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The effect of large-scale anti-contagion 
policies on the COVID-19 pandemic

Solomon Hsiang1,2,3 ✉, Daniel Allen1, Sébastien Annan-Phan1,4, Kendon Bell1,5, Ian Bolliger1,6, 
Trinetta Chong1, Hannah Druckenmiller1,4, Luna Yue Huang1,4, Andrew Hultgren1,4,  
Emma Krasovich1, Peiley Lau1,4, Jaecheol Lee1,4, Esther Rolf1,7, Jeanette Tseng1 & Tiffany Wu1

Governments around the world are responding to the coronavirus disease 2019 
(COVID-19) pandemic1, caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), with unprecedented policies designed to slow the growth rate of 
infections. Many policies, such as closing schools and restricting populations to their 
homes, impose large and visible costs on society; however, their benefits cannot be 
directly observed and are currently understood only through process-based 
simulations2–4. Here we compile data on 1,700 local, regional and national 
non-pharmaceutical interventions that were deployed in the ongoing pandemic 
across localities in China, South Korea, Italy, Iran, France and the United States. We 
then apply reduced-form econometric methods, commonly used to measure the 
effect of policies on economic growth5,6, to empirically evaluate the effect that these 
anti-contagion policies have had on the growth rate of infections. In the absence of 
policy actions, we estimate that early infections of COVID-19 exhibit exponential 
growth rates of approximately 38% per day. We find that anti-contagion policies have 
significantly and substantially slowed this growth. Some policies have different effects 
on different populations, but we obtain consistent evidence that the policy packages 
that were deployed to reduce the rate of transmission achieved large, beneficial and 
measurable health outcomes. We estimate that across these 6 countries, 
interventions prevented or delayed on the order of 61 million confirmed cases, 
corresponding to averting approximately 495 million total infections. These findings 
may help to inform decisions regarding whether or when these policies should be 
deployed, intensified or lifted, and they can support policy-making in the more than 
180 other countries in which COVID-19 has been reported7.

The COVID-19 pandemic is forcing societies worldwide to make  
consequential policy decisions with limited information. After con-
tainment of the initial outbreak failed, attention turned to imple-
menting non-pharmaceutical interventions that are designed to slow 
the contagion of the virus. In general, these policies aim to decrease 
virus transmission by reducing contact among individuals within or 
between populations, such as by closing restaurants or restricting 
travel, thereby slowing the spread of COVID-19 to a manageable rate. 
These large-scale anti-contagion policies are informed by epidemio-
logical simulations2,4,8,9 and a small number of natural experiments 
during past epidemics10. However, the actual effects of these policies 
on infection rates in the ongoing pandemic are unknown. Because 
the modern world has never confronted this pathogen, nor deployed 
anti-contagion policies of such scale and scope, it is crucial that direct 
measurements of the effects of policies are used together with numeri-
cal simulations in current decision-making.

Societies around the world are considering whether the health ben-
efits of anti-contagion policies are worth their social and economic 

costs. Many of these costs are clearly observed; for example, business 
restrictions increase unemployment and school closures affect edu-
cational outcomes. It is therefore not surprising that some popula-
tions have hesitated before implementing such policies, especially 
when their costs are visible while their health benefits—infections and 
deaths that would have occurred but are instead avoided or delayed—
are unseen. Our objective is to measure the direct health benefits of 
these policies; specifically, how much these policies slowed the growth 
rate of infections. To do this, we compare the growth rate of infec-
tions within hundreds of subnational regions before and after each of 
these policies is implemented locally. Intuitively, each administrative 
unit observed immediately before a policy deployment serves as the  
‘control’ for the same unit in the days after it receives a policy ‘treat-
ment’ (see Supplementary Information for accounts of these deploy-
ments). Our hope is to learn from the recent experience of six countries 
in which the early spread of the virus triggered large-scale policy 
actions, in part so that societies and decision-makers everywhere 
can access this information.
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Here we directly estimate the effects of 1,700 local, regional and 
national policies on the growth rate of infections across localities 
within China, South Korea, Italy, Iran, France and the United States 
(Fig. 1 and Supplementary Table 1). We compile subnational data on 
daily infection rates, changes in case definitions and the timing of policy 
deployments, including (1) travel restrictions, (2) social distancing 
through the cancellations of events and suspensions of educational, 
commercial and religious activities, (3) quarantines and lockdowns, 
and (4) additional policies such as emergency declarations and expan-
sions of paid sick leave, from the earliest available dates to 6 April 2020 

(Extended Data Fig. 1 and Supplementary Notes). During this period, 
populations remained almost entirely susceptible to COVID-19, causing 
the natural spread of infections to exhibit almost perfect exponential 
growth11–13. The rate of this exponential growth could change daily, 
determined by epidemiological factors, such as disease infectivity, as 
well as policies that alter behaviour9,11. Because policies were deployed 
while the epidemic unfolded, we can estimate their effects empirically. 
We examine how the daily growth rate of infections in each locality 
changed in response to the collection of ongoing policies applied to 
that locality on that day.

We use well-established reduced-form econometric techniques5,14 
that are commonly used to measure the effects of events6,15 on eco-
nomic growth rates. Similar to early COVID-19 infections, economic 
output generally increases exponentially with a variable rate that can be 
affected by policies and other conditions. Here, this technique aims to 
measure the total magnitude of the effect of changes in policy, without 
requiring explicit prior information about fundamental epidemiologi-
cal parameters or mechanisms, many of which remain uncertain in the 
current pandemic. Instead, the collective influence of these factors is 
empirically recovered from the data without modelling their individual 
effects explicitly (see Methods). Previous research on influenza16, for 
example, has shown that such statistical approaches can provide impor-
tant complementary information to process-based models.

To construct the dependent variable, we transform location-specific, 
subnational time-series data on infections into first differences of 
their natural logarithm, which is the per-day growth rate of infections 
(see Methods). We use data from first- or second-level administrative 
units and data on active or cumulative cases, depending on availability 
(Supplementary Notes). We employ widely used panel regression mod-
els5,14 to estimate how the daily growth rate of infections changes over 
time within a location when different combinations of large-scale poli-
cies are enacted (see Methods). Our econometric approach accounts 
for differences in the baseline growth rate of infections across subna-
tional locations, which may be affected by time-invariant characteris-
tics, such as demographics, socioeconomic status, culture and health 
systems; it accounts for systematic patterns in growth rates within 
countries unrelated to policy, such as the effect of the workweek; it is 
robust to systematic undersurveillance specific to each subnational 
unit; and it accounts for changes in procedures to diagnose positive 
cases (Methods and Supplementary Methods).

