The given or available data is: R  = 96.32 ft-lbf/lbm-°R

c p  = 0.5231 Btu/lbm-°R

k  = 1.31

D = 30 in

L = 60 mi

f = 0.025

T 1 = 140 °F

T 1 = 600 °R

T 2 = 600 °R

m = 40 lbm/s

p 2 = 150 kPa

Equations and Computations:

At the exit of the pipe we can calculate the density:

p 2 = 21.756 psia

ρ 2 = 0.05421 lbm/ft
3

The pipe area is:

A = 4.909 ft
2

Therefore, the flow velocity is:

V 2 = 150.32 ft/s

The local sound speed is:

c 2 = 1561.3 ft/s

So the Mach number is:

M 2 = 0.09628

From the exit Mach number we can calculate:

T 02/T 2 = 1.0014

fL 2/D = 76.94219

Given the length, diameter, and friction factor, we know:

fL 1-2/D = 3168.0

Therefore: fL 1/D = 3244.9



So from this information we can calculate the entrance Mach number:

M 1 = 0.01532

fL 1/D = 3244.9

(We use Solver  to calculate the Mach number based on the friction length)

The entrance sound speed is the same as that at the exit:

c 1 = 1561.3 ft/s

So the flow velocity is:

V 1 = 23.91 ft/s

We can calculate the pressure ratio from the velocity ratio:

p 1 = 136.8 psi

From the entrance Mach number we can calculate:

T 01/T 1 = 1.0000

So the entrance and exit stagnation temperatures are:

T 01 = 600.02 °R

T 02 = 600.86 °R

The work needed to pump the gas through the pipeline would be:

W  = 17.5810 Btu/s

W  = 24.9 hp



Problem 13.146 [Difficulty: 5]

Given: Air flowing through a tube

Find: Mass flow rate assuming incompressible, adiabatic, and isothermal flow

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

ν  = 0.000163 ft
2
/s

D = 1 in

L = 10 ft

f = 0.03

p 1 = 15 psia

T 1 = 530 °R

p 2 = 14.7 psia

Equations and Computations:

The tube flow area is:

A = 0.005454 ft
2

For incompressible flow, the density is:

ρ 1 = 0.07642 lbm/ft
3

The velocity of the flow is:

V 1 = 100.56 ft/s

The mass flow rate is:

m incomp = 0.0419 lbm/s

For Fanno flow, the duct friction length is:

fL 1-2/D = 3.600

and the pressure ratio across the duct is:

p 1/p 2 = 1.0204

To solve this problem, we have to guess M 1. Based on this and the friction length,

we can determine a corresponding M 2. The pressure ratios for M 1 and M 2 will be used

to check the validity of our guess.

M 1 M 2 fL 1/D fL 2/D fL 1-2/D p 1/p 2

0.0800 0.0813 106.72 103.12 3.600 1.0167

0.0900 0.0919 83.50 79.90 3.600 1.0213

0.1000 0.1027 66.92 63.32 3.600 1.0266

0.1100 0.1136 54.69 51.09 3.600 1.0326

Here we used Solver to match the friction length. When both the friction length and

the pressure ratios match the constraints set above, we have our solution.



Therefore our entrance and exit Mach numbers are:

M 1 = 0.0900

M 2 = 0.0919

The density at 1 was already determined. The sound speed at 1 is:

c 1 = 1128.8 ft/s

so the velocity at 1 is:

V 1 = 101.59 ft/s

and the mass flow rate is:

m Fanno = 0.0423 lbm/s

To solve this problem for isothermal flow, we perform a calculation similar to that done

above for the Fanno flow. The only difference is that we use the friction length relation

and pressure ratio relation for isothermal flow:

M 1 M 2 fL 1/D fL 2/D fL 1-2/D p 1/p 2

0.0800 0.0813 105.89216 102.29216 3.600 1.0167

0.0900 0.0919 82.70400 79.10400 3.600 1.0213

0.1000 0.1027 66.15987 62.55987 3.600 1.0266

0.1100 0.1136 53.95380 50.35380 3.600 1.0326

Here we used Solver to match the friction length. When both the friction length and

the pressure ratios match the constraints set above, we have our solution.

Therefore our entrance and exit Mach numbers are:

M 1 = 0.0900

M 2 = 0.0919

The density and sound speed at 1 were already determined. The velocity at 1 is:

V 1 = 101.59 ft/s

and the mass flow rate is:

m Isothermal = 0.0423 lbm/s

Note that in this situation, since the Mach number was low, the assumption of

incompressible flow was a good one. Also, since the Fanno flow solution shows

a very small change in Mach number, the temperature does not change much, and so

the isothermal solution gives almost identical results.



Problem 13.147 [Difficulty: 4]

Given: Oxygen supplied to astronaut via umbilical

Find: Required entrance pressure and power needed to pump gas through the tube

Solution:

The given or available data is: R  = 259.8 J/kg-K

c p  = 909.4 J/kg-K

k  = 1.4

Q = 10 L/min

D = 1 cm

L = 15 m

f = 0.01

T 1 = 20 °C

T 1 = 293 K

T 2 = 293 K

p 2 = 30 kPa

Equations and Computations:

At the exit of the pipe we can calculate the density:

ρ 2 = 0.39411 kg/m
3

so the mass flow rate is:

m = 6.568E-05 kg/s

The pipe area is:

A = 7.854E-05 m
2

Therefore, the flow velocity is:

V 2 = 2.12 m/s

The local sound speed is:

c 2 = 326.5 m/s

So the Mach number is:

M 2 = 0.006500

From the exit Mach number we can calculate:

T 02/T 2 = 1.0000

fL 2/D = 16893.2

Given the length, diameter, and friction factor, we know:

fL 1-2/D = 15.0

Therefore: fL 1/D = 16908.2



So from this information we can calculate the entrance Mach number:

M 1 = 0.006498

fL 1/D = 16908.2

(We use Solver  to calculate the Mach number based on the friction length)

The entrance sound speed is the same as that at the exit:

c 1 = 326.5 m/s

So the flow velocity is:

V 1 = 2.12 m/s

We can calculate the pressure ratio from the velocity ratio:

p 1 = 30.0 kPa

From the entrance Mach number we can calculate:

T 01/T 1 = 1.0000

So the entrance and exit stagnation temperatures are:

T 01 = 293.00 K

T 02 = 293.00 K

The work needed to pump the gas through the pipeline would be:

W  = 1.3073E-07 W

W  = 0.1307 microwatts



Problem 13.148 [Difficulty: 5]

Given: Isothermal air flow in a pipe

Find: Mach number and location at which pressure is 500 kPa

Solution:

Basic equations: mrate ρ V A p ρ R T
f Lmax

D

1 k M
2



k M
2


ln k M

2
 

Given or available data T1 15 273( ) K p1 1.5 MPa V1 60
m

s
 f 0.013 p2 500 kPa

D 15 cm k 1.4 R 286.9
J

kg K


From continuity ρ1 V1 ρ2 V2 or
p1

T1

V1
p2

T2

V2

Since T1 T2 and V M c M k R T M2 M1

p1

p2



c1 k R T1 c1 340
m

s
 M1

V1

c1

 M1 0.176

Then M2 M1

p1

p2

 M2 0.529

At M1 0.176
f Lmax1

D

1 k M1
2



k M1
2


ln k M1

2




 18.819

At M2 0.529
f Lmax2

D

1 k M2
2



k M2
2


ln k M2

2




 0.614

Hence
f L12

D

f Lmax2

D

f Lmax1

D
 18.819 0.614 18.2

L12 18.2
D

f
 L12 210 m



Problem 13.149 [Difficulty: 2]

Given: Isothermal air flow in a duct

Find: Downstream Mach number; Direction of heat transfer; Plot of Ts diagram

Solution:

Basic equations: h1

V1
2

2


δQ

dm
 h2

V2
2

2


T0

T
1

k 1

2
M

2
 mrate ρ V A

Given or available data T1 20 273( ) K p1 350 kPa M1 0.1 p2 150 kPa

From continuity mrate ρ1 V1 A ρ2 V2 A so ρ1 V1 ρ2 V2

Also p ρ R T and M
V

c
 or V M c

Hence continuity becomes
p1

R T1
M1 c1

p2

R T2
M2 c2

Since T1 T2 c1 c2 so p1 M1 p2 M2

Hence M2

p1

p2

M1 M2 0.233

From energy
δQ

dm
h2

V2
2

2








h1

V1
2

2








 h02 h01 cp T02 T01 

But at each state
T0

T
1

k 1

2
M

2
 or T0 T 1

k 1

2
M

2








T 
p01 

s 

p1 

T01 

p02 

p2 

  

T02 
Since T = const, but M2 > M1, then T02 > T01, and

δQ

dm
0 so energy is ADDED to the system
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Problem 13.152                                                                 [Difficulty: 5]   Part 2/2



Problem 13.153 [Difficulty: 4]

Given: Air flow from converging nozzle into heated pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·
o
R

k  = 1.4

c p = 0.2399 Btu/lbm·
o
R

187 ft·lbf/lbm·
o
R

T 0 = 710
o
R

p 0 = 25 psi

p e = 24 psi

Equations and Computations:

From p 0 and p e, and Eq. 13.7a

(using built-in function IsenMfromp (M ,k )) M e = 0.242

Using built-in function IsenT (M ,k ) T e = 702
o
R

Using p e, M e, and function Rayp (M ,k ) p*  = 10.82 psi

Using T e, M e, and function RayT (M ,k ) T*  = 2432
o
R

We can now use Rayleigh-line relations to compute values for a range of Mach numbers:

M T /T * T  (
o
R) c  (ft/s) V  (ft/s) p /p * p  (psi)

Δs 

(ft·lbf/lbm·
o
R) 

Eq. (12.11b)

0.242 0.289 702 1299 315 2.22 24.0 0.00

0.25 0.304 740 1334 334 2.21 23.9 10.26

0.26 0.325 790 1378 358 2.19 23.7 22.81

0.27 0.346 841 1422 384 2.18 23.6 34.73

0.28 0.367 892 1464 410 2.16 23.4 46.09

0.29 0.388 943 1506 437 2.15 23.2 56.89

0.3 0.409 994 1546 464 2.13 23.1 67.20

0.31 0.430 1046 1586 492 2.12 22.9 77.02

0.32 0.451 1097 1624 520 2.10 22.7 86.40

0.33 0.472 1149 1662 548 2.08 22.5 95.35

0.34 0.493 1200 1698 577 2.07 22.4 103.90

0.35 0.514 1250 1734 607 2.05 22.2 112.07

0.36 0.535 1301 1768 637 2.03 22.0 119.89

0.37 0.555 1351 1802 667 2.01 21.8 127.36

0.38 0.576 1400 1834 697 2.00 21.6 134.51

0.39 0.595 1448 1866 728 1.98 21.4 141.35

0.4 0.615 1496 1897 759 1.96 21.2 147.90

0.41 0.634 1543 1926 790 1.94 21.0 154.17

0.42 0.653 1589 1955 821 1.92 20.8 160.17

0.43 0.672 1635 1982 852 1.91 20.6 165.92

0.44 0.690 1679 2009 884 1.89 20.4 171.42

0.45 0.708 1722 2035 916 1.87 20.2 176.69

0.46 0.725 1764 2059 947 1.85 20.0 181.73

Ts  Curve (Rayleigh)

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300

s  (ft
.
lbf/lbm

o
R)

T  (
o
R)



