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Heat Transfer in Living Tissue

10.1 Introduction

The determination of temperature distribution in blood perfused tissue s
important in many medical therapies and physiological studies. Examples
are found in cryosurgery, frost bite, hyperthermia, skin burs and body
thermal regulation and response to environmental conditions and during
thermal stress. The key to thermal modeling of blood perfused tissue is the
formulation of an appropriate heat transfer equation. Such an equation mus
take into consideration three factors: (1) blood perfusion, (2) the vascular
architecture, and (3) variation in thermal properties and blood flow rate.
The problem is characterized by anisotropic blood flow in a complex
network of branching arteries and veins with changing size and orientation.
In addition, blood is exchanged between artery-vein pairs through capillary
bleed-off along vessel walls, draining blood from arteries and adding it to
veins, Energy is transported between neighboring vessels as well s
between vessels and tissue. Thus, heat transfer takes place in a blood
perfused inhomogeneous matrix undergoing metabolic heat production.
The search for heat equations modeling this complex process began ovef
half a century ago and remains an active topic among current investigators
Over the years, several bioheat transfer equations have been formulated A
h_"i'-':f description of some of these equations will be presented and thel
lumta.tiuns, shortcomings and applicability outlined. ~ Before thees
€quations are presented, related aspects of the vascular circulation f

and blood flow and temperature patterns are summarized.

10.2 Vascular Architecture and Blood Flow

2
Blood from the heart s distributed to body tissues and organs mmuﬁ?ﬂﬂ
System of vessels (arteries) that undergo many Eeﬂﬂmﬁms of bra®
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ied by diminishing size and flow rate. Because of their small size,

! < e

9"“"11:::& measured in micrometers, p = 107°m. This unit is also known
vcssﬁicmn Fig. 10.1 is a schematic diagram showing a typical vascular
gs MILTEE

structure

capillaries

tissue

¢ = capillaries, 5-15 #m dia.

s =secondary vessels, 50-100 zm dia.

P =primary artery and vein, 100-300 gm dia.

SAV = main supply artery and vein, 300-1000 #m dia.
Fig.10.1

BM leaves the heart through the aorfa, which is the largest artery
(diameter = 5,000 um). Vessels supplying blood to muscles are known as
main supply arteries and veins (SAV, 3001000 um diameter). They
branch into primary arteries, (P, 100 —300 um diameter) which feed the
-::ﬂ::dary arteries (s, 50 -~ 100 pm diameter). These vessels deliver blood
smn":slﬂ:rerfufes (20~40 pm  diameter) which supply blood to the
— t:f;els known as capillaries (5- I5pum diameter). Blood is
ke 1 ¢ heart through a system of vessels known as veins. For the
T ﬂhanne? run pnrnillel to the arteries forming pairs of counter current
capillaic, tnﬂ' The veins undergo confluence as they proceed from the
etumed o venules, secondary veins and to primary veins. Blood is

O the heart through the vena cava, which is the largest vessel in

€ Circulatory ¢
ystem. It shoul : .
 much as 10gu, ould be noted that veins are larger than arteries
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10.3 Blood Temperature Variation

Blood leaves the heart at the a'rte'rial temperature 7 . i
essentially at this temperature -._mtll it reiaches the main arteries N§
equilibration with surrounding IIF:SUE begins th take place. E‘l“ilihm*
becomes complete prior to reaching the arterioles and capillaries thn
blood and tissue are at the same temperature 7" Tissue temperature m“';
higher or lower than T,,, depending on tissue location in the body. Blog
returning from capillary beds near the skin is cooler than that frop 4
tissue layers. Blood mixing due to venous confluence from differen; t]s:z
sources brings blood temperature back to 7, as it retumns to the heart vi,
the vena cava. Fig. 10.2 is a schematic of blood temperature variation along

the artery-vein paths.

1
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tissue temperature > blood

Tao

tissue temperature <
b!m o

Blood temperature 7,

-

Blood flow path ——-

7 Tn, o gguona et DR e DY
aorta primary capillaries primary  vena
arteries veins Chva

Fig.10.2 Schematicof blood tempearature variation
in vessels (From[5] with permission.)

To maintain constant body temperature heat production due to metabolis™
must be continuously removed from the body. Blood circulation is a key
mechanism for regulating budy temperature. During conditions of lh#'ﬂ"
stress, blood flow to tissues under the skin increases. This results in b
rates of cooler venous blood which is used to bring the temperature ’
blood retuning to the heart to its normal level.
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(0.4 Mnﬂlﬂlllilﬁl:ﬂ] Modeling of Vessels-Tissue Heat Transfer

The complex nature of heat transfer in living tissue precludes exact
nathematical modeling. Assumptions and simplifications must be made to
ake the problem tractable while capturing the essential features of the
DIOCESS. The following is an abndgen_:l review of various heat equations for
s determination of te.mperature c:llstnbutinn in living tissues. We will
begin with the Pennes bioheat equation which was published in 1948. What
s attractive and remarka!:ile about this equation is its simplicity and
applicability under certain conditions. Nevertheless, to address its
chortcomings, several investigators have formulated altemate equations to
model heat transfer in living tissues. In each case the aim was to refine the
pennes equation by accounting for factors that are known to play a role in
the process. Improvements have come at the expense of mathematical
complexity and/or dependency on vascular geometry data, blood perfusion
and thermal properties. Detailed derivation and discussion of all equations
is beyond the scope of this chapter. Instead five selected models will be
presented and their main features identified.

10.4.1 Pennes Bioheat Equation 1)

(a) Formulation

Pennes bioheat equation is based on simplifying assumptions conceming
the following four central factors:

(1) Equilibration Site. The principal heat exchange between blood and
tissue takes place in the capillary beds, the arterioles supplying blood to
the capillaries and the venules draining it. Thus all pre-arteriole and
post-venule heat transfer between blood and tissue is neglected.

(2) Bfﬂﬂt{ Perfusion. The flow of blood in the small capillaries is assumed
o be isotropic. This neglects the effect of blood flow directionality.

3) Vascular Architecture. Larger blood vessels in the vicinity of capillary

:ﬂdﬁ play no role in the energy exchange between tissue and capillary

lood. Thus the Pennes model does not consider the local vascular
geometry,

4 Blooa Temperature. Blood is assumed to reach the arterioles
Supplying the capillary beds at the body core temperature T, . It
:mﬁnﬁﬂuﬁly exchanges energy and equilibrates with the local
'5Sue temperature 7. Based on these assumptions, Pennes [1]
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modeled blood effect as an isotropic heat source or sink
proportional to blood flow rate anfl the difference betweey body
core temperature 7,5 and local tissue temperature T o
model. blood originating at temperature T, does not ex

Which g

energy loss or gain as it flows through long branching arteries
leading to the arterioles and capillaries. Using this idealizeq

ancemj,e

process the contribution of blood to the energy bal
quantified.

Consider the blood perfused tissue
element shown in Fig. 10.3. The
element is large enough to be
saturated with arterioles, venules
and capillaries but small compared
to the characteristic dimension of
the region under consideration.
This tissue-vessels matrix is treated
as a continuum whose collective
temperature is I. Following the
formulation of the heat conduction
equation of Section 1.4, energy
conservation for the element is

given by eq. (1.6)

E,+ E,-E,=E. i
In Secuun .4 the rate of energy added to the element is by ‘:""d"c,ﬁqn e
convection (mass motion). Here the convection component is chim!

and replaced by energy added due to blood perfusion. The simplest %% ’
account for this effect is to treat it as energy generation Es Let

qE =net rate of energy added by the blood per unit volume of tis5*¢
m =1ate of metabolic energy production per unit volume of tissue

Thus equation (b) of Section 1.4 becomes

P oo (a)
g =¢q dxdydz = (g, +q,, )dxdydz . -

] Ml l
an expression for g consider the elements s:;:
cording to Pennes, blood enters the element &t

To formulate
Fig. 10.3. Ac

P@erience'
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core temperature T,o, it instantaneously equilibrates and exists at the
emperature of the element 7. Thus

G5 = PpcyWy(Tyo =T), (10.1)

where
¢, = specific heat of blood

#, = blood volumetric flow rate per unit tissue volume
p, = density of blood

Substituting eq. (10.1) into (a)
Q" =Gqm + PpCyWp (T —T). (10.2)
Returning to the heat conduction equation (1.7), we eliminate the
convection terms (set U =V =W =0) and use eq. (10.2) to obtain
VAAVT + pyeywy (Tyo =T) +q, = pc-ﬁ;—f, (10.3)

where
¢ = specific heat of tissue
k = thermal conductivity of tissue
p = density of tissue

The first term in eq. (10.3) represents conduction in the three directions. It
lakes the following forms depending on the coordinate system:

Cartesian coordinates:

0, 0Ty, 0, 0T\ @, 01
V. = —k—). 10.3
kVT ax(k ax)+ay(k ay)+ﬂz(k az) (10.3a)

Cylindrical coordinates:

1 ¢ oT 1 8 ,,0T\ @&y, 0T
VeV P s = YV )+ —(k——). (10.3b)
rﬂr(kr t'_'3l")+1r'z 69& 69)+az( 32) (

Spherical coordinates:

VokvT 2.0 (3,2 Ty,

J"z or or " (103¢)
1 0 , oT ] (k Ol )
ksin—) + —— 2
r? sin g 5‘¢( a¢) rsin’ ¢ 06 = 00



308 10 Heat Transfer in Living Tissue

Equation (10.3) is known as the PEHHE:E bioheat equation, Note thy
mathematical role of the perfusion term in Pennes’s equation js identic :
the effect of surface convection in fins, as shown in equationg (25), 219
(2.23) and (2.24). The same effect is observed in porous fing )
flow (see problems 5.12, 5.17, and 5.18).