We estimate that in the absence of policies, early infection rates 
of COVID-19 grow 43% per day on average across these six countries 
(s.e.m. = 5%), implying a doubling time of approximately 2 days. 
Country-specific estimates range from 34% per day in the United States 
(s.e.m. = 7%) to 68% per day in Iran (s.e.m. = 9%). We cannot determine 
whether the high estimate for Iran results from true epidemiologi-
cal differences, data-quality issues (see Methods), the concurrence 
of the initial outbreak with a major religious holiday and pilgrimage 
(Supplementary Notes) or sampling variability. Excluding Iran, the 
average growth rate is 38% per day (s.e.m. = 5%). Growth rates in all five 
other countries are independently estimated to be very near this value 
(Fig. 2a). These estimated values differ from observed average growth 
rates because the latter are confounded by the effects of policies. These 
growth rates are not driven by the expansion of testing or increasing 
rates of case detection (Methods and Extended Data Fig. 2) nor by data 
from individual regions (Extended Data Fig. 3).

Some previous analyses of pre-intervention infections in Wuhan 
have suggested that the growth rates were slower (doubling every 
5–7 days)17,18 using data collected before national standards for diag-
nosis and case definitions were first issued by the Chinese govern-
ment on 15 January 202019. However, case data in Wuhan from before 
this date contain multiple irregularities: the cumulative case count 
decreased on 9 January 2020; no new cases were reported for 9–15 Janu-
ary; and there were concerns that information about the outbreak was  
suppressed20 (Supplementary Table 2). When we remove these data, 
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Fig. 1 | Data on COVID-19 infections and large-scale anti-contagion policies. 
Left, daily cumulative confirmed cases of COVID-19 (solid black line, left axis) 
and deaths (dashed black line) over time. Vertical lines are deployments of 
anti-contagion policies, for which the height indicates the number of 
administrative units that instituted a policy that day (right axis). For display 
purposes only, ≤5 policy types are shown per country and missing case data are 
imputed unless all subnational units are missing. Right, maps of cumulative 
confirmed cases by administrative unit on the last date of each sample.
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using a shorter but more reliable pre-intervention time series from 
Wuhan (16–21 January), we recover a growth rate of 43% per day 
(s.e.m. = 3%), which corresponds to a doubling time of 2 days, consist-
ent with results from all other countries except Iran (Fig. 2a).

During the early stages of an epidemic, a large proportion of the 
population remains susceptible to the virus, and if the spread of the 
virus is left uninhibited by changes in policies or behaviour, exponential 

growth continues until the fraction of the susceptible population 
decreases meaningfully11,13,21,22. After correcting for estimated rates 
of case detection23, we compute that the minimum susceptible fraction 
across administrative units in our sample is 72% of the total population 
(Cremona, Italy) and 87% of administrative units would be likely to be 
in a regime of uninhibited exponential growth (that is, more than 95% 
of the population remains susceptible) if policies were removed on 
the last date of our sample.

Consistent with predictions from epidemiological models2,10,24, we 
find that the combined effect of policies within each country reduces 
the growth rate of infections by a substantial and statistically significant 
amount (Fig. 2b and Supplementary Table 3). For example, a locality 
in France with a baseline growth rate of 0.33 (national average) that 
fully deployed all policy actions used in France would be expected 
to lower its daily growth rate by −0.17 to a growth rate of 0.16. In gen-
eral, the estimated total effects of policy packages are large enough 
that they can in principle offset a large fraction of, or even eliminate, 
the baseline growth rate of infections—although in several countries, 
many localities have not deployed the full set of policies. Overall, the 
estimated effects of all policies combined are generally insensitive to 
withholding regional (that is, state- or province-level) blocks of data 
from the sample (Extended Data Fig. 3).

In China, only three policies were enacted across 115 cities early in a 
7-week period, providing us with sufficient data to empirically estimate 
how the effects of these policies evolved over time without making 
assumptions about the timing of these effects (Fig. 2b and Methods). 
We estimate that the combined effect of these policies reduced the 
growth rate of infections by −0.026 (s.e.m. = 0.046) in the first week 
after they came into effect, increasing substantially in the second week 
to −0.20 (s.e.m. = 0.049), and essentially stabilizing in the third week 
around −0.28 (s.e.m. = 0.047). In other countries, we lack sufficient 
data to estimate these temporal dynamics explicitly and only report the 
average pooled effect of policies across all days after their deployment 
(Methods). If other countries have transient responses similar to China, 
we would expect that the effects in the first week after deployment are 
smaller in magnitude than the average effect that we report. We also 
explore how our estimates would change if we impose the assumption 
that policies cannot affect infection growth rates until after a fixed num-
ber of days (Extended Data Fig. 5a and Supplementary Methods sec-
tion 3); however, we do not find evidence that this improves model fit.

The estimates described above (Fig. 2b) capture the superposition 
of all policies deployed in each country; that is, they represent the 
average effect of policies that we would expect to observe if all policies 
enacted anywhere in each country were implemented simultaneously 
in a single region of that country. We also estimate the effects of indi-
vidual policies or clusters of policies (Fig. 2c) that are grouped based 
on either their similarity in goal (for example, library and museum 
closures) or timing (for example, policies deployed simultaneously). 
Our estimates for these individual effects tend to be statistically noisier 
than the estimates for all policies combined. Some estimates for the 
same policy differ between countries, perhaps because policies are not 
implemented identically or because populations behave differently. 
Nonetheless, 22 out of 29 point estimates indicate that individual poli-
cies are probably contributing to the reduction of the growth rate of 
infections. Seven policies (one in South Korea, two in Italy and four in 
the United States) have point estimates that are positive, six of which 
are small in magnitude (less than 0.1) and not statistically different 
from zero (5% level). Consistent with greater overall uncertainty in 
these disaggregated estimates, some of the estimates in China, South 
Korea, Italy and France are moderately more sensitive to withholding 
regional blocks of data (Extended Data Fig. 4), but remain broadly 
robust to the assumption of a constant delayed effect of all policies 
(Extended Data Fig. 5b).

On the basis of these results, we find that the deployment of 
anti-contagion policies in all six countries significantly slowed the 
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pandemic. We combine the estimates above with our data on the tim-
ing of the 1,700 policy deployments to estimate the total effect of all 
policies across the dates in our sample. To do this, we use our estimates 
to predict the growth rate of infections in each locality on each day, 
given the actual policies in effect at that location on that date (Fig. 3). 
We then use the same model to predict what the counterfactual growth 
rates would be on that date if the effects of all policies were removed 
(Fig. 3), which we call the no-policy scenario. The difference between 
these two predictions is our estimate of the effect that all deployed 
policies had on the growth rate of infections. During our sample, we 

estimate that all policies combined slowed the average growth rate of 
infections by −0.252 per day (s.e.m. = 0.045, P < 0.001) in China, −0.248 
(s.e.m. = 0.089, P < 0.01) in South Korea, −0.24 (s.e.m. = 0.068, P < 0.001) 
in Italy, −0.355 (s.e.m. = 0.063, P < 0.001) in Iran, −0.123 (s.e.m. = 0.019, 
P < 0.001) in France and −0.084 (s.e.m. = 0.03, P < 0.01) in the United 
States. These results are robust to modelling the effects of policies 
without grouping them (Extended Data Fig. 6a and Supplementary 
Table 4) or assuming a delayed effect of policy on infection growth 
rates (Supplementary Table 5).