0.47 0.742 1805 2083 979 1.83 19.8 186.57

0.48 0.759 1845 2106 1011 1.81 19.6 191.19

0.49 0.775 1884 2128 1043 1.80 19.4 195.62

0.5 0.790 1922 2149 1075 1.78 19.2 199.86

0.51 0.805 1958 2170 1107 1.76 19.0 203.92

0.52 0.820 1993 2189 1138 1.74 18.8 207.80

0.53 0.834 2027 2208 1170 1.72 18.6 211.52

0.54 0.847 2060 2225 1202 1.70 18.4 215.08

0.55 0.860 2091 2242 1233 1.69 18.2 218.48

0.56 0.872 2122 2258 1265 1.67 18.0 221.73

0.57 0.884 2150 2274 1296 1.65 17.9 224.84

0.58 0.896 2178 2288 1327 1.63 17.7 227.81

0.59 0.906 2204 2302 1358 1.61 17.5 230.65

0.6 0.917 2230 2315 1389 1.60 17.3 233.36

0.61 0.927 2253 2328 1420 1.58 17.1 235.95

0.62 0.936 2276 2339 1450 1.56 16.9 238.42

0.63 0.945 2298 2350 1481 1.54 16.7 240.77

0.64 0.953 2318 2361 1511 1.53 16.5 243.01

0.65 0.961 2337 2370 1541 1.51 16.3 245.15

0.66 0.968 2355 2379 1570 1.49 16.1 247.18

0.67 0.975 2371 2388 1600 1.47 15.9 249.12

0.68 0.981 2387 2396 1629 1.46 15.8 250.96

0.69 0.987 2401 2403 1658 1.44 15.6 252.70

0.7 0.993 2415 2409 1687 1.42 15.4 254.36

0.71 0.998 2427 2416 1715 1.41 15.2 255.93

0.72 1.003 2438 2421 1743 1.39 15.0 257.42

0.73 1.007 2449 2426 1771 1.37 14.9 258.83

0.74 1.011 2458 2431 1799 1.36 14.7 260.16

0.75 1.014 2466 2435 1826 1.34 14.5 261.41

0.76 1.017 2474 2439 1853 1.33 14.4 262.59

0.77 1.020 2480 2442 1880 1.31 14.2 263.71

0.78 1.022 2486 2445 1907 1.30 14.0 264.75

0.79 1.024 2490 2447 1933 1.28 13.9 265.73

0.8 1.025 2494 2449 1959 1.27 13.7 266.65

0.81 1.027 2497 2450 1985 1.25 13.5 267.50

0.82 1.028 2499 2451 2010 1.24 13.4 268.30

0.83 1.028 2501 2452 2035 1.22 13.2 269.04

0.84 1.029 2502 2452 2060 1.21 13.1 269.73

0.85 1.029 2502 2452 2085 1.19 12.9 270.36

0.86 1.028 2501 2452 2109 1.18 12.8 270.94

0.87 1.028 2500 2451 2133 1.17 12.6 271.47

0.88 1.027 2498 2450 2156 1.15 12.5 271.95

0.89 1.026 2495 2449 2180 1.14 12.3 272.39

0.9 1.025 2492 2448 2203 1.12 12.2 272.78

0.91 1.023 2488 2446 2226 1.11 12.0 273.13

0.92 1.021 2484 2444 2248 1.10 11.9 273.43

0.93 1.019 2479 2441 2270 1.09 11.7 273.70

0.94 1.017 2474 2439 2292 1.07 11.6 273.92

0.95 1.015 2468 2436 2314 1.06 11.5 274.11

0.96 1.012 2461 2433 2335 1.05 11.3 274.26

0.97 1.009 2455 2429 2356 1.04 11.2 274.38

0.98 1.006 2448 2426 2377 1.02 11.1 274.46

0.99 1.003 2440 2422 2398 1.01 10.9 274.51

1 1.000 2432 2418 2418 1.00 10.8 274.52
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Problem 13.154 [Difficulty: 2]

Given: Air flow through a duct with heat transfer

Find: Exit static and stagnation temperatures; magnitude and direction of heat transfer

Solution:

The given or available data is: R  = 286.9 J/kg-K

c p  = 1004 J/kg-K

k  = 1.4

M 1 = 3

T 1 = 250 K

M 2 = 1.6

Equations and Computations:

We can determine the stagnation temperature at the entrance:

T 01/T 1 = 2.8000

So the entrance stagnation temperature is:

T 01 = 700.00 K

The reference stagnation temperature for Rayliegh flow can be calculated:

T 01/T 0
*
 = 0.6540

T 0
*
 = 1070.4 K

Since the reference state is the same at stations 1 and 2, state 2 is:

T 02/T 0
*
 = 0.8842

T 02 = 946 K

T 02/T 2 = 1.5120

T 2 = 626 K

The heat transfer is related to the change in stagnation temperature:

q 1-2 = 247 kJ/kg



Problem 13.155 [Difficulty: 4]

Given: Air flow from converging-diverging nozzle into heated pipe

Find: Plot Ts diagram and pressure and speed curves

Solution:

The given or available data is: R  = 53.33 ft·lbf/lbm·
o
R

k  = 1.4

c p = 0.2399 Btu/lbm·
o
R

187 ft·lbf/lbm·
o
R

T 0 = 710
o
R

p 0 = 25 psi

p e = 2.5 psi

Equations and Computations:

From p 0 and p e, and Eq. 13.7a

(using built-in function IsenMfromp (M ,k )) M e = 2.16

Using built-in function IsenT (M ,k ) T e = 368
o
R

Using p e, M e, and function Rayp (M ,k ) p*  = 7.83 psi

Using T e, M e, and function RayT (M ,k ) T*  = 775
o
R

We can now use Rayleigh-line relations to compute values for a range of Mach numbers:

M T /T * T  (
o
R) c  (ft/s) V  (ft/s) p /p * p  (psi)

Δs 

(ft·lbf/lbm·
o
R) 

Eq. (12.11b)

2.157 0.475 368 940 2028 0.32 2.5 0.00

2 0.529 410 993 1985 0.36 2.8 13.30

1.99 0.533 413 996 1982 0.37 2.9 14.15

1.98 0.536 416 1000 1979 0.37 2.9 14.99

1.97 0.540 418 1003 1976 0.37 2.9 15.84

1.96 0.544 421 1007 1973 0.38 2.9 16.69

1.95 0.548 424 1010 1970 0.38 3.0 17.54

1.94 0.552 427 1014 1966 0.38 3.0 18.39

1.93 0.555 430 1017 1963 0.39 3.0 19.24

1.92 0.559 433 1021 1960 0.39 3.0 20.09

1.91 0.563 436 1024 1957 0.39 3.1 20.93

1.9 0.567 440 1028 1953 0.40 3.1 21.78

1.89 0.571 443 1032 1950 0.40 3.1 22.63

1.88 0.575 446 1035 1946 0.40 3.2 23.48

1.87 0.579 449 1039 1943 0.41 3.2 24.32

1.86 0.584 452 1043 1939 0.41 3.2 25.17

1.85 0.588 455 1046 1936 0.41 3.2 26.01

1.84 0.592 459 1050 1932 0.42 3.3 26.86

1.83 0.596 462 1054 1928 0.42 3.3 27.70

1.82 0.600 465 1057 1925 0.43 3.3 28.54

1.81 0.605 468 1061 1921 0.43 3.4 29.38

1.8 0.609 472 1065 1917 0.43 3.4 30.22

1.79 0.613 475 1069 1913 0.44 3.4 31.06

1.78 0.618 479 1073 1909 0.44 3.5 31.90

1.77 0.622 482 1076 1905 0.45 3.5 32.73

1.76 0.626 485 1080 1901 0.45 3.5 33.57

1.75 0.631 489 1084 1897 0.45 3.6 34.40

1.74 0.635 492 1088 1893 0.46 3.6 35.23

1.73 0.640 496 1092 1889 0.46 3.6 36.06

1.72 0.645 499 1096 1885 0.47 3.7 36.89

1.71 0.649 503 1100 1880 0.47 3.7 37.72
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1.7 0.654 507 1104 1876 0.48 3.7 38.54

1.69 0.658 510 1107 1872 0.48 3.8 39.36

1.68 0.663 514 1111 1867 0.48 3.8 40.18

1.67 0.668 517 1115 1863 0.49 3.8 41.00

1.66 0.673 521 1119 1858 0.49 3.9 41.81

1.65 0.677 525 1123 1853 0.50 3.9 42.62

1.64 0.682 529 1127 1849 0.50 3.9 43.43

1.63 0.687 532 1131 1844 0.51 4.0 44.24

1.62 0.692 536 1135 1839 0.51 4.0 45.04

1.61 0.697 540 1139 1834 0.52 4.1 45.84

1.6 0.702 544 1143 1829 0.52 4.1 46.64

1.59 0.707 548 1147 1824 0.53 4.1 47.43

1.58 0.712 551 1151 1819 0.53 4.2 48.22

1.57 0.717 555 1155 1814 0.54 4.2 49.00

1.56 0.722 559 1159 1809 0.54 4.3 49.78

1.55 0.727 563 1164 1803 0.55 4.3 50.56

1.54 0.732 567 1168 1798 0.56 4.3 51.33

1.53 0.737 571 1172 1793 0.56 4.4 52.10

1.52 0.742 575 1176 1787 0.57 4.4 52.86

1.51 0.747 579 1180 1782 0.57 4.5 53.62

1.5 0.753 583 1184 1776 0.58 4.5 54.37

1.49 0.758 587 1188 1770 0.58 4.6 55.12

1.48 0.763 591 1192 1764 0.59 4.6 55.86

1.47 0.768 595 1196 1758 0.60 4.7 56.60

1.46 0.773 599 1200 1752 0.60 4.7 57.33

1.45 0.779 603 1204 1746 0.61 4.8 58.05

1.44 0.784 607 1208 1740 0.61 4.8 58.77

1.43 0.789 612 1213 1734 0.62 4.9 59.48

1.42 0.795 616 1217 1728 0.63 4.9 60.18

1.41 0.800 620 1221 1721 0.63 5.0 60.88

1.4 0.805 624 1225 1715 0.64 5.0 61.56

1.39 0.811 628 1229 1708 0.65 5.1 62.24

1.38 0.816 632 1233 1701 0.65 5.1 62.91

1.37 0.822 636 1237 1695 0.66 5.2 63.58

1.36 0.827 641 1241 1688 0.67 5.2 64.23

1.35 0.832 645 1245 1681 0.68 5.3 64.88

1.34 0.838 649 1249 1674 0.68 5.3 65.51

1.33 0.843 653 1253 1667 0.69 5.4 66.14

1.32 0.848 657 1257 1659 0.70 5.5 66.76

1.31 0.854 662 1261 1652 0.71 5.5 67.36

1.3 0.859 666 1265 1645 0.71 5.6 67.96

1.29 0.865 670 1269 1637 0.72 5.6 68.54

1.28 0.870 674 1273 1629 0.73 5.7 69.11

1.27 0.875 678 1277 1622 0.74 5.8 69.67

1.26 0.881 682 1281 1614 0.74 5.8 70.22

1.25 0.886 686 1285 1606 0.75 5.9 70.75

1.24 0.891 690 1288 1598 0.76 6.0 71.27

1.23 0.896 694 1292 1589 0.77 6.0 71.78

1.22 0.902 699 1296 1581 0.78 6.1 72.27

1.21 0.907 703 1300 1573 0.79 6.2 72.75

1.2 0.912 706 1303 1564 0.80 6.2 73.21

1.19 0.917 710 1307 1555 0.80 6.3 73.65

1.18 0.922 714 1310 1546 0.81 6.4 74.08

1.17 0.927 718 1314 1537 0.82 6.4 74.50

1.16 0.932 722 1318 1528 0.83 6.5 74.89

1.15 0.937 726 1321 1519 0.84 6.6 75.27

1.14 0.942 730 1324 1510 0.85 6.7 75.63

1.13 0.946 733 1328 1500 0.86 6.7 75.96

1.12 0.951 737 1331 1491 0.87 6.8 76.28

1.11 0.956 741 1334 1481 0.88 6.9 76.58

1.1 0.960 744 1337 1471 0.89 7.0 76.86

1.09 0.965 747 1341 1461 0.90 7.1 77.11

1.08 0.969 751 1344 1451 0.91 7.1 77.34

1.07 0.973 754 1347 1441 0.92 7.2 77.55

1.06 0.978 757 1349 1430 0.93 7.3 77.73

1.05 0.982 761 1352 1420 0.94 7.4 77.88

1.04 0.986 764 1355 1409 0.95 7.5 78.01

1.03 0.989 767 1358 1398 0.97 7.6 78.12

1.02 0.993 769 1360 1387 0.98 7.6 78.19

1.01 0.997 772 1362 1376 0.99 7.7 78.24

1 1.000 775 1365 1365 1.00 7.8 78.25
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Problem 13.158 [Difficulty: 3]