(b) Shortcomings

The Pennes equation has been the subject of extensive study ang
evaluation [2-11]. The following gives a summary of critical
observations made by various investigators. Attention is focused oq
the four assumptions made in the formulation of the Pennes equation.
Discrepancy between theoretical predictions and experimental resylts
is traced to these assumptions.

(1) Equilibration Site. Thermal equilibration does not occur in the
capillaries, as Pennes assumed. Instead it takes place in pre-arteriole
and post-venule vessels having diameters ranging from 70 - 500 um
[3-3]. This conclusion is based on theoretical determination of the
thermal equilibration length, L, which is the distance blood travels
along a vessel for its temperature to equilibrate with the local tissue
temperature. For arterioles and capillaries this distance is much shorter
than their length L. Vessels for which L_/L > 1 are commonly
referred to as thermally significant.

(2) Blood Perfusion. Directionality of blood perfusion is an important
factor in the interchange of energy between vessels and tissue. The
Pennes equation does not account for this effect. Capillary
perfusion is not isotropic but proceeds from arterioles to venules.

(3) Vascular Architecture. Pennes equation does not consider b
vascular geometry. Thus significant features of the circulatory gyHe
are not accounted for. This includes energy exchange por
vessels, countercurrent heat transfer between artery-vein r
vessel branching and diminution.

y fror

(4) Blood Tem _ | ‘
e, ntinuous
the The arterial temperature varies ¢O ‘

supp?;ﬂ bt;df tﬂﬂ}mmture of the aorta to the mﬂ"dﬁm, Thos:

ﬂﬂﬂll’lrygtu PE nrte:'mles, and similarly for the venous r¢ ture is et

el doh cnnes assumption, pre-arteriole blood tem re 15 pot
Y core temperature 7, and vein return tempera!

With coolgy
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equal to the local tissue temperature 7. Both approximations
overestimate the effect of blood perfusion on local tissye temperature,

(c) Applimbility

Despite the serious shortcomings of the Pennes equation it has enjoyed
surprising success in many applications such as hyperthermia therapy,
blood perfusion measurements, cryosurgery and thermal simulation of
whole body. In some cases analytical results are in reasonable agreement
with experimental data. Studies have shown that the Pennes equation is
applicable in tissue regions where vessel diameters are greater
than 500 um and for which equilibration length to total length LotL is
greater than 0.3 [6].

Example 10.1: Temperature Distribution in the Forearm

Model the forearm as a cylinder of radius R with volumetric blood
perfusion rate per unit tissue volume W, and metabolic heat production
qm- The arm surface exchanges heat with the surroundings by convection.
The heat transfer coefficient is h and the ambient temperature is T,,. Use
Pennes bioheat equation to determine the steady state one-dimensional
lemperature distribution in the arm.

e
ﬁ'ﬁ fom ’—qi_’\_J
h, T,
R A i
;,'li“_j,;_ - mmm i q:
Fig.10.4

(1) Observations, (i) The forearm can be modeled as a cylinder with
uniform energy generation, (i) Heat is transported to the surface by
“onduction and removed from the surface by convection. (i) In general,
emperature variation in the forearm is three-dimensional.

@) Origin ang Coordinates. Fig. 10,4 shows the origin and the radial
“Oordinate -

3) li""'ftlli.llntlml.
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Assumptions. (1) Steady state, (2) the forearm can be — .

- i d tissue have the same ,

t radius Cy linder, (3) bone an . ' Properties d
:':it:?fonn throughout, (4) uniform metabolic heat Pmductmn, (5) unifory
blood perfusion, (5) no variation in the angular direction, (6) negligip,
axial conduction, (7) skin layer is neglected and (8) Pennes biohey

equation s applicable.

(i) Governing Equations. Pennes bioheat equation (10.3) for gpe.
dimensional steady state radial heat transfer simplifies to

1 d, dTy PsCsWs ry+9m

(iii) Boundary Conditions. Temperature symmetry and convection at
the surface give the following two boundary conditions:
dr(0)

—— =0, or T10) = finite, (b)

B _hirwy -1, ©

(4) Solution. Eq.(a) is rewritten in dimensionless form using the following
dimensionless variables

Ir-T r
=——2 E=—. -
T, ~T, d R
Substituting (d) into (a)
=Sl 5. MRy _gaR o "
¢dé " dE k k(Tg = 1)

The coefficient of the second term in (e) is a dimensionless pmmd"
representing the effect of blood flow. Let

g = Prls wy R ()
—_ .

| m in (e) is a parameter ' lic heat
14‘: (e)isa representing the effect of metabo
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__gn R
4 k(Taﬂ_Tm}' (E)
Substituting (f) and (g) into (e)
1 d . db
—(¢52)-po-7 =0.
£ d& (¢ de:) po-r (h)

Boundary conditions (b) and (c) are similarly expressed in dimensionless
form

g% =0, or €(0) =finite, (1)
de(l) . s
—-——= Rifo(1)-1],
dE ifg()-1] )
where Bi is the Biot number defined as
_hR
Bi = k'

The homogeneous part of equation (h) is a Bessel differential equation. The
solution to (h) is

a(¢)=clfu(ﬁa+czxn(ﬁ§)—%, ®)

where C, and C, are constants of integration. Boundary conditions (i) and
() give

Bi[l1+(y/ p)] 3
| Jﬁ I,(ﬁfﬁ)+BHu(\’ﬁ) z

Submituting (m) into (k) gives

0ry= T -Too __ Bil+@/B) | ([BriR)-L. @
Lo=T s JE:I(JEHBHH(J,&) ’ \[_ p

%) Ch“““ﬂ. Dimensional check: The parameters Bi, p and y are

:lr[ncpgi"“hﬂ- Thus the arguments of the Bessel functions and each term in
utlﬂ“ (n) are dimﬂﬂﬁiﬂn lﬂss_
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Limiting check: If no heat is removed by convection (/4 = () ), the i

arm reaches a uniform temperature T, and all energy generation
etabolic heat is transferred to the blood. Conservation of energy

blood gives

due 1,
for the

Q:'l = pﬁcbﬁrb (Tﬂ f= Ta[}) .
Solving for T,

9 m
T.=T 4+ .
° M pyesy ©
Setting h= Bi =0 in(n)
G m
T(ry=T, + —
: PpCpWp @)

This agrees with (o).

(6) Comments. (1) The solution is characterized by three parameters:
surface convection Bi, metabolic heat ¥, and blood perfusion parameter
B.(2) Setting r=0 and r=Rin (n) gives the center and surface
temperatures, respectively. (3) The solution corresponding to z¢ro
metabolic heat production is obtained by setting g, =7 =0. However, the
solution for zero blood perfusion rate can not be deduced from (n) since
setting # = 0 in (n) gives terms of infinite magnitude. This is due to the
fact that f appears in differential equation (h) as a coefficient of the
variable 8. To obtain a solution for zero perfusion one must ﬁ_"ﬂ et
£ =0 in (h) and then solve the resulting equation. This procedure gives

=T I I 2 ()
=—s—l=(r/R)"|
(R%q"/k) 2Bi 4[ iy

luti an f

hmde pﬂerﬁ h!tm"s’ (n) and (q), make it possible to examine the effect ©

| ' lon relative to metabolic heat production on the temperaiL’
distribution.