The number of COVID-19 infections on a date depends on the growth 
rate of infections on all previous days. Thus, persistent reductions in 
growth rates have a compounding effect on infections, until growth 
is slowed by a shrinking susceptible population. To provide a sense of 
scale for our results, we integrate the growth rate of infections in each 
locality from Fig. 3 to estimate cumulative infections, both with actual 
anti-contagion policies and in the no-policy scenario. To account for the 
declining susceptible population in each administrative unit, we couple 
our econometric estimates of the effects of policies with a susceptible–
infected–removed model11,13 that adjusts the susceptible population in 
each administrative unit based on estimated case-detection rates23,25 
(see Methods). This allows us to extend our projections beyond the 
initial exponential growth phase of infections, a threshold that many 
localities cross in our no-policy scenario.

Our results suggest that anti-contagion policies have already sub-
stantially reduced the number of COVID-19 infections observed in the 
world at present (Fig. 4). Our central estimates suggest that there would 
be approximately 37 million more cumulative confirmed cases (corre-
sponding to 285 million more total infections, including the confirmed 
cases by 5 March 2020) in China, 11.5 million more confirmed cases 
(38 million total infections by 6 April 2020) in South Korea, 2.1 million 
more confirmed cases (49 million total infections by 6 April 2020) in 
Italy, 4.9 million more confirmed cases (54 million total infections by 
22 March 2020) in Iran, 280,000 more confirmed cases (9 million total 
infections by 25 March 2020) in France and 4.8 million more confirmed 
cases (60 million total infections by 6 April 2020) in the United States 
had these countries never enacted any anti-contagion policies since 
the start of the pandemic.The magnitudes of these impacts partially 
reflect the timing, intensity and extent of policy deployment (for 
example, how many localities deployed policies) and the duration for 
which they have been applied. Several of these estimates are subject to 
large statistical uncertainties (see intervals in Fig. 4). Sensitivity tests 
(Extended Data Fig. 7) that assume a range of plausible alternative 
parameter values relating to disease dynamics, such as incorporat-
ing a susceptible–exposed–infected–removed model, suggest that 
interventions may have reduced the severity of the outbreak by a total 
of 54–65 million confirmed cases over the dates in our sample (central 
estimates). Sensitivity tests in which the assumed infection–fatality 
ratio is varied (Supplementary Table 6) suggest a corresponding range 
of 46–77 million confirmed cases (490–580 million total infections).

Our empirical results indicate that large-scale anti-contagion policies 
have slowed the COVID-19 pandemic. Because infection rates in the 
countries that we studied would have initially followed rapid exponen-
tial growth had no policies been applied, our results suggest that these 
policies have provided large health benefits. For example, we estimate 
that there would be approximately 465× the observed number of con-
firmed cases in China, 17× the number in Italy and 14× the number in the 
United States by the end of our analysis if large-scale anti-contagion 
policies had not been deployed. Consistent with process-based simula-
tions of COVID-19 infections2,4,8,9,22,26, our analysis of existing policies 
indicates that seemingly small delays in policy deployment are likely 
to have produced markedly different health outcomes.

Although the limitations of available data pose challenges to our 
analysis, our aim is to use what data exist to estimate the first-order 
effects of unprecedented policy actions in an ongoing global crisis. 
As more data become available, related findings will become more 
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policies and in a no-policy counterfactual scenario. Predicted daily growth 
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infections based on the observed timing of all policy deployments within each 
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difference between these two predictions is our estimated effect of actual 
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precise and may capture more complex interactions. Furthermore, 
this analysis does not account for interactions between populations 
in nearby localities13, nor mobility networks3,4,8,9. Nonetheless, we hope 
that these results can support critical decision-making, both in the 
countries that we study and in the more than 180 other countries in 
which COVID-19 infections have been reported7.

A key advantage of our reduced-form top-down statistical approach 
is that it captures the real-world behaviour of affected populations 
without requiring that we explicitly model the underlying mechanisms 
and processes. This is useful in the current pandemic, for which many 
process-related parameters remain uncertain. However, our results 
cannot and should not be interpreted as a substitute for bottom-up 
process-based epidemiological models that are specifically designed 
to provide guidance in public health crises. Rather, our results com-
plement existing models, for example, by helping to calibrate key 
model parameters. We believe both forward-looking simulations and 
backward-looking empirical evaluations should be used to inform 
decision-making.

Our analysis measures changes in local infection growth rates asso-
ciated with changes in anti-contagion policies. A necessary condition 
for this association to be interpreted as the plausibly causal effect of 
these policies is that the timing of policy deployment is independent 
of infection growth rates14. This assumption is supported by estab-
lished epidemiological theory11,13,27 and evidence28,29, which indicate 
that infections in the absence of policy will grow exponentially early in 
the epidemic, implying that pre-policy infection growth rates should be 
constant over time and therefore uncorrelated with the timing of policy 
deployment. Furthermore, scientific guidance to decision-makers early 
in the current epidemic explicitly projected constant growth rates in the 
absence of anti-contagion measures, limiting the possibility that antici-
pated changes in natural growth rates affected decision-making2,22,30,31.  
In practice, policies tended to be deployed in response to the high total 
numbers of cases (for example, in France)32, in response to outbreaks 
in other regions (for example, in China, South Korea and Iran)33, after 
delays due to political constraints (for example, in the United States 
and Italy) and often with timings that coincided with arbitrary events, 
such as weekends or holidays (see Supplementary Notes for detailed 
chronologies).

Our analysis accounts for documented changes in COVID-19 testing 
procedures and availability, as well as differences in case detection 
across locations; however, unobserved trends in case detection could 
affect our results (see Methods). We analyse estimated case-detection 
trends23 (Extended Data Fig. 2) and find that this potential bias is small—
possibly elevating our estimated no-policy growth rates by 0.026 (7%) 
on average.

It is also possible that changing public knowledge during the period 
of our study affects our results. If individuals alter their behaviour in 
response to new information unrelated to anti-contagion policies, 
such as seeking out online resources, this could alter the growth rate of  
infections and thus affect our estimates. If increasing availability of 
information reduces infection growth rates, it would cause us to over-
state the effectiveness of anti-contagion policies. We note, however, 
that if public knowledge is increasing in response to policy actions, 
such as through news reports, then it should be considered a pathway 
through which policies alter infection growth, not a form of bias. Inves-
tigating these potential effects is beyond the scope of this analysis, but 
it is an important topic for future investigations.

Finally, our analysis focuses on confirmed infections, but other 
outcomes, such as hospitalizations or deaths, are also of policy 
interest. Future studies on these outcomes may require additional 
modelling approaches because they are relatively more context- and 
state-dependent. Nonetheless, we experimentally implement our 
approach on the daily growth rate of hospitalizations in France, the 
only country in our sample for which hospitalization data are available 
at the granularity of this study. We find that the total estimated effect of 
anti-contagion policies on the growth rate of hospitalizations is similar 
to our estimates for infection growth rates (Extended Data Fig. 6c).