Given: Air flow through a duct with heat transfer

Find: Heat addition needed to yield maximum static temperature and choked flow

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

c p  = 0.2399 Btu/lbm-°R

k  = 1.4

D = 6 in

V 1 = 300 ft/s

p 1 = 14.7 psia

T 1 = 200 °F

T 1 = 660 °R

Equations and Computations:

The sound speed at station 1 is:

c 1 = 1259.65 ft/s

So the Mach number is:

M 1 = 0.2382

We can determine the stagnation temperature at the entrance:

T 01/T 1 = 1.0113

So the entrance stagnation temperature is:

T 01 = 667.49 °R

The reference stagnation temperature for Rayliegh flow can be calculated:

T 01/T 0
*
 = 0.2363

T 0
*
 = 2824.4 °R

For the maximum static temperature, the corresponding Mach number is:

M 2 = 0.8452

Since the reference state is the same at stations 1 and 2, state 2 is:

T 02/T 0
*
 = 0.9796

T 02 = 2767 °R

The heat transfer is related to the change in stagnation temperature:

q 1-2 = 504 Btu/lb

For acceleration to sonic flow the exit state is the * state:

q 1-* = 517 Btu/lb



Problem 13.159 [Difficulty: 2]

Given: Frictionless flow of Freon in a tube

Find: Heat transfer; Pressure drop NOTE: ρ2 is NOT as stated; see below

Solution:

Basic equations: mrate ρ V A p ρ R T Q mrate h02 h01  h0 h
V

2

2
 p1 p2 ρ1 V1 V2 V1 

Given or available data h1 25
BTU

lbm
 ρ1 100

lbm

ft
3

 h2 65
BTU

lbm
 ρ2 0.850

lbm

ft
3



D 0.65 in A
π

4
D

2
 A 0.332 in

2
 mrate 1.85

lbm

s


Then V1

mrate

ρ1 A
 V1 8.03

ft

s
 h01 h1

V1
2

2
 h01 25.0

BTU

lbm


V2

mrate

ρ2 A
 V2 944

ft

s
 h02 h2

V2
2

2
 h02 82.8

BTU

lbm


The heat transfer is Q mrate h02 h01  Q 107
BTU

s
 (74 Btu/s with the wrong ρ2!)

The pressure drop is ∆p ρ1 V1 V2 V1  ∆p 162 psi (-1 psi with the wrong ρ2!)



Problem 13.160 [Difficulty: 2]

Given: Frictionless air flow in a pipe

Find: Heat exchange per lb (or kg) at exit, where 500 kPa

Solution:

Basic equations: mrate ρ V A p ρ R T
δQ

dm
cp T02 T01  (Energy) p1 p2 ρ1 V1 V2 V1  (Momentum)

Given or available data T1 15 273( ) K p1 1 MPa M1 0.35 p2 500 kPa M2 1

D 5 cm k 1.4 cp 1004
J

kg K
 R 286.9

J

kg K


At section 1 ρ1

p1

R T1
 ρ1 12.1

kg

m
3

 c1 k R T1 c1 340
m

s


V1 M1 c1 V1 119
m

s


From momentum V2

p1 p2

ρ1 V1
V1 V2 466

m

s


From continuity ρ1 V1 ρ2 V2 ρ2 ρ1

V1

V2

 ρ2 3.09
kg

m
3



Hence T2

p2

ρ2 R
 T2 564 K T2 291 °C

and T02 T2 1
k 1

2
M2

2






 T02 677 K T02 403 °C

with T01 T1 1
k 1

2
M1

2






 T01 295 K T01 21.9 °C

Then
δQ

dm
cp T02 T01  164

Btu

lbm
 383

kJ

kg


(Note: Using Rayleigh line functions, for M1 0.35
T0

T0crit

0.4389

so T0crit

T01

0.4389
 T0crit 672K close to T2 ... Check!)



 

Problem 13.161                                                            [Difficulty: 3]
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Problem 13.163 [Difficulty: 3]

Given: Nitrogen flow through a duct with heat transfer

Find: Heat transfer

Solution:

The given or available data is: R  = 55.16 ft-lbf/lbm-°R

c p  = 0.2481 Btu/lbm-°R

k  = 1.4

M 1 = 0.75

T 01 = 500 °R

p 1 = 24 psia

p 2 = 40 psia

Equations and Computations:

We can find the pressure and stagnation temperature at the reference state:

p 1/p
*
 = 1.3427

T 01/T 0
*
 = 0.9401

So the reference pressure and stagnation temperature are:

p
*
 = 17.875 psia

T 0
*
 = 531.9 °R

We can now find the exit Mach number through the reference pressure:

p 2/p
*
 = 2.2378

M 2 = 0.2276

p 2/p
*
 = 2.2378

(We used Solver to match the reference pressure ratio by varying M 2.)

Since the reference state is the same at stations 1 and 2, state 2 is:

T 02/T 0
*
 = 0.2183

T 02 = 116 °R

The heat transfer is related to the change in stagnation temperature:

q 1-2 = -95.2 Btu/lb

(The negative number indicates heat loss from the nitrogen)



 

Problem 13.164                                                            [Difficulty: 3]



Problem 13.165 [Difficulty: 3]

Given: Frictionless flow of air in a duct

Find: Heat transfer without choking flow; change in stagnation pressure

Solution:

Basic equations:
T0

T
1

k 1

2
M

2


p0

p
1

k 1

2
M

2






k

k 1
 p ρ R T mrate ρ A V

p1 p2
mrate

A
V2 V1 

δQ

dm
cp T02 T01 

Given or available data T1 0 273( ) K p1 70 kPa mrate 0.5
kg

s
 D 10 cm

A
π

4
D

2
 A 78.54 cm

2
 k 1.4 M2 1 cp 1004

J

kg K
 R 286.9

J

kg K


At state 1 ρ1

p1

R T1
 ρ1 0.894

kg

m
3

 c1 k R T1 c1 331
m

s


From continuity V1

mrate

ρ1 A
 V1 71.2

m

s
 then M1

V1

c1

 M1 0.215

From momentum p1 p2
mrate

A
V2 V1  ρ2 V2

2
 ρ1 V1

2
 but ρ V

2
 ρ c

2
 M

2


p

R T
k R T M

2
 k p M

2


Hence p1 p2 k p2 M2
2

 k p1 M1
2

 or p2 p1

1 k M1
2



1 k M2
2













 p2 31.1 kPa

From continuity ρ1 V1
p1

R T1
M1 c1

p1

R T1
M1 k R T1

k

R

p1 M1

T1

 ρ2 V2
k

R

p2 M2

T2



Hence
p1 M1

T1

p2 M2

T2

 T2 T1

p2

p1

M2

M1










2

 T2 1161 K T2 888 °C

Then T02 T2 1
k 1

2
M2

2






 T02 1394 K T01 T1 1
k 1

2
M1

2






 T01 276 K

p02 p2 1
k 1

2
M2

2






k

k 1
 p02 58.8 kPa p01 p1 1

k 1

2
M1

2






k

k 1
 p01 72.3 kPa

Finally
δQ

dm
cp T02 T01  1.12

MJ

kg
 ∆p0 p02 p01 ∆p0 13.5 kPa

(Using Rayleigh functions, at M1 0.215
T01

T0crit

T01

T02

 0.1975 T02

T01

0.1975
 T02 1395 K and ditto for p02 ...Check!)
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Problem 13.168 [Difficulty: 3]

Given: Air flow through a duct with heat transfer

Find: Exit conditions

Solution:

The given or available data is: R  = 286.9 J/kg-K

c p  = 1004 J/kg-K

k  = 1.4

m = 20 kg/s

A = 0.06 m
2

p 1 = 320 kPa

T 1 = 350 K

q 1-2 = 650 kJ/kg

Equations and Computations:

The density at the entrance is:

ρ 1 = 3.1868 kg/m
3

So the entrance velocity is:

V 1 = 104.5990 m/s

The sonic velocity is:

c 1 = 374.9413 m/s

So the Mach number is:

M 1 = 0.2790

We can determine the stagnation temperature at the entrance:

T 01/T 1 = 1.0156

So the entrance stagnation temperature is:

T 01 = 355.45 K

The reference conditions for Rayliegh flow can be calculated:

T 01/T 0
*
 = 0.3085

T 0
*
 = 1152.2 K

T 1/T
*
 = 0.3645

T
*
 = 960.2 K

p 1/p
*
 = 2.1642

p
*
 = 147.9 kPa

The heat transfer is related to the change in stagnation temperature:

T 02 = 1002.86 K

The stagnation temperature ratio at state 2 is:

T 02/T 0
*
 = 0.8704

We can now find the exit Mach number:

M 2 = 0.652

T 02/T 0
*
 = 0.8704

(We used Solver to match the reference pressure ratio by varying M 2.)

We can now calculate the exit temperature and pressure:

T 2/T
*
 = 0.9625

T 2 = 924 K

p 2/p
*
 = 1.5040

T 2 = 222 kPa



Problem 13.169 [Difficulty: 3]

Given: Air flow through a duct with heat transfer

Find: Heat transfer needed to choke the flow

Solution:

The given or available data is: R  = 286.9 J/kg-K

c p  = 1004 J/kg-K

k  = 1.4

p 1 = 135 kPa

T 1 = 500 K

V 1 = 540 m/s

Equations and Computations:

The sonic velocity at state 1 is:

c 1 = 448.1406 m/s

So the Mach number is:

M 1 = 1.2050

We can determine the stagnation temperature at the entrance:

T 01/T 1 = 1.2904

So the entrance stagnation temperature is:

T 01 = 645.20 K

The reference conditions for Rayliegh flow can be calculated:

T 01/T 0
*
 = 0.9778

T 0
*
 = 659.9 K

Since the flow is choked, state 2 is:

M 2 = 1.000

T 02 = 659.85 K

The heat transfer is related to the change in stagnation temperature:

q 1-2 = 14.71 kJ/kg

To choke a flow, heat must always  be added .