1042 Chen-Holmes Equation [5]

An im ' oy
o dﬂ;}pmmnt development in the evolution of bioheat tf?'f""fﬂ.modﬁth the
tissue occurs pri .
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jirectionality and vascular geometry, and formulated the following

equatinn

v kT +wopcs T =T) = py cyil VT +V -k, VT +¢,, =-p.;.§,_

(10.4)
Although the second term in this equation appears similar to Pennes’
perfusion term, it is different in two respects: (1) lirb is the perfusion rate at
the local generation of vessel branching and (2) T, is not equal to the body
core temperature. It is essentially the temperature of blood upstream of the
arterioles. The third term in eq. (10.4) accounts for energy convected due to
equilibrated blood. Directionality of blood flow is described by the vector
ir . which is the volumetric flow rate per unit area. This term is similar to
the convection term encountered in moving fins and in flow through porous
media (see equations (2.19) and (5.6)). The fourth term in eq. (10.4)
describes  conduction mechanisms associated with small temperature
fluctuations 1n equilibrated blood. The symbol k, denotes “perfusion
conductivity™. It is a function of blood flow velocity, vessel inclination

angle relative to local temperature gradient, vessel radius and number
density.

In formulating eq. (10.4) mass transfer between vessels and tissue is
neglected and thermal properties k, ¢ and p are assumed to be the same as
those of the solid tissue. Other assumptions limit the applicability of this
cquation to vessels that are smaller than 300 pm in diameter and
equilibration length ratio L, / L < 0.6.

Although the Chen-Holmes model represents a significant improvement
Over Pennes’ equation, its application requires detailed knowledge of the
Yascular network and blood perfusion. This makes it difficult to use.
Nevertheless, the model met with some success in predicting temperature

distribution in the pig kidney.

104.3 Three-Temperature Model for Peripheral Tissue (71

sfi'm blood perfused tissue consists of three elements: arteries, Wi“_ﬂ ’“’d
flssue i - in such a medium it

s Necessary to assign three temperature variables: arterial femlJemlU.l‘ﬂ 7§ E] ;
T, and tissue T. This approach was followed in analyzing the
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peripheral tissue of a limb schematically shown in Fig, 105 (7). Thee,
Elltaneﬂus

'VEin pm].s

e = 4S 2 poroy
media exchanging heat with pairs of thermally significant vessels. The thi

cutancous layer just below the skin is independently supplieq
countercurrent artery-vein vessels called cutaneous plexus. Blood Supply 1
the cutaneous layer is controlled through vasodilation and Vasoconstrictioy
of the cutaneous plexus. This is an important mechanism for regulating
surface heat flux. This layer is divided into two regions; an upper region
with negligible blood effect and a lower region having uniform blgog

vascular layers were identified: deep layer, intermediate ang
layers. The deep layer is characterized by countercurrent artery
that are thermally significant. The intermediate layer is modeled

perfusion heat source similar to the Pennes term.

W, skinT, cutaneous plexus
cutaneous (& PN AN PN CN AN
layer : _
intermediate 1@/ e ‘
layer - - NE_ N
'\ \
deep tissue
lﬂ}'ﬂl T 5
artery\ Y/ vein L
T, et o
Fig.10.5
A mf“i of seven governing equations were formulated: three W“P:’:
:::mns for the deep layer, two for the intermediate and tWO for 10
blmmﬂu: ' A!ﬂl"‘fgh this model accounts for the vascular geomet” yire
How directionality, solutions to the set of seven equations e
numerical int

applied to cgration as well as detailed vascular data. Nevertheless: "
[12]. It w Peripheral tissue to examine the effect of various para™
: as also used to evaluate the performance of other models [5]'
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pormulation of the three-temperature equations for the deep layer will not
be presented here since a simplified form will be outlined in the following
section. However, attention is focused on the cutaneous layer. The one-
dimensional steady state heat equation for the lower region is given by

d’T, . pycshy

drl a4 . {T;-u_ﬂ)'_"ﬂ? (10.5)

where

T, =temperature distribution in the lower region of the cutaneous layer

I, =temperature of blood supplying the cutaneous pelxus

W, =cutaneous layer volumetric blood perfusion rate per unit tissue
volume

x = coordinate normal to skin surface

The upper region of the cutaneous layer just under the skin surface is
govemned by pure conduction, Thus the one-dimensional steady state heat
equation for this region is

d’T,
d?

0, (10.6)

where

I; =temperature distribution in the upper region of the cutaneous layer

10.4.4 Weinbaum-J iji Simplified Bioheat Equation for Peripheral
Tissue [8]

Recognizing the complexity of the three-temperature model, Weinbaum
and Jiji [8) introduced simplifications reducing the three coupled deep layer
tquations for T,, T, and T to a single equation for the tissue temperature.
Although the simplified form retains the effect of vascular geometry and
accounts for energy exchange between artery, vein and tissue, the added

“PProximations narrow its applicability. A brief description of this bioheat
“quation follows

Fig. 10.6 shows a control volume containing a finite number of
drtery-vein pairs. Blood flow in each pair is in opposite direction
(cnuntemurrent). In addition, artery blood temperature 7, is different
0m veip temperature 7. Thus, these vessels are. thermally
Significany (not in thermal equilibrium). Not shown in Fig.10.6 are
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numerous fhermally insignificant
capillaries, arterioles, and venules
that saturate the tissue. In
formulating conservation  of
energy for the tissue within the
control volume, one must take
into consideration the following:
(1) Conduction through the tissue.
(2)  Energy exchange by
conduction between vessel pairs
and tissue. Note that heat Fig. 10.6

conduction from the artery to the

tissue is not equal to conduction from the tissue to the vein. This
imbalance is described as incomplete countercurrent exchange. (3)

Energy exchange between vessels and tissue due to capillary blood
bleed-off from artery to vein.

(a) Assumptions. Key assumptions in the simplified bioheat equation are:
(1) blood bleed-off rate leaving the artery is equal to that returning to veio
and is uniformly distributed along each pair, (2) bleed-off blood leaves the
artery at T, and enters the vein at the venous blood temperature 7, )
artery and vein have the same radius, (4) negligible axial conduction
through vessels, (5) equilibration length ratio L, /L << 1 and (6) tissw
temperature T is approximated by the average of the local artery and vein
temperatures. That is

Tx(T,+T,)/2. (107

(b) Fnrn.lnlatiun. Based on the above assumptions, application o
conservation iuf mass for the artery and vein and conservation of energy for
the artery, vein and tissue in the control volume, give the simplified bioheat

equation for tissue temperature, For the special one-dimensionsl ¢

where blood vessels and temperatu : ; direction %
the : perature gradient are in the same
quation reduces to [8]

(108)

or 9, oT\ .
BS ot = ax(keﬂ' E)'l'QM’

Where & 5 is the effective conductivity, defined as
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n
kqﬂ' = kl:l +E-(}prcﬁﬂzﬂ)z:| : (10.9)

were
a = vessel radius
n =number of vessel pairs crossing control volume surface per unit
area

u = average blood velocity in countercurrent artery or vein
o = shape factor, defined in eq. (10.10)

The shape factor o is associated with the resistance to heat transfer
between two parallel vessels embedded in an infinite medium. For the case

of vessels at uniform surface temperatures with center to center
spacing /, the shape factor is given by [13]

T
o= :
cosh(!//2a)

(10.10)

Equation (10.9) shows that k., reflects the effects of vascular geometry
and blood perfusion on tissue temperature. It is useful to separate these two
effects so that their roles can be analyzed individually. The variables a, o,
n and u depend on the vascular geometry. Using conservation of mass, the
local blood velocity # can be expressed in terms of the inlet velocity u, to
the tissue layer and the vascular geometry. Thus, eq. (10.9) is rewritten as

2
ktﬂ' - k[l + (zpbczfuun) V(g)jl' “ﬂ_l[}
b

where

d, =vessel radius at the inlet to the tissue layer at x =0

V(&)= dimensionless vascular geometry function
§=x/] = dimensionless distance
L = tissue layer thickness

"5 = blood velocity at the inlet to the tissue layer at x =0

?n::" the vascular data the function V(&) can be mnsu-ucted It is
add'lrmm to note that this function is independent of hlnoti perfusion. In

tion, the coefficient (2,p,cya,, / ks) which characterizes blood flow
numI:u!:;;mﬂup':“d'""“t of the vascular geometry. It represents the inlet Peclet

Which is the product of Reynolds and Prandtl numbers, defined as
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. zpbcbaaua
il k, (103

Substituting eq. (10.12) into eq. (10.11) gives
2
kg =k[1+PeV ()] doy

The following observations are made regarding the definition of effective
conductivity kgg-

(1) For the more general three-dimensional case, the orientation of vesse|
pairs relative to the direction of the local tissue temperature gradien,
gives rise to a tensor conductivity that has similar properties to an
anisotropic material [8].