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2404-8.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Data collection and processing
We provide a brief summary of our data collection processes here; 
further details, including access dates are provided in the Supplemen-
tary Notes. Epidemiological data, case definitions/testing regimes and 
policy data for each of the six countries in our sample were collected 
from a variety of in-country data sources, including government pub-
lic health websites, regional newspaper articles and crowd-sourced 
information on Wikipedia. The availability of epidemiological and 
policy data varied across the six countries, and preference was given 
to the collection of data at the most granular administrative unit level. 
The country-specific panel datasets are at the regional level in France, 
the state level in the United States, the province level in South Korea, 
Italy and Iran, and the city level in China. Owing to data availability, the 
sample dates differ across countries: in China we use data from 16 Janu-
ary to 5 March 2020; in South Korea from 17 February to 6 April 2020; 
in Italy from 26 February to 6 April 2020; in Iran from 27 February to 
22 March 2020; in France from 29 February to 25 March 2020; and in 
the United States from 3 March to 6 April 2020. Our data sources are 
described in more detail below.

China. We acquired epidemiological data from an open-source GitHub 
project34 that scrapes time series data from Ding Xiang Yuan, a Chinese 
website that integrates COVID-19 epidemiological data from various 
local governments. We extended this dataset back in time to 10 January 
2020 by manually collecting official daily statistics from the central 
and provincial (Hubei, Guangdong and Zhejiang) Chinese government 
websites. We compiled policies by collecting data on the start dates of 
emergency declarations, travel bans and lockdowns at the city level 
from the ‘2020 Hubei lockdowns’ Wikipedia page35 and various other 
news reports. We suspect that most Chinese cities have implemented 
at least one anti-contagion policy due to their reported trends in in-
fections; as such, we dropped cities for which we could not identify a 
policy deployment date to avoid miscategorizing the policy status of 
these cities. Thus our results are only representative for the sample of 
115 cities for which we obtained policy data.

South Korea. We manually collected and compiled the epidemiologi-
cal dataset for South Korea, based on provincial government reports, 
policy briefings and news articles. We compiled policy actions from 
news articles and press releases from the Korean Centers for Disease 
Control and Prevention, the Ministry of Foreign Affairs and websites 
of local governments.

Iran. We used epidemiological data from the table ‘New COVID-19 
cases in Iran by province’36 in the ‘2020 coronavirus pandemic in Iran’  
Wikipedia article, which were compiled from data provided by the 
Iranian Ministry of Health website (in Persian). We relied on news report-
ing and two timelines of pandemic events in Iran36,37 to collate policy 
data. From 2 March to 3 March 2020, Iran did not report subnational  
cases. Around this period, the country implemented three national poli-
cies: a recommendation against local travel (1 March), work from home 
for government employees (3 March) and school closure (5 March). As 
the effects of these policies cannot be distinguished from each other 
due to the data gap, we group them together for the purpose of this 
analysis.

Italy. We used epidemiological data from the GitHub repository38 main-
tained by the Italian Department of Civil Protection (Dipartimento della 

Protezione Civile). For policies, we primarily relied on the English ver-
sion of the COVID-19 dossier ‘Chronology of main steps and legal acts 
taken by the Italian Government for the containment of the COVID-19 
epidemiological emergency’ written by the Dipartimento della  
Protezione Civile39, and Wikipedia40.

France. We used the region-level epidemiological dataset provided 
by the government website of France41 and supplemented it with the 
number of confirmed cases by region on the public health website 
of France, which was previously updated daily until 25 March42. We 
obtained data on the policy response to the COVID-19 pandemic from 
the French government website, press releases from each regional 
public health site43 and Wikipedia44.

United States. We used state-level epidemiological data from usafacts.
org45, which are compiled from multiple sources. For policy responses, 
we relied on a number of sources, including the US Centers for Disease 
Control and the National Governors Association, as well as various 
executive orders from county- and city-level governments, and press 
releases from media outlets.

Policy data. Policies in administrative units were coded as binary vari-
ables, for which the policy was coded as either 1 (after the date that the 
policy was implemented and before it was removed) or 0 (otherwise) 
for the affected administrative units. When a policy only affected a frac-
tion of an administrative unit (for example, half of the counties within 
a state), policy variables were weighted by the percentage of people 
within the administrative unit who were treated by the policy. We used 
the most recent population estimates we could find for the administra-
tive units of countries (see the ‘Population Data’ section in the Supple-
mentary Information). To standardize policy types across countries, 
we mapped each country-specific policy to one of the broader policy 
category variables in our analysis. In this exercise, we collected 168 
policies for China, 59 for South Korea, 214 for Italy, 23 for Iran, 59 for 
France and 1,177 for the United States (Supplementary Table 1). There 
are some cases for which we encode policies that are necessarily in 
effect whenever another policy is in place, owing in particular to the 
far-reaching implications of home-isolation policies. In China, wherever 
home isolation is documented, we assume a local travel ban is enacted 
on the same day if we have not found an explicit local travel ban policy 
for a given locality. In France, we assume home isolation is accompanied 
by event cancellations, social distancing and no-gathering policies; in 
Italy, we assume home isolation entails no-gathering, local travel ban, 
work from home and social distancing policies; in the United States, 
we assume shelter-in-place orders indicate that non-essential business 
closures, work from home policies and no-gathering policies are in 
effect. For policy types that are enacted multiple times at increasing 
degrees of intensity within a locality, we add weights to the variable by 
escalating the intensity from 0 pre-policy in steps up to 1 for the final 
version of the policy (see the ‘Policy Data’ section in the Supplementary 
Information).

Epidemiological data. We collected information on cumulative con-
firmed cases, cumulative recoveries, cumulative deaths, active cases 
and any changes to domestic COVID-19-testing regimes, such as case 
definitions or testing methodology. For our regression analysis (Fig. 2), 
we use active cases when they are available (China and South Korea) and 
cumulative confirmed cases otherwise. We document quality-control 
steps in the Supplementary Information. For China and South Korea, 
we acquired more granular data than the data hosted on the Johns 
Hopkins University ( JHU) interactive dashboard46; we confirm that 
the number of confirmed cases closely match between the two data 
sources (see Extended Data Fig. 1). To conduct the econometric analysis, 
we merge the epidemiological and policy data to form a single data set 
for each country.



Econometric analysis
Reduced-form approach. The reduced-form econometric approach 
that we apply here is a ‘top-down’ approach that describes the behav-
iour of aggregate outcomes y in data (in this case, infection rates). This 
approach can identify plausibly causal effects5,14 induced by exogenous 
changes in independent policy variables z (for example, school closure) 
without explicitly describing all underlying mechanisms that link z to y, 
without observing intermediary variables x (for example, behaviour) 
that might link z to y, or without other determinants of y unrelated to 
z (for example, demographics), denoted w. Let f(·) describe a complex 
and unobserved process that generates infection rates y:

y f x z z x z z w w= ( ( , …, ), …, ( , …, ), , …, ) (1)K N K M1 1 1 1

Process-based epidemiological models aim to capture elements of 
f(·) explicitly, and then simulate how changes in z, x or w affect y. This 
approach is particularly important and useful in forward-looking simu-
lations in which future conditions are likely to be different than histori-
cal conditions. However, a challenge faced by this approach is that we 
may not know the full structure of f(·), for example, if a pathogen is new 
and many key biological and societal parameters remain uncertain. We 
may not know the effect that large-scale policy (z) will have on behaviour 
(x(z)) or how this behaviour change will affect infection rates (f(·)).