 

Problem 13.170                                                            [Difficulty: 2]



 

Problem 13.171                                                            [Difficulty: 2]



 

Problem 13.172                                                            [Difficulty: 2]



Problem 13.173 [Difficulty: 4]

Given: Air flow through a duct with heat transfer followed by converging duct, sonic at exit

Find: Magnitude and direction of heat transfer

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

c p  = 0.2399 Btu/lbm-°R

k  = 1.4

M 1 = 2

T 1 = 300 °R

p 1 = 70 psia

A 2/A 3 = 1.5

M 3 = 1

Equations and Computations:

We can determine the stagnation temperature at the entrance:

T 01/T 1 = 1.8000

So the entrance stagnation temperature is:

T 01 = 540.00 °R

The reference stagnation temperature ratio at state 1 is:

T 01/T 0
*
 = 0.7934

The reference conditions for Rayliegh flow can be calculated:

T 0
*
 = 680.6 °R

Since the flow is sonic at state 3, we can find the Mach number at state 2:

M 2 = 1.8541

We know that the flow must be supersonic at 2 since the flow at M 1 > 1.

The reference stagnation temperature ratio at state 2 is:

T 02/T 0
*
 = 0.8241

Since the reference stagnation temperature at 1 and 2 are the same:

T 02 = 560.92 °R

The heat transfer is related to the change in stagnation temperature:

q 1-2 = 5.02 Btu/lbm

The heat is being added to the flow.



 

Problem 13.174                                                            [Difficulty: 3]



Problem 13.175 [Difficulty: 3]

Given: Data on flow through gas turbine combustor

Find: Maximum heat addition; Outlet conditions; Reduction in stagnation pressure; Plot of process

Solution:

The given or available data is: R  = 286.9 J/kg·K

k  = 1.4

c p  = 1004 J/kg·K

T 1 = 773 K

p 1 = 1.5 MPa

M 1 = 0.5

Equations and Computations:

From  1 = 6.76 kg/m
3

From V 1 = 279 m/s

Using built-in function IsenT (M,k):

T 01 /T 1 = 1.05 T 01 = 812 K

Using built-in function Isenp (M,k):

p 01 /p 1 = 1.19 p 01 = 1.78 MPa

For maximum heat transfer: M 2 = 1

Using built-in function rayT0 (M,k), rayp0 (M,k), rayT (M,k), rayp (M,k), rayV (M,k):

T 01 /T 0
*
 = 0.691 T 0

*
 = 1174 K ( = T 02)

p 01 /p 0
*
 = 1.114 p 0

*
 = 1.60 MPa ( = p 02)

T /T
*
 = 0.790 T

*
 = 978 K ( = T 02)

p /p
*
 = 1.778 p

*
 = 0.844 MPa ( = p 2)

 *
/  = 0.444  *

 = 3.01 kg/m
3

( =  2)

Note that at state 2 we have critical conditions!

Hence: p 012 – p 01 = -0.182 MPa -182 kPa

From the energy equation:

Q /dm  = 364 kJ/kg

111 RTp 

111 kRTMV 

 0102 TTc
dm

Q
p 



 

T 
p01 

s 

p1 

T01 

p02 

p2 



 

T02 

T1 

T2 



 

Problem 13.176                                                            [Difficulty: 3]



 

Problem 13.177                                                            [Difficulty: 3]



 

Problem 13.178                                                               [Difficulty: 4]   Part 1/2



 

Problem 13.178                                                              [Difficulty: 4]   Part 2/2



 

Problem 13.179                                                               [Difficulty: 4]   Part 1/2



 

Problem 13.179                                                              [Difficulty: 4]   Part 2/2



Problem 13.180 [Difficulty: 3]

Given: Normal shock

Find: Approximation for downstream Mach number as upstream one approaches infinity

Solution:

Basic equations: M2n
2

M1n
2 2

k 1


2 k

k 1






M1n
2

 1

 (13.48a) M2n M2 sin β θ( ) (13.47b)

Combining the two equations M2

M2n

sin β θ( )


M1n
2 2

k 1


2 k

k 1






M1n
2

 1

sin β θ( )


M1n
2 2

k 1


2 k

k 1






M1n
2

 1





sin β θ( )
2





M2

1
2

k 1( ) M1n
2




2 k

k 1






1

M1n
2







sin β θ( )
2





As M1 goes to infinity, so does M1n, so

M2
1

2 k

k 1






sin β θ( )
2



 M2
k 1

2 k sin β θ( )
2






Problem 13.181 [Difficulty: 3]

Given: Air deflected at an angle, causing an oblique shock

Find: Possible shock angles; pressure and temperature corresponding to those angles

Solution:

The given or available data is: R  = 286.9 J/kg-K

k  = 1.4

M 1 = 1.8

T 1 = 400 K

p 1 = 100 kPa

θ  = 14 °

Equations and Computations:

There are two possible shock angles for a given deflection, corresponding to the

weak and strong shock solutions. To find the shock angle, we have to iterate on the

shock angle until we match the deflection angle, which is a function of Mach number,

specific heat ratio, and shock angle.

The weak shock solution is:

β weak = 49.7 °

θ  = 14.0000 °

The strong shock solution is:

β strong = 78.0 °

θ  = 14.0000 °

We used Solver  in Excel  to iterate on the shock angles.

For the weak shock, the pre-shock Mach number normal to the wave is:

M 1nweak = 1.3720

The pressure and temperature ratios across the shock wave are:

p 2/p 1weak = 2.0295

T 2/T 1weak = 1.2367

Therefore, the post-shock temperature and pressure are:

p 2weak = 203 kPa

T 2weak = 495 K

For the weak shock, the pre-shock Mach number normal to the wave is:

M 1nstrong = 1.7608

The pressure and temperature ratios across the shock wave are:

p 2/p 1strong = 3.4505

T 2/T 1strong = 1.5025

Therefore, the post-shock temperature and pressure are:

p 2strong = 345 kPa

T 2strong = 601 K



Problem 13.182 [Difficulty: 3]

Given: Oblique shock in flow at M  = 3

Find: Minimum and maximum , plot of pressure rise across shock

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

M 1 = 3

Equations and Computations:

The smallest value of  is when the shock is a Mach wave (no deflection)

 = sin
-1

(1/M 1)

 = 19.5
o

The largest value is  = 90.0
o

The normal component of Mach number is

M 1n = M 1sin() (13.47a)

For each ,  p2/p1 is obtained from M1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)



Computed results:

 (
o
) M 1n p 2/p 1

19.5 1.00 1.00

20 1.03 1.06

30 1.50 2.46

40 1.93 4.17

50 2.30 5.99

60 2.60 7.71

70 2.82 9.11

75 2.90 9.63

80 2.95 10.0

85 2.99 10.3

90 3.00 10.3

Pressure Change across an Oblique Shock

0.0

2.5

5.0
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Problem 13.183 [Difficulty: 3]

Given: Data on an oblique shock

Find: Mach number and pressure downstream; compare to normal shock

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 80 kPa

M 1 = 2.5

 = 35
o

Equations and Computations:

From M 1 and  M 1n = 1.43

M 1t = 2.05

From M1n and p1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 178.6 kPa

The tangential velocity is unchanged

V t1 = V t2

Hence c t1 M t1 = c t2 M t2

(T 1)
1/2

 M t1 = (T 2)
1/2

 M t2

M 2t = (T 1/T 2)
1/2

 M t1

From M1n, and Eq. 13.48c

(using built-in function NormTfromM (M ,k ))

T 2/T 1 = 1.28

Hence M 2t = 1.81



Also, from M1n, and Eq. 13.48a

(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.726

The downstream Mach number is then

M 2 = (M 2t
2
 + M 2n

2
)

1/2

M 2 = 1.95

Finally, from geometry

V 2n = V 2sin( - )

Hence  =  - sin
-1

(V 2n/V 2)

or  =  - sin
-1

(M 2n/M 2)

 = 13.2
o

For the normal shock:

From M1 and p1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

p 2 = 570 kPa

Also, from M1, and Eq. 13.48a

(using built-in function NormM2fromM (M ,k ))

M 2 = 0.513

For the minimum :

The smallest value of  is when the shock is a Mach wave (no deflection)

 = sin
-1

(1/M 1)

 = 23.6
o



Problem 13.184 [Difficulty: 3]

Given: Data on an oblique shock

Find: Deflection angle ; shock angle ; Mach number after shock

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

M 1 = 3.25

T 1 = 283 K

p 2 /p 1 = 5

Equations and Computations:

From p 2/p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k )

and Goal Seek  or Solver )

(13.48d)

For p 2 /p 1 = 5.00

M 1n = 2.10

From M 1 and M 1n, and Eq 13.47a

M 1n = M 1sin() (13.47a)

 = 40.4
o



From M 1 and , and Eq. 13.49

(using built-in function Theta (M ,, k )

(13.49)

 = 23.6
o

To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a

(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.561

The downstream Mach number is then obtained from

from M 2n,  and , and Eq. 13.47b

M 2n = M 2sin( - ) (13.47b)

Hence M 2 = 1.94



Problem 13.185 [Difficulty: 3]

Given: Velocities and deflection angle of an oblique shock

Find: Shock angle ; pressure ratio across shock

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

V 1 = 1250 m/s

V 2 = 650 m/s

 = 35
o

Equations and Computations:

From geometry we can write two equations for tangential velocity:

For V 1t V 1t = V 1cos() (1)

For V 2t V 2t = V 2cos( - ) (2)

For an oblique shock V 2t = V 1t, so Eqs. 1 and 2 give

V 1cos() = V 2cos( - ) (3)

Solving for   = tan
-1

((V 1 - V 2cos())/(V 2sin()))

 = 62.5
o

(Alternatively, solve Eq. 3 using Goal Seek !)



For p 2/p 1, we need M 1n for use in Eq. 13.48d

(13.48d)

We can compute M 1 from  and , and Eq. 13.49

(using built-in function Theta (M ,, k ))

(13.49)

For  = 35.0
o

 = 62.5
o

M 1 = 3.19

This value of M 1 was obtained by using Goal Seek :

Vary M 1 so that  becomes the required value.

(Alternatively, find M 1 from Eq. 13.49 by explicitly solving for it!)