(2) The second term on the right hand side of egs. (10.11) and (10.13)
represents the enhancement in tissue conductivity. This enhancement is
due to countercurrent convection in the thermally significant
microvessel pairs and capillary blood bleed-off.

The two regions of the cutaneous layer shown in Fig. 10.5 are govemned by
equations (10.5) and (10.6). However, for consistency with the formulation
of kg in the tissue layer, eq. (10.5) will be expressed in terms of the Peclet
number Pe, . Blood perfusion rate w, in the tissue layer is given by
2
ORI o vl 1] (10.14)
L

where 1, is the number of arteries entering the tissue layer per unit area
Substituting eq. (10.12) into eq. (10.14) gives

iy = Tn,ak, Po (10.13)
2Lpyey  °

. ]
Define R as the ratio of 101af rate of blood supplied to the cutaneous e
the fotal rate of blood supplied to the tissue layer. Thus

R = .._,IE‘?Eﬁ , {Iﬂ'lﬁ]
Wi
Where L, s the thic (1049

kness of the cutaneous layer. Substituting €45
and (10.16) into €q. (10.5) gives '
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d*T, mn,ak
drzl 3 2kL, : RPey(T,, -T)) =0. (10.17)

() Limitation and Applicability. Tﬂ test the validity of assumptions made
i formulating eq. (10.8),‘ numerical results using the solution to this
equation were compared with th.nse obtained from the solution to the three-
[emperature model developed in [7] and summarized in Section 10.4.3.
The comparison was made for a simplified representation of one-
dimensional heat transfer in the limb [6]. Results indicate that eq. (10.8)
gives accurate predictions of tissue temperature for vessels smaller than
200 um in diameter and equilibration length ratio L, /L <0.3.
Experimental measurements on the rat spinotrapezius muscle showed that
eq. (10.8) is valid for L, /L < 0.2 [14]. It should be noted that the upper
limit on vessel size decreases sharply under conditions of exercise due to
an increase in blood flow rate,

Formulation of eq. (10.8) 1s based on vascular architecture characteristics
of peripheral tissues less than 2 cm thick. It does not apply to deeper layers
and to skeletal muscles where the vascular geometry takes on a different
configuration.

Example 10.2: Temperature Distribution in Peripheral Tissue.

Consider the peripheral tissue shown schematically in Fig.10.5. Tissue
thickness is L and skin surface is maintained at uniform temperatureT,.
Blvod ar T, is supplied to the

thermally  significant ~ arteries ar  7x107°[ EY
x =), During  resting state and _k*f gl +P€ZV{;]]
neutral environment the effect of blood '
Nlow thyg ugh the cutaneous layer is sl
negligible. Consequently heat transfer [
through this layer Is essentiall y by '
:!:Hducﬁrm, A representative vascular 0 = l
metry function  V(E), shown in i
Flg. 10.7, Jor a typical peripheral Flg- ad

lissie can be approximated by [1 5}

V(&)= A+ BE+CE?,

W
here 4, B and C are constants:
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4=632x10", B=-159x10" and C =10x19-5

Use the Weinbaum-Jiji simplified bioheat equation to obtaiy Solutiop |,
the temperature distribution in the tissue. Express the results
dimensionless form in terms of the following dimensionless quantjgjps

Tao =1 ke K(To -T,)

Construct a plot showing the effect of blood flow rate (Peclet number Peu]
and metabolic heat production y on tissue temperature 6(E). Note that g
increase in ¥ brings abowt an increase in P €y. Compare 6(&)

Jor Pey =60 and y =0.02 (resting state) with Pe, =180 and y =06

{moderate exercise).

E=x/L, 8=

(1) Observations. (i) The variation of conductivity with distance along the
three layers shown in Fig. 10.5 is known. (ii) The tissue can be modeled as
a single layer with variable effective conductivity and constant energy
generation due to metabolic heat. (iii) Tissue temperature increases &s
blood perfusion and/or metabolic heat are increased.

(2) Origin and Coordinates. Fig. 10.8 shows the origin and coordinate x.
(3) Formulation.

() Assumptions. (1) All assumptions leading skin T,
to eqs. (10.8) and (10.9) are applicable, (2) steady - ‘
state, (3) one-dimensional, (4) tissue temperature T
at the base x = 0 is equal to T4, (5) skin is k4 (x)
maintained at uniform temperature and (6) 1’
negligible blood perfusion in the cutaneous layer. x -

(ii)b Governing Equations. The bioheat _L
€quation for this model is obtained from eq. (10.8) 0 Ty

dn . . Fig. 10.8
EI— k‘f;)""‘j'm:gr (a)
where &

e 15 defined in €q. (10.13) as

kg =k[1+ Pel v (£)],
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where k is tissue conductivity corresponding to zero blood perfusion
enhancement and V(&) is specified as

V(§)=A+BE+CEL, (c)

(iii) Boundary Conditions. The two required boundary conditions are
rm=r,, (d)
I'(l)=r,. (e)

(4) Solution. To express the problem in non-dimensional form the
following dimensionless quantities are defined:

X Ir-T q"Lz
g = -, 9 —] L + ?P — Lo y (
L Too — T, k(T —T,) 2
Substituting (b), (c) and (f) into (a) gives
d dé
&E[{I+Pe§(A+B§+C§I)}d—§J+y=D. (2)
Boundary conditions (d) and (e) transform to
6(0) =1, (h)
a)=0. (1)
Integrating (g) once

[1+Pe§(A+3§+cg2)]j—§=c.-yg.

S"Pinlling variables and integrating again

é=C, | - d§ s ‘[ ':dg +Cq, (1)
III+PE§(A+B§+C‘§2) 4 L+ Pe}(A+ BE+CEY) 4

Where C| ang C'; are constants of integration. The two integrals in (j) are

of the form
[—% e [ (k)
a+b&+c&? a+b&+es
Where he coefficients g, b and ¢ are defined as
a=1+APel, b=BPej, c=CPe;. (m)
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Evaluating the two integrals analytically and substituting into G) give the
solution to &

2CI ‘|b+2c§_£[lln(a+b +c 2)_, b tan-lb‘l‘zfaf
e Lol i SRR e L
(n)
where
d = 4ac - b* . )

Boundary conditions (h) and (i) give the constants C,and C,. Tpe
solution to & becomes

Gl Lb+2ce _;b+2c]
0=2—L!tan™ —tan -
e

_}:{l]nﬂ+b§+c,’:2 _b [ 0r2eE b+2¢:}}’(p}

c - ¢2 a Jd Jd d
-...2_[ -1 _...b_ S m"" b+2c
Vd Jd Jd
Table10.1 Table 10.2
Pﬂﬂ k,ﬂ -fk .
60 180 £ | Pe, =60[Pe, =18
al 12275 3.0477 0 1 .44 3.05
b 1-0.5724 | .5.1516 021 1.13 2.15
¢ 1036 3.24 04| 106 | 151
d|144 | 1206 06| 1.01 1.12
08| 1.00 1.02
1.0 1.02 .14

. 10.-
¢pend on Pe,. They are listed in T’bf 02
Pends onboth Pe,, and 7, For Pe, = 60 and 7 =
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eq(q) gives C; =-1.047 and for Pey =180 and 7=0.6 it gives
¢, =-1.0176. Table 10.2 lists the enhancement in conductivity for the
two values of Pey. Fig. 10.9 shows the corresponding temperature
distribution.

(5) Checking. Dimensional check: 1.0
Solution &, metabolic heat parameter
v, Peclet numberl Pe, and the
arguments of tan and log are
dimensionless. 0.5

Boundary conditions check: Solution (p)
satisfies boundary conditions (h) and (i).

Qualitative check: As anticipated, Fig.
109 shows that tissue temperature 0
increases  as  blood perfusion and .
metabolic heat are increased. Fig. 10.9

(6) Comments, (i) Table 10.2 shows the
enhancement in kyy due to blood perfusion. Increasing perfusion rate
(Pey) increases K. However, the enhancement diminishes rapidly
owards the end of the tissue layer (& = 0.8). (ii) Fig. 10.9 shows that
‘mperature distribution for Pey =60 and y =0.02 is nearly linear. The
slight ‘departure from linearity is due to metabolic heat production.
For Pey =180 and y = 0.6 tissue temperature is higher. The increase in
\Mperature is primarily due to the increase in blood flow rate Pe, rather
han metabolic heat . For example, at the mid-section & =0.5,
90.5) = 0,688 for Pey =180 and y =0.6. For zero metabolic heat
(y =0), the mid-section temperature drops slightly to 0.64. (iii} Although
’;I"““" (P) shows that tissue temperature is governed by the parameters
‘o and ¥, the two are physiologically related. (iv) The increase in
Metabolic peat production during exercise results in an increase in
f““ﬂﬁﬂus blood flow. Thus neglecting blood perfusion in the cutaneous
Wer during vigorous exercise is not a reasonable assumption.