Alternatively, one can differentiate equation (1) with respect to the 
kth policy zk:
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which describes how changes in the policy affects infections through 
all N potential pathways mediated by x1, ..., xN. Usefully, for a fixed 
population observed over time, empirically estimating an average 
value of the local derivative on the left side in equation (2) does not 
depend on explicit knowledge of w. If we can observe y and z directly 
and estimate changes over time y

z
∂

∂ k
 with data, then intermediate  

variables x also need not be observed nor modelled. The reduced-form 
econometric approach5,14 thus attempts to measure y

z
∂

∂ k
 directly, exploit-

ing exogenous variation in policies z.

Model. Active infections grow exponentially during the initial phase  
of an epidemic, when the proportion of immune individuals in a  
population is near zero. Assuming a simple susceptible–infected–
recovered (SIR) disease model11, the growth in infections during the 
early period is

I
t

S β γ I β γ I
d
d

= ( − ) = ( − ) , (3)t
t t S t→1t

where It is the number of infected individuals at time t, β is the  
transmission rate (new infections per day per infected individual), 
γ is the removal rate (proportion of infected individuals recovering  
or dying each day) and S is the fraction of the population susceptible to 
the disease. The second equality holds in the limit S → 1, which describes 
conditions during the beginning of the COVID-19 pandemic. The  
solution to this ordinary differential equation is the exponential function

I

I
= e , (4)

t

t

g t t( − )2 12

1

where It 1
 is the initial condition. Taking the natural logarithm and rear-

ranging, we have

I I g t tlog( ) − log( ) = ( − ). (5)t t 2 12 1

Anti-contagion policies are designed to alter g, through changes to 
β, by reducing contact between susceptible and infected individuals. 

Holding the time step between observations fixed at one day (t2 − t1 = 1), 
we thus model g as a time-varying outcome that is a linear function of 
a time-varying policy

g I I θ θ ε= log( ) − log( ) = + policy + , (6)t t t t t−1 0

where θ0 is the average growth rate without a policy, policyt is a binary 
variable describing whether a policy is deployed at time t, and θ is the 
average effect of the policy on growth rate g over all periods subsequent 
to the introduction of the policy, thereby encompassing any lagged 
effects of policies. εt is a mean-zero disturbance term that captures 
interperiod changes not described by policyt. Using this approach, 
infections each day are treated as the initial conditions for integrating 
equation (4) through to the following day.

We compute the first differences log(It) − log(It − 1) using active infec-
tions in countries for which they are available, otherwise we use cumula-
tive infections, noting that they are almost identical during this early 
period (except in China, where we use active infections). We then match 
these data to policy variables that we construct using the novel datasets 
that we assembled and apply a reduced-form approach to estimate a 
version of equation (6), although the actual expression has additional 
terms detailed below.

Estimation. To estimate a multi-variable version of equation (6), we 
estimate a separate regression for each country c. Observations are for 
subnational units indexed by i observed for each day t. Because not all 
localities began testing for COVID-19 on the same date, these samples 
are unbalanced panels. To ensure data quality, we restrict our analysis 
to localities after they have reported at least ten cumulative infections.

A necessary condition for unbiased estimates is that the timing of 
policy deployment is independent of natural infection growth rates14, a 
mathematical condition that should be true in the context of a new epi-
demic. In established epidemiological models, including the standard 
SIR model above, early rates of infection within a susceptible population 
are characterized by constant exponential growth. This phenomenon 
is well understood theoretically13,27,47, has been repeatedly documented 
in past epidemics28,29,48 as well as the current COVID-19 pandemic11,12, 
and implies constant infection growth rates in the absence of policy  
intervention. Thus, we treat changes in infection growth rates as  
conditionally independent of policy deployments since the correlation 
between a constant variable and any other variable is zero in expectation.

We estimate a multiple regression version of equation (6) using 
ordinary least squares. We include a vector of subnational unit fixed 
effects θ0 (that is, varying intercepts captured as coefficients to dummy 
variables) to account for all time-invariant factors that affect the local 
growth rate of infections, such as differences in demographics, socio-
economic status, culture and health systems5. We include a vector 
of day-of-week fixed effects δ to account for weekly patterns in the 
growth rate of infections that are common across locations within a 
country; however, in China, we omit day-of-week effects because we 
find no evidence they are present in the data—perhaps because of the 
fact that the outbreak of COVID-19 began during a national holiday and 
workers never returned to work. We also include a separate single-day 
dummy variable each time there is an abrupt change in the availability 
of COVID-19 testing or a change in the procedure to diagnose positive 
cases. Such changes generally manifest as a discontinuous jump in 
infections and a re-scaling of subsequent infection rates (for example, 
see China in Fig. 1), effects that are flexibly absorbed by a single-day 
dummy variable because the dependent variable is the first difference 
of the logarithm of infections. We denote the vector of these effects μ.

Lastly, we include a vector (length Pc) of country-specific policy vari-
ables (policy) for each location and day. These policy variables take on 
values between 0 and 1 (inclusive) where 0 indicates no policy action 
and 1 indicates a policy is fully enacted. In cases in which a policy varia-
ble captures the effects of collections of policies (for example, museum 
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closures and library closures), a policy variable is computed for each, 
then they are averaged, so the coefficient on this type of variable is 
interpreted as the effect if all policies in the collection are fully enacted. 
There are also instances in which multiple policies are deployed on 
the same date in numerous locations, in which case we group policies 
that have similar objectives (for example, suspension of transit and 
travel ban, or cancelling of events and no gathering) and keep other  
policies separate (that is, business closure and school closure). The 
grouping of policies is useful for reducing the number of estimated 
parameters in our limited sample of data, allowing us to examine the 
impact of subsets of policies (Fig. 2c). However, policy grouping does 
not make a substantial difference to the estimated effect of all policies 
combined nor to the effect of actual policies, which we demonstrate 
by estimating a regression model in which no policies are grouped 
and these values are recalculated (Extended Data Fig. 6a and Supple-
mentary Table 4).

In some cases (for Italy and the United States), policy data are avail-
able at a more spatially granular level than infection data (for exam-
ple, city policies and state-level infections in the United States). In 
these cases, we code binary policy variables at the more granular level  
and use population weights to aggregate them to the level of the  
infection data. Thus, policy variables may take on continuous values bet 
ween 0 and 1, with a value of 1 indicating that the policy is fully enacted 
for the entire population. Given the limited quantity of data currently 
available, we use a parsimonious model that assumes the effects of  
policies on infection growth rates are approximately linear and additively 
separable. However, future studies that comprise more data may be able 
to identify important nonlinearities or interactions between policies.