We can now find M 1n from M 1.  From M 1 and Eq. 13.47a

M 1n = M 1sin() (13.47a)

Hence M 1n = 2.83

Finally, for p 2/p 1, we use M 1n in Eq. 13.48d

(using built-in function NormpfromM (M ,k )

p 2 /p 1 = 9.15



Problem 13.186 [Difficulty: 4]

Given: Airfoil with included angle of 60
o

Find: Plot of temperature and pressure as functions of angle of attack

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

T 1 = 276.5 K

p 1 = 75 kPa

V 1 = 1200 m/s

 = 60
o

Equations and Computations:

From T 1 c 1 = 333 m/s

Then M 1 = 3.60

Computed results:

 (
o
)  (

o
)  (

o
) Needed  (

o
) Error M 1n p 2 (kPa) T 2 (

o
C)

0.00 47.1 30.0 30.0 0.0% 2.64 597 357

2.00 44.2 28.0 28.0 0.0% 2.51 539 321

4.00 41.5 26.0 26.0 0.0% 2.38 485 287

6.00 38.9 24.0 24.0 0.0% 2.26 435 255

8.00 36.4 22.0 22.0 0.0% 2.14 388 226

10.00 34.1 20.0 20.0 0.0% 2.02 344 198

12.00 31.9 18.0 18.0 0.0% 1.90 304 172

14.00 29.7 16.0 16.0 0.0% 1.79 267 148

16.00 27.7 14.0 14.0 0.0% 1.67 233 125

18.00 25.7 12.0 12.0 0.0% 1.56 202 104

20.00 23.9 10.0 10.0 0.0% 1.46 174 84

22.00 22.1 8.0 8.0 0.0% 1.36 149 66

24.00 20.5 6.0 6.0 0.0% 1.26 126 49

26.00 18.9 4.0 4.0 0.0% 1.17 107 33

28.00 17.5 2.0 2.0 0.0% 1.08 90 18

30.00 16.1 0.0 - 0.0% 1.00 75 3

Sum: 0.0% Max: 597 357



To compute this table:

1) Type the range of 
2) Type in guess values for 
3) Compute Needed from  = /2 - 
4) Compute  from Eq. 13.49

(using built-in function Theta (M ,, k ) 

5) Compute the absolute error between each  and Needed

6) Compute the sum of the errors

7) Use Solver  to minimize the sum by varying the  values

(Note: You may need to interactively type in new  values

if Solver  generates  values that lead to no )

8) For each , M 1n is obtained from M 1, and Eq. 13.47a

9) For each ,  p 2 is obtained from p 1, M 1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

10) For each ,  T 2 is obtained from T 1, M 1n, and Eq. 13.48c

(using built-in function NormTfromM (M ,k ))
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Problem 13.187 [Difficulty: 4]

Given: Airfoil with included angle of 20
o

Find: Mach number and speed at which oblique shock forms

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

T 1 = 288 K

 = 10
o

Equations and Computations:

From Fig. 13.29 the smallest Mach number for which an oblique shock exists

at a deflection  = 10
o
 is approximately M 1 = 1.4.

By trial and error, a more precise answer is

(using built-in function Theta (M ,, k ) 

M 1 = 1.42

 = 67.4
o

 = 10.00
o

c 1 = 340 m/s

V 1 = 483 m/s

A suggested procedure is:

1) Type in a guess value for M 1

2) Type in a guess value for 



3) Compute  from Eq. 13.49

(using built-in function Theta (M ,, k ))

(13.49)

4) Use Solver  to maximize  by varying 

5) If  is not 10
o
, make a new guess for M 1

6) Repeat steps 1 - 5 until  = 10
o

Computed results:

M 1
 (

o
)  (

o
) Error

1.42 67.4 10.0 0.0%

1.50 56.7 10.0 0.0%

1.75 45.5 10.0 0.0%

2.00 39.3 10.0 0.0%

2.25 35.0 10.0 0.0%

2.50 31.9 10.0 0.0%

3.00 27.4 10.0 0.0%

4.00 22.2 10.0 0.0%

5.00 19.4 10.0 0.0%

6.00 17.6 10.0 0.0%

7.00 16.4 10.0 0.0%

Sum: 0.0%

To compute this table:

1) Type the range of M 1

2) Type in guess values for 
3) Compute  from Eq. 13.49

(using built-in function Theta (M ,, k ) 

4) Compute the absolute error between each  and  = 10
o

5) Compute the sum of the errors

6) Use Solver  to minimize the sum by varying the  values

(Note: You may need to interactively type in new  values

if Solver  generates  values that lead to no , or to

 values that correspond to a strong rather than weak shock)

Oblique Shock Angle as a Function of
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Problem 13.188 [Difficulty: 3]

Given: Data on airfoil flight

Find: Lift per unit span

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 70 kPa

M 1 = 2.75

 = 7
o

c  = 1.5 m

Equations and Computations:

The lift per unit span is

L  = (p L - p U)c (1)

(Note that p L acts on area c /cos(), but its

normal component is multiplied by cos())

For the upper surface:

p U = p 1

p U = 70.0 kPa



For the lower surface:

We need to find M 1n

The deflection angle is  = 

 = 7
o

From M 1 and , and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

For  = 7.0
o

 = 26.7
o

(Use Goal Seek  to vary  so that  = )

From M 1 and  M 1n = 1.24

From M 1n and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 113 kPa

p L = p 2

p L = 113 kPa

From Eq 1 L  = 64.7 kN/m



Problem 13.189 [Difficulty: 4]

Given: Airfoil with included angle of 60
o

Find: Angle of attack at which oblique shock becomes detached

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

T 1 = 276.5 K

p 1 = 75 kPa

V 1 = 1200 m/s

 = 60
o

Equations and Computations:

From T 1 c 1 = 333 m/s

Then M 1 = 3.60

From Fig. 13.29, at this Mach number the smallest deflection angle for which

an oblique shock exists is approximately  = 35
o
.

By using Solver , a more precise answer is

(using built-in function Theta (M ,, k ) 

M 1 = 3.60

 = 65.8
o

 = 37.3
o

A suggested procedure is:

1) Type in a guess value for 

2) Compute  from Eq. 13.49

(using built-in function Theta (M ,, k ))

(13.49)

3) Use Solver  to maximize  by varying 

For a deflection angle  the angle of attack  is

 =  - /2

 = 7.31
o



Computed results:

 (
o
)  (

o
)  (

o
) Needed  (

o
) Error M 1n p 2 (kPa) T 2 (

o
C)

0.00 47.1 30.0 30.0 0.0% 2.64 597 357

1.00 48.7 31.0 31.0 0.0% 2.71 628 377

2.00 50.4 32.0 32.0 0.0% 2.77 660 397

3.00 52.1 33.0 33.0 0.0% 2.84 695 418

4.00 54.1 34.0 34.0 0.0% 2.92 731 441

5.50 57.4 35.5 35.5 0.0% 3.03 793 479

5.75 58.1 35.8 35.7 0.0% 3.06 805 486

6.00 58.8 36.0 36.0 0.0% 3.08 817 494

6.25 59.5 36.3 36.2 0.0% 3.10 831 502

6.50 60.4 36.5 36.5 0.0% 3.13 845 511

6.75 61.3 36.8 36.7 0.0% 3.16 861 521

7.00 62.5 37.0 37.0 0.0% 3.19 881 533

7.25 64.4 37.3 37.2 0.0% 3.25 910 551

7.31 65.8 37.3 37.3 0.0% 3.28 931 564

Sum: 0.0% Max: 931 564

To compute this table:

1) Type the range of 
2) Type in guess values for 
3) Compute Needed from  =  + /2

4) Compute  from Eq. 13.49

(using built-in function Theta (M ,, k ) 

5) Compute the absolute error between each  and Needed

6) Compute the sum of the errors

7) Use Solver  to minimize the sum by varying the  values

(Note: You may need to interactively type in new  values

if Solver  generates  values that lead to no )

8) For each , M 1n is obtained from M 1, and Eq. 13.47a

9) For each ,  p 2 is obtained from p 1, M 1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

10) For each ,  T 2 is obtained from T 1, M 1n, and Eq. 13.48c

(using built-in function NormTfromM (M ,k ))
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Problem 13.190 [Difficulty: 3]

Given: Oblique shock Mach numbers

Find: Deflection angle; Pressure after shock

Solution:

The given or available data is: k  = 1.4

p 1 = 75 kPa

M 1 = 4

M 2 = 2.5

Equations and Computations:

We make a guess for :  = 33.6
o

From M 1 and , and Eq. 13.49 (using built-in function Theta (M , ,k ))

(13.49)

 = 21.0
o

From M 1 and  M 1n = 2.211

From M 2, , and  M 2n = 0.546 (1)

We can also obtain M 2n from Eq. 13.48a (using built-in function normM2fromM (M ,k ))

(13.48a)

M 2n = 0.546 (2)

We need to manually change  so that Eqs. 1 and 2 give the same answer.

Alternatively, we can compute the difference between 1 and 2, and use

Solver  to vary  to make the difference zero

Error in M 2n = 0.00%

Then p 2 is obtained from Eq. 13.48d (using built-in function normpfromm (M ,k ))

(13.48d)

p 2 = 415 kPa



Problem 13.191 [Difficulty: 3]

Given: Data on airfoil flight

Find: Lift per unit span

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 75 kPa

M 1 = 2.75

U = 5
o

L = 15
o

c  = 2 m

Equations and Computations:

The lift per unit span is

L  = (p L - p U)c (1)

(Note that each p  acts on area c /cos(), but its

normal component is multiplied by cos())

For the upper surface:

We need to find M 1n(U)

The deflection angle is U = U

U = 5
o

From M 1 and U, and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

For U = 5.00
o

U = 25.1
o



(Use Goal Seek  to vary U so that U = U)

From M 1 and U M 1n(U) = 1.16

From M 1n(U) and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 106 kPa

p U = p 2

p U = 106 kPa

For the lower surface:

We need to find M 1n(L)

The deflection angle is L = L

L = 15
o

From M 1 and L, and Eq. 13.49

(using built-in function Theta (M , ,k ))

For L = 15.00
o

L = 34.3
o

(Use Goal Seek  to vary L so that L = L)

From M 1 and L M 1n(L) = 1.55

From M 1n(L) and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

p 2 = 198 kPa

p L = p 2

p L = 198 kPa

From Eq 1 L  = 183 kN/m



Problem 13.192 [Difficulty: 3]

Given: Air deflected at an angle, causing an oblique shock

Find: Post shock pressure, temperature, and Mach number, deflection angle, strong or weak

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 3.3

T 1 = 100 °F

T 1 = 560 °R

p 1 = 20 psia

β  = 45 °

Equations and Computations:

The pre-shock Mach numbers normal and parallel to the wave are:

M 1n = 2.3335

M 1t = 2.3335

The sound speed upstream of the shock is:

c 1 = 1160.30 ft/s

Therefore, the speed of the flow parallel to the wave is:

V 1t = 2707.51 ft/s

The post-shock Mach number normal to the wave is:

M 2n = 0.5305

The pressure and temperature ratios across the shock wave are:

p 2/p 1 = 6.1858

T 2/T 1 = 1.9777

Therefore, the post-shock temperature and pressure are:

p 2 = 124 psia

T 2 = 1108 °R

T 2 = 648 °F

The sound speed downstream of the shock is:

c 2 = 1631.74 ft/s

So the speed of the flow normal to wave is:

V 2n = 865.63 ft/s

The speed of the flow parallel to the wave is preserved through the shock:

V 2t = 2707.51 ft/s

Therefore the flow speed after the shock is:

V 2 = 2842.52 ft/s

and the Mach number is:

M 2 = 1.742

Based on the Mach number and shock angle, the deflection angle is:

θ  = 27.3 °

Since the Mach number at 2 is supersonic, this is a weak wave. This can be

confirmed by inspecting Fig. 13.29 in the text.



Problem 13.193 [Difficulty: 3]

Given: Air passing through jet inlet

Find: Pressure after one oblique shock; pressure after two shocks totaling same overall turn

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 4

p 1 = 8 psia

θ  = 8 °

Equations and Computations:

To find the shock angle, we have to iterate on the shock angle until we match the

deflection angle, which is a function of Mach number, specific heat ratio, and shock angle.

β  = 20.472 °

θ  = 8.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach number normal to the wave is:

M 1n = 1.3990

The pressure ratio across the shock wave is:

p 2/p 1 = 2.1167

Therefore, the post-shock pressure is:

p 2 = 16.93 psia

Now if we use two 4-degree turns, we perform two oblique-shock calculations.