10.4.5 The $-Vessel Tissue Cylinder Model [16]

:: “:; Pennes bioheat equation the arterial supply temperature is set equal
P 5 Y cCore temperature and venous retumn tu:rl'Ipe_rlturt IS
besmmmltw by the local tissue temperature. Both approximations have

" Questioned. On the other hand the Chen-Holmes equation and
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. : lex, requiring detailed
Weinbaum-Jiji equation are more comp vascular
and have limited range of applicability. Furthermore, the Wﬂinbaum.d:i;

sation is limited to peripheral tissue less than 2 cm thijck. These

;T;onmmings motivated further search for a more tractable equatjop, The
s-vessel tissue cvlinder model addresses some of these issues [16). An
important contribution of this model is the development of a rationa} theory

for the determination of the venous return temperature.

(a) The Basic Vascular Unit. Comprehensive anatomical studies op the
vascular geometry of different types of skeletal muscles have identifieq
significant common arrangements [17]. Fig. 10.10 is a schematic
representation of the vascular structure in the cat tenuissimus muscle, The
sizes of the thermally significant vessels are indicated. The main supply
artery and vein SAV branch into primary pairs . The P vessels branch
into secondary pairs s which run roughly parallel to the surface. Terminal
arterioles and venules f branch off the 5 vessels to feed and drain the
capillary beds ¢ in the tissue. Blood flow in the SAV., P, and 5 vessels is
countercurrent.

100-300um dia.

. SAV
Py~ 300-1000um dis.

Fig.10.10 Schematicof a representative vascular arrangement
(From[ 17} with permission.]

0.5 mm

e
Tl: w.ralscular arrangement shown in Fig. 10.10 has an impgr[l'nt feﬂi’:’!
:u:f; 1S central to the formulation of the new model for -||:-_t,5UI."- .
er. Each countercurrent s pair is surrounded by a cylindr!

o el =TT
A
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which is approximately 1000 pm in diameter. The length of the cylinder
depends on the spacing ﬂf the _P vessels along the SAV pair, which is
ypically 10-15 mm. The tissue is a matrix of numerous fibers, arterioles,
cenules and capillary beds. Attention is focused on this repetitive tissue
cylinder as the basic heat exchange unit found in most skeletal muscles.
Formulation of a bioheat equation for this basic unit can be viewed as the
governing equation for the temperature distribution in the aggregate of all
cylinders comprising the muscle.

(b) Assumptions. To formulate a bioheat equation for the tissue cylinder,
the following assumptions are made: (1) bleed-off blood flow rate in
vessels leaving the artery is equal to that returning to the vein and is
uniformly distributed along each pair of 5 vessels, (2) negligible axial
conduction through vessels and tissue cylinder, (3) radii of the s vessels do
not vary along the tissue cylinder, (4) changes in temperature between the
mlet to the P vessels and the inlet to the tissue cylinder is negligible, (5) the
temperature field in the tissue cylinder is based on pure radial conduction
with a heat-source pair representing the s vessels, and (6) the outer surface
of the cylinder is at uniform temperature 7, .

(¢) Formulation. The capillaries, arterioles and venules (f vessels) are
essentially in local thermal equilibrium with the surrounding tissue,
However, the pair of s vessels within the cylinder is thermally significant
having blood temperatures that are different from tissue temperature. Three
lemperature variables are needed to describe the temperature distribution in
the tissue cylinder: arterial temperature7),, venous temperature 7, and
Ussue temperature 7. Fig. 10.11 shows a tissue cylinder and its cross

(b) enlarged cross section

(a) tissue cylinder

Fig. 10.11
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section containing a pair of s vessels. Three g.mrerning equations for yp,
temperature field in the § vessels and tissue cylinder were formulateq [12)
The two-dimensional velocity field of the axially changing Poiseyilte i
in the s vessels was independently determined from the solutiop ¢ the
Navier-Stokes equations. Continuity of temperature and flux at the surfaces
of the vessels provides two boundary conditions in the radial directiop r,
Tissue temperature at the outer radius R of the cylinder is assumed uniforn
equal to T, ;. Turning to the boundary conditions in the axial direction X,
note that each cylinder extends a distance x=2L between two
neighboring P vessels (see Fig. 10.11). Thus there is symmetry about the
mid-plane x = L. At the inlet to the cylinder, x = 0, the bulk temperature
of the artery T, is specified. At x = L the flow in the 5 vessels vanishes
and the artery, vein and tissue are in thermal equilibrium at the local tissue
temperature ;.

(d) Solution. The three differential equations for the artery, vein and tissue
temperature were solved analytically {16]. The most important aspect of the
solution is the determination of 7,,,, the outlet bulk temperature of the
vein at x = 0. The importance of this finding will become clear later. For
simplicity, we will present only the results for the special case of equal siz¢
blood vessels symmetrically positioned relative to the center of the
cylinder, ie, I, =1 (see Fig. 10.11), For this case the dimensionless
artery-vein temperature difference, A7 " at x = 0 is given by

art=Too=Tuo _y Ay, AL, g0
T-llﬁﬂ' —Tbl:af Atz A|1
where
Ay =1 R(l-—i +-l-l- (1019
4 R 24|
1 ] | 2 4 g 20}
AII -—.::]_u .EJI_ 21:1 CO5¢ +*~{u_: ‘ (10
! R? R
- -
where ¢, |

: H
a .nd I(\’ESHI center to center sming) are d@ﬁﬂﬁd in Fig. “]

(d) Modi retur?
tﬁnmm‘:;,:““ of Pennes Perfusion Term, With the veno¥s o e

. dﬂ“"“iﬂ"d~ application of conservation of energy

This resyjt
the Py

ll'tl.'.ry 51
Sﬂm"d‘

Tfuliu" term in the Pennes equation (10.3) gives the bioheat equation for
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blood at x =0 gives the total energy g, delivered by the blood to the

tissue cylinder
— 2
9o = PpCpTag U (Topg ~Tipp),
where
a, = artery radius
u, = average artery blood velocity at x =0

Using eq. (10.18) to express the temperature difference (7,50 —7.4,) in

terms of AT, eq. (10.21) becomes

2 .
4y = PpCpag g AT (Topp — Tioeyy) -
Dividing through by the volume of the cylinder gives

2
qp Ta;u,

= 0, C

ZRL P R
Energy generation due to blood flow per unit tissue volume, g, and
volumetric blood flow per unit tissue volume w, are

-~ %

AT " (T30 = Tiocat) -

= : (10.23)
B R
and
LU (1024)
AR
Substituting eq.(10.23) and eq.(10.24) into eq.(10.22) gives
qs = PycyWy AT (Toyo ~ Tioewt) - (10.25)

Since R >> [ T-'omf is approximately equal to the local average tissue
‘“mperature 7, Thus, eq, (10.25) becomes

@ = PycyWy AT (Tppo = T). (10.26)

replaces eq. (10,1) which was introduced in the formulation of
nes equation. [t differs from eg. (10.1) in two respects: First, the
Pply temperature is not set equal to the body core temperature.

it includes the AT factor. Using eq.(10.26) to replace the blood

¢y :
F-vessel tissue cylinder model as

327

(10.21}

(10.22)
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n ] m aT
V- kVT + pyCpWp AT (Tabﬂ "T)'{'Qm = pc"é}"- (10‘2?}

The following observations are made regarding this result:

(1) The dimensionless factor AT" is identified as a correction coefficien;
Its definition in q.(10.18) shows that it depends only on the "**lStula;
geometry of the tissue cylinder. More importantly, it is iIndependent of
blood flow rate. The analysis provides a closed-form solution for the
determination of this factor. Its value for most muscle tissues ranges
from 0.6 to 0.8. Thus the description of microvascular structure needed
to apply this equation is much simpler than that required by Ches.
Holmes and Weinbaum-Jiji equations.

(2) The model analytically determines the venous return temperature and
accounts for contribution of countercurrent heat exchange in the
thermally significant vessels.