For each country, our general multiple regression model is thus

∑g I I θ δ μ θ ε= log( ) − log( ) = + + + ( policy ) + (7)cit cit ci t ci ct cit
p

P

pc pcit cit, −1 0,
=1

c

where observations are indexed by country c, subnational unit i and 
day t. The parameters of interest are the country-by-policy specific 
coefficients θcp. We display the estimated residuals εcit in Extended Data 
Fig. 10, which are mean zero but not strictly normal (normality is not 
a requirement of our modelling and inference strategy), and we esti-
mate uncertainty over all parameters by calculating our standard errors 
robust to error clustering at the day level14. This approach allows the 
covariance in εcit across different locations within a country, observed 
on the same day, to be non-zero. Such clustering is important in this 
context because idiosyncratic events within a country, such as a holiday 
or a backlog in testing laboratories, could generate nonuniform 
country-wide changes in infection growth for individual days that are 
not explicitly captured in our model. Thus, this approach nonpara-
metrically accounts for both arbitrary forms of spatial autocorrelation 
or systematic misreporting in regions of a country on any given day 
(we note that it generates larger estimates for uncertainty than cluster-
ing by i). When we report the effect of all policies combined (Fig. 2b), 
we are reporting the sum of coefficient estimates for all policies θ∑p

P
cp=1

c , 
accounting for the covariance of errors in these estimates when  
computing the uncertainty of this sum.

Note that our estimates of θ and θ0 in equation (7) are robust to sys-
tematic underreporting of infections, a major concern in the ongoing 
pandemic, due to the construction of our dependent variable. This 
remains true even if different localities have different rates of under-
reporting, so long as the rate of underreporting is relatively constant. 
To see this, note that if each locality i has a medical system that reports 
only a fraction ψi of infections such that we observe ∼I ψ I=it i it rather an 
actual infections Iit, then the left side of equation (7) will be

∼ ∼
I I ψ I ψ I

ψ ψ I I

I I g

log( ) − log( ) = log( ) − log( )

=log( ) − log( ) + log( ) − log( )

=log( ) − log( ) =

it i t i it i i t

i i it i t

it i t t

, −1 , −1

, −1

, −1

and is therefore unaffected by location-specific and time-invariant 
underreporting. Thus systematic underreporting does not affect our 
estimates for the effects of policy θ. As discussed above, potential 
biases associated with non-systematic underreporting that results 
from documented changes in testing regimes over space and time are 
absorbed by region–day-specific effects μ.

However, if the rate of underreporting within a locality is changing 
day-to-day, this could bias infection growth rates. We estimate the mag-
nitude of this bias (Extended Data Fig. 2), and verify that it is quantita-
tively small. Specifically, if I ψ I=it it it

∼  where ψit changes day-to-day, then

∼ ∼
I I ψ ψ glog( ) − log( ) = log( ) − log( ) + (8)it i t it i t t, −1 , −1

where log(ψit) − log(ψi,t − 1) is the day-over-day growth rate of the 
case-detection probability. Disease surveillance has evolved slowly in 
some locations as governments gradually expand testing, which would 
cause ψit to change over time, but these changes in testing capacity 
do not appear to significantly alter our estimates of infection growth 
rates. In Extended Data Fig. 2, we show one set of epidemiological 
estimates23 for log(ψit) − log(ψi,t − 1). Despite random day-to-day varia-
tions, which do not cause systematic biases in our point estimates, the 
mean of log(ψit) − log(ψi,t − 1) is consistently small across the different 
countries: 0.05 in China, 0.064 in Iran, 0.019 in South Korea, −0.058 
in France, 0.031 in Italy and 0.049 in the United States. The average of 
these estimates is 0.026, potentially accounting for 7.3% of our global 
average estimate for the no-policy infection growth rate (0.36). These 
estimates of log(ψit) − log(ψi,t − 1) also do not display strong temporal 
trends, alleviating concerns that time-varying underreporting gener-
ates sizable biases in our estimated effects of anti-contagion policies.

Transient dynamics. In China, we are able to examine the transient re-
sponse of infection growth rates following policy deployment because 
only three policies were deployed early in a seven-week sample period 
during which we observe many cities simultaneously. This provides us 
with sufficient data to estimate the temporal structure of policy effects 
without imposing assumptions regarding this structure. To do this, we 
estimate a distributed-lag model that encodes policy parameters us-
ing weekly lags based on the date that each policy is first implemented 
in locality i. This means the effect of a policy implemented one week 
ago is allowed to differ arbitrarily from the effect of that same policy 
in the following week, and so on. These effects are then estimated si-
multaneously and are displayed in Fig. 2b, c (see also Supplementary 
Table 3). Such a distributed lag approach did not provide statistically 
meaningful insights in other countries using the currently available 
data because there were fewer administrative units and shorter peri-
ods of observation (that is, smaller samples), and more policies (that 
is, more parameters to estimate) in all other countries. Future studies 
may be able to successfully explore these dynamics outside of China.

As a robustness check, we examine whether excluding the transient 
response from the estimated effects of policy substantially alters our 
results. We do this by estimating a ‘fixed lag’ model, in which we assume 
that policies cannot influence infection growth rates for L days, recod-
ing a policy variable at time t as zero if a policy was implemented fewer 
than L days before t. We reestimate equation (7) for each value of L and 
present results in Extended Data Fig. 5 and Supplementary Table 5.

Alternative disease models. Our main empirical specification is mo-
tivated with an SIR model of disease contagion, which assumes zero 
latent period between exposure to COVID-19 and infectiousness. If we 
relax this assumption to allow for a latent period of infection, as in a 
susceptible–exposed–infected–recovered (SEIR) model, the growth 
of the outbreak is only asymptotically exponential11. Nonetheless, we 
demonstrate that SEIR dynamics have only a minor potential impact 
on the coefficients recovered by using our empirical approach in this 
context. In Extended Data Figs. 8, 9 we present results from a simulation 



exercise which uses equations (9)–(11), along with a generalization to 
the SEIR model11 to generate synthetic outbreaks (see Supplementary 
Methods section 2). We use these simulated data to test the ability of our 
statistical model (equation (7)) to recover both the unimpeded growth 
rate (Extended Data Fig. 8) as well as the impact of simulated policies on 
growth rates (Extended Data Fig. 9) when applied to data generated by 
SIR or SEIR dynamics over a wide range of epidemiological conditions.