For the first turn:

β 1-2a = 17.258 °

θ  = 4.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach number normal to the wave is:

M 1n = 1.1867

The post-shock Mach number normal to the wave is:

M 2an = 0.8506

The pressure ratio across the shock wave is:

p 2a/p 1 = 1.4763

Therefore, the post-shock pressure is:

p 2a = 11.8100 psia



So the Mach number after the first shock wave is:

M 2a = 3.7089

For the second turn:

β 2a-2b = 18.438 °

θ  = 4.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach number normal to the wave is:

M 2an = 1.1731

The post-shock Mach number normal to the wave is:

M 2bn = 0.8594

The pressure ratio across the shock wave is:

p 2b/p 2a = 1.4388

Therefore, the post-shock pressure is:

p 2b = 16.99 psia

The pressure recovery is slightly better for two weaker shocks than a single

stronger one!



Problem 13.194 [Difficulty: 4]

Given: Air turning through an incident and reflected shock wave

Find: Pressure, temperature, and Mach number after each wave

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 2.3

p 1 = 14.7 psia

T 1 = 80 °F

T 1 = 540 °R

θ  = 10 °

Equations and Computations:

To find the shock angle, we have to iterate on the shock angle until we match the

deflection angle, which is a function of Mach number, specific heat ratio, and shock angle.

For the first turn:

β 1-2 = 34.326 °

θ  = 10.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach numbers normal and parallel to the wave are:

M 1n = 1.2970

M 1t = 1.8994

The post-shock Mach number normal to the wave is:

M 2n = 0.7875

The pressure and temperature ratios across the shock wave are:

p 2/p 1 = 1.7959

T 2/T 1 = 1.1890

Therefore, the post-shock pressure and temperature are:

p 2 = 26.4 psia

T 2 = 642 °R

Since the parallel component of velocity is preserved across the shock and

the Mach number is related to the square root of temperature, the new parallel

component of Mach number is:

M 2t = 1.7420

So the Mach number after the first shock wave is:

M 2 = 1.912

For the second turn:

β 2-3 = 41.218 °

θ  = 10.0000 °

We used Solver  in Excel  to iterate on the shock angle.



The pre-shock Mach numbers normal and parallel to the wave are:

M 1n = 1.2597

M 1t = 1.4380

The post-shock Mach number normal to the wave is:

M 2an = 0.8073

The pressure and temperature ratios across the shock wave are:

p 3/p 2 = 1.6845

T 2/T 1 = 1.1654

Therefore, the post-shock pressure is:

p 3 = 44.5 psia

T 3 = 748 °R

Since the parallel component of velocity is preserved across the shock and

the Mach number is related to the square root of temperature, the new parallel

component of Mach number is:

M 2t = 1.3320

So the Mach number after the second shock wave is:

M 2 = 1.558



Problem 13.195 [Difficulty: 3]

Given: Wedge-shaped projectile

Find: Speed at which projectile is traveling through the air

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

p 1 = 1 psia

T 1 = 10 °F

T 1 = 470 °R

θ  = 10 °

p 2 = 3 psia

Equations and Computations:

The pressure ratio across the shock wave is:

p 2/p 1 = 3.0000

For this pressure ratio, we can iterate to find the Mach number of the flow normal

to the shock wave:

M 1n = 1.6475

p 2/p 1 = 3.0000

We used Solver  in Excel  to iterate on the Mach number.

With the normal Mach number, we can iterate on the incident Mach number to

find the right combination of Mach number and shock angle to match the turning

angle of the flow and normal Mach number:

M 1 = 4.9243

β 1-2 = 19.546 °

θ  = 10.0000 °

The pre-shock Mach numbers normal and parallel to the wave are:

M 1n = 1.6475

M 1t = 4.6406

We used Solver  in Excel  to iterate on the Mach number and shock angle.

Now that we have the upstream Mach number, we can find the speed. The sound

speed upstream of the shock wave is:

c 1 = 1062.9839 ft/s

Therefore, the speed of the flow relative to the wedge is:

V 1 = 5234 ft/s



Problem 13.196 [Difficulty: 4]

Given: Flow turned through an expansion followed by a oblique shock wave

Find: Mach number and pressure downstream of the shock wave

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 2

p 1 = 1 atm

θ  = 16 °

Equations and Computations:

The Prandtl-Meyer function of the flow before the expansion is:

ω 1 = 26.380 °

Since we know the turning angle of the flow, we know the Prandtl-Meyer function after

the expansion:

ω 2 = 42.380 °

We can iterate to find the Mach number after the expansion:

M 2 = 2.6433

ω 2 = 42.380 °

The pressure ratio across the expansion wave is:

p 2/p 1 = 0.3668

Therefore the pressure after the expansion is:

p 2 = 0.3668 atm

We can iterate on the shock angle to find the conditions after the oblique shock:

β 2-3 = 36.438 °

θ  = 16.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach numbers normal and parallel to the wave are:

M 2n = 1.5700

M 2t = 2.1265

The post-shock Mach number normal to the wave is:

M 3n = 0.6777

The pressure and tempreature ratios across the shock are:

p 3/p 2 = 2.7090

T 3/T 2 = 1.3674

The pressure after the shock wave is:

p 3 = 0.994 atm

We can get the post-shock Mach number parallel to the shock from the

temperature ratio:

M 3t = 1.8185

So the post-shock Mach number is:

M 3 = 1.941



Problem 13.197 [Difficulty: 4]

Given: Air passing through jet inlet

Find: Pressure after one oblique shock; after two shocks totaling same overall turn, after

isentropic compression

Solution:

The given or available data is: R  = 53.33 ft-lbf/lbm-°R

k  = 1.4

M 1 = 2

p 1 = 5 psia

θ  = 20 °

Equations and Computations:

To find the shock angle, we have to iterate on the shock angle until we match the

deflection angle, which is a function of Mach number, specific heat ratio, and shock angle.

β  = 53.423 °

θ  = 20.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach number normal to the wave is:

M 1n = 1.6061

The pressure ratio across the shock wave is:

p 2/p 1 = 2.8429

Therefore, the post-shock pressure is:

p 2 = 14.21 psia

Now if we use two 10-degree turns, we perform two oblique-shock calculations.

For the first turn:

β 1-2a = 39.314 °

θ  = 10.0000 °

We used Solver  in Excel  to iterate on the shock angle.

The pre-shock Mach number normal to the wave is:

M 1n = 1.2671

The post-shock Mach number normal to the wave is:

M 2an = 0.8032

The pressure ratio across the shock wave is:

p 2a/p 1 = 1.7066

Therefore, the post-shock pressure is:

p 2a = 8.5329 psia

So the Mach number after the first shock wave is:

M 2a = 1.6405

For the second turn:

β 2a-2b = 49.384 °

θ  = 10.0000 °

We used Solver  in Excel  to iterate on the shock angle.



The pre-shock Mach number normal to the wave is:

M 2an = 1.2453

The post-shock Mach number normal to the wave is:

M 2bn = 0.8153

The pressure ratio across the shock wave is:

p 2b/p 2a = 1.6426

Therefore, the post-shock pressure is:

p 2b = 14.02 psia

For the isentropic compression, we need to calculate the Prandtl-Meyer

function for the incident flow:

ω 1 = 26.3798 °

The flow out of the compression will have a Prandtl-Meyer function of:

ω 2i = 6.3798 °

To find the exit Mach number, we need to iterate on the Mach number to

match the Prandtl-Meyer function:

M 2i = 1.3076

ω 2i = 6.3798 °

The pressure ratio across the compression wave is:

p 2i/p 1 = 2.7947

Therefore, the exit pressure is:

p 2i = 13.97 psia



Problem 13.198 [Difficulty: 3]

Given: Air flow in a duct

Find: Mach number and pressure at contraction and downstream; 

Solution:

The given or available data is: k  = 1.4

M 1 = 2.5

 = 7.5
o

p 1 = 50 kPa

Equations and Computations:

For the first oblique shock (1 to 2) we need to find  from Eq. 13.49

(13.49)

We choose  by iterating or by using Goal Seek  to target  (below) to equal the given 
Using built-in function theta (M, ,k )

 = 7.50
o

 = 29.6
o

Then M 1n can be found from geometry (Eq. 13.47a)

M 1n = 1.233

Then M 2n can be found from Eq. 13.48a)

Using built-in function NormM2fromM (M,k )

(13.48a)

M 2n = 0.822

Then, from M 2n and geometry (Eq. 13.47b)

M 2 = 2.19



From M 1n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

(13.48d)

p 2/p 1 = 1.61 Pressure ratio

p 2 = 80.40

We repeat the analysis of states 1 to 2 for states 2 to 3, to analyze the second oblique shock

We choose  for M 2 by iterating or by using Goal Seek  to target  (below) to equal the given 
Using built-in function theta (M, ,k )

 = 7.50
o

 = 33.5
o

Then M 2n (normal to second shock!) can be found from geometry (Eq. 13.47a)

M 2n = 1.209

Then M 3n can be found from Eq. 13.48a)

Using built-in function NormM2fromM (M,k )

M 3n = 0.837

Then, from M 3n and geometry (Eq. 13.47b)

M 3 = 1.91

From M 2n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

p 3/p 2 = 1.54 Pressure ratio

p 3 = 124



Problem 13.199 [Difficulty: 4]

Given: Air flow into engine

Find: Pressure of air in engine; Compare to normal shock

Solution:

The given or available data is: k  = 1.4

p 1 = 50 kPa

M 1 = 3

 = 7.5
o

Equations and Computations:

Assuming isentropic flow deflection

p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a (using built-in function Isenp (M , k ))

(13.7a)

p 01 = 1837 kPa

p 02 = 1837 kPa

For the deflection  = 7.5
o

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

(13.55)

1 = 49.8
o

Deflection = 2 - 1 = (M 2) - (M 1) (1)

Applying Eq. 1 2 = 1 -  (Compression!)

2 = 42.3
o



From 2, and Eq. 13.55 (using built-in function Omega (M , k ))

For 2 = 42.3
o

M 2 = 2.64

(Use Goal Seek  to vary M 2 so that 2 is correct)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 86.8 kPa

For the normal shock (2 to 3) M 2 = 2.64

From M 2 and p 2, and Eq. 13.41d (using built-in function NormpfromM (M ,k ))

(13.41d)

p 3 = 690 kPa

For slowing the flow down from M 1 with only a normal shock, using Eq. 13.41d

p  = 517 kPa



Problem 13.200 [Difficulty: 3]

Given: Deflection of air flow

Find: Pressure changes

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p  = 95 kPa

M  = 1.5

1 = 15
o

2 = 15
o

Equations and Computations:

We use Eq. 13.55

(13.55)

and

Deflection = a - b = (M a) - (M b) (1)

From M  and Eq. 13.55 (using built-in function Omega (M , k ))

 = 11.9
o

For the first deflection:

Applying Eq. 1

1 = 1 - 

1 = 1 + 

1 = 26.9
o

From 1, and Eq. 13.55

(using built-in function Omega (M , k ))

For 1 = 26.9
o



M 1 = 2.02

(Use Goal Seek  to vary M 1 so that 1 is correct)

Hence for p 1 we use Eq. 13.7a

(13.7a)

The approach is to apply Eq. 13.7a twice, so that

(using built-in function Isenp (M , k ))

p 1 = p (p 0/p )/(p 0/p 1)

p 1 = 43.3 kPa

For the second deflection:

We repeat the analysis of the first deflection

Applying Eq. 1

2 + 1 = 2 - 

2 = 2 + 1 + 

2 = 41.9
o

(Note that instead of working from the initial state to state 2 we could have

worked from state 1 to state 2 because the entire flow is isentropic)

From 2, and Eq. 13.55

(using built-in function Omega (M , k ))