(3) The artery temperature 7, appearing in eq. (10.27) is unknown. It i
approximated by the body core temperature in the Pennes bioheat
equation. Its determination involves countercurrent heat exchange m
SAV vessels which have diameters ranging from 300 pm to1000 pm
The determination of T, is presented in Reference [18].

(4) While equations (10.5) and (10.6) apply to the cutaneous layer of

llmipheral tissue, eq. (10.23) applies to the region below the cutancous
ayer,

Example 10.3: Surface Heat Loss from Peripheral Tissue.

Fig. 10.12 is a schematic of a peripheral

tissue of thickness [, with
of thickness [, a cutaneous layer

E Blood at a volumetric rate
b Per unit tissue volume and temperature

Tony is suppli i

_ uppiied to the ({issue by the

Primary arterjes.

rate w
be and temperatyre .
is maintaine, ture Ty Skin surface

10.4 Mathematical Modeling of Vessels-Tissue Heat Transfer 329

further that metabolic heat production per unit tissue volume is a" and
neglect metabolic heat in the cutaneous layer. Using the s-vessel tissue
cylinder model, determine surface heat flux for a specified correction
coefficient AR

(1) Observations. (i) Surface heat flux can be determined once the
iemperature distribution in the tissue is known. (ii) This is a two layer
composite problem: tissue and cutaneous.

(2) Origin and Coordinates. Fig. 10.12 shows the origin and coordinate x,
(3) Formulation

(i) Assumptions. (1) All assumptions leading to bioheat equations (10.5)
and (10.27) are applicable, (2) steady state, (3) one-dimensional, (4)
constant properties, (5) uniform metabolic heat in the tissue layer, (6)
negligible metabolic heat in the cutaneous layer, (7) uniform blood
perfusion throughout the cutaneous layer, (8) tissue temperature at the base
x=01sequalto T ,, and (9) specified surface temperature.

(i) Governing Equations. Application of Fourier’s law at the surface
gives surface heat flux

o (L+ L)
ox

q: =k : ()

where

k = tissue conductivity
95 = surface heat flux
1) = temperature distribution in the cutaneous layer

Two equations are needed to determine the temperature distribution: one

for the tissue layer and one for the cutaneous layer. For the tissue layer eq.
“02?) Si\’ﬂs

dIT pbcbw AT' =
L P W Ty I <L, (&
27t ; (T =T)+ =l 0<x (

:Jh‘” T is the temperature distribution in the tissue layer. Treating the
th Aneous layer as a single region having uniform blood perfusion
“oughout, equation (10.5) gives
2 "
d"‘"ﬂ‘*p*c"w‘*(?‘ _T)=0, LsxsL+l; (c)
dx k H bl i
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(iii) Boundary Conditions. Four boundary conditions are required for o5

(b) and (¢) ~
T(0) =T, ”
T{L) = TiL)! (E]
dT(L) _dT,(L)
A - de (f)
L(L+L)=T;. ()

(4) Solution. Egquations (b) and (c) are rewritten in dimensionless form
using the following dimensionless variables
s T-Ty . e L =T
T, -T,0 T, — Ty

Substituting (h) into (b) and (c) gives

2 s, 7d wy2
gf—"*"*w";‘ ar'e-—BE ___o o0<est, 6
and

()

dié_ piew il TiceT '
B —_— cbl "-:0’ 15 $l+ ' 0}
dg? k [’ Tm-—?}] S

Introduce the following definitions of the dimensionless parameters it (i
and (j)

A= pb”bﬁ'b‘{'l‘_ p.= LAY
k » £ k ’
y= q:Ll g b= Tﬂw — g
; k(T =) Tapo =T
Substituting (k) into (i) and (j)
by | )
gzt PAT0-y=0, 0s¢sl, |
by (n)

az2 PA+PA=0, 15£<1+6.
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where
L
0= T (0)
Boundary conditions (d)-(g) transform to |
6(0)=0, (p)
o) = g(1), (@)
di(l) dg)
& d ®
pl+&)=1. (s)

The solutions to (m) and (n) are

=4 sinh1/ﬁAT'§+BcushdﬂAT'§-r?ﬁ:—TT. (t)

¢=C sinh,/B, £+ D cosh [, £+ 4. (v)

“’ht‘rﬁA B, C and D are constants of integration. Application of boundary
conditions (p)-(s) gives the four constants

A+ (- Dcosh /. + ,Ill'-—coah ”rﬂ-l+C,CzC.z

4o coshB (1+£) pAT’

sinh ﬁ:?_’r ~ CzC'yJ ﬂd?;ush-\} par’ )
T
B MT- y (W}
C = |ayBaT" coshyJapal” +C, Jo o)
D | - , |
m*ﬁ[d fAT" coshy gar’ +C|:’mhﬁﬂf{o}.
)

Th
‘ Eunﬁhnts C_l » Cz and CJ arc gii"#ﬂ b}'

K]
]

PR o P e T

- it :
|..__ .:*!I#il:c' I:.l rﬂ{i‘_ﬂ*’ﬁ' I."a .-

S e .
L] =7l
=l - ‘.1;‘-;;1-“._'
-
bl PR
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; (I—A)J,Esilm\fﬁ_
Y __sinhyBAT" - :
Jpar Shilih cosh\[B.(1+&,)

C, ={J—ﬂ—f [cush B. “Ei“h\,ﬁ—etﬂnh\(ﬂ_c(l-bgu]}",

Cy =sinhy/ B, -cthEMhJB:(I +&5).
Surface heat flux is determined by substituting (u) into (a)

k(rq:L — - JB. [ccosh JB.(1+ &) + Dsinh JB_(1+&,)|.
ab0 ~ *s

(5) Checking. Dimensional check: The parameters f, 5, 7,4, and &
and the arguments of the sinh and cosh are dimensionless.

C =

Limiting check: For the special case of T, =T, =T, and g5 =0,
solutions (1), (u) and (z) reduce to the expected results of
T(x)=T{(x)=T,,, and q; =0.

(5) Comments. (i) The solution is characterized by five paramelers
B.B..7.2, and &,. (ii) Equation (7) can be used to examine the effect of
cutaneous blood perfusion on surface heat flux. Changing blood ﬂ“"’ rate
through the cutaneous layer is an important mechanism for regulating body
temperature. (iii) The solution does not apply to the special case ?f“’:
blood perfusion rate since # and S, appear in the differential equations
coefficients of the variables & and @, respectively. To obtain the ':'d[m::;
to this case, A and B, must be set equal to zero in equations (m)

prior to solving them.
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PROBLEMS

0.1 Pennes[1) obtained experimental data on temperature distribution

the forearm of several subjects. The average center and skin ely.
{emperatures were found to be 36.1°C and 33.6°C , respectl¥

on
Use the Pennes model to predict these two temperatures bosk?
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¢, = specific heat of blood = 3.8 J/g-°C

h = heat transfer coefficient= 4.18 W/m?-°C

k, = thermal conductivity of blood = 0.5 W/m-°C
k = thermal conductivity of muscle = 0.5 W/m-°C
g =metabolic heat production= 0.000418 W/cm’
R = average forearm radius= 4cm

T., = 36.3°C

T, =26.6°C

w, = volumetric blood perfusion rate per unit tissue volume
=0.0003cm’/s/cm’

p, =blood density = 1050 kg/m*

102 Blood perfusion rate plays an important role in regulating body
temperature and skin heat flux. Use Pennes’s data on the forearm of
Problem 10.1 to construct a plot of skin surface temperature and
heat flux for blood perfusion rates ranging from wy, =0 to
w, = 0.0006 (cm?*/s)/em? .

103 Certain clinical procedures involve cooling of human legs prior to
surgery.  Cooling is accomplished by maintaining surface
temperature below body temperature. Model the leg as a cylinder of
radius R with volumetric blood perfusion rate per unit tissue volume
W, and metabolic heat production rate g”. Assume uniform skin
surface temperature 7,. Use the Pennes bioheat equation to
flﬂl;nnine the steady state one-dimensional temperature distribution
In the leg,

. - s i ' '
"4 A manufacturer of suits for divers is interested in evaluating the

effect of thermal conductivity of suit material on skin temperature.
Use Pennes model for the forearm to predict skin surface
lemperature of a diver wearing a tight suit of thickness & and
thermal - conductivity k,. The volumetric
:’:"'ﬂd perfusion rate per unit tissue volume

W5 and metabolic heat production rate
1S g, The ambient temperature is 7, and
the heat transfer coefficient is 4. Neglect
Urvature of the suit layer.




