

UNIVERSIDADE DE SÃO PAULO

Faculdade de Zootecnia e Engenharia de Alimentos

ZAB1111 – Estatística Básica Prof. César Gonçalves de Lima <u>cegdlima@usp.br</u>

Aula 9 – PROBABILIDADE (3) MODELOS PARA VARIÁVEIS ALEATÓRIAS DISCRETAS

6. ALGUNS MODELOS PROBABILÍSTICOS PARA VARIÁVEIS ALEA-TÓRIAS DISCRETAS.

Algumas variáveis aleatórias adaptam-se muito bem a diversos problemas práticos e justificam um estudo mais detalhado de suas funções de probabilidades.

6.1. O MODELO BINOMIAL

Antes de apresentar o modelo binomial, precisamos definir os ensaios de Bernoulli

Ensaios de Bernoulli: são aqueles com somente dois resultados possíveis (<u>sucesso</u> e <u>fracasso</u>), com:

$$P(sucesso) = p$$
 e $P(fracasso) = 1 - p = q$.

Teorema 6.1. A probabilidade de ocorrência de k sucessos em n repetições independentes de um experimento de Bernoulli com p = P(sucesso) é dada por:

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k}, \text{ para } k = 0, 1, 2, ..., n.$$

$$\text{onde } \binom{n}{k} = \frac{n!}{k!(n - k)!}$$

Pode-se provar que: E(X) = np e var(X) = np(1-p) = npq.

Este modelo pode ser usado em estudos em que queremos calcular a probabilidade de se obter k sucessos em n repetições independentes de um ensaio de Bernoulli, em que a probabilidade de ocorrer um sucesso é constante e igual a p.

Exemplo 6.2. Em uma baia encontramos 6 leitões. Sabe-se que nesta época do ano a probabilidade de um leitão estar doente é 0,40 e que a doença não é contagiosa. Estamos interessados em estudar o número de leitões doentes na baia.

Resolução:

- X: "número de leitões doentes" e P(leitão doente) = p = 0,40
 ⇒ X ~ Binomial(n=6; p=0,40)
- A probabilidade de encontrarmos k (0, 1, 2, \cdots 4) leitões doentes é calculada por:

$$P(X = k) = {6 \choose k} 0.40^k (0.60)^{6-k}$$
, para $k = 0, 1, ..., 6$.

Por exemplo:
$$P(X = 0) = {6 \choose 0} 0.40^{0} (0.60)^{6} = 0.047 \dots$$

Calculando todas as probabilidades para k = 0, 1, ..., 6 construímos a seguinte tabela:

Distribuição de probabilidades da v.a. $X \sim Binomial(6; 0,40)$

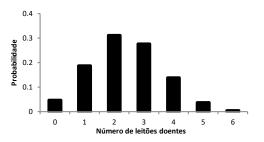
x	0	1	2	3	4	5	6
P(X=x)	0,047	0,187	0,311	0,276	0,138	0,037	0,004

Com base nesta distribuição podemos obter:

$$E(X) = 6(0,40) = 2,40$$
 leitões doentes.

$$var(X) = 6(0,40)(0,60) = 1,44 \text{ leitões}^2$$

$$DP(X) = \sqrt{1,44} = 1,2$$
 leitões doentes



Histograma da distribuição de probabilidades do número de leitões doentes.

- A probabilidade de encontrarmos mais de 3 leitões doentes nesta baia é P(X > 3) = 0.138 + 0.037 + 0.004 = 0.179
- A probabilidade de encontrarmos até um leitão doente nesta baia é $P(X \le 1) = 0.047 + 0.187 = 0.234$.

6.2. O MODELO DE POISSON

A distribuição de Poisson ou <u>distribuição dos eventos raros</u> é empregada em problemas nos quais contamos o número de eventos de certo tipo que ocorrem num intervalo de tempo, de área ou de volume especificado.

Exemplos:

- Número de carros que passam por um guichê do pedágio em intervalos de 15 minutos.
- Número de carros que atravessam um cruzamento por minuto.
- Número de visitas que um bovino faz ao bebedouro por hora.
- Número de alunos ativos em uma sala de aula virtual em intervalos de 20 minutos *etc*.