For 2 = 41.9
o

M 2 = 2.62

(Use Goal Seek  to vary M 2 so that 2 is correct)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p (p 0/p )/(p 0/p 2)

p 2 = 16.9 kPa



Problem 13.201 [Difficulty: 3]

Given: Air flow in a duct

Find: Mach number and pressure at contraction and downstream; 

Solution:

The given or available data is: k  = 1.4

M 1 = 2.5

 = 30
o

p 1 = 50 kPa

Equations and Computations:

For the first oblique shock (1 to 2) we find  from Eq. 13.49

(13.49)

Using built-in function theta (M, ,k )

 = 7.99
o

Also, M 1n can be found from geometry (Eq. 13.47a)

M 1n = 1.250

Then M 2n can be found from Eq. 13.48a)

Using built-in function NormM2fromM (M,k )

(13.48a)

M 2n = 0.813

Then, from M 2n and geometry (Eq. 13.47b)

M 2 = 2.17



From M 1n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

(13.48d)

p 2/p 1 = 1.66 Pressure ratio

p 2 = 82.8

We repeat the analysis for states 1 to 2 for 2 to 3, for the second oblique shock

We choose  for M 2 by iterating or by using Goal Seek  to target  (below) to equal 

the previous , using built-in function theta (M, ,k )

 = 7.99
o

 = 34.3
o

Then M 2n (normal to second shock!) can be found from geometry (Eq. 13.47a)

M 2n = 1.22

Then M 3n can be found from Eq. 13.48a)

Using built-in function NormM2fromM (M,k )

M 3n = 0.829

Then, from M 3n and geometry (Eq. 13.47b)

M 3 = 1.87

From M 2n and Eq. 13.48d (using built-in function NormpfromM (M ,k ))

p 3/p 2 = 1.58 Pressure ratio

p 3 = 130



Problem 13.202 [Difficulty: 4]

Given: Mach number and deflection angle

Find: Static and stagnation pressures due to: oblique shock; compression wave

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 50 kPa

M 1 = 3.5

 = 35
o

Equations and Computations:

For the oblique shock:

We need to find M 1n

The deflection angle is  = 35
o

From M 1 and , and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

For  = 35.0
o

 = 57.2
o

(Use Goal Seek  to vary  so that  = 35
o
)

From M 1 and  M 1n = 2.94

From M 1n and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 496 kPa



To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a

(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.479

The downstream Mach number is then obtained from

from M 2n,  and , and Eq. 13.47b

M 2n = M 2sin( - ) (13.47b)

Hence M 2 = 1.27

For p 02 we use Eq. 12.7a

(using built-in function Isenp (M , k ))

(13.7a)

p 02 = p 2/(p 02/p 2)

p 02 = 1316 kPa

For the isentropic compression wave:

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 01 = 3814 kPa

p 02 = 3814 kPa

(Note that for the oblique shock, as required by Eq. 13.48b

(13.48b)

p 02/p 01 = 0.345

(using built-in function Normp0fromM (M ,k )



p 02/p 01 = 0.345

(using p 02 from the shock and p 01)

For the deflection  =  (Compression )

 = -35.0
o

We use Eq. 13.55

(13.55)

and

Deflection = 2 - 1 = (M 2) - (M 1) (1)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

1 = 58.5
o

Applying Eq. 1 2 = 1 + 

2 = 23.5
o

From 2, and Eq. 13.55

(using built-in function Omega (M , k ))

For 2 = 23.5
o

M 2 = 1.90

(Use Goal Seek  to vary M 2 so that 2 = 23.5
o
)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 572 kPa



Problem 13.203 [Difficulty: 3]

Given: Deflection of air flow

Find: Mach numbers and pressures

Solution

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 2 = 10 kPa

M 2 = 4

1 = 15
o

2 = 15
o

Equations and Computations:

We use Eq. 13.55

(13.55)

and

Deflection = a - b = (M a) - (M b) (1)

From M  and Eq. 13.55 (using built-in function Omega (M , k ))

2 = 65.8
o

For the second deflection:

Applying Eq. 1

1 = 2 - 2

1 = 50.8
o

From 1, and Eq. 13.55

(using built-in function Omega (M , k ))

For 1 = 50.8
o

M 1 = 3.05

(Use Goal Seek  to vary M 1 so that 1 is correct)



Hence for p 1 we use Eq. 13.7a

(13.7a)

The approach is to apply Eq. 13.7a twice, so that

(using built-in function Isenp (M , k ))

p 1 = p 2(p 0/p 2)/(p 0/p 1)

p 1 = 38.1 kPa

For the first deflection:

We repeat the analysis of the second deflection

Applying Eq. 1

2 + 1 = 2 - 

 = 2 - (2 + 1)

 = 35.8
o

(Note that instead of working from state 2 to the initial state we could have

worked from state 1 to the initial state because the entire flow is isentropic)

From , and Eq. 13.55

(using built-in function Omega (M , k ))

For  = 35.8
o

M  = 2.36

(Use Goal Seek  to vary M  so that  is correct)

Hence for p  we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p  = p 2(p 0/p 2)/(p 0/p )

p  = 110 kPa



Problem 13.204 [Difficulty: 4]

Given: Mach number and airfoil geometry

Find: Lift and drag per unit span

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 50 kPa

M 1 = 1.75

 = 18
o

c  = 1 m

Equations and Computations:

The net force per unit span is F  = (p L - p U)c

Hence, the lift force per unit span is

L  = (p L - p U)c cos() (1)

The drag force per unit span is

D  = (p L - p U)c sin() (2)

For the lower surface (oblique shock):

We need to find M 1n

The deflection angle is  = 

 = 18
o

From M 1 and , and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

For  = 18.0
o

 = 62.9
o

(Use Goal Seek  to vary  so that  is correct)



From M 1 and  M 1n = 1.56

From M 1n and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 133.2 kPa

p L = p 2

p L = 133.2 kPa

For the upper surface (isentropic expansion wave):

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

(13.7a)

p 01 = 266 kPa

p 02 = 266 kPa

For the deflection  =  (Compression )

 = 18.0
o

We use Eq. 13.55

(13.55)

and

Deflection = 2 - 1 = (M 2) - (M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

1 = 19.3
o

Applying Eq. 3 2 = 1 + 

2 = 37.3
o



From 2, and Eq. 13.55 (using built-in function Omega (M , k ))

For 2 = 37.3
o

M 2 = 2.42

(Use Goal Seek  to vary M 2 so that 2 is correct)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 17.6 kPa

p U = p 2

p U = 17.6 kPa

From Eq. 1 L  = 110.0 kN/m

From Eq. 2 D  = 35.7 kN/m



Problem 13.205 [Difficulty: 3]

Given: Wedge-shaped airfoil

Find: Lift per unit span assuming isentropic flow

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p  = 70 kPa

M  = 2.75

 = 7
o

c  = 1.5 m

Equations and Computations:

The lift per unit span is

L  = (p L - p U)c (1)

(Note that p L acts on area c /cos(), but its

normal component is multiplied by cos())

For the upper surface:

p U = p

p U = 70 kPa



For the lower surface:

 = 

 = -7.0
o

We use Eq. 13.55

(13.55)

and

Deflection = L -  = (M L) - (M ) (2)

From M  and Eq. 13.55 (using built-in function Omega (M , k ))

 = 44.7
o

Applying Eq. 2

 = L - 

L =  + 

L = 37.7
o

From L, and Eq. 13.55

(using built-in function Omega (M , k ))

For L = 37.7
o

M L = 2.44

(Use Goal Seek  to vary M L so that L is correct)



Hence for p L we use Eq. 13.7a

(13.7a)

The approach is to apply Eq. 13.7a twice, so that

(using built-in function Isenp (M , k ))

p L = p (p 0/p )/(p 0/p L)

p L = 113 kPa

From Eq 1 L  = 64.7 kN/m



Problem 13.206 [Difficulty: 4]

Given: Mach number and airfoil geometry

Find: Drag coefficient

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 95 kPa

M 1 = 2

 = 0
o

 = 10
o

Equations and Computations:

The drag force is

D  = (p F - p R)cs tan(/2) (1)

(s  and c  are the span and chord)

This is obtained from the following analysis

Airfoil thickness (frontal area) = 2s (c /2tan(/2))

Pressure difference acting on frontal area = (p F - p R)

(p F and p R are the pressures on the front and rear surfaces)

The drag coefficient is C D = D /(1/2V
2
A ) (2)

But it can easily be shown that

V
2
 = pkM

2



Hence, from Eqs. 1 and 2

C D = (p F - p R)tan(/2)/(1/2pkM
2
) (3)

For the frontal surfaces (oblique shocks):

We need to find M 1n

The deflection angle is  = /2

 = 5
o

From M 1 and , and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

For  = 5.0
o

 = 34.3
o

(Use Goal Seek  to vary  so that  = 5
o
)

From M 1 and  M 1n = 1.13

From M 1n and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 125.0 kPa

p F = p 2

p F = 125.0 kPa



To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a

(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.891

The downstream Mach number is then obtained from

from M 2n,  and , and Eq. 13.47b

M 2n = M 2sin( - ) (13.47b)

Hence M 2 = 1.82

For p 02 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

(13.7a)

p 02 = 742 kPa

For the rear surfaces (isentropic expansion waves):

Treating as a new problem

Here: M 1 is the Mach number after the shock

and M 2 is the Mach number after the expansion wave

p 01 is the stagnation pressure after the shock

and p 02 is the stagnation pressure after the expansion wave

M 1 = M 2 (shock)

M 1 = 1.82



p 01 = p 02 (shock)

p 01 = 742 kPa

For isentropic flow p 0 = constant

p 02 = p 01

p 02 = 742 kPa

For the deflection  = 

 = 10.0
o

We use Eq. 13.55

(13.55)

and

Deflection = 2 - 1 = (M 2) - (M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

1 = 21.3
o

Applying Eq. 3 2 = 1 + 

2 = 31.3
o

From 2, and Eq. 13.55 (using built-in function Omega(M, k))

For 2 = 31.3
o

M 2 = 2.18

(Use Goal Seek  to vary M 2 so that 2 = 31.3
o
)



Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 71.2 kPa

p R = p 2

p R = 71.2 kPa

Finally, from Eq. 1 C D = 0.0177



Problem 13.207 [Difficulty: 4]

Given: Mach number and airfoil geometry

Find: Plot of lift and drag and lift/drag versus angle of attack

Solution:

The given or available data is:

k  = 1.4

p 1 = 50 kPa

M 1 = 1.75

 = 12
o

c  = 1 m

Equations and Computations:

The net force per unit span is

F  = (p L - p U)c

Hence, the lift force per unit span is

L  = (p L - p U)c cos() (1)

The drag force per unit span is

D  = (p L - p U)c sin() (2)

For each angle of attack the following needs to be computed:



For the lower surface (oblique shock):

We need to find M 1n

Deflection  = 

From M 1 and , and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

find 

(Use Goal Seek  to vary  so that  is the correct value)

From M 1 and  find M 1n

From M 1n and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

find p 2

and p L = p 2



For the upper surface (isentropic expansion wave):

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

(13.7a)

find p 02 = 266 kPa

Deflection  = 

we use Eq. 13.55

(13.55)

and

Deflection = 2 - 1 = (M 2) - (M 1) (3)

From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

find 1 = 19.3
o

Applying Eq. 3 2 = 1 +  (4)

From 2, and Eq. 12.55 (using built-in function Omega (M , k ))