10.5 Consider the single layer model of the

106 In Example 103 skin surface is
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peripheral tissue of Example 10.2. Tissue skin AT .

thickness is L and blood supply . |

temperature to the deep layer at x = 0 Do

is To. The skin surface exchanges heat ko (x)

by convection. The ambient temperature | f

is 7 and the heat transfer coefficient is -

h. Assume that the vascular geometry | l

function V(&) can be approximated by A
V(€)= A+ BE+CE?, ) 1,

where

A=632x10", B=-159x10", and C =10x107,

Use the Weinbaum-Jiji simplified bioheat equation to obtain 2
solution to the temperature distribution in the tissue. Express the
result in non-dimensional form using the following dimensionless
quantities:

_ w oyl
8= r Tm i =_.x., y= qu . B’=£L"r
To-T. L k(T -T,) k
Pe, = 2pyCs Aol *
ky

Construct a plot showing the effect of Biot number {!“';:'

convection) on tissue temperature distribution #(&) for Pég
¥y =0.6 and Bi = 0.1 and 1.0.

maintained at specified temperature.
To examine the effect of surface
convection on skin surface heat flux,
repeat Example 10.3 assuming that
the skin exchanges heat with the
surroundings by convection. The

ambient temperature is T, and the
heat transfer coefficient is 4.

10.7

10.8

109
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The vascular geometry of the peripheral tissue of Example 102 is
appmximated by a polynomial function. To evaluate the sensitivity
of temperature distribution to the assumed vascular geometry
function, consider a linear representation of the form

V(§)=A+B¢,

where A=6.32x10" and B=-6.32x1075. Determinek,; / k
and @(£) for y =0.6 and Pe, =180. Compare your result with
Example 10.2.

A digit consists mostly of bone surrounded by a thin cutaneous
layer. A simplified model for analyzing the temperature distribution
and heat transfer in digits is a cylindrical bone covered by a uniform
cutaneous layer. Neglecting axial and angular variations, the
problem reduces to one-dimensional temperature distribution.
Consider the case of a digit with negligible metabolic heat
production, The skin surface exchanges heat with the ambient by
convection. The heat transfer coefficient is 4 and the ambient
temperature is 7. Using the Pennes equation determine the steady
state temperature distribution and heat transfer rate. Note that in the
absence of metabolic heat production the bone in this model is at
uniform temperature.

Fin approximation can be applied in modeling organs such as the
clephant ear, rat tail, chicken legs, duck beak and human digits.
Temperature distribution in these organs is three-dimensional.
However, the problem can be significantly simplified using fin
Approximation. As an example, consider the rat tail. Anatomical
Studies have shown that it consists of three layers: bone, tendon and
Culaneous layer. There are three major axial artery-vein pairs: one
ventral and two lateral. These pairs are located in the tendon near
the cutaneous Iayer as shown. The ventral vein is small compared to
the latera) veins, and the lateral arteries are small compared to the
ventral artery, Blood perfusion from the arteries to the veins takes
place mostly in the cutaneous layer through a network of small
vessels. Assume that blood is supplied to the cutaneous layer at

At b e ey e,

[T
2

3 s -
Al - - L
==l ST :'t-"-'_:l‘.'-"'
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uniform temperature 7o all along the tail. Blood equilibrageg -
local cutaneous temperature 7" before retuming to the veins, As:surnE
further that (1) cutaneous layer, tendon and bone have the sam:
conductivity, (2) negligible angular vanation, (3) uniform bl
perfusion along the tail, (4) negligible metabolic heat, (5) steady
state, (6) uniform outer radius and (7) negligible temperatyy,
variation in the radial direction (fin approximation ig valiq,
Bi<<1). Surface heat exchange is by convection. The pey
transfer coefficient is # and the
ambient temperature is 7. Using
Pennes model for the cutaneous
layer, show that the heat equation
for the rat tail is given by
2
i—f—-(m+ﬂ)ﬁ+m=0,
dg
where

&= T_T“D A g:—x-’
T = L

_ 20 e
kR’ k
Here L is tail length, R tail radiuvs c——= ‘
and x is axial distance along the tail. x

10.10 Consider the rat tail mode! described in Problem 10.9. Assume that
the base of the tail is at the artery supply temperature 7, and tha!
the tip is insulated. Show that the axial temperature distribution and
total heat transfer rate from the tail are given by

8(¢) = ﬁ’fm[(mh,fmm)sinmfﬁ+m.§-coswﬂ+m5*’]'

and

- 2
Wy PyCp L

mtanh /G +m

§=2aRI(Ty ~T Y 1--2 Sl B
{ Prm (B+mpf+m.

10.11

10.12
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Construct a plot of the axial temperature distribution and calculate
0

the heat transfer rate for the following data:

=m’> W-m
_,3 8_,_.;'._-, k=15.9 wum ' k=0.5n—,
L =" g_uc & &
[ =225cm, R=0365cm, T, = 369, T, = 2.5°C,

3
cm 8 ... g
w, = 0.01947 3 p—LUS——c G

Studies have shown that
blood perfusion along the rat
tail is non-uniform.  This
case can be analyzed by
dividing the tail into sections
and assigning different blood
perfusion rate to each section. Consider the rat tail described in
Problem 10.9. Model the tail as having two sections. The first
section extends a length L, from the base and the second has a
length of (L—L;). Blood perfusion rate in the first section
s wy and in the second section W,,. Determine the axial
temperature distribution in the tail in terms of the following
dimensionless quantities

- T_Tﬂﬂ
Tﬂﬂ -Tuﬂ ‘

L, 2hI?

_'ﬁ

H R
L kR’

g‘_‘%-é; =

B = Wbiﬁkbﬂ&Lz . By = ﬁ’bzP:CaLz _
;I::: nul:nenus layer of a peripheral tissue is supplied by blood at
. 00|:Ier:ture I'., and a total flow rate Wy The tissue is supplied by
o 7 mdten'lperntur: T, and furaf flow rate W;. Tissue thickness
ek Cutancous layer ’thickness is L. One mechanism for
b & surface heat loss is by controlling blood flow through the
tous layer. Use the Weinbaum-Jiji simplified bioheat equation
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: W :
to examine the effect of blood flow ratio, R=—<b _ ﬂf_‘-‘i .
Wy L, * ™"

surface heat flux. The skin is maintained at uniform temperatyre 7
|"‘

Assume a linear tissue vascular geometry function of the form
ViEy=A+B g ’

10.13 Studies have concluded that the plates on the back of the dinosaur
Stegosaurus served a thermoregulatory function as heat dissipating
fins {19]. There are indications that
the network of channels within the
plates may be blood vessels. Model
the plate as a rectangular fin of
width W, length L and thickness .
Use the Pennes model to formulate
the heat equation for this blood

perfused plate. The plate exchanges
heat with the ambient air by
convection, The heat transfer
coefficient is h and the ambient
temperature is 7_. Assume that
blood reaches each part of the plate
at temperature 7 and that it
equilibrates at the local temperature 7. Assume further that (1)
blood perfusion is uniform, (2) negligible metabolic hest
production, (3) negligible temperature variation along plate
thickness  (fin approximation is valid, Bi << 1), (4) steady st8t°
and (3) constant properties. Show that the heat equation for this

model is given by

d*e

—5—-(m+)8+m=0,

d§
where

2
P T-Tau* g-X . _2hW )L ﬂ___fﬁ’.ﬂ-‘-"-—f
I -T, L " gwr k

10,
'S Elephant Cars serye
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0.14 Modeling the plates on the back of the dinosaur Stegosaurus as
= rectangular fins, use the bioheat fin equation formulated in Problem
10.13 to show that the enhancement in heat transfer, 77, due to

blood flow is given by

e ﬁ+J._mnh1fﬁ+m

_q p+m
174, Bem tanh /m ’
where
2k +.-')L1‘ . Wy 0,C5L°
kWt k

g = heat transfer rate from plate with blood perfusion
q,= heat transfer rate from plate with no blood perfusion

Compute the enhancement 77 and total heat loss from 10 plates for
the following data:

¢ = specific heat of blood = 3800 J/kg—°C

h = heat transfer coefficient=14.9 W/m?2-°C

k = thermal conductivity = 0.6 W/m—-°C

L = plate length= 0.45m

I =plate thickness = 0.2 m

T4 = blood supply temperature = 37 °C

?:,; = ambient temperature = 27 °C

W5 =blood perfusion rate per unit tissue volume
=0.00045 (cm* /s)/cm?