Teorema. Se uma v.a. discreta X tem distribuição de Poisson com parâmetro $\lambda > 0$, então:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
, para $k = 0, 1, 2, ...$

Pode-se provar que $E(X) = \lambda = var(X)$, ou seja, se os dados têm distribuição de Poisson, os valores da média e da variância são iguais.

Exemplo 6.3. Uma região foi dividida em 20 quadrantes de 100m² e em cada quadrante foi contado o número de palmeiras Juçara (palmito) resultando em:

Palmeiras/quadrante	0	1	2	3	4	5	6
Frequência	3	6	5	4	1	0	1

Será que a distribuição de Poisson serve para explicar a distribuição das palmeiras Juçara nesta região?

Para usar a distribuição de Poisson precisamos conhecer o número médio (λ) de palmeiras/quadrante. Como não conhecemos seu valor vamos estima-lo a partir dos dados obtidos:

$$\lambda = \frac{0(3)+1(6)+\dots+6(1)}{20} = \frac{38}{20} = 1,9 \text{ palmeiras/quadrante.}$$

A função de probabilidades da variável X pode ser escrita como:

$$P(X = k) = \frac{e^{-1.9}1.9^k}{k!}$$
, para $k = 0, 1, 2, ...$

Usando esta fórmula podemos calcular, por exemplo:

$$P(X = 3) = \frac{e^{-1.9}1.9^3}{3!} = 0.1710$$

Distribuição de probabilidades do número de palmeiras/quadrante

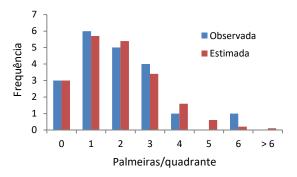
k	0	1	2	3	4	5	6	+ de 6
P(X=k)	0,1496	0,2842	0,2700	0,1710	0,0812	0,0309	0,0098	0,0033

Para verificar a qualidade do ajuste, podemos comparar os valores das frequências observadas e estimadas pelo modelo de Poisson, em que

$$f_{estimada} = (20)P(X = k)$$
, para $k = 0, 1, 2, 3, \dots$

Plantas	0	1	2	3	4	5	6	+ de 6
$f_{observada}$	3	6	5	4	1	0	1	0
$f_{estimada}$	3.0	5.7	5.4	3.4	1.6	0.6	0.2	0.1

Comparando os valores observados e estimados nota-se um bom ajuste do modelo de Poisson aos dados ⇒ Este modelo serve para explicar bem a distribuição de palmeiras Juçara na região. O histograma seguinte serve para confirmar essa afirmação.



Histograma do número de palmeiras Juçara na região.

Existem outros modelos probabilísticos para variáveis discretas, como o modelo uniforme, hipergeométrico, geométrico, *etc*. Para mais detalhes consulte:

Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008. [Cap. 3]

Montgomery, DC; Runger, GC. Estatística aplicada e probabilidade para engenheiros. Rio de Janeiro: LTC Editora, 2012. [Cap. 3 e 4]

EXERCÍCIOS

1) Um veterinário está estudando o índice de natalidade em suínos sujeitos à inseminação artificial. Para tal, coletou informações sobre o número de filhotes nascidos vivos em cada uma das 100 inseminações realizadas com o mesmo reprodutor. Os resultados são apresentados a seguir:

Número	1	2	3	4	5	6	7	8	9	10
Freq.obs.	1	6	7	23	26	21	12	3	1	0

Um estatístico afirmou que a variável N = "número de filhotes nascidos vivos" poder ser estudada por um modelo binomial com parâmetros n = 10 e p = P(Vivo) = 0,50.

Com base nessas informações, pede-se:

- a) Calcule as probabilidades P(X = k), para k = 0, 1, ..., 10 e o número esperado de nascidos vivos em 100 inseminações.
- b) Compare as frequências observadas e as estimadas pelo modelo binomial e comente se a afirmação do estatístico é plausível.
- 2) A aplicação de fundo anticorrosivo em chapas de aço de 1 m² é feita mecanicamente e pode produzir defeitos (pequenas bolhas na pintura). Admite-se que X: "número de defeitos em uma chapa de aço" tem distribuição de Poisson de média $\lambda = 1$ defeito/m². Uma chapa é sorteada para ser inspecionada. Qual é a probabilidade de encontrarmos nesta chapa: a) pelo menos um defeito; b) no máximo 2 defeitos; c) de 2 a 4 defeitos; d) mais de 3 defeitos.