From 2 find M 2

(Use Goal Seek  to vary M 2 so that 2 is the correct value)



Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p U = p 2

Finally, from Eqs. 1 and 2, compute L  and D

Computed results:

 (
o
)  (

o
)  (

o
) Error M 1n p L (kPa) 2 (

o
) 2 from M 2 (

o
) Error M 2 p U (kPa) L  (kN/m) D  (kN/m) L/D

0.50 35.3 0.50 0.0% 1.01 51.3 19.8 19.8 0.0% 1.77 48.7 2.61 0.0227 115

1.00 35.8 1.00 0.0% 1.02 52.7 20.3 20.3 0.0% 1.78 47.4 5.21 0.091 57.3

1.50 36.2 1.50 0.0% 1.03 54.0 20.8 20.8 0.0% 1.80 46.2 7.82 0.205 38.2

2.00 36.7 2.00 0.0% 1.05 55.4 21.3 21.3 0.0% 1.82 45.0 10.4 0.364 28.6

4.00 38.7 4.00 0.0% 1.09 61.4 23.3 23.3 0.0% 1.89 40.4 20.9 1.46 14.3

5.00 39.7 5.00 0.0% 1.12 64.5 24.3 24.3 0.0% 1.92 38.3 26.1 2.29 11.4

10.00 45.5 10.0 0.0% 1.25 82.6 29.3 29.3 0.0% 2.11 28.8 53.0 9.35 5.67

15.00 53.4 15.0 0.0% 1.41 106.9 34.3 34.3 0.0% 2.30 21.3 82.7 22.1 3.73

16.00 55.6 16.0 0.0% 1.44 113.3 35.3 35.3 0.0% 2.34 20.0 89.6 25.7 3.49

16.50 56.8 16.5 0.0% 1.47 116.9 35.8 35.8 0.0% 2.36 19.4 93.5 27.7 3.38

17.00 58.3 17.0 0.0% 1.49 121.0 36.3 36.3 0.0% 2.38 18.8 97.7 29.9 3.27

17.50 60.1 17.5 0.0% 1.52 125.9 36.8 36.8 0.0% 2.40 18.2 102.7 32.4 3.17

18.00 62.9 18.0 0.0% 1.56 133.4 37.3 37.3 0.0% 2.42 17.6 110 35.8 3.08

Sum: 0.0% Sum: 0.0%



To compute this table:

1) Type the range of 
2) Type in guess values for 
3) Compute  from Eq. 13.49

(using built-in function Theta (M ,, k ) 

4) Compute the absolute error between each  and 
5) Compute the sum of the errors

6) Use Solver  to minimize the sum by varying the  values

(Note: You may need to interactively type in new  values

if Solver  generates  values that lead to no )

7) For each , M 1n is obtained from M 1, and Eq. 13.47a

8) For each ,  p L is obtained from p 1, M 1n, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

9) For each , compute 2 from Eq. 4

10) For each , compute 2 from M 2, and Eq. 13.55

(using built-in function Omega (M ,k ))

11) Compute the absolute error between the two values of 2

12) Compute the sum of the errors

13) Use Solver  to minimize the sum by varying the M 2 values

(Note: You may need to interactively type in new M 2 values)

if Solver  generates  values that lead to no )

14) For each ,  p U is obtained from p 02, M 2, and Eq. 13.47a

(using built-in function Isenp (M , k ))

15) Compute L  and D  from Eqs. 1 and 2



Lift and Drag of an Airfoil

as a Function of Angle of Attack

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20

 (
o
)

L
 a

n
d

 D
 (

k
N

/m
)

Lift

Drag

Lift/Drag of an Airfoil

as a Function of Angle of Attack

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

 (
o
)

L
/D



Problem 13.208 [Difficulty: 4]

Given: Mach number and airfoil geometry

Find: Lift and Drag coefficients

Solution:

The given or available data is: R  = 286.9 J/kg.K

k  = 1.4

p 1 = 95 kPa

M 1 = 2

 = 12
o

 = 10
o

Equations and Computations:

Following the analysis of Example 13.14

the force component perpendicular to the major axis, per area, is

F V/sc = 1/2{(p FL + p RL) - (p FU + p RU)} (1)

and the force component parallel to the major axis, per area, is

F H/sc = 1/2tan(/2){(p FU + p FL) - (p RU + p RL)} (2)

using the notation of the figure above.

(s  and c  are the span and chord)

The lift force per area is

F L/sc = (F Vcos() - F Hsin())/sc (3)

The drag force per area is

F D/sc = (F Vsin() + F Hcos())/sc (4)

The lift coefficient is C L = F L/(1/2V
2
A ) (5)

But it can be shown that

V
2
 = pkM

2
(6)

Hence, combining Eqs. 3, 4, 5 and 6

C L = (F V/sc cos() - F H/sc sin())/(1/2pkM
2
) (7)

1 FU
RU

FL
RL



Similarly, for the drag coefficient

C D = (F V/sc sin() + F H/sc cos())/(1/2pkM
2
) (8)

For surface FL (oblique shock):

We need to find M 1n

The deflection angle is  =  + /2

 = 17
o

From M 1 and , and Eq. 13.49

(using built-in function Theta (M , ,k ))

(13.49)

For  = 17.0
o

 = 48.2
o

(Use Goal Seek  to vary  so that  = 17
o
)

From M 1 and  M 1n = 1.49

From M 1n and p 1, and Eq. 13.48d

(using built-in function NormpfromM (M ,k ))

(13.48d)

p 2 = 230.6 kPa

p FL = p 2

p FL = 230.6 kPa

To find M 2 we need M 2n.  From M 1n, and Eq. 13.48a

(using built-in function NormM2fromM (M ,k ))

(13.48a)

M 2n = 0.704



The downstream Mach number is then obtained from

from M 2n,  and , and Eq. 13.47b

M 2n = M 2sin( - ) (13.47b)

Hence M 2 = 1.36

For p 02 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

(13.7a)

p 02 = 693 kPa

For surface RL (isentropic expansion wave):

Treating as a new problem

Here: M 1 is the Mach number after the shock

and M 2 is the Mach number after the expansion wave

p 01 is the stagnation pressure after the shock

and p 02 is the stagnation pressure after the expansion wave

M 1 = M 2 (shock)

M 1 = 1.36

p 01 = p 02 (shock)

p 01 = 693 kPa

For isentropic flow p 0 = constant

p 02 = p 01

p 02 = 693 kPa

For the deflection  = 

 = 10.0
o

We use Eq. 13.55

(13.55)

and

Deflection = 2 - 1 = (M 2) - (M 1) (3)



From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

1 = 7.8
o

Applying Eq. 3 2 = 1 + 

2 = 17.8
o

From 2, and Eq. 13.55 (using built-in function Omega (M , k ))

For 2 = 17.8
o

M 2 = 1.70

(Use Goal Seek  to vary M 2 so that 2 = 17.8
o
)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 141 kPa

p RL = p 2

p RL = 141 kPa

For surface FU (isentropic expansion wave):

M 1 = 2.0

For isentropic flow p 0 = constant

p 02 = p 01

For p 01 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 01 = 743

p 02 = 743 kPa

For the deflection  =  - /2

 = 7.0
o

We use Eq. 13.55

and

Deflection = 2 - 1 = (M 2) - (M 1) (3)



From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

1 = 26.4
o

Applying Eq. 3 2 = 1 + 

2 = 33.4
o

From 2, and Eq. 13.55 (using built-in function Omega(M, k))

For 2 = 33.4
o

M 2 = 2.27

(Use Goal Seek  to vary M 2 so that 2 = 33.4
o
)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 62.8 kPa

p FU = p 2

p FU = 62.8 kPa

For surface RU (isentropic expansion wave):

Treat as a new problem.

Flow is isentropic so we could analyse from region FU to RU

but instead analyse from region 1 to region RU.

M 1 = 2.0

For isentropic flow p 0 = constant

p 02 = p 01

p 01 = 743 kPa

p 02 = 743 kPa

TOTAL deflection  =  + /2

 = 17.0
o

We use Eq. 13.55

and

Deflection = 2 - 1 = (M 2) - (M 1) (3)



From M 1 and Eq. 13.55 (using built-in function Omega (M , k ))

1 = 26.4
o

Applying Eq. 3 2 = 1 + 

2 = 43.4
o

From 2, and Eq. 13.55 (using built-in function Omega(M, k))

For 2 = 43.4
o

M 2 = 2.69

(Use Goal Seek  to vary M 2 so that 2 = 43.4
o
)

Hence for p 2 we use Eq. 13.7a

(using built-in function Isenp (M , k ))

p 2 = p 02/(p 02/p 2)

p 2 = 32.4 kPa

p RU = p 2

p RU = 32.4 kPa

The four pressures are:

p FL = 230.6 kPa

p RL = 140.5 kPa

p FU = 62.8 kPa

p RU = 32.4 kPa

From Eq 1 F V/sc = 138 kPa

From Eq 2 F H/sc = 5.3 kPa

From Eq 7 C L = 0.503

From Eq 8 C D = 0.127



 Problem 13.209 [Difficulty: 3] 

 

 
 

Given:  The gas dynamic relations for compressible flow  

Find: The shock values and angles in each region  

Solution: Begin with the 1-D gas dynamic relations for compressible flow  
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 From (1) to (2) there is an oblique shock with 1M =5 and 010   

  

From the oblique shock figure (or tables) 
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From Normal Shock Tables 
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 Problem 13.210 [Difficulty: 3] 
 

    
 

Given:  The gas dynamic relations for compressible flow  

Find: The shock values and angles in each region  

Solution: Begin with the 1-D gas dynamic relations for compressible flow  
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4.14757.2162874.1511  akRTMV  

        

K1300
2

1
1

s

m
4.1475

2

110

1

1







 




M
k

TT

VV f

 

From (2) to (3)   A second oblique shock with 0

2 4.0 and 10 M   

  
 

10° 

10° 

1V  

1V  

 From the oblique shock tables 
0

2

2 2

22.23

sin 1.513n

and

M M





 

 
 

From normal shock tables 

3n

3n
3

3

M 0.698

M 0.698
M

sin( ) sin12.

M 3.295

23

 








 



 Problem 13.211 [Difficulty: 4] 

 

 
 

Given:  The gas dynamic relations for compressible flow  

Find: Exit Mach number and velocity  

Solution: Begin with the 1-D gas dynamic relations for compressible flow  

 

Governing equations:  

111 kRTMV  ; 





 
 2

110
2

1
1

1
M

k
TT  

Assumption: The flow is compressible and supersonic  

 

s

m
4.14757.2162874.1511  akRTMV  

 

Assuming M2 = 4.0, M3 = 3.295, and M4 = 1.26 

4

*

04

4

5 5 4

* *

4

1.05

1.317

5 1.05 5.25

A

A

T
and

T

A A A
With

A A A

 



   

 

11.3
2

1
1

23.3

2

5

5

0

5

5 






M
k

T

T

M

 

To find the temperature at state 5, we need to express the temperature in terms of the entrance 

temperature and known temperature ratios: 

54

54

0

5

0

0

4

0

3

4

2

3

1

2
15

T

T

T

T

T

T

T

T

T

T

T

T
TT   

Now since the stagnation temperatures at 4 and 5 are equal (isentropic flow through the nozzle): 

11.3

1
1317.1744.3333.1429.1K7.2165 T  

K5.6545 T  

Therefore, the exhaust velocity is: 

s

m
16565.6542874.123.3555  kRTMV  
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