W= plate width = 0.7 m

Pb =blood density = 1050 kg/m?

bloog supply rate to t
Perfusion increases

femperatype. Flappin

he ears and by flapping them. Increasing blood
heat loss due to an increase in surface

g results in an increase in the heat trans
coeh ' e fer
clent as air flow over the ears changes from natural to forced

b = Specific heat of blood = 3800 J/kg—°C
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'0.16 Cryosurgical probes are used in medical procedures to selective!
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h, =natural convection heat transfer coefficient= ? W/m? _o
h, = forced convection heat transfer coefficient (ﬂﬂpping)
=176 Wim*-°C
& = thermal conductivity = 0.6 W/m~"C
L =equivalent length of square ear = 0.93m
{ = average ear thickness=0.6cm
T, = blood supply temperature =36 °C
7., =ambient temperature = 24 °C
w, = blood perfusion rate per unit tissue volume
=0.0015 (em” /s)/cm’
P, =blood density = 1050kg/m’

Neglecting metabolic heat production in the ear, model the ear as
square fin using the bioheat equation formulated in Problem 10.13
to determine the total heat
transfer rate from two sides
of two ears with and without
flapping. In addition compute
the enhancement in heat
transfer for the two cases.
Define enhancement 77 as

n=-=L,
9o

C

where

g = heat transfer rate from ear

9, =heat transfer rate from ear with no blood perfusion and 10
flapping

freeze and destroy diseased tissue. The cryoprobe surface *

main‘lained al a temperature below tissue freezing tempe S
causing a frozen front to form at the surface and propagate “"twmd
Knowledge of the maximum frozen layer or lesion size 1S h‘ﬂpfuilm
e SUrBeon in selecting the proper settings for the CTY”Pmb -
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distribution. Consider a planar probe which is inserted in a large

region of tissue. Probe
thickness is L and its
surface temperature is T ,.
Using the s-vessel tissue
cylinder model, determine
the maximum lesion size
for the following data:

¢, = specific heat of blood =3800J/kg-°C

L = probe thickness = 4 mm

k =thermal conductivity of unfrozen tissue= 0.6 W/m-°C
k, = thermal conductivity of frozen tissue= 1.8 W/m-°C
¢n = metabolic heat production= 0.021 W/cm®

T 40 =artery blood temperature = 36.5 °C

T, =tissue freezing temperature = 0 °C

I, = probe surface temperature = —42 °C

W, = blood perfusion rate per unit tissue volume

=0.0032 (em* /s)/em’®

Py =blood density = 1050 kg/m*

ar’ =0.75

1017 A cylindrical cryosurgical probe consists of a tube whose surface

lemperature is maintained below tissue freezing temperature I,.

The frozen region or lesion around
the cryoprobe reaches its maximum
size at steady state. Predicting the
Tnlximum lesion size is important
' avoiding damaging healthy tissue
and ip targeting discased areas.
Fnrnaider a cylindrical probe which
18 nserted in g large tissue region.
Probe radiys i r, and its surface

temperatyre is 7. Metabolic heat
Production s g

ﬁ" 4

25

a PRI . B
o

. -_,". .-.\. al = - 1-
AEERN Y P U R

r

and blood perfusion rate is w,. Let T be the

t T .
“Mperature distribution in the unfrozen tissue and T, the
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temperature distribution in the frozen tissue. Using the S-Vesse]
tissue cylinder model, determine the steady state temperatyr,
distribution in the two regions and the maximum lesion size Note
that the conductivity of frozen tissue & is significantly different
from the conductivity k of unfrozen tissue. Express the sl
dimensionless form using the following dimensionless quantites.

roT 7, -T
9=T ;ﬁﬂ, B.;:Ts ';’§=:-’ §i=i:
J ~ fab0d = t%p To To
ﬂ— lif&p#fﬁﬁr.rﬂl y= Q: rﬂz
kT kT -T))

10.18 A brain surgical procedure requires the use of a sphericat

cryosurgical probe to create a frozen region (lesion) 6 mm in radius.
A 3 mm radius spherical cryoprobe is selected for insertion into the
diseased area. Using the Pennes model, determine the required
probe surface temperature such that the maximum lesion size does
not exceed 6 mm. Note that maximum size corresponds to the
steady state temperature distribution in the frozen and unfrozen
regions around the probe. The following data is given

¢, = specific heat of blood = 3800 J/kg-°C
k =thermal conductivity of unfrozen tissue = 0.6 W/m~°C
ky = thermal conductivity of frozen tissue= 1.8 W/m-"C
4 = metabolic heat production = 0.011 W/cm’
I's = artery blood temperature = 36.5 °C
T:f =tissue freezing temperature = 0 °C
W, =blood perfusion rate per unit tissue volume
=0.0083 (cm’ /s)/cm?
Py =blood density =1050 kg/m’

10.19 Analytical prediction of the growth of the frozen region 4%

ﬁ)’zurgiﬂ_l probes provides important guidelines for ml.ﬂi!'h“;:
:::b] 3pplication time. Consider the planar probe dmrih@dﬂ
em 10.16. Use the s-vessel tissue cylinder model and ssu?
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quasi-steady approximation to show that the dimensionless interface
location &, is given by:

pa Aiz[,ag, ~In(1+ A&,)].

where
k(T ~T, k(T, ~T
R (fz )fp Az‘JE (f dﬁﬂ)[l'l"?:']r ‘§r='£!'r
pL L k:(Tf _Ta) ﬂ L
8= Wy Py AT L y = qm L
k ¥(Z s ~T7)

where £=333,690J/kg is the latent heat of fusion and
pe =1040kg/m? is the density of frozen tissue. How long should

the probe of Problem 10.16 be applied so that the frozen layer is 3.5
mm thick?

1020 Consider the cylindrical cryosurgical described in Problem 10.17.
Using the s-vessel tissue cylinder model and assuming quasi-steady
interface motion, determine lesion size as a function of time.

10.21 The spherical cryosurgical probe of Problem 10.18 is used to create a
lesion corresponding to 95% of its maximum size. Using the Pennes
model and assuming quasi-steady interface motion, determine the
probe application time. Probe temperature is 7, = -29.6°C, latent

!Ient of fusion is £ = 333,690 J/kg and the density of frozen tissue
1S9, =1040 kg/m?,

022 Prolonged exposure to cold environment of elephants can result in
frost bite on their ears, Model the elephant ear as a sheet of total
su::fm area (two sides) A and uniform thickness 5. Assume
uniform blood perfusion W, and uniform metabolic heat ¢7. The

:: loses heat by convection. The ambient temperature is 7, and
heat transfer coefficient is &, Using lumped -capacity

:Ppr?ximltiun and the Pennes model, show that the dimensionless
fansient heat €quation is given by
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2 _a+n-0+pp,
dr

where
i P50 P , y=o—nd
9 L e 2 2h(Tm"'Tﬂ)

Here p is tissue density and c tissue specific heat. The subscript 4
refers to blood. Determine the maximum time a zoo elephant cap
remain outdoors on a cold winter day without resulting in frost bite
when the ambient temperature is lower than freezing temperature
T;. Assume that initially the ears are at uniform temperature T,

1

\ICROSCALE CONDUCTION

s Dames _ ' .
E:E:nnwnt of Mechanical Engineering

University of California, Riverside

11,1 Introduction

Heat conduction at the microscale can be dramatically different than at the
macroscale. The differences become clear by comparing the thermal
conductivity of a “bulk” material (that is, a large sample that is by
definition free of microscale effects) to the effective thermal conductivity
of a microscopic sample of the same material. The values of thermal
conductivity that are readily available in textbooks and standard reference
books (so-called “handbook values™) apply to bulk samples, but must be
used with great caution for microscale samples. As one example,
m-.ﬁng to a standard reference [1], the thermal conductivity k of pure
Hlicon at room temperature is 148W/m-"C. This value is appropriate for
sicon samples with characteristic lengths ranging from meters to
:';IHIME to microns, However, a silicon nanowire of diameter 56 nm
. "m=10""m ) has thermal conductivity of only 26 W/m-*C [2], a reduction
“!L more than a factor of five compared to the bulk value. The reductions
494{:;:'“ more dmmntiF at low temperature: at 20 K the values are
difene n:.; ; for bulk Si [1], and 0.72W/m-*C for the Si nanowire [2], a
N shuul:‘lﬂ':‘:dthnn a factor of M! By the end of this chapter,
duction, i :;sllnn:l the physu::al masufls for Ehis tmn:ler}duus
calculgions ¢ to evaluate it numerically with approximate
Maving th
Certa

ethe Ismnt majority of microsystems follow this same pattern of
) mu::: conductivity less than their bulk counterparts, there are also
als that exhibit nanoscale thermal conductivity greater than