Projections
Daily growth rates of infections. To estimate the instantaneous daily 
growth rate of infections if policies were absent, we obtain fitted values 
from equation (7) and compute a predicted value for the dependent 
variable when all Pc policy variables are set to 0. Thus, these estimated 
growth rates ĝ cit

no policy capture the effect of all locality-specific factors 
on the growth rate of infections (for example, demographics), 
day-of-week effects, and adjustments based on the way in which infec-
tion cases are reported. This counterfactual does not account for 
changes in information that are triggered by policy deployment, as 
those should be considered a pathway through which policies affect 
outcomes, as discussed in the main text. Additionally, the ‘no policy’ 
counterfactual does not model previously unobserved changes in 
behaviour that might occur if fundamentally new behaviours emerge 
even in the absence of government intervention. When we report an 
average no-policy growth rate of infections (Fig. 2a), it is the average 
value of these predictions for all observations in the original sample. 
Location-and-day-specific counterfactual predictions ( )ĝ cit

no policy ,  
accounting for the covariance of errors in estimated parameters, are 
shown as red markers in Fig. 3.

Cumulative infections. To provide a sense of scale for the estimated 
cumulative benefits of effects shown in Fig. 3, we link our reduced-form 
empirical estimates to the key structures in a simple SIR system and 
simulate this dynamical system over the course of our sample. The 
system is defined as the following:

S
t

β S I
d
d

= − (9)t
t t t

I
t

β S γ I
d
d

= ( − ) (10)t
t t t

R
t

γI
d
d

= (11)t
t

where St is the susceptible population and Rt is the removed population. 
Here βt is a time-evolving parameter, determined by our empirical 
estimates as described below. Accounting for changes in S becomes 
increasingly important as the size of cumulative infections (It + Rt) 
becomes a substantial fraction of the local subnational population, 
which occurs in some no-policy scenarios. Our reduced-form analysis 
provides estimates for the growth rate of active infections g( ˆ) for each 
locality and day, in a regime where St ≈ 1. Thus we know

I
t

I g β γ
d
d

/ | = ^ = − (12)t
t S t t≈1

but we do not know the values of either of the two right-side terms, 
which are required to simulate equations (9)–(11). To estimate γ, we 
note that the left-side term of equation (11) is

R
t t

d
d

≈
d

d
(cumulative recoveries + cumulative deaths)t

which we can observe in our data for China and South Korea. Comput-
ing first differences in these two variables (to differentiate with respect 
to time), summing them, and then dividing by active cases gives us 

estimates of γ (medians: China = 0.11, South Korea = 0.05). These values 
differ slightly from the classical SIR interpretation of γ, because in the 
public data that we are able to obtain, individuals are coded as ‘recov-
ered’ when they no longer test positive for COVID-19, whereas in the 
classical SIR model this occurs when they are no longer infectious. We 
adopt the average of these two medians, setting γ = 0.08. We use medi-
ans rather than simple averages because low values for It induce a long 
right tail in daily estimates of γ and medians are less vulnerable to this 
distortion. We then use our empirically based reduced-form estimates 
of ĝ  (both with and without policy) combined with equations (9)–(11) 
to project total cumulative cases in all countries (Fig. 4). We simulate 
infections and cases for each administrative unit in our sample begin-
ning on the first day for which we observe 10 or more cases (for that 
unit) using a time step of 4 h. Because we observe confirmed cases 
rather than total infections, we seed each simulation by adjusting 
observed It on the first day using country-specific estimates of case 
detection rates. We adjust existing estimates of case underreporting23 
to further account for asymptomatic infections assuming an infec-
tion–fatality ratio of 0.75%25. We assume Rt = 0 on the first day. To main-
tain consistency with the reported data, we report our output in 
confirmed cases by multiplying our simulated It + Rt values by the 
aforementioned proportion of infections confirmed. We estimate 
uncertainty by resampling from the estimated variance–covariance 
matrix of all regression parameters. In Extended Data Fig. 7, we show 
sensitivity of this simulation to the estimated value of γ as well as to 
the use of an SEIR framework. In Supplementary Table 6, we show sen-
sitivity of this simulation to the assumed infection–fatality ratio 
(see Supplementary Methods section 1).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated and/or analysed during the current study are 
available at https://github.com/bolliger32/gpl-covid. Future updates 
and/or extensions to data or code will be listed at http://www.globalpo-
licy.science/covid19.

Code availability
For easier replication, we have created a CodeOcean ‘capsule’, which 
contains a pre-built computing environment in addition to the 
source code and data. This is available at https://codeocean.com/cap-
sule/1887579/tree/v1. Future updates and/or extensions to data or code 
will be listed at http://www.globalpolicy.science/covid19.
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Extended Data Fig. 1 | Validating disaggregated epidemiological data 
against aggregated data from the JHU Center for Systems Science and 
Engineering. Comparison of cumulative confirmed cases from a subset of 
regions in our collated epidemiological dataset to the same statistics from the 
2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by the Johns 
Hopkins Center for Systems Science and Engineering (JHU CSSE)46. We 
conducted this comparison for Chinese provinces and South Korea, for which 

the data we collected were from local administrative units that are more 
spatially granular than the data in the JHU CSSE database. a, In China, we 
aggregated our city-level data to the province level. b, In South Korea, we 
aggregated province-level data up to the country level. Small discrepancies, 
especially in later periods of the outbreak, are generally due to imported cases 
(international or domestic) that are present in national statistics but that we do 
not assign to particular cities (in China) or provinces (in Korea).
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Extended Data Fig. 2 | Estimated trends in case detection over time within 
each country. Systematic trends in case detection may potentially bias estimates 
of no-policy infection growth rates (see equation (8)). We estimate the potential 
magnitude of this bias using data from the Centre for Mathematical Modelling of 
Infectious Diseases23. Markers indicate daily first differences in the logarithm of 
the fraction of estimated symptomatic cases reported for each country over 

time. The average value over time (solid line and value denoted in panel title) is 
the average growth rate of case detection, equal to the magnitude of the 
potential bias. For example, in the main text we estimate that the infection 
growth rate in the United States is 0.29 (Fig. 2a), of which growth in case 
detection might contribute 0.049 (this figure). Sample sizes are 75 in China, 41 in 
Iran, 40 in South Korea, 29 in France, 40 in Italy and 32 in the United States.



Extended Data Fig. 3 | Robustness of the estimated no-policy growth rate of 
infections and the combined effect of policies to withholding blocks of data 
from entire regions. a, b, For each country, we reestimated equation (7) using 
real data k times, each time withholding one of the k first-level administrative 
regions (‘Adm1’, that is, state or province) in that country. Each grey circle is 
either the estimated no-policy growth rate (a) or the total effect of all policies 
combined (b), from one of these k regressions. Red and blue circles show 
estimates from the full sample, identical to the results presented in Fig. 2a, b, 

respectively. For each country panel, if a single region is influential, the estimated 
value when it is withheld from the sample will appear as an outlier. Samples that 
omit an influential region are highlighted with an open pink circle. As in Fig. 2b, 
we estimate a distributed lag model for China and display each of the estimated 
weekly lag effects (where the pink circle is the same ‘without Hubei’ sample for 
lags). The full sample includes 3,669 observations in China, 595 in South Korea, 
2,898 in Italy, 548 in Iran, 270 in France and 1,238 in the United States.
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Extended Data Fig. 4 | Robustness of the estimated effects of individual 
policies to withholding blocks of data from entire regions. Same as 
Extended Data Fig. 3, but for individual policies (analogous to Fig. 2c). WFH 
denotes work from home policies; opt denotes optional policies. In cases in 

which two regions are influential, a second region is highlighted with an open 
green circle. The full sample includes 3,669 observations in China, 595 in South 
Korea, 2,898 in Italy, 548 in Iran, 270 in France and 1,238 in the United States.



Extended Data Fig. 5 | See next page for caption.



Article
Extended Data Fig. 5 | Evidence to support models in which policies affect 
infection growth rates in the days following deployment. Existing evidence 
has not demonstrated whether policies should affect infection growth rates in 
the days immediately after deployment. It is therefore not clear ex ante 
whether the policy variables in equation (7) should be encoded as ‘on’ 
immediately following a policy deployment. We estimate ‘fixed-lag’ models in 
which a fixed delay between the deployment of a policy and its effect is 
assumed (see Supplementary Methods section 3). If a delay model is more 
consistent with real world infection dynamics, these fixed lag models should 
recover larger estimates for the impact of policies and exhibit better model fit. 
a, R2 values associated with fixed-lag lengths varying from 0 to 15 days. Centre 

values represent the R2 value in our sample, whiskers are 95% confidence 
interval computed through resampling with replacement. In-sample fit 
generally declines or remains unchanged if policies are assumed to have a delay 
longer than 4 days. b, Estimated effects for no lag (the model reported in the 
main text) and for fixed lags between 1 and 5 days. Centre values represent the 
point estimate, error bars are 95% confidence intervals. Estimates generally are 
unchanged or shrink towards zero (for example, home isolation in Iran), 
consistent with mis-coding of post-policy days as no-policy days. The sample 
size is 595 in South Korea, 2,898 in Italy, 548 in Iran, 270 in France and 1,238 in 
the United States.



Extended Data Fig. 6 | Estimated infection or hospitalization growth rates 
with actual anti-contagion policies and in a no-policy counterfactual 
scenario. a, The estimated daily growth rates of active (China and South Korea) 
or cumulative (all others) infections based on the observed timing of all policy 
deployments within each subnational unit (blue) and in a scenario in which no 
policies were deployed (red). Identical to Fig. 3, but using an alternative 
disaggregated encoding of policies that does not group any policies into policy 
packages. The sample size is 3,669 in China, 595 in South Korea, 2,898 in Italy, 
548 in Iran, 270 in France and 1,238 in the United States. b, Same as Fig. 3, but 
equation (7) is implemented for a single example administrative unit: Wuhan, 

China. The sample size is 46 observations. c, Same as Fig. 3, but using 
hospitalization data from France rather than cumulative cases (the French 
government stopped reporting cumulative cases after 25 March 2020). The 
sample size is 424 observations. For all panels, the difference between the with- 
and no-policy predictions is our estimated effect of actual anti-contagion 
policies on the growth rate of infections (or hospitalizations). The markers are 
daily estimates for each subnational administrative unit (vertical lines are 95% 
confidence intervals). Black circles are observed changes in log(infections) (or 
diamonds for log(hospitalizations)), averaged across observed administrative 
units.
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Extended Data Fig. 7 | Sensitivity of estimated averted/delayed infections to 
the choice of γ and σ in an SIR/SEIR framework. The sensitivity of total averted/
delayed cases presented in Fig. 4 to alternative modelling assumptions. We 
compute total cases across the respective final days in our samples for the six 
countries presented in our analysis. The figure displays how these totals vary 
with eight values of γ (0.05–0.4) and four values of σ (0.2, 0.33, 0.5, ∞), where the 
final value of σ (∞) corresponds to the SIR model. a, The simulated total number 
of infections under no policy. b, Same as in a, but using actual policies. c, The 

difference between a and b, which is the total number of averted/delayed 
infections. d, Same as c, but on a logarithmic scale similar to Fig. 4 (a–c are on a 
linear scale, trimmed to show details). Figure 4 uses γ = 0.079, which we calculate 
using empirical recovery/death rates in countries for which we observed them 
(China and South Korea; see Methods). If we assume a 14-day delay between 
infected individuals becoming non-infectious and being reported as ‘recovered’ 
in the data, we would calculate γ = 0.18. Figure 4 assumes σ = ∞.



Extended Data Fig. 8 | Simulating reduced-form estimates for the no-policy 
growth rate of infections for different population regimes and disease 
dynamics. We examine the performance of reduced-form econometric 
estimators through simulations in which different underlying disease 
dynamics are assumed (see Supplementary Methods section 2). Each 
histogram shows the distribution of econometrically estimated values across 
1,000 simulated outbreaks. Estimates are for the no-policy infection growth 
rate (analogous to Fig. 2a) when three different policies are deployed at random 
moments in time. The black line shows the correct value imposed on the 
simulation and the red histogram shows the distribution of estimates using the 
regression in equation (7), applied to data output from the simulation. The grey 
dashed line shows the mean of this distribution. The 12 subpanels describe the 
results when various values are assigned to the mean infectious period (γ−1) and 

mean latency period (σ−1) of the disease. σ = ∞ is equivalent to SIR disease 
dynamics. In each panel, Smin is the minimum susceptible fraction observed 
across all 1,000 45-day simulations shown in each panel. In the real datasets 
used in the main text, after correcting for country-specific underreporting, Smin 
across all units analysed is 0.72 and 95% of the analysed units finish with 
Smin > 0.91. Bias refers to the distance between the dashed grey and black line as 
a percentage of the true value. a, Simulations in near-ideal data conditions in 
which we observe active infections within a large population (such that the 
susceptible fraction of the population remains high during the sample period, 
similar to those in our data for Chongqing, China). b, Simulations in a non-ideal 
data scenario in which we are only able to observe cumulative infections in a 
small population (similar to those in our sample for Cremona, Italy).
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Extended Data Fig. 9 | Simulating reduced-form estimates for 
anti-contagion policy effects for different population regimes and 
assumed disease dynamics. Same as Extended Data Fig. 8, but estimates are 
for the combined effect of three different policies (analogous to Fig. 2b) that 
are deployed at random moments in time. a, Simulations in near-ideal data 
conditions in which we observe active infections within a large population 

(such that the susceptible fraction of the population remains high during the 
sample period, similar to those in our data for Chongqing, China). b, 
Simulations in a non-ideal data scenario in which we are only able to observe 
cumulative infections in a small population (similar to those in our sample for 
Cremona, Italy).



Extended Data Fig. 10 | Regression residuals for the growth rates of 
COVID-19 by country. These plots show the estimated residuals from 
equation (7) for each country-specific econometric model. Histograms (left) 
show the estimated unconditional probability density function. Quantile plots 

(right) show quantiles of the cumulative density function ( y axis) plotted 
against the same quantiles for a normal distribution. For additional details, see 
Fig. 3 and the ‘Econometric analysis’ section of the Methods.